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I.  Planar kinematics 
 

 One can, following STUDY (2), represent motions (e.g., rotations, parallel 
displacements) in the plane by four homogeneous parameters α0 : α1 : α2 : α3 with 
bilinear composition. 
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Figure 1.     Figure 2. 

 
 If (xm, ym) is the center of rotation and ω is the angle of that rotation (Figure 1) then 
one will have: 

α0 : α1 : α2 : α3 = − cot 
2

ω
: xm : ym : 1. 

 
α3 = 0 gives (Figure 2) parallel translation by the vector (− 2α2 / α0 , 2α1 / α0) whose 
length is Ω.  In the homogeneous, Cartesian coordinates x1 : x2 : x3 = x : y : 1, the 
equations of motion then read: 
 
 2 2

0 3 1( ) xα α ′+  = 2 2
0 3 1( ) xα α−  + 2 α0 α3 x2  + 2 (α1 α3 − α0 α2) x3 , 

 2 2
0 3 2( ) xα α ′+  =  − 2 α0 α3 x1 + 2 2

0 3 2( ) xα α−  + 2 (α0 α1 + α2 α3) x3 , 

                                                
 (1) Lecture presented on 19 September 1951 at the conference of the DMV in Berlin.  
 (2) EDUARD STUDY: 

a) “Über Systeme komplexer Zahlen und ihre Anwendung in der Theorie der 
Transformationsgruppen,” Monats. Math. Phys. 1 (1890), 283-355. 

b) “Von den Bewegungen und Umlegungen,” Math. Ann. 39 (1891), 441-566. 
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 2 2
0 3 3( ) xα α ′+  = 2 2

0 3 3( ) xα α+ , 

 
and the bilinear composition formulas are: 
 
 0α ′′  = 0 0α α ′  * * − 2 3α α ′ , 2α ′′  = 0 2 2 0 3 1 1 3α α α α α α α α′ ′ ′ ′+ + − , 

 1α ′′  = 0 1 1 0 2 3 3 2α α α α α α α α′ ′ ′ ′+ + − , 3α ′′  = 0 3 3 0α α α α′ ′+  * * . 

 
One can, like STUDY, write these formulas in an especially elegant way, when one 
introduces a system of higher complex numbers that take the form: 
 
 α = α0 e0 + α1 e1  + α2 e2  + α3 e3 , 
or 
 x =  x1 e1 + x2 e2  + x3 e3 , 
 
resp., which are a limiting case of Hamilton’s quaternions, and shall be referred to as the 
system of STUDY quaternions, whose four units e0, e1, e2, e3 define the following 
product table: 

0 1 2 3

0 0 1 2 3

1 1 2

2 2 1

3 3 2 1 0

0 0

0 0

.

e e e e

e e e e e

e e e

e e e

e e e e e

−

− −

 

 
The product formula then reads simply: 
 

α″ = α α′, 
 
and the equations of motion themselves read: 
 

x′ = α−1 x α, 
in which: 

α−1 = 0 0 1 1 2 2 3 3
2 2
0 3

e e e eα α α α
α α

− − −
+

 =
α

α α
= 

( )N

α
α

 

 
is the reciprocal quaternion to α. 
 N(α) = 2 2

0 3α α+  = 0 characterizes the singular motions. 

 
 

II.  Kinematic map of the line space and quasi-elliptic geometry 
 

 If one interprets the four homogeneous parameters αi as homogeneous, Cartesian 
point coordinates in space, when one sets: 
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α0 : α1 : α2 : α3 = z : x : y : 1, 
 

such that α0 then corresponds to the (vertical) z-direction and α3 = 0 represents the plane 
at infinity then any motion α in space will be associated with an image point A(α).  In 
Lie’s way of expressing things, space will be the parameter space of a planar motion. 
 In 1911, W. BLASCKE (1) and J. GRÜNWALD (2) realized this map of planar 
motions to spatial points, which E. MÜLLER and E. KRUPPA (3) later referred to as the 
kinematic map, by a simple geometric construction. 
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Figure 3.    Figure 4. 
 

 In fact, if one draws (Figures 3 and 4) the ∞2 lines g of a bundle through the image 
point A(α) in space, and one cuts it with the planes z = − 1 and z = + 1 at the points G− 
and G+, and one further looks for their base planes G−′ , G+′  on the plane π (viz., z = 0), 

and one pivots these points G−′ , G+′  around their midpoint G through + π / 2 then one will 

get two points Gl and Gr as the “kinematic image” of the line g, which correspond 
precisely to the ones whose image point was A(α) under the motion α. 

                                                
 (1) WILHELM BLASCHKE, “Euklidische Kinematik und Nichteuklidische Geometrie, I and II,” Z. 
Math. Phys. 60 (1911), 61-91, 203-204.  On that, cf., the brief presentation of W. BLASCHKE in:  F. 
KLEIN: Vorlesungen über höhere Geometrie (Springer, Berlin, 1926), § 81, and the thorough presentation 
in the booklet of W. BLASCHKE, Ebene Kinematik, Hamburger math. Einzelschriften 25. Heft (Leipzig 
and Berlin, 1938). 
 (2) JOSEF GRÜNWALD, “Ein Abbildingsprinzip, welches die ebene Geometrie und Kinematik mit der 
raumlichen Geometrie verknüpft,” Sitz.-Ber. Akad. Wien, Math.-naturw. Kl., Abt. IIa, 120 (1911), 677-
741. 
 (3) EMIL MÜLLER, Vorlesungen über Darstellende Geometrie, I Band: Die linearen Abbildungen, 
revised by ERWIN KRUPPA (Deuticke, Leipzig and Berlin, 1923). 
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 It is occasionally convenient to think of the plane p, which is regarded as the locus of 
the left image points Gl and the right image points Gr, as being divided into two sheets, 
and then speaking of the plane πl of the left image points and the plane πr of the right 
ones. 
 It then follows that the left and right images of two lines g, h that intersect at A(α) 
will have equal distances between them: 
 

l lG H  = r rG H . 

 
 A pencil of rays will have two congruent, linear point sequences as its kinematic 
image, a point (i.e., a pencil of rays) will have a motion, and a plane (i.e., a ray field) will 
have a transfer Gl → Gr .  The image of a real point A (i.e., α3 ≠ 0) will be a rotation, and 
the image of a point at infinity (i.e., α3 = 0) will be a parallel displacement.  The point at 
infinity O of the vertical α0-axis will have the identity motion Gl ≡ Gr for its image. 
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Figure 5    Figure 6 

 
 The singular motions 2 2

0 3α α+  = 0 – i.e., 0 3iα α± = 0 – correspond (Figure 5) to the 

points of a conjugate complex pair ι+, ι− of planes: z = ± i, the singular transfers likewise 
correspond to planes through the absolute points J+, J− of the line at infinity s of the 
image plane π (i.e., z = 0), such that a self-dual singular structure in the kinematic 
parameter space will be distinguished that consists, in total, of two conjugate complex 
planes ι+, ι−, and conjugate complex points J+, J−, and that (when regarded as a locus of 
lines) will carry two distinguished pairs of restricted pencils of rays of “generators,” 
namely, the left generators (J+, ι+), (J−, ι−),  and the right generators (J+, ι−), (J−, ι+). 
 If one distinguishes this structure as the absolute structure of a projective metric then 
the space will take on a quasi-elliptic structure.  It consists of a limiting case of elliptic 
space – viz., the so-called quasi-elliptic space – whose geometry is very similar to that of 
elliptic space.  For example, there are also Clifford parallels, Clifford displacement, etc., 
here. 
 The lines g, h, for example, are left-parallel in the Clifford sense when they have the 
same left kinematic image points Gl = Hl in common; they then intersect (Figure 6) the 
metric structure at points with the same pairs of left generators. 
 Lines that are right-parallel in the Clifford sense are defined analogously. 
 All of the mutually left- (right-, resp.) parallel lines define a ray net, namely a: 
 

Left net Right net 
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with the representation: 
 

1 2 3

01 23 02 31 03p p p p p

β β β
+ +

 = 0 1 2 3

01 23 02 31 03p p p p p

α α α
− −

 = 0, 

 
that is generally elliptic, while in the case β3 = 0 (α3 = 0, resp.) it is parabolic, and its 
guiding lines are two conjugate complex generators of the: 
 

Left family Right family 
 
of the absolute structure, which will coincide with the line at infinity s in the parabolic 
case. 
 For this net, there is a one-parameter continuous group of collineations, under which 
the point x in space will be displaced along the rays of the net (and therefore 
rectilinearly!), and which, because they will thus necessarily leave the absolute structure 
of the quasi-elliptic space fixed, one will then refer to as quasi-elliptic Clifford 
displacements.  More precisely, one speaks of left-displacements (right-displacements, 
resp.) according to whether the path-lines of the displacement are left-parallel (right-
parallel, resp.). 
 If one also composes the homogeneous coordinates xi of the Study quaternions in 
space, when one sets: 
 x = x0 e0 + x1 e1 + x2 e2 + x3 e3 , 
and if: 
 α = α0 e0 + α1 e1 + α2 e2 + α3 e3 , 
and 
 β = β0 e0 + β1 e1 + β2 e2 + β3 e3 
 
mean arbitrary Study quaternions then these quasi-elliptic Clifford: 
 

Left displacements Right displacements 
will read: 

x′ = β x, x′ = x α. 
 
They will define the commutative, three-parameter groups: 
 

3
l
G  3

r
G , 

 
which will collectively yield the G6 of quasi-elliptic motions: 

 
x′ = β x α . 

 
 Now, how does one express such a Clifford displacement when it is applied to the 
line (g) in space in the planes πl and πr (which cover the plane π) of the left and right 
kinematic image points (Gl) and (Gr)? 
 The answer gives the so-called fundamental theorem of the kinematic map: 
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The left image field πl will experience a 
motion under a left displacement, while the 
right one πr will remain fixed. 

The right image field πr will experience a 
motion under a right displacement, while 
the left one πl will remain fixed. 
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Figure 7. 
 

 Application: the bundle of vertical lines g  through the infinitely-distant point O on 

the x0-axis will be mapped to the identical image pair lG  = rG . (Figure 7).  It will then 

follow that: 
 If one brings (Figure 7) the point O (x = e0) to A (x = e0 α = α) by a right 
displacement (α) then g  will go to g, so the left image field πl will remain fixed (Gl = 

lG ), although the right one πr will experience a motion (Gr = rG ), namely, the one that 

belongs to the point A(α) and is the image of the right displacement OA
����

. 
 
 The kinematic image of the point A (e.g., rotation, translation) is then identical with 
the image of the right displacement that takes O to A. 
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Figure 8.   Figure 9.   Figure 10. 
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 The rotational angle ω (the translation segment Ω, resp.) is therefore equal to twice 

the quasi-elliptic displacement length 2OA
����

. 
 
 

III.  Kinematic map of lines to turbines.  Lie’s circle geometry. 
 

 One can (Figure 8) characterize the position of the plane π by the position of an 
oriented line element γ with respect to a given basic element γ0 (i.e., an Ur-element).  
STUDY called γ a “soma,” and γ0, the “Ur-soma” (or “proto-soma”).  Any motion α 
(viz., πl → πr) takes the basic element γ0 (which should lie in πl) to an oriented line 
element γ (in πr), which, conversely, determines the motion α uniquely (by its position 
with respect to γ0), and thus the motion α is mapped to the image point A(α) in a one-to-
one way.  This invertible, single-valued “kinematic map of the oriented line element γ to 
the spatial point A(α)” is based upon the following (1): 
 From the fundamental theorem, the point groups (x), ( )xɺ  in space, which arise from 

each other by a right displacement α, will thus have images (γ), ( )γɺ , resp., in the plane π 
figure of oriented line elements that emerge from each other by a motion, and indeed by 
the motion α of πl to πr that corresponds to right displacement. 
 Which figures of oriented line elements correspond to the point A of a line g under 
our kinematic map? 

 

g 
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A 

Plane at infinity 

γ0 

γ Ω 

 
Figure 11. 

 
 1. Let the line g  contain the point O, and: 

 a) Let there be a real − thus vertical − line (Figure 9).  One will then have lG  = rG , 

so the points of g will map to the rotations of πl to πr around the fixed point lG  = rG = A′, 
by which the oriented basic element γ0 will describe a rotational family of oriented line 
                                                
 (1) The line elements γ, as representatives of planar motions, in the sense of EDUARD STUDY’s 
Geometrie der Dynamen (Teubner, Leipzig, 1903), are referred to as (positive) somas.  Since the kinematic 
map analogously takes the planes in quasi-elliptic space to transfers of the plane π in a one-to-one way, 
which, following STUDY, one can identify with the negative somas γ′ in the plane π (after choosing the 
Ur-soma γ0), that will yield a similar map of the negative somas of p to the planes of quasi-elliptic space.  
From a presentation of FRANK LÖBELL, one can represent positive and negative somas by line elements 
that are oriented merely on their left (i.e., positive) or right (i.e., negative) edge by a half-arrow, with 
which, figures will arise that LÖBELL referred to as right (left, resp.) hooks.  However, due to the required 
brevity, we cannot go further into this important set of circumstances. 
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elements (γ) – viz., a Kasner turbine through γ0 (
1) – (Figure 10), for which the rotational 

angle ω = 2OA, so it is equal to twice the quasi-elliptic displacement distance. 
 
 b) If the line g  is a line at infinity through O (Figure 11) then its points A  will map 

to a fixed direction of translations, whereby the oriented basic element γ0 will describe a 

line turbine through γ0 , and the translation distance Ω = 2OA will again be equal to 
twice the quasi-elliptic displacement distance.  If A′ = [ ]g s  is the (infinitely distant) 

intersection point of the lineg with the image plane π then the translation direction will 
be normal to the direction of the point at infinity A′. 
 

 

Gl = lG = rG  

g 

γ 

Gr 

 
Figure 12. 

 
 2.  If g is an arbitrary line: 
 
 a) That does not meet the absolute line s then one can (Figure 7) convert it into such 
a line g  through O by a right displacement.  The left image point Gl of g thus remains 

unchanged (Gl = lG ), while the right one suffers a motion (viz., a rotation) Gr → rG  that, 
from the fundamental theorem, will take the image figure of the oriented line elements of 
g to those of g .  It then follows (Figure 12): 
 
 The image of an arbitrary line g (that does not intersect the absolute line s = [ι+ ι−]) is 
a Kasner turbine with the right kinematic image point Gr of g as its midpoint that is 
congruent to that turbine that the basic element γ0 describes under a rotation around the 
left kinematic image points Gl of g. 
 

                                                
 (1) EDUARD KASNER, “The group of turns and slides and the geometry of turbines,” Amer. J. Math. 
33 (1911), 193-202.  
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 b)  If g is an arbitrary line that intersects the absolute line s = [ι+ ι−] (i.e., it is 
horizontal) then one will analogously obtain an arbitrary line turbine as the kinematic 
image of the point A of g. (Figure 13). 
 
 If (Gl, Gr) are the two (infinitely-distant) kinematic image points of the horizontal line 
g, and if γ is the image element of an arbitrary point of the line g then the image line 
turbine of g will then arise by translating γ normal to the direction Gr, and is thus 
congruent to the line turbine that arises when one displaces the basic element γ0 normal to 
the direction Gl . 
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Figure 13. 

 
 Intersecting lines g1, g2 always correspond to contacting turbines – i.e., ones that have 
an oriented line element (viz., the image of the intersection point A = [g1 g2]) in common 
(Figure 14). 

 

g1 

G1r 

G2r 
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Figure 14. 
 
 Special case (Figure 15):  If Gl lies on the normal nl of the basic element γ0 then the 
line g will belong to a thread (viz., a “left thread” ) Gl .  If γ0 lies on the zero point of the 

x-axis then the equation of this so-called “auxiliary thread”  will be: 
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p01 + p23 = 0. 
 

 One gets the oriented line elements of cycles as the kinematic images of the (points 
of) lines g of this auxiliary thread Gl .  Intersecting lines g, h of the auxiliary thread Gl 

will have contacting cycles as their images. 
 
 We thus have thus arrived at an exceptionally simple constructive (descriptive-
geometric) presentation of any of SOPHUS LIE’s celebrated contact transformations, by 
which the rays g of a thread will be mapped to the oriented Lie circle (i.e., cycle) (1).  The 
ten-parameter continuous group G10 of projective automorphisms of the auxiliary thread 

Gl will thus correspond to the G10 of Lie circle transformations. 
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Figure 15.   Figure 16. 

 
 Special case (Figure 16): The rays g of the auxiliary thread Gl that cut the absolute 

structure s (which likewise lies in Gl), and which define a parabolic net (“auxiliary net” 

N), correspond to a line cycle − i.e., a spear.  The seven-parameter continuous group G7 

of the projective automorphisms of the auxiliary net will then taken to the G7 of Laguerre 

spear transformations. 
 
 

IV.  Euclidian line-sphere transformations 
 

 Cyclography (2) teaches us (Figure 17 and Figure 18) that oriented line elements γ in 
the plane π should be regarded as the images of isotropic lines a or, after a reality 
displacement (viz., multiplication of the z-coordinate by i), as the images of lines that are 
inclined above the image plane π by a rotation of 45o “to the left, as seen from above,” 
and thus cut a certain one-piece circle at infinity “C,” with the equation: 
 

t = 0 Plane at infinity 

                                                
 (1) SOPHUS LIE, Geometrie der Berührungstransformationen (Teubner, Leipzig, 1896).  
 (2)  EMIL MÜLLER, Vorlesungen über Darstellende Geometrie, II Band: Die Zyklographie, revised by 
J. L. KRAMES (Deuticke, Leipzig and Vienna, 1929). 
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x2 + y2 – z2 = 0 Circle at infinity “C”. 
 
The second-order surfaces of rotations (hyperboloids of rotation of one sheet) then 
function as spheres (i.e., “C-spheres”) through the circle at infinity C with the equation: 
 

(x – a)2 + (y – b)2 + (z – c)2 = r2 
 

(r = throat radius = “radius of the sphere”). 
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Figure 17.    Figure 18. 

 
 The oriented line elements of a turbine are then cyclographic images of the generators 
of a family of such “spheres,” which is oriented by distinguishing a family of generators.  
Contacting turbines (Figure 14) are cyclographic images of contacting, oriented 
“spheres.” 
 
 By composing the kinematic map of the lines in space to turbines and the 
cyclographic map of turbines to oriented (C)-spheres, we have thus obtained, all tolled, a 
conceivably simple descriptive-geometric construction of Lie’s celebrated contact 
transformations (1) that maps the lines g in (quasi-elliptic) space to the oriented spheres k 
of (quasi-Euclidian) space. 
 
 Intersecting lines then correspond to contacting spheres. 
 Lines of the auxiliary thread Gl correspond, first, to a cycle, then (Figure 17) to a 

cyclographically-isotropic cone (tangent cone to the conic section C of the so-called “C-
cone”).  Lines g that cut the absolute line s correspond, first, kinematically to turbines, 
and then cyclographically to non-isotropic planes that are oriented by distinguishing one 
of their isotropic families.  In particular, lines of the auxiliary net N first correspond 

kinematically to spears and the (Figure 18) cyclographically to isotropic planes (viz., C-
planes) that admit only one orientation, like the isotropic cone (i.e., C-cone). 

                                                
 (1) SOPHUS LIE, “Über Komplexe, insbesondere Linien- und Kugelkomplexe, mit Anwendung auf die 
Theorie partieller Differentialgleichingungen,” Math. Ann. 5 (1872), 145-156;  Gesammelte Abhandlungen, 
Bd. 2, I, pp. 1-121. 
 A thorough historical overview was given by E. A. WEISS, “Die Geschichtliche Enwicklung der Lehre 
von der Geraden-Kugel-Transformation, I-VII,” Deutsche Math. 1-3 (1935-1938). 
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 LIE himself had still not oriented the spheres – i.e., his line-sphere-transformation 
was still not one-to-one.  The two isotropic families of generators of the sphere 
correspond cyclographically to “polar turbines”  whose oriented line elements lie 
symmetrically with respect to the carrier circle of the turbine (Figure 19); i.e., 
kinematically, they are lines g, g  whose left image points Gl , lG  lie symmetrically with 

respect to the image line nl of the auxiliary thread Gl – i.e., lines g, g  that are null polar 

with respect to the auxiliary thread Gl. 

 The necessity of orienting the spheres was first recognized (1897) by E. STUDY (1), 
who was also the first (1926) to give a complete analytic presentation (2) of the 
(Euclidian) line-sphere-transformation that was free of objections, and which is in 
agreement with our geometric model. 
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Figure 19. 

 
 One can base Lie’s circle geometry on the sphere, and the non-Euclidian line-sphere-
transformation on geometric constructions in the same way when one appeals to the 
kinematics of the sphere and its (elliptic) parameter space, as I already showed in 1930 
(3). 
 The Euclidian model is already found in a Vienna dissertation of A. E. MAYER (4) 
that originated at the same time, which is still not available, and which was also not 
published. 
 In the winter and summer semesters of 1935/36, I myself have presented the situation 
thoroughly in a Vienna lecture on “New Kinematics.”  In the year 1948, W. BLASCHKE 
(5) published on it in the “Münchener Sitzungsberichten” and in 1949 in the “Rendiconti 
di matematica.” 
 
 KARL STRUBECKER, Karlsruhe.  

                                                
 (1) Cf., the thorough critical treatise of E. STUDY, “Über Lies Kugelgeometrie,” Jber. Dtsch. Math.-
Ver. 25 (1917), 96-113. 
 (2) EDUARD STUDY, “Vereinfachte Begründungen von Lies Kugelgeometrie I,” Sitz.-Ber. Preuss. 
Akad. Wiss., Berlin (1926), 360-380.  
 (3) KARL STRUBECKER, “Zur nichteuklidischen Geraden-Kugel-Transformation,”  Sitz.-Ber. Akad. 
Wiss. Wien, Math.-naturw. Kl., Abt. IIa, 139 (1930), 685-700, and “Zur Geometrie sphärischer 
Kurvenscharen,” Jber. Dtsch. Math.-Ver. 44 (1934), 184-198. 
 (4) ANTON ERNST MAYER, Die Kinematische Abbildung, Dissertation, Techn. Hochschule, Vienna 
(1930).  
 (5) W. BLASCHKE, “Kinematische Begründungen von S. Lies Geraden-Kugel-Transformation,” Sitz.-
Ber. Bayer. Akad. Wiss. (München, 1948), 291-297, and “Contributi alla cinematica,” Rend. Mat. 
Applicazioni [V, no. 262], (1949), 268-280. 


