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Kinematics, Lie’s circle geometry, and
the line-sphere transformation {)

By Karl STRUBECKER, Karlsruhe

Translated by D. H. Delphenich

|. Planar kinematics

One can, following STUDY 2, represent motions (e.g., rotations, parallel
displacements) in the plane by four homogeneous paramger a; : a» : as with
bilinear composition.

(Xm, Ym)
Gr(x)

Gr(X)
Gi(X) G(x)

Figure 1. Figure 2.

If (xm, Ym) is the center of rotation andis the angle of that rotation (Figure 1) then
one will have:

w
ao:alzazzagz—cotg:xm:ym:1.

as = 0 gives (Figure 2) parallel translation by the vectoRd. / ao , 201 | ap) whose
length isQ. In the homogeneous, Cartesian coordinaiesx; : x3 = x : y : 1, the
equations of motion then read:

(@+a2)xX =(@Z-a2)x, +2ama X +2@ 03— 0 X)X,
200 a3 X + (aoz—a;)xz +2(@m+a ) X3,

2 2 !
(ao + a3) X2

) Lecture presented on 19 September 1951 at the confesktheeDMYV in Berlin.

EDUARD STUDY:
a) “Uber Systeme komplexer Zahlen und ihre Anwendung in dédreorfe der

Transformationsgruppen,” Monats. Math. Phy$1890), 283-355.
b) “Von den Bewegungen und Umlegungen,” Math. A3(1891), 441-566.
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(a5 +a2) X, = (ag +a3) %,

and the bilinear composition formulas are:

n n

a, = a,a, * * - a,as;, a, =aa,taa,tag, —agy,,

ay aatag, **

n

a.ataa,tapg,-ag,, as

One can, like STUDY, write these formulas in an esfigcelegant way, when one
introduces a system of higher complex numbers thatthekrm:

a=ave tmme +taxe tases,
or

X= X1e1+tX € +X3€3,

resp., which are a limiting case of Hamilton’s quaterniansg, shall be referred to as the
system of STUDY quaternions, whose four uregs e;, e, e define the following
product table:

& &€ & ¢
| &% & ¢ ¢
elg 0 0-¢
&le 0 0 ¢
&1 & €-€~-§

The product formula then reads simply:
a’=aa

and the equations of motion themselves read:

x'=alxa,
in which:

al= a6 ~ a6~ 0,660,368 _ a — a
at+a’ ad N(a)

is the reciprocal quaternion to
N(a) = a; +a? = 0 characterizes the singular motions.

Il. Kinematic map of the line space and quasi-elliptic gemetry

If one interprets the four homogeneous parameteras homogeneous, Cartesian
point coordinates in space, when one sets:
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Q... az3=2:X:y:1,
such thatap then corresponds to the (verticalilirection andas = O represents the plane
at infinity thenany motiona in space will be associated with anage point Aa). In
Lie’s way of expressing things, space will b"e plaeameter spacef a planar motion.
In 1911, W. BLASCKE {) and J. GRUNWALD ) realized this map of planar

motions to spatial points, which E. MULLER and E. KRRAP() later referred to as the
kinematic mapby a simplegeometric constructian

aO*Z A

| A9 g
z=+1 I G+/ G: z=+1
|
G/ ﬂ G/ z=0

/

Figure 3. Figure 4.

-1 G

In fact, if one draws (Figures 3 and 4) thelinesg of a bundle through the image
point A(a) in space, and one cuts it with the plares— 1 andz = + 1 at the point&-
andG;, and one further looks for their base pla&s G, on the planer(viz., z = 0),
and one pivots these poin , G, around their midpoinG through +77/ 2 then one will

get two pointsG, and G, as the kinematic imagé of the line g which correspond
precisely to the ones whose image point wag under the motiom.

() WILHELM BLASCHKE, “Euklidische Kinematik und Nichteuklidche Geometrie, | and I1,” Z
Math. Phys.60 (1911), 61-91, 203-204. On that, cf., the brief presentation o-BMASCHKE in: F.
KLEIN: Vorlesungen Uber héhere Geomet(i8pringer, Berlin, 1926), § 81, and the thorough presentation
in the booklet of W. BLASCHKEEbene KinematikHamburger math. Einzelschriften 25. Heft (Leipzig
and Berlin, 1938).

(® JOSEF GRUNWALD, “Ein Abbildingsprinzip, welches dibene Geometrie und Kinematik mit der
raumlichen Geometrie verknupft,” Sitz.-Ber. Akad. Widfath.-naturw. Kl., Abt. 11a,120 (1911), 677-
741.

() EMIL MULLER, Vorlesungen iiber Darstellende GeometiieBand: Die linearen Abbildungen
revised by ERWIN KRUPPA (Deuticke, Leipzig and Berlin, 1923).
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It is occasionally convenient to think of the plamevhich is regarded as the locus of
the left image point& and the right image points,, as being divided into twsheets
and then speaking of the plareof the left image points and the plarmeof the right
ones.

It then follows that the left and right images obtlinesg, h that intersect af(a)
will have equal distances between them:

A pencil of rays will have two congruent, linear poggquences as its kinematic
image, gooint(i.e., a pencil of rays) will haveraotion and gplane(i.e., a ray field) will
have aransferG, - G;. The image of a real poiat(i.e., as # 0) will be a rotation, and
the image of a point at infinity (i.eaz = 0) will be a parallel displacement. The point at
infinity O of the verticalap-axis will have the identity motio@, = G; for its image.

Figure 5 Figure 6

The singular motiongr’ +a? = 0 —i.e.,a,+ ia,= 0 — correspond (Figure 5) to the
points of a conjugate complex paiy /~ of planesz = + i, the singular transfers likewise
correspond to planes through the absolute paihtd™ of the line at infinitys of the
image planerr (i.e., z = 0), such that a self-dual singular structure in therkatic
parameter space will be distinguished that consistmtal, of two conjugate complex
planes/®, I, and conjugate complex poini§ J°, and that (when regarded as a locus of
lines) will carry two distinguished pairs of restricted @énof rays of “generators,”
namely, the left generatord’( /"), (J°, /), and the right generator& (1), (I, I').

If one distinguishes this structure as #fisolute structuref a projective metric then
the space will take on @guasi-elliptic structure. It consists of a limiting case of elliptic
space — viz., the so-calleghasi-elliptic space- whose geometry is very similar to that of
elliptic space. For example, there are also Clifioadallels, Clifford displacement, etc.,
here.

The linesg, h, for example, are left-parallel in the Clifford sengieen they have the
same left kinematic image poin®% = H, in common; they then intersect (Figure 6) the
metric structure at points with the same pairs ofdefterators.

Lines that are right-parallel in the Clifford sense defined analogously.

All of the mutually left- (right-, resp.) parallel linglefine a ray net, namely a:

Left net | Right net
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with the representation:

that is generally elliptic, while in the cagk = 0 (a5 = 0, resp.) it is parabolic, and its
guiding lines are two conjugate complex generators of the:

B B B
p01+ p23 p02+ p31 p03

a, a, a,
Po1 = P2z Po2™ Pa1 Pos

:O,

=0 ‘ ‘

Left family | Right family

of the absolute structure, which will coincide with tireelat infinity s in the parabolic
case.

For this net, there is a one-parameter continuous grbcagpllmeations, under which
the point x in space will be displaced along the rays of the (@etd therefore
rectilinearly!), and which, because they will thus reseeily leave the absolute structure
of the quasi-elliptic space fixed, one will then refer a8 quasi-ellipticClifford
displacements More precisely, one speaks of left-displacemenghtidisplacements,
resp.) according to whether the path-lines of the disptent are left-parallel (right-
parallel, resp.).

If one also composes the homogeneous coordinatesthe Study quaternions in
space, when one sets:

X=X e&tXieptXo& + X363,
and if:
a=etme+tme+aes,

B=Heat+the+tlhe+ e

mean arbitrary Study quaternions then these quasi-elliptior@l

and

Left displacements \ Right displacements
will read:
X'=BX \ X'=xa.
They will define the commutative, three-parameter groups:
8, | &',

which will collectively yield the®s of quasi-elliptic motions:

X'=pxa.

Now, how does one express such a Clifford displacemérn it is applied to the
line (g) in space in the planeg and 7z (which cover the plane) of the left and right
kinematic image point<3) and G,)?

The answer gives the so-calleshdamental theorem of the kinematic map:
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motion under a left displacement, while theotion under a right displacement, while

The left image field/z will experience g The right image fieldz will experience a
right onesz will remain fixed. the left onerr will remain fixed.

0O

—_— Right
displacement
OA

«
«Q

G
m=rn=rm

Figure 7.

Application: the bundle of vertical line§ through the infinitely-distant poir® on

the xo-axis will be mapped to the identical image p&ir= G, . (Figure 7). It will then
follow that:

If one brings (Figure 7) the poi® (x = &) to A (X = & a = a) by a right
displacement ) then g will go to g, so the left image fieldr will remain fixed G =

C_S,), although the right ongr will experience amotion(G; = C_Sr), namely, the one that
belongs to the poin&(a) and is the image of the right displacemét.

The kinematic image of the point(&.g., rotation, translationy then identical with
the image of the right displacement that takes O.to A

A'(a)

T=mn=1r

Figure 8. Figure 9. Figure 10.
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The rotational anglev (the translation segmef, resp.) is therefore equal to twice
the quasi-elliptic displacement lengtiDA.

lll. Kinematic map of lines to turbines. Lie’s circle geometry.

One can (Figure 8) characterize thesition of the planer by the position of an
oriented line elemeny with respect to a given basic elemgat(i.e., an Ur-element)
STUDY calledy a “somg@” and y, the “Ur-soma” (or “proto-soma”). Any motion a
(viz., T - 1) takes the basic elemeps (which should lie in77) to an oriented line
elementy (in 77), which, conversely, determines the motigruniquely (by its position
with respect tag), and thus the motioa is mapped to the image polfa) in a one-to-
one way. This invertible, single-valu&inematic map of the oriented line elemertb
the spatial point £a)” is based upon the followingd)(

From the fundamental theorem, the point groups (k) in space, which arise from
each other by aght displacementy, will thus have images/, ()), resp., in the plang
figure of oriented line elements that emerge fraoheother by anotion and indeed by
the motiona of 77 to 77 that corresponds to right displacement.

Which figures of oriented line elements corresptinthe point A of a line g under
our kinematic map?

Ane at infinity / ;

Figure 11.

1. Letthe lineg contain the poin®, and:

a) Let there be a real thus vertical line (Figure 9). One will then havg = G,
so the points of will map to the rotations off to 7z around the fixed poinG, = G, = A,
by which the oriented basic elemeptwill describe a rotational family of oriented line

() The line elementsy; as representatives of planar motions, in the seh&DWARD STUDY'’s
Geometrie der Dynamdfieubner, Leipzig, 1903), are referred to as (posisemas Since the kinematic
map analogously takes tipbanesin quasi-elliptic space ttvansfersof the planerrin a one-to-one way,
which, following STUDY, one can identify with the negatisomag/ in the planerr(after choosing the
Ur-somayg), that will yield a similar map of the negative somas of p to the plafhgsiasi-elliptic space.
From a presentation of FRANK LOBELL, one can repnegmsitive and negative somas by line elements
that are oriented merely on their left (i.e., posjtiee right (i.e., negative) edge by a half-arrow, with
which, figures will arise that LOBELL referred to iaght (left, resp.) hooksHowever, due to the required
brevity, we cannot go further into this important setiafuenstances.
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elements g) — viz., aKasner turbine throughs (%) — (Figure 10), for which the rotational
anglew= 20A, so it is equal to twice the quasi-elliptic displacentisiiance.

b) If the line § is aline at infinitythroughO (Figure 11) then its pointé& will map
to a fixed direction ofranslations whereby the oriented basic elementvill describe a
line turbine throughy , and the translation distan€k = 20A will again be equal to
twice the quasi-elliptic displacement distance. Alf= [§ d is the (infinitely distant)
intersection point of the ling with the image planerthen the translation direction will
be normal to the direction of the point at infindty

Figure 12.

2. Ifgis an arbitrary line:

a) That does not meet the absolute ktaen one can (Figure 7) convert it into such
a line g throughO by a right displacement. The left image pdintof g thus remains

unchanged@, = c_;, ), while the right one suffers a motion (viz., éaton) G, — C_Sr that,

from the fundamental theorem, will take the imaigerke of the oriented line elements of
g to those ofg . It then follows (Figure 12):

The image of an arbitrary line @hat does not intersect the absolute &ire[/" /]) is
a Kasner turbine with the right kinematic image o of g as its midpoint that is
congruent to that turbine that the basic elemgrdescribes under a rotation around the
left kinematic image points; Gf g.

() EDUARD KASNER, “The group of turns and slides and the géona# turbines,” Amer. J. Math.
33(1911), 193-202.
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b) If g is an arbitrary line that intersects the absolute dine [/* /7] (i.e., it is
horizontal) then one will analogously obtain an arbytrne turbine as the kinematic
image of the poin& of g. (Figure 13).

If (G, G;) are the two (infinitely-distant) kinematic image gsiof the horizontal line
g, and if yis the image element of an arbitrary point of the Gnéhen the image line
turbine ofg will then arise by translating normal to the directior,, and is thus
congruent to the line turbine that arises when one displde basic elemepg normal to

the directionG, .
\& ’

Figure 13.

Intersecting lines g gz always correspond tmontactingturbines — i.e., ones that have
an oriented line element (viz., the image of the s#etion pointA = [g1 gz]) in common
(Figure 14).

Figure 14.

Special caséFigure 15): IfG lies on the normah of the basic elemeng then the
line g will belong to athread (viz., a“left thread”) &, . If } lies on the zero point of the

x-axis then the equation of this so-caltadxiliary thread” will be:
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p01+p23:0.

One gets the oriented line elementsyélesas the kinematic images of the (points
of) linesg of this auxiliary thread, . Intersecting lines g, h of the auxiliary thredd

will have contacting cycleas their images.

We thus have thus arrived at an exceptionally simple constructieerijtese-
geometric) presentation of any 8OPHUS LIE’scelebrated contact transformations, by
which the rays g of a thread will be mapped to the oriented Lie direle cycle)'). The
ten-parameter continuous growo of projective automorphisms of the auxiliary thread

&, will thus correspond to thé,, of Lie circle transformations.

N

G o

.

Figure 15. Figure 16.

Special cas€Figure 16): The rayg of the auxiliary threadh, that cut the absolute
structures (which likewise lies in®;), and which define a parabolic néayxiliary net”
), correspond to Ane cycle- i.e., aspear. The seven-parameter continuous gréup
of the projective automorphisms of the auxiliary wél then taken to th&- of Laguerre
spear transformations

IV. Euclidian line-sphere transformations

Cyclography(®) teaches us (Figure 17 and Figure 18) that orikline elementg/in
the planesr should be regarded as the images of isotropics lmmer, after a reality
displacement (viz., multiplication of tleecoordinate by), as the images of lines that are
inclined above the image plameby a rotation of 45“to the left, as seen from above,”
and thus cut a certain one-piece circle at infih@y’ with the equation:

t = 0| Plane at infinity

() SOPHUS LIE Geometrie der Berithrungstransformatior@eubner, Leipzig, 1896).
() EMIL MULLER, Vorlesungen uiber Darstellende GeomettieBand: Die Zyklographierevised by
J. L. KRAMES (Deuticke, Leipzig and Vienna, 1929).
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X’ +y* -7 = 0| Circle at infinity “C”.

The second-order surfaces of rotations (hyperboloids t@tioa of one sheet) then
function as spheres (i.e C-spheres”) through the circle at infinil§/with the equation:

(x=8%+ (- + (@ -9 =r?

(r = throat radius = “radius of the sphere”).

Figure 17. Figure 18.

The oriented line elements ofwbine are then cyclographic images of the generators
of a family of sucHspheres,” which isorientedby distinguishing a family of generators.
Contacting turbines(Figure 14) are cyclographic images obntacting, oriented
“spheres.”

By composing the kinematic map of the lines in space to turbines and the
cyclographic map of turbines to oriented (C)-spheres, we have thus ahtaih®lled, a
conceivably simple descriptive-geometric construction of Lie'lebcated contact
transformationg®) that maps the lines g in (quasi-elliptic) space to the oriented spkeres
of (quasi-Euclidian) space.

Intersecting lines then correspond to contacting sghere

Lines of the auxiliary threa®, correspond, first, to a cycle, then (Figure 17) to a
cyclographically-isotropic cone (tangent cone to theicsectionC of the so-called C-
cone”). Lines gthatcut the absolute line sorrespond, first, kinematically to turbines,
and then cyclographically to non-isotropic planes thabaentedby distinguishing one
of their isotropic families. In particulatines of the auxiliary neft first correspond

kinematically to spears and the (Figure 18) cyclograplyi¢allsotropic planeqviz., C-
planes) that admit only one orientation, like therigpit cone (i.e.C-cone).

() SOPHUS LIE, “Uber Komplexe, insbesondere Linien- Kundelkomplexe, mit Anwendung auf die
Theorie partieller Differentialgleichingungen,” Mathn& 5 (1872), 145-156;Gesammelte Abhandlungen
Bd. 2, I, pp. 1-121.

A thorough historical overview was given by E. A. WE|SSie Geschichtliche Enwicklung der Lehre
von der Geraden-Kugel-Transformation, I-VIl,” DeutschelMé&t3 (1935-1938).
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LIE himself had still not oriented the spheres — igs line-sphere-transformation
was still not one-to-one. The two isotropic families generators of the sphere
correspond cyclographically tépolar turbines” whose oriented line elements lie
symmetrically with respect to the carrier circle tfe turbine (Figure 19); i.e.,

kinematically, they are lineg g whose left image point§, , G, lie symmetrically with
respect to the image line of the auxiliary thread, — i.e., linegy, g that arenull polar
with respect to the auxiliary threas,.

The necessity of orienting the spheres was firstgrized (1897) by E. STUDY)(
who was also the first (1926) to give a complete analgtiesentation J of the
(Euclidian) line-sphere-transformation that was frdeobjections, and which is in
agreement with our geometric model.

_ n
G G

Figure 19.

One can base Lie’s circle geometry on the splaar@ thenon-Euclidian line-sphere-
transformation on geometric constructioims the same way when one appeals to the
k3inematics of the sphemnd its élliptic) parameter spacgeas | already showed in 1930
).

The Euclidian modeiis already found in &ienna dissertatiomf A. E. MAYER (})
that originated at the same time, which is still nedilable, and which was also not
published.

In the winter and summer semesters of 1935/36, | myae# presented the situation
thoroughly in avienna lecture on “New Kinematics.In the year 1948, W. BLASCHKE
(°) published on it in the “Miinchener Sitzungsberichten” anti99 in the “Rendiconti
di matematica.”

KARL STRUBECKER, Karlsruhe.

() Cf., the thorough critical treatise of E. STUDY(lfer Lies Kugelgeometrie,” Jber. Dtsch. Math.-
Ver.25(1917), 96-113.

() EDUARD STUDY, “Vereinfachte Begriindungen von Lies Kggeimetrie |,” Sitz.-Ber. Preuss.
Akad. Wiss., Berlin (1926), 360-380.

() KARL STRUBECKER, “Zur nichteuklidischen Geraden-Kugehfisformation,” Sitz.-Ber. Akad.
Wiss. Wien, Math.-naturw. Kl., Abt. 112139 (1930), 685-700, and “Zur Geometrie sphérischer
Kurvenscharen,” Jber. Dtsch. Math.-Véd (1934), 184-198.

() ANTON ERNST MAYER,Die Kinematische Abbildundissertation, Techn. Hochschule, Vienna
(1930).

() W. BLASCHKE, “Kinematische Begriindungen von S. L@sraden-Kugel-Transformation,” Sitz.-
Ber. Bayer. Akad. Wiss. (Minchen, 1948), 291-297, and “Cartiriblla cinematica,” Rend. Mat.
Applicazioni [V, no. 262], (1949), 268-280.



