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 The original concept of straight line in Euclidian space is the (in the modern 
terminology) proper real line, which is a locus of points that is unbounded in two 
directions and is representable by linear equations with finite real Cartesian coordinates.  
This concept is first proclaimed and then subjected to a double extension.  By the creation 
of the concept of infinitely-distant points, the line will be converted into a closed, circular 
continuum that returns to itself.  One is then dealing with an entirely new kind of so-
called straight line by way of a special definition of the concept, namely, the improper or 
infinitely-distant lines.  In that way, one would arrive at the fact that the totality of all 
“lines” in space can also be regarded as a closed continuum (with G. Cantor’s definition).  
As is known, this totality is representable by the value system of six “homogeneous” 
quantities – viz., Plücker line coordinates Xik – that are linked by a quadratic equation: 

 
(1)     X01 X23 + X02 X31 + X03 X12 = 0. 

 
“Continuous” changes of position for a line will be defined (or should be defined; as a 
rule, one tacitly dismisses that fact) by means of continuous changes of their coordinates, 
under which merely proportional changes are considered to be trivial, and unbounded 
approaches to the meaningless system of values Xik = 0, which remains excluded, might 

still occur.  This explanation for the continuity agrees with the elementary explanation 
that originates in the use of Cartesian coordinates in the realm of proper (real) lines.  
However, it extends beyond this domain and implies that any arbitrary infinite set of 
“lines” will have well-defined accumulation points. 
 Finally, one can extend this definition of a closed, four-fold-extended line continuum 
by also allowing complex quantities as line coordinates, which adds a new conceptual 
structure to the previous ones (which we shall henceforth refer to as real straight lines), 
namely, the imaginary line.  As is already true for the improper real line, moreover, it is 
no longer accessible to geometric intuition. The totality of all real and imaginary lines 
defines a closed continuum of twice the dimension of the former one. 
 We visualize the motivation for these conceptual constructs: With their help − but 
also in only one way − it is known that one can arrive at the statement of extended classes 
of geometric theorems in words of a simple sort.  With good reason, one must develop a 
special interpretation of those properties of geometric figures that cannot be affected by a 
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continuous group of ∞15 transformations, namely, the group of so-called collineations.  
Many intrinsically-distinct concepts grow out of that inescapable requirement, such as, 
e.g., the amalgamation of the concepts of “bundle of parallels” and “bundle of straight 
line through a point” into a common concept (1). 
 We do not particularly care to elaborate upon the algebraic-geometric theorem upon 
which the efficacy of the aforementioned conceptual structures rests.  However, a specific 
formulation does seem useful to us.  As far as the line continuum is concerned, it reads: 
 
 In the multiply (eight-fold, resp.) extended “Plückerian” line continuum, the real 
(real and imaginary, resp.) collineations (and likewise the so-called correlations) can be 
characterized as everywhere well-defined, single-valued, and continuous 
transformations. 
 
 This statement is remarkable due to the fact that it is characteristic of the present kind 
of extension of the original non-closed line manifold, and thus defines the Plücker line 
continuum. 
 It now emerges from the cited facts that the modern concept of straight line (like that 
of point, line, etc) is indeed preferable within a certain circle of interest (and even 
practically indispensible), but it is in no way universally preferable, or even necessary. 
 
 The truth of this statement can actually be self-evident.  As a result, the current state 
of literature, which already superficially recognizes the general, customary use of the 
words “line geometry” (in place of “projective line geometry”), provokes one to 
expressly set down such thoughts.  If we ignore some of the latest starting points that 
relate to non-Euclidian space, then there will exist in fact, as it seems, no other kind of 
algebraic “line geometry” than that of Plücker.  The available Ansätze that are capable of 
development have not brought us to a clear understanding (2); indeed, no one also seems 
to have considered the possibility that one can grasp the basic concept of a straight line in 
a different way from the way that our forebears found appropriate. 
 Systems of mathematical concepts are creatures of our own creation.  Within the 
barriers that are defined by the laws of thought, we can let them come into existence and 
die away with impunity.  However, since we are a critical race – although not in every 
respect, moreover – we willingly divest ourselves of a large part of our creativity, and we 
must do that, must demand a motivation for new concepts that is not easy to take, when 
we do not do violence to the facts, when we understand each other, and would not like to 
capriciously open any arbitrary door and gate.  Moreover, reasonable caution can also go 
too far.  We also seek to get by with existing things when demands of a new sort are 
present and new forms might come to light, and we will even perhaps allow acts of God.  
Thus, the projective-geometric constructions have been known to establish a kind of 

                                                
 (1) The bases for the introduction of “imaginary straight lines” are not peculiar to line geometry, and 
need only to be recapitulated here. 
 (2) This is also true of an investigation of Johannes Petersen (“Nouveau principe pour études de 
géométrie des droites,” Sitzber. der Kopenhagener Akademie, 1898, no. 6), that was recently made known 
to this author by way of a gracious mailing by its author.  The content of this paper has several points of 
contact with the thoughts that are developed later in this paper.  However, the basic concept of a “ray” is 
not found in it, and we cannot agree with a considerable part of Petersen’s discussion, or only with some 
restrictions.  The method that he employed is not by any means adequate for a proper treatment of the topic. 
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monopoly in algebraic geometry, and a strongly passive resistance to the concepts that 
one encounters in projective geometry itself that have their origins somewhere else, like 
the ones that were introduced by S. Lie. 
 Previous experiences do not therefore exactly encourage one to attempt to place them 
alongside the other traditional conceptual structures.  However, the fact that projective 
geometry, especially the so-called synthetic kind, which is the geometry of Poncelet and 
Steiner, is ultimately only one approach to something that has many facets, and due to the 
fact that it cannot therefore be desirable to personally maintain only this specialized 
viewpoint when almost always only that approach is suggested, it might also be accepted 
− at least, in principle.  One should not abandon hope that a less dogmatic way of looking 
at geometric concepts and a freer and more multifaceted treatment of geometric matters 
will ultimately arrive at a better foundation (1).  The following discussion might perhaps 
contribute something towards bringing us closer to such a goal. 
 
 

I. 
 

 We will (for the sake of brevity in presentation) begin with the definition of a new 
line continuum, and then define a group of transformations that has a relationship to this 
continuum that is similar to that of the group of collineations to the Plückerian line 
continuum.  Since the use of one and the same word for different things results in many 
inconveniences, we will henceforth not speak of “straight lines,” but of rays, and thus 
separate the meanings of the words “line” and “ray” that has been previously used by 
geometers as if they were synonymous.  We thus begin with the concept of proper, real 
ray, which means precisely the same thing as the concept of “proper, real line,” but shall 
be extended in another way.   We connect the extension process itself with common 
notions, when possible. 
 We first remark that there are ∞4 rays in real ray space, as well as ∞4 pencils of 
parallels, and that the latter, and all geometric loci that they describe, are associated pair-

                                                
 (1) The fact that the conceptual structures of geometry have not kept pace with the tremendous 
production of details in that domain is a remark that must indeed be clear to any unbiased observer.  To the 
causes of this phenomenon might belong the frequent customary non-consideration of the mental content of 
the closely-related algebraic and function-theoretic disciplines and the deep-seated practice of many 
geometers of formulating theorems that should be true “in general,” i.e., they do not at all have a clear 
sense of what is also frequently presented as valid in general or will be deficient in its foundations.  By this 
process, for which nevertheless any reference to bearers of very celebrated names of later lineage would 
certainly seem to be completely impermissible, but which, in our “critical” age, seems to be considered by 
many as a justifiable peculiarity of geometry, one naturally does not notice that extended groups of facts 
can be correctly represented only with the help of conventional concepts of a convoluted nature.  Thus, 
scientific progress will be likewise be halted with the finality of a brick wall.  We fondly quite a saying of 
the geometer v. Staudt, who referred to the need to remove exceptions to the rules by defining new 
concepts, and to the benefit that science would derive from such concepts:  Is it not an assumption for the 
ultilization of this thought that one must concern oneself with the exceptions and the complexities that are 
frequently linked with them − at least, to the extent that is necessary – in order to clearly exhibit them? For 
example, R. Sturm, with some justification, lamented that geometry does put us in a position that would 
serve to address them.  However, should the geometer not have to share some responsibility for this state of 
affairs?  Is a thorough lack of precision not a much worse evil than the usual so-called errors that can 
mostly be easily recognized and corrected? 
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wise as reciprocal figures.  The rays of “reciprocal” pencils of parallels intersect each 
other orthogonally.  We now let a ray in the first of two such pencils go to infinity, and 
imagine the − on first glance, outlandish − notion that under passage to the limit the 
moving ray collapses to a “point,” so, in fact, it goes to the infinitely-distant vertex (1) of 
the reciprocal pencil.  In this way, we add ∞4 improper rays to the ∞4 real, proper rays, or, 
as we would like to say, point rays, which can be considered to be completely identical 
with the usual so-called points of the “infinitely-distant plane.”  The fact that such a 
notion has any meaning in the conventional way of presenting heterogeneous concepts 
rests upon a theorem that will be fundamental for all of what follows: 
 
 The totality of ∞4 proper and ∞2 point rays can be regarded as a closed continuum, 
and in this continuum the passage to the limit that was described, inter alia, is a 
continuous operation. 
 
 Namely, the two stated geometric structures can be represented together by a different 
sort of system of values of one and the same system of six variables Xk , Xkk , which are 

linked by the equation: 
(2)      X1 X11 + X2 X22 + X3 X33 = 0. 

 
These quantities, like the Plücker line coordinates, are homogeneous, but in another sense 
of the word: a substitution of the form: 
 
(3)      k

′X = ρ Xk , kk
′X = ρ2 Xkk ,   (ρ ≠ 0) 

 
does not change the ray that is represented by these coordinates. 
 The ray that is thus described is proper when X1, X2, X3 do not vanish 

simultaneously.  If we then understand 1
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rectangular Cartesian point coordinates then the ray coordinates can be expressed with 
the help of the associated Plückerian line coordinates: 
 

X01 = x0 y1 – x1 y0 , X23 = x2 y3 – x3 y2 (etc.) 

as follows: 

(4)    X1 = X01, X11 = 02 31

03 12

X X

X X
,  etc. 

Conversely, one has: 

(5)    X01 = X1 , X23 = − 2 222 2 2 1
1 2 3

3 33

( )−+ + ⋅
X X

X X X
X X

, etc. 

 

                                                
 (1) The fact that we completely adopt the concept of “infinitely-distant point” here serves to ease the 
presentation, since this concept is quite familiar.  Naturally, it is not necessary. 
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 The ray being represented is a point ray when one has X1 = X2 = X3 = 0.  The 

coordinates x0 : x1 : x2 : x3 of the associated point of the infinitely-distant plane are then 
the ratios: 
(6)      0 : X11 : X22 : X33 . 

 
The system of values Xk = 0, Xkk = 0 remains excluded. 

 Continuous changes of position of a ray are defined by continuous changes of 
coordinates Xk, Xkk (not, however, of the Plückerian coordinates Xik).  Therefore, 

unbounded approaches to the system of values Xk = 0, Xkk = 0 remain excluded, so 

coordinate changes that are proportional in the sense of equation (3) prove to be 
meaningless. 
 A closed continuum of rays will be defined by these determinations.  The new 
concept of continuity is identical with the elementary one in the realm of proper, real 
rays, and therefore also with the Plückerian one.  However, when considered as a whole 
the ray continuum thus-defined is completely different from the former Plückerian line 
continuum. 
 
 Whereas, e.g., the normal net of a proper line – viz., the totality of all proper lines that 
intersect it perpendicularly – can be extended to a closed continuum by means of ∞1 
improper lines, the normal net of a proper ray, which is defined by rays, contains only 
one point ray, when extended correspondingly. 
 Much deeper-lying differences emerge when one also allows complex values for the 
ray coordinates, and thus defines another concept of imaginary ray, and an associated 
continuum.  One then sees that the proper, imaginary rays are not rigorously identical to 
the proper, imaginary lines.  One considers the special ruled surface that is known by the 
name of cylindroid.  If one regards it as a locus of lines, and extends it by analytic 
continuation into the imaginary domain then one will obtain, inter alia, two of the 
imaginary generators that belong to the infinitely-distant plane.  If, by contrast, one 
regards the same surface as a locus of rays then the continuation into the imaginary 
domain will also lead to only proper rays.  Whereas in Plückerian line geometry the 
cylindroid decomposes into three separate (partially imaginary) surfaces when one lets its 
real lines go to a plane pencil, moreover, such a decomposition does not happen for the 
cylindroid that is considered to be the locus of real and imaginary rays.  The possibility 
then exists in ray geometry − but by no means also in line geometry − of merging the 
concepts of “cylindroid” and “plane pencil of rays” (with proper vertex) into a single 
concept.  We call this new concept, which will be employed later on, a ray chain. 
 As a further example that will be important in what follows, we mention the figure of 
all ∞3 proper, real rays that are parallel to a plane.  After we have extended this structure 
to a closed continuum that exists in the continuum of real or real and imaginary rays, we 
will call it a planar ray complex.  One of them will generally be represented by an 
equation of the form: 

A1 X1 + A2 X2 + A3 X3 = 0. 
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 If we extend this figure, which is considered to be a locus of proper lines, to a closed 
continuum that exists in the Plückerian line continuum then what will come about is a so-
called special linear line complex or a line spray. 
 These two analytic structures prove to be endowed with very different properties.  
One would unsuccessfully attempt to map the one to the other in a birational and 
everywhere-continuous manner. 
 Indeed, all loci of rays likewise take on new properties.  Two different real pencils of 
rays with proper vertices, e.g., will have, when duly extended, not just the connecting line 
between their two centers in common with each other, but two imaginary lines, in 
addition, and similar phenomena exhibit themselves at each step. 
 
 Just as the concept of Plückerian line continuum thus serves now to confer an 
unconditional validity on certain fundamental geometric theorems that underlie the 
elementary concept of exceptions, and thus to simplify further developments of a certain 
kind, similarly, the concept of ray continuum confers geometric truths to the same goal in 
relation to other and no less extended classes. 
 
 We clarify this immediately by two very elementary examples, which are, however, 
important for mainly that reason. 
 If one thinks of concepts like “parallelism” and “rectangular intersection” of proper, 
real rays as represented by algebraic relationships between ray coordinates then one can, 
conversely, employ the formulas obtained (which we will not go into here) as the 
definition of the likewise-named concepts in the case where one deals with imaginary 
rays.  Following through on these thoughts leads to the knowledge that the following two 
theorems exist in line geometry, whose correlates in Plückerian line geometry are not 
true: 
 
 Any two real or imaginary non-parallel proper rays have a completely determined 
common normal. 
 
 Any real or imaginary pencil of parallels is reciprocal to a completely determined 
pencil of parallels. 
 
 With these preparations, we now go on to discussing a group of transformations that 
is linked with our ray continuum.  We might perhaps interpret the three quantities Xkk and 

the six products Xi Xk together as homogeneous point coordinates in a “space” (i.e., a 

projective point continuum) of eight dimensions.  What then arises are all points of an 
algebraic point manifold of order six that is mapped to the ray continuum on a single-
valued, invertible, and everywhere-continuous way.  This manifold M4 admits a 
projective, continuous group of 17 parameters.  Its transformations correspond to the 
transformations of a certain group G17 whose space element is the ray of the continuum 
under discussion, or it can be. 
 We call these latter transformations radial-collinear or radial collineations. 
 
 The radial collineations are everywhere well-defined, single-valued, and continuous 
in the ray continuum under discussion. 
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 They have (when considered to be real continuous or also analytic transformations of 
only proper rays) the characteristic property that from the normal net to a proper ray − 
hence, from the ∞2 rays that intersect one of them rectangularly − a figure of the same 
kind can always emerge. 
 
 All of these transformations will be represented analytically by equations of the 
following form: 

κ′X  = aκ 1 X1 + aκ 2 X2 + aκ 3 X3,   (κ = 1, 2, 3) 

 

(7)    11′X  = k ⋅ 
11 22 33 3 3

2 3
21 22 23

1 1 2 3

31 32 33

i i

i j
i j j j

a a
a a a

a a a
α α= =

+∑∑

X X X

X X , 

 
etc.  Thus, one assumes that k ≠ 0, | a11 a22 a33 | ≠ 0, and the matrix || αik || is determined 
from the matrix || aik || only up to an arbitrary multiple.  Proportional changes to the 
quantities aik , αik  will not change the transformation being represented.  There thus 
remain 9 + 9 + 1 – 1 – 1 = 17 essential parameters in formula (7). 
 
 We thus have the definition of a particular geometric discipline before us that the 
author refers to as radial-projective geometry: This branch of geometry treats those 
properties of figures in the ray continuum under discussion that cannot be affected by 
arbitrary radial collineations. 
 
 The cited definition is capable of some alteration, which we cannot go into 
completely, due to their principal meaning.  Namely, instead of the indicated ray 
continuum, one can start from another one in which ∞4 proper rays are extended, not by 
∞2, but by ∞3 specially-defined “improper” rays.  Similar to what was done before, one 
can define a group of ∞17 single-valued transformations, and they will have the same 
right to be called “radial collineations” as the ones that were defined before: As long as 
only proper rays come into question, the two groups will be completely identical.  There 
is then yet another kind of “radial-projective geometry.”  We express the essential idea 
as: 
 There are two natural ray continua relative to radial collineations. 
 
 Either of the two is a subset of the one Plücker line continuum. 
 In what follows, only the first of these continua will be spoken of. 
 The fact that further ray continua that are “natural” in a similar sense do not exist, and 
thus that the two aforementioned ones are collectively characterized by the group G17 of 
permutations of proper rays, can be proved on the basis of more rigorous definitions and 
conclusions. 
 We make the following further remarks: In addition to the rays themselves, there is a 
second kind of figure in the ray space that depends upon four (real or complex) constants 
that are permuted under radial collineations by a group that is holohedrally-isomorphic to 
it, namely, the pencil of parallels. Just like the rays, they can be considered to the basic 
structure of geometry and can be chosen to be the space element to some advantage.  It 
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can also be represented by coordinates in a simple way: For that, one uses seven 
quantities Ω, Ξi, Φk that are coupled by the equation: 
(8)     Ξ1 Φ1 + Ξ1 Φ1 + Ξ1 Φ1 = 0, 
 
and are homogeneous in the sense that substitutions of the form: 
 
(9)   Ω′ = σ ⋅⋅⋅⋅ τ ⋅⋅⋅⋅ Ω,  i

′Ξ  = σ ⋅⋅⋅⋅ Ξi , k
′Φ  = τ ⋅⋅⋅⋅ Φi   (σ, τ ≠ 0) 

 
are meaningless.  The quantities Ξi and the quantities Φk cannot vanish simultaneously.  
The pencil that is reciprocal to the pencil (Ω; Ξi, Φk) will have the coordinates: 
 
(10)   Ω′ = − Ω; i

′Ξ  = Φi , k
′Φ  = Ξk . 

 
The manifold of the ∞4 (“proper”) pencils of parallels can also be extended to a closed 
continuum by creating “improper pencils of parallels,” in which the likewise extended 
(i.e., by analytic continuation) radial collineations are well-defined, single-valued, and 
continuous. 
 
 There are four continua of pencils of parallels that are natural under the radial 
collineations. 
 
 Just as the group of ∞17 radial-collinear permutations of proper rays is, in a certain 
way, defined by any of the two natural continua of rays, so are they also defined by any of 
the four natural continua of pencils of parallels. 
 
 

II. 
 

 We shall now deal with the illustration of the foregoing ideas by applications, so we 
are up against the difficulty that is always present wherever a concept of an extended and 
exotic nature has been given, and because of that, we come to another difficulty in the 
presentation.  The real geometric loci, ruled surfaces, congruences, and complexes that 
are considered in Plückerian line geometry are to be extended to closed continua 
everywhere in a different way from the usual one, and imaginary figures of a different 
kind will then appear.  The fact that there are analytic structures that are pair-wise 
identical and can even coincide completely in one’s intuition, but still have completely 
different properties, undoubtedly constitutes a difficulty for the representation, as well as 
the understanding, of the new discipline (1).  Everything in ray geometry will then be 
organized from a different viewpoint than the one that one used for line geometry: 
Figures are regarded as equivalent that can be taken to each other by radial collineations.  
The establishment of a special terminology then becomes necessary if one would not like 
to get by with awkward paraphrases.  Finding suitable expressions is, however, not an 

                                                
 (1) It might be useful to point out a related − and due to its greater simplicity, easier to understand − 
phenomenon that already appears in older investigations: We recall the various kinds of extension of the 
elementary point continua in projective geometry and in the geometry of inversion. 
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easy thing to do today, especially due to the fact that the majority of mathematicians are 
entirely loath to extend the terminological apparatus with no basis.  Finally, it is mostly 
very awkward to employ common words with a different meaning, such as we did with 
the word “ray” and the ones that were derived from it.  To find a form for the 
presentation that accounts for the factual and also, at the same time, historical hindsights 
might be virtually impossible under these circumstances.  We beg that a sympathetic 
critic will overlook these difficulties for now. 
 We thus begin by putting a previously-cited theorem into a more convenient form. 
 It follows from the fact that a radial collineation can always emerge from the normal 
net of a real ray (but not necessarily the axis of the second net from the first one) that 
these transformations belong together pair-wise, so any two of them are discordant, as we 
would like to say.  We thus double the entire manifold of rays, pencils of parallels, etc., 
cover it with two sheets, and speak of, e.g., rays X in the first sheet of the ray space and 

rays A in the second one.  We can then say: 

 
 If two proper rays X, A cut each other at a right angle then this property will not be 

affected by discordant radial collineations, and the radial collineations will be 
characterized by this property. 
 
 A new family of ∞17 transformations arises from permuting the two sheets (X′ = A, 

A′ = X) that one can call radial correlations. 

 The construction of the common normal to two non-parallel rays of the same sheet is 
an invariant construction under radial collineations (and correlations) when one 
calculates the normal to the other sheet.  The fact that two rays of both sheets lie over 
each other is, by contrast, not an invariant property. 
 The similarity transformations of Euclidian space are radial collineations in a trivial 
way, when one considers real rays to be their objects, and correspondingly continues 
them into the continuum of real and imaginary rays.  They are the ones that coincide with 
them discordantly, the ones that are permutable under “absolute correlations” X′ = A, A′ 
= X, or finally the ones that do not affect the overlay of two rays X, A. 

 In order to come to a clear insight into the relationship between Euclidian geometry 
and the radial-projective geometry that it is subordinate to, we briefly consider the 
invariant, continuous groups, first, the group G17 of radial collineations, and then the 
group g7 of similarity transformations.  Both systems of groups can already be referred to 
completely by their parameter numbers according to the following diagram: 

 

G17 
G16 
 
G9 
 

G8 
 

 

g7 
g6 
 
g4 
 

g3 
 

 
 Here, g6 means the group of Euclidian motions.  On the basis of things that we cannot 
go into here, we refer to the corresponding subgroup (k = 1) G16 of G17 as the group of 
dual collineations. 
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 g4 is the group of perspective similarity transformations that leave all points of the 
infinitely-distant plane individually unchanged.  Analogously, G9 is the group of all radial 
collineations that leave all point rays individually unchanged. 
 g3 is the three-parameter group of displacements that is defined by the intersection of 
the groups g6, g4 of commuting transformations.  Analogously, G8 is the intersection of 
the groups G16, G9, so it is, in turn, a group of commuting transformations.  We call its ∞8 
transformations dual displacements. 
 The following theorem now becomes understandable: 
 
 The groups g7, g6, g4, g3, whose transformations have rays for their objects, are 
contained in the groups G17, G16, G9, G8, respectively.  They will be defined by all 
transformations of the latter group that leave a certain imaginary ray congruence fixed, 
namely, the “absolute congruence.” 
 That congruence consists of ∞1 pencils of parallels, namely, all (proper) pencils of 
parallels that are reciprocal to it.  The ∞1 point rays of this pencil define the so-called 
imaginary absolute conic section of Euclidian geometry. 
 
 In parallel pencil coordinates, the absolute congruence will be represented by the 
equations: 
(12)  Ω = 0,  2 2 2

1 2 3Ξ + Ξ + Ξ  = 0, 2 2 2
1 2 3Φ + Φ + Φ  = 0, 

 
and in ray coordinates, by the equations: 
 
(13)   2 2 2

1 2 3+ +X X X  = 0, X11 : X22 : X33 = X1 : X2 : X3 . 

 
 The following theorem is useful: 
 
 All transformations of the groups G9 and G17 will be found by composing 
transformations of the group G8 and G16 with such a one-parameter group of perspective 
similarity transformations (any one-parameter subgroup of g4 that does not belong to g4). 
 
 The problem of exhibiting all (real) radial collineations with elementary tools can, on 
these groups, lead back to the construction of the dual collineations.  However, this can 
be accomplished very simply: 
 
 Any four rays, no three of which belong to the same planar complex (pp. 5), can go to 
any other four rays that have the same property under a single dual collineation. 
 
 In order to find an arbitrary (proper) ray of this association, one needs only to 
repeatedly apply a single construction, namely, drawing the common normal between 
two non-parallel rays of the same sheets. 
 
 One indeed notes the main interpretation of the situation that the auxiliary 
construction can also be nowhere-indeterminate in the imaginary domain. 
 
 We now turn to the consideration of ray loci. 
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 We call an analytic locus of ∞3 rays a ray complex, an analytical locus of ∞2 rays, a 
congruence, an analytical locus of ∞3 rays, a volume (Band) (1).  Here, we consider only 
those congruences and ray volumes that do not consist of point-rays entirely.  A volume 
of parallel rays is called a cylinder.  The simplest non-cylindrical volumes are the chains 
(pp. 5) 
 
 Any chain is radially projective to any other one, and in particular, dually projective, 
as well. 
 
 The chains are carriers of binary domains, and they are related to each other 
projectively by the radial projective relationship.  All rays of a chain are perpendicular to 
a certain ray – viz., the principal axis of the chain – in whose normal net the chain 
therefore lies. 
 
 A completely determined chain goes through three rays, no two of which are parallel, 
in the normal net to a proper ray. 
 
 One encounters the following remarkable theorem, inter alia, for the chains: 
 
 If two chains lie in such a way that no ray of one of them is perpendicular to the 
principal axis of the other then a triple of distinct chains will belong to them. 
 
 The congruence of all rays that are perpendicular to the rays of two united chains of 
a triple is also the one that one might get by choosing two chains from the triple. 
 
 The fundamental significance of the concept of chain emerges from a theorem whose 
basic idea goes back to Hamilton: 
 
 If the proper rays of an analytic congruence cannot be distributed on a cylinder then 
the common normals between a ray of the congruence in general position and its 
neighboring rays will define a chain. 
 
 Naturally, we must clarify precise just what we mean by a ray of the congruence in 
“general position.”  Here, where we are dealing with just one orientation, we shall start 
with that fact. 
 The last theorem leads to some especially remarkable families of ray congruences 
when one also brings the closed congruences into the circle of consideration. 
 
 If two analytic congruence of rays have such a relationship to each other that inside a 
regular domain of any ray of the one congruence is intersected perpendicularly by ∞1 
rays (2) of the other one, and conversely, then the following cases are possible: 

                                                
 (1) A volume of rays that belongs to the complex 2 2 2

1 2 3+ +X X X  = 0 cannot be considered to be a 

surface, i.e., not as a locus of ∞2 points or planes. 
 (2) I. e., of an analytic continuum with a (complex) parameter.  
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 Either the one congruence lies in a planar complex and is arbitrary, moreover, and 
the other one is a bundle of parallels, or both congruences can be described by pencils of 
parallels and these pencils, and therefore the congruences themselves, are reciprocal to 
each other, or thirdly, each of the two congruences consists of all common normals to the 
rays of the other one. 
 
 The congruences of the latter family are especially remarkable: They depend upon 
only one finite number.  We call then aplanar chains of congruences. 
 One encounters the following theorems with them: 
 
 There are ∞8 aplanar chain congruences that, like the given ones, are pair-wise 
reciprocal to each other.  A single aplanar chain congruence goes through any four rays, 
no two of which lie in a planar complex.  Any aplanar chain congruence can be taken to 
any other one by a single dual displacement. 
 
 A special pair of such reciprocal congruences is a doubly-covered pencil of rays with 
a proper vertex.  Thus, all other pairs will arise from this simple figure by discordant, 
dual displacements.  The rays of any pair can be associated with the points and lines of a 
plane in a single-valued and invertible way in such a way points and lines in united 
position will correspond to rays that intersect in a mutually orthogonal way.  The rays of 
the one congruence that intersect a ray of the reciprocal congruence perpendicularly 
always define a chain.  Any aplanar chain congruence consists entirely of proper rays; 
each of them has a single ray (1) in each bundle of parallels. 
 
 Any analytic transformation of rays that permutes the aplanar chain congruences is 
radial-projective. 
 
 In the next theorems, we will consider the briefer expressions in terms of only real 
figures, but remark that this restriction is not essential. 
 
 The rays of any aplanar chain congruence remain individually fixed under all of the 
transformations of a one-parameter continuous group of G9 .   Conversely, any such 
group that does not belong to the subgroup G8 will define an aplanar chain congruence. 
 
 For the rays of an arbitrary bundle of parallels, any of the aforementioned 
transformations reduce to a perspective similarity transformation of constant expansion 
ratio that leaves the rays of the bundle in the congruence fixed. 
 
 If the aforementioned ratio has the value –1 then the transformation will be 
involutory; the distance between two mutually associated rays are then bisected by the 
rays of the congruence that are parallel to them.  We call this special transformation a 
reflection in the aplanar chain congruence. 
 

                                                
 (1) All of these theorems are also true in the imaginary domain.  In this simple form, they are peculiar to 
radial-projective geometry. 
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 Any involutory transformation of the group G9 − thus, any involutory radial 
collineation that leaves all point-rays fixed − is a reflection in an aplanar chain 
congruence. 
 
 Any dual displacement – hence, any transformation of G8 – can (in ∞8 ways) be 
generated by the composition of two reflections in aplanar chain congruences. 
 
 We further emphasize that: 
 
 If one divides the distances between parallel rays of two arbitrary aplanar 
congruences by a constant ratio that is different from positive unity then the locus of the 
rays thus constructed will be a new aplanar congruence. 
 
 A geometric calculus involving aplanar chain congruences resides in these theorems 
that is akin to the Möbius point calculus. 
 The aplanar chain congruences also have very distinguished metric properties.  If one 
constructs the common normals between any two real generators of the same kind of a 
hyperboloid then that will produce a subset of the real rays of an aplanar chain 
congruence: If one ignores the bundles of rays then they are, in the real domain, identical 
with the line congruences that Waelsch considered quite rigorously under the name of 
transversal congruences (1).  The cited theorems, which can be augmented even more, 
present properties of these figures that were apparently entirely unknown up to now. 
 We call one limiting case of an aplanar chain congruence a planar chain congruence.  
The ray field that belongs to an arbitrary real proper plane is one such congruence; any 
other “planar”  chain congruence is dual-projective to this special figure.  There are ∞7 
planar chain congruences.  Each of them is the locus of ∞1 pencils of parallels.  The 
pencils that are reciprocal to them trace out a second planar chain congruence that is 
reciprocal to the first one, which coincides with the first one in the case of the ray field. 
 The real rays of an arbitrary real planar congruence arise from either those of a chain 
by the displacements that are perpendicular to the its principal axis or, in the most general 
case, from the tangents to a parabola by perspective similarity transformations whose 
center lies perepndicularly over the focal point of the parabola. 
 
 An abundance of remarkable properties belongs to a genre of ray congruences that 
belong partly to the second of the three families that were defined, but partly to the first 
one.  We explain: 
 
 An analytic ray congruence is called synectic when the common normals between a 
ray of the congruence in general position and its neighboring rays lie in a single pencil of 
parallels. 
 
 The following theorem, inter alia, is true of these congruences: 

                                                
 (1) The focal surfaces of these congruences, with the wealth and beauty of their properties (among 
which one finds relationships with the theory of elliptic functions), indeed take the background to no 
known genre of special surfaces of higher order. 
 Depictions of such a focal surface were presented at the meeting by the student W. Vogt in Greifswald. 
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 Any analytic volume that is defined by proper rays and is not a cylinder lies in a 
single synectic congruence. 
 
 Any synectic congruence will be defined by ∞1 pencils of parallels.  The pencils that 
are reciprocal to it will trace out a new congruence.  If the given congruence does not lie 
in a planar complex then the second congruence will also be synectic and “reciprocal” 
to the first one. 
 
 In the other case, the second congruence will be a bundle of parallels, so it will thus 
not be synectic and will not, by definition, be available to the first one. 
 Among the different kinds of synectic congruences that get mapped to each other 
analytically, there is an especially interesting one, for which, we shall likewise use the 
word synectic.  The “synectic” maps of synectic congruences encompass, firstly, the 
dual-projective ones, secondly, motions, which arise when one associates rays (inside a 
suitably-regular domain) of both congruences with each other that cut one and the same 
ray of a third synectic congruence orthogonally.  The most general map of two synectic 
congruences, which we shall call synectic (1), arises by composing two kinds of 
associations, in which each of them is employed at most once. 
 One now has the theorem: 
 
 If two synectic congruences are synectically related to a third one then they will be 
related to each other synectically. 
 
 Thus, if the common normals between any sort of analytically-associated rays of the 
first and second congruence define a new synectic congruence (through which, the 
association itself is then defined), and if the same thing is true in relation to the second 
and third congruence then it will also be the case for the first and third congruence, or 
one can bring about such a position relationship by subjecting the third congruence to a 
dual collineation. 
 The normal net of a proper ray and the absolute congruence belong to the synectic 
congruences. 
 The absolute congruence belongs to a genre of rational ray congruences that are all 
radially-projective to each other, as well as dually-projective, and all of their irreducible 
degeneracies (whose components are not synectic without exception) shall be called 
conical congruences.  They have dual-projective (metric, resp.) properties that are closely 
related to those of the conic sections in plane projective (non-Euclidian, resp.) geometry. 
 One has, e.g., the following theorem: 
 
 If two normal nets of proper rays are dual-projectively related to each other in such a 
way that no ray of the one is parallel to the ray in the other one that corresponds to it 
then the locus of common normals between associated proper rays of an irreducible 
conic congruence and all proper rays of this congruence will be found in this way. 
 
 The ∞1 point rays of the congruence are obtained, in turn, by analytic continuation. 

                                                
 (1) The synectic relationship can be explained more simply analytically. 
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 The principal axes of the generating normal nets belong to the conical congruence, 
and are two arbitrary proper rays in them that are not parallel: The congruence will be 
projected from any two of them by a dual-projective normal net that is suitable for the 
generation of the congruence. 
 
 One can then formulate, inter alia, a theorem that is completely similar to Pascal’s or 
Brianchon’s theorem of projective geometry, and also has an entirely similar 
significance.  One can define a concept of confocal or concyclic conic congruences, and 
exhibit analogues to Ivory’s theorem and the elliptic and Lamé coordinates, etc. 
 The synectic congruences take on a special interest mainly due to their relationship to 
Euclidian geometry. 
 
 As long as they are not parallel to rays of the absolute congruence, the rays of a 
synectic congruence are identical with the normals to a family of parallel developable 
surfaces.  Conversely, the normals to any non-planar analytic developable surface lie in 
a synectic congruence (1). 
 
 One must indeed observe that the concept of synectic congruence includes rays of a 
congruence and entire congruences that belong to the complex 2 2 2

1 2 3+ +X X X  = 0 and that 

therefore a sufficiently-encompassing definition of these congruences cannot be based 
upon the last theorem.  As a further probe of such metric relationships, we state the 
following theorem: 
 
 One associates analytic curves that are not generators inside of regular regions of 
two analytic non-planar developable surfaces according to some arbitrary analytic law.  
One measures off varying distances r, r′ from the corresponding points on the associated 
generators, and establishes that: 

r : r′ = ± dσ : dσ′, 
 
where dσ and dσ′ mean the corresponding angles between consecutive normals to the 
surface (along the corresponding curves). 
 
 In that way, the two surfaces, and with them, their normal congruences, will be 
mapped to each other in two ways. 
 
 Of the associations between rays of two synectic congruences thus constructed, one of 
them (but never the other) is always synectic, and the relationship between these 
congruences is, moreover, a completely arbitrary synectic one. 
 
 That is, if one constructs the common normals between associated rays of the 
congruence then one will again obtain the normal congruence to a family of developable 
surfaces (or a subset of their rays).  If that is not the case then it will suffice to perform a 

                                                
 (1) The tangent surface to a curve with minimal lines as its generators or a cone of that type would not 
be “developable.”  
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dual-collinear transformation (e.g., something that is already a suitable motion) from the 
congruence in order to remove the exceptional case. 
 We finally consider some complexes of rays. 
 Any algebraic ray complex can be represented by a single homogeneous equation 
F(Xk, Xkk) = 0 (whose left-hand side can be put into a certain form with the help of 

identity (2), moreover) (1), where F means an entire rational function. 

 The simplest ray complexes beyond the planar ones (whose properties we must pass 
over completely) are the quadratic ones, whose equations have the form: 
 

A1 X11 + A2 X22 + A3 X33 + ∑ Pik Xi Xk = 0. 

If: 

∑ Ai Ak Pik ≠ 0   (i, k = 1, 2, 3) 

then we call such a complex regular. 
 The real, proper rays of a real complex of that kind are identical with the real, proper 

lines in a special (Plückerian) quadratic line complex.  If ∑ Ai Ak Pik = 0, but not A1 = 

A2 = A3 = 0, then we call the complex a chain complex. 

 The following statement pertains to quadratic complexes in general: 
 
 If no two of five proper rays are parallel, and no four of them belong to a planar ray 
complex, and no aplanar chain congruence can couple all five rays, moreover, then they 
will define a sixth ray uniquely. 
 
 Any quadratic complex that goes through five of six rays will also contain the last 
one. 
 
 The possibilities that the last ray will go to a point ray or will be undetermined are 
excluded by the assumptions of this theorem.  However, it is not excluded that it might 
coincide with one of the given ones, and it will then be a double ray of the figure. 
 
 The regular quadratic ray complex and its limiting case – viz., the chain complex – 
have the property that is characteristic of the totality of both figures that they make a 
normal net in general position pierce a chain.  Any regular, quadratic complex is dual-
collinear to each of the other ones, and any chain complex is dual-collinear to each of 
the other ones. 
 
 The chain complex consists of all the normals to the rays of a chain. 
 
 It can be mapped onto a projective point-continuum R3 in such a way that the points 
of each plane in R3 that do not go through a specified point will correspond to the rays of 
an aplanar chain congruence that is contained in a complex in a one-to-one way. 
 

                                                
 (1) As is known, a theorem that reads similarly exists in Plückerian line geometry. 
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 The chain complex consists of a group of ∞10 radial collineations, and under the 
stated map they will go to the ten-parameter projective group of R3 that leaves a line 
element fixed. 
 
 Normal nets in special position have pairs of pencils of parallels in common with a 
regular quadratic or chain complex.  The axes of this normal net define a planar ray 
complex.  If the two pencils of parallels coincide then the locus of the associated axes is a 
congruence, namely, the singularity congruence of the complex. 
 
 The regular quadratic ray complex is determined uniquely by its singularity 
congruence. 
 
 The congruence of tangents to all circles that lie on a paraboloid of rotation, when 
extended by a point-ray, is such a real singularity congruence.  If one links consecutive 
parallel rays of this congruence by a pencil of parallels then the reciprocal pencil will 
trace out the associated complex. 
 Any regular, quadratic ray complex is dual-projective to this one, in particular. 
 The singularity congruences of the regular, quadratic complexes, whose properties we 
likewise cannot go into in more detail, assume a distinguished place among all possible 
ray congruences, just like the aplanar chain congruences: 
 
 Any analytic ray congruence that includes ∞2 ray chains is either identical with one 
of the ∞8 aplanar chain congruences or with one of the ∞8 singularity congruences of 
regular, quadratic complexes, or with one of the ∞7 planar chain congruences, or finally 
with one of the ∞4 normal nets of proper rays. 
 
 The last two families of congruences can be regarded as partial intersections of the 
first two; the normal nets include ∞3, and thus, infinitely many, kinds of ∞2 chains. 
 The aplanar complexes, the chains complexes, and the regular, quadratic complexes 
can be characterized by similar theorems. 
 New viewpoints for the examination of structures that were considered before 
already, and in part, also structures of an entirely new kind, will come about when we 
consider the pencil of parallels to be the main space element.  Any algebraic complex of 
such pencils – i.e., any analytic manifold of ∞3 pencils of parallels – can, by a suitable 
definition of the continuum of pencils of parallels, be represented purely by a single 
homogeneous equation F(Ω; Ξ, Φ) = 0, which can be put into a certain form with the help 
of the identity (8), moreover.  We shall consider only those analytic complexes that are 
not fixed by all translations.  We call them regular, and the other ones, singular. 
 
 Any regular analytic complex of pencils of parallels is invariantly linked to either a 
ray complex whose proper rays cannot be distributed on a pencil of parallels or with a 
ray congruence whose rays cannot be distributed on a cylinder. 
 
 Conversely, each such analytic ray complex and each such analytic congruence 
determines a regular complex of pencils of parallels. 
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 We clarify the nature of this closely-related relationship, which is based upon the 
concept of an envelope, by an example.  If we call the complexes whose equations can be 
described in the form: 

q Ω − ∑ qik Φi Ξk = 0 
 
bilinear then we will have the theorem: 
 
 Any regular (q ≠ 0) bilinear complex of pencils of parallels consists of all pencils that 
contain any ray of a certain aplanar chain congruence. 
 
 The reciprocal complex (locus of ∞3 reciprocal pencils of parallels) likewise belongs 
to the reciprocal chain congruence. 
 
 Conversely, any pair of reciprocal, aplanar, chain congruences defines a pair of 
reciprocal, regular, bilinear complexes of pencils of parallels. 
 Finally, the following question, which is of fundamental importance, shall be posed: 
 
 Under what circumstances do the ∞3 rays of an analytical sequence of ∞1 pencils of 
parallel define a synectic congruence? 
 
 In order to be able to cast the answer, which reads very simply, into a geometric form, 
we remark that a line element in the infinitely-distant plane is linked with any (proper) 
pencil of parallels: The point-ray of the pencil of parallels is the point of the element, and 
the line of the element has the point-ray of the reciprocal pencil for its absolute pole.  The 
desired condition now consists in the idea that the line element thus constructed must 
define a union, and indeed one that is not a line, so it consists of the ∞1 line elements of a 
point or an arbitrary curved analytic curve. 
 
 

III. 
 

 The use of the concept described can indeed be shown to be sufficient by the various 
cited examples; we can thus regard our problem as perhaps being solved.  However, to 
acknowledge the meaning that radial-projective geometry takes on as a system of 
geometry, some facts must, however, be still brought into consideration that lie outside 
the circle of ideas in which have been moving up to now.  We next draw attention to the 
presence of certain infinite groups that subsume the radial or dual collineations.  One has 
the following theorem: 
 
 There is an infinite group of analytic ray transformations that take synectic 
congruences to other ones (in a domain of regular behavior). 
 
 This group contains a subgroup that does not affect synectic relationships between 
synectic congruences, and this group, in turn, leaves invariant a subgroup whose 
transformations can emerge from other synectic congruences that are synectically related 
to them. 
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 The second of the stated infinite groups encompasses the radial collineations, while 
the third one encompasses the dual collineations. 
 
 The finite transformations of all three groups can be represented by explicit formulas.  
The interesting one of them is the last one, which we call the group of synectic ray 
transformations.  One has, inter alia, the following theorem for it: 
 
 If the rays of two analytic congruences cannot be distributed on a cylinder then any 
arbitrary analytic map of one congruence to the other will determine a single synectic 
transformation that provokes just that map. 
 
 One can not only prove the existence of this transformation, but one can also 
represent it analytically, and indeed very simply, when the given congruences themselves 
are represented in a suitable way. 
 As we go on to further developments that are connected with the ones here – inter 
alia, an extension of the theory of the conformal map to ray geometry – we turn to the 
consideration of certain relationships between radial-projective geometry and other 
geometric disciplines.  The study of the manifold connections between the different 
branches of mathematical science defines one of the most appealing topics in 
mathematical research, and should not be neglected, as happens with most geometers, 
unfortunately.  Naturally, only some summary facts can be dealt with here. 
 We have already spoken of the (highly developed) relationships between our ray 
geometry and Plücker’s line geometry.  However, there exists yet a second connection 
between radial-projective geometry and Plücker’s circle of ideas: This connection comes 
about when one considers the space element to be, not the straight line, but a structure 
that depends upon five constants, namely, the line complex or thread. 
 
 If one subjects the manifold (that is mappable onto the projective point continuum of 
an R5) of threads (not collinearly in the ordinary sense, but) to those linear 
transformations of the six homogeneous thread coordinates that take coaxial threads to 
other ones then the axes of this thread will be permuted with each other in a radial-
collinear way, and indeed, in the most general way. 
 
 This relationship also has an intricate character.  In order to represent it clearly, one 
must conceptualize the notion of the “axis of a thread” in the imaginary domain in a 
different way than is usual. 
 
 Furthermore, a certain analogy emerges in our consideration between the composition 
of the group G17 and the composition of the group g7 of similarity transformations (cf. no. 
II).  Here, much more than a superficial agreement is present.  Admittedly, we cannot 
adequately deal with the nature of things without developing an associated formal 
apparatus.  However, a brief outline might also be of some interest: 
 
 A relationship exists between Euclidian geometry in space and radial-projective 
geometry that is similar to the one between projective geometry on the line and the 
projective geometry on the plane. 
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 (Moreover, in both cases, one deals, not only with the advance from the first term to 
the second one in an infinite series of geometric disciplines, but also with a deeper-lying 
connection between parallel series.) 
 The following structures, inter alia, can be compared: 
 
The groups G17, G16, G9, G8 

 
The group g7, g6, g4, g3 

The aplanar chain congruence and the 
regular, bilinear complex of pencils of 
parallels 
 

The proper point in Euclidian space 

The proper ray and the pencil of parallels. 
 

The (imaginary, proper) plane, which 
contacts the absolute conic section. 
 

 
 Further analogies between radial-geometry and plane projective geometry must be 
mentioned in our exposé.  These formal agreements have their basis in the fact that one 
can extend plane projective geometry to a geometry in a four-fold-extended manifold.  
Indeed, this can happen in several ways.  If we consider groups of transformations of a 
fourfold-extended analytic manifold to be equivalent when they are similar to each other, 
in Lie’s terminology, then the following theorem can be formulated: 
 
 The group of real, dual collineations, with the rays of the first and second sheet as 
space elements, is a limiting case of the real and imaginary collineations of a plane, with 
the (real or) imaginary point and the imaginary lines as space elements. 
 
 We again give some of figures that we can set down in parallel to each other: 
 
A pair of points (lines) in both planes 
 

Ray in the first (second) sheet 

Pair of projective point sequences (or 
pencils of lines) 
 

Ray chain 

Collineations between two planes 
 

Pair of reciprocal aplanar chain 
congruences 
 

Correlation between two planes 
 

Quadratic ray complex 
 

Point of one plane and line in the other 
 
Pair of analytic curves. 

Pencil of parallels 
 
Pair of reciprocal synectic congruences. 

 
 The study of such passages to the limit can obviously have a very elevated heuristic 
value. 
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 We dare to assert that the method of research that is thus indicated belongs to the 
most fruitful ones known to geometry. 
 
 Therefore, the author is indebted to, inter alia, the investigations of C. Segre, who 
made meaningful progress in bi-ternary projective geometry that was of great utility.  The 
details of such relationships are, however, not always easy to understand; they are still 
not widely exploited (1).  Great caution is required in its application.  One must also 
beware of mixing the peculiarities of the kinds of geometry that are defined in the 
limiting cases with the attempts that are doomed from the outset to understand all of their 
theorems as limiting cases of so-called general ones. 
 Systems of complex quantities can be employed in the study of many – but by no 
means all – of the relationships that were mentioned, and indeed not only the common 
complex quantities, but also other ones, namely, the author’s dual (hypercomplex) 
quantities that are constructed from two units whose rules of multiplication are given by 
the formulas: 

ε 2 = + 1, ε 2 = 0,  ε 2 = − 1. 
 
However, these dual quantities have other properties than the common complex 
quantities, and they can never be overlooked.  For example, if one finds that the 
irreducible conic congruences (at least, as far as their proper rays are concerned) are 
representable in terms of equations of the same form with the help of those complex 
quantities and the use of special coordinates that are suitable to them then one must 
beware of extending such a theorem and its corollaries beyond its true domain of validity.  
It is completely incorrect that any theorem of plane projective geometry can be carried 
over to radial-projective geometry in the manner that we have presented in several 
examples.  For example, there is a larger manifold of conic congruences that are different 
under radially-projectivities than the manifold of projectively-distinct conic sections; a 
conic congruence can decompose into three or still more irreducible components, etc. (2). 
 In conclusion, we shall establish some further applications of some of the cited ideas. 
 The concept of a natural continuum (3), which was described in our sketch only by an 
example and also, as we know very well, only in a deficient way, also has meaning for 
other, and indeed important branches of geometry, to which elementary and non-
Euclidian geometry belong.  Of no less modest significance is the employment of general 
kinds of homogeneous coordinates, which have had only a very restricted use up to now. 
 Other geometric disciplines that are defined by finite groups of birational 
transformations that are likewise of interest can also be treated in a similar way to radial-
projective geometry.  Some of them have a relationship to radial-projective geometry 
itself that is similar to Plückerian line geometry.  Among these disciplines whose 
foundation would be a worthwhile problem of future research, just like the construction 

                                                
 (1) One finds further discourse relevant to this in the author’s paper: “Über Nicht-Euklidische und 
Liniengeometrie,” Festschrift of the Greifswald philosophical faculty, 1900.  That article shall be published 
in the next issue of the Jahresberichte.  Cf., on this, also Joh. Petersen, “Géométrie des droites dans l’espace 
non euclidien,” Kopenhagener Akademieberichte, 1900, pp. 306, et seq. 
 (2) We see that these remarks allow improper applications that have already been made in complex 
quantities. 
 (3) On this subject, cf. the author’s paper: “Die Elemente zweiter Ordnung in der ebenen projektive 
Geometrie,” Leipz. Ber. (1901), pp. 338, et seq. 
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of radial-projective geometry, we mention the extension of the circle geometry of Möbius 
and Lie. 
 The majority of the theorems that were communicated without proof here will 
established soon in the second edition of the author’s Geometrie der Dynamen. 
 
 Hamburg, 23 September 1901. 
 

_____________ 
 


