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A new branch of geometry.
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Translated by D. H. Delphenich

The original concept of straight line in Euclidian spasethe (in the modern
terminology) proper real line, which is a locus of points that is unbounded in two
directions and is representable by linear equations fimitie real Cartesian coordinates.
This concept is first proclaimed and then subjected taubld@xtension. By the creation
of the concept of infinitely-distant points, the linélwe converted into a closed, circular
continuum that returns to itself. One is then dealirip an entirely new kind of so-
called straight line by way of a special definition lod toncept, namely, the improper or
infinitely-distant lines. In that way, one would iger at the fact that the totality of all
“lines” in space can also be regarded ataed continuunfwith G. Cantor’s definition).
As is known, this totality is representable by the valugesy of six “homogeneous”
guantities — viz., Pliicker line coordinatég — that are linked by a quadratic equation:

(1) Xo1Xo3+ X02X31+ X03X12=0.

“Continuous” changes of position for a line will be defin@r should be defined; as a
rule, one tacitly dismisses that fact) by meansasitinuouschanges of their coordinates,
under which merely proportional changes are considerdzk ttrivial, and unbounded
approaches to the meaningless system of valiges 0, which remains excluded, might

still occur. This explanation for the continuity agreeith the elementary explanation
that originates in the use of Cartesian coordinates irreéakm of proper (real) lines.
However, it extends beyond this domain and implies &mgt arbitrary infinite set of
“lines” will have well-defined accumulation points.

Finally, one can extend this definition of a closkedy-fold-extended line continuum
by also allowingcomplexquantities as line coordinates, which adds a new condeptua
structure to the previous ones (which we shall hencefefdr to ageal straight lines),
namely,the imaginary line. As is already true for the improper real line, moexott is
no longer accessible to geometric intuition. The igtalf all real and imaginary lines
defines a closed continuum of twice the dimension ofdhaer one.

We visualize the motivation for these conceptual tonts: With their help- but
also inonly oneway - it is known that one can arrive at the statememetxténded classes
of geometric theorems in words of a simple sort. Witbhd reason, one must develop a
special interpretation of those properties of geométices that cannot be affected by a
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continuous group of™® transformations, namely, the group of so-called coltinea.
Many intrinsically-distinct concepts grow out of thaéscapable requirement, such as,
e.g., the amalgamation of the concepts of “bundle ddlleds” and “bundle of straight
line through a point” into a common conceft (

We do not particularly care to elaborate upon thebadge-geometric theorem upon
which the efficacy of the aforementioned conceptuakstires rests. However, a specific
formulation does seem useful to us. As far as thectiméinuum is concerned, it reads:

In the multiply (eight-fold, resp.) extended “Pliickerian” line gootm, the real
(real and imaginary, resp.) collineations (and likewise the so-calketkelations) can be
characterized as everywhere well-defined, single-valued, and continuous
transformations.

This statement is remarkable due to the fact thatchasacteristic of the present kind
of extension of the original non-closed line manifoldd dhus defines the Plicker line
continuum.

It now emerges from the cited facts tta modern concept of straight line (like that
of point, line, etc) is indeed preferable within a certain cirofeinterest (and even
practically indispensible), but it is in no way universally preferableeven necessary.

The truth of this statement can actually be self-extidé\s a result, the current state
of literature, which already superficially recognizes general, customary use of the
words “line geometry” (in place of “projective line geony&ly provokes one to
expressly set down such thoughts. If we ignore sombeofatest starting points that
relate to non-Euclidian space, then there will ekistact, as it seems, no other kind of
algebraic “line geometry” than that of Pliicker. Theilakde Ansétze that are capable of
development have not brought us to a clear understarfijjigdeed, no one also seems
to have considered the possibility that one can graspatsie concept of a straight line in
a different way from the way that our forebears tbappropriate.

Systems of mathematical concepts are creatures obwarcreation. Within the
barriers that are defined by the laws of thought, weletatihem come into existence and
die away with impunity. However, since we are a @altiace — although not ievery
respect, moreover — we willingly divest ourselves adrge part of our creativity, and we
must do that, must demandretivationfor new concepts that is not easy to take, when
we do not do violence to the facts, when we understacid ether, and would not like to
capriciously open any arbitrary door and gate. Moreoeasanable caution can also go
too far. We also seek to get by with existing things whenadeishof a new sort are
present and new forms might come to light, and weewin perhaps allow acts of God.
Thus, the projective-geometric constructions have bewmwR to establish a kind of

() The bases for the introduction of “imaginary straitjnés” are not peculiar to line geometry, and
need only to be recapitulated here.

(® This is also true of an investigation of JohannesrBeh (“Nouveau principe pour études de
géomeétrie des droites,” Sitzber. der Kopenhagener Akad&éB888, no. 6), that was recently made known
to this author by way of a gracious mailing by its authbhe content of this paper has several points of
contact with the thoughts that are developed later inpdyier. However, the basic concept of a “ray” is
not found in it, and we cannot agree with a considerpdite of Petersen’s discussion, or only with some
restrictions. The method that he employed is not lgpyna@ans adequate for a proper treatment of the topic.
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monopoly in algebraic geometry, and a strongly passivietaese to the concepts that
one encounters in projective geometry itself that Hhe& origins somewhere else, like
the ones that were introduced by S. Lie.

Previous experiences do not therefore exactly encoursgtoattempt to place them
alongside the other traditional conceptual structurndswever, the fact that projective
geometry, especially the so-called synthetic kind, wisdine geometry of Poncelet and
Steiner, is ultimately onlgneapproach to somethirtgat has many facetand due to the
fact that it cannot therefore be desirable to perspmalintain only this specialized
viewpoint when almost alwaymly that approach is suggested, it might also be accepted
— at least, in principle. One should not abandon hopeatlests dogmatic way of looking
at geometric concepts and a freer and more multifadezatinent of geometric matters
will ultimately arrive at a better foundatiot).( The following discussion might perhaps
contribute something towards bringing us closer to suchla goa

We will (for the sake of brevity in presentation) legiith the definition of a new
line continuum, and then define a group of transformatioaisht&is a relationship to this
continuum that is similar to that of the group of cwhtions to the Plickerian line
continuum. Since the use of one and the same wordifferent things results in many
inconveniences, we will henceforth not speak of “stralgtes,” but ofrays and thus
separate the meanings of the words “line” and “ray” ttet lbeen previously used by
geometers as if they were synonymous. We thus begintatisoncept oproper, real
ray, which means precisely the same thing as the concéptayer, real line,” but shall
be extended in another way. We connect the extensacess itself with common
notions, when possible.

We first remark that there are® rays in real ray space, as well @& pencils of
parallels, and that the latter, and all geometric that they describe, are associated pair-

() The fact that the conceptual structures of geometme hmot kept pace with the tremendous
production of details in that domain is a remark that nmgsteéd be clear to any unbiased observer. To the
causes of this phenomenon might belong the frequent caisteran-consideration of the mental content of
the closely-related algebraic and function-theoretic plisgis and the deep-seated practice of many
geometers of formulating theorems that should be true “iergghi.e., they daot at all have a clear
sense of what is also frequently presented as watidneralor will be deficient in its foundations. By this
process, for which nevertheless any reference tcetweaf very celebrated names of later lineage would
certainly seem to be completely impermissible, but tyhirc our “critical” age, seems to be considered by
many as gustifiable peculiarity of geometnone naturally does not notice that extended groups of fact
can becorrectly represented only with the help of conventional concepts convoluted nature. Thus,
scientific progress will be likewise be halted with firality of a brick wall. We fondly quite a saying of
the geometer v. Staudt, who referred to the need to eerargeptions to the rules by defining new
concepts, and to the benefit that science would demve §uch concepts: Is it not an assumption for the
ultilization of this thought that one must concern oliesith the exceptions and the complexities that are
frequently linked with themr at least, to the extent that is necessary — in ooddearly exhibit them? For
example, R. Sturm, with some justification, lamented ¢femimetry does put us in a position that would
serve to address them. However, should the geometerveotchshare some responsibility for this state of
affairs? Is a thorough lack of precision not a muchseavil than the usual so-called errors that can
mostly be easily recognized and corrected?
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wise asreciprocal figures The rays of “reciprocal” pencils of parallels rgect each
other orthogonally. We now let a ray in the firstteb such pencils go to infinity, and
imagine the— on first glance, outlandish notion that under passage to the limit the
moving ray collapses to a “point,” so, in fact, it goeste infinitely-distant vertex') of

the reciprocal pencil. In this way, we ad@limproper rays to the* real, proper rays, or,
as we would like to sayoint rays which can be considered to be completely identical
with the usual so-called points of the “infinitely-distgplane.” The fact that such a
notion has any meaning in the conventional way of preggeiigterogeneous concepts
rests upon a theorem that will hendamentafor all of what follows:

The totality ofeo® proper ande? point rays can be regarded as a closed continuum,
and in this continuum the passage to the limit that was described, ingerisla
continuous operatian

Namely, the two stated geometric structures canfresented together by a different
sort of system of values of one and the same systesm @ariablesXy, X, which are
linked by the equation:

(2) X1 X1+ X2 X2+ X3X33=0.

These quantities, like the Pliicker line coordinateshaneogeneoysut in another sense
of the word: a substitution of the form:

(3) X=pX, X=X, (0% 0)

does not change the ray that is representatdsecoordinates.
The ray that is thus described moper when Xi;, X, X3 do not vanish

simultaneously. If we then understané, ﬁ, % and ﬁ, ﬁ, Y to mean
X% % Yo Yo Yo

rectangular Cartesian point coordinates then the ray coordinatedbeaexpressed with
the help of the associated Plickerian line coordinates:

Xo1=XY1—X%X1Yo, X23=XY3—X3Vo (etc.)

as follows:

X, X
4) X1 = Xo, X1 = ‘ e etc.

%03 %12
Conversely, one has:

X, X
(5) Xo1= X1, Xoz=-— (%f+%§+%§)_l[~] 272 etc.
3 33

() The fact that we completely adopt the concept of Hitdly-distant point” here serves to ease the
presentation, since this concept is quite familiar. ity it is not necessary.
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The ray being represented ispaint ray when one has; = X, = X3 = 0. The

coordinates( : X1 : X2 : X3 of the associated point of the infinitely-distant j@laare then
the ratios:

(6) 0 X171 X0 Xa3.

The system of value¥y = 0, X = 0 remains excluded.

Continuouschanges of position of a ray are defined by continuous chaafe
coordinatesXy, Xk (not, however, of the Plickerian coordinat€g). Therefore,

unbounded approaches to the system of vakies 0, X = O remain excluded, so

coordinate changes that apeoportional in the sense of equation (3) prove to be
meaningless.

A closed continuum of rays will be defined by these meteations. The new
concept of continuity is identical with the elementary one in thenredl proper, real
rays, and therefore also with the Plickeriame. However, when considered as a whole
the ray continuum thus-defined is completely different from the foPhiekerian line
continuum.

Whereas, e.g., the normal net of a proper line — Vie.tdtality of all proper lines that
intersect it perpendicularly — can be extended to a @lesatinuum by means of’
improper lines, theormal net of a proper raywhich is defined byays contains only
onepoint ray, when extended correspondingly.

Much deeper-lying differences emerge when one also allomplex values for the
ray coordinates, and thus defines another concephadinary ray and an associated
continuum. One then sees that gneper, imaginary rays are not rigorously identical to
the proper, imaginary lines. One considers the speded surface that is known by the
name ofcylindroid. If one regards it as a locus of lines, and extehdsy ianalytic
continuation into the imaginary domain then one wittaon, inter alia, two of the
imaginary generators that belong to the infinitelyahstplane. If, by contrast, one
regards the same surface as a locus of rays then thimuadion into the imaginary
domain will also lead to onlproper rays. Whereas in Pliickerian line geometry the
cylindroid decomposes into three separate (partially ima&yg) surfaces when one lets its
real lines go to a plane pencil, moreover, such a decsitigpodoes not happen for the
cylindroid that is considered to be the locus of redl mmaginaryrays The possibility
then exists in ray geometry but by no means also in line geometrypf merging the
concepts of “cylindroid” and “plane pencil of rays” (wifitoper vertex) into a single
concept. We call this new concept, which will be emgtblater on, aay chain

As a further example that will be important in whatows, we mention the figure of
all «® proper, real rays that are parallel to a plane. Afehave extended this structure
to a closed continuum that exists in the continuum aif e real and imaginary rays, we
will call it a planar ray complex One of them will generally be represented by an
equation of the form:

A X1 +2A> X+ A3 X3=0.
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If we extend this figure, which is considered to be a ladyszoper lines, to a closed
continuum that exists in the Plickerian line continuum thibat will come about is a so-
called special linear line complex or a line spray.

These two analytic structures prove to be endowed vatly different properties.
One would unsuccessfully attempt to map the one toother in a birational and
everywhere-continuous manner.

Indeed,all loci of rays likewise take on new properties. Two défe real pencils of
rays with proper vertices, e.g., will have, when dulieaged, not just the connecting line
between their two centers in common with each otbet two imaginary lines, in
addition, and similar phenomena exhibit themselves dt €ap.

Just as the concept of Plickerian line continuum thus serves noanter an
unconditional validity on certain fundamental geometric theorems that undésdie t
elementary concept of exceptions, and thus to simplify further develtspaiea certain
kind, similarly, the concept of ray continuum confers geometric ttottiee same goal in
relation to other and no less extended classes.

We clarify this immediately by two very elementaamples, which are, however,
important for mainly that reason.

If one thinks of concepts like “parallelism” and “rexgalar intersection” of proper,
real rays as represented by algebraic relationshipsbatvay coordinates then one can,
conversely, employ the formulas obtained (which wdél wot go into here) as the
definition of the likewise-named concepts in the case where oals @ath imaginary
rays. Following through on these thoughts leads to tbevkenlge that the following two
theorems exist in line geometry, whose correlates iitkerian line geometry aneot
true:

Any two real or imaginary non-parallel proper rays have a completelgroed
common normal.

Any real or imaginary pencil of parallels is reciprocal to a completietermined
pencil of parallels.

With these preparations, we now go on to discussing @pgvbtransformations that
is linked with our ray continuum. We might perhaps intetrgne three quantiti€§,, and

the six productsk; Xk together as homogeneous point coordinates in a “spaee’” qi

projective point continuum) of eight dimensions. Wtian arises are all points of an
algebraic point manifold of ordesix that is mapped to the ray continuum on a single-
valued, invertible, and everywhere-continuous way. This faldniM, admits a
projective, continuous group of 17 parameters. Its tramsfbons correspond to the
transformations of a certain gro®z whose space element is tfay of the continuum
under discussion, or it can be.

We call these latter transformatiotaslial-collinear or radial collineations.

The radial collineations are everywhere well-defined, single-valued cantinuous
in the ray continuum under discussion.
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They have (when considered to be real continuous or also analytic transtorsnait
only proper rays) the characteristic property that from the normatmet proper ray—
hence, from theo? rays that intersect one of them rectangulaflya figure of the same
kind can always emerge.

All of these transformations will be represented amedily by equations of the
following form:

%:( =ax1 X1+ axy X2+ aes X3, k=123
Xy X Xgg 3.3 a, a
(7) Xy =kOa, ay, a,|+2 3 " XX,
iq 1|y Ty
8 83 Gy

etc. Thus, one assumes that O, |a;1 a2 aszs | # 0, and the matrix fi || is determined
from the matrix |fax || only up to an arbitrary multiple. Proportional change the
guantitiesax , aw will not change the transformation being represent&tere thus
remain 9+ 9 +1-1-1=17 essential parameters irufar(i).

We thus have the definition of a particular geometrgcidline before us that the
author refers to asadial-projective geometryThis branch of geometry treats those
properties of figures in the ray continuum under discussion that cannot béedftac
arbitrary radial collineations.

The cited definition is capable of some alteration, ciwvhive cannot go into
completely, due to their principal meaning. Namely, insteddhe indicated ray
continuum, one can start from another one in whitlproper rays are extended, not by
?, but bye® specially-defined “improper” rays. Similar to what wdmne before, one
can define a group ob'’ single-valued transformations, and they will have thmes
right to be called “radial collineations” as the onlest were defined before: As long as
only properrays come into question, the two groups will be comptatentical. There
is then yet another kind of “radial-projective geoms&t We express the essential idea
as:

There are two natural ray continua relative to radial collineations.

Either of the two is a subset of the one Plickerdmainuum.

In what follows, only the first of these continudivee spoken of.

The fact that further ray continua that are “naturah similar sense doot exist, and
thus that the two aforementioned ones are collectistedyacterizedby the groupG;; of
permutations of proper rays, can be proved on the basm®@ rigorous definitions and
conclusions.

We make the following further remarks: In addition to itégs themselves, there is a
second kind of figure in the ray space that depends uporfrEalror complex) constants
that are permuted under radial collineations by a groupgimetiohedrally-isomorphic to
it, namely, thepencil of parallelsJust like the rays, they can be considered tdo#sec
structure of geometrgnd can be chosen to be the space element to shrvastage. It
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can also be represented bgordinatesin a simple way: For that, one uses seven
quantities, =, ®y that are coupled by the equation:
(8) Z1 P+ P+ P =0,

and arehomogeneous the sense that substitutions of the form:

9) Q' =orm, = =olE, & =10 (g, T£0)

are meaningless. The quantit&sand the quantitie®y cannot vanish simultaneously.
The pencil that is reciprocal to the pen€l; =, i) will have the coordinates:

(10) Q':—Q; E; :CDi, CDL ==.

The manifold of theo* (“proper”) pencils of parallels can also be extended tdosed
continuum by creating “improper pencils of parallels,” ihieh the likewise extended
(i.e., by analytic continuation) radial collineation® avell-defined, single-valued, and
continuous.

There are four continua of pencils of parallels that are natural under dagalr
collineations.

Just as the group o'’ radial-collinear permutations of proper rays is, in gaie
way, definedby any of the two natural continua of rays, so aeg #isodefinedby any of
the four natural continua of pencils of parallels.

We shall now deal with the illustration of the foregpideas by applications, so we
are up against the difficulty that is always presentreder a concept of an extended and
exotic nature has been given, and because of thatome to another difficulty in the
presentation. The real geometric loci, ruled surfacesgruences, and complexes that
are considered in Plickerian line geometry are to be @ateno closed continua
everywhere in a different way from the usual one, anaginary figures of a different
kind will then appear. The fact that there are amalgtructures that are pair-wise
identical and can even coincide completely in one’sitioty but still have completely
different properties, undoubtedly constitutes a difficdior the representation, as well as
the understanding, of the new disciplif®. ( Everything in ray geometry will then be
organized from a different viewpoint than the one tha¢ aised for line geometry:
Figures are regarded equivalentthat can be taken to each otheragial collineations.
The establishment of a spediaiminologythen becomes necessary if one would not like
to get by with awkward paraphrases. Finding suitable esiores is, however, not an

() It might be useful to point out a relatedand due to its greater simplicity, easier to understand
phenomenon that already appears in older investigatias:ecall the various kinds of extension of the
elementary point continua in projective geometry and irg#tzenetry of inversion.
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easy thing to do today, especially due to the fact tiaitriajority of mathematicians are
entirely loath to extend the terminological apparatith wo basis. Finally, it is mostly
very awkward to employ common words with a different meg, such as we did with
the word “ray’” and the ones that were derived from ito find a form for the
presentation that accounts for the factual and alstheasame time, historical hindsights
might be virtually impossible under these circumstancé¢e beg that a sympathetic
critic will overlook these difficulties for now.

We thus begin by putting a previously-cited theorem intmee convenient form.

It follows from the fact that a radial collineatican always emerge from the normal
net of a real ray (but not necessarily the axis efd¢bcond net from the first one) that
these transformations belong together pair-wise, sdavempf them ar@liscordant as we
would like to say. We thus double the entire manifoldaysy pencils of parallels, etc.,
cover it with two sheets, and speak of, e.g., tays the first sheet of the ray space and

rays2l in the second one. We can then say:

If two proper raysx, 2 cut each other at a right angle then this property will not be

affected by discordant radial collineations, and the radial collineations il
characterized by this property.

A new family ofeo!’ transformations arises from permuting the two shegts @,
' = X) that one can cathdial correlations

The construction of the common normal to two non-peredys of the same sheet is
an invariant construction under radial collineations (and correfet) when one
calculates the normal to the other sheet. The fatttivo rays of both sheets lie over
each other is, by contrasiot an invariant property.

The similarity transformations of Euclidian space eadial collineations in a trivial
way, when one considers real rays to be their objectd, correspondingly continues
them into the continuum of real and imagineays They are the ones that coincide with
them discordantly, the ones that are permutable undspliate correlationsx’ =, A’

= X, or finally the ones that do not affect the overlaynm raysX, 2.

In order to come to a clear insight into the refaldip between Euclidian geometry
and the radial-projective geometry that it is submat® to, we briefly consider the
invariant, continuous groups, first, the groGp; of radial collineations, and then the
groupgy of similarity transformations. Both systems ofgpe can already be referred to
completely by their parameter numbers according to tlenvimg diagram:

G /Glﬁ \G g /96\ 9
17 8 7 3
~ Gg _— ~— g4 _—
Here,gs means the group of Euclidian motions. On the badisiogs that we cannot
go into here, we refer to the corresponding subgr&up 1) G;6 of G;7 as thegroup of
dual collineations
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04 is the group of perspective similarity transformatioimst leave all points of the
infinitely-distant plane individually unchanged. Angdasly,Gg is the group of all radial
collineations that leave all point rays individually uanged.

0s is the three-parameter group of displacements tltsfised by the intersection of
the groupss, g4 of commuting transformations. AnalogoudBs is the intersection of
the group<G1s, Ge, SO it is, in turn, a group of commuting transformatioi¢e call itsoo®
transformationslual displacements.

The following theorem now becomes understandable:

The groups g s, 04, g3, Whose transformations have rays for their objects, are
contained in the groups 1@ Gis, Go, Gg, respectively. They will be defined by all
transformations of the latter group that leave a certain imaginary ray congeuéixed,
namely, the “absolute congruence.”

That congruence consists ®f pencils of parallels, namely, all (proper) pencils of
parallels that are reciprocal to it. The' point rays of this pencil define the so-called
imaginary absolute conic section of Euclidian geometry.

In parallel pencil coordinates, the absolute congruevitebe represented by the
equations:

(12) Q=0, ZI+Z+Z5=0, ©I+0i+dI=0,

-1 -2
and in ray coordinates, by the equations:
(13) 3€f+3€§+3€§:0, X11: X0 X33=X1:X2: X3

The following theorem is useful:

All transformations of the groups ¢Gand Gy will be found by composing
transformations of the groups@nd Ggwith such a one-parameter group of perspective
similarity transformations (any one-parameter subgroupsahgt does not belong ta)g

The problem of exhibiting all (real) radial collineatiomsh elementary tools can, on
these groups, lead back to the construction ofitia collineations. However, this can

be accomplished very simply:

Any four rays, no three of which belong to the same planar corfp@e’),can go to
any other four rays that have the same property under a single dual collineation

In order to find an arbitrary (proper) ray of this association, one nemadly to
repeatedly apply a single construction, namely, drawing the common normadebnet
two non-parallel rays of the same sheets.

One indeed notes the main interpretation of the situatlwat the auxiliary
construction can also ®whereindeterminate in the imaginary domain.

We now turn to the consideration of ray loci.
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We call an analytic locus of° rays aray complexan analytical locus of? rays, a
congruencean analytical locus ob® rays, avolume(Band (*). Here, we consider only
those congruences and ray volumes that do not congtittrays entirely. A volume
of parallel rays is called eylinder. The simplest non-cylindrical volumes are thains

(pPp. 5)

Any chain is radially projective to any other one, and in particular, dyaibyective,
as well.

The chains are carriers of binary domains, and they eeted to each other
projectivelyby the radial projective relationship. All rays oflain are perpendicular to
a certain ray — viz., therincipal axis of the chain — in whose normal net the chain
therefore lies.

A completely determined chain goes through three rays, no two of aveigtarallel,
in the normal net to a proper ray.

One encounters the following remarkable theotiatey alia, for the chains:

If two chains lie in such a way that no ray of one of them is perpdadito the
principal axis of the other then a triple of distinct chains willdogj to them.

The congruence of all rays that are perpendicular to the rays of two urngdscof
a triple is also the one that one might get by choosing two chains fromiplee t

The fundamental significance of the concept of chaiaerges from a theorem whose
basic idea goes back to Hamilton:

If the proper rays of an analytic congruence cannot be distributed on a cytimeler
the common normals between a ray of the congruence in general positiortsand i
neighboring rays will define a chain

Naturally, we must clarify precise just what we mégna ray of the congruence in
“general position.” Here, where we are dealing with st orientation, we shall start
with that fact.

The last theorem leads to some especially remarkabigiefa of ray congruences
when one also brings the closed congruences into ttle oir consideration.

If two analytic congruence of rays have such a relationship to each othenside a
regular domain of any ray of the one congruence is intersected perpendidoyady
rays(°) of the other one, and conversely, then the following cases are possibl

) A volume of rays that belongs to the comp +X2+X2 = 0 cannot be considered to be a
2 3

surface i.e.,notas a locus of? points or planes.
() 1. e., of an analytic continuum with a (complex) paeten
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Either the one congruence lies in a planar complex and is arbitrary, mareave
the other one is a bundle of parallels, or both congruences can be descripeddilg of
parallels and these pencils, and therefore the congruences themseb/esciprocal to
each other, or thirdly, each of the two congruences consists of all@omonmals to the
rays of the other one.

The congruences of the latter family are especiaigarkable: They depend upon
only onefinite number. We call theaplanar chains of congruences.
One encounters the following theorems with them:

There arew® aplanar chain congruences that, like the given ones, are pair-wise
reciprocal to each other. A single aplanar chain congruence goes through anyaysur r
no two of which lie in a planar complex. Any aplanar chain congruence carkdr ta
any other one by a single dual displacement.

A special pair of such reciprocal congruences is a daurgred pencil of rays with
a proper vertex. Thus, all other pairs will arise frims simple figure by discordant,
dual displacements. The rays of any pair can be a$edawvith the points and lines of a
plane in a single-valued and invertible way in such a waptpand lines in united
position will correspond to rays that intersect in aually orthogonal way. The rays of
the one congruence that intersect a ray of the remprocongruence perpendicularly
alwaysdefine a chain. Any aplanar chain congruence consigigely of proper rays;
each of them has a single rayiq eachbundle of parallels.

Any analytic transformation of rays that permutes the aplanar chain congruences
radial-projective.

In the next theorems, we will consider the briefgpressions in terms of onheal
figures, but remark that this restriction is not essénti

The rays of any aplanar chain congruence remain individually fixed under #ileof
transformations of a one-parameter continuous group &f G Conversely, any such
group that does not belong to the subgrouypnl define an aplanar chain congruence.

For the rays of an arbitrary bundle of parallels, any of the aforemerdione
transformations reduce to a perspective similarity transformatiorongtant expansion
ratio that leaves the rays of the bundle in the congruence fixed.

If the aforementioned ratio has the value —1 then tthesformation will be
involutory; the distance between two mutually associa#égd are then bisected by the
rays of the congruence that are parallel to them. &letlus special transformation a
reflectionin the aplanar chain congruence.

() All of these theorems are also true in the imagidarypain. In this simple form, they are peculiar to
radial-projective geometry.
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Any involutory transformation of the groupeG thus, any involutory radial
collineation that leaves all point-rays fixed is a reflection in an aplanar chain
congruence.

Any dual displacement — hence, any transformation gf ®@an (in ©® ways) be
generated by the composition of two reflections in aplanar chain congruences.

We further emphasize that:

If one divides the distances between parallel rays of two arbitgrlanar
congruences by a constant ratio that is different from positive unitythieelocus of the
rays thus constructed will be a new aplanar congruence.

A geometric calculus involving aplanar chain congruencgiges in these theorems
that is akin to the Mobius point calculus.

The aplanar chain congruences also have very distimggliigetric properties. If one
constructs the common normals between any two real @engrof the same kind of a
hyperboloid then that will produce a subset of the reak raf an aplanar chain
congruence: If one ignores the bundles of rays they &rejn the real domainidentical
with the line congruences that Waelsch considered ggieously under the name of
transversal congruencey.( The cited theorems, which can be augmented even more,
present properties of these figures that were apparenilglgrunknown up to now.

We call one limiting case of an aplanar chain congruamtanar chain congruence.
The ray field that belongs to an arbitraeal proper plane is one such congruence; any
other “planar” chain congruence is dual-projective to piscial figure. There are’
planar chain congruences. Each of them is the locus' gfencils of parallels. The
pencils that are reciprocal to them trace out a seg@danar chain congruence that is
reciprocalto the first one, which coincides with the first aneéhe case of the ray field.

The real rays of an arbitrary real planar congruense from either those of a chain
by the displacements that are perpendicular to theiitsipal axis or, in the most general
case, from the tangents to a parabola by perspectiviarsiyntransformations whose
center lies perepndicularly over the focal pointhaf parabola.

An abundance of remarkable properties belongs to a gémay congruences that
belong partly to the second of the three families Wete defined, but partly to the first
one. We explain:

An analytic ray congruence is called synectic when the common normaisebea
ray of the congruence in general position and its neighboring rays lie in a&gvegkcil of
parallels.

The following theoreminter alia, is true of these congruences:

() Thefocal surfacesof these congruences, with the wealth and beautyedf fitoperties (among
which one finds relationships with the theory of elipfunctions), indeed take the background to no
known genre of special surfaces of higher order.

Depictions of such a focal surface were presentueaneeting by the student W. Vogt in Greifswald.
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Any analytic volume that is defined by proper rays and is not a cylineernri a
single synectic congruence.

Any synectic congruence will be definededypencils of parallels. The pencils that
are reciprocal to it will trace out a new congruence. If the gis@mgruence does not lie
in a planar complex then the second congruence will also be synectic ecigracal”
to the first one.

In the other case, the second congruence will be aldwhgarallels, so it will thus
not be synectic and wihot, by definition, be available to the first one.

Among the different kinds of synectic congruences thatngggpped to each other
analytically, there is an especially interesting dioe,which, we shall likewise use the
word synectic The “synectic” maps of synectic congruences encomgassy, the
dualprojective ones, secondly, motions, which arise wives associates rays (inside a
suitably-regular domain) of both congruences with eabkrahat cut one and the same
ray of a third synectic congruence orthogonally. Thetngeneral map of two synectic
congruences, which we shall call synectf}, (arises by composing two kinds of
associations, in which each of them is employed at oo

One now has the theorem:

If two synectic congruences are synectically related to a thirdtloere they will be
related to each other synectically.

Thus, if the common normals between any sort of éinally-associated rays of the
first and second congruence define a new synectic congrygmoeigh which, the
association itself is then defined), and if the samegtis true in relation to the second
and third congruence then it will also be the caseHerfirst and third congruencer
one can bring about such a position relationship by sulbgette third congruence to a
dual collineation.

The normal net of a proper ray and the absolute congguealong to the synectic
congruences.

The absolute congruence belongs to a genre of ratiapalangruences that are all
radially-projective to each other, as well as duallygxbye, and all of their irreducible
degeneracies (whose components are not synectic withagption) shall be called
conical congruencesThey have dual-projective (metric, resp.) propertiat @he closely
related to those of the conic sections in plane priggéhon-Euclidian, resp.) geometry.

One has, e.g., the following theorem:

If two normal nets of proper rays are dual-projectively related to edletr in such a
way that no ray of the one is parallel to the ray in the other onecthraésponds to it
then the locus of common normals between associated proper rays of ducibte
conic congruence and all proper rays of this congruence will be found indkis w

Theo! point rays of the congruence are obtained, in turrayytic continuation.

() The synectic relationship can be explained more simplytically.
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The principal axes of the generating normal nets belong to the conical congruenc
and are two arbitrary proper rays in them that are not parallel: The congeievilt be
projected from any two of them by a dual-projective normal net that tsbseiifor the
generation of the congruence.

One can then formulatejter alia, a theorem that is completely similar to Pasoail’s
Brianchon’s theorem of projective geometry, and alss [@n entirely similar
significance. One can define a concept of confocabocyclic conic congruences, and
exhibit analogues to Ivory’'s theorem and the elliptic ansid@oordinates, etc.

The synectic congruences take on a special interestynthie to their relationship to
Euclidian geometry.

As long as they are not parallel to rays of the absolute congruence, thefrays
synectic congruence are identical with the normals to a family of lpaidévelopable
surfaces. Conversely, the normals to any non-planar analytic developafdeesiie in
a synectic congruend@).

One must indeed observe that the concept of synectgruwence includes rays of a
congruence and entire congruences that belong to theleo? + X3+ X2 = 0 and that

therefore a sufficiently-encompassing definition ofdsé congruencesannotbe based
upon the last theorem. As a further probe of such metfationships, we state the
following theorem:

One associates analytic curves that are not generators inside of reggams of
two analytic non-planar developable surfaces according to some arbitrary anlalytic
One measures off varying distances’from the corresponding points on the associated
generators, and establishes that:

r:r’'=+do:do,

where dr and do” mean the corresponding angles between consecutive normals to the
surface (along the corresponding curves).

In that way, the two surfaces, and with them, their normal congruemcksoe
mapped to each other in two ways.

Of the associations between rays of two synectic congruences tlstrsiciaal, one of
them (but never the other) is always synectic, and the relationshipedr® these
congruences is, moreover, a completely arbitrary synectic one.

That is, if one constructs the common normals betwessociated rays of the
congruencehen one will again obtain the normal congruence to a family of developable
surfaceqor a subset of their rays). If that is not theecthgen it will suffice to perform a

() The tangent surface to a curve with minimal linegtsagenerators or a cone of that type waubd
be “developable.”
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dual-collinear transformation (e.g., something thatnsaaly a suitable motion) from the
congruence in order to remove the exceptional case.

We finally consider someomplexe®f rays.

Any algebraic ray complex can be represented by a single homogeneous equation
5(Xk Xw) = 0 (whose left-hand side can be put into a certaim favith the help of

identity (2), moreover)Y, whereF means an entire rational function.

The simplest ray complexes beyond the planar oness@vproperties we must pass
over completely) are thguadraticones, whose equations have the form:

Ap X1+ Xoo+ Az X33+ Z Pik Xi Xk = 0.

DA A P £ 0 (k=12 3)

then we call such a compleggular.
The real, proper rays of a real complex of that kiredidentical with the real, proper

lines in aspecial(Pluckerian) quadratic line complex. E i Ak Pik = 0, but notA; =
A, =23 =0, then we call the complexchain complex.
The following statement pertains to quadratic complexgeneral:

If no two of five proper rays are parallel, and no four of them belong tarmpray
complex, and no aplanar chain congruence can couple all five rays, moreovethelgen
will define a sixth ray uniquely.

Any quadratic complex that goes through five of six rays will also cothai last
one.

The possibilities that the last ray will go to a paiay or will be undetermined are
excluded by the assumptions of this theorem. Howeves,nbi excluded that it might
coincide with one of the given ones, and it will theralmbouble ray of the figure.

The regular quadratic ray complex and its limiting case — viz., thenat@nplex —
have the property that is characteristic of the totality of both &guhat they make a
normal net in general position pierce a chain. Any regular, quadratic empldual-
collinear to each of the other ones, and any chain complex is dual-collinesach of
the other ones.

The chain complex consists of all the normals to the rays of a chain.
It can be mapped onto a projective point-continuumRsuch a way that the points

of each plane in Rhat do not go through a specified point will correspond to the rays of
an aplanar chain congruence that is contained in a complex in a one-to-one way.

() As is known, a theorem that reads similarly existBliickerian line geometry.
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The chain complex consists of a groupedf radial collineations, and under the
stated map they will go to the ten-parameter projective groupsaha leaves a line
element fixed.

Normal nets in special position have pairs of pencilpastllels in common with a
regular quadratic or chain complex. The axes of thisnabnet define glanar ray
complex. If the two pencils of parallels coinciderthie locus of the associated axes is a
congruence, namely, tlsngularity congruencef the complex.

The regular quadratic ray complex is determined uniquely by its sintula
congruence.

The congruence of tangents to all circles that lie qraraboloid of rotation, when
extended by a point-ray, is such a real singularity congeuetif one links consecutive
parallel rays of this congruence by a pencil of paratiedsh the reciprocal pencil will
trace out the associated complex.

Anyregular, quadratic ray complex is dual-projective to this onparticular.

The singularity congruences of the regular, quadratic texap, whose properties we
likewise cannot go into in more detail, assume a djgished place among all possible
ray congruences, just like the aplanar chain congruences

Any analytic ray congruence that include$ray chains is either identical with one
of the® aplanar chain congruences or with one of th&singularity congruences of
regular, quadratic complexes, or with one of thieplanar chain congruences, or finally
with one of theo* normal nets of proper rays.

The last two families of congruences can be regardguhiiml intersections of the
first two; the normal nets include®, and thus, infinitely many, kinds of chains.

The aplanar complexes, the chains complexes, ancegidar, quadratic complexes
can be characterized by similar theorems.

New viewpoints for the examination of structures thadrevconsidered before
already, and in part, also structures of an entirely kimd, will come about when we
consider thgencil of parallelsto be the main space element. Any algebramplexof
such pencils — i.e., any analytic manifoldeot pencils of parallels — can, by a suitable
definition of the continuum of pencils of parallels, tpresentegurely by a single
homogeneous equatiéifQ; =, ®) = 0, which can be put into a certain form with thephel
of the identity (8), moreover. We shall consider ahigse analytic complexes that are
not fixed by all translations. We call theegular, and the other onesingular.

Any regular analytic complex of pencils of parallels is invariantikéid to either a
ray complex whose proper rays cannot be distributed on a pencil of paratlelith a
ray congruence whose rays cannot be distributed on a cylinder.

Conversely, each such analytic ray complex and each such analytic coregruenc
determines a regular complex of pencils of parallels.
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We clarify the nature of this closely-related relasibip, which is based upon the
concept of an envelope, by example If we call the complexes whose equations can be
described in the form:

qQ_ZQichiEk:O
bilinear then we will have the theorem:

Any regular(q # 0) bilinear complex of pencils of parallels consists of all pencils that
contain any ray of a certain aplanar chain congruence.

The reciprocal complex (locus ef reciprocal pencils of parallels) likewise belongs
to the reciprocal chain congruence.

Conversely,any pair of reciprocal, aplanar, chain congruences defingaima of
reciprocal, regular, bilinear complexes of pencils oapels.
Finally, the following question, which is of fundamentaportance, shall be posed:

Under what circumstances do thé€ rays of an analytical sequence «of pencils of
parallel define a synectic congruence?

In order to be able to cast the answer, which reagssuaply, into a geometric form,
we remark that a line element in the infinitely-distptene is linked with any (proper)
pencil of parallels: The point-ray of the pencil ofgkels is the point of the element, and
the line of the element has the point-ray of thepreaal pencil for its absolute pole. The
desired condition now consists in the idea that the &lement thus constructed must
define aunion and indeed onenat is not a lineso it consists of the® line elements of a
point or an arbitrargurvedanalytic curve.

The use of the concept described can indeed be shovenstafficient by the various
cited examples; we can thus regard our problem as perhays dmved. However, to
acknowledge the meaning that radial-projective geometry takess a system of
geometry, some facts must, however, be still brougbt ¢gonsideration that lie outside
the circle of ideas in which have been moving up to nove @kt draw attention to the
presence of certainfinite groupsthat subsume the radial or dual collineations. One has
the following theorem:

There is an infinite group of analytic ray transformations that take sgnect
congruences to other ones (in a domain of regular behavior).

This group contains a subgroup that does not affect synectic relationshipetetwe
synectic congruences, and this group, in turn, leaves invariant a subgroupe whos
transformations can emerge from other synectic congruences that aréicalhecelated
to them.
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The second of the stated infinite groups encompasses the radial calnseathile
the third one encompasses the dual collineations.

The finite transformations of all three groups camdpresented by explicit formulas.
The interesting one of them is the last one, whichcat the group of synectic ray
transformations One hasinter alia, the following theorem for it:

If the rays of two analytic congruences cannot be distributed on a cylineerany
arbitrary analytic map of one congruence to the other will determisegle synectic
transformation that provokes just that map.

One can not only prove the existence of this transdtom, but one can also
represent it analytically, and indeed very simplyewlhe given congruences themselves
are represented in a suitable way.

As we go on to further developments that are conneciiddtiae ones here iter
alia, anextension of the theory of the conformal map to ray geometvg turn to the
consideration of certaimelationships between radial-projective geometry and other
geometric disciplines. The study of the manifold connections between theereifft
branches of mathematical science defines one of thet rappealing topics in
mathematical research, and should not be neglectedapmens with most geometers,
unfortunately. Naturally, only some summary facts cadénlt with here.

We have already spoken of the (highly developed) reldtipasbetween our ray
geometry and Plicker’s line geometry. However, therdseyist a second connection
between radial-projective geometry and Plucker’s cir€lel@as: This connection comes
about when one considers the space element to behenstraight line, but a structure
that depends upon five constants, namely, the line coropkxead.

If one subjects the manifold (that is mappable onto the projective poimhwamt of
an R) of threads (not collinearly in the ordinary sense, but)p those linear
transformations of the six homogeneous thread coordinates that take coaxiakttwead
other ones then the axes of this thread will be permuted with eachiotlheradial-
collinear way, and indeed, in the most general way.

This relationship also has an intricate charactarortler to represent it clearly, one
must conceptualize the notion of the “axis of a threiadthe imaginary domain in a
different way than is usual.

Furthermore, a certain analogy emerges in our comgiderbetween the composition
of the groupG;7 and the composition of the grogpof similarity transformations (cf. no.
II). Here, much more than a superficial agreement esemt. Admittedly, we cannot
adequately deal with the nature of things without developimgassociated formal
apparatus. However, a brief outline might also be ofesmterest:

A relationship exists between Euclidian geometry in space and radial-fivejec
geometry that is similar to the one between projective geometryeoitine and the
projective geometry on the plane.
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(Moreover, in both cases, one deals, not only withatheance from the first term to
the second one in an infinite series of geometriciglises, but also with a deeper-lying
connection between parallel series.)

The following structuresnter alia, can be compared:

The groupssiz, Gis, Go, Gs The groupy, gs, Q4, O3

The aplanar chain congruenand the| The proper point in Euclidian space
regular, bilinear complex of pencils of
parallels

The proper rayandthe pencil of parallels. | The (imaginary, proper) plane, which
contacts the absolute conic section.

Further analogies between radial-geometry plashe projective geometry must be
mentioned in our exposé. These formal agreements hairebasis in the fact that one
can extend plane projective geometry to a geometryfouafold-extended manifold.
Indeed, this can happen in several ways. If we considerpgrof transformations of a
fourfold-extended analytic manifold to be equivalent wtiezy are similar to each other,
in Lie’s terminology, then the following theorem da@ formulated:

The group of real, dual collineations, with the rays of the first and sesbeet as
space elements, is a limiting case of the real and imaginary collimsabf a plane, with
the (real or) imaginary point and the imaginary lines as space elements.

We again givesomeof figures that we can set down in parallel to eackroth

A pair of points (lines) in both planes Ray in the first (second) sheet

Pair of projective point sequences (dRay chain
pencils of lines)

Collineations between two planes Pair of reciprocal aplanar chain
congruences
Correlation between two planes Quadratic ray complex

Point of one plane and line in the other | Pencil of parallels

Pair of analytic curves. Pair of reciprocal synectic congruences.

The study of such passages to the limit can obviouslg havery elevated heuristic
value.
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We dare to assert that the method of research that is thus indlibatengs to the
most fruitful ones known to geometry.

Therefore, the author is indebted toter alia, the investigations of C. Segre, who
made meaningful progress in bi-ternary projective geonteitywas of great utility. The
details of such relationships are, however, not alwagy € understand; they are still
not widely exploited}). Great caution is required in its application. Onest also
beware of mixing the peculiarities of the kinds of getyynéhat are defined in the
limiting cases with the attempts that are doomed fitweroutset to understaadl of their
theorems as limiting cases of so-called general ones.

Systems of complex quantitieasn be employed in the study of many — but by no
means all — of the relationships that were mentioned,iladeed not only the common
complex quantities, but also other ones, namely, thbodatdual (hypercomplex)
guantitiesthat are constructed from two units whose rules of plidétion are given by
the formulas:

£2=+1, £2=0, £2=-1.

However, these dual quantities have other propertiea tha common complex
guantities, and they can never be overlooked. For exaniplone finds that the
irreducible conic congruences (at least, as far as phmeper rays are concerned) are
representable in terms of equations of the same forim thé help of those complex
guantities and the use of special coordinates that ar@bleuito them then one must
beware of extending such a theorem and its corollaggend its true domain of validity.
It is completely incorrect thainy theorem of plane projective geometry can be carried
over to radial-projective geometry in the manner thathage presented in several
examples. For example, there is a larger manifoltbafc congruences that are different
under radially-projectivities than the manifold of projeely-distinct conic sections; a
conic congruence can decompose thieeor still more irreducible components, efd. (

In conclusion, we shall establish some further apjdina of some of the cited ideas.

Theconcept of a natural continuu(®, which was described in our sketch only by an
example and also, as we know very well, only in a @égficway, also has meaning for
other, and indeed important branches of geometry, to whiementary and non-
Euclidian geometry belong. Of no less modest sigmieas theemployment of general
kinds of homogeneous coordinatedich have had only a very restricted use up to now.

Other geometric disciplines that are defined by fingeups of birational
transformations that are likewise of interest cao dle treated in a similar way to radial-
projective geometry. Some of them have a relationghipatlial-projective geometry
itself that is similar to Pluckerian line geometry. @émg these disciplines whose
foundation would be a worthwhile problem of future reseapddt like the construction

() One finds further discourse relevant to this in the aighpaper: “Uber Nicht-Euklidische und
Liniengeometrie,” Festschrift of the Greifswald philosaalhifaculty, 1900. That article shall be published
in the next issue of the Jahresberichte. Cf., ondlgs,Joh. Petersen, “Géométrie des droites desplte
non euclidien,” Kopenhagener Akademieberichte, 1900, pp.€3G&g.

() We see that these remarks allow improper applicatisashave already been made in complex
guantities.

() On this subject, cf. the author’s paper: “Die Elereeniveiter Ordnung in der ebenen projektive
Geometrie,” Leipz. Ber. (1901), pp. 338,seq.
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of radial-projective geometry, we mention the extensif the circle geometry of M6bius
and Lie.

The majority of the theorems that were communicatadhomt proof here will
established soon in the second edition of the aut®tmetrie der Dynamen

Hamburg, 23 September 1901.




