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The author has concerned himself with the theory sfesys of complex numbers
and their relationship to the theory of transformadiogroups in two treatises that
appeared in the Notices of the Géttingen and Leipzig Sesiéor Science’] The
following includes a summary and partly reworked presemtaif these investigations.
Only a few things have be omitted, and they chiefly retatehe work of other
mathematicians ().

§ 1. Basic concepts.

For the concept of a so-called “extensive” or “complguantity that is composed of
n “basic numbers” or “principal units,” we refer to thest chapter in H. Grassmann’s
Ausdehnungslehr¢1862 edition). We now concern ourselves with those &mmp
guantities whose multiplication obeys the so-catlexdributive law which is expressed
in the formulas:
a(b+c) =ab+ac,
(@a+b)c=ac+bc

The totality of all of the extensive quantities:

ataietaet.. ta)e,
b=bieg+bhe+ ... +b &,

that are defined by the basic numbexrs..., e, with real or ordinary complex coefficients
a, by, ... will be called asystem of complex numbemhen it satisfies the following
conditions:

1. The product of any two of the extensive quantities must be again regardad as
extensive quantity with the same principal units.

From the distributive law, the necessary and sefficcondition for this to be true is
that there exist® relations of the form:

(1) a eK = zyikses’
s=1

in which the coefficientsus represent ordinary real or complex numbers.

2. Any three of the extensive quantities must fuli@l so-called associative law for
multiplication, which is expressed in the formula:

() Gott. Nachr. 1889, no. 9 (pp. 233, seq). Sachs. Ber. 1889, 6 May (pp. 1&%,sed. To some
extent, Scheffers also arrived at the results thateg@ded in these treatises. Séchs. Ber. 3 June 1889 (pp.
290, et seq.

(") Gétt. Nachr., pp. 23&t seq. pp. 240, rem. pp. 266t seq. Sachs. Ber., pp. 177, rem. pp. 220, rem.
pp. 227 et seq.
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(2) @b) c =a (bo).

The necessary and sufficient condition for thishis existence of all relations of the
form:

(3) @e)g=6e(xg) (,kj=1,..n);

I.e., the existence of the following systems of quadrialéntities for the constanigs
that were introduced in (1):

(4) zyiksysjt :zykjsyist (i,k,j,t:]., ---1n)'
s=1 s=1
3. A quantity & must exist among the extensive quantities that satisfies the two
equations:
(5) e x=x, X & =x,

independently of.x
In this, it is only required that a quantéexist that satisfies thenzquations:
fe=gq€=¢g (i=1,..,n).

If one sets the unknown quant&y = Y a; g then that will yield the following &
equations for the coefficients, ..., an:

n 3 0 k#ys),
iZ:l:O'i D/iks_{ 1 (k:S),

n 3 0 (k#ys),
;a‘ Eyk‘s_{ 1 (k=s).

These equations must be compatible with each other iefdl &/ single system of
solutions. This would still not follow from the condis that were stated in (1) and (2).
One does not have the theorem that the solubility efafnthese systems of equations
would imply that of the other one, either. For exaamphe might have:

2

e =ey, ae=e, ee=0, &= 0.
The demands (1) and (2) are fulfilled here, and onealgiti have:

ee(Xet+xe)=xie+xe

identically; however, there is no quantity that isanly derivable frone; ande, that will
satisfy the second of the requirements that were esguian (3).
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At the same time, the condition (3), strictly spegkirequires a bit too much: It
would already suffice to just require that the systemqufations:

e’ = x X =x

possess solutiore, 77°, at all. It would then follow immediately that:

o_.0,0_,0

e=en =1,

both solutions would then be identical, and both of $hstems of equations would
possess only this one solution.
The requirement (3) is completely subsumed by the otmethat the equations:

(6) ax=Dh, ya=b

should be soluble fox andy “in general’; i.e., except for special valuesapfor, as one
can also say, thativision is admissible in the system of complex numbers. at, fin
order for this to be true, it is necessary that neii¢ne determinants:

(7) ‘ Z Vis® Z Viks@

vanish identically. Now, if the assumption (3) is filédil then one can take= € one
will then obviously obtain two non-vanishing determinankowever, the one can also
prove the converse immediately. Namely, if the deiteants (7) are non-zero for a
certain system of values, ..., a, then one will, in particular, also be able to solve the
equations:

a¢ =a, na=a
for {andn. However, it will then follow that for every valuwd x, one will have:
aéx = ax, Xna = xa.
However, by assumption, the equations:
ax = ax X' a=xa
will have only one solutiow’, X". It will then follow that for all values of
X=X, Xn =X,
and, as we remarked already, this will imply that 7.
From now on, we will refer to the quantitythat was defined i(3) as the “number

one” of the system, and, when no misunderstanding can arise, exprelsarasteristic
property by the symbolic equatioh=e1.
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We are justified in doing this, since the numgewill obviously play the same role
in an arbitrary system of complex numbers as unity do#dse ordinary number system.

The solutions of the equations (6) can be written imgler form, when one has
previously solved the simpler equations:

(8) ax=1, xa=1.
The following theorem relates to this:

The determinanté’) of the two equation@) have the number a as a simple factor as
functions of the coefficientg,a.., a,. If they are non-zero then both equations will have
the same solution, which we shall denote By & the other case, there is no number in
the system whatsoever that will satisfy one of the equations.

Namely, let the numbex of the system be such that the equatgs 1 possesses a
solutionx, and leta® = 1,a%, ..., a (k < n + 1) be linearly-independent powers of the
numbera, while & is expressible as a linear combination with numeroafficients:

(9) =g dt+ .. +ad.

It is then necessary that# 0; otherwise, one could derive another form from tiegtiomn

(9) by multiplying byx, for which a smaller number would enter in placehaf number
k; a° ..., @ would not be linearly-independent then. If we now muite" by x then

that will give:

(10) x= - [t —ad?- ... - d);

with that, we will obtain a uniquely-defined expsis forx, and indeed an expression
that also clearly satisfies the other equakarr 1.

Moreover, it will already be completely sufficietat show that, along with a solution
x? of the equatiomx = 1, there will always likewise exist a solutigf the equatioxa =
1. It will then follow from the associative law ofultiplication that, = (x; @) Xo = X3 (a
Xo) = X1; there will then exist onlyone solution of the two equations, and their
determinants will always be simultaneously non-zero

We will refer to the numbea, when its determinant is non-zero, ageaeralnumber
of the system, in contrast to tepecial numbetsfor which the symbo&™ will no longer
have any meaning.

If the numbersa andb are general then one can, with no further adoiveleéhe
solutions to all equations of the form:

(11) axb=c
from the solutiorx = a™* to the equationax = 1 andxa= 1. One will then have:

x=alchb™
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If one of the numbers, b is special — saya — then not just the equatioag = 1 and
xa= 1 will be insoluble, but along with them, also all equra of the form (11), whea
is a general number. Namely, if one sefay— ax)b = ¢ thenxbc* will be a solution of
the equatiorax = 1, which is impossible. In order to decide whetheretipgation or the
system of equationsxb = ¢ is soluble for a special numberone might investigate the
sub-determinants of the matrix that arises from thesesy of equations. If that yields the
existence of a solution then it can naturally not berdeted: In our caseg will be what
one calls aivisor of zero.

The totality of all numbers in the system that sgtidfe equationax = 0, and
likewise, the totality of all numbers that satisfy tbguationya = 0, along with the
number one in the system, will already define a sysiEnomplex numbers, in its own
right.

Once we have restricted the domain in which the operahiah is opposite to
“multiplication” can be performed, we can assume #tlacalculation operations with the
complex numbers of a given system will be valid thatsisi of addition (including
subtracting), multiplication, and division in the unés arbitrary number of times. In
order to perform the latter operation, which will be esgnted by the symbolic equation
X =x !, we have only to exclude the domain of special numbers

In order to give an example of the rule above, wé aafine the two determinants
that belong to the system of complex numbers:

6§ 6 § §
g OUg
Ue g U

£ P .o

Oe OO
Oe OO

D

In this table, thé'" horizontal row and th&™ vertical row will be filled in with the value

of the producte e ; for example,es e = 0, e, &3 = e;3 . If one now computes the
determinants above then one will find that:

‘Zyiksai = a8,

Zyiksak = aiag ;
k

one will then obtain two entire functions with the sasimple factorg; , a, .
By far, it is, moreover, frequently the case tha thvo determinants (7) become
virtually identical, which is what happens for quaternidosgxample.



E. Study — On systems of complex numbers and transforngromps. 6

8 2. Classification of systems of complex number.

The fundamental problem in the theory of systems ofipdex numbers must be
defined as:Determine all systems of complex numbers with n principal unise
cannot, however, pose the problem as: “Find the most glesgstem of complex
numbers withn principal units.” It would not ba priori clear then- and, as a closer
examination will show, also not correethat the system of constantg that satisfy the
conditions (1), (2), (3) (8 1) will define an irreducible nfald: It will, moreover,
decompose into different separate domains whose mostagjegeresentatives are to be
considered as equivalent and equally general, insofar a&s afafiem can be obtained
from the other ones by passing to some limit. Howeserce we feel completely
ignorant of the nature of this domain, nothing will remfir us to do but to look at the
small values of the numbarin order to immediately determine the systems that.exi

As a natural classification principle, we shall heood#f appeal to the idea that all
systems should belong to a class when theyover to each other under linear
transformations.

From any of the systems of complex numbers that defenes, one can derive
infinitely many other ones, for which one introducesvrbasic numberg,, ..., §_, in

place of the basic numbess, ..., &, by way of a linear transformation with a non-
vanishing determinant, so that all of the numbers in ylséemn can be represented as
linear functions ofg,, ..., € .

All of the properties of the systems that are obthimethis way will obviously be
known, just like those of the systes ..., &,. We will therefore consider it to not be
essentially different from the systesn ..., &,, and will place it, along with the latter
system, into one and the same *“type.”

However, there is a second, especially remarkable ,ofvdgriving from a system of
complex numbers, another one that has just as mangigal units. If we imagine any
system of complex numbers that is represented by a quadraliplication table, such
as the table that is defined in page 5, then we will oblyioagain obtain a system of
complex numbers when we switch any two elementsarsjuare that lie symmetrically
to the diagonal. In this way, e.g., the system that gisgen on pp. 5 will go to the
following one:

laesgeg
egleg UODO
elle g §
el Ueg OU
elg U OO

In fact, the operation that was performed will hamdydhe effect of inverting the
order (sequence) of all multiplications, such that evaryduct ab...ef will then be
replaced with the corresponding prodéet..ba However, the characteristic properties
of a system of complex numbers that were describet)j(Z), (3) will obviously not be
disturbed. All that will happen is that all of the ctams yis will be switched with the
corresponding constanfgs, from which, nothing will change in the relations (4)scf.
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We would like to refer to the system thus-obtainedhagédciprocal systento the
given one. In many cases, it can also be obtaimad the given one by introducing new
basic numbers, and indeed, it can coincide with the gimencompletely (namely, when
the given system obeys the co-caldEinmutative lavef multiplication); however, it can
also be different from the given one, as in the exarti@é was given. Namely, if the
two multiplication tables that were given on pages 5 amén be converted into each
other by the introduction of new basic numbers then the dassociated determinants

Z yiksai Z Viksai Z yiksa; Z yiksaL
i i i k

same time. However, this is impossible, since thei®aeproduct of two squares, while
the other one is a product of a first and third power.

Just as one has in the individual cases, in any eventdigocal system to a given
one is known to be identical to it in all of its profees. We will therefore be justified in
counting it as likewise having the same type.

We can now make the problem that was posed in the begimiithis paragraph
more preciseGive all of the different types of systems with n basic numbers

One will obviously then come to the problem of represgngach type by those
representatives that will given the clearest possiniéiplication table, which would be
similar to the one that was given on pp. 5.

In place of the concept of a system of complex numbat was defined to be
fundamental here, one can also choose a somewhatdiffeoncept to be fundamental,
and then once more pose a similar problem.

Namely, if one restricts oneself to those systemsomplex numbers for which the
constantgs in the relations haveeal values then one will also find oneself dealing with
only the number systems of a class that can be permuitdéh vitself by linear
transformations with real coefficients. It does seém to me preferable to take such a
standpoint from now on, since the algebraic charadtdre problem would be corrupted
by it. It is, however, completely worthwhile to digjuish the systems within a given
type that are associated with real values of the cotsgt , and which can be permuted
with each other by means of linear transformationk vatl coefficients. We would like
to call thendifferent forms of the same type.

Finally, one can also alter the problem in such a way d¢ne prescribes a certain
domain of rationality in which the quantitiggs and the transformation coefficients will
come from. However, we will not go further into thisestion.

If one has a system withbasic numbers anu> 1 then a numbeékthat lies between
the limits of 2 anch must exist with the property that tk8 power of any numbea of
the system will be expressible in terms of the pervipmwersa® = 1, a, &, ..., &%,
while the latter are linearly-independenteofor a sufficiently general choice af(cf., 8§

1, formula 9).

We will arrange the number systems for a given valueiofincreasing order 4.

In 88 3-6, the types that are present in the caseg, 3, 4 will be determined, along
with their forms, and clearly summarized. Systemghefsame type will bear the same
Roman numeral. Some forms will be presented twicgesunder some circumstances
another canonical form (i.e., multiplication table)lvgeem preferable, depending upon
whether one is dealing with the determination of typeh® determination of the various
forms of the same type. In such cases, the second foemmultiplication table will

and = = will have to go to each other at the
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characterized by an appended notatpn The remaining forms of the same type will
then follow with the notatiob), ¢), ...
§ 3. Systemswith two basic numbers.

Here, one will necessarily hame= 2.
Leta be linearly-independent af = 1, and let:

a=a;at+ad
in whichay, a, are ordinary real or complex numbers. Now, ifghadratic equation:
MPzal+a

has two separate roolds, A1 then one will introduce the new basic numbers:

If it has a double rool then one will take the new basic numbers to be these:
e=@-1)°=1, ee=a-A

One will thus obtain the only two types of systenet thave two basic numbers,
which are illustrated in Tables | and Il. Distinctlregstems obviously belong to just the
first type, and indeed there will be two forms, cep@nding to the two possibilities that
the quadratic equation® = a;/ + a, has two real or two conjugate-imaginary roots, resp.
In the second case, one will obtain Table 1b) by ohiimng the new basic numbers:

€ =& +ey, e =(—-e)i,

which defines the system of ordinary complex numberabléeTl itself can serve as the
type of the number systems of the first class. H@&wnev seems preferable to write this
table once more in the form la) by the introductionhefhew basic numbers:

& =& tey, e =-e-e.

In Tables( la) and Ib), we will then have two analogoarsonical forms for the two forms
of type I ().

() The determination of systems with real basic numbasathieved by Weierstrass and Cayley. S.
Stolz, Vorlesungen Uber allgemeine Arithmetid. I, § 5 and Cayley, Proc. Lond. Math. Soc. XV (1883-
84), pp. 186¢t seq. Scheffers was kind enough to make me aware of this pgpeayley.



E. Study — On systems of complex numbers and transforngromps. 9

I la). Ib)
& & & € & &
&g O eo‘%q eo‘%q
elO¢g elg ¢ alg -8

& &

Il. gle ¢

elg O

As we said, Table 1a) will go to | under the real sitiloson:
§ =€ tey, € =6 ey,

when one, in turn, drops the overbar again. Similardgld Ib) will go to Ia) under the
substitution:

g =6, 8 =6 (i = /-1).

8 4. Systemswith three basic numbers.
Next, letn = 3, such that one will have:
=g al+aal +a3d

while, for a general choice? will not already be expressible in termsabfanda’.
We will distinguish three cases, according to Wwaethe cubic equation:

Pza P +al+ag,
has three distinct rooté, Ai1, A2, one double roofly and a simple rood,, or finally a
triple root A, for a general choice of the numizer

In the first case, one simply sets:

_ (@-A)@-4,)
(/]0 _/]1)(/]0 _/]2) ,

€

and correspondingly fag ande,, with a cyclic permutation of the indices. Sirgee,
ande; are linearly-independent, on the basis of therapsion that was made, and satisfy

the relationse” =g, & & = 0, in addition, which are verified immediatetype will then
obtain the canonical form | that is listed below.
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If Ao andA; coincide thergy ande; will become infinite, and the transformation to the
canonical form I will be impossible. However, one camark that, + e; and (o — A1)
e Will remain finite. In the limit, one will havehese expressions:

_ (a_/]l)(a_ 2/]o +/]2)
(A _/]2)2

g = (a-A)a-d)

(A =4,)
together with the limiting value faa:
éz — (a'_AO)2
(4, _/]o)z

which are again linearly-independent numbers, amel will then obtain the canonical
form I1.

Finally, if A, also coincides withly and A; then this form will also be impossible.
However, g +€, as well asfo — A2) § +€ and ¢o — A2) €, will again remain finite,
and one will have these expressions in the limit:

§ =1, g =(@-4), & =(@-1)
which are the basic numbers of a new type Ill.

Furthermore, lek = 2, such that any numbaiof the system will fulfill an equation of
the form:
a®=a;a' +ad

If we think of the numben as being expressed here in terms of any three basi
numbersg,, €, € in the formAc€, + A1€ + A> € thena; will become a homogeneous,

linear function ofAy, A1, A2that does not vanish when one setqjual to the number one
for the system. One can then associate the enitjth two basic numberg,, €, in such
a way that the coefficiers; that is constructed for an number of the folre + A, €

will vanish. The coefficient, will then become a second-degree homogeneousy line
function of A; and A, . It can possess two distinct zeroes. One cam ititeoduce two
new basic numbers ande; in place ofe] and €, that satisfy the conditions:

e =0, € =0,

and the same thing will happen whenvanishes identically. However,ap is a square
then one can choose the basic numbers in such ghaty
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¢=1, &=0

We next consider the second case.
If we make the Ansatz:

&= tattae

then by forming the producks (e; &) and € &) e, we will recognize that one must
have:

a =0, a =0, a=1.

If we first takea, = 1, soe; & = e, then it will follow from the associative law thet
e; = — e ; we will then obtain Table IV. The other assumptigr= — 1 would yield the
reciprocal system, but it will lead back to the firaseammediately under the substitution
g =-¢6.
If we further assume that:
¢=0  €&=0

then the associativity law will immediately implyetie; & =&, e, = 0. The case that was
previously presented as possible, in which the coeffi@gentanished identically, can
therefore not actually occur; we now obtain multigica table V.

We have thus found, in total, five different systeofscomplex numbers that
correspond to the assumption that 3. There is no difficulty in also determining all of
their forms.

Once more, first sét = 3, so we can have made an imaginary substitution ominw
the cubic equation:

Bz P+api+as

that is characteristic of the system has two conjugasginary roots.
This can occur only in case I. WhéfnandA; are the conjugate-imaginary roots,
e ande; will become conjugate-imaginary. By the substitution:

€ =e+te, § =i(eg—ey),

we will then once more obtain a system with reaistantsyks , which is represented in
Table Ib).

Of the systems that were found in the dase2, the system V obviously cannot have
two different forms. Should the system IV be capabl@a second real form then this
could arise only when one seté = -1, &€ =0, in place ofe’ = 1, € = 0. However,
that would then yield imaginary values for some of thwestantys.

We will then have to list the following tables foetbase oh = 3:
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Table la) is not essentially different from Tablamd will go over to it under the real
substitution:

& -&te, g=-a-6, & =6.

This is only due to the cited analogy with the followiagle Ib).
Table 1b) will go to la) under the substitution:

é):a), él:iel, @2292_
|2 88 |2 8s
I &|® ¢ U m &% & €
e|lg UU elg ¢ U
el UUe ele OO
|®% 8 & | &8
v, %% ¢ & v %% &8
g|le & € e|g UU
ele —g U ele U0

The system IV will go to its reciprocal system unther substitution:

g=e  8=-a, &

.

§5. Systemswith four basic numbers.

First, letk = 4, so:
=g ad+aa’+agal +a,d

If the bi-quadratic equation:
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Az A+ Aitagd+a,

has four separate roofds, A;, A2, A3 for a general assumption on the numéehen one
can take the basic numbers toepes, e, €3, where, e.g.:

_ (a_/]l)(a_/]z)( a— /]3)
T (A= A=) (A= 1)

one will then obtain the canonical form | thatiggdd below.
In the case of a double rodt and two simple rootd,, A3, one takes the basic
numbers to be the limiting values@f+ e;, (1o — A1) &, &, €3, namely:

(a_/]z)(a_/]g)
(/]0 _/]2)2(/]0 _/]3)2 ,

éj = {3A02 - 240 (a+)l2 +A3) + (aAz + a3 +A2A3)}

=~ _ (a_/]o)(a_/]z)(a_/]a)
A=Ay

— (a_/]o)z(a_/]g)
(/]2 _/]o)z(/]o_/]s) ,

ol

— (a_/]o)z(a_/]z)
(/]3 _/]2)2(/]0_/]2) .

B0

The associated multiplication table will be 1I.
Furthermore, if1; also coincides withl, then one will take the basic nhumbers to be
the limiting values o, €, €, +€, (2 —13) & :

= — _ (28.—3/]0 +/]2)(a_/]2)2
(/]0 _/]2)3

= — (a_/]o)(a_/]z)2
(/]0_/]2)2

= — _ (28.—3/11'*'/]0)(8.—/]0)2
(/]2 _/10)3

= — (a_/]z)(a_/]o)z.
(/]2_/10)2

one will then get Table 1.
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By contrast, ifAg is a triple root andl; is a single root then by introducing the
limiting values ofg, +€,, (lo—A2) § +§, (12—13)§, & one will obtain:

= = 1- (a-A2,)? |
(/]3_/]0)3
= __ (@-A)@-A)(a-24,+ 1)
e o —A)° |
_  (@-A)%a-A)
2T T ey
= _  (a-A)®
5T Ay

as the basic numbers in Table IV.
Finally, if the root; also coincides witl, then:

§+8, (l—4) §+8, (h-4)8+8, (—1) §
will again converge to finite limits, namely, to:
(a—10)°, @a-1)% @a—-10)% (a—10)3

By introducing then as limiting numbers, one wititain Table IV.

We now turn to the second principal case3.

Here, any general, sufficiently-chosen numdyeatlong with its square arag = 1 will
together define a system of three numbers thaesponds to the types I, Il, 11l that were
presented fon = 3. Since only four linearly-independent unite present, any two such
three-dimensional domains will have a two-dimenalotiomain in common — viz., a
system of two numbers (which will then belong ty agstem of three numbers, in the
same way).

We now first assume that the system of three nusntb&at belongs to a generally-
chosen numbea is a system of the first type. The two-dimensiosygstem that is
defined by the intersection of system | with anotegstem will then be (triply) well-
defined. Namely, if one expresses the idea tlastjuare of a numbdp ey + A1 €1 + A
& of system | should already be linearly represdatabterms of the number itself angl
+ e + & = 1 then it should follow thado, A1, A2 are roots of a quadratic equation such
that two of these three quantities must be equehtt other.

Therefore, there are only three mutual-equivadeitdomains in our number system
that have the desired property; one of them isrdeted by the numberg, =e + e, +

e =1, =e +e;. If one introduces these, together wgh= ey, as new basic numbers
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and appends another basic numigrthat is coupled withg, and € by the same
relations asg, then part of the multiplication rules that we seek alieady be known. It
will be represented by the formulas:

2 —

(A) Q):]., elZ:ell %22621 %—93,
L &=&6 =6, € 6 =636 =6s.
Secondly, let the system of three numbers thagtisrchined bya’, a*, a® be a system

of the second type, and also for a completely gembi@te ofa. One can then associate
the numberg, = 1 with a numberg in two essentially different ways that will both

collectively define a system of two numbees:=e; ande =e,.

In the first case, one takes, €, and € = e to be the new basic numbers, and
appends a third basic numbey that has the same relationshipgoand e as€,. One
will then obtain the multiplication rules:

2

(B) e =1, e =0, e = e, e = e,
eee=ee=0, eee=ae=0.

In the other case, the following choice of basic ugjts 1, € =&, & = e will yield the
formulas:
© &= 1, e =e, € =0, e =0,

e e=6e=0, e e=6e=0.

Finally, for the most general choice @fthe system that is determined &Yy a', a°
might belong to the third type. One can then exterdntimberg, = e = 1 by another

numberg in essentially one way such that and € collectively make up a system of
two numbers; this system will be determinedd)y 1 andg =& . If one then writeg,
for e; and, appends a third basic numiegrand drops the overbar then one will obtain a
fourth system of formulas:
(D) & =1, g =0, e =ey, e =ey,

ee=ee=0, e e=6e=0.

We shall go through the four assumptiofy (B), (C), (D) individually. We will add
to them, in the most general way, relations of thienfo

=gt mne+taet+ases,
ese=-He theathet+es,

and determine the constamsndfS according to the associative law:
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2

(A) =1 €=e, €& =g  €&=g,
Qe =6e =6, e =66 =6.

In addition, if we let:

&= tmetme +azes

then it will follow upon multiplying bye; thatay = 0. Furthermore, when one forms the
productse; (e; &) and € &;) e, one will get:

m=mm=mas a=a, az= as,

o+ aaz=0;
i.e., one will have either:

) a=-1, a=1, a=1,
or
(b) =0, a» =0, as=1,

or, what amounts to the same thing:

o =0, o =1, as =0,
or finally:
(c) a1 =0, a, =0, a3 =0.
(a) &e=—ete+es.
If:

se=featlhet+les

then one will find, by the use of the equatiend;) e; = & (&3 &), or the other ones (e;
&) = (&3 &) 63, that; =5 =- £ ; i.e., one will have either:

A=-1 B=1 P=1
B =0, S =0, B = 0.

At this point, the first assumption will be useless @is, because it leads back to
system | under the substituti@ =ey—e1, § =& +e—€, € =€ —€3, § =€ — 6.
In the second case, we introduce two new ugjts e;, €& = e —e, in place ofgy

or

ande; , which are determined such that one will h&fe= €, € = €, §+ & = 1.
Furthermore, one introduces two new basic numigerand &, in place ofe, andes,
which are chosen such thaj, &, and &,, when taken by themselves, will define the
fourth type of associated system of three units. Toehdf we determin@&, such that
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€=0, namely,§, =-e, + & + €3, and then determing such thatg” = §, namely,§
= e —e6. We will then obtain multiplication table VI.

(b) & e3 =e3. If one introduces a new basic numiggrin place ofe; by means of the
substitutiong, = e3 + e; —exthen one will get back to the casg (hat was treated above.

(c) e2e3=0. If one does not wish to return to the caagql§) then one must assume
thate; e; is equal to zero in any case. However, that woulduiperfluous, since, by the
substitution:

§ =& -6, € =& - & -6, € =, € =6y,
one would, in turn, obtain Table I.

(B) & =1, g =0, g =6, g =6,
ee-aee=0, eees=ee =0,
e =aptmnmetme t+azes.

It would follow upon multiplication bye; that ap = O; furthermore, upon multiplication
by e, ande;:

= =mas, aa3=0,
2 _— 2

0'2 0'2, a3 03,

i.e., one will have either:
(a) o =0, a =0, as=1,
or

o =0, o =1, as =0,
or
(b) m =0, a> =0, as = 0.
(@ ee=e;.

Let:

Be=hetlke.

It will then follow upon multiplication bye; that:
Bt =1

i.e., one will have eithefz = 0, =1orf% =1, 5 = 0. The first assumption is
inadmissible, since one would obtain Table Il under thiststutiong, = ey — €3, € =e,
€ =& -6, § =e3. Allthat will remain then is the assumption tleate; = es, which

we can also replace witly e; = e3, 3 & = €3, in order to go to the reciprocal system.
Here, e, e, &3 will define a system of three numbers that belondhéofourth type. It
will go to its canonical form under the substitutign=e, § =& — 263, & =e3— &} if

we appendg, = e; then we will obtain Table VII.
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Starting from the first of the assumptions that weegle underd), we have arrived
at a system that it is reciprocal to the system VHad we started with the second
assumption, we would likewise have obtained systemitsglf. Neither system — viz.,
system VIl or its reciprocal — can be transformed ifit® other one (while this is still
possible for system VI, which can be derived from sys##hby a passage to the limit
that is easy to give).

In fact, letg,, ..., € be the basic numbers of the system that is reciptocéll, so
its multiplication table will emerge from Table VII yermuting the horizontal and
vertical rows. Should), ..., € then be linearly derivable from, ..., es with numerical
coefficients then it would next follow tha&, = e. Furthermore, since one should have

—=2 p—

g’=g,e =0,6 =0,8, &, & must have the form:
g =tet+tlhe, € =&+ i3E3, € = e+ 1s6s.

Since one should have € = - &, only the lower sign in the first of these

expressions will be admissible. However, the absesdlr thatv, = v; = 0 would follow
from the equatiorg g =&,. (Cf.,, the remarks on page 8, as well. The tald¢ wWas
given on page 6 will go to VII under the substitution:

g -et+te, §=-e—-&, § =6, §=-6.)

(b) If & e = 0 then it will also follow that; e, = 0. This would once more be
inadmissible, since one would obtain Table Il undesthestitutiong, = e — e —e€3.

(®) & =1, e =ey, e =0, e =0,
eee=ee=0, eees=ee=0,
e =aptmetmet+ azes.

It will then follow forthwith upon multiplying by, &, andes that:

ea-ae=0.
If one introduce basic numbers:

§=&-€6, €=, € =6 €=
in place ofey, ..., esthen one will obtain Table VIII.

(D) =1, ef:O’ e;:e?:el,
eee=ee=0, eees=ee =0,
= tnetmet+tases.

Upon multiplying bye;, e, andes, one will find:
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=m=0a3=0,
such that one can then set:
eea=0e, ee=pfe.

If one introduces a new basic numiger=e; — a &, in place ofs, then one will get:

&8 =0, g§e=@-agea, TF=(1-ade.
We now distinguish three cases:

@ p-a#0,
() pB-a=0, 1-ap+0,
(©) L—a=0, 1-ap=0.

(@ One introduces the new basic numbérs-ey), € =€, € =& —2 ,Bi € =
-a
e, in place oy, ey, &, &, of which, the third one is determined such tat, = - €&
=e.
One will then obtain Table IX.
The numerical parameterthat enters here cannot be eliminated by the introductio
of new basic numbers.

(b)es € = €e=0,8 =cea . Here, if one makes the substitutigh= e, € =e,
g =L
Je

€, € =e;then one will obtain the number system X.

() es€ = €& =0,& =0. This assumption will give Table XI.

With that, the assumption thiat= 3 is also dealt with. All that we have leftgeesent
are the number systems for which 2.

Here, we distinguish between the number systems/ticch, along withey = 1, two
basic numbers; ande, are given in such a way that one of the prodegcets, e, e; of ey,
e, & is linearly-independenty] of the other oneB), for whichey; = 1 and two numbers
andb already define a system of three units in itself.

(A) Here, with no loss of generality, we can asstimae either:

(a) e =1, e =1,
or
() €& =0, &€ =0

(@) Let € =€ =1. If we then express the idea that:
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(e +A 92)2

should be linearly-expressible in terms af & + A, &) andey, = 1 then it will follow
that:
e t+tee =C,

in whichc means a numerical constant.
Here, we introduce a new basic number:

g =Aetyue,

in place ofe, and seek to determine the constah&dy in such a way that one will still
have € = 1, but on the other hand, one will hages +& e= 0. However, this will
always be possible, except wheste 4. First, lett® # 4. We can once more replage=
e, and € with new basic numbers by the substitut@r- ig, e = ig,. We will then
have the relationg® = € =-l,ese=-& € . Ifwe sete; & =3, and then determine

the expressions for the remaining unit products from Hs®a@ative law then we will
obtain Table XllI, which is the well-known systemafaternions.
Secondly, set = 2. We then take the basic numbers to be:

& =1 & =ley, g =&+ /e, & =88,

in which we now determiné such that one will have? = 0; this will yieldA =-1. One

will then obtain Table XIII.
Thirdly, letc=- 2. One will then come back to the case+ 2 that was just treated

by the substitutiore, = 61;2% :

(b) Let € =& = 0. As above, it will then follow from the cotidn k = 2 that:

e+t E& 6 =C

If c# 0 then we can take= 1, with no loss of generality. We can then immedyate
go back from this case to casg by the substitution:

g -ete, € =i(e—e).

However, ifc = 0 then we will obtain the new Table XIV.

(B) Any two numbers, b, together withey = 1, define a system of three units. Here,
there are two possibilities: Either this number sysbetongs to the fourth type that was
presented fon = 3 for an arbitrary choice @ b, or it is a system of the fifth type.

In the case, we can assume that the systesy ef, e; has already been brought into
the canonical form Il (cf., pp. 13). & is any number that is linearly-independenegf
e1, & thene, e, &3 will likewise define a system of the fourth type. \d&n therefore
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take a new basic number that satisfies the equati@f = 0 in place ot; in this system.
In that way, the system, e, es will go to its canonical form. If we again wri® in
place ofe; theney, e, e; will now define a system of the fifth type that walready be in
its canonical form since& = € = 0. With that, the expressions for all of the prodoéts
the basic unitsy, e, e, es will already be known; we will then get Table XV.

Finally, in the second case, we can chamse;, ; such that we will have’ = & =
e’ = 0. The last Table XVI will then arise.

The fact that the types that were enumerated heracanally all distinct — i.e., that it
would not be possible to derive another table in the segqgesice from Tables I-XVI by
the introduction of new basic numbers — hardly seem&ssacy to emphasize, in
particular.

One can also easily extend the argument that waslg@ssribed that one will obtain
all of the different forms of any type. Meanwhile, wél go into the treatment of that
problem, but only give the result. A form — viz., the &t of system X — was
overlooked by me in the original version of this repdftom the remarks that we made
in our examination of the case= 3, we do not especially need to write down the
substitutions by which the distinct real forms la), ..), &), and IIb) could arise from
the basic forms of their types | and .

l. la).
|2 88 ¢ &8¢ ¢
& OO0 & ¢ OO
glUe OO ele ¢ UU
e UlUe O el Ule g
e/ 000e &/00e g

Ib) Ic)

& € € § & € €& §
&6 ¢ UL &6 ¢ U U
elg-¢ 00 elg-¢ U U
el Ueg g e|ld Ue g
el Ue g el Ueg-g

.
|l 8¢ ¢
&& ¢ UL
glg UOO
e UlUe O
e U00eg
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Ib)

lla)

&€ &

eble ¢
gllle —¢

& & ¢ U U
egleg OO O

o O O @ O

o0 O g qr
ol O O O

&ueue.__H__H_
| o & @

& &€ 6§
&
U
U
U

1)

Ila)

& & & §

% 8 € &

& & & €

€& & € ¢
ele § U U

&g - U U

& & & € ¢
€& & & ¢
&g ¢ U
&le ¢ UD

The form Il1a) arises from Il under the real sulsian:

Table IlIb) arises from llla) by the substitution:

= iez.

= ey,

IV

w OO0
vl oy > O O
o'l v v o O
Fl¥ v ¢ W
| o ¢ @@
w0 O O g
oo OO
o'l v o O O
Fl® o o U
& o ¢ &
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Vi VIII
& € € § & € € §
&& ¢ ¢ L0 &% &€ € ¢
elg ¢ ¢ U g8 & € ¢
e|g-¢ U0 e|g - U0
e U 0O Ueg eleg ¢ OO

The system VI will go to its reciprocal under the $iibSon € = - & ; the system
VIl cannot go to its reciprocal system.

VI IX
% & € & % & & €
&|& & ¢ U &% & € ¢
glg WU &g § §U
eleg UOUU &6 -¢ g U
e U00eg ele 0O OO

Table IX will represent infinitely many types, correadng to the different values of
the parameter. Any of these systems will go to its reciprocal urithersubstitutiore, =

X Xa)
% & & € & & €
%% & &€ ¢ &% & & ¢
gl ¢ UU glg 8 UU
&g Ueg U ele U-g U
elg O OO eleg U OO

Table Xb) will arise from X under the substitutien=ie, .

Xl
BEEEE:
%% & &€ ¢
gl ¢ UU
ele U OO
elg O OO



E. Study — On systems of complex numbers and transforngromps.

Xl

D D D LD |JSP

€ & &
& & ¢
& § ¢
“§~§ €
€ “&°F

S P D LD

XI1b)

NP D D
@@@JDJD

&

g
g
&
-8 -
€

H‘D@:mw@

ND oD |uD

Q'D"t'D
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System XII, which is well-known under the name of theaternions will go to
system Xllb) under the substitution:

€ =6y, € =ley,

E

=iey,

& =-

Xllib) will also emerge from XIIl under the same suhsgian.

Systems XlI-XV will each go to their reciprocals untieg substitution:

& =&, & == & ==
X1l
% & & €
%1% & &€ €
€8 -8 §°¢
&6 -¢ U U
&leg ¢ U U
XV
% & € §
&% & € €
gle U el
&6 -¢ UU
elg O OO
XV
% & & €
%1% & &€ ¢
€& & & ¢
&6 -¢ UL
&le-¢ UU

B0

= - 6.

XI11b)

&P P D LD

L P D D |
D D D LD |JSP

D D D LD |JSP

g
g
&
-8
g

XVI

O O O «D|<P
O O OO ~D |
O O O «wp oD

[0 [0 «D nD |ND

OO0 O ~p oD D
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§ 6. Special systemswith n basic numbers.

The extension of the determination of the number systeii n basic numbers that
was just given in some simple cases to an undetermalad wf the numben can have
its difficulties. Nonetheless, a seemingly extendda@ss of such systems can be
determined in general. They are the systems for whmdimbeik that was defined in
8 2 has the largest possible vatuelt is obvious that they will obey the commutative law
of multiplication. Their totality defines an irredu@bianifold whose most general, and
likewise simplest, representative can be considered ta $gstem with the following
multiplication rules ):

& =g, ea=0 (zki k=1, ..,n).

The totality of all systems of the stated type wal diven by the following theorem

(**):
In order to find all distinct systems with n basic numbers for witielpowers A A,
..., A" of any number A are, in general, linearly-independent of each other, orie mus
represent the number n as a sum of whole numbers in all possible ways.

If:

n=a+p(+..+tu

is such a decomposition of n then one will arrange the n basic numbersupsgr, £,
..., 4, and denote them by:

aO, ---1a-a—la h)l "'lbﬁ_ll ...,nb, "'lmﬂ_l'

One will then set the products of any two basic numbers from diffgreups equal
to zero, and assume a rule for the multiplication of two numbersrnvihe same group,
which might be stated, for example, as:

a & = Qiuj (i+j<a-1),
ag=0 (+i>a-1),
for the first group.
Any two number systems that are determined in this wéybeidistinct; i.e., it will
not be possible to take one of them to another one dynthoduction of new basic
numbers. However, any systemrohumbers that satisfies the stated condition can be
taken to one of the systems that was presented byablsuithoice of basic numbers.
Moreover, the basic numbess, ..., m,1 in the given systems are not determined
uniquely, except for only the simplest case £ = ... = = 1, in which one will come

back to the multiplication rule®® = e , & & = 0 that were given already. One

() One should confer the author’s remarks in Gott. Nak889, pp. 264-267 concerning this oft-treated
number system.

(") According to this, a theorem that was stated by RoéfComptes rendus de I'’Ac. des Sciences, t.
99, (1884), pp. 740] can be corrected.
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immediately recognizes that one will obtain the pedgishe same multiplication rules
when, e.g., one introduces the following basic numbers:
a =hatlha+..+Ar1801,

aZ = (Al al + AZ a2 + ... +Aa—l aa—l)z,

aa—l = (Al a + AZ a + ... +Aa—1 aa—l)a_la

instead ofy, ..., a1 .

Here, A1, ..., A.-1 mean any sort of numerical values that are subjecintp the
restriction thatd; must be non-zero. The newly-introduced basic numdnrershe most
general ones that will produce the stated multiplicatides; the sub-domaires, (as, ...,
ag1), (@, ..., as1), ..., @s-1) Will be determined uniquely, if not also the basic numbers
themselves.

Severaldistinct real forms can emerge from the systems that emerge fr@m th
systems that correspond to the decomposition:

n=a+p(+..+tu

only when some of the numbess g, ..., i are equal to each other, and one if takes the
number amy times the first number that is differefiom a times m, times the first
number that is different from the last two tinmas etc., the one will indeed get:

iy

2 2 2 |

different forms that can be written down immedigtels long asm] means the largest
whole number that is less than or equaltoFor example, letr= =y, buty#z 0% £#

... Kk, so there will be two distinct real forms. Thencaical form that was given in the
theorem above can be used as the canonical forthdofirst one. However, it seems

preferable to me to introducerdasic numbers instead of the basic numbgts by the
substitutions:

ag=a+h, bi=a-b i=0,1,..a0-1),
with which, the following multiplication rules wibrise:

ai 6 =di+j,  bi bj = aiy,

aj bj = bi+j .

One will then obtain the corresponding table foe second real form simply by
making the substitutions:
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a=a, B =+-1 b (=01, ..a-1)
in the form:
aj aj = aj+j, b bj =~ Ui+,
aj bj:bi+j.

Naturally, all of the basic numbers in both tablel be set equal to zero when their
indexi +j exceeds the largest admissible valuerefl.

| will provide the proofs of the assertions tharev made in these paragraphs, with a
somewhat weakened formulation of the theorem, iseeond treatise that will treat
recurring series and bilinear forms that are clpseinnected with our situation. Two
different expressions for the basic numbays..., as1 in terms of the number&’, ...,
A% will be given there.

8 7. Onthetheory of simply-transitive groups.

In the following paragraphs, the connection betwsgstems of complex numbers
and the theory ofransformation groupswill be developed. In particular, it shall be
shown how one can make use of the theorems tha presented in 88 3 — 6 in this
theory. Before we do that, will include a sectionwhich a number of — for the most
part, new — theorems will be derived that relateh® so-calledparameter groupghat
play an important role in the study of transformatgroups, as is known. In order to
better understand this, let it be first remarkedt tive will only speak oftontinuous
groups throughout. If we speak of — e.g., — canfdrtransformations then we will mean
by that only the ones for which the angle is ntdrall, and the terms “group of reciprocal
radii,” “groups of motions,” “group of similarityransformations,” “group of a second-
degree surface” will be used in a similarly-resaitsense.

Regarding the theory of transformation groups,ill sefer to the ground-breaking
work Theorie der Transformationsgruppdieipzig, 1888) that was created by the
collaboration of Fr. Engel and S. Lie; in the sdgievill be simply referred to as (Lie).
In particular, contents of chapters 16, 20, 21,226will come under consideration by us.

From the theory that was developed by Lie, anytinaous group, along with its
parameter group, is composed the same as a singpisitive group; on the other hand,
two simply-transitive groups that are composed same will be similar. Thus, any
simply-transitive group will be similar with its p@ameter group. That means that one can
introduce new variables (or also new parametersnéf prefers) into any given simply-
transitive group that is not its own parameter grousuch a way that it will become its
own parameter group.

In fact, let a simply-transitive group, be given that is generated by its infinitesimal
transformations and is written in terms of the ahlesx,, ..., X, and the parameteys,

.., ¥Yn. Then lety,, ..., ¥, be the parameters of a transformation of the gtbaptakes

an arbitrary, but chosen once and for all, poingémeral positionE(X,..., X)) to the
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point X, ..., X, such that the variableg,, ..., ¥, will become independent functions of
X1, ..., Xn, due to the assumed property of the gr@Gup We can therefore introducg,
.., ¥, as new variables. However, the group will go to itsipater group under that.

Then, lety [y1, V2, ..., ¥n], ¥, Y” be the parameter system of the transformat®is ST
of the groupG; , so the general transformation of the parameter gob@ will then
have the form:

V' =@ Vi, s Yoy Yoo oen Vi) (i=1,...,n),
or, more briefly:

y' =8, y').
Here, one should think of, ..., y» as independent variabley,, ..., y,, as parameters,
andy;, ..., y., as dependent variables. The transformation thatwigten down will

be the transformatiofm’ of the parameter group that corresponds to the trangfam¥T

of G . Now, however, from the abowg,y ', y’ will just as much define a coordinate
system for the three pointB)§ (E)T, (E)STthat emerge from the arbitrarily chosen point
E under the transformatior® T, ST, respectively, of5; . Of these three points, the last
one will be associated with the first one by way od thansformationl of G;, and
indeed, for any choice of the transformati®nHowever, we have just now seen that the

n

point y;, ..., ¥, will also correspond to the poig, ..., y, under the transformation.

The transformation$ andT " will then coincide.

From now on, we shall assume that the variables have already been aheseh ia
way that the simply-transitive group, @ill be its own parameter group.

Thus, any symbolic formula that demands the composiifaa transformatiors in
terms of given transformations &h — e.9.,.S=5 $ S — will be capable of a second
possible interpretation, but not in the same way foreotgroups. Namely, any
transformation of a certain point in space that appeatise formula will now likewise
correspond to the point whose coordinates are the pasead the transformation. The
formula thus likewise gives a dependency between diffgr@nts of space.

We would now like to introduce symbolic notationn order to be able to express
such a dependency simply with formulas.

Let x1, ..., X, be the parameter system of the transformafiowe let the symbaok
represent the point that has the coordingies.., X, . Furthermore, if we legf andz be
the points that correspond to the transformatidrend ST in the aforementioned way
then we will write symbolically:

Z=Xxy;

this notation will then serve as an abbreviation lier $ystem of equations:

z=¢ X, ..., % Y1, .., Yo (=1, ...,n).

If we let S T, R be three arbitrary transformations @i and letx, y, z be the
corresponding point then we will likewise denote the pthat is associated with the
transformatiorSTRsymbolically by K y) zor x (y 2, or more simply byyz this symbol
will thus represent a point whose coordinates are diyethe expressions:
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G (DX Y)s oos BelXo V), 21, s Z0) = 1 (X o Xy B2(Y, D), s B(Ys D))

We will further represent any point that is associateth \a transformation that is
composed from arbitrarily many transformationsGafin a similar manner, which does
not particularly need to be explained in more detail.

Furthermore, lek' be the point that corresponds to the transformaior{viz., the
inverse transformation t§), so we set:

This symbolic equation will serve as an abbreviationaf@ystem of equations that one
will obtain as follows: Solving tha equations:

Y =@ (X, ooy Xy Y1, -oes Vi)
will yield the equations:

Yi= @Yo Yo X s %)

in which x, ..., X, are certain functions o, ..., X :

X = (X1, ooy Xn) i=1,...,n),

so the last system of equations will be equivalent tesynebolic formulax’ = x™*. This
formula clearly represents an involutory transformatiowaturally, one also has,
conversely:

X0 = (X, %) (i=1,..n

Finally, as a logical continuation of the notatioratttwas introduced, we will
represent the point that corresponds to the identitgfsemations’ =T = ... = 1 by the
symbolx’, or also by the symbgl°, as desired, or finally, most simply by the symbol 1.
Thus, from the symbolic notatid®S* = S = 1, will emerge the other ons™ = x° = 1,
which say nothing by the fact that, ..., X, and x, ..., X, are the parameter system
images of inverse transformations of the gr@up. However, we can now write the
identities:

%= g (), .., gn(¥) (=1, ....n),

x=x"7

simply as:

etc. Obviously, all of the rules that are true focakdting with the symbolS, T will also
be tlruelfor calculations using the symbly, ... For example, one will then have))(*

No matter how convenient the symbolic notations wWere introduced might be, they
also show that with their help one can derive a wholeseaf essential properties of
simply-transitive groups — which have been noticed up to fmwhe most part in the
simplest way, and make the formulas more intuitiviéhat will next yield a symbolic
representation of the grow itself:
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1. The symbolic equation:
(1) X =Xa,

in which x is thought of as variable, and a, as a parameter (viz., a pamasystem),
represents the most general transformation of the group G

2) X =xa*t

is the inverse transformation to (¥X).= x a bis the transformation d&; that arises from
the composition of the transformatioms = xa and X = xb. X = xa'ba is the
transformation of5; that arises from the transformatxin= xb when one introduces new
variables by means of the transformatios xa.

2. The symbolic equation:
(3) % = ax

gives the general transformation of the simply-transitive grogth& is reciprocal to @
()
3. The reciprocal groups Gand G are similar to each other by means of the

involutory transformation’x= x™*, such that, in fact, any transformatioh=xa of G will
be associated with the transformatidrma x of G .

In fact, if we let the transformations = xa andx = x™* be denoted b andT then
the transformatio® T S= STSwill be given by the symbolic equation:

X =(xHat=a'x

however, this is a transformation @ . Moreover, one likewise sees that the composed
transformatiorx’ = xab of the transformationg’ = xa andx = xb in G; will go to the
transformationk’ = (@ b)™ x = b™ a™ x of G, and thus to a transformation that one can
obtain immediately by composing transformationsGafthat are associated with the
transformation'’ = xa andx = xb. Above all,G; andG; are similar to each other by
means of any transformatich= a x4 in fact, this will take the transformatich= xa

toxX =aa’alx

4. The symbolic equation:
(4) X =axb

gives the general transformation of a grég . It will be obtained when one performs
the general transformation &; and the general transformation G§ one after each
other. One immediately convinces oneself thaandG, are invariant in this group, and

() From now one, we will use the term “reciprocal gréupithout the self-explanatory qualifier
“simply-transitive.”
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furthermore, that the grou@; > has only B — m essential parameters wh&a and G,
have amm-parameter subgroup in common.

5. The symbolic equation:
(5) X =a'xa

gives the most general transformation of a continyous m-parameter group that is

characterized as a subgroup of £by the fact that its transformations leave the point in
general position x 1fixed. As a result of a remark that was made in numbeguaten

(5) tells one how the transformations@f can be exchanged with each other by means
of the transformations @3; itself.

Therefore, if one keeps a point in general position fixed in the graupthat is
generated by the composition of transformations from two reciprocal giGupsd G
then the largest continuous subgroépof G, ;that is determined in that way will be

similar to the adjoint group of Gand G .

The transformatior’ = x™* commutes with all of the transformations of the gréup

If m= 0 then the group will have yet another remarkable property. Namelyemvh

it is written in the form (5), it will then again hatlee groupG; as itsparameter group
By contrast, if one writes in the equivalent forn¥ = a x a* then one will obtain the
groupG; as a parameter group.

One can also immediately write down the continuous suippfG; , that leaves
another poinb in general position fixed: One needs only to introduce veables into
the equations of the grow: X =a* x aorx =a x a* by means of the transformatigh
= xb or the other on&' = bx. One will then obtain two symbolic representatiohshe
desired group:

(6) X =a 'xb'ab and x =ba'b’xa™.

Both notations are equivalent to each other; they willtgoeach other under the
substitutiora = ba'b™ ora = b *ab, resp.

Finally, to complete the statements, one might gikie relationship that the
infinitesimal transformations of the growp have to those o&; and G,, although we

shall not use it later on.

6. Let X f, ..., Xnf, Xnea f, ..., Xn f be independent infinitesimal transformations of
the group G that are chosen such that any distinguished transformation, @filGhave
the form:

A Xef+ ..o+ An X £

Furthermore, should the expressionsf)§o to X, f by means of the transformatioh=

x* then one would have:
Xif+X f=0 i=1,...m
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identically, although ¥.1 f + X
of the group®.

f, ..., X, f+X, fare the infinitesimal transformations

m+1

We can also get this theorem with no calculatioat: L
(7) X =x+&d
be an infinitesimal transformation G that might go to the infinitesimal transformation:
(8) X =x+&a

of G; by means of the transformatioh= x*. When both of them are performed one
after the other that will give a transformationgdfsee formula (5) above]:

(9) X =x+(G+ &) &

Now, if (8) is, in particular, a transformation @G that likewise belongs to the gro@a
then it will be the inverse transformation to (7), &owill then be equal to- & ,
identically.

The theorems that were derived are meaningful for gemeral theory of
transformation groups, since a pair of reciprocal gra@psG; is indeed linked with
every continuous group of transformations, namely, tharmpater group of the given
group and its reciprocal, resp. If one writes the tanshtions of the given group, in
particular, in canonical form:

X =x+yeXx+.. (=1 ..,n

k=1

(cf., Lie, chap. 9, § 46, pp. 171) then the associated p#eargroup (viz., @anonical
parameter groupgs, its reciprocaly,, and the adjoint groug will be three of the type
that we described. In this case, the transformation x™* will take on an especially

simple analytical expression: It will be nothing but thevolutory perspective
transformation:

& =~ &.
Therefore, from our general theorem, the canonipatameter group and its
reciprocal group will be similar to each other byans of this transformation.
8 8. Lemmasfrom thetheory of linear transformations.

In addition to the theorems on reciprocal groups thaewsserted in 8 7, we will
require some lemmas from the theory of bilinear foforsour further developments.
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These theorems will be briefly summarized here. @ifiefind a thorough derivation in
one of the author’s papers “Methoden zur Theorie dedten Formen” that appeared in
print through B. G. Teubner.

As is well-known, a linear transformation of andimensional domain can be
represented by setting equal to zero a bilinear form with rows of anyn (so-called
“contragredient”) variables:

S=AX)(UP) =2 ak % U.

Let:

T=BX U Q =X bikx U

be a second such form, so the transformation tha&esarby composing the
transformationsS = 0 andT = 0 (in this sequence) will be likewise represented in the
same way by a simultaneous covariant of the fdsrasd T — viz., theproductof S and
T:

ST=AX (BP (UQ=2axhgxu.

The form U X) =3 x u; will represent the identity transformatich= T °: it will satisfy
the equations’S = SS = Sidentically. Furthermore, any for® whose discriminant
does not vanish will be associated with a certain f&fmthat represents the inverse
transformation t&= 0 when it is set equal to zero, ef$. A family — and in particular, a
continuous group- of linear transformations will be determined by a cargistem of
relations between the coefficierdg . Anr-parameter continuous group will contain
linearly-independent infinitesimal transformations thae @wan represent hyforms of
the type:

S+4as

in which S, in particular, means a form of vanishing linear invar{@P) = &; , so it is

a so-callednormal form The normal formS is the “symbol” of the infinitesimal
transformations’ + & Sof the group. By the use of the symSbne will arrive at the
expressions for a number of important properties ofitbep in a very simple way.

If S, ..., S are the symbols of the independent infinitesimal transdions of the
group themM1 § + ...+ A S will be the symbol of the general infinitesimalrtsdormation
of the group. If one denotes the combinat¥®ik — S § of the formsS, S (which is
again a normal form) by§, &) then there will exist (r — 1) / 2 relations:

(SI, S():zciksss,

in which the constantsis will be characteristic constants for thempositionof the
group. If one introduces new variables into the symBoby means of a finite
transformationT of the group then one will again obtain a normal bilinleam of the
same family that can be written simply B¢ S T. Finally, the everywhere-convergent
series:

() Cf., Frobenius, “Uber lineare Substitutionen unéhbire Formen,” Crelle’s Journ., Bd. 84.
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2 3

e=9+S+= += + .,
2! 3!

when S is the symbol for the generaifinitesimal transformation of a group, will
represent the generéhite transformation of that group, and indeed by meahs
bilinear form with determinant one.

If one has two different projective groups withe thpecial property that all of the
transformations of one of them commute with althedf transformations of the other one
then there will exist the relatior§5(S) = 0 between the symbols of the two-sided
infinitesimal transformationS andS, etc.

8 9. Thesmplest transformation groupsthat are connected with
a system of complex numbers.

GroupsGs, Gy, Gi 2, & of the sort that we treated in 8§ 7, are coupledoime system

of complex numbers, and indeed, in a double way.

Leta, b, ...,x, X, ... be numbers in an arbitrary given system —g&g.xo e + ... +
X-1 €1 . We can then regargh, ..., X1 as ratios, and interpret them as the
homogeneous coordinates of a point in mdimensional domain or ann(— 1)-
dimensional spacB. If we considem, b, ... as parameterg, as independent variables,
andx as dependent ones then the latter will represerdcéual transformation of the
spaceR by way of the formulas:

X =Xa, X =ax X =axh X = a‘lxa,

as long as the parameterandb are general numbers in the system (§ 1). If etwethe

numbersa, b vary then one will obtain a group of transformasichat corresponds to
each of them, and indeed the four groups thus-‘mddawill be related to each other in
precisely the same way as the gro@sG,, G;», & that were investigated above, and

may therefore be denoted similarly. It should oodéyremarked that they are written in
homogeneous variables and that the aforementionegimbers must therefore be now
replaced witm — 1 numbers. At the same time, we would alsotlikerritem— 1 form,
such that from now om— 1 will mean the number of parameters of thedstrgubgroup
that is common t@; andG;, and the number of parameters in the four aforéiomed
groups will be:

n-1, n-1, A—-m-1, n-m

The group$s:, Gy, Gi 2, ® that we have been concerned with here are nowpgrot
a special sort: They are projective groups. Tleugi is, moreover, as we shall see

later on, a so-calletinear, homogeneous groupWe can also likewise give another
essential property of the aforementioned grouppot in general position will not be
fixed by any transformation @; or G, besides the identity transformation. Therefore, a
pointa in general position can always be taken to anaiheb by a transformation d&;
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(Gy, resp.) — namely, by the transformatidn= xa™b (X = ba'x, resp.); as a result, the
group® will consist of the totality o&ll transformations o&; , that leave the point=1
fixed.

Naturally, one can now immediately write down theifees of bilinear forms that
give representations of the grou@s, G,, G; 2, &, according to 8 8. In regard to the
groupsG; andG, , we remark that the families of bilinear forms thatong to them will
be linear families; i.e., ones in which the coefficients of the gendmam can be
expressed as linear functionsmfiomogeneous parameters.

In fact, lete &c =2 s &, X=2 X €,yYy=2V; 8, so one will have:

XY =2 Wks % Yk 6.

If one writesus here instead ods then a form will arise that will have three rows of
variables, namely:
zyiksxi yk us'

ik,s

If one considerys, ..., Yo-1 in this form as parameters then one will obtainrailfaof
bilinear forms that will represent all of the transfatmns of the groufs; when they are
set equal to zero.

One can further remark that the multiplication ofnfaers in our system is precisely
identical to the “multiplication” of the associatedimd#ar forms.

If one sety = ey, &, ..., &1, IN Sequence, and one denotes the bilinear forms that are
associated with the basic numbersy, e, by:

S:zy/ﬁpxﬂuﬂ’ S/(:zy;mvx,uq/’ Sﬂ:zyﬁpvxﬁq/
Ap Hv AU
then, due to the well-known relations:

z yipr/ipv = z y/li,uy,u/(v !
H H

which follow from the associative lave)e) e« =€, (& &), one will also have, in fact, the
identity:

S &= zViKpSp
Y%

for the composition of the bilinear forrssandS .

The so-called complex numbers are therefore nothuigan abbreviated notation for
bilinear forms that represent certain groups ofelm transformationsnothing stops us
then from identifying the complex numbegsin turn, with the associated forr§s since
one can read off a formula in the one theory thadg¢he same as a formula in the other
one theory by a mere change of notation.
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Up to now, we have made no special assumptions ab®ehthice of basic numbers
€, €1, ..., €-1. From now on, we would like to assume that themnes of them — sayy
— that is the number one in the system, such that onehawlS = (U X) = X2 u % .
However, the other ones, ..., e-1 will be chosen such that the linear invariants

n-1
> ¥y, of the associated bilinear forrswill vanish.

A=0
The constant3«s that enter into the multiplication rules will theake on simple
values, in part. Namely, one will obviously have:

Wi = Woi = 1, Yok = Yok =0 i #Kk),

and in addition, one will have the relations:

(1) Wko = Ko
fori,k=1,...,n-1.

Namely, the linear invariant of the bilinear foBnS would be equal to that & S ,
but one finds the valueyo for the former anah o for the latter.

These remarks are useful because they show howamneead off the values of the
constantscis that are characteristic of the composition of theugrG; from the
multiplication table of the system in a very simplay, and indeed also in the general
case where the basic numbess ..., e, are not chosen in precisely the aforementioned
special way.

Next, by substituting the values of the constgntsthat were written down above,
one will get 6 — 1)(h — 2) / 2 relations of the special form:

(2) 8 & — &8 =2 (Mks— Wis) & G,k s=1,..,n=1).

On the other hand, since the for&sre the symbols of the infinitesimal transformasion
of the groupGs, one will have:

() S&-SS=XcCksS G,k s=1,..,n=1).
If one compares the two formulas then it will folldkat:
(4) Ciks = ks — Wis -
If one now introduces new basic numbers in placé@bisic numbers, ..., e, by
the substitution:
& =6y, € =Aen+es

then one will obtain the following relations:

(5) ée_a_ﬁz Zkaés_Z Ciks.As_%’
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in place of the relations (2). Therefooengruencesvith the moduluse, will appear in
place ofequations(2). However, the basic numbees, ..., €_, can be considered as
completely arbitrary numbers in the system that onyeh®a satisfy the one condition
that the number one of the system cannot be derivedtfiem linearly.

One can therefore read off the composition of the associated growp$.,G
immediately from the multiplication table of a system of complex namiidout having
to present the equations of these groups.

By way of example, in the case= 4 of the system XllII, one will have:

&e—-66=0,
e —€e =26,
€ 6—6e = 26.

Thus, the associated groupsg G, will have the composition:
(Y2, Y3) =0, (Y3, Y1) = 2Y5, (Y1, Y2) = 2Y3,

or, after introducings f =3 Y; f:

(X, )('3) = 0, 0(3, X]_) = Xz, (X]_, Xz) = )('3 .

If we setS= &S, + ... + &-1 Sv1 thene® = 0 will become the general transformation
of the groupG; (cf., pp. 33). From now on, with the use of the notatio

(6) Q?Zflel"'---"‘fn—len—l,
we can also write this transformation as:
(7) X =x e .

If we let the constantd, ..., &-1 change in such a way that their ratios remain the
same then we will obtain all of the transformatioos the general one-parameter
subgroup of3; . If k of the powers of the number— viz., {°=e, &, ..., ' —are
linearly-independent then, under the transformationg@fgroup, a poink in general
position will go to the points of a curve that is conéa in a planar domain of dimension
k. Here, we will then have a simple interpretatiorthef numbek that was used in § 2
for the classification of the systems of complex bems: It is the dimension of the
smallest linear manifold that circumscribes a generdl pb& sufficiently-chosen general
one-parameter subgroup of the grd@sip.

Another interpretation of the numbér will come from a consideration of the
transformation< = x*. This will now obviously be &remonatransformation of degree
k-1. [Cf., § 1, formula (10).] It will then be a projaaitransformation, in particular,
as long ak has the value 2.
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If the numbeix is general (cf., 8 1) then the poiwill be a point in general position
relative to the transformations & andG, , and in addition, it will be a point at which
the transformation< = x* will exhibit regular behavior. Such a point will likewis
corresponds to a proper (i.e., non-degenerate) trandformaf the group<s; andG, .

By contrast, if the numbexis special then the associated transformation ofjtbepsGs:
and G, will degenerate; furthermore, the poirtwill be a singular place for the
transformatiork’ =x*, and it will be continued from the transformationstef groupGs,

as well as those of the gro@ in less tham — 1 independent directions. One obtains
the totality of all these points in special positiortsew one sets one of the determinants
(7) that were defined more precisely in 8 1 equal to zdiee theorem that one found
there that the n( — 2)-fold extended point manifold that is invariant undee th
transformations of the group; is identical to the associated manifold that corresptinds
the groupG; is, moreover, only a special case of a theorem ¢haatbe extended to
arbitrary reciprocal groups. One effortlessly finds it totality of all points that are
fixed by the transformations of a simply-transitive graupany of its subgroups will
define an invariant manifold for the transformationshef teciprocal group.

8 10. A property of reciprocal projective groups.

We shall next make an application of what we have lsagimg up to now in which
we shall come to understand a theorem that also pesses®rtain interest outside of the
theory of complex numbers.

Previously, we arrived at the grodpwhen we referred the finite transformatighs
yx of the groupG; to the pointx of the spac® (in a single-valued, invertible way), and
now the permutation of these transformations throughréimsformations o6; itself will
be, in turn, interpreted as a transformatioofWe have also emphasized that the group
®: X =a ‘xathus obtained is obviously similar to the adjoint groti; .

However, we can apply the transformations>efto the points of the spa¢ein yet
another remarkable way. Namely, if we sete and now represent the transformations

of G; in the formy = y& [pp. 32, 33. nos. (6), (7)] then we can also associae t

transformation of5;, thus-written, with the poinf = g + & of R Thus, any poinf of
the spac&® will also correspond to a certain transformatiogfconversely, however, a
given transformation o6G; will now be associated with a finite or infinite numbf
discrete points of the spaBe

The group by which the points of the sp&cwill now be permuted by means of the
transformations o6; will obviously be theadjointgroup ofG; when one regards, ...,
&1 asCartesiancoordinates.

We can write down their finite equations immediatelhey will be represented by
the formulas:

(1) f=g+f=mg+a‘fa=a‘(@+da=a’ fa;

i.e., we again obtain the grodp
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We will now see directly that the grou@s andG, that were considered here actually
give us the most general pair of reciprocal projecgveups. We would like to
temporarily assume that this has been proved, in ordeottbreak up the continuity of
the argument; by the addition of a remark that was roadgp. 34, we can then state the
following theorem:

If two reciprocal groups Gand G are both projective then the subgrotgpof the
group G that is generated by ;Gand G that is determined by holding a point in
general position fixed will be continuous and similar to the adjoint group @ih@ G by
a projective transformation.

We will arrive at a new way of looking at this themeand likewise a remarkable
extension of it, when we interpret the connection betwéhe two maps that were
employed as being itself a transformation of the spacélhe first map of the point
corresponds to a transformation with a determinant @y umthe groupG;:

y =yx=y& = y&'®,

while for the second transformation of the pajnthe complex numbersandé =g +
& will be connected by the equation:

x= €™,
at which point, we can also set the following:
(2) px=e",

since a common proportionality factor in all of the abhoates of the poink will make
no difference, here.

This formula means a transformation of the sgadieat is not, in general, projective,
and which associates any pofivith a single poink, but will associate any pointin
general position with a finite or infinite number of diste pointsf. One likewise sees
that the transformation (Z)ommuteswith all of the transformations of the group

Therefore, if one introduces the new variabfgs..., -1 in place of the variablesxl,
X
=t

in the equations of the group by the transformation (2) then not just the

totality of all transformations o®, but alsoany transformation of this group will go to

itself. However, two groupg: andg,, which are not projective, in general, will emerge
from the group<s; andG; by the transformatior = € that will likewise have a simple
meaning. If one regards, ..., &-1, as above, as Cartesian coordinates then the gioup
will obviously be nothing but the parameter group of the gr@uphat belongs to the
canonical representation:
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@3) L '+”‘laxk(1j .

or the equivalent representation:

(4) X = xe .

With the use of a notation that was already introdymeeviously (8 7, pp. 32), one
will then obtain the following theorem:

If two reciprocal groups Gand G are both projective then one can, by a suitable
choice of projective coordinates, get a transformation that is, in genaoalprojective,
and that will naturally take the group:@o its canonical parameter group gnd G to
its reciprocal group, and will likewise leave any transformation of ghreup & fixed.

With this choice of coordinates, the groépwill become the adjoint of the groups,G
Go.

If one wishes to also obtain the canonical paranggtarp in the canonical form then
one must also naturally introduce new parameterstimaequations of the group, by
means of the cited transformation.

One effortlessly convinces oneself that the transfdoma = e° must reduce to the
identity transformationn the case where it actually is projective. Thaese

T2
F_zo,7.S
e =¢ +E+2! + ...

will then always break off after the second teriirhis will happen, for example, when
the groupG; consists of the group of all transformations cfcgiR.

In order to convert the grou@; into its canonical parameter group in the general
case, as well, one must solxe= €, in which x means the parameter system of a
transformation with determinant one in the gr@p for £ . This can be accomplished
by a process that can be characterized in genéwsla result, we shall not go into the
treatment of that problem, since we would thentdob far from the actual purpose of
our investigation. It might suffice to explain ttieeorem that is presented by way of an
example.

We choose a system with four basic numiegre;, &, e; that obey the multiplication
rules that were given in Table 1X (cf., pp. 24) wk set:

=fe+Ebe+&e
then it will follow that:
2+ 2

e{:e()+§(lel+§(292+{§(3+7
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The transformation, whereby we have introduced new hasganto the equations of
the group$:, Gy, &, will then read, when take to be equal to one from now on:

(1) X1 = &y, Xo = &, )(3:53+51+—2C52.

We write the equations of the groupsandG, most conveniently in inhomogeneous
form, not just in terms of the variables alone, &isb in terms of the parameters:

@) { X=x+a,  %=x%*a,
X =X%+a+(a+a)x-(3- ca %
X = X, %= X%,
3
© { X =X +2(8,%~ aX).

If one introduces new variables into the latteruagpns by means of the
transformation (1) then they will remain completelgchanged, as the theorem would
demand. By contrast, we will obtain a new systednequations from the system of
equations (2). If we simultaneously introduce nparameters by means of the

substitution:
2 2

a +¢cg
2

(1b) a = ay, a = ay, a=ast

then the equations that emerge from (1) will assthmesimple form:

§=¢tay,
(4) § =&, +a,
5é:§(3+a3+a2§(1_ afzz

This is then the canonical parameter group ofgfwip (2), and indeed, with the
choice of parameters that we made, the canonicahper group in its canonical form.
In fact, one can immediately convince oneself bdgudation that the group (4) is its own
canonical parameter group. Now, we can also asstréorem that was proved in 8 7
with the example of the group (4): We likewise fiticht the group (4) is similar to its
reciprocal by means of the transformation:

é =-4&, & =&, & =6

The arbitrary constant that enters into equations (2) drops out of equati(4)
completely. Therefore, we can now also immediatspvert the group (2) with the
constantc into a group whose transformations, in turn, hténesform (2), but contain a
new constantl, instead of the constaat
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That will give the quadratic transformation:

2

\ZX

X1 = Y1, X2 = Yo, X3=Yy3+

as long as we also introduce new parameters by mearsaksponding transformation.
Moreover, we could also have foreseen his latterltredfi the quantitiescis that
determine the composition of the group (2) are free optrametec then all of these
groups will be similar to each other, and the parameteannot also enter into the
equations of the canonical parameter groups.
Equations (4) are nothing but the equations of the g@upat belongs to the system
of numbers:

e =1, ef:e;:ej: 0,
ee=--ee6=-6, =g -aa=-6e=0.

This number system is identical with the system thatgave on pp. 35 and denoted by
XIV. One will infer the arguments of the next pargdrs, in conjunction with the ones
in 8 5, with no difficulty from the theorem that tlygoup (4) and the group of all
translations of space are the only three-parameteeqtieg groups that coincide with
their own canonical parameter groups.

8 11. Projective groupswhose transformations commute with given
infinitesimal projective transformations.

We would now like to show that any two reciprocal proyecgroups can be related
to a system of complex numbers in a way that is knoaviugby distinguishing an
arbitrary point in general position.

We will then regard that theorem as a special caiedbllowing general theorem:

The totality of all infinitesimal projective transformations thamnunute with the
infinitesimal transformations of a given projective group will genergteogective group
with the special property that its finite transformations can besrdehed by linear
equations in the transformation coefficients.

In fact, letS” be the symbol of the given infinitesimal transformatand letS be the
symbol of the desired one, so the condition for hramutativity — viz., § S”) = 0 — will
be linear in the coefficients & LetS, ..., S ber independent normal forms that satisfy
this condition, so all of the forms:

WS+ S+...+A4S

will commute with not just the forns’, but also all powers and products of these forms;
therefore, certainly all of the transformations ia tamily:
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S+ 4,8 +...+A4S=0

will commute with all transformations of the group tiegenerated by the infinitesimal
transformationsS’. However, the cited linear family will include the imfesimal
transformationss, ..., S, and will be, as a result, the group that it generates.

One can then immediately derive the finite transfaiong from the infinitesimal
transformations of such a group without integration.., (&5, at the end.)

Now, if the reciprocal groufs, to a simply-transitive projective group is likewise
projective in am-dimensional domain then it will follow immediatelyaththe general
finite transformation of, (and likewiseG,) can be written in the form:

Ao SO+A18_|_+ oo ¥ 201 S1 = 0.

We can now give a system of complex numbers thaitahaelationship to the group
G, that is very simple, if also not exactly the desiome, namely, the bilinear forrfe’,

Sy, ..., S . A certain grougs: — namely, thgparameter groumf G, — will belong to it,

which we will refer to as basic numbexs ..., e,-1 . In order to substantiate the theorem
to be proved, we will then still have to show that tineupG; is not only similar to the
given groupG, — which is self-explanatory — but that it is similar un@eprojective

transformation, in particular. However, that wouldldew immediately if we were to
introduce the parameters of the transformatiorGpfthat takes an arbitrary, but fixed,
point E in general position to any point as the coordinateheflatter point in the-
dimensional domain. The new coordinates will then d&nally connected with the old
ones bylinear equations.

The stated theorem is proved with that. Howevercavestill go further.

If one introduces new variables into the equations ofgtbeip G, by mean of any

linear transformation with a unity determinant then tétionship between the group
and the (naturally simultaneously transformed) bilineamsS’, S, ..., S»-1 will remain
completely undisturbed. It will follow from this thatl projective groups that are on an
equal footing withG, inside the general projective group can be associatecngtfand

the same number syste® ..., e,-1. However, the grouf, that is reciprocal t@, and

the groups that are on an equal footing with it will adsorespond to a number system
that is not essentially different froeg, ..., e,-1, hamely, the same system that one gets
from the given one by switching all of the constaatswith the corresponding constants
Kis, Which we have referred to as the “reciprocal” systenthe systeng, ..., €1 .
Since, conversely, switchings and )is will only change their roles in the grou@s and

G, that belong to the system, and since furthermore ntreduction of new basic
numbers in place o, ..., &1 will only have the introduction of new variables and
parameters (by linear transformations) into the grdapand G, as a consequence, we
can now state the theorem:

Any system of complex numbers with n principal units is, in a nestay, associated
with two reciprocal projective groups of an n-dimensional domain (i.e.;@mensional



E. Study — On systems of complex numbers and transforngromps. 44

space), and conversely. Indeed, any two number systems of the ygamaevilt
correspond to a pair of groups that are on an equal footing inside of the general
projective group, but any two number systems of different typealsallcorrespond to
different types of pairs of reciprocal projective grops

If we assume that the two reciprocal groups coincida that will yield:

Any system of complex numbers with n principal units for which themgtative law
of multiplications is true will be associated with a transitive grefigommuting linear
transformations of an n-dimensional domain, and conversely. Indeed, any two of numbe
systems will correspond to a certain type of group of the stated kind.

This theorem has not only a theoretical interest,itigtalso of practical utility. It
shows that one can find the different types of recakprojective groups in a simple and
immediate way, as would be possible by applying the genegttiods of the theory of
transformation groups. The fact that the reciprodaticeship that was established can
also be extended to a real relationship, so two difteieems of number systems of the
same type will also correspond to two pairs of groupb®tame type, which will still be
different inside the group of akkal linear transformations, and conversely, hardly needs
to be emphasized, in particular.

§ 12. Examples.

A simple example of the connection between the systihtomplex numbers and
projective groups is provided by the system whose multijmicaules are:

e =qa, ee=0 (zki, k=1, ...,n).
The associated grop (= Gy) is the known group:
X =& X% (i=1,...,n).
As a second example, let us mention the system:
=1, ee=0 (,k=1,...,n-1).

The groupG; that belongs to it is the group of all translation®.(i parallel
displacements) of then(— 1)-fold extended manifold, or a group that is on an equal
footing with it inside the general projective group of thagnain:

Xy = a0 Xo ,

() Poincaré lpc. cit) was certainly the first to remark that the problentamplex numbers can be
converted into the following one: “Find all of the contdous groups of linear substitutionsnirvariables
whose coefficients are linear functionsnarbitrary parameters.”
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X =apX ta X i=1,..n=1).

We considered other examples in 8§ 10. However, it iagpsr not superfluous to
clarify the connection between complex numbers, bilifeems, and groups of linear
transformations that was treated in 8 11 with a thoroughdatailed example, as well.

The totality of all perspective transformations oé hlane that possess a common
perspectivity axis and have their centers on a second lixe will obviously define a
two-parameter, transitive group. One convinces onesedf fpgrfectly simple geometric
argument that its reciprocal group will again be composetinefr transformations;
namely, of all perspective transformations whose petsfity axis is the second line and
whose center lies on the first line. We will theawvé two groupss,;, G, here that will
have the desired property.

If we choose the lin& = 0 to be the perspectivity axis and the kge= 0 to be the
locus of perspectivity centers of the grodpy then we can represent its finite

transformations by the following equations:

X =AoX1+ A1 %,
1) X, = (Ao + A1) X2,
X'3 :AOXZ.

The pointx; : X2 : X3 = A1 : A2 : 0 will then be the center of this transformatidhwe
let (1), (1), (v) denote the parameter systems of the three transions& T, STof G|

then we will obtain the equations of the associgeadmeter groupn the form:

Vo = Uo Ao,
(2) V1= o AL+ fh AL+ 4 A,
Vo = g A2+ [ Ao + Lo A3 .

Now, in order to determine the system of complex nusmti&at belongs to the group
G,, we next represent the transformations (1) as bilifeans; i.e., we multiply the

expressions forx , X,, X, by ui, Uy, U3, resp., and set the sums of the products equal to
zero. We will then obtain the general transformatibs, in the form:

S=AS+2hS 1S =0,
in which:
) { $=F=xut Xyt xy
S=x%u S ¥y

The bilinear formsS, S, S will define a system of complex numbers whose
multiplication rules will be represented by the forazul



E. Study — On systems of complex numbers and transforngromps. 46

2

4) & =1, e e=0, ee=e, e =0, e =6,

with the introduction of the new notatioas e, & .
If one sets:
A=lheathet+tlhe,

and one defineg and v analogously then one can, with the help of this nurapstem,
summarize formula (2) in a single one:

©)) Au=v.

When one regardd as an independent variable, as a dependent one, apdas a
parameter, the formulas (5) will then represent the gButhat belongs to the system

(4).

In order to converG, into G;, we choose a poitt that either lies on the line = 0

or the linex; = 0; say, 1 : 1 : 1. If we then Ilg§ : y1 : y» denote the parameters of the
transformatiorS = 0 that take the poirl to the pointx; : o : X3 thenyp, y1, Y2 andxy, X,

x3 Will be connected by a soluble linear substitution ttzat be written as the following
transformation with determinant one:

(6) X1=Yo+VY1, X=Yo+Y2, X3=Yo.
Simultaneously, one will have:
(7) Ui =Vvi, U2 =Vo, Us =Vo—Vi—V2,

whenvy , v1 , V2 mean the line coordinates that belong to the sygtem , y-.
With the substitution (6), the equations of the groupnfll)go to these:

Yo =AoYo,
(8) Y, =Adoyi+ A1yot+ A1 Yo,
Y, = Ao Y2+ A2 Yo+ Ao y1,

and a comparison of these with the formula (2) wibwlthat we do, in fact, have the
groupG; before us.
Furthermore, by means of the substitutions (6) andh&)formsS, S, S will go to:

9) S=YoVo+tYiVi+y2\o, S = (Yo +V2) i, S =Wty Vo.

The relationship between these expressions and the &sr(®) is obviously the same as
the relationship between the expressions (3) and theufasnfl); i.e..S, S, S are the
coefficients ofdo, A1, A2 in the expressiow, y;+ v, ¥+ \, ¥, . However, the formulas
(8) are now immediately the equations of the grGuphat belongs to the number system
that is determined by the bilinear forms (9).
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The number system to which we have arrived here belinthe fourth type that was
presented in § 4 for the case of the assumption of thasie numbers. It goes into the
canonical form IV under the substitutions:

©=8,  @=8  e=-_i.

Because of this, new variables, and likewise new pasmewill be introduced into
equations (8) for the grouwp = yA, where the new variables will be introduced by the
substitutions:

Xo=Yo+ 1 V2, X1= 3 VYo, Xo = Y1,
and the new parameters, by Samesubstitutions:

ao=Ao+ 542, at=11, a=A.
In this way, equations (8) will go to these:

X =%t aX
(10) X =X+ ax,
X =(8—a) %+ a( %+ ¥,

which one can write more simply #s= xa with the use of the new basic numbers.
The perspectivity center of the transformation (10) molw have the coordinates :
a; : a, while the axis will have the equatign+ x; = 0.
The general transformation of the reciprocal gr@pvill have the equatior’ = ax,
or when written out:

X =%t aX
(11) X =X+ ax,
X =(8+a) %+ a %= %

The associated perspectivity center will have the coaebrea; : a; : ap, while the axis
will have the equatio®, — x; = 0. The transformatiox = x™, or when written out, after
dropping the common denominatoxs £ x1)( X + X1) on the right-hand side:

(12) Xy = Xo, X ==X X, == X,

will likewise be a linear transformation in the presemise. It is the involutory
perspective transformation whose center is the ggiht: 0 : 0), and whose axig = 0
will be harmonically separated from the poihby the perspectivity axeg + x; = 0 and
Xo — X1 = O that belong to the grou@s andG, . The group® will also consist of nothing

but perspective transformations:
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X =(3,+a) X,
(13) X =(3+a)X,
X, =2a,%~ (3~ a) %,

whose common center will be the intersection oflithesxg + X, = 0 andxp — X, = 0, and
whose axisy X; —az X3 = 0 will contains all of the point&. In our special cas& will

then be similar td5; andG, by means of a dualistic transformation. Finally, gheup
G12 will be the group of linear transformation that leather of the two linegy + x; =
0, X0 — X1 = 0 fixed.

Here, we have treated the simplest example ofrappagciprocal groups that leads to
a system of complex numbers whose multiplicatiomad commutative. We have
therefore likewise examined the only pair of non-coingideciprocal projective groups
that exists in the plane. There is a larger manifolduch groups in multiply-extended
domains. Among them, one will find a pair of groups that banregarded as the
immediate generalization of the one that was trehted. Thus, e.g., the totality of all
perspective transformations in a triply-extended spaaehdive a perspectivity plang
in common, and whose centers lie on a second fixede @amwill define a simply-
transitive groupG; . The reciprocal groufs, will be defined by all perspective
transformations whose plane is the planeand whose centers lie @a. Both groups
will collectively generate a six-parameter graBp, , namely, the invariant subgroup of
the group of all linear transformations that leayeandz, fixed, and for which all points
of the line of intersection oX; and >, will be fixed individually. The groum will

consist of all multiple deschart perspective transformations whose one perspectivity
axis is the line of intersection &f andZ,, while the other one goes through a fixed point
that lies in eithek; or 2,. The associated number system will be system X9, (&p.
25).

Another well-known example of a pair of groups of st@ted kind is defined by the
two invariant subgroups of the group of the general seconeelegrface. We will have
to speak about this pair of groups later on.

8 13. Further transformation groupsthat are coupled with
a system of complex numbers.

Naturally, the relationships between systems of complenbers and the theory of
transformation groups are in no way exhausted by the thedrehwe presented up to
now.

Here, the theory of subgroups of a given group will ikemry that will be passed
over, in order to treat the sub-systems that areaidiecl in a given system of complex
numbers that includes the number one. We have alreadysded one theorem that
relates to this (in 8 1). Another one states thattobality of all linearly-independent
numbersc that satisfy the equatiotx = xc identically — and thus, in the sense of the
foregoing developments, will represent the parametetiseofn — 1)-parameter subgroup
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that is common tds; and G, — will already define a closed (commutative) system of
complex numbers by itself.

We have already further suggested that any system oplegrnmumbers will be
linked to four groups in a second way, and that those groupeelaie to each other in

the same way as the groupsg G, Gi», ® that were considered to begin with. One will
obtain them when one regards the coefficiggts.., x,-1, etc., in the equations:

!

X

!

=xa, X = ax X =axh X =a xa,

not as ratios, as we did up to now, but as their alsehlties, and thus interprets them as
Cartesiancoordinates.

The cited equations will then be the equations of fouugs®,, G,, G,,,  of an
n-dimensional spac®; the associated numbers of parameters witl,lvg 2n —m, n —m,
resp., wheran andm have the meanings that were explained on pp. 31. Howtbese
groupsG,, G,, G,,, & will have muchmore specializecbroperties than the grou,

Gy, G12, & that we considered up to now, and therefore it seemmetthat they will also

possess a more minor interest. One next sees irataydihat the numben must have a
value of at least one, and that the gro@sand & can therefore always be only

merohedrally isomorphic.  Furthermore, they will be so-called lind@mogeneous
groups — i.e., projective groups whose transformationsdirall fix the infinitely-distant
manifold R,-1, and secondly, a finite point, namely, the point Q,.0,0.

Since the points of the infinitely-distant manifoldivibe permuted with each other

under the transformations &, G,, G, ,, ®, and obviously under the transformations of
the groupss,, G, Gi 2, & that we treated in 88 9-11, one will immediately recogtiiee

reciprocal behavior of these two sequences of groupswilirgetermines the continuous
groupsG;, G;, G;,, &', which are composed in the same wayGasGz, G2, ®, and

belong to the so-called linear, homogeneous group, and tram#fie infinitely-distant
manifold in the prescribed manner. The grabpwill then be immediately identical to

the group®; however, the group&;, G;, Gy will arise from the groupss;, G, G,

when one adds the transformations of the one-paramst#nguished subgroup of the
general linear, homogeneous group. The theory of the g%, G;,, ® can then be

derived from that of the grous;, G;, G, ,, &' by entirely simple operations.

However, in addition, the grous,, G,, G,,, & that belong to the given system of

n basic numbers are already known completely when onédtarmined all systems of
+ 1 basic numbers. From our general theorem, a systégnm + 1 basic numbers must

then be given, to which, the grou@, G,, G,,, & must have the same relationship as
the given system as the groupsg G, Gi, ®. One can also immediately write down

any system oh + 1 basic numbers. One has to add only one further basibers to

the basic numbers, ..., e.-; and establish that one should ha¥e= 7,6 7= = 0.
For example, the number system ¥iI= 4, arises from the number system V7= 3 in
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such a way; i.e., the groufs, G,, G; 2, & that belong to the first system are inside of the
general projective group of the space on the same foasinge groups,, G,, G,,, &
that belong to the second system.

We have seen that any transformation of the g@upan be represented in the form
X = x€& orin the inessentially-altered forxh= x &, where and&é=eg + & have the
meaning that was explained on pp. 37 and 38. A correspondingseepation of the
group G; in the formx = x & will now likewise follow from this, wherey is now a
general number of the system. As a result € will be the expression for the
transformation that takes the groGp to its canonical form. If the transformations@f
all commute with each other — i.e., the multiplicatio the present number system obeys
the commutative law — then the canonical parameter gralipb@come a group of
translations. In fact, in this case, the equations &, X =x &, x" =x €&, n+n'=n"
will immediately imply the further equatioxx = x" . Since this remark is useful for
several applications, it might be again expressed ah¢loeem:

Any system of complex numbers whose multiplication follows the cativadaw
will be associated with a table of logarithms, with whose help one capletety convert
the multiplication of two numbers of the system into an addition, as \Wwaplaen in the
system of common complex numbers through the ordinary logarithm

For example, the logarithms for all number systems wuatlr multiplicatively-
commutating basic numbers will be given:

I. logx=Inxo O+ Inxs OB +Inx O + INXs [ks,

Iogx:Inxoljao+ﬁ by + InX O + InX3 [ks,
X

[l Iogx:Inxoljao+ﬁ Ebl+lnx2|2b2+% Cks,
X

V. Iogx:Inxolja)+ﬁ Eb1+2X();<2—2_)<12|:b2+|n)('g|:b3,
X X

V. logx=

— 2 —
Inxo Ty + 25 [y + 205 X o, + 0% %%+ X o,
% 2% 3%

() Schur has also made a related remark. Math. Ann. XXXII
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VIII. log x:InonZl5b+ﬁ Ebl+% O + Inxs [ks,
X

2_
X. Iogx:InonZlao+ﬁI]91+ﬁlilez—x1 2X02%+X§Ebs,
X X 2%

XI. Iogx:InonZlao+ﬁ EE1+MD92+§D93,
X 2% X

XV. Iogx:Inxoljao+ﬁ [bl+ﬁ Eb2+§ Cks.
X Xo X

In all of these formulas, the Roman numeral mehaeswtimber of the number system
in question (cf. 8 5); log is the quantity that was denoted ppbove.

From our discussion, if the theory of the gro@s G,, G,,, ® differs only slightly

from the theory of the groupS:;, G, Gi2 & then the interpretation of, .., X-1 as
Cartesian coordinates will also afford us a seriesseémtially new groups, by whose

study, one can evaluate the algorithms of complex nuniber®re or less advantage. If
we exclude the trivial case of the group of translattbes, e.g., the equations:

X =xa+ b, X =ax+b,
X =atlxa+h, X =axb+c

will determine new groups for which one can immediatéhg @ series of properties.
By way of example, one finds that the four given groupkide the group’ =x + a
of all translations as anvariant subgroup, and that, furthermore, the groxipsxa+ b,
X =ax+ b will be invariantly included in the group =axb+ c, and so forth.
In particular, if one takes a, b to be ordinary complex numbers then:

X =ax+b

will be the four-parametegroup of similarity transformations in the planand it is
precisely that remark upon whi&ellavitusbased his so-callezhlculus of equipollence.

Furthermore, the known representation of the six-parargroup of reciprocal radii
in the plangMobius’scircle affinities) in the form:

,_ax+b
X ==,
cx+d
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wherea, b, ¢, d, X, X mean ordinary complex numbers, belongs to them. Iftakesa,
..., X in the same formula to be numbers of the secondityfiee case of = 2 then one
will obtain a remarkable six-parameter group that definisiting case of the group of
reciprocal radii, and has the same composition agrthg of motions in space.

Systems of complex numbers also give rise to theideration ofinfinite groups.
For example, if we letx denote a real or ordinary complex number, or even ampau
of a given system that commutes with all remaining Imens multiplicatively, and lex
denote any number of the system then any convergees sdrihe form:

X =Y ¢ X<

will represent a transformation of a certain infingeoup whose transformations all

commute with the transformations of the groép(). If we again take, x, X to be
ordinary complex numbers then we will obtain the repn¢ation of thegroup of
conformal transformationg terms of functions of one complex variable thais given
by Gauss.

8 14. The advantages of systems of complex numbers.

In many circles- namely, in Germany the opinion is propagated that systems of
complex numbers, or similar algorithms, have absoluteladvantages, except for just
the ordinary complex numbers, and that one bases tm@opmn the fact that nothing
can be derived from them that could not be derived gaswell” without them.

It must be due to the fact that a tremendous misuakeiady committed from the
outset with the quaternions, which one chiefly consideHowever, one should not
suggest that a theory, to whose development such aagttamilton had devoted many
years of his life, is something totally worthless. TEhare also some beautiful new
theorems today that are due to the quaternions, precisegcall only the well-known
formulas and constructions that are of use for thepositions of the rotations of a ball.
If one restricts the application of the quaternion algdb its most naturally-suggested
domain and the terminology to only that which is mostessary then it will represent a
preferable method that is indeed less necessarily undleittean any other method, but,
at the moment, can, in no way, also be just asdegle without.

Any disinclination seems to be based in the completelgneous belief that the
guaternions treat only a frivolous and arbitrary geneaatin of the laws of elementary
calculation, to which one admittedly finds it easy rexoncile oneself. In reality,
calculating with quaternions is a method of analytic getoynthat is devised for an
entirely well-defined purposeln its manner of application, it is completely comparable
to that of the functions of one complex variable to the study of conformal
transformations, in which the complex numbers also find the utilityhex#use of their
property of being an extension of the real numbers, but as an analyticigeome
algorithm. Whoever fundamentally condemns the use of quaternionssinalar
algorithms, will then, when he would like to proceed lolijcalso have to cast aside all

() As an adjoint group, the grou® will always be intransitive.
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of the beautiful investigations of conformal maps, minisuafaces, et al., in which those
studies have experienced a veritable enrichment sincedteof Gauss and Riemann.
However, many do not seem to understand this line of meago It is precisely the

mathematicians, who have crusaded most zealously againsrrqoas and similar

algebras, that make the most unhesitating use of thieralgéordinary complex numbers
in geometric investigations. They wrongly call upon aéla¢hority of Gauss in order to
support the views that are debated here: We possess amtauftroof by Gauss that
leaves no doubt about his having posed this problgmMWhy should it also be totally
unacceptable to use something that makes things simpler wh&rconvenient and

appropriate? ()

I am of the opinion that one should not at all gelheeand a priori pass judgment on
a method, but only in reference to a well-defined ciodlerisdom, and after paying close
attention to the special problems that exist within it.

However, that can give only a measuring stick for coniparassessments of
different methods. Among some of the best of themrethwill be ones that produce
these results with the least total expenditure of addabor. | say “total expenditure” in
order to imply that the time and effort that goes itite learning of the method itself
must be accounted for. In the cases that we have déhl here, the effort was,
moreover, very minor.

How the advantages that systems of complex numberdraamn will emerge from
what was professed up to now — in case new realms ofahyelication are not opened up
— resides essentially in the fact that they allowasergroups of transformations to be
first representec&aind secondeterminedn a very simple way.

In the first case, the existing advantages becomelager, the more immediate or —
when the term is admissible — the moegural the connection between the group under
scrutiny and the number system being used becomes. kieame will also find that
the field that the application of these algorithms opgns very restricted.

There is then only a relatively small manifold of grodpat are connected with
systems of complex numbers, and among them, there areamparatively few of them
for which the connection in so intrinsic that its reprgation in terms of complex
numbers defines a truly recommended method. Howeverharmhite number system in
guestion can arrive at a more significant meaning in susdsoaill, in turn, depend upon
the place that the associated groups assume in theemgEaitext of mathematical
studies.

The use of a system of complex numbers will be eslhecilase at hand in any case
where one must examine four projective groups that Haesame relationships as the
groupsG, Gy, G1 o & that are known to us; a simpler representation ofegsential

properties of these groups than by the familiar formulas:

!

X

!

=xa, X = ax X =axh X =a xa, X =x1

etc., will then be hard to imagine.

() Correspondence witBchumacherBd. 4, no. 833, pp. 147.
(") 1 am pleased to see tHaedekinchas also expressed similar views in regard to quaternion
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If one writesa, b, ¢ for x, a, X' in the first of these formulas and one expands the
formula ab = ¢ that then arises with the help of the multiplicatiable of the given
system then the coefficients of the basic numbersthen left and right must be
individually equal to each other. One will thus obtaigyatem of formulas that one
refers to as the “multiplication theorem” of thenmher system in the case of quaternions.
It is obvious that these formulas, in which one no lorsgers any complex numbers, will
substitute completely for the multiplication table lo¢ tsystem. One will then be able to
place any formula in the theory of complex numbeosigdide another one in which, in
place of the multiplication table, the entirely “femultiplication theorem of the number
system in question will appear. One will have to perfeunh a conversion in many
cases where one is dealing with applications of theryhed complex numbers.
However, one would, as should be once more emphasizezlyel@meself if one would
like to believe that anything would be gained by a translaifall of the individual steps
into the calculation into the language of the so-datiedinary algebra. One would have,
at most, exchanged simple and lucid formulas for involsed unclear ones. Precisely
the opposite viewpoint seems to me to be more fruitalwhich the multiplication table
of a system defined a preferable and convenient substitutethi® associated
multiplication theorem.

In the next two paragraphs, examples shall be pointedfdutw one can appeal to
the knowledge of all different systems mfbasic numbers in order to find parameter
representations of certain transformation groups for hviilee parameters of two
transformations that are performed in succession caofibined with the parameters of
the newly-arising transformation of the group.

8§ 15. On theparametric representation of certain transformation groups.

If a given continuous transformation group has the semmeposition as a pair of
reciprocal projective groups;, G, then one will be able to choose the parameters of the
given group in such a way that one of these gr@aip<s, will be the parameter group.
With that, one will have not just an especially siempbmposition of the parameters —
viz., the homogeneous parameters of the composed traasfonnST of two
transformations$s andT of the group will be bilinear functions of the parametefS and
T — but, as a result of our theorem about the g®ugef., pp. 40), one will also, at the

same time, have a likewise simple representatiomefadjoint group that is connected
with it. In order to survey the totality of all suchrgmeter representations, the systems
of complex numbers will now serve as the simplesaimagwhereby a special advantage
will reside in the fact that one can immediatelydredf the composition of the grou,
G, that are associated with a given system from theipthadtion table of the system,
without having to exhibit the equations of this group (cf., pp. 37).

As is well-known, there is only one kind of compogitmf two-parameter groups that
has non-commuting transformations. On the other haadknow that in the plane only
one pair of reciprocal groups exists with non-commutingalineansformations, and that



E. Study — On systems of complex numbers and transforngromps. 55

these two groups will be on the same footing insideyémeral projective group)( This
yields the following remark, which is useful for applicaso

If one considers parameter systems that emerge from each othemdnr i
transformations to be not-essentially different then one will haveh#mam that one
can always make the finite transformations of a two-parameter group e¢amomuting
transformations depend upon three homogeneous parameters, and in only one way, such
that the parameters of the composed transformation ST of two transfornfa@masT of
the group will be bilinear functions of the parameters of S and T.

Similar theorems exist for certain compositions @ugs with more parameters.

Here, we give an enumeration of all of the compmsit of three-parametegroups
that can exist for reciprocal projective groups. Thempositions that are real-distinct
will be distinguished by appending the symMag)lsc), ... Roman numerals will give the
corresponding number system with four basic numbers ($§¥tems whose associated
groupsG; andG; are not projective to each other, and which will these rise to two
different parametric representations, will be listeate.

(1) X2, X3) =Xy, (Xa, X1) =X, (X1, X2) =X,
Xll,

(1b) X2, X3) = — X4, (X3, X1) ==Xy, (X1, X2) = X,
Xlib,

(2 X2, X3) = 0, X3, X1) =Xz, (X1, X2) =X,
XII,

(2b) K2, X3) = 0, K3, X1) ==X, (X1, X2) = X3,
Xlb,

(3 X2, X3) = 0, X3, X1) = 0, X1, X2) = X3,

IX, XIV,

4) X1, X2) =Xz, (X1, X3) = X, (X2, X3) = 0,
XV,

) X1, X2) =Xz, (X1, X3) = 0, X2, X3) = 0,

VI, VII, VI,
(6) X2, X3) = 0, X3, X1) = 0, X1, X2) = 0,

L1 1 1V, V, VL, X X, XV

() As my friend Engel has informed me, Lie has proved a stxaemore general theorem, as a
consequence of which, this pair of groups can be takeith&r @nother projective group or itself under a
non-projective transformation.
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From the theorems that are included in this table, sbhmgg that are especial useful
for the applications can be once more put into words.

We might first remark that the group of perspective lamty transformations of the
plane has the composition (4). We can then say:

The parameters of the three-parameter group of all perspective astyil
transformations of the plane, or a similarly-composed group, can be choseseirialty
only one way such that the associated parameter group and its reciprot¢abewil
projective groups.

The geometric interpretation of these parameter greugpisen on page 48.

Moreover, the composition (1) is that of the groumfiimaginary) conic section in
the plane or the group of rotations of a sphere. Wiitisight of the known properties of
the Euler parameters (which we will also likewise derive), ildals from this that:

The Euler parameters of the rotations of a rigid body around a fixed point are
determined completely, up to linear transformations, through the requiretm&inthe
associated parameter groups and their reciprocals should be projective drpups

However, an equivalent theorem is also true for theomant degenerate case of the
group of rotations of a sphere, namely, the group ofanetpf the (Euclidian) plane,
which goes with the composition (2):

In the group of all motions of the plane (and the groups that are composed the same
as it), one may introduce parameters, and indeed in essentially only gneweh that
the associated parameter group and its reciprocal will be projective groups.

The group of motions in the plane, when regarded as aaybgf the general
projective group, will possess another degeneracy of tmpasition (3). In this case,
the system of complex numbers will provide us with inélyy many parametric
representations, which define a connected manifold, as iy shows. However,
among these parametric representations, one will ats@ find another uniquely
distinguished one, namely, the one that belongs tauh#er system XIV. Among all of
the systems that come under consideration, systemlIMpe, in fact, the only one that
can be regarded as a limiting case of system Xlll, andduition, the associated
parametric representation will have the peculiarityt tihais a canonical parametric
representation (cf., pp. 41).

One can easily give an entire class of groups thanbelb parameter systems of the
kind that are considered here.

Any group of linear transformations whose finite transformation can be chawste
by linear equations in the transformation coefficients is composedithe as a simply-
transitive projective group whose reciprocal group is likewise ptajec

() This theorem can also be inferred from a theoremt was presented by Lie, which said that the

group of a general second-degree surface cannot be takeprojeetive group by any non-projective
transformation.
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In fact, under the given assumption, raparameter group can be represented by a
linear family ofr + 1 independent bilinear forms), One only needs to introduce them
as the basic numbers of a number system in order &inabie associated grou@@s and
G; of the group in question directly.

The numbek that belongs to the number system is linked to an uppgrin such
cases. It can attain the valuwe at most when the given group belongs to nan
dimensional region.

One group of the stated kind is, e.g., tpeneral projective groupof the n-
dimensional region itself. The associated numbetesyhas? basic numbers, namely,
the special bilinear formsy, = x uc. The associated multiplication rules are these:

€ 6=6k, 66a=0 | %K.

The associated numbkrhas the value. Therefore, the transformation = x™* is not
projective, except in the simplest casenct 2 (cf., pp. 9). Nonetheless, the gro@s
andG; that are associated with the system are similar fmpgective transformation. In
fact, the system goes to its reciprocal system:

Mk i = Mk » a7 =0 (#K
under the substitutions:

Mk = & (i,k=1,...,n).

We must refer to this number system, in the senseiroflefinition, which admits the
number of principal units and then also the nuntbef a larger space, asspecialone,
although it naturally includes all remaining systems ofglesnnumbers.

If one sety1 = 3 then one will obtain theonions as they are called by the English
and American mathematicians.

If one setsn = 2 then one will again arrive at tlggaternions and indeed in their
secondreal form ().

In order to obtain the canonical form Xllb), one ade®nly to introduce new basic
numbersey, ..., €3 by the substitutions:

& =€e1ten, €L=—enp—6en,
& =€»2— €11, &= €e1—€n2.

The subgroups of the general projective group of the llrfalbinto the class that is
considered here: As we know, the various types of oreapeter groups belong to
different systems with two basic numbers, and the twarpater group belongs to the
number system IVn = 3. Above all, the largest projective group ofradimensional
region that leaves arbitrary given points amd-dimensional regions individually fixed
will always belong to the stated class. Important grafpkis kind are defined by the
group of all similarity transformations of the planedaits three-parameter invariant
subgroup that consists of the perspective similarity foamstions. This latter group

(") Cf., Leipz. Ber. 1889, pp. 220, rem.
() One can confer the splendid treatis&tfphanos‘Mémoire sur la répresentation des homographies
binaires par des points de I'espace, etc.” Math. Ann., Bdl,X¥. 299,et seq.



E. Study — On systems of complex numbers and transforngromps. 58

belongs to a system of four basic numbers that we algady spoken of many times,
namely, system XV.

Finally, the aforementioned degeneracy of the group ofomgiin the plane might be
emphasized as likewise belonging to it. It can be defibgdsaying that its
transformations leave fixed the figure of a line elemandl indeed the points, as well as
the line, when doubly-counted. The corresponding numbeemyist system IXr( = 4),
with the parameter value= - 1.

If a groupG is representable by a linear family of bilinear formsntbhe same thing
will be true for its dualistic grouf®”. The systems of complex numbers that correspond
to the groupsG and G’ themselves belong to the same type, but are stilprecal.
Performing a dualistic transformation on the grd@pwill then have the effect of
switching the two projective parameter gro@sandG, that are coupled with them. By
way of example, the system VIh E 4) belongs to the projective group of the plane,
whose transformations fix two straight lines, and oa ohthem, also one of the points
that are close to the intersection point; the sayséem will belong to the dualistically
contrapositive group, but in the reciprocal form.

By considering the infinitesimal transformations ofpeojective group, one can
already decide whether their finite transformations lsa represented by a linear family
of bilinear forms.

LetS, ..., § be the independent infinitesimal transformations pf@ective group,
which are written as normal bilinear forms, and furthemen letS° be the bilinear form
that represents that identity transformation. Theratterization in question then consists
of the existence af relations of the form:

S S=M0S’+ D VS,
s=1

If this condition is fulfilled then:
S+ A4S +...+A4S=0

will be the expression for the most general finitgngformation of the group, but the
bilinear formsS?, S, ..., S will immediately define the associated number system

8 16. Therotations of the sphere and the motionsin the plane.

Of the parameter representations that we discuss#uk iprevious paragraphs, the
most important ones are the rotations of rigid b@dgund a fixed point and the
parametric representation of the motions in the plaimbe former is well-known; the
parametric representation was already studied BEoyer. The formulas for the
composition of the parameters were giverOayley().

() Namely, in the convenient form (2) of this artit@ambridge Math. Journ., v. Ill, 1843). Cf., also
Rodrigues “Des lois géométric qui régissent the déplacements d'stereg solide dans l'espace, ..."
Liouville Journ. de Math5 (1840), pp. 380, etc.
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The analogous parametric representation for the n®tiothe plane seems to have
escaped the attention of mathematicians up to nowinaleed that is undoubtedly due to
the fact that one is accustomed to giving more weightatcsimplest-possible
representation of the motions than to a simple compaogitf the parameters of several
motions that are performed in succession. Meanwliilene considers a measure of
simplicity to be, not the brevity of the formulas, ltheir algebraic properties, then the
ordinary analytical representation of the motionthe plane will be, in any evenipt be
the simplest one, since it requires transcendentadtifuns, although an algebraicin
fact, rational- representation exists.

In order for the analogy between the two system®wohulas that we speak of to
better emerge as formulas, we shall next given thiékmown derivation oEuler's and
Rodrigues’'dormulas from the theory of quaternions.

One obtaing&uler’s representation of the rotations of a rigid body irdrately when
one presents the equations of the grdughat belongs to the quaternions and interprets

X1, X2, X3 @s rectangular coordinates:

Xo = Xo»
NX=(+&-&- &) %x+2(aa+ 39 %2( aa 83 3
(1) N, =(-+&- &) %+2(aa+ g9 x*2(3& aa

N, =(g-&-a+ &) %x+2(aa+t 39 ¥2(ag aa j
inwhich N=ag +&+ &+ &.

The formulas for the composition of the parametdrsmo transformations of the
group (1) that are performed in succession define the sedaallltiplication theorem for
guaternions:

G =%k -ah-ah- al
G=gah+ah+ah- ab
¢, =gb-ab+ah+ ah
G =gb+ab-ah+ ah

(2)

If one replaces with x andc with X' in this then one will obtain the equations of the
parameter group that we denoted@®y; by contrast, if one replacéswith x andc with
X' then one will obtain the groug,.

The groupG; consists of all linear transformations that fix alllividual elements of
one family of lines of the imaginary sphe¥e= 0. Its real transformations are multiple-
perspective transformations with conjugate imaginarys afimaginary lines of the
“second kind”) that belong to the other generating famidne obtains the groug, from
G1 when one lets both of its families of lines chandesio The grouw consists of the

totality of all rotations around the origin of the cooates, or, as we can perhaps better
say, in the present context, it consists of theitgtaf all linear transformation of space

that fix all individual elements of a family of secearter surfacetN - Ax* = 0 that
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contact each other along an imaginary conic sectiba §o-called infinitely-distant
sphere circle).

As is known, a simple connection exists between thesraf the parametes, as,
a, as, the inclination angle#,, &, J; of the rotational axes above the coordinate axes,
and the rotation anglg: If we normalize the ratioa;, ap, az such that the sum of their
squares equals one unit then we will have the simpléaesaf):

dp.d;.ax.ag
(3)
¢

cot E: coSd; : cosPh : coSHs.

If we then fix the parametess, ay, az in formula (1) and let justy vary then we will
obtain the general one-parameter subgroup of the gdoup

Starting withEuler’s formulas, one now arrives, through a passage tortiie at the
corresponding parametric representation of the group ofion®o in the plane.
Meanwhile, we would like to relate the derivation oktparametric representation, not
directly to Euler’'s formula, but in agreement with the process of the ldpweent of
system XIlIl in 8 5, up to now, which also indeed definedratiing case of the system
XII of the system of quaternions that was considerednjost

The groups that belongs to system XllI has the equations:

X =% X=X,
N =(g-&)x+2aa%+2(a3a 39 X
NX = (8- &) x+2(aa+ aa) ¥2- 3ax
inwhich N =g +&’.

(4)

If one setsx; / X3 = X, X3 / X1 =y here, and one interpretsandy as rectangular
Cartesian coordinates then one will obtain the reptatien in question of the group of
all motions of the plane in the form:

@) { (& +a)X=(F- &) *2aaw2(ag 39,
(@+a)y=(g-4) y-233x2(ag 39,

while the composition of the parameters will be gitgrthe formulas:

C =&k~ ah,
¢, =ah+ab,
¢, =gk -ab+ ah+ al
G =gb+ab-ah+ ah

(5)

() Rodriguesloc. cit.
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The geometric meaning of the groups G, that belong to the system of formulas (5)
will be, in turn, not difficult to grasp. One imaginesotplanesX; andZ, in space, and
furthermore, the part of their line of intersectioatthes between two poin§ andS; .
This well-known figure determines, in all, four pencilsays ¢, S) that are defined by
all lines that lie in the plang; and go through the pois . Any line of the pencilX;,
S), together with any line of the pencilly &), will now determine a one-parameter
group of multiple-perspective transformations whose axe®ither of the two lines. The
totality of all transformations thus-obtained will defiree three-parameter, simply-
transitive groups; whose transformations will fix the rays of the pen@ls $) and g,

S) individually, while the pencils3i, S;) and &2, $) will be transformed in a two-
parameter way. The reciprocal gro@pto G; will arise when one switches the pencils
(Z1, S1) and &2, &) with then pencilsXi, $) and &2, S1), resp. It will now be the one
that is associated with the number system XIlI, adeeal, in our case, the plares 2»,

as well as the point&, S , will be conjugate-imaginary. The axes of a real
transformation of the groupS; or G, will be conjugate-imaginary lines of the second
kind when the transformation does not exactly belanghe invariant two-parameter
subgroup (corresponding to a translation in the plane)this case, the two axes will
unite into a real line that will be the line of intesgen of the plane;, 2, and the
connecting line of the pointS;, S, or even better, they will be infinitely-close toete
lines.

The group® is also simple to define. L&tbe the plane of the pencl 2,), which

is harmonically separated from an arbitrary pdrthat lies on eitheE; or %, or even
any pointP that is not included in the plane that pencil. Oae then exhibit a group in
2 that is composed the same as the group of motiong @iaine, which is determined by
S andS; when they are held fixed. The grogps then already completely known as the

group whose transformations permute the points of téweepl in a prescribed way, but
in addition, the poinP and all planes of the pencly >,) will remain individually fixed.

It is interesting to compare formula 'Y4with the ordinary formulas of the
transformation of rectangular coordinates systemisarptane.

If we regard the sense of rotation of the posikiaxis to the positivg-axis as being
positive, call the angle of rotatigh and call the coordinates of the center of rotaxipn
Yo then a poink, y will be taken to another one by the motion of the @ldms-defined
whose coordinates, y' will be given by the formulas:

6) { X = % = (%= %) cosp - (y- y)sinp

Y = Yo =(x= %)sing + (y- y)cosp.
If one now normalizes the parameters in formuldsgdch that one will hava; = 1
and one demands that the transformationlid identical with the transformation (6) then
that will yield a simple connection between the quasgis, Yo, ¢, on the one hand, and

the parameter ratics : a; : a2 : az, on the other. Under the stated assumption, one will
obtain simply ():

() The general formula reads:
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(7) cotg = - ap, Xo = Ay, Yo=a3.

If one then fixes the parameteaas a, , as in the formulas (4 and one lets justy
vary then the general one-parameter subgroup of the grouptafns will arise. The
parameter system for whi@ vanishes will correspond to the parallel displacements
translations.

The parameter group that corresponds to formulas (6) amdciprocal, which both
consist of transcendental transformations, will dleet to two projective groufs; and
G, , resp.

The group of rotations of a sphere, as well as thegof motions in the plane, when
regarded as subgroups of the general projective group, is eagafdt another real form.
These newly-appearing forms correspond to the numbezrsgsXllb and Xlllb, which
differ from XII and XllII in their real behavior.

Here we shall not go further into that situationd @hall remark only that formulas

that correspond to formulas (1), ..., (7) will emerge frtma latter by the imaginary
substitutions:

X, = Xo, X ==X, X, ==X, X, ==X,

a’ = ay, 3 =-ia, a, =-—iag, 3, =-a.

The examples considered, which one can easily ingreagét suffice to prove the
advantages of the systems of complex numbers in ¢lagntent of certain situations in
geometry.

Marburg, in November 1889.

Postscript. During the printing, | was only recently referred to a payescheffers
“Uber die Berechnung von Zahlensystemen,” which appeargdeimeantime (Séachs.
Ber., 1889, pp. 40(t seg. In it, the problem of determining all systems of céawrp
numbers was also solved for five principal units, and semehwhile theorems on
certain systems with more than five principal units waesented. The published tables
do not afford a sufficient glimpse into the structurehef individual systems. However,
in a series of lettersScheffersdisseminated a new, extended presentation of his
investigations, in which this lack would be remedied. Mealawloine will find a new
and - the author believes important application of systems of complex numbera in
treatise “Uber die Bewegungen des Raumes” that ismtlyria print (Séchs. Ber., 1890,
pp. 341.et seq.

NS
11

|
oo

X

I
o |

oo



