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Foreword

The study ofmotionsin space belongs to the circle of ideas surrounding element
geometry, to the extent that one does not (as imiatie geometry) follow the positions
that a moving body successively assumes, but only obseéheesnitial and final
positions, with no concern for the intermediate pos#io By contrast, one has the
geometric properties of two or more congruent systenisngaide them, one places the
study oftransfers(as we will say briefly), namely, transformationsspiace that take a
figure, not to a congruent one, but to a mirror-image, §@nmetric) figure (.

More extended investigations of the transfers in tfw&k-extended space do not
exist up to now, as far as | know. Howewehasleshas devoted a rigorous presentation
to just the corresponding transformations of plane geégmehose theory can also be
derived from the theory of motions in space. Thos¢ians are much better known,
since the theory of such things has been founded and deddig@eseries of some of the
most distinguished mathematicians; we mention only rithmes ofJoh. Bernoulli,
d’Alembert, Euler, MObius, and Chasles.

MObius gave a momentous impulse to them with his importantodeees in the
theory of infinitely-small motions; however, we alkaveChaslesto thank for the first
comprehensive, general theoryfisfite motions (). These investigations have received
only part of the admiration that they are due; one findaynof them in the textbooks of
mechanics today (). However, up to the present day, only the theory efintfinitely-
small motions has experienced any further developmentadtonly in recent times that
the beautiful papers ¢i. Wiener brought new attention to the theory of finite motions
However, those considerations have a different cherdom those of Chasles. The two
theories still do not define a unified whole.

Meanwhile, since the appearance of Chasles’s investigatseveral disciplines that
are closely connected with the theory of motions haaeeldped or even essentially
perfected them, such that it is on that basis thatcanetake up the subject anew at this
point in time.

We mean the general theory of transformation groupb,same special theories of
the recent conception of non-Euclidian geometry, tis®ty of orthogonal substitutions

()  The term “transfer” seems justified when one referplane geometry, in which one can link the
word with an intuitive picture. Admittedly, that pictuseeaks down in space, since an intuition for a four-
fold extended manifold that includes ordinary space is notiatommand. If one would like to employ
only intuitive terminology then one would, perhaps, préfe word “eversion,” which the author has, in
fact, proposed. Meanwhile that expression is not egiple to the symmetric transformations of the
straight line and the plane without some restricti@ms! in any case, it is in those cases that it$gstns
not at all intuitive. One must then endow entiretyresponding things with different names, which is
obviously inconvenient. Therefore, after careful cdeation, we have preserved the first-mentioned
expression.

(") “Propriétés géométriques relatives au movement infininpetit d’'un corps solide libre dans
'espace,” Comptes rendd$ (1843), 1420.

“Propriétés relatives au déplacement fini quelconque, dlaspace, d'une figure de forme
invariable,” Comptes rendisl (1860), pp. 855, 9052 (1861), pp. 77, 189, 487.

The (otherwise simple) proofs that were lacking filéhasleswere extended bBrisse, Liouville J. (2)

15 (1870); 19 (1870); (3)1 (1875). One also finds the main theoremsChasles’stheory (in a freer
representation) in the book Bghonflieson Die Geometrie der Beweguifigeipzig, 1886).

Hokk

() Cf., especiallySchell Theorie der Bewegung und der Kraftel.
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and its generalization, the theory of linear transftions of a quadratic form, which is,
in turn, closely related to the geometry of reciproadiir and finally, the study of the so-
called systems of complex numbers.

The mutual connection of the topics that we have talchmn is well-known in
some directions; however, large gaps remain to lexlfil. Namely, one has exploited it
only very little for the individual theories, although s®reginnings already exist in
regard to it.

The author now intends to set down his thoughts in sktresdises, the first two of
which will be submitted for publication. The matter shadl divided according to the
methods that are applied: Only if one develops each closeld of ideas, if possible,
with the tools that are peculiar to it can one jydtiife not-be-misjudged diversity of the
individual ways of imagining things, despite all of theesgnent. In the first section, we
will then treat the geometric properties of the matiamd transfers in Euclidian space,
while are either supported by analysis, or we shall chaastour through non-Euclidian
space or the theory of second-degree surfaces: Those thugjgemporarily remain in
the background, although many times they have pointed tguiding viewpoint.



On the elementary theory of motions and transfers.

The present section is connected with the circlede&s that surroundShasless
investigation: It includes a new conception of Chasld®sry, as well as extensions and
elaborations in certain directions. We must then Im&ay more details to go into than
were originally intended.

For example, Chasles presented the theorem that idmoimts of the chords that
connect the corresponding points of two congruent galus in space lies in a plane
that he called the “middle plane” of the two poirgldis. He then developed a series of
important theorems in which that middle plane playedla. r However, for special
positions of those points it can happen that the midpointse chords do not fill up a
plane at all, but only a straight line, or they mighaen be united into a single point. The
definition of the middle plane then became unusable esetltases, which Chasles did
not address or properly exclude. It is also impossibleoteect Chasles’s theorems in
such a way that one could cahy plane through the chord midpoints considered a
“middle plane.”

In order to establish the domain of validity of Chdslékeorems, one must then
carry out a whole new examination of them, and thltoe all the more necessary since
the theory of general motions is, in part, founded upon tjuste exceptional cases.
Naturally, 1 say that only in order to justify my owraging point, and not perhaps to
rebuke the greater geometers that first created theyttedfomotions in some truly
wondrous works, and could not devote the same attentiofi td the details in the
wealth of new things. One must once more go backeovery beginning, if only to
arrive at a unified plan.

Therefore, the repetition of many known facts semmscapable, but they will appear
in a new context. We have also restricted ourseivesher respects. Only those things
will be presented thoroughly that seem especially sutekdet problem of shedding some
light on certain theorems that stand at the cerfténeotheory. Several topics that must
not be missing for the completion of the total pict(eay., metric relations, congruent
pencils of planes and bundles in space, the decompostioa motion into two
unscrewings, et al.) shall be discussed later on.

Apart from the thorough consideration of the excepticaaes, we might emphasize
some aspects of the theory that are new in compatasGhasles’s theory:

1. The introduction of the concept of anscrewingas concept that is on a par with
that of rotation and is a main component of the theory.

2. A very large part of the properties of the transttioms that are denoted By,

%o, T, etc.

3. The revelation of the peculiar parallelism that texisetween entire series of
theorems and that goes back to the principle of dualityiodirectly.

4. The law of progression from geometry in domains ok narto geometry in
domains of rankr( + 2) that is generally first suggested in the presentoseand will
feature in many theorems.

5. Finally, the entire theory of transfers in trigytended space.
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At the center of our investigations stands the spdjttf a motion or transfer intwo
such transformations with prescribed special propertiegrebly, we shall come, not so
much to the foundation of the individual theorems that result in manifold ways and
actually never raise any difficulties, as to an insigib the intrinsic connection that
exists between the various specialized theories. dnsag we shall treat involutory
motions and transfers, in particular, our work shall koupon the investigations &{.
Wiener () that were cited. Knowledge of the widely-published tiie@drmotions up to
now was very useful to the author. How far the agre¢méh the theory of transfers
can go will await further communications from H. Wiege).

We must especially emphasize that the following argtsnéave anelementary
character, for the most part. The tools of the antsiare completely sufficient to found
the most important theorems in the geometry of motibme nevertheless often employ
concepts from group theory and projective geometry theshad do that only for the
sake of brevity, and not to explain known things anewtrdth, we shall mostly use the
theorems of elementary geometry whose proofs do not ratyeir@ncept of projectivity;
e.g., we shall speak of dualistic transformations. Ebes to that are found at only a
few places whose content is indeed required for an @w@rvbut not absolutely
necessary.

A prior knowledge of the geometry of motion will not feguired for the experienced
readers to understand what follows. Still, it would bedydf the reader had some
familiarity with H. Wiener’s theory, especially as far as its simple foundatians
concerned. We shall come to speak of those things mrayather complicated context,
and can treat them only quite briefly.

| have found the symbolic notatio{S} y that H. Wiener introduced to say that the
objectx is taken to the objegt by the operatiors to be very convenient; it will thus be
applied many times. It has the advantage over the ustatlany = Sxor the &) S= (y)
thatS. Lie employed that many such formulas can be chained togethaentially; e.g.:

x{$y{T} z
x{ST} z

from which, it will follow that:

It will correspond to a natural advance in thinking whee draw a distinction
between the geometry of the line or plane geometrittendeometric properties of a line
or plane that lies in space. In the former caseregard the line or plane as a domain
that is closed in itself, from which we would like @lfto emerge, in the sense that it is
forbidden for us to leave the usual three-fold extendedespdicwe then consider, in
succession, the geometry of lines, planes, and space ir tre terminology of the
analysts, the geometry of domains of rank two, thead,four, resp. — then we will have
the start of a sequence of concepts that extendsindaynfin each of the aforementioned
domains — or in domains of rank more generally — we consider the motions and
transfers, namely, continuous families of transforoms, each of which depend upan

() “Die Zusammensetzung zweier endlichen Schraubungen eu einzigen” and “Zur Theorie der
Umwendingen,” Séchs. Ber. (1890), pps. 13 and 71. -

(") One will find a provisional notice in the Verhanatyen der Gesellschaft deutscher Naturforscher in
the year 1890. — The author has addressed the same topithsir@pring of 1890.
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(n — 1) / 2 parameters. The motions define a group, and dt®ma and transfers
together likewise define a group.

The difference between motions and transfers cornelspto the difference between
congruence and symmetry. However, we must remark tea th no difference between
congruence and symmetry for figures that are containeglarar region of rank — 1.

In a three-fold extended space, for example, a plarsdersycan be made to coincide
with a congruent system by a transfer, as well astimand in fact, in a single way.

We now consider successively the cases that ardesiitnpnd at the same time, the
most important to us, for whiah= 2, 3, 4.

§ 1.
On the motions and transfers on the straight line.

Any motionS on the straight line is displacementAll points will be shifted in the
same direction by a segment of constant length. riid@oints X of the segments that
are bounded by two ordered poirix' fill up the entire line and define a point sequence
(X) that is congruent to the point sequencgys (x). If we let ¥; denote the
transformation that assigns the pomtto the pointx and letT, denote the transformation
that assigns the point to the pointxX then we will havet; = T, S= %1%, =TT, . |If
we use the third notatioh for the transformatioff; = %5, then we can also write the last
equation a$= T

The introduction of the various notations for @rel the same transformation might
seem pointless. Meanwhile, it will be requiredtbg systems of notation for the higher-
rank cases. It will then express a general law sbams unclear and inchoate now, but
will become meaningful later on.

The motions on the straight line define a grougahmutingtransformations. That
is a peculiarity of the case= 2 that will not be found in the higher-rank cases

The transferson the straight line are alvolutory, because of that, we once more
glimpse a peculiarity of the case= 2.

A point o will always be fixed by any transfer; the transgedetermined completely
by its “center.” Any two associated points<' will be spaced equally far from the center
0.

Any motion S can be replaced with a sequence of two transfefs{{o'} (viz.,
transfers whose centers aeo’, resp.) ino' ways. The distance between the cenpers
o' is equal to one-half the magnitude of the dispiamat; i.e., one-half the segment
through which any point on the line is shifted by the moti&

On the basis of that remark, we succeed in coctstg the defining data (viz.,
magnitude of the displacement or center) of thepmsad transformation of two or more
motions or transfers that are performed one dfieother.



6 Study — On motions and transfers

8§ 2.
On the motions in the plane.

Any motion in the plane can be regarded as a rotation around a finite, or even
infinite, point.

The rotations around infinitely-distant points and¢fidranslationsdefine groups by
themselves that are invariant subgroups of the group ofaibns.

In addition, there are some special motions thatt rhasunderscored, namely, the
involutory motions oreversals which likewise numbew? They are the rotations with
an angle of rotation that equals two right anglegefiéctions in the points of the plane.”

The reversals alone do not define a group, but the edseand translations together
will again define a group.

We consider the choxiX — viz., the connecting line of any two point&indx’ that
are associated with each other by a moS8pas well as the midpoirt of such a chord
and the perpendiculai to the chordx that is erected & , namely, thenormalto the
chord.

The midpoints to all chords< will either fill up the entire plane (in the generatepn
or they will all unite at one and the same point (fe teversals). The normals define the
totality of rays through the center of rotation: any stashis the common normal fos?
chordsxX.

The point at infinityX on a chord is, in a certain sense, analogous to its intdpin
general, the pointX fill up the entire line at infinity; the only exceptionseathe
translations, under which, the point will naturally go to one and the same point at
infinity.

We further consider the lines that bisect the angled¥st any two lines, U’ that are
associated with each other 8y They exhibit a different sort of behavior.

The angle-bisector of the first kind is characterized by the fact that the sequences
of associated points anandu’ will produce congruent point-sequences (in the sense of 8§
1) when projected onta. u will run through the entire ray-field of the planeewvhone
setsu, U equal to all possible pairs of corresponding rays. Thg exdeptions are the
reversals: All angle-bisectors of the first kind wathalesce into the line at infinity for
them.

Converselyangle-bisectors of the second kindarise from symmetric projections of
the congruent point-sequencesu’; T will always run through the center of rotation.
The totality of those lines will then define a pencilrays, in general. However, the
translations are exceptions to that: All angle-bisectd the second kind will coalesce
into the line at infinity for them.

The midpoints of chords and the angle bisectors calnked to each other quite
simply by the following theorem, which seems to havenheeoticed up to now:

Any motion S that is not a reversal can be linketth wwo commuting similarity
transformationsty, ¥, that will produce the motion when performed in &sston:
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Tllz =S= Tzll .

Namely, let xx' be any pair of associated points, and let u,be any pair of
associated lines, such that:

x{$} X, u{S u.

The points x and"»will then correspond to the midpoim of the chord Xxunder the
transformationst; and %,*, resp.,and likewise the lines u and will correspond to the

angle bisectoru of the first kind of the ray-pair u, wnder the transformations, and
T, ', resp. In symbols:
X{ 51} i{fz}X’, U{ 12} U{Tl} u'.

If the motionS goes to a reversal then the point transformafionvill degenerate,
and %, will be undetermined, as the opposite of a degeneratsforanation. IfSis a
translation thert; will likewise be a translation and coincide with.

Any motion can be decomposed drf ways into two successive rotations, one of
which is a reversal. If one decompo&esito a rotation followed by a reversal then the
center of rotation will correspond to the center of teersal under the transformation
%1. If one decomposeSinto a reversal followed by rotation then the cemwterotation

will correspond to the center of reversal under thasframation<,*. The angle of

rotation will be the same each time; it is equal and sppdo the supplement of the
angle of rotation o8& In particular, any reversal can be the composiioa reversal and

a translation in succession df ways, and every translation can be decomposed into a
succession of two reversals. Conversely, when twersals are composed that will not
give a motion, in general, but only a translationeeersal and a translation will produce

a new reversal when they are composed. (Cf., pp.&wbel

Any motion can be representedoiri ways as a succession of two reflections in the
linesgi, gz, resp. The axes of reflection run through the cesteotation and subtend
one-half the angle of rotation. They will then crassight angles when the moti&is a
reversal. IfS is a translation themy; and g, will be parallel to each other and
perpendicular to the direction of translation; th@paration is equal to the one-half the
magnitude of the translation, so it will be equal to-bak of the segment through which
any point in the plane is displaced.

It is easy to construct the resultant rotation ,(iits. center and angle) that is the
composition of two motions on the basis of these #msr Only the translations occupy
a special position in this, which one can, however,pmsa with no further analysis.

Any motion belongs to a well-defined one-parameter grdupations whose paths
are circles around the center of rotation. Any fimitation will then be “generated” by a
well-defined infinitely-small motion, to use the termiogy ofS. Lie.

In addition to these one-parameter groups of motiomsiogparameter groufs, of
commuting similarity transformations is determined by thetion S to which, the
transformationst; and¥, also belong, in addition t& It is the group of all similarity
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transformations (without assigning an angle) under whehcenter of rotation remains
fixed. If one associates any point in the plane with @her point then a transformation
of G, will be determined by that. If one shifts the centeradétion to infinity then our
groupG;, will go to the group of all translations.

8§ 3.
On transfers in the plane.

Any transfer in the plane can be generated by a reflection in a line maand
translation in the direction of that line that precedes or follows it.

Among those transformations, one can distinguishethmvolutory transfers, which
are the pureeflections for which the translation to be applied will reduodhe identity
transformation.

As in § 2, we consider a choxd, its midpoint (which shall now be denoted &Y,
and its normair ().

The midpoints of the chords will always fill up a weé#fined line, namely, the axis
m of what we previously called a reflection, which wiieh be called theenter lineof
the transfer.

The normals to the chords will either define the totalf all lines in the plane (in the
general case) or they will all coalesce into one &edsame line, namely, the center line
(so, in fact, the transfer would be a reflection).

The points at infinityx of the chords will generally fill up the entire lineiafinity;
only when the transfer is a reflection will they edlalesce into the points at infinity that
are perpendicular to the reflection axis.

The angle bisectors of two corresponding lineg’ will again exhibit a different sort
of behavior. Thangle bisector of the first kind is parallel to the center ling; it will
coincide with it when the transfer is a reflectiofheangle bisector of the second type
is perpendicular to the center line. The totality bfiaes U always defines a pencil of
lines.

As in 8§ 2, the angle bisectors of the first and secomd &lso differ from each other
by the fact that the projections of the correspondingtggequences alongandu’ onto
the angle bisector of the first kind are congruent, twhile the projections onto the angle
bisector of the second kind are symmetri@itpin the sense of § 1.

A dualistic transformation T is linked with any tifer S of the plane that is not a
reflection, and which will generate the transferantit is performed twice in a row:

S=T2

() Here, we appeal to another system of notation fr@rone in § 2, on grounds that will become clear
later on (in § 13).
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Namely, the point x corresponds to the normaab the chord xXx and that line will,
in turn, correspond to the point under one and the same dualistic transformatior .
symbols:

{THu{T}x, {Sx.

The transfer can be represented by a rotation arowngdint and a subsequent
reflection in the linet, or also by a reflection in the ling, followed by a rotation
around the poink'. The angles of the rotations to be applied are equhbaposite in
both cases. Thus, either the poxtor the line T, or the pointx can be chosen
arbitrarily. If U is perpendicular to the center limethenx andx’ will come to lie along
m, and conversely. & is parallel to the center line th&randx will lie at infinity, and
conversely. Ifu coincidesm thenx andx will fall upon the point at infinity that is
perpendicular tan, and conversely.

One can easily find the angle of rotatiofk 2hat is assigned to a poxin the plane.
Let U_ be the line that corresponds to the paininder the transformatiof*, S can be

represented by a reflection in and a subsequent rotation aroxndnd likewise by the
rotation aroundk and a subsequent reflection througih Both times,u_ will overlap
with . The linest_. andu will then have a separation distance that egualsey will

subtend the angleX.

The angle of rotationZ is constant for all points of a parallel to the cefiitee m;
points that are equally far from on opposite sides will have equal and opposite angles
of rotation. One constructs the center Imeand the associated translation with no
further analysis when the transféris given by the succession of a rotation and a
reflection or a reflection and a rotation. (Cf., figrire.)

If the pointx falls along the center lin@ then the angle will be a right angle.One
can then represent any transferdrt ways by a reflection and reversal that follows it.
The distance between the center of rotation and ttsecdxeflection, when measured in
the correct sense, will both times be equal to ontthal magnitude of the translation
that yields the transfe3in conjunction with the reflection through

Instead of replacing a transfer with a rotation andfl@ation, one can also represent
it a more symmetrically bihree successive reflectigrand in fact, ino? ways.

Let g1, Oz, Oz be three suitable axes of reflection, so the pdinhtersectiony of g;
and g, will correspond to the lings, and the lineg; will correspond to the point of
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intersectionz of g, andgs under the dualistic transformatidn Moreover,g; will go
through the poink that corresponds to the lime under the transformatiofi *, andgs
will go through the poink’ that corresponds tg underT. (Cf., the following figure.)

o] O3 o

87) 01 9

If the transfer is defined by three successive reflestwith axes), gz, g3, resp., then
one will directly find that the feet of the altitudd®t are dropped fromto gs and from
Z to g1 are two points on the center ling along with that line, one likewise knows the
associated magnitude of translation.

If the transfelSis areflectionthen some simple alterations will be introduced th
cited theorems. The ang# will equal zero wherx is chosen to be outside the center
line; it will be undetermined whexis a point of the center line. If one represehtsy
three reflections then their axes will intersectagioint of the center line; however, the
replacement o8 with three reflections is possible &t ways, as before.

On the grounds of the cited theorem and constructiongillibe easy tocompose
several transfers and motions in every case; i.ecotstruct the defining data of the
composed transformation. If one would like to perfoeng., two transfer§, and S
whose axes intersect at a finite poxin succession then one will repres&tmost
simply by a reflection and subsequent reversal aboupoh® x and S, by the same
reversal aboux, followed by a reflection. The produstS; will then be a motion that is
given in the simplest way by the succession of twiecgbns, etc.

If decompose a givemotion Sinto two successive transfers and demand that only
one of them, in particular, should be a reflection tiwenwill come to a new conception
of the similarity transformation&; and ¥, that were considered in the previous
paragraph.

In fact, if we decompos8 into a reflection and a second previous (subsequent, resp.)
transfer then the center line of that transfer wolirespond to the axis of reflection in the

transformation,* (%, resp.).
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§4.
Congruent point sequences and point fields in space.

Following the approach dZhasles we pass along the theorems on congruent point
sequences on lines and congruent point fields on planesrehaqually valid for both
theories to the investigation of motions and transfespace.

In general, lek, X be corresponding points of two congruent or symmelyiemjual
figures in space, so we can consider itidpoint of the chordx, the midpoint of the
connecting linexx, and thenormal planeto the chordkx; i.e. the plane that is erected
perpendicular to the chomlX at its midpoint. We ask what the locus of the chord
midpoints and the locus of the normal planes might benwhe corresponding figures
are congruent, but distinct, or what amounts to theeghing, symmetrically-equal point
sequences or point fields.

We first compose twoongruent point sequencesd)

The midpointsx of the chords xxXhat belong to two congruent point sequences g, g
either fills up a lineg or coalesce into one and the same point.

One can summarize the properties of the Ineguite simply and intuitively when
one introduces the concept of amscrewing That is what we call (following the pattern
of the term “reversal’) a screwing motion whose anglequal to two right angles, and
thus the sequence of a reversal (i.e., a rotation thrthegangle R) and a translation in
the direction of the reversal axis. If we now s@ye point sequencg can be made to
coincide with the congruent point sequegtéy an unscrewing around the axjs’ then
that will already be based upon the facts tgabisects the angle betwegrandg', the
point sequencgX) is similar to the point sequenceg and '), the chordxx projects
onto g, yielding segments of equal length, and finallgttlall of the chords will be
perpendicular tog , as long asneof them is ). The last case actually occurs when the

unscrewing reduces to a reversal. Secondly, i€ladrd midpoints coincide then there
will be a whole bundle of lines through the choradipoints. However, among them,
there is only one pencil of axes of such unscresvihgt makey coincide withg'; it will

be defined bythe lines of the bundle that crogsandg’ at right angles. Among the
associated unscrewings, there is amgreversal, in general, and only when the carriers
of the point sequencesandg’ coincide will all of those unscrewings be revessah
particular.

The normal planes to the chords #xat belong to two congruent point sequences g,
g either fill up pencil of planek or they coalesce into one and the same p(ajhe

() One finds a simple proof ichonflies Geometrie der Bewegurfgeipzig, 1886), pp. 81.
(") Mébius gave a simple proof of this. (Ges. Werke, v. |, gi& &nd 549).
In regard to the latter theorems, one can conferetimarks that will be made in 8 5 (pp. 24, below).
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In the first caseg can be made to coincide with by a certain rotation around the
axis h, which can be finite or infinite; any plane of the gérn will be the normal plane
to onechordxx. (The pencilh is projective to the point sequenagsy.) If one of the

chordsxx cuts the axish then all of them will; i.e., the rotation will theése a reversal.
Secondly, if all normal planes coincide then therk bd a whole ray-field of lines that
each lie in all normal planes. However, among thoeslithere is only a pencil of axes
of rotations that makg coincide withg'; they run through the point of intersectiongof
andg'. In general, there is only one reversal among thotsgions. It is only when the
carriers ofg andg' coincide such that the congruent point sequences lieutordy on
one and the same line that the rotation will be a saler

If we further consider two congruent point fields ¢« that lie in space in whatever
way then we will have the corresponding theorem:

The midpointsx of the chords Xxhat belong to two congruent point fields «’ will
either fill up a plane m, or a line n, or they will coalesc® iahe and the same point o.

We next consider the general case. The projectidngy «’ onto m are then
congruent. wcan be made to coincide with: First of all, by a reflection in the plame
and a prior or subsequent rotation around an sttt is perpendicular tm, secondly,
by a rotation around the line of intersectiag (n) and a subsequent rotation arownd
and thirdly, by the same rotation aroundnd a subsequent rotation around the line of
intersectionih, «).

In that, we already find that the point fie(@) is affinely-related to the point fields
(¥) and ') in such a way its plana defines the same angle with the plangsnd ' as
the lines g M) and M, «’) that correspond tawand w), resp., and finally that the points
of intersection & s) and (), s) correspond to each other. The rays of the pémc#) in
the planem are distinguished by the fact that each of thenpdspendicular to its
associated chord.

We now turn to the second case:

If the chord midpointx that belong towy ' fill up a line n then that line will be the
axis of an unscrewing, by whiehwill be made to coincide witty.

In an arbitrary plane that goes throug will be the single axis of an unscrewing
that makes one (and consequently, every) point esegu of w coincide with the
corresponding point sequence @f) the projection of corresponding figures arand o’
will be symmetrically equal to each other on sugblame. However, among the planes
through the axisn, one finds a distinguished plamg, namely, the plane that is
perpendicular tavand . Inthat plane, any line that is not parallelnawill be the axis
of one-half an unscrewing that makes a certaintpsguence of w coincide with the
corresponding point sequencge of w. Corresponding figures ofv and ' have
projections in that plane that are not only symmgtbut also likewise congruent.
Furthermorem, together withw and «w’, will determine two symmetrically-equal spatial
systems. The plama enjoys properties that are entirely similar tosehof the plane that
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is likewise distinguished in the general case. One mwsérve only that the axssis
now parallel towand w and that the rotations that belong to the lirgsnf) and M, w)
will be reversals.

Finally, in the third case, wheweand w go to each other byraflection through the
point g we might denote any plane that is drawn throoidpy m: The projections of two
corresponding figures afv and w’ onto any such plane will now be congruent; any of
them, together withw and «/, will determine two symmetrically-equal spatial €yss.
Any line througho will be the axis of an unscrewing that makes a paguence orw
coincide with the corresponding point sequencednwcan be made to coincide with
' by a reflection in the plama and a prior or subsequent reversal around thesakist
is perpendicular ton at the poinb. One of the lines through the pomts distinguished
by the fact that it is the lina that is perpendicular towand w'. It is the axis of an
unscrewing that take&to «. In a plane that is laid through it, the projectiohghe
corresponding figures o@and «w will be not only congruent, but also symmetric.

The normal planes of the chords that belong to the two congruent point dietds
either define a bundle of planes o, or a pencil of planes n, or they ceatdecone and
the same plane m

In the general case, the pomis at first nothing but the point of intersectian, §)
that was discussed already. It has a position velébi cwand «w’ that will determine two
symmetrically-equal spatial systems: in one case, witand in the other case, with.

Any plane through the poimtwill be the normal plane to a choxd; any lineh through
the pointo will be the axis of a rotation that makes a wellkgied point sequenagon w
coincide with the corresponding point sequegaan w. The point fieldsw «, andm
are dualistically related in the bundle of planes.

If the normal planes that belong to the point-pairsupf define a pencil of planes
thenwcan be made to coincide withl by a rotation around the axis n.

If one chooses an arbitrary point nrthenm will be the single rotational axis that
goes through that point and makes one (and consequentlypainy)sequencg on w
coincide with the corresponding point sequemgeon «; the chosen points will
determine two congruent spatial systems: in one casehavgeith «y and in the other,
with . However, among the points of the anjsone will find a distinguished poirmt
namely, the one at which meets the planesy «. That point, together with
corresponding points aband w’, will define figures that are not only congruent, but also
symmetric. Any line through that point will be the agfsa rotation that makes a certain
point sequencg on wcoincide with the corresponding point sequenoa w.

Finally, if thirdly the normal planes of the chordswtind w’ coalesce into a single
planem (so wand ' go to each other by a reflection in the plamnehen any point that is
chosen omqm might be denoted bg. Any such point, together witw and «w, will
determine two symmetrically-equal spatial systems; anydine planem will be the
axis of a rotation that makes a point sequenceoaincide with the corresponding point
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sequence ow. One of the lines in the plama is distinguished, namely, the line of
intersectiom of wandw. Any of its points, together with corresponding pooftgvand
w), define figures that are not only symmetric, but alsquogent.

The theorems that were presented enable us to defif@ltdveing table of concepts:

If g and ¢ are congruent point sequencesif g and g are congruent point sequences
then we will call the axis of the unscrewipthen we will call the axis of the rotation
that makes g coincide with ¢heir middle | that makes g coincide witH their normal
ray. axis.

For such structures, one has the theorems:

Two congruent point sequencesgghave| Two congruent point sequences have only
only one middle ray, in general. Howevepne normal axis, in general. However, if ¢
if g and ¢ go to each other by a reflectiorand d go to each other by a reflection
through a point then there will be pencil |ofhrough a plane then there will be pencil of
middle rays that belongs to that point. normal axes that belongs to that plane.

The case in which a middle ray is, at the same tim@ormnal axis must be
emphasized especiallyg will then come to coincide witly’ by areversalaround that
axis. If the carriers o and g coincide, but the point sequences themselves have
opposite directions, then the two aforementioned exmegiti cases will occur
simultaneouslyg can then be taken @ by «* reversals whose axes define a pencil of
rays that is normal tg, g.

If we consider corresponding point sequences of two cengpoint fields then that
will yield:

«? middle rays always belong to the «® normal axes always belong to the
corresponding point sequences of twarresponding point sequences of two
congruent point fieldsy @. congruent point fieldgy @.

They lie in a plane, in general; however, They fill up a bundle of rays, in general;
if wand & go to each other by a reflectiarhowever, ifwand & go to each other by a
through a point then they will define theeflection through a plane then they will
bundle of rays that is determined by thakefine the field of rays that is determined
point. by that plane.

We would, moreover, also like to introduce some speerahinology for the plane
that was denoted by above and the point that was denotea.by

We call the plane of any pencil of raysWe call the point of any pencil of rays that
that is defined by the middle rays that ane defined by the normal axes that are
associated with the congruent point fie|dsssociated with the congruent point fields
w o their middle plane. w o their central point.

Now, we can further say that:



I. — On the elementary representation of motions amdfiees 15

Only a single middle plane belongs to tiwdOnly a single central point belongs to two
congruent point fieldsy «J, in general. It| congruent point fieldgy «, in general. It
is only whenwand «J go to each other byis only whenwand «J go to each other by
a reflection through a point that there wjll reflection through a plane that there will
be infinitely many of them: Namely, ange infinitely many of them: Namely, any
plane through that point will then be |goint of that plane will then be a central
middle plane otwand w. point of wand .

Since the two aforementioned exceptions cannot ocewltsineously, one will have
three possibilities: Either there is one middle plane and central point, or there is one
middle plane and? central points, or finally, there as€ middle planes and one central
point. The following theorem is true for all three &sts

Any middle plane of the congruent point fiekde is incident with any central point.

For the sake of later applications, we shall infex following statements from the
ones that we made about the middle plarend the central poirnt

“The point field wcanalwaysbe made tq “If the central pointo is finite then the
coincide with the congruent point field | point field wcan be made to coincide with
by a reflection in the plan® and a prior of the congruent point fieldJ by a reflection
subsequent rotation around an axthat is| in the pointo and a prior or subsequent
perpendicular to the planm at the point rotation around an axis that goes through
o.” the pointo.”

A peculiarparallelismemerges in the majority of the theorems that wererghere,
which we shall also encounter many times from now ®fidpoints and normals to a
chord, unscrewing and rotation, reflection through a periat reflection through a plane,
all seem to be interchangeable concepts. Howevdrptrallelism is not complete, as
the last two juxtaposed theorems show.

We cannot go further into the basis for the aforemoeatl remarkable phenomenon
here. It goes back to the dualistic character ofadled non-Euclidian geometry and the
nature of the passage to the limit by which one desceodsthat generalized geometry
to ordinary geometry.

Along with the examination of the midpoints of the xx that belong to two
congruent point sequencgsg’ or point fieldsa « that was carried out here, one can
carry out a corresponding examination of the pointnfaity on the chords. That
subject shall be treated briefly, since it will not beassary for us to come back to it
from now on.

The points at infinity of the chords’xkat belong to two congruent point sequences
g, d either fill up a line at infinityg or they coalesce into one and the same point.

The line @ is the line at infinity that is perpendicular to tHeramentioned normal
axis h. In the exceptional case for which the chotdsare all parallel to each other, we
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will have two, or if one so desires, even three possdslit One can makg coincide
with g’ either by a translation or a reflection in a plandjrmally, both kinds of transition
together are possible.

The points at infinity that belong to the chordstextwo congruent point fielda)
will either fill up the entire plane at infinity, a line adfinity, or finally, they will coalesce
into one and the same point.

The second case, in which the choxglsare all parallel to a plang can come about
in two essentially different and generally equivaleaysv().

a) The projections otvand w’ onto the plane are congruent (i.e., congruent point
fields).

w can be made to coincide withf by a rotation around an axis that is perpendicular
to w so wandw will meet at a poinb that is common to both point fields.

Moreover, w can be made to coincide witf by a reflection in a certain plane
through the poinb, and a prior or subsequent rotation around the perpenditiatais
erected to that plane at the paint

b) The projections otw and w’ onto the planes are symmetric (i.e., mirror-equal
point fields).

wcan be made to coincide withh by a screwing motion whose axis is parallel to the
line of intersection otwand w, and as a resultyand &’ will meet in a point at infinity
that is common to both point fields.

Moreover,wcan be made to coincide wittk by a reflection through a plame that
is perpendicular t&and a prior or subsequent translation in the directiothefine of
intersection om ande&.

The following case enjoys the properties of the twoxasandb):

¢) The planesvandw’ are perpendicular to the plane

Finally, if the chordxx are all parallel to each other then one will haveum, two
(three, resp.) possibilitiesw goes tow' by either a translation, a reflection in a plane
through the line of intersectiorny w'), or finally, one can makevcoincide withw’ by
either of the two aforementioned processes.

One easily counts up the constants upon which two congpeant sequences or
point fields depend when they are found in one of the ap@usitions that were
investigated in the present paragraph.

() S. Mbbius Ges. Werke, Bd. I, pp. 556t seq.in which the examination was not as thorough as it is
here.



I. — On the elementary representation of motions amdfiees 17

§ 5.
Motions in space.

Any motion in space is a screwing moti¢éincan be composed from a rotation around
a certain axis1 and a prior or subsequent translation in the directfoimat axis. The
angle of the rotation is already occasionally catlegiscrew angleit will be denoted by
29 . We shall call the length of the segment that amytjud the screw axis advances the
height of the screwyve denote it by 2. We consider both quantities, not as absolute
numbers, but ones that are capable of taking on pesitid negative values whose sign
will be decided by the direction and sense of rotaticth@ axisn. The direction of a line
n can be chosen arbitrarily. However, the positive s@fsotation shall be, perhaps, the
one that is given by the hands of a clock for an obsehagrlooks upon the point at
infinity on the line in the positive direction.

Among thex® motions in space, we can distinguish the followingson

The «° unscrewingswhich are screwing motions with a screw angle 8f=22R.
These are the motions that will permute the pointsnfuity involutorily. If an
unscrewing is repeated twice in succession then thatweld a translation in the
direction of the screw axis through a segment tha&ygisal to twice the height of the
screw.

The «° rotations, which are motions for which the height of the screvedsial to
zero.

Rotations and unscrewings have in common the factathatoints ande! planes
remain fixed by both of them: Rotations fix all of thers of the screw axis and all of
the planes that are perpendicular to that line. @wgags fix all planes through the
screw axis and the point at infinity that is perpendictdghem.

The «* reversals which are motions that are, at the same time, ioo&tand
unscrewings. They define the totality of all involutongtions; they can also be suitably
called “reflections in the lines of space.”

Finally, one hashe «* translations which are motions for which all of the points at
infinity (i.e., all directions) are fixed individuallyWe consider a translation to be, as a
rule, a limiting case of a rotation, and in that sesyseak of a well-definedxis for the
translation; we mean the line at infinity that is pegteular to the direction of translation
by that. However, a translation can also be regardeal laniting case of a screwing
motion whose screw angle vanishes; in that way okilgg at things, the axis of the
translation will refer to any line that is parallel tbe direction of translation. The
translations define a three-parameter group of commutagslation by themselves,
which is an invariant subgroup of the group of all motions.e Hdividual translation
will be well-defined when one associates a given poispace with any other one.

The fundamental theorem that one finds at the sumfretverything— namely, that
every motion is a screwing motion — is obtained indingplest way by the path that was
taken byH. Wiener when one expresses a motion as two successive ravefalthe
other hand, that very representation of a motion byrsal®is a special case of several
(four distinct ones, in total) remarkable, general wdygpresenting a motion by special
motions. In connection with the developments of theipus paragraph, here we shall
discuss a subset of the relevant theorems that defiteesed totality in their own right,
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but for the sake of overview, we shall first given theithout proof. The proofs (to the
extent that such things are even required by the expositi@n4 at all), together with

several details whose immediate specification hereldvtend to perturb matters, shall
then find their places in the next paragraph.

We first once more consider the midpo#tand normal planar of a chordxx, as
well as the middle ray and normal axis of two correspangoint sequences g', and
the middle plane and central point of two correspongmoigt fields «y «. In order to
avoid becoming too long-winded, we shall look at only thesectures that do not
coincide with the one that is associated with therthbymotionS

The midpoints of the chords will The normal planes of the chords will
generally fill up all of point space. On|ygenerally fill up all of plane space. Only
when the motion is a screw will they all lisvhen the motion is a rotation will they all
along a line, namely, the axis of the screwgo through a line, namely, the axis of

rotation.

The following theorems read precisely the same way:

The middle rays will generally fill up aJl The normal axes generally fill up all of
of line space. Only when the motion is kne space. Only when the motion is a
screwing motion will they all meet a linerotation will they all meet a line, namely,
namely, the unscrewing axis. the rotational axis.

However, a third pair of theorems that relate to tiddha plane and central point of
two congruent point fields does not read analogously, amabtde expressed as simply.
We shall leave it to the reader to deduce a suitablauiation for them from what
follows.

Along with the midpoints of the chords, we shall byiefbnsider the points at infinity
of the chords and then the two planes that bisecanlée between two corresponding
planesu, u'.

The points at infinityX of the chordxx fill up the entire plane at infinity. Only the
rotations are excluded, and among them, the translatiow®g, more. For a general
rotation, the points< will lie on the line at infinity that is perpendicultr the rotational
axis, but for a translation they will all coalesceoithe point at infinity of the direction of
translation.

The two angle bisectors of a plane-paiu’ exhibit a different sort of behavior.

The projections of thangle bisectors of the first kind, which lie in the planes
andu’, onto mutually-related planar systems define planaesysthat have equal areas
and are affinely-coherentglgichstimmig-affing while the projections of thengle
bisectors of the second kind will have equal areas, but will not be affinely-colmre
That is, if one projects, say, two corresponding cirtlas andu’ onto the planai then
one will get two ellipses that are affinely related toreather, have the same area, and
the same sense of rotation, but when one projectsdhémthe plandi, the ellipses that
result will have the opposite sense of rotation.

The angle bisector of the first kind generally runsotigh the entire plane-space
when one allows the plane-pai; U to assume all possible positions. Only the
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unscrewings are excluded: The planes are all perpendicuthe screw axis for them.
They then define only a pencil of (parallel) planes.

The angle bisector of the second kind is parallel éositrew axis. The totality of
these planes then defines a bundle of planes, in @enétowever, if the motion is a
rotation then the planeg will define only a pencil; they will all go through theis of
rotation. If the motion is a translation, in partan then all of the planes will coincide
with the plane at infinity.

Now, a simple connection between the chord midp@intsthe angle bisectors of the
first kind, which is similar to the one in the geomaifyhe plane (8 2), can be exhibited
by the following theorem:

Two commuting affine transformatiofds, ¥, are linked with any motion S that is not

an unscrewing, and when they are performed one after the other, thgendtate the
motion S:

Tllz =S= Tzll .

Namely, if X, Xare any pair of associated points, and uare any pair of associated
planes such that:

X{SX, WS u

then the points x and vill correspond to the midpoink of the chord xXxunder the
transformations?; and %,*; likewise, the planes u and will correspond to the angle
bisector of the first kindi of u and U under the transformation€, and % *. In
symbols ():

xX{ %1} X{%2} X, W T} u{%} u.

However, wher goes to an unscrewing, the point transformations thatiemeted
by T; and T,* will degenerate. The transformati@a will then be undetermined, as the
inverse of a degenerate transformation. Likewieand T, will degenerate, when
regarded as plane transformations, and the plane tranafon<; will be determined.

The motionS can no longer be generated in stated way now.
A theorem that is entirely similar to the last aseonnected with the theorems on the
right above (pp. 18):

A dualistic transformation T is linked to any motion S that is not a cotaind when
it is applied twice in succession, it will generate the motion S:

S=T?2

() The transformationg,; and<, probably first appeared Bhasles(Bull. de Férussac, Sect. |, t. 14,

1831), and then iRodrigues (1840). However, both authors knew only the property @fdhmula that is
presented on the leftChaslesfirst considered (1843) the transformatibnbut without emphasizing the
property that is expressed by the equaSion T %, which is admittedly closely-related. We place special
weight upon these theorems, since they directly mettiateonnection with the theory of quadratic forms.
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Namely, let X, x once more be any pair of corresponding points, so titexpail be
associated with the normal plane of the chord xx and that plane, in turn, will then be
associated with the point xinder one and the same dualistic transformation Ih.
symbols [{), prev. page]:

x{T}u{T} x.

At the same time, the lineg and g’ of any ray-pair naturally correspond to the
associated normal axis, and the plangsv’ will correspond to the associated planes of
the associated central point under the transformafiamsi T .

If the motionS goes to a rotation then the transformatidrend T* will degenerate,
and the representation of the motthat was stated in the theorem will be unusable.

In addition to the transformatiori®;, <,, T, T, we have yet another remarkable

dualistic transformation to record, which is an involutwansformation:

Any motion S that is either an unscrewing or a tiotais linked with the dualistic
transformatior?y of a null system whose principal axis is the akithe screw S.

Under that transformation, one has a reciprocalrespondence between: Midpoints
and normal planes to a chord'xxniddle ray and normal axis of two associated f®in
sequences g, gand the middle plane and central point of twooassted point fieldsy
w.

An especially important role is played by the lineamptex that is linked with our
null system, which is then the locus of all lines tatthrough a chord midpoirk and
lie in the associated normal pla@e For that reason, it shall bear a special name: We
would like to call it the “middle complex” of the moti S We might express its
characteristic properties in two ways:

The middle complex is the locus of allThe middle complex is the locus of all
middle rays that are perpendicular to theinormal axes that are cut by their
associated chords. associated chords.

The middle complex is the locus of all lines that simultaneously middle rays and
normal axes for the same pair of associated p@qtiences g,'g

That definition does not depend upon whether the nulesy8y is or is not an
invertible, dualistic transformation. 2 degenerates then the same thing will be true for
the middle complex. In each of the two given cagesjll reduce to the totality of all
lines that meet the screw axis of the mot#®n Under a translation, in particular, the
middle complex will consist of all lines that are pergdeunthr to the direction of
translation. When no misunderstanding will arisemight be permissible for us to
represent the middle complex by the same 8ifiras the null system that it is coupled
with.

The cited theorems have a close connection withefiesentation of the moti@by
certain special motions. By considering them, well sliaive at not just a deeper
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conception of them, but also an essential extensioth@fknowledge that we have
obtained up to now.

Any motion S can be generateddfhiways| Any motion S can be generateddhways

by a rotation and a subsequent unscrewil by an unscrewing and a subsequent
The rotational axis is associated with theotation. The rotational axis is associated
unscrewing axis under the affinevith the unscrewing axis under the affine

transformation; . transformation¥,* .

It will suffice to give a thorough explanation for ttheeorem on the left.

If the motionS is not itself an unscrewing then one can choosereitie rotational
axis g or the unscrewing axig (i.e., the middle ray 0@, g') at will; the rotation and
unscrewing are then determined by that. Only the limefiaity can take the form of the
axis of rotation or also naturally the axis of the ueaang.

However, wherSis an unscrewing, the following peculiarities willsai

If one takes the rotational axgdo be a finite line that does not cross the screwraxi
of S perpendicularly then the associated rotation will reduoe the identity
transformation,g will coincide withn, and the associated unscrewing will coincide with
S However, ifg is perpendicular tem then the associated rotation will be completely
undetermined. The axig of the rotation unscrewings that correspond to theiootat
aroundg define a pencil of rays whose vertex liesmpand whose plane is perpendicular
to g. Furthermore, any line at infinity can now appear asattie of rotationg. The
associated translation will be undetermined. The unsisgeaxes@ that are associated
with the individual translations define a pencil of pkatays to which the axis
belongs, and whose plane is perpendicular to the platecontaingg. However, ifg
itself is perpendicular tq, in particular, then the axeg will all coincide withn.

Conversely, one can choose the agisof the unscrewing arbitrarily only from

amongthe lines that meet the axis The associated unscrewing will be undetermined in
all cases. Ih and @ subtend a finite angle then all of the associatediootl axesy

will define pencil of parallel rays that are perpendaciton and g. If nand g are
parallel, but not identical, then the associated rotatwilk be translations whose
directions belong to the plang ( n). Finally, if § coincides witm then eitheg will be
the line at infinity that is perpendicular 1@ and the associated rotation will be a
translation in the direction of, or g will be an arbitrary line in space and belong to the
identity transformation.

The last double theorem stands alongside the folloviiagrem:

Any motion S can be generatedsifiways by two successive rotations. The axis of
the first rotation corresponds to the axis of thecand rotation under the dualistic
transformation T.

In general, one can choose either of the two ratatiaxes to be finite or at infinity
arbitrarily. An exception to that is defined only by tlese in whiclSitself is a rotation.
Here, if one takes one of the rotational axes thaspeak of to be a line that does not



22 Study — On motions and transfers

meet the axi® of S (whenSis a translation, it will be a line that is not pergeular to

the direction of translation) then the associatectiat will reduce to the identity
transformation, and the other rotation will coincuwligh theSitself. However, when the
one rotational axis meets the lingthe associated rotation will be undetermined; the axis
of the other rotation will then belong to a well-eefil pencil of rays that also contains
the linen itself. Finally, if the chosen rotational axis cades withSthen one will have

to choose the associated rotation to either be aonttiat is different frons— in which
case, the second rotational axis will likewise coinewtt n — or the rotation that belongs
to the given axis isS itself — in which case, the axis of the other rotation will be
completely undetermined.

We will arrive at no-less-remarkable representatidrs motion that have a special
character from the representations that were disdulsere when we demand that one of
our special motions reduces to a reversal.

We might preface that with a remark that that rel&ean entirely arbitrary group of
such operations that can be ordered pair-wise as oppodites;, and S, are any two
operations of such a group then the prod&& and $S; will be on an equal status
within the group, or when expressed otherwise:

If S= S, [0 then one can also sBt § [5, andS= S OS], whereS, and S, and

S and S, have an equal status inside the group.

We will now point out the special cases of this immaggly enlightening general
theorem when emphasize the following facts:

When an unscrewing, together with| aWhen a rotation, together with a prior
prior (subsequent, resp.) rotation, generaf@sibsequent, resp.) unscrewing generated
the motionS the same unscrewing wilthe motionS the same rotation will also
also generate the moti@) together with a generate the motior§ together will a

subsequent (prior, resp.) rotation. subsequent (prior, resp.) unscrewing.
The angle of rotation will be the same|inThe height of the screw will be the same
both cases. in both cases.

If a rotation, together with another prior (subsequess$p.) rotation, generates the
motion Sthen the same rotation will also generate the motagether with a subsequent
(prior, resp.) rotation that has the same angle ofiootas the first one.

These basically self-explanatory remarks contagnetkplanation for the fact that the

structure in the following theorems that is denoted2fiy can be described in various
ways.

Any motion S can be generateddhways| Any motion S can be generateddhways
by a rotation and a subsequent unscrewiny an wunscrewing and a subsequent
rotation.
The locus of the axes of unscrewing is the middle complexThe locus of the
rotational axes is, in general, likewise a linear complBx whose principal axis is, in

turn, the screw axis of S.
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We come to this theorem in two different ways: Finst,start with the representation
of a motion by a rotation and an unscrewing and demandhbatinscrewing should
reduce to a reversal. Secondly, we start with tipgesentation of a motion by two
rotations and demand that the one rotation must beeasa. We will then have the
following special cases to distinguish:

1) When the motiors is an unscrewing, but not, at the same time, a rotatien
middle compleXyJ will reduce to the screw axig as we said. However, the rays of the

complexJ; will be the lines in space that are perpendicular, tand thus, the lines that

meet the line at infinity that is perpendiculamto
2) If the motionS is a rotation, but not, at the same, an unscrewing, tvo
complexes?2y, 20; will consist of the lines that meet the rotational axisIf S'is a

translation, in particular, then one will encountex geculiarity that the any rotation that
yields the motiorg, together with an unscrewing, will be itself a resadr

3) If the motionSis a reversal, so it is both an unscrewing and a ootathen the
last part of our theorem will suffer axception. Namely, the rotation that is called left
on the left, say, will either reduce to the identitgnisformation — so its axis will be a
completely undetermined line in space — or it will be gpraotation — so its axis will
meet the unscrewing axmsat right angles. The rotations that belong to #efiangle of
rotation will then no longer define a complex, now, baty a ray system of order one
and class one.

When we go back to the question of expression a motioa bgversal and an
unscrewing then we will raise our representation by lemel of generality when we
demand that the rotations that entered into the lastréim should reduce to reversals in
any case. That will then imply:

Any motion S that is not a translation can be generated?iways by two reversals
in succession.

The locus of reversal axes is a ray system of order one and claghatns the
intersection of the complexé¥, 20;, namely, the normal system to the axis of the

screwing motion S.
Any two associated reversal axes will subtend one-half the screw-Aagi® will cut
out one-half the height of the scremirom the screw axis n of S.

However, when the motio®is a translation, as was remarked, the rotationseiast
theorem will be reversals, in their own right; we tlges another theorem in regard to the
translations:

Any translation can be representedtinways by two reversals in succession.

The locus of the reversal axes is the linear complex that texndimed by the
rotational axes at infinity.

Any two associated reversal axes run parallel to each other. Thparation
distance is one-half the magnitude of translation in direction and absolute value

The important construction of the composition of salveiotions that was found by
Halphen andBurnside is founded upon the last theorems.
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The path by which we arrived at this theory is neideishort nor as convenient as
the one by whicH. Wiener arrived at his own theory. Our way of looking at things
would not be advisable then when one is dealing with justadlngposition of motions.
Meanwhile, the general properties of a motion from whichstegted are not of lesser
interest than its representation by reversals.

Moreover, as might be remarked incidentally, one cdmbé& a connection between
the two theories in another way. Namely, one canetbe theorems that were placed at
the summit of 8§ 4 and are the foundations of our furtheeldpments very easily with
the help of reversals. If one ignores the chronolofgvents then one can also regard
Chasles’s theorem as a further development in thegheof reversals.

In the theorems that were summarized here, it was/eahll, the unscrewings and
rotations, and secondly, the reversals and transtatloat defined the exceptional cases.
It deserves to be said that those special transfayngatan assume a special position that
emerges exquisitely in a comprehensive, analytical tesdtraf the subject. Without
going deeper into the easily-explained geometric detedsyould still like to emphasize
the following:

The sequence of points %, X, X", ... that is defined by the formula:

{SIX{S X{S X" ...

will not lie in a plane under a general moti&) and the sequence of planes'uuy u”,
... that is defined by the formula:

u{Su{Su"{Su" ...

will go through one and the same point just as rarely.

The points x, x X', X", ...will lie in a plane only when S is a rotation or an
unscrewing, and the planes u, u’, u”, ...will all go through a point in only those cases.
The aforementioned points will all lie along a line only when S is ersalvor a
translation, and all of the aforementioned planes will belong to the samé pelycin

that case, as well.

Naturally, we have assumed a sufficiently generalaehof the first poink and the
first planeu.

§ 6.
Continuation: The general case of a motion in space.

In the previous paragraph, we summarized a series ofidkeimportant theorems on
motions in space, while considering the exceptional cesapletely. We would now
like to explain the intrinsic connection between thtiseorems, along with various
considerations that are connected with that. Howewenyvould like to restrict ourselves
in that to general case, in order to not drift too fagldf We then expressly assume here
that the motion S is either a rotation or an unscrewing.
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One immediately convinces oneself that with that mgs$ion, the chord midpoints
will, in fact, be all of point space, the normal planéshe chords will likewise fill up all
of plane space, and that it will be precisely the wewtigs and rotations that define the
exceptional cases.

If we now consider three poirksx’, X" that are related by:

) x{S x{§ x’,

as well as the midpoints and X of the chordsxx andx'x”, resp., and the normal planes
T andU , resp. to those chords then we will have directly:

) %{S X and T{ST.

We can now define two affine transformatidhis <, by the formulas{ ¥1} X { T2} X,
and a dualistic transformatidnby the formulaq T} G. We then find directly that:

(3) X{Ta} X{ TP X{ T} X { T} X,
(4) XTHO{TIX{T}u {T}x",

which imply the formula$ = %1%, = %,%; = T2 SinceX andU are always incident, a
null systemR3 will be defined by the assignmert{ 20} T ; one will then have:

) X {20} T {20} X;
that immediately implies the remarkable theorem:

The two affine transformation$; and ¥, can be composed from the dualistic
transformations T andy:
(6) 1 =T, TL=WT.

When the dualistic transformatiodisand 20 are applied repeatedly in succession,

they will generate a group of infinitely many discretdlicear (in particular, affine) and
dualistic transformations whose composition will be egsped by the two symbolic
equations:

(7) W2 =1, T20 =wT?2

We now extend our figure by adding a pair of correspondaigt sequenceg, g'
that shall contain the pointsandx, resp. The middle rag of g andg then goes

through the chord midpoint , and the normal axié lies in the normal plan@. That
implies the further formulas:

HTT{THg,  olTrh{T}g,
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(8) _
g{w}h{w} g

From the theorems of § 4, the point sequancan be made to coincide wighby an

unscrewing around the axi, as well as by a rotation around the alxis The motiorS

can then be generated, firstly, by performing a certamion around the axgand then
an unscrewing around the axis, secondly, by the same unscrewing aroundand a

subsequent rotation around the agjsthirdly, by a rotation around the axg and

subsequent rotation aroumzd, and finally, by a rotation arouri?i, followed by a rotation
aroundg'.

Since any of the four lineg ¢, § ,ﬁ can be regarded as an entirely arbitrary line in
space, and since each of the aforementioned decompesiibS is determined

completely by that choice, all of those decomposititars be carried out ie* ways.
We will now obtain a decomposition &finto motions of a special character when

demand that either the unscrewing around the gxisr the rotation around the axis

reduces to a reversal. Both possibilities imply tgamust coincide withh in such a

way that their common line must go through the painand lie in the plan& or that it
must be a guiding line of the null syst@m i.e., a ray of the middle complex. The locus

of the associated rotational axgandg’ will then be naturally a linear compl@%, . We

can then complete a theorem that was stated in taopis paragraph (pp. 22) as
follows:

One and the same null systeli; will emerge from the null systefd by the
transformations3; ™, T,, T, T.

The guiding rays ofJ; are the axes of all rotations that generate the motion, in
conjunction with a prior or subsequent reversal.

(9)

— -1 - -1
{ W, =TI, =TWT, (w7 = 1),

2, =T, 0%, =T 0T,

If we letv andVv' denote the two planes through the poxéndx, resp., that emerge
from the normalll to the chordckx by the transformationg;* and¥, () then those same

planes will emerge from the chord midpoiitby the transformatioris * andT. We can
then now add the following formulas to (3) and (4):

(10) T} U{Tv{ T} U { T}V,
(11) v{T} x{T} v{T} X{T} V"

() In &5, we used the notatian for the normal to the chonk, and not the notatioR that is more
relevant to the present context, on grounds that widixpdained later on.
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The plane/ is then the normal to the chosdX , while O and U’ are perpendicular
to the other two sideX X and X' X of the isosceles triangl@ X X at the endpointX
and X . However, an important theorem that was pointedrothe previous paragraph
will follow from this: The plane/ is one of the two planes that bisect the anglesd®atw
U andU . [Cf., the addendum on pp. 63]

The points, X, X" are the null points of the planesv, v’, resp., in the null system
20, . We now extend our figure, in turn, when we add thépuihtsp, p', p”, resp., of

those planes in the null systeti. One will then have that, e.@), is the foot of the

perpendicular that is dropped fromor X to V, and, at the same time, the midpoint of
the chordx X . We then have the formula:

{20} v etc., {24 vetc,,
(12) XS 6 3.(XK5,.0
g% BEPE..0

One deduces the first half of the following theorenmiitdis:

The null syste5 will be taken to one and the same null sys#mby both of the

transformations?; and ,*, and its principal axis is, in turn, the axis dfet screwing
motion S.

(13)

20, =% 0%, =0T T 20,
{ 2 1 1 (anz - 1)

W, = TI0T," = T 0T,

In fact, the planed corresponds to the poirfi in the null systerJ, . When we go on
to the second half of the theorem, whose validiiynisediately self-evident, we remark:

The null system&J; and 20, will be switched with each other by the dualistic
transformation of the null syste?d. In symbols:

(14) 2090, = 20,27, 25,90 = 2090,

If we now consider all rays of the pencd, {), and thus, all guiding rays of the
complex2; that go througkx or lie inv — in particulartheline | that is, at the same time,

a guiding ray of the comple¥J (i.e., the connecting line of the poidsindp) — and we

correspondingly call the connecting lin€9 andx'p’, | andl’, resp., then we will come
to the representation dd by two successive reversals: In the first plaSesan be
generated by the reversal arourghd a subsequent reversal arolindand secondly, by
the reversal aroundl, followed by a reversal arourd It then follows from this thal

I, I”will meet one and the same line- viz., the screw axis & — at right angles and
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separated by the same distamgesuch that”and | , just like I andl’, will subtend the
same screw anglg, etc. At the same time, one will get the theorbat the linear ray
complexes27, 201, 20, intersect in one and the same ray system of ordeapdelass
one, namely, the normal system of the screw axihich will then be the common
principal axis of the three null syste®8, 20, 20> . For now, we shall not go into the
metric properties of the transformatiohs2y, etc., which are naturally linked with this,

or the associated rotations and unscrewings. In the neagrpph, we will make use of
only one known, simple theorem of that kind, which one migkdid about irReyes
Geometrie der LagéSection 2, Lecture 10).

~

IS IS

§7.

Groups of collinear and dualistic transformations
that are linked with a motion in space.

We will arrive at a deeper understanding of tleotly that was developed in 88 5 and
6 when we examine the totality of all motions thate the same screw axis, instead of
the individual motiorS that we have directed our attention to, up to n@us, certain
more general transformations that are likewiserdateed by the given screw axis will be
worthy of consideration, in their own right.

We first restrict ourselves to the general casd,thus assume that the screw axis is
finite.

All screwing motions around a finite axis n defanvo-parameter, continuous group
G, of commuting transformations.

Just as illuminating is the theorem:
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A one-parameter, continuous group @& affine transformations is determined by the
axis n, namely, the group of all affine transformation that fix the norysiém to the
axis n

One will obtain the general transformation@®f when one associates a poxin
space with another one in such a way that the connecting line meets the screw axis
n at a pointo, and that the ratimx : oX has a positive or negative valdethat is
independent of the position rf

Aside from the identity transformations, the groupsa@d G intersect in only the
reversalil around the axis n.

The transformations of Gand G collectively generate a three-parameter, simple-
transitive group G of commuting affine transformations that transform the normal
system to the axis n like the screwing motions of the greup G

One can associate any finite point in space that dutdgeron the axis with another
point with the same property arbitrarily; the most gehéransformationt of Gz is

determined in that way, and in fact uniquely. It can olslipbe put into the form:
(2) t=Br=tB,

as long a8 means a transformation &, andt means a transformation &, and in
fact that will be possible in two different ways. thfe one decomposition afinto a

transformation ofG, and a transformation d&; is represented by (1) then the other
decomposition will be = (B Lf)(4 t).

A family H of o' null systemsv is determined by the line n: viz., the totality of all

null systems that have the axis n for their principal axis.
These ' dualistic transformationst define a group, together with the

transformations of @G.

The first part of the statement follows from thetmeeproperties of the null system
20 that were mentioned in the previous paragraph. In orderowe the second half of
the theorem, we again letbe any transformation d&; . 20t will then be a dualistic

transformation that associates any point with a pkra goes through it, and thus,
another null system; as one sees directly, itlvala null system of the family;:

(2) o =Wr =1 2.

At the same time, that implies a remarkable propeftpw groupGi;, Hi: Any
transformation ofG; will commute with the inverse of any transformationHf ; in
symbols:

3) tro=wr, wr=rt .
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The special case af = 4 deserves special attention: The null systenwill be
associated with the familid; in pairs by the reversal, such that two associated null

systems will always be so-called conjugates (i.e., sydtems in involutory position);
two such null systems, together with will determine a group of three commuting

involutory transformations whenever two of those tramsédions yields the third one
when they are performed in succession.

Since the null syste®J and the transformationswill go to themselves under all
screws with the axis, it will follow that:

If one composes any transformatierof the family H with all of the transformations

of the group Gthen that will produce a family 4bf «? dualistic transformations. The
families G and H, in turn, define a group, and in fact a group of commuting
transformations.

In fact, if we letS andB denote any two screws around the axtben it will follow
directly that:
S[B Wr =SBt =B Wt [5

e [B W = SB =B 2t [(BE2Wr.

There arex’ families H, , corresponding to the' null systemsv = 2. If we
combine all of these families together then we wiltlfi

If one composes all transformations of the familywth all transformations of the
group G, or any transformationv of H; with all transformations of the groups@hen

that will produce a family klof «* dualistic transformations t. They will define a group,
together with the transformations o G

The general transformation of the fantly reads:
(4) t=Btw =1 B.

We now see how the transformations of the grdap Hs; behave under the
transformations of that group itself. We might nextptete a theorem that was already
pointed out in part, by applying the terminology that wasl UgeS. Lie:

The group G of the screws around the axis n is a distinguished subgroup of the
group G, Hs . In addition, the group & the group G, H;, and naturally also the group
Gs itself, are invariant subgroups.

If we then subject the transformations of the farkllyto the transformations @,
then they will be fixed. If we subject them to theng@rmations of5; then they will be
permuted with each other by a one-parameter group, anavitidde permuted with each
other in exactly the same way when we subject thernhdotransformations of; .
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Moreover, the transformations &3 will be permuted with each other under a one-
parameter (discontinuous) group when we subject them tdrahsformations of the
extended grou;, Hi, and they will be permuted amongst themselves in predbkely
same way by the transformations@f Hs .

The transformations of the family sHdo not generally commute; only the
transformations of one family Hvill commute with themselves. The familywill be
permuted amongst itself by the transformations p&ii@@l likewise the transformations of
Gz ; moreover, it will be permuted amongst itself under the transformatbi®, Hi,
and likewise the transformations o, ®ls .

The »' groups G, H, are then subgroups of the group, Gis that have the same
status.

The following theorem is now important in our presenitext:

The transformations of the group; Gan be associated with paitg, t; in a well-

defined way.
Any two elements of an associated pair will be permuted with eachuwtter all
transformations of the family#

(5) ut=tt, tt1=1t.

Moreover, t;'t, and t, t;' are (inverse) transformations of the groug @nally, whent;
and t, are performed in succession that will yield a transformation gf@mely, a

motion.
Conversely, one can decompose any screwing motion around the axis twanto

associated transformations of, @ ' ways

In fact, if one setsequal to any well-defined transformationttf and takes, perhaps,
the first of formulas (5) to be the defining equationshef associated transformations

t2 then one will find directly that:
(6) 1= 81/2 T, L= 81/2 t_l,

as long as$"? andr mean transformations &, andG; , resp.; one then easily infers the
remaining relations that were given in the theoremmfthis:

7, =0 G =1 it =t =S

If Sis given therS"? will naturally be only doubly determined; 2 is one value then
S"2 §1 will be the other one. One easily recognizes the ge@mmeaning of the

transformationst; andt; . Let xX be any chordX, its midpoint, and letl be the
perpendicular that is dropped froxnto the axis. Furthermore, let =r' be the distance
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between the pointsandx’ on the axis, and leto be the distance from a poiaton the
line | to the axisn. One will then have{ 1} x {tz} X, t1t =S The ratior : p will then
have a valuel that is independent of the position of the chotd If one takest = 1/ cos

JorA=-1/cosdaccording to the choice of motion tI&F refers to then the first part
of the theorem will follow:

The transformation&; and ¥, that were treated 88 5, 6are a pair of associated

transformations of the groupsG

Moreover, as was said, any two inverse transformation pfb&@ong together;
however, any transformation oG i.e., any screwing motion around the axis n — will be
associated with itself.

Finally, we deduce the following theorem from formul (

Any transformations of the familysiill produce a transformation of £&5-namely, a
motion —when performed twice in succession.

Conversely, any screwing motion around the axis n can be representéaviys by
repeating a dualistic transformation that belongs to the familyhidt is determined by n.

One will find all transformations of Hs that satisfy the equatiofi = S when one
associates any normhato the axisn with the normall that corresponds tbunder the

two transformation$"?, so a point of will now be assigned to a plane bf t will be
determined completely in that way.

Among the transformations of the family tHat generate a given screwing motion S,
one finds the transformation T that was considenegg 5, 6,in particular.

In fact, if , as we have done up to now, welgtdenote the null system that belongs
to the middle complex o§ and we letR denote the transformation & that satisfies
the two equations:

(7) T, =S8R, T,= SR
then we will find directly that:
(8) T=5"9%w =93 "R,

at the same time, that will imply anew the theorbat tvas already proved in a different
context:

Not only will the null systerlJ belong to the family Hthat is determined by a
screwing motion S of the group,,Gut also the null systemi¥i; and 20, that were
discussed g8 5, 6.

On the basis of formulas (9) and (13) of § 6:
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(9) 20, = R =WRZ,
(10) 20, = W K> =R .

If we no longer think of the axisas being given, as we have up to now, but a motion
Sof the groupgs; then we will come to the same results, in genefak axisn, and thus,
the entire system of grou, Gy, Gs, GiH1, GoH», GsHs, will then be determined b
However, special behavior will occur wh&mgoes to dranslation since the axis will
then be undetermined. In that case, our constructioh yidlld o' different
decompositions oS into two associated affine transformatioist,, and likewiseco®

dualistic transformationsg that will generateS when they are performed twice in
succession. Among the? groupsG, that contain a given translation, one will fird
groups, in particular, that consist of nothing by trarstst In that case, the gro@g
will be the group of all translations, but the transfations of the familyHs will
degenerate.

We might extend the considerations that were jusudssd in yet another direction,
by asking when the grouf, consists ofall motions that commute with a certain
transformatiorS of G, .

It is easy to decide the conditions under which mationsS andB will commute.
Let Sfirst not be a translation, so the axis of the sdBemust go to itself undes; i.e.,
the axis ofB will either be identical with the screw axis §f or it will be the line at
infinity that is perpendicular to it, @ will be an unscrewing, and the axis®Wwill meet
the axis oB. If that happens at a point at infinity thBrwill be a translation, an8 and
B will not commute; if it happens at a finite point th®andB will be reversals whose
axes intersect perpendicularly. 3fis a translation the® will likewise either be a
translation or one will come back to the case W treated already by switchiSgand
B. One will then have the theorem:

If two motions S and B commute then either they will be translatiotisewmill both
be screwing motions around the same axis n, or finally, S and B wiMeesals around
two axes that intersect at right angles.

In the last case, the composed transformation wilalmew reversal around a third
axis that is perpendicular to both of them.

The last theorems now imply the answer to the questiat was posed before.

If Sis either a reversal or a translation then thetkbeia family ofe? motionsB that
commute withS, they define the continuous gro@ . However, ifSis a reversal then a
second family ofo? motionsB (reversals) will come about that will once more define
group, together witks, . Finally, ifSis a translation then there will b& motionsB that
commute withS which define a continuous group, namely, the group of adwsng
motions with the same axis direction [Cf, § 9, pp. 39, 2)].
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§ 8.
The chord complex. Infinitely-small motions.

We now return to the considerations of § 6, in ordespiecialize in another direction
the decomposition that was made there of a m@imbto an unscrewing and a rotation or
two rotations.

Here, as in 8§ 6, we assume tBasg either a rotation or an unscrewing.

One immediately convinces oneself that the totalitglafrdsxx defines a manifold
of «® lines, namely, a (special tetrahedral) quadratic ray &that can just as well be
defined to be the locus of the planes that correspondés of intersection, or the locus
of lines that are cut by the lines that are associatédthem byS™ orS We would like
to call that complex thehord comple»of the motionS. Without going further into the
otherwise remarkable properties of that complgxvie would like to pose the question
of what sort of peculiarities that the rotations and rewmgs that were treated in § 6
will take on when one of the lines that were denotedy,by, g, h is a ray of the
complex.

If we let, say, the lineg that goes through the poimtcoincide with the chorox

then the liney, g, and h wil, at the same time, be rays of the chord compl&hat is

obvious forg andg'. However,ﬁ belongs to the chord complex as the middle ray®f th
intersecting corresponding point sequenogs@) and @, V). S can be generated:
Firstly, by an unscrewing arourgl and a prior rotation arourglor a subsequent rotation

aroundg’. Secondly, by an unscrewing aroundand a prior rotation around,(T0) or a
subsequent rotation around (V). Thirdly, by a rotation arounfi and a prior rotation
aroundg or a subsequent rotation arougid Finally, by a rotation around and a prior
rotation around\{ u) or a subsequent rotation arourd, (V). (Cf., also 8§ 4, pp. 12)
Thus, § will be perpendicular tov( @), h, (T, V), and likewise, h will be
perpendicular t@, g, 9. We then come to the following theorem, which includaes
extension of the considerations that were presentg@djrb.

The motion S can be representedeift ways by an unscrewing and a prior or
subsequent rotation in such a way that the unso@akis and rotational axis intersect.

Moreover, the motion S can be decomposed®imays into two successive rotations
whose axes cross at right angles.

The locus of rotational axes, like that of thearaging axes, is the chord complex in
either of those cases.

That ray complex will then go to itself under eadhhe affine transformations;, <-
in such a way that any two associated rays will inttrsend it will go to itself under

() Cf., Schonflies Geometrie der Bewegunchap. 3, § 7. (pp. 109).
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each of the dualistic transformatioms2y in such a way that any two associated rays

cross at right angles.
The rays of our complex that lie in the plame- namely, the connecting chords of
corresponding points of the lines, (@), (T, V) — envelope a parabola whose vertex

tangent is the middle rai of the point sequences, (U ) and @, V'), and whose focal
point is the poink. The principal axis of the parabola is the linehat was considered
in a § 6, which was an angle bisectorwft{) and @, V).

We shall not go further into the special circumstantésigtime. It might suffice to
stress that the chord complex will decompose intodpexial linear complexes under the
transition to an unscrewing or a rotation — namely, gt system of the screw axis
and the secant system of the line at infinity that rp@adicular to it — and that one must
regard as chords in the narrow sense, in the first oaethe secants of the unscrewing
axis, and in the second case, the lines that are pecpéardio the rotational axis. A
special position is therefore assumed once more hetleesals and the translations.

Let a finite axisn be given and any non-degenerate null syst8rihat has the lina

for its principal axis. Letx be any point that does not lie anand letT be its null
plane relative t@Y; finally, let s be the perpendicular to the planethat is erected at the

point X . If we now choose any point-pair X on s whose midpoint isx then we can
define a screwing motion with the axidy the formulax{ S} X whose middle complex is
the given complefJ, and whose chord complex contains thegaif we choose another

pointx ons then the formulad t}x will define a transformatiom of the groupG; that

was discussed in the previous paragraph. If we now sulbegbdint-pairx, X' to all
transformations of5; then we will obtain all point-pairg, y' that are associated with
each other by the motidd(viz., y{Sy'); all rays of the chord complex will then emerge
from s by the transformations d®; . If we further subject the point-pair X to all
transformations 063 then we will likewise obtain all point-pairs y that satisfy the
conditiony{t}y .

We can consider the rathat is employed in this construction to be an arbithiagy
in space. Namely, #is given then one will find the poirt directly as the foot of the
shortest connecting line of sandn; U will then be the plane of the axls, which is
perpendicular t@, however, the null system will be also known withtth

We can then formulate the following theorems:

Let n and s be any two finite lines in space thdtee intersect or cross at right
angles. If one then subjects the line s to alhsfarmations of the groupsGhat is
determined by the axis n then all rays of a certpiadratic complex will arise from s. It
will be the chord complex for a continuous famiy«d motions that all have the axis n
for their screw axis, and which belong to one @mdame middle complex.

The quadratic ray complex is, moreover, the locdisthe connecting lines of
corresponding points and the lines of intersectioh corresponding plane for a
continuous family ofo® transformations of the groupsGto which, thoseo® motions
belong).
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In addition, when we partially invert our theorem andiplete it, we will find that:

A given linear complex is the middle complexobfmotions that all have the same
chord complex.

Those motions define a continuous family (but not a group), in general. waly
the given complex consists of lines that cut a finite axis nthv@lifamily of associated
motions, namely, into the rotations and unscrewings around the axis.

The unscrewings will drop out when one shifts the axis infinity; one will once
more obtain a continuous family of motions that dodedine a group.

As is known, the special case of that theorem thatast meaningful is one that was
discovered byidbius, which we might formulate as:

Any linear complex is linked to an infinitely-small motion whose midaotheplex is
that complex, and conversely.

It is not our intention to devote an in-depth pres@madf the sufficiently-known
theory of infinitely-small motions; we refer to théorementioned treatise of Chasles and
to the interesting work d¥lannheim, Ball, Schonflies and others that is connected with
it. In order to ease the transition, and likewise ptepare for our own further
considerations, the following might be mentioned:

If we go from a finite motiors to an infinitely-small one (perhaps by establishing the
middle complex) then the dualistic transformatiowill approach the null syste@y. In

the limit, the points that we denoted xyX , X' will coincide, and likewise, the lineg
0,9, thelinesy, T), (T, V), and its middle ray, and finally, the planesi, V. If one
then represents the infinitely-small motion by two sasoe rotation then their axes will
correspond reciprocally in the null syste¥fi; the associated rotations are themselves

infinitely-small, and therefore commute (when onekpat only first-order quantities).

One can think of any infinitely-small rotation as beiogigled with &orce or aline
segmentin theGrassmannsense, when one measures out a segment along thenaltat
axis that is proportional to the angle of rotatiomhe positive direction, as determined by
the sense of rotation. If one represents any smaltiontas a sequence of two
unscrewings then one will see that rotations whose sersect will be combined when
one adds the associated forces or line segments gewatietri That will yield the
representation of an infinitely-small motion by the getim sum of two forces or line
segments, and the very important theoremMitius discovered:

Infinitely-small motions will be combined accorditggthe same rules as systems of
forces.

Any infinitely-small motion will generate ane-parameter groumf motions by
“infinite repetition” whose paths are helices, cir¢les straight lines. The ratio of the
height of the screw2to the screw angle2is constant for all transformation of such a
group.
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One can easily find all infinitely-small motions thggnerate a given finite motid®
or all one-parameter groups to whisbelongs.

If Sis not a rotation then one will obtain infinitely-madyscrete groups that all
belong to the screw axis & If Sis a rotation, but not a translation, then there bal
only one infinitely-small motion that generat&s Finally, if Sis a translation then one
will get infinitely-many discrete families 06 one-parameter groups that each corfain
All of those families will intersect in the one-parater group of translation th&
belongs to.

§0.
Continuous groups of motions.

It is easy to find all groups of motions that are geeeraby infinitesimal
transformations, not only by the methodsSofLie, but also with the tools of elementary
geometry. Since we will have to speak of those groupassamtally in the next section,
we will carry out the solution of the stated problemehariefly.

One addresses all possible ways of combining the one-pamagroups of motions
that were discussed in the previous paragraph into contifamikes such that every
family again defines a group.

We first determine the subgroups of the groupnudtions in the planewhile
remarking that the presence of two infinitely-smalltimas will not imply the presence
of all motions in a group of motions when the midpointust jone of them also lies at a
finite point. There are then only three types of subgroups

1) The group of all rotations around a finite poinf groups with the same status).

2) The group of all translations in a given direction if{iimy case of the previous
one, o’ groups).

3) The group of all translations (a two-parameter imrdrsubgroup of commuting
transformations).

Secondly, if we consider the group of @tations around a fixed point in spatien
we will likewise find that there is only one type ofgbesubgroup, namely, the group of
all rotations around a fixed axis through that point. Theleagain bew? such groups
with the same status.

Now, in order to find the subgroups of theotions in spacewe observe that an
isomorphic groupG' will emerge from any such grou@ when one replaces any
transformatiorsS of the group with a rotatio8” around a finite fixed point whose axis is
parallel to the axis dband whose angle is equal to the angle of rotatid®h dfrom what
was just said about the rotations around a fixed point, welees distinguish three main
cases:

A) The directions (i.e., the points at infinity) arartsformed by zero (i.e., not at all).
B) They are transformed by a one-parameter family.
C) They are transformed by a two-parameter family.

A) leads to the directly-specifiable group of translation
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B) The groupG in question consists of screwing motions whose axealbparallel
to each other. We consider that a plartbat is perpendicular to the screw axis will be
transformed by the permutation of its normals throughtridmesformations o6, by way
of an isomorphic groui” that contains at least one proper rotation. Fromt wies
previously said about the motions in the plane, the afenéioned isomorphic grou@”
will then be either one-parameter or two-parameterit i$f one-parameter the@ itself
will be either one-parameter or two-parameter, sinceyetransformation ofs can be
composed of a transformation @f and a translation that is perpendicular to the p&ane
We then obtain two groups: A one-parameter group of scgemwmtions around an axis
n, and the two-parameter group of all screwing motioosrad the axis.

If G" is three-parameter the&d will be three-parameter or four-parameter. We first
assume thaG is three-parameter, and & denote any one-parameter subgrousof
that corresponds to a gro@ of proper rotations iG". We will then already obtairn®

transformations o6 when we subjedB; to all of thew? transformations o6 itself that
correspond to translations @&'. However, since every screwing motion goes to itself
under translations in the direction of its axis, onel wibme to the sameo®
transformations when one subjects the grGupo all translations that are parallel to the
plane €. It follows from this thatG consist of all screwing motions whose axes are
perpendicular to the plang and whose screw heightg have a given ratio with the
screw angle 2. — If we assume th#&s is four-parameter the@ will consist of nothing
but all screwing motions whose axes are perpendicutlietplanes.

C) Any prescribed direction will be associated withegtst one one-parameter group
of G whose axis has that direction. We next assert@Ghednnot contain any infinitely-
small translation. Namely, the appearance of one wounfuly the presence of all
remaining translations, since thé directions (i.e., their points at infinity) would go to
each other under the transformationssoh the most general way. However one would
then directly obtain a rotation for any prescribeddioas of axis, and thus, all motions in
space, moreover, with aid of the translations.

We now consider two one-parameter gro@sand G, of G whose axes andn’

cross or intersect at right angles. If we subjggctto an unscrewing that is contained in
G, then a new grougss, will arise whose axis1” is parallel ton'. If the linen” were
different fromn’ then one could derive an infinitely-small translatioom G, and G/ ;

n" would then coincide witm'. However, that would be possible onlynfand n’
intersected, and iG; were the group of all rotations around the axisNaturally, G,

would also be a group of rotations then, &dself would be the group of all rotations
around the point of intersection mfandn’.
With that, we have found all (real) groups of motionattlare generated by
infinitesimal transformations. We summarize themefty. [Cf., pp. 63].
Six-parameter groups.
1) The group of all motions.

Four-parameter groups.
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2) The group of all screwing motions with parallel axe€. groups with the same
status.

Three-parameter groups.
3) The group of all rotations around a finite poist: groups with the same status.

4) The group of a screwing motions with parallel axeswioich the ration : & of
the screw height to the screw angle has a constare kac® groups, of whichg? have
the same status, correspond to the different valués @&ny of them will be invariant
under a group of type 2). Fkr= 0, one will get:

4b) The group of all rotations with parallel axes or theugr of all rotations around a
point at infinity, which is a degeneration of type 3).

5) The group of all translations, which is then a group oimmuting
transformations. It is invariant in 1) and 2); it is kee a limiting case of the groups of
type 4) that corresponds to the vakue .

Two-parameter groups.

6) The group of all screwing motions around a finite axis® groups of commuting
transformations that have the same status.

7) The group of all translations that are perpendicolar given direction, which is a
degeneration of type 6y0? groups with the same status. Each of them is invariaterun
a group of type 2) and under all of its three-parameter supgr

One-parameter groups.

8) The group of all screwing motions around a finite axi®r which the ratiay : 4
has a constant valle «° groupse” of which have the same status. ker0, one gets:

8b) The group of all rotations around an axis

9) The group of all translations in a given directivhjch is a degeneration of 8) or
8b). o groups with the same status. Any of them will be distifgdsin a group of
type 2).

It might be left to the reader to find the subgroupthese individual groups, make it
clear how they are permuted with each other, how thegpof space behave under them,
etc.
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§ 10.
Transfers in space.

Every transfer can be represented by a reflection in a plane and a prior
subsequent rotation around an axis that is perpendicular to that plane. In gethetal,
will happen in only one way, but in special cases, there wikbeays. [cf., pp. 563].

We call the plane of the reflection tieiddle plane the axis of the rotation, the
rotational axis and its point of intersection with the middle platies midpoint of the
transfer. As the theorem says, these structuresllgpeesent just once, in general. For
points of the middle plane, the transfer will reduce tanotion (viz., a rotation). If one
performs a transfer twice in succession then one natl obtain a general screwing
motion as a result, but only a rotation.

Corresponding to the cases in which the transfer goe@stranslation, the identity
transformation, or a reversal for the points ofnigldle plane, we will now have the
following special types of transfers in space to poturit

The«° transfers with midpoints at infinityThese are characterized by the fact that
they transform the points of the plane at infinityatutorily. In general, no finite point
will be fixed by a transfer with a midpoint at infinity; \Wwever, those transformations
include:

The «® reflections in the planes in spaceAll points of the middle plane are
individually fixed by such a reflection. Any plane throuthffe midpoint is a middle
plane, and any line through the midpoint is a rotationad; dke associated rotation is a
reversal.

The reflections in the points, together with the sfations, define group that is an
invariant subgroup of the group of all motions and trangfiespace.

The reflections in the planes and the reflectionthe points collectively make up the
totality of all involutory transfers in space; as wesatly remarked, both of them have
similar properties. Along with the theorem that wassriulated to begin with, one poses
yet another one that reads similarly, but generallysdu® have the same domain of
validity:

A transfer can, in general, be represented by a reflection through agwing prior
or subsequent rotation around an axis that goes through that point. In fact, that will
happen in either one @® ways.

The only exceptions are the transfers that have no finite midpoint;ctir@yot be
represented in that way.

In fact, for a general transf& the point of reflection will be the midpoint of the
transfer, but the axis of the applied rotation will agé the aforementioned rotational
axis of the transfer. Let:2be the rotational angle, but lef2be the angle of the rotation
that one must apply when one employs the reflecticthé middle plane, instead of the
reflection in the midpoint, so the relatigh- $’= R will exist between the two angles. If
one shifts the midpoint of the transfer to infinity nhthe present representation will
become impossible, except wh8mgoes to a reflection in a plane, in particular; int tha
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case, one will have? decompositions o, for each of which the applied rotation will be
a reversal# = R). Finally, if Sitself is a reflection in a point then the rotatioaails will
indeed by undetermined, but the rotation itself will reduddéadentity transformation.

As we did before in similar cases, we now once ngorsider the midpoint and point
at infinity of the chordkx, as well as the angle bisector of the planes thangeo the
pairu, u'.

Under a transfe$, the locus of the chord Under a transfef§ the locus of normal
midpoints, the middle rays of anylanes to the chords, the normal axis of any
corresponding point sequences, and finallyyo corresponding point sequences, and
the middle planes of any twdinally, the central points of any two
corresponding point fields will generally beorresponding point-fields will generally
a plane, namely, the middle plane of {H® a point, namely, the midpoint of the
transfer. transfer.

Only whenS is a reflection in a point will Only whenSis a reflection in a plane will
the locus of all these structures be a pqitie locus of all these structures be a plane,
namely, the point of reflection. namely, the plane of reflection.

The points at infinity of the chords generally fill upetentire plane at infinity.
However, they will fill up a line when the transfertiee composition of a reflection in a
plane followed by a translation. Finally, they coincide single point when the transfer
goes to a reflection in a plane.

The two angle bisectors of a plane-paiu’ once more differ by the properties of the
projections of the congruent point-fields that lieuiandu': Those projections behave the
same for thengle bisectors of the first kingvhile for theangle bisectors of the second
kind they behave differently under affine transformatiomsturally, in both cases, they
will both have the same area. (Cf., 85, pp. 18)

The angle bisectors of the first kindThe angle bisectors of the second kind
generally fill up the bundle of planes thagenerally fill up the bundle of planes that
belongs to the midpoint of the transfer. | belongs to the point at infinity on the

Only when that point is undetermined rotational axis.

i.e., when the transfer goes to a reflectioronly when that point is undetermined —
in a plane — will an exception occur: All pf.e., when the transfer is a reflection in a
the aforementioned planes will coincidpoint — will an exception occur: All of the
with the plane of reflection. aforementioned planes will coincide with
the plane at infinity.

The consideration of chord midpoints and normal plaoeke chords, as well as the
angle bisectors of associated planes, are also dmwhedth the theory of certain
collinear and dualistic transformations, which are, aewhiyt defined, not for all of
space, but only for the rays and planes of the midpahtbe transfers (the points at
infinity on the rotational axis, resp.), or, what geffigr@amounts to the same thing, for the
points and lines of the plane at infinity (the middlenglaf the transfer, resp.). Of the
various garments that one can dress that theory irsha# choose one that seems most
convenient for our further exposition.
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Two affine transformatior] and ¥, are linked (from 8§ 2) with the points and rays
of the middle planen of any transfe6that is not a reflection.

We choose the poinis X, X and linesh, h, h' of the planam, corresponding to the
conditions:

XX G X, N3RS,

resp., and leg, g denote the lines that are perpendicular to the ptaaex, x, resp., and
let o denote the plane ih that is perpendicular tax The linesg andg’ will then be the
respective loci of the endpoints of all chords that the& midpoints aix , and the lines
h, h" will be the loci of all pairs of associated planes!’, resp., whose angle bisector of
the first kind is the plana .

The following corollary to these theorems is of gieghificance:

A dualistic transformation T is linked with the sagnd planes through the midpoint o
of any transfer S that is not a reflection in arm@a That transformation will associate
any line g through o with the common normal plamalt chords that belong to g;,gand
that plane itself will again be associated withe tlay g that corresponds to g under the
transfer S.

The rays and planes through the points o will berpred by the transformation T
that arises from performing T twice as they ardh®ytransfer S.

If Sgoes to a reflection in the midpomtheng andg’ will coincide, and the rag =
g will be perpendicular to the plane that is associatgd v T is then an involutory
transformation, namely, the association of poles patars relative to the so-called
absolute cone through the poiat If S goes to a reflection in a plane th&nwill
degenerate.

Along a train of thought that is entirely similar tbet one that was followed
previously in the theory of motions, we now come tottia@sformationss; , ¥, of the

planem, and starting with the transformatidnof the bundleo, to the decomposition of
the transfeiS into special motions and transfers in a way thatasengeneral than what
was formulated in the theorems that were formulatedeabeginning of the paragraph.

Any transfer that is not a reflection in|aAny transfer that is not a reflection in a
plane can be generated #f ways (buto® | plane can be generated #f ways (buto®
ways for any reflection in a plane) by| aays for any reflection in a plane) by a
rotation and a subsequent reflection in eeflection in a plane and a subsequent
plane. rotation.

The rotational axis and the plane of The plane of reflection and the rotational
reflection go through the midpoint o of thexis go through the midpoint o of the
transfer. The first one will correspond fdransfer. The first one will correspond to
the second one under the dualistithe second one under the dualistic
transformation T of the bundle o. transformation T* of the bundle o.

If the plane of reflection of both decompositionshie same then the rotational agis
in the theorem on the left and the rotational axisn the theorem on the right will
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correspond under the transf& the associated rotational angles will be equal and
opposite to each other. His itself a reflection in a plane then the rotatawoundg, ¢

will again either reduce to the identity transformatiGn which case,g will be
completely undetermined) grandg’ will coalesce into a line in the plane of reflectio
they will correspond to an undetermined angle of rotatidrs is a reflection in a point
theng andg’ will likewise coincide; the associated motions wilthhde reversals.

Any transfer that is not a reflection in|aAny transfer that is not a reflection in a
point can be generated m® ways (buto® | point can be generated m® ways (buteo®
ways for any reflection in a point) by |avays for any reflection in a point) by a
rotation and a subsequent reflection in eeflection in a point and a subsequent
point. rotation.

The point of reflection lies in the middle plane, and the rotational axis
perpendicular to that plane.

The point of intersection of the middleThe point of intersection of the middle
plane and the rotational axis correspondglane and the rotational axis corresponds
to the point of reflection under any affinéo the point of reflection under any affine
transformation®; of the middle plane thattransformation T, of the middle plane

is determined by the given transfer. that is determined by the given transfer.

The angle of the rotation that corresponds to therém on the left and that of the
rotation that corresponds to the theorem on the righbath equal to the angle?2hat
was defined above; they will then be independent of theadpgpe of decomposition
that is carried out.

If the transferS is a reflection in a plane then the rotational axiB always go
through the point of reflection; the associated rotatwihbe a reversal. I5is itself a
reflection through a point then each of the applied imtatwill be a translation; the
associated reflection point will be an arbitrarily-présed point in space.

Any transfer that is not a reflection in|a Any transfer that is not a reflection in a
point can be generated m? ways (buto® | point can be generated m® ways (buteo®
ways, for a reflection in a plane) by |avays, for a reflection in a plane) by a
screwing motion and a subsequemeflection in a plane and a subsequent
reflection in a plane. screwing motion.

An unscrewing axis lies in the middle plane and the plane of refleatibrbe
perpendicular to that plane.

The line of intersection of the middleThe line of intersection of the middle
plane and the plane of reflectiopplane and the plane of reflection
correspond to the unscrewing axis undeorrespond to the unscrewing axis under
any affine transformation¥,™ of the| any affine transformatiorg; of the middle

middle plane that is determined by thelane that is determined by the given
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given transfer. | transfer.

The unscrewing axis and the plane of reflection thelstehxd a constant angle,
namely, the anglé&’ (-4, resp.). If the plane of reflection is the sameldoth kinds of
decomposition then the associated unscrewing axes thaspond to each other under
the transferS will go to each other under the reflection. (One sthazdmpare the
conclusion of § 3.)

If the transferSis itself a reflection in a plane then the unscrewwme applied will
reduce to a reversal in both cases. The plane otteflewill go through the reversal
axis. A representation of the reflecti@will then arise that is also included in the
expression fo6in terms of a rotation and a reflection.

If Sis a reflection through a point then the unscrewing &xli go through that point.
The plane of reflection will be any plane that is pecpeular to the unscrewing axis.

Along with the three double theorems that were predeotae can finally pose yet a
fourth one that deals with the decomposition of a tearfsfinto a reflection through a
point and a prior or subsequent unscrewing. However, ttidrem has a special
character. Namely, such a decomposition is obviouslyilgesenly whenS has a
midpoint at infinity, when the points of the plane ainity are transformed involutorily
by the transfeB, but then the decomposition can be effected’iways inall cases. The
point of reflection is an arbitrary point in space.eTinscrewing axis is perpendicular to
the middle plane. Its distance to the point of reitiects equal and opposite (equal,
resp.) to one-half the magnitude of the translatioh ¢hancides with the transfes for
the points of the middle plane. The height of the wewiry is equal to twice the
distance from the middle plane to the point of reftacti

We now consider some special cases that are nankesssting than the general
theorems.

If we represent the transf& in one case, by a rotation and a reflection in a plane
and in the other case, by a unscrewing and a reflecti@anplane, and demand that the
rotation or the unscrewing is a reversal, in particulzn we will come to the following
theorem in both cases consistently:

Any non-involutory transfer can bhe Any non-involutory transfer can be
represented imo® ways by a reversal and [arepresented iro® ways by a reflection in a
subsequent reflection in a plane. plane and a subsequent reversal.

The reversal axis and the plane of reflection go through the midpoihe dfansfer;
the reversal axis lies in the middle plane and the plane of reffediperpendicular to it.

The reversal axis and the plane of thelhe plane of the reflection and the
reflection subtend a constant angle &f | reversal axis subtend a constant angle of
viz., one-half the angle of the rotation tha#’, viz., one-half the angle of the rotation
generates the transfer, along with ththat generates the transfer, along with the
reflection in the middle plane. reflection in the middle plane.

The theorem reads somewhat differently for the umasy reversals (cf., pp. 40,
above).
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Every reflection in a plane can beEvery reflection in a plane can be
represented iro® ways by a reversal and [arepresented ino? ways by a reversal and a
prior or subsequent reflection in a plane.| prior or subsequent reflection in a plane.

The plane of latter the reflection |is The axis of reversal is perpendicular to
perpendicular to the plane of the givethe plane of the reflection; they intersect at
reflection; both planes intersect in the axige midpoint of the given reflection.
of the reversal.

The decomposition of a transf8rinto a reversal and a subsequent reflection in a
point, or into a reflection in a point and subsequewmensal is once more possible only
whenS has a midpoint at infinity, but always #f ways then. (Cf., pp. 44, above.) Sf
is involutory, in addition (viz., a reflection in a p&nthen each of the? reversals will
commute with the associated reflection.

Finally, we can specialize our general theorems in gmbther direction by
demanding that the theorem on the left must agree hatlhheorem on the right in every
case,; i.e., that the two transformations into wiSdecomposes musbmmute.

If we start with the representation by a rotation and a reflection in a plane then
we will come to the first theorems that were algeadpressed at the beginning of this
paragraph, and if we start with the representation oyadion a reflection in a point then
we will come to the second one. We will once mdraim a special result when we link
the representation &with an unscrewing and a reflection in a plane:

“Any non-involutory transfer with a midpoint at infinityan be represented "
ways by a reflection in a plane an unscrewing that cot@snwith that reflection. The
plane of reflection is perpendicular to the middlenplaf the given transfer, as well as
the direction of the midpoint at infinity; it interdsche middle plane in the unscrewing
axis. The height of the unscrewing is identical to nfegnitude of the translation to
which the transfer reduces for the points of its mighdgene.”

By contrast, if a transfer is involutory — i.e., ifgibes to a reflection in a plane — then,
as we already saw before, there willdserepresentations of the kind that were given in
the theorem. The associated unscrewings will reduoeversals.

Finally, a transfer is representable by a reflectioa point and an unscrewing that
commutes with it only when it is itself a reflectiona plane:

“Any reflection in a plane can be representesbiways by a reflection in a point and
a reversal that commutes with it. The reversal axigerpendicular to the plane of the
given reflection and intersects it in the associat@tpoint of the reflection.”

This result was also stated before in another gonte

The theorems that were developed in the present paragedhinpossible for one
to compose two or more motions and transfers. We &mle it to the reader to
illustrate these constructions, which can be accoimgaisn various ways.
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§11.
Continuation. — Addenda to the theory of motions.

Part of the content of the theorems that were Idped in 8 10 can be put into
another form that is more expedient for many purpases;once more arrives that the
composition of rotations and unscrewing into two refleio their own right. We then
come to solution of the problem:

Decompose a given transfer into three successive reflectionsposaible ways.

First of all, the following theorem emerges from tinst of the double theorems that
were pointed out above (pp. 42):

Any transfer can be decomposed into three successive reflectiormnas ph space
in 00® ways, or if it is a reflection in a plane, i ways.

Conversely, if the transfeé® is given by a succession of three reflections in gdan
then the intersection of those planes will be the midpof the transfer. The middle
plane, the angles, 4, etc., can also be found directly by a constructian tlorresponds
precisely to the construction of the succession adethieflections in the plane that was
given in § 3.

If the three planes of reflection intersect perpemdity thenS will be a reflection in
a point; if they belong to the same pencil tianill be a reflection in a plane.

Any transfer can be decomposed into three reflections imays, oreo?, or if it is a
reflection in a point, of which, either the first, the secondhwdtone will be a reflection
in a point, while the other two will be reflections in planes.

If we letS,, S/, S be reflections in the points y, z resp., and if we likewise denote

the reflections in the planas v, w by §,, S, , Sy, resp., then we will have three
representations for the transtof the following form:

$=555 S=S55. S=§%5

These formulas give us the link to the double theorems od42pnd 43; namely, if we
combine two successive reflections in the following way:

S=S(8 9. S=(8%) 3

then we will come to the representation of a tranbfeia reflection in a point and a
rotation; however, if we compose two reflectionsstfiaccording to the formulas:

S=(S%) % S=(83) %
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and then according to the formulas:

S=38(8 9. S=38(%8, 9.

then we will come to the representatiorSddy a reflection in a plane and an unscrewing.
Conversely, we will easily find the midpoint, the midglane, etc. of the transf&
whenSis defined in the given way by a succession of threeatidins.

V2

Wy

Let, e.g.u, y, andw be given such th&8=S,S,Sy ; we then lek andz, in particular,
denote the feet of the altitudes that are dropped yrtoru andw, resp., and le; andv;
denote the planes through the paojrthat are parallel ta andw, resp. One will then

have, at the same time:
S=S538 % S=83% S

The planexyzis the middle plane of the transfer, but the midpointill be found as
follows: One connects the poirtin the middle plane with the traeeof the line ¢1, w)
and the poinz with the tracec of the line (i, v»). One then erects perpendiculars to both
of those connecting lines atandz, and in addition draws the lines andczto a andc,
resp., at the anglé (the planesu andv at an angle of -9, resp.), as is shown in the
accompanying figure. The four lines thus-constructed willgough the midpoind of
the transfer. At the same tinié,xoa= [ cozis one-half the angl& of the rotation that
generates the transfgralong with the reflection in the plargz

If the two planes of reflection are parallel in anytleé three decompositions th&n
will be a reflection in a point. If both planes go tigb the point of reflection, and if
they are perpendicular to each other, in addition, $heill be a reflection in a plane.

One will again obtain theorems of a special charagtem one requires a transfer to
decompose into three successive reflections, at leastofwwhich are reflections in
points:
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“Any transfer with a midpoint at infinity can be decompadsn «* ways into three
successive reflections such that either the firstsgéo®nd, or the third one is a reflection
in a plane, while the other two are reflections in @int

In all cases, the plane of reflection is paraltetlie middle plane of the transfgr
The connecting line of the point of reflection will perpendicular to the middle plane,
whenS is a reflection in that plane. One can also reptaeetwo reflections in points
with a translation, etc.

Finally, the following theorem has a more specializestatter:

“Any reflection in a point can be decomposedecifi ways into three successive
reflections in points of space.”

The decomposition of a transfer into motions andsfeas of a special kind that was
treated in the previous paragraph is a corollary to hkery of the decomposition of a
motion into two special motions that was developed  8owever, one can find yet
another analogy between the theory of motions andhéery of transfers when one
decomposes a given motion into two transfers in all plesgiays and then specializes
those transfers in a suitable way.

We especially need to highlight some theorems thdtshvéd a new light upon the
properties of the transformatiofis, ¥,, andT that we know from § 5.

Any motion S can be decomposedo| Any motion S can be decomposedwoih
ways into two transfers, the second | @fays into two transfers, the first of which is
which is a reflection in a plane. a reflection in a plane.

The plane of reflection thus correspondsrhe plane of reflection thus corresponds
to the midpoint and the middle plane of {lte the midpoint and the middle plane of the
first transfer under the transformationsT second transfer under the transformations

and %', resp. Tand %1, resp.

The midpoint and middle plane of the first (second, yesmsfer are associated with
each other reciprocally in the null syst@mthat belongs to the middle complex of the

motionS. However, the rotational axis is a ray of the chmohplex ofS

One can choose the plane of the reflection arbgranl any situation. The
decomposition of the motid@will then be determined completely by that.

If S is a screwing motion,but not, at the same time, a rotation, then the
aforementioned transfer (perhaps in the theorem onlefbewill have a completely
determined midpoint. Moreover, it will also have a ctatgly determined middle plane
when the plane of the reflection is not perpendictdathe unscrewing axis. In fact, the
middle plane is the plane of the unscrewing axtbat is perpendicular to the plane of
reflection. However, when the plane of reflectimeets the axis at a right angle, the
transfer will become a reflection in a point of thasan; it will then have a well-defined
middle plane.
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If Sis arotation, but not at the same time an unscrewing, then thefératiat we
spoke of will have a well-defined middle plane. If thar@ of reflection does not
contain the rotational axisthen the transfer will also have a well-defined midpaiiz.,
the point of intersection of the plane of reflectionth the axisn. However, when the
axisn goes through the plane of reflection, the transgsifitvill become a reflection in a
plane; it will then have infinitely many midpoints.

All of this is also true, in particular, when the @milies at infinity, so whei® goes to
a translation.

Finally, if Sis areversal— i.e., both an unscrewing and a rotation together — then
there will be three cases to distinguish: If the plaheeflection goes through either the
reversal axis or the line at infinity that is perpendicdtait then the transfer that we
spoke of will have a well-defined midpoint (viz., the poihirdersection of the reversal
axisn and the plane of reflection), and furthermore, a-dlefined middle plane (viz., the
plane through the axis that is perpendicular to the plane of reflectiotf)the plane of
the reflection is perpendicular to the awishen the middle plane will be undetermined.
Finally, when the plane of reflection includes the axithe midpoint of the transfer will
be undetermined.

Any motion S can be decomposedo| Any motion S can be decomposedwoih
ways into two transfers, the second | @fays into two transfers, the first of which is
which is a reflection in a point. a reflection in a point.

The midpoint of the first transfer will then The midpoint of the second transfer will
correspond to the midpoint of the reflectiothen correspond to the midpoint of the
under the affine transformatiogy . reflection under the affine transformation

T

Moreover, the middle planes of the first transferg(, in the theorem on the left)
correspond to the reflection point under a dualisticsfaamation, but in a degenerate
way: The middle plane of the transfertise plane through its middle point that is
perpendicular to the screw axiof the motiorS.

Only the case in whicBis an unscrewing occupies a special place in regard to tha
theorem. If one chooses the midpoint of the refbectlong the unscrewing axmsthen
the other transfer will become a reflection in a plémat perpendicular to the axisin
that case, it will then have infinitely many midpoints.

The given theorems can be brought into an even ctasarection with the theory
that was developed in 8 5 when one decomposes the nftioto four involutory
transfers in all possible ways.

Therefore, the decomposition $into two rotations, as well as the decomposition of
S into two transfers, one of which is a reflectionanplane will be contained in the
theorem:

Any motion can be replaced with four successive reflections in pérspsce ino°
ways.

A corresponding statement is true for the theorem:
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Any motion can be representedoifl ways by four involutory transfers, one of which
is a reflection in a point, while the other three are reflectionglanes.

From this point onward, one comes to the decompositi&into an unscrewing and
a rotation, in one case, and then to the decomposiiSnnto a reflection in a point or a
plane and another transfer. However, the secondesktdecompositions and third one,
in part, can also be connected with the following theo

Any motion that is not a translation can be decomposed’invays into four
involutory transfers and any translation i’ ways, two of which are reflections in
points, and two of which are reflections in planes.

At the same time, that will imply the decompositioh S into a rotation and a
translation, which we did not emphasize especiatiyg, the decomposition @& into two
transfers, which we intentionally passed over.

However, two further theorems of a kind that we sfalbw through with, for the
sake of completeness, have a more specific chathetethe aforementioned three:

“Any unscrewing can be decomposed into four involutorystiens ine’ ways, one
of which is a reflection in a plane, while the otheet will be reflection in points.”

“Any translation can be decomposed into four successiftections in points im0’
ways.”

All of these theorems, which are significant for amsight into the internal
connections of the theory, can be easily linked with @ewelopments up to this point;
one can give an account of the positions of the glané points of reflection.

However, one can also invert the train of thought bytimutthe involutory
transformations at the center of attention. Thdlnmaw be the reversals and reflections,
since we are treating a combined development of therigseof motionsand transfers.
As the author has convinced himself, one will also comehe properties of the
transformations that were denoted By, T, T, etc., in that way with no great effort.

Naturally, the entire theory will take on a differesitaracter under such a change of
viewpoint. The reflections, which depend upon three catstaeem to be simpler than
the reversals, which have four constants, and the trans#ich are representable by
three reflections, seem to be simpler than the mstifor whose expression one will
need four reflections.

Perhaps it is convenient to put the following problemhat pinnacle of the entire
theory:Decompose the identity transformation into four, six, ... reflectroal possible
ways.

One can then couple that problem, which is not as spEdlads it might seem upon
first glimpse, with numerous further developments quitalyea

We would prefer to content ourselves with these suggesthan to promise to go
into H. Wiener’s further investigation into those questions. We maklg one relevant
remark, since it will once again bring to our attentioa tlstinguished position of the
unscrewings and rotations collectively assume inlikerty of motions:

The unscrewings and rotations are the only motions that are already ratakleby
two reflections.
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One convinces oneself directly that among those wamstions, in turn, the
reversalsand thetranslationsexhibit a special behavior.

§12.
Motion in a ray bundle.

One recognizes generalizations of the theory that weslaped in 8 3 in several
theorems of 88 10 and 11. In order to arrive at a clemhingto this situation, which is
important for an understanding of the study of motiomd &ansfers, we consider the
motions and transfers under which a finite poimt space will be fixed, when we regard
these transformations as associations betweemyeor planes through the poat

The transfers that fix the poiat arise from the rotations around axes through the
point o quite simply when one performs a reflection throughpihiat o before or after a
rotation. That involutory transformation will then commmwvith all of our motions and
transfers; it will be a distinguished transformatidrihe group in question (viz., the only
one besides the identity transformation). Since gk @nd planes through the pomt
will be fixed, it will follow that no difference wilexist between motions and transfers for
the rays and planes of the bundtelf one introduces the rays or planes throagas
spatial elements then one will obtain an irreduciafaify, namely, a continuous group of
o transformations. It might be referred to asrtiwions in the ray bundle.

In the study of that group, we must observe, aboy¢hall its transformations will fix
the dualistic transformatiof of the absolute polar system that belongs to the bumdl
The relationship between a rgyand the plang’through the poino that is perpendicular
to it (and thus, between poles and polars relatithegso-called imaginary absolute cone
of the pointo) is invariant under all motions of the bundle They will define the totality
of all collinear transformations of the rays of our bundiigt ttommute with the dualistic

transformationy.
The following things correspond to each other reciprgaatider the transformation

PB,:

Two raysg, ¢ 3 Their polar planeg; y.

The two angle bisectors (ray§) and § | The angle bisectors (planeg)and y of y
of gandg'. andy.

The twonormal planesy and y of the| The twonormal rays § and § of the
rays-pai_rg, g that are the polar planes pplane-pairy;, y, which are the poles oy
g andg, and thus, planes that go througihg 7, and thus rays that lie i and 7,

g and g, resp., and are perpendicular|t@sp., and are perpendicular to the line of
the planes off andg'. intersection ofyandy.

We now letg, g mean a pair of rays that correspond under a m@iohthe ray
bundle, and consider the motisior the transferin space that permutes the rays of our
bundle in the prescribed way. In the first casp, will then be, perhaps, the angle
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bisectorg of the locus of the chord midp
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oints that belongs &phints ofg, g', and the

normal planey (viz., the polar to the other angle bisec@) will be the common
normal plane to the aforementioned chords; howevethédncase of the transfes),( g
will be the locus of the chard midpoints, apdwill be the normal plane to all chords that

belong tog, g. We must then only reorg
in order to arrive at the theorem:

anize the information that ttained already

The two angle bisectors and normals to any twoesponding rays or planes will

exhibit different behavior under a motion

The angle bisectors if the first kingl of

all pairs g, g of associated rays will eithe
fill up the entire ray bundle or they wi
coalesce into one and the same ray (\
therotational axisof 3.

The angle bisectors of the second kg
by contrast, will lie in a well-defined plan
under all circumstances, namely, the pg
plane of the rotational axis; viz., th
“middle plane” of the motion S.

Moreover, the normal planes of the fi
kind y will either fill up the entire bundlg
of planes or they will coalesce into a sin
plane(viz., the middle plane).

By contrast, the normal planes of t
second kindy will all go through a well-
defined ray under all circumstance

S of thg bundle.

The angle bisectors if the first kind of

rall pairs )y, y of associated planes will
lleither fill up the entire plane bundle or they
invill coalesce into one and the same plane
(viz., the middle plane of § which is
likewise defined).
e The angle bisectors of the second king
l@y contrast, will go through a well-defined
gay under all circumstances, namely, the
rotational axis of the motion ).
stMoreover, the normal rays of the first
ekind g will either fill up the entire bundle
Jlef rays or they will coalesce into a single
ray (viz., the rotational axis).
heBy contrast, the normal rays of the second
kind 7 will all lie in a well-defined plane
sunder all circumstances, namely, the

namely, the rotational axis of the motion.

middle plane of the motion.

The special cases that were mentioned in the theav#d occur when the motion is
involutory S;thus, when the motiogsof space that is bound with the motiSwof the ray
bundle goes to a reversal around an axis of poirasd at the same time, the associated
transferogoes to a reflection in a plane (viz., the polar plaindnat reversal axis).

One can now connect the statements

above with futteerems in a natural way:

Any non-involutory motion S of the ray bundle iskéd with two commuting,
collinear transformationst;, ¥, of the bundle that will generate the motion whegyth

are performed in sequence:

() One can distinguish between the two angle biseasrllows: If one projects the corresponding

pencils of rays of/and y’ (orthogonally) onto the

angle bisector of the firstckiy then two projective

pencils of rays with the same sense of rotationarifle; if one projects them onto the angle bisectthef
second kindy then pencils of rays with opposite senses of rotatitinavise. Naturally, corresponding

differences will also exist for the other structurtesst

twere treated in the text.
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(1) lez =S= Izll .

The transformatior¥; assigns each ray g The transformation,* assigns each ray
of the bundle to the angle bisectgrof the| g’ of the bundle to the angle bisectgr of

first kind of the ray-pair gg'. the first kind of the ray-pair,g@'.
The transformatiort; assigns any plang| The transformatior,* assigns any plane

first kind of the plane-pai; y. the first kind of the plane-paj .
In symbols:

(2) g{%} 0{%3d, y{%} V{%}y.
Moreover:

Any non-involutory motion S of the ray bundle Ww# coupled with two dualistic
transformations T, Tof the bundle, each of which will generate theiomo§ when it is
performed twice:

(3) S=T?% S=T"%

The transformation T assigns any ray g torhe transformation Tassigns any plang
the normal planey of the first kind of the to the normal rayg of the first kind of the

ray-pair g, d, and that plane, in turn, toplane-pairy; ¥, and that ray, in turn, to the

the ray g@. planey.
In symbols:
(4) g{Ty{T}g, {1’} g{T'}y.

The following simple relations exist between the tfamsations¥;, <., T, T':

The transformations T and’Will be permuted under the dualistic transformatify
of the absolute polar system:

(5) T'=PTP, T=PTP.

The collinear transformationst; and ¥, can be composed of the dualistic
transformation T ané3, as well as Tand*:

(6)

LETE L=PT,
LEPT, L=TH,

%1 and ¥, will then be switched with each other by each oé dualistic
transformations T3, T'; in symbols:
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T=T%, IP=PI, IT=TI,
- { T, P=p

T =%,T, PIL,=%P, TI,=%F,T.

The meaning of the transformatiois, ¥,, T, T" will be further clarified by the
following remarks:

One can decompose any motion S in|th®ne can decompose any motion S in the
ray bundle into two motions, the second oy bundle into two motions, the first of
which is involutory, iro? ways. which is involutory, iro? ways.

The rotational axis of the first motign The rotational axis of the second motion
corresponds to the rotational axis and theorresponds to the rotational axis and the
middle plane of the second one under th@iddle plane of the first one under the

transformationst; and T, resp. transformationss,*and T, resp.
The middle plane of the first motionThe middle plane of the second motion

corresponds to the middle plane andorresponds to the middle plane and
rotational axis of the second one under thetational axis of the first one under the

transformation®, and T, resp. transformation¥; *and T' ™, resp.

If we demand that the decomposition on the left musteagiith the one on the right
then we will come to the theorem that we alreadyfquh in a different context (pp. 44),
which might be repeated here for the sake of clarity:

Any motion S in a ray bundle can be decomposed’imays into two involutory
motions.

The associated rotational axes lie in theThe associated middle planes go through
middle plane of S and subtend one-half thiee rotational axis of S and subtend one-
angle of rotation. half the angle of rotation.

The composition of motions in the ray bundle is Haggon this theorem in a well-
known way.

The transformation$;, %,, T, T” under examination can be regarded as special cases

of more general transformations that exhibit some of greperties. The theory of those
transformations is entirely similar to the theorytbé transformations,, t,, t that was

treated in 8 7, which belongs to a motion of three-goittnded space.

A one-parameter group; of motions of the ray bundle is determined by an axis n
through the point o or the polar plane v, namely, the group of all rotation aroundithe ax
n.

Furthermore, a one-parameter group, Gf perspective transformations of the ray
bundle is determined by the axis n, namely, the group of all perspéemnsformations
whose perspectivity axis is the line n and whose perspectigitg dl the plane v.
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Letg andg be two rays through the poiatthat lie in a plane with, so the general
transformationt of G; will be determined by the associatigfit}g’, as long as one

assumes that the ratio tam ) : tan @', n) should have a valué that is independent of
the position of the rag’. One gets the first part of the theorem for — 1:

The groups @GandTl; intersect in the involutory motion that is determined by the axis
n, in addition to the identity transformation.

A two-parameter continuous group, ®@f commuting transformations arises by
composing the transformations of &dl";, namely, the group of linear transformations
t of the bundle that permute the planes of the axis n and the rays of thevplithesach

other like the motions of the grolp .

If we denote the polar planes of the ragyandg” in question byyandy’, and the
traces of those planes in the plane throggimdn by g; and g,’, resp., then we will have
cot (4, n) : cot (¥, n) =Aortan f, n) : tan @, n) =1 :A. However, it follows from
this that the transformationof G; is exchanged with its inverse transformation by the
dualistic transformatiofjd of the absolute polar system:

(8) Pr=c' P, v P =P
We infer the following conclusion from this:

If one composes all transformations of Wth the dualistic transformatiof3 of the

absolute polar system then a continuous familpto® polar systems will arise, namely,
the totality of all polar systemsthat belong to the cone of rotation whose axis is n.

The family H of transformationg defines a group along with the transformations of
G .

The order surface of the polar system:
p=Pr=c'P

has imaginary or real generators according to wheheevalue ofl that belongs ta is
positive or negative, resp.

If one composes all transformationsliafwith any of the dualistic transformatiops

of H; then a familyH; of o dualistic transformations will arise, each of which will take
the cone of rotation that belongsiido itself.

There arew! such familiedd; and groupd 1, Hi, including one of them that emerges
from the absolute polar systefd, and which therefore fixes the absolute cone of the
point a
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In fact, if S and B are transformations of; will then we have commuting
transformations before us in the form$®B, andp = Pr; the theorem will follow from

that directly. Ife goes to the identity transformation then the farkidywill arise, which
belongs to the absolute polar system and contains dheférmatiorf3. The cones of

rotation with the axis will be permuted pair-wise by the transformations ot taaily
(as they are by all of the remaining famillég.

If one composes all transformations of the groypa@h any of the transformations
of Hy or all transformations of the group ;Gwith all transformations of any of the
familiesHs, or finally, composes all transformations Iof with all transformations of i
then a continuous family+df «? dualistic transformations will arise, each of which will
take the totality of all cones of rotation with the axis n intelfits

The family H, together with the group £again define a group (of non-commuting
transformations).

The general transformation Hf reads:
(9) t=SPr =S P.

One easily proves that two such transformations withmute only when they belong to
the same family; .
The following theorem will provide information about theationship between the
Six groups:
Gy M1;,G2; =G, Hy Iy, Hy Go, Ha

The groups @; G, , Hi (and naturally, G, as well) are invariant subgroups of the
group G, H,, but the groud™; is a distinguished subgroup, moreover. ®lesubgroups
all have the same status.

That will be explained partially by the following remarks:

The transformations of the group Gan be ordered into pairs, t; in a certain way.

Any two transformations that are thus paired will be permuted byaalktormations
of the family H:
(10) tl t=t tz, t tl = tz L.

Furthermore, t;'t, and t,t;' are (inverse) transformations of the groug @nally, t;
andt, will yield a transformation of ; when they are performed in succession, namely, a

motion.
Conversely, any rotation around the axis n can be decomposed into two askociate
transformation of Gin o’ ways.
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Let S”? be one of the two rotations that generate the rotaBiomhen they are
performed twice in succession, so:

(11) = 81/2 T, L= 81/2 ‘C_l

will be the general expressions for a pair of asseditansformations @b, .
Letg, g, g be three rays throughthat satisfy the condition:

oHt}g{t} g,
and lety; ', )/ be their polar planes, one will then have, at timeesdme:

Aty ity .

g is a ray of the normal plane of the second Kinof g andg’, andy is a plane through
the normal ray of the second kil of yandy.

Any two inverse transformations of the group efine a pair of associated
transformations of the group £5however, any transformation of the group is
associated with itself.

We can deduce the following theorem from formula (9):

Any transformation t of the family,kvill generate a transformation éf; when it is
performed twice in succession, namely, a motion:

(12) S=t

Conversely, any rotation around the axis n can eeegated iro® ways by repeating
a transformation of the family H

Any of these transformatiotsassociates any raywith a plane that goes through the
angle bisectorg of the second kind of the ray-pajy g, and that plane, in turn, will be
associated with the ray. Moreover, it associates any plapeith a ray that lies in the
angle bisector of the second kijd of the plane-paiy; y, and that ray will, in turn, be
associated with the plané

One will remark that in the theory of the gro@g H-, all of the polar systems, or the

concentric cones of rotation that they are assatwaith, will have the same status. We
now return to our previous train of thought, in which vigke out the absolute polar

systemt]3:

Any decomposition of the rotation S into associatadsformations of @by means
of the absolute polar system:
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S= tut =ty

is associated with two well-defined ways of representing the saot@nmby
transformations of b
S=t* and S=t’%

The relationship between t antandt; andt; is expressed by the formulas:

t'=Pt, = . L.

If we use the symbolg, g, g, y; ¥, ¥ with the meanings that they had before (pp.
55) then we can perhaps best clarify the mutual relstips between the transformations
T, t1, to, t, t, andS by a schematic figure:

g t g* to 9’
N 1IN
RY RY Y
VZRNVEN
y o y " y

As we saidg’ lies in the plane/ in this, andy” goes through the rag .
The relationship between the transformatienst,, t, andt’ that is represented

coincides with the connection between the transfaomaf;, T,, T, T that is expressed
by the formulas (2) and (4). One then also has thee¢heo

The transformation¥y, T,, T, T'define a quadruple of associated transformatians
tp, t, t”of the group @ Hy .

In fact, one can set:
zl — Sl/Z m’ 12 — S’L/Z m—l’ T — Sl/Z mm, -I-, — Sl/Z m—l;n,

as long a®k means a transformation of the grdapwhose parametel has the value 1 /

cosdor — 1 / cosdaccording to one’s choice & As always, Z is the angle of the
rotationS g andy now go tog andy for all positions of the ling.



I. — On the elementary representation of motions amdfiees 59

§ 13.
Continuation. — Return to motions and transfers in the plae.

The fact that most of the considerations that wdiegbpo the last theorems agree (at
least, the sound of the words) with those of § 7 deservasre precise explanation. It
can be found in the following argument:

The group G, Hs that was defined i8 7 contains an invariant subgrouf,, H, that
is holohedrally isomorphic to the group, &l that was defined ig 12.

One will see that easily when one constructs teergm that was presented in § 7
somewhat differently from what was done there. né @onnects the transformations of
the groupG; (8 7), not with the groufs; of all screwing motions around the axisbut
only with the groupG, of rotations around that axis, then a gro@ of affine
transformations of space will arise that will permtite rays through any poietthat is
chosen om in precisely the same way as the transformationseofitoupG, of § 12. If
one now adds the null systelfi to the transformations d®, and the polar systef to

the transformations d®, then the grous,, H, of § 12 will arise in the second case, and

!

a certain grougs,, H, in the first one. Both groups are holohedrally isomarftithe

restricted sense of the term that is used in Galoi®ryhe If one relates the
transformations o6, and G, with each other in the given way then their transfdiona

will be associated with each other irsiagle-valuedand invertible way, and when one
then also associates the dualistic transformatifrends3 with each other.

The translations in the direction of the axisxafommute with the transformations of
G,, H,; if one then combines them with the transformatioh$sp, H, then the group

Gs, Hz will once more arise. We can then also say:

One can relate the groups(3Hs of § 7to the group of @ H» in § 12isomorphically
in such a way that the translations that are parallel to the axislinro@iassociated with
identity transformation.

One might remark in passing that the developments &P &an themselves be
expressed on the basis of an intuition in a mannengtentirely similar to the usual one;
namely, one will obviously have the following two (probabiutually-implicit)
theorems:

One can relate the group of all motions and transfers in space to the gralp of
rotations and transfers around a fixed point isomorphically in such a way that one
associates the translations with the identity transformation.

One can relate the group of motions and transfers in space to the grougtiofs in
a ray bundle isomorphically in such a way that one associates the transland the
reflections in points with the identity transformations.
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That is an immediate consequence of the fact thapdimgs of the plane at infinity
will be permuted with each other by the most generaians and transfers in exactly the
same way as the rotations around a fixed point.

No less important than the relationship between theom®in a ray bundle and the
motions and transfers in space is their relationship thié motions and transfers in the
plane, which has a totally different nature.

One can relate the geometry of the ray bundieith plane geometry by a dualistic
transformation of space as by a central projectiore cWbose the second one, which is
an intuitively-approachable process. We thus now choogepkane 77 that does not
contain the poinb, and replace every ray through the poinb with its tracex in the
plane ;rand any plang througho with trace lineu. We can then carry over the theory
that was developed in § 12 to the plan&ith no further discussionA geometric theory
of collinear and dualistic transformations of a conic section in the p(arkech is an
imaginary circle, at firstjhen ariseghat can naturally also be given a basis immedjiatel
We must return to this situation repeatedly on some tateasions; for now, we restrict
ourselves to the consideration of a limiting case lads us back to the investigations in
§2and § 3.

If the point o is shifted to infinity in a certain direction then ¢batinuous family of
motions in the ray bundle o will decompose into two separate famiMgben one
replaces the rays and planes through the point o with their tracespiaree /7that is
perpendicular to the direction of o, they will go to the motions and feen s the plane
T

The theory of motions and transfers in the Euclidiam@lcan then be regarded as a
limiting case of the theory of motions in a ray bundje

One can easily clarify the details of this.

Before carrying out our passage to the limit, wexJex , X, X denote the traces of
the raysgy, 0, d, @, resp., in the plang and letu, U, u, T denote the traces of those
rays on the polar plangs v, y', 7, resp. (Cf., § 12, pp. 51) Therefore, perhaps, the
pointsx andx’, which are associated with each other by the m@&iohthe ray bundle,
might lie at infinity; they shall be fixed whem goes to infinity in a direction that is
perpendicular toz

Now, in the limiting case, one of the lin@s, U must obviously go to the line at
infinity in the planerz

() F. Klein, “Ueber die sogennante Nicht-Euclidische Geometrie, thMann., Bd. 4.

The theorem that was posed on pp. 602 there that thienesaltransformations of (general, belonging to
a polar system) conic section decompose into two disfaimilies is correct only for conic sections with
real points. The division of linear transformations ofa@nic section into “proper” and “improper” that
Lindemann made in a book that will appear shortly, and is excelfemiany respects/prlesungen ber
Geometrigv. Il, Leipzig, 1891, pp. 382-385), is completely incompreit#a to me.
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We first assume that the lirne is shifted to infinity: We then obtain a motion in the
planesras a limiting case of the moti&@in the ray bundle. The midpoint of the motion
is the limiting position of the point of intersectiontbe rotational axis with the plane
77 however, the middle planemeetsrzin the line at infinity. X will be the midpoint of
the chordxx, and X will be its point at infinity. T will be the normal to the chomxk,
while u andu’ will, in turn, go to the line at infinity.

Secondly, the lined might be shifted to infinity: A transfer in the plarewill then
arise. The middle line of the transfer is the lineimérsection of/z with the limiting
position of the middle plane of the motion of the ray bundle; however, the lingti
position of the trace of the rotational axis will bergait infinity that is perpendicular to
the middle line. X will be the middle of the choreiX, and X is its point at infinity. U
will be the normal to the chorxi, while u andu’ will coincide with the line at infinity,
as before.

Here, we have carried out the passage to the limiich & way that we fixed two
pointsx, X that lay in the planez However, one can just as well also fix two asdedia
linesu, u'. The pointx, X, X, X will all lie at infinity then. If we go to a motiothen
T will be the angle bisector efandu’, which contains the center of rotatiom; will be
the other angle bisector. If we go to a transfer thiewill be parallel to the middle line
of the transfer, and will be perpendicular to it.

We can summarize all of these facts in a simphkg wa

If one goes from a motion of the ray bundle to &ancof the plane then the collinear
transformations¥; and ¥, of the bundle will go to the similarly-denoted adfi

transformations of the plane; on the other han@, tlualistic transformations T and’' T
will degenerate.

However, if one goes from a motion in the ray beitd a transfer in the plane then
only the dualistic transformation that is denoteg D will remain; by contrast, the
transformationst;, T, , and T will degenerate.

Some of the properties of a motion in a ray bundlethhen be found for the motions
in the plane, and others for the transfers; however qtfaperties will be lost in the
limiting case. Naturally, one can also pursue all ofatier theorems of § 12 to the limit
in a similar way. Following up on that thought might &k o the reader.

In order to be able to connect up with these things tatewe must at least mention
that we can implement the transition from the mcatiand transfers around a fixed point
0 in space to the motions and transfers in a plane irayether way. Namely, if we
enclose the poind with a sphere, and we then consider its points tepagial elements
then (as is known) we will again have a three-paramgteup in the motions and
transfers of that surface that goes to the group oiomefnd transfers of a plane in the
limit. As one sees, an essential difference ekste/een both kinds of generalization of
elementary geometry. In the geometry of the ray lyrakontinuous grougppears in
place of the motions and transfers of the plane,ennilthe geometry of the spherical
surface, we have before us a group that consist of tigpint families of
transformations. Those families will not split undee passage to the plane, as the
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motions of the ray bundle do. Moreover, the motiohthe sphere go to the motions of
the plane, and the transfers of the sphere go toahsférs of the plane.

The relationship between the continuous group of rotatiorssray bundle and the
group of rotations and transfers of the spherical sesfatich consists of two families, is
mediated by the reflection in the center of the sphdieat involutory transformation is
missing from the first group, but it is contained as &rdjsished element in the second.
It is associated with just the identity transformatiower the isomorphic relationship of
the two groups. It vanishes under passage to the limithdh way, it will become
possible for both groups to have one and the same deconggsabp as their limiting
positions when one is continuous and the other decomposes.

We regard it as useful to discuss this simple relatipnsiare thoroughly, since we
have not, in fact, made it sufficiently clear up tamowe will then be able to summarize
it more quickly on later occasions.

From what was said, the theory of motions and teamash the plane will be fused
with the theory of motions of a ray bundle at a higleeel, to some extent; however,
equality would not be true if one chose the other kind négdization.

Can one also regard the motions and transfers in-tbiceextended space to be a
limiting case of a six-parameter, continuous group? As\@wvn, the answer proves to
be no: No matter how one might perform the generaizabne will always obtain two
disjoint families of transformations. There is slynmo radical analogy between the
metric geometry of the plane and that of space: Manewmne can put only the even-
dimensional manifolds and the odd-dimensional manifaiis a series whose terms
offer a close analogy; this is a fact that is freqglyeremarked and emphasized in the
theory of quadratic forms.

With those remarks, we have already exceeded the bofitiis study.




Addenda to section I.

Added to § 6 (pp. 27). One can also pose the theorem di®@hove in a simpler
way: One letsv, w, W denote the three planes that are associateckwikh x' in the null
system?J. w andw will then intersect in a line oiv. However, that plane is identical

with the plane that we have usually denotedihywhich is the normal plane to the chord
xX. W is then one of the two angle bisectorsvaindw. One now has, by construction:

W 20} X{ T1} X {20} w{ T} x{2W}w,
so, from formula (6) and (7), pp. 25:
w{T} W{%} W.

It is easy to see that is the angle bisector of thiest kind ofwandw. Cf., the theorem
on pp. 48 below.

Added to 8§ 9 (pp. 37). | was unaware t@atJordan had dealt with the problem of
the groups of motion in the most general way in his wedtivikn treatise (Annali di
Matematica, ser. lll, t. Il). Nonetheless, perhammynreaders will welcome the brief
exposition in 8 9, even if it does not contain anything new.

Added to § 10. The fundamental theorem at the centeverithing is well-known.
From a communication dchdnflies it goes back to the investigations thigsselthat
were devoted to crystal structure.



On the parametric representation of motions and trasfers.

In the present section, we will now address the quesifofinding the simplest-
possible analytical representation of the motion$iied-fold extended space. It shall be
shown that one can associate those transformanthseight homogeneous parameters
that are coupled by a quadratic relation in a single-valueeytible manner, and that
those parameters have entirely similar propertieSuier’s parameters for the rotations
around a fixed point. The parametric representation fiwsd will then be extended to
transfers. It will also be shown how one can deBwder’s corresponding formulas for
motions and transformations in the plane from thentdas.

The considerations are, on the one hand, based upomceeas ofCayley and
Clifford on the algebra of quaternions, and also upon some reveggtigations into
systems of complex numbers, in their own right, andnother direction, upon the well-
known work of Hermite, Cayley, Frobenius, and others into the parametric
representation of the linear transformations of a quadfarm. For the author, the
starting point was in the theory of complex numbehmat is also the foundation for the
following presentation. The relationships to the ottierd work (whose main facts are
easy to exhibit, moreover) will be first set dowgatiously in a later section that will deal
with the application of the methods of the theorynefriants to our situation.

The following analytical developments are, on the whahdependent of the
geometric theory that was set down in the firstisact It is only when brevity permits
that we have carried over a number of the theorems fihe first section, without
deriving them anew with the tools of analysis.

Both sections extend each other reciprocally. Theweet connected whole when
they are considered together. First of all, in a o@thogical context, we have strived to
give a presentation that is as elementary as poskdrie by employing rectangular
parallel coordinates exclusively. Secondly, from a frakcstandpoint, we prefer to take
advantage here of the linear and dualistic transformati@isvere denoted b§, T», T,

etc. before. Those transformations exhibit a furthepgnty that is now important: Their
coefficients will become the simplest possilileear functions of seven independent
ratios in a suitable notation. One can then treatethwf the theorems that were
summarized in 8 7.0neof them has already been known for fifty yearsRmodrigues
and whose meaning will appreciated completely. In thentireq, that discovery, which
defined the foundations of his original theory, has remaimedticed.

In order to avoid repeating one and the same argumentwill now pursue a
different train of thought from the one that wasdwaléd in the first section. We begin
immediately with the motions in three-fold extended spaad follow that with the
associated transfers, in order to eventually ascentetanibtions and transfers of the
plane.
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8 1.
The transformation coefficients.

As we said, in the present study, we shall appealktangular Cartesian coordinates.
We then expressraotionby a system of equations of the form:

304 = 8ot ;2 3,Z+ 2%
(1) 80% = &t a2t 3,2t 353
3L = At 24t A, 2+ 3,3

Should these formulas actually imply a motion, tkeme known condition equations
would have to exist between the coefficieats. We briefly summarize those relations,
in order to refer to them from now on. We will infliece several brief notations into their
left-hand sides, for the sake of later consideratidtiswever, for the sake of simplicity,
whenever three formulas follow from each other byicymérmutation of the indices 1, 2,
3, only one of them will be exhibited. The numeral quare brackets will give the
number of relations that are equivalent to the stated on

We put the expression for the determinant of our tramsfbon at the center of all
attention, which is a relation that has degree threba coefficientsy, :

(2) A=|aaxpas|=ay .

We will not employ other relations of degree thrednigher; however, it is probably
important to understand the relations of degree two irctledficientsax as precisely as
possible.

They are the following ones:

(3 R« =agax —— =0 [9],
03,

or, more thoroughly:

Rn = ;T Qpdggt Apdys 0, [3].
(3b) R23 = Gy Apayt a8~ 0, [3].

R32 = Gy~ a5t 845 0, [3].
and furthermore:

Pl = ago_ afl_ aiz_ aisz 0, [3].
(4) ' 2 2 2 _

Pl =T AT &y agl_ 0, [3].

(5) { Q = 88+ B8t 8,8, 0, 3],
Q) = 8,8+ 88,5+ 858557 0, 3]
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As is known, the six equatioi’s = 0,Q; = 0 are independent of each other; it follows
from them that:
A

3
+ad.

If one chooses the upper sign in this then that wdldythe remaining relations.
Three of the nine coefficient rati@s; : ago, ..., a3z : ago Will then remain arbitrary, as
they must.

The second-degree relations (3), ..., (5) that were writavn (there are twenty-one
of them, in all) are obviously not linearly-independenteath other; namely, if the
guantitiesa« have arbitrary values then one will also have thetiden

(6) Pr+P,+P;s=D=FB+B+E.

Therefore, any one of the six equations (4) will be slhypmr$§; it can be dropped
without affecting the symmetry.

The remaining twenty relations are linearly-independent. They ragrede
complete system of all second-degree relations that exist foodfilecents & .

That is, if one has any second-degree expresQa,) that vanishes for the
coefficientsa;, of an orthogonal substitution th&h can be represented linearly with
constant coefficients in terms of the expressiBns, Qi, Q' , and the five expressions

Pi, P.
We will carry out the proof of this (as it seems) hitbeunnoticed theorem later (in 8
5) in a very simple way when we put the system of eqguat{8), ..., (6) into another
form.
Equations (1), whose coefficients are coupled with edblr by the conditions (2),
..., (5), include six linearly-independent infinitesimal sormations, namely, infinitely-
small motions whose expressions were given already bgr ElWVe write them in the

following way, by applying the symbolism that was introdlibgS. Lie:

X, f=2 23%— g%} Y f:—ZZ—;,
(7 X, f=2 4%_%%) \gf:—Z%,
LA T

As one easily sees(f, ..., X3 f represent infinitely-small rotations around the

coordinate axes, whiléf, ..., Ysf are translations along those axes.
With the choice of infinitesimal transformationsat we made, theompositionsn
the group of motions will be given by the formulas:
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(XpXg) =2X,, (X X)=2 X, (X X)=2 X,
(X;¥5) =2Y = (¥ %),
(Xs¥) =2Y,= (¥ X),
(X,Y,) =2%= (Y X),
(Y Y)=0, (XY)=0
(i,=1,2,3).

(8)

For the sake of a later application in connection witk, thie shall determine the
infinitesimal transformations of the group of motiohattfix a given pointz’, 20, z.

That group contains three independent infinitesimal toansdtions, namely, rotations
around axes that run parallel to the coordinate axes:

—ory - O 50, 5y 0F
Z,f=2(z, é’)azz 2(3 2)623,
=X f-Z2Y%f+4Yf
PN P YSN) §
Z,f=2(z ﬁ)azs 2(z 2)64,
=X, f-ZYf+ 2 Yf
N P YN
Z,f=2(z, £)azl 2(z 2)622,

=X -2y f+ 2 Yf

(9)

In our later considerations, we shall treat the problem expressing the
transformation coefficients, in the simplest-possible way in terms of a smalienber
of quantities.

We think of the transformationS;, S, ... of anr-parameter continuous group as
being represented in terms pf+ s + 1 homogeneous parameters, between wisch,
mutually-independent relations exist. We would then like sy that bilinear
combinations of those parameters exist when the parameters of ctimaposed
transformatior§S, are homogeneous, linear functions of the parametess as well as
also the parameters @&, This kind of composition of the parameters, which is
distinguished by its particular simplicity, will be pregefor example, in the general
projective group:

X =CigXo+Ci1XL+G2 X2+ Gz X3 (1=0,1,223),

when one takes the sixteen coefficienitghemselves to be the parameters. One likewise
finds that bilinear combinations exist for our group (1) otioxes when one regards the
thirteen coefficients, as the parameters. However, there is an esseiffaledce
between both cases: Whereas the number of paransgtieas the smallest conceivable
value (viz., sixteen) for the general projective group, Wave thirteen homogeneous
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parameters for the six-parameter group of motions, agr@ftbre, no less thasix more
parameters than would be ultimately required for theesptation of the motions by
homogeneous parameters. One remarks that the eas® @hnalytical, as well as
geometric, treatment of a group depends precisely upon sieeofaomposing several
transformations of the group with each other, whicélfitsaises the question of whether
one can express the motions in terms of less thae¢hittomogeneous parameters while
preserving the requirement of bilinear combination. We plosse the problem:

Represent the motions in space by the smallest-possible number of hamegene
parameters with bilinear combination.

The solution of that problem cannot be determined cdeilpjeit still contains
arbitrary elements. If one has found a system of patenswith the stated property then
one will directly obtain infinitely-many parametriepresentations of the same kind by a
linear transformation. Furthermore, the expressionhe coefficientsay in terms of the
parameters in question will necessarily be undeterminbdn one shows that the
smallest number of parameters with bilinear combinatsogreater than seven: In that
case, one can alter the form of the coefficiemtsn many ways with the help of the
relations that then exist between them. Howevenné regards all such parameter
systems that can be derived from a single one as ¢détiien it will not be clear from
the outset that no other ones are possible that arié oot arrive in that way.

One can pose a problem for entirely arbitrary contingwasps that is similar to the
one that was just formulated; from the investigatiohsSo Lie, there are projective
groups of any arbitrary composition. Meanwhile, two essiyntdifferent parametric
representations with bilinear combination already exisbfee-parameter groups, one of
which is a limiting case of the other one, and for thpammeter groups, there also
already exists the case in which several essentiallgrdiit parametric representations of
equal generality are possible.

The fact that the group of motions exhibits a differang indeed, simpler, character
will be seen in the next paragraph.

§ 2.
Biquaternions.

The problem that was formulated in 8 1 can now be redwcte following one, by
an exposition that the author gave on another occasion:

“Find all types of systems of complex numbers with & principal units for a
smallest-possible value of the numisewhen those systems have the property that the
associated (7 $— 1)-parameter, simply-transitive groGf contains a subgroup that has
the same composition as the group of motions (

() Cf., the treatise: “Ueber Systeme complexer Zahled inre Anwendung in der Theorie der
Transformationsgruppen,” Wiener Monatshefte 1890 (I. Jpt&4.0 Heft. G, is written there, instead of
the notationG™® of the present text.
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Now, it emerges from the investigationsSuheffers(’) that the smallest value of the
numbersis s = 1, and that onlpne system of complex numbers belongs to that value
whose groupG® contains one (and only one) subgroup with the desired cdtiopos
One can conclude from this that:

A representation of the motions by seven homogeneous parameters withr biline
combinations is impossible.

By contrast, there is one, and in fact, essentially only one, spchsentation by
eight homogeneous parameters, between which one relation(ejists

In essence, that means: except for linear transt@mnsof the parameters, and
naturally, except for transformations by virtue of tbentity that shall be assumed to
exist between the parameters.

The system of complex numbers in question is onewhatdiscovered b¢lifford
and is the number system that is referred tbigisaternions When one splits the eight
princizE)*aI units into two groups of fow, ..., €3, &, ..., &, its multiplication table will
read ( ):

() G. Scheffers “Zuriickfiihrung complexer Zahlensysteme auf typische Formitath. Ann. 39
(1891), pp. 293, § 1@t seq.

(") It might perhaps be of interest to some readers fto espressly prove that the theorem in the text
does not so much pertain to the theory of Scheffensiuad as it expresses the non-existence of a second,
simpler, or even just-as-simple, parametric representaff the motions. Moreover, (according to the
nature of the situation) we will not have to make usenafentirely-simple considerations, and in
particular, of the important consequence that was justgubout, either.

(") Clifford, who died too soon, considered three kinds of “biquaterniamsSeveral partially-
incomplete treatises, which one will find published is tMathematical Papers” (London, 1882), and he
related them to the so-called elliptic, parabolic (Eligh), and hyperbolic geometries. He arrived at them
by the operation that Scheffers called “multiplicatiorfien he coupled Hamilton’s quaternions with the
three binary number systemis € 1,i,% = ig), (io = 1,i:> = 0), (o = 1,i:%> = — io), resp. He operated with
them in roughly the same way that Hamilton and hisovadrs operated with ordinary quaternions.
Clifford did not seem to arrive at a parametric repnéstion and composition of the motions, any more
than Buchheim, who sought to give a summary presentation and extersdi@ifford’s ideas. [‘A
memoir on Biquaternions,” Am. J. MatB(1885)]

With the author’s terminology, the biquaternions thedbibg to the elliptic and hyperbolic geometries are
differentformsof the samaype but the one that belongs to parabolic geometry quorets to a new type
that is a degenerate case of the first one. In fl@viag sections of this investigation, we shall speak no
more of these and two other, similarly-constructed remspstems.

One will find the system that is employed her&aheffers pp. 380. There, it is denoted Qy .
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& & & §¢&, & &, &

& & & §&& & &, &,

€l&8 & &§-&¢& & £;37¢,

&8 &6 €&, €376, &,

(1) &1& & ~§-FE; &, 7E,7E,
&l|E, & &, &5 0 0 O O

& —& & -€ 0 0 0 O

& &, —& - & 0 0 0 O

&l|& &, —& & 0 0 0 O

If we write @@ &) as an abbreviation f& e — @ & then from this table, we will have
the relations:

(68)=2¢ (69=28 (£H=2 £
(92‘93) = 281: (82%)1
(2) (e€) = 25, = (£,8),
(elgz) = 2‘93 = (‘gleZ)a
(eg)=0, (i=1,2,3), € = 0, (k= 1,2,3

(3) @& =0, E&=0
(=12 3).

If we introduce the further abbreviations:

a=) (ag+48), Z(aew’a) etc.,
X=Z(cﬁe+mﬁ), Z(Eem g), etc.,

then we can write the seven-parameter ngﬂ'b(which we can write more briefly as
Gy) that is linked with the biquaternions (1) as:

(4) X =xa

Formulas (8) of § 1 and formulas (2), (3) of thegent paragraph then imply (cf.,
Wiener, Berloc. cit, 8§ 9) that the grouf®,, in fact, contains a single subgro@p and in
fact, aninvariant one, that has the same composition as the groopténs, which is a
group whose general infinitesimal transformatioadse

(5) X =X[ep+(me+taetazes+bi & +by &+ b3 &) A
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One further infers that a (singledistinguished subgroup G; is present, whose
infinitesimal transformation is:

(6) X =X[ep+ & A].

The groupGg is related isomorphically to the group of motions in spabhen one
writes the general infinitesimal motion in the form:

(7) ap Xy f+a Xof+ a3 Xzgf+ by Yif+byYof+b3YqT,

and assigns the same values to the consiamighat they had in formula (5).

On top of that, we will now treat, above all, the &xion of thefinite equations of
the groupGs that is generated by the infinitesimal transformatifs)s i.e., finding the
condition that the eight parameters 4 must satisfy if the transformation (4) G¢ is to
belong toGs . However, before we do that, we can point out saomportant
consequences of the theorems that were derived alrdéayely, we can now give the
formula for the composition of the parametearsf).

Let S S’be any two motions, and I&t"be their product (S), and furthermore, let
X =xa X =xd, X =xd" be three transformations 6§ that correspond to the motio8s
S, S% so one will hava' = ad; i.e., the formulas for the composition of the pagtars
(a, p) will be provided by the so-calledultiplication theorenof our number system (1).

If we abandon the algorithm of the complex numbees the can now formulate the
theorem:

If one has expressed the motions in space in terms of any systeighof e
homogeneous parameters with bilinear combination then the formulas for the
composition of parameters can always be assigned to a linear transformatibwe of
parameters of the following form:

a,=aq,~aa,—aQq,-ag,
af = 0’00'1 + ala'O ta 20,13_ a g'2
a,=aa,taq,tag,—ag,
o =aatap.tag,-a g,

(8)
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B=aB,-api-af-apfy
+,300'E)—,310"l—,320"2—,3g'3
B=aptaf,raB-af,
+,300'i+,310"0+,320"3—,3g'2
,3; :aoﬁ’2+a2ﬁ'o+a38’1_a18’3
+5605+ Boot By B
Bi=aBstaforaf,~a
+5605+ P o Bay — B

(8) [sid

The first four of these equations represent a well-knsystem of formulas — viz.,
the multiplication of quaternions — by whose extensiomtiraber system (1) will arise.

If we consider the determinant of the system of equat{B) after we have ordered
them relative to the quantitieg , B , then we will get an expressiNi(a, A), in which
we have set:

©) N(a. §) = ai+a’+a}+a?,

to abbreviate. If we then order it relative to the gias a;, 5 , and once more take the
determinant then that will yield the valué'(a’, ). The expressiomN, which is
completely independent of the quantit@swill then play the role of discriminantfor
our system of equations. The values of the quantitieg)(for which N vanishes define
the degenerate transformations of the gr@&ip We will always have to consider non-
degenerate transformations; we can then drop the fattéom any equation that
contains that factor.

The formula:

(10) N(a) IN(a”) =N(a”),

which is likewise well-known from the theory of quatems, follows from the first four
of equations (8).
We arrived at these theorems without knowing the itiomdequation between the

parametersr, 5. Later, we will see that the expressions for tlmtioms themselves are
independent of that relation, to a certain extent., @8)

§ 3.

The group Gg and its adjoint group.

We now sek = Zg‘i et+ng,a= dae+ [ &, as in the previous paragraph, and
interpret the quantities : &, 7 @ & as, say, Cartesian coordinates in a seven-
dimensional spac®; . Since the group’ = xa, which is our groupGy, is simply-
transitive, the spac®; will decompose into a family of' six-fold extended spaces
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under the transformations @&, each of which will be transformed transitively. The
family of manifolds can now be given easily: It will bepresented by the equation:

1) f=1(& +& +& +&)
+ 1 (éorfo + &1 + &2 + &3173) = 0

when one assigns all possible values to the paravhetar In fact, one easily convinces
oneself that the increase in the functiomill vanish for any infinitesimal transformation
of the groupGs . [Cf., formula (5), § 2]{

The condition equation between the parametgrgi that is characteristic of the
transformations o5 must now take the form:

f= (@’ + o+’ +ad) +p(ao B+ fi+ @ B+ as 3s) = 0.

Namely, let = xaandx’ = x'a be any two transformations &, and letx" = xa’ be the
transformation of the two combined, so one Bas ad; however, that equation will
once more have the formh = xa Now, since the same relation must exist between the
parametersy; , 8" that exists between the paramet@rsz anda;, B , it will follow that

the desired relation will emerge from one of equatidisshen one writesgr; for & and
S for i . We then only have to specialize the parameterg in a suitable way. Since
the infinitesimal transformations @ are already known, one will find that= 0, with
no further analysis. We then have the theorem:

With the choice of eight homogeneous parameters for a motion that we made, t
relation that exists between them will read:

(2) L p=ahtafpp+tael+a3=0.

Equation (2) is linear in each of the eight parameterg . When interpreted in a
seven-dimensional space, it represents a general qeateatifold that can be described
by two real families of linear three-fold extended spaces

One can confirm by a generally laborious calculatiat the equatioh(a, ) = 0
actually determines the transformations of a subgroup;of Namely, due to equations
(8), 8§ 2, one will have the identity:

3) L(a", £') =N(a’, ') OL(a, B +N(a, ) OL(a’, B'),

() The increase ifitakes the value:
&+ &+ &+ &) &,

under an infinitesimal transformation @f (cf., (6), § 2), which is once more an expression offdima f.
The manifoldsf = 0 will then be permuted with each other under the g@up Since that situation is
already clear from equations (2) and (3) of § 2, one cahtfie invariani : i of the groupss immediately
from a theorem ofS. Lie Meanwhile, the application of the general theory rdgégration requires
laborious calculations; the suggested verification miigi suffice.
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from which, the theorem will follow.”}

We can make an important application of the reldtian ) = 0 directly. Namely, if
we compute the inversé = xa* of a transformationk = xa of G;, with the help of
formulas (8), § 2, then we will generally find expressiohslegreehreein a;, 3 for its
parameters. However, if we have a transformatioBedfefore us, in particular, then we
can already represent the parameters of its inverssfaranation by expressions of
degreeonein a;, 5. In fact, if we set:

(4) Aa-mweo-mea-me-matho-pfa-ha-ke,

to abbreviate, then we will have the identity:
(5) a{Nm-2Oae-me-me-ae)=N Oy,

from which, one can deduce the valueadf as well as the second-degree identity that
follows from it:

(6) aa=aa=Na, pxn+2A(a P .
If one setd equal to zero then that will yield the theorem:
If the parameters of a motion S are:
Q. n. a&. a. [ (K. B B,
Q. — . — . —a. [ L. L. -

then

will be the parameters of the inverse motich S

On the basis of that remark, we will arrive at apression for the finite equations of
the adjoint of the groupGs (or, what amounts to the same thing, the group of mgtions
The adjoint group will be expressed simply by the equation:

(7) X = axa
as long as one assigns the values:

g(o:l, /70:1, Ei:ai, /7i:bi (i:]., 2, 3)

to the coefficientss, 77, and corresponding values to the coefficiefitsr’ ().

We also write these equations down in explicit fosmce we will have to employ
them later on. They read:

() One will find a brief derivation of formula (3) in(pp. 87).
(") Wiener Ber.Joc. cit, § 7 and § 10.
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Na; =g, +8a,+ ag,

(8) Nb =ha, +ha,+ba, (i=1,23),
+ab,+gb,+adb,

in which we have set:
ay=20am,tamy), a,=2@ g -ag ),
&, =a;ta;-a;-a;,

9) b,=2(@B,taf,-aB,~af),

by, =2(a Li+aB,tafrafy,

b, =2(a,B,+af,-af,~afy, etc,

to abbreviate.

Hopefully, no confusion will arise from the fact thae have already employed the
notationsay in 8§ lwith a different meaning: In both cases, the egmas for the
coefficientsay in terms of the parameterg, (£) are the same, as we see straightaway.

§4.
The parametric representation of motions.

We easily arrive at the parametric representatioth@imotions themselves from the
expression that was found in the previous paragraph fadjoint group.

Equations (8) and (9) of 8§ 3 show how the infinitesimaigfarmations of the group
Gs commute with each other under the finite transfoionatofGs . However, since the
groupG6 is related isomorphically to the group of motions in spac®ibyulas (5) and
(7) of 8 2, we will also know then how the infinitesinmabtions commute with each

other by the finite motions that are expressed in tefnise parametersx £). We will
then be in a position to calculate, for example, tifamitesimal transformations of the

three-parameter grou@, that emerges from the gro@ of all rotation around the fixed
point Z°, z), z by the motior§(a, f). If we then determine the midpoiat, z,, Z of
the new groupG; then we will already have the desired expressiom®fotions with
that. The coordinateg will obviously be linear functions for the coordinates and

rational functions of the parameteas £ .

We have already given the infinitesimal transformatiohthe groupss [in 8 1, (9)].
For, e.g.Zif, we havea; = 1,0, = 0,a3 = 0,b; = 0, b, = z°, b3 = — z°. The expression
for the transformed infinitesimal transformati@nf then follows from that with the help
of formulas (8) and (9), § 3:

N DZif = a1 Xqf + ap1 Xof + azg Xaf
+ (b1 + a2 2° — a3 2°) Yif,
+ (b1 + ap2 22° — A3 2°) Yo,
+ (D31 + Az 22° — @z 2°) Yof ;
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corresponding expressions fdf f and Z, f arise by cyclic permutation of the indices 1,
2,3.

In order to find the pointz;, Z,, z that is fixed by the transformation, f, Z,f ,
Z.f , we would do best to introduce three new transformatfyii , Z,f , Z,f , in place
of Z/f, Z,f, Z,f, that again have the fordf, Zf, Zsf. We then obtain the
expressions for each coordinadg z,, z, a second time, and thus have, at the same time,
a check for the validity of the calculations. Onel§, with no effort:

Zf=Xf-2Y,f+3Y f
=N" D@,z f+a,Z,f+a,2,9, etc

Not justXof andXsf drop out of the right-hand side of this equation, e ¥f, as a
result of the existence of the relatibfw, 5) = 0. A comparison of the coefficients Xff,
Ysf, andY.f then gives the desired transformation formulas, nantkeé expressions for

the coefficientsak of § 1 in terms of the parameters (), as long as we again writg,
2, Z inplace oz, , 3 .
Furthermore, for the ultimate formulation of our resuwe would not to like to

appeal to the ordinary rectangular coordinatgsz, z;, as we have up to now, but
homogeneous coordinates: i : X : X3, which are coupled by the equations:

=2
X X X

We letup : U; : Uy : Uz denote the associated plane coordinates, angk let— py denote
the associated complex or line coordinates, such thatwil get, for example:

Po1 =X Y1 —X1 Yo, P23 =X Y3 —X3Y2,
Po2 =X Y2 —X2 Yo, P31 =X3y1—X1Y3,
Po3z =X Y3 —X3 Yo, Pr2=X1y2—X2 V1,

for the coordinates of the connecting line of the poiahdy.
With that, we can now express the motions in spaceoint, line, and plane
coordinates:

Xo = 8o X

X =Xt a Xt a,Xt 85X
X = BXt & Xt 8%t 8sX%
Xy = 83Xt 8y Xt X%t Ak

(1)
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Po1 = &1 Poyt @y, Pt y5Pgs [3]
(2) Phs = B3 Pyt B, Post Dy3Pg;
ta Pyt A, Pyt A0, [3];

= aOOUO + aOlul+ aOZUZ+ 803u3
D + a11u1+ 812u2+ alSUS
= D + a21u1+ a22u2+ a23”3
D + a3lul+ 832u2+ a33u3

Uy
ul
3) :
u2
U

The formulas represent the general motion in space, as long as oressegithe
coefficients @, bk in terms of the paramete(s, £) as follows:

— 2 2 2 2
aOO_a0+al+a2+a3’

&, =a;+a;-a;-a;,
2, =a,+a;-a;-aj,
(4) 6\33:0'(2,'*'0';—0'12—0';,
a,y=2@a,tagy), anp=2@a;ag),
ay, =2(aa, tag,), =209 -ag)
a,=2(a,tag;), a,=20a,ag)

& :2(0'2,33—0'332—0'031+0'13(),
22 :2(0'3,31—0']ﬂ3—0'032+0'23(),
859 :2(0'1:32_0'231_0'083_0'18()!

© 8 =2(0,8,-a 5,0 fima B
8y, = 2(0'3,31—0']ﬂ3+0'032—0'28(),
Q3 = 2(0’1,32—0'2,31+0'033—0'38(),
and finally:

b, =2(aB,tap,~af,~a ) [3],
(6) b,=2@f+af,+aBraB) 3,
bszzz(azﬁs'*'aagz_aogl_ap()’ [3].

The connection between the quantitigsand the quantitieay will be given by the
formulas:

Q0831 ~ A58, = aoobn [3].
(7) A3~ A= aoobzs [3].
A2, ~ Ay, = aoobaz [3].
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which are equations that one can solvednr ax, azo in many ways [cf., 8 5, pp. 84,
(14)]. Finally, the connection between the quantiigsand the quantitiesay will be
represented by the formulas:

®) { Bofo * Q0B t BBt &@=0, (FL23)

B8t Byt Aot AR~ 0, (F1,2,3)

We observe that formulas (2) will agree precisely atimulas (8) of the previous
paragraph as soon as one adds the faggao their left-hand sides, and we can conclude:

One will get the adjoint of the group of motions when one interpretsotrelinates
pik of the linear complex that the motions are subjected to as the @artewrdinates in
a six-fold extended space.

That should not be surprising: The theorem is onlyatteytical expression for the
fact that is already familiar to us that an infiniteal motion is linked with every linear
complex, and conversely.

If one sets the quantitigs all equal to zero then formulas (1) and (4) will gotte t
well-known Euler formulas for rotations around a fixed point, namely, dhigin of the
coordinatew, z, z3 .

We have already pointed out that one can alterxpeessions for the coefficiengg
in terms of the parameterg,(£) in many ways. One might perhaps feel that there is
something wrong with the fact that for the case= 1, a; = 0, 4 = 0, our formulas will
yield negative values for the quantites, ao, aso for positive values of the quantitighb,
[, (s, and thus translations that are opposite to the positreetions of the coordinate
axes. That will be easily remedied by the introductbmew parameterg = — A, or
the parameter&, =ao, @ =—ai, B, = /.8 =- 3, in place of the parameters, (3.
The first change is not recommended, due to the chahgesene will then make, as in 8§
7. However, as for the second one (against which, tisereothing to recall), the
relationship between our parametric representation afet’&dormulas, as well as the
theory of quaternions, is no longer quite as immediat® ance was. Namely, in place
of the multiplication table for biquaternions, one nomd§ the so-called reciprocal table,
which emerges from the latter by switching the rows wligh columns. We have thus
preferred to keep the expressions for the coefficigpt® the form (5), and to take the
aforementioned minor flaw into account.

§ 5.
The transformation coefficients and the parameterga, 5.
Several important consequences are connected withethark that one can solve

Euler’'s equations (4), 8§ 4 for the squares and products of thenptersa; . One finds
immediately that:
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Boo + 8y + B+ 8= 40,
Qoo T A~ Ay~ A= 40'21!
Qoo T 8y~ g3~ &= 40'22’
(1) Qoo T Ay~ & A= 40'23’
8~ a, =4a g, At a,=40 g,
8 —a=4a g, agta;=do g,
a, -8, =4ag,, a,ta,=4q,

That next yields the proof of the theorem that wasudised in 8 1, namely, that the
relationsP, = 0, P = 0,Q =0, Q = 0,Rk = 0 that were presented there include the

complete system of all linearly-independent identitidsdegree two between the
coefficients of an orthogonal substitution. One chentwrite down the identities
between the squares and products of four independent quadhtigedy. There are six

of type o’ @7 — a ax Oai ax = 0, twelve of typea” 0ok i — ai ak Oai ai = 0, and two

independent ones of type ak Oai am — o a; Oak am = 0, and thus, twenty, in all. We
then have @ompletesystem of second-degree relations between the ceeffsai in the
following formulas:

Ay = (3ot a1)° ~(85+ 83" ~ (85~ 89" =0, [3],
A&sz(aoo_an)z_(azz_ 83;2_( Ayst 3322201 3],
B = (8ot @yt @yt ad( at ad—(a;r a) af a)=0, [3],
B = (80t 8~ @, @i @t agd—(at a) a;f a)=0, [3],
(2) B =(ap—a,ta,— ad(ay a)—(a;r a) af a)=0, [3],
By, = (8o~ ant ay~ a)( &,y ajd—(at a) az a)=0, [3],
C, = (83~ a8t 8 ~ (i~ a)( &t a)=0,
C, = (@, ~ a)(a,* &)~ (a5 a)( ay a}=0,
C; = (a5~ ag)(aut ) — (a5~ a)( a;+ a)=0.

One must consider in this that the last three relateme not linearly-independent;
namely, one will have:

(3 Ci1+C+C3=0
identically, such that one can write them more byie#i:
4) 8223—8322:6\;1—8123:8122—8;1.
The left-hand sides of relations (2) on the one hamditlze left-hand side of relations

(3), .., (5) in 8 1, on the other, can now be expresséerms of each other reciprocally,
as follows:
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AR = Ap+ At Ayt A+ 2C,
4R = A, + Ayt A+ A 2C,
AR, = A= As
(5) 4Q, = By, ~ By~ Byt By,

4Q = By, = B+ B+ B,

4Ry = By + Bot+ Bt By,
4R;, = By + By~ By~ By,

C.=R-R
A,=-R-F+D+2R,
A;=-B-R+D-2R,
(6) By = Rst R+ Q+ Q
By =Rs*+ R,= Q- Q
B =R~ R,= Q+ Q
By, = R~ R+ Q- Q

Any of these identities can represdmee mutually-equivalent formulas.

With that, we have proved the theorem in question. h&tdame time, we have
brought the system of relations between the coeffisi@rnib another form, namely, the
form (2), independently of the theory of the parameterss), and which is a form for
these relations that is to be preferred in some cases

In order to give an example, we consider the systemlations:

aizl_a'§3: 8223—83212 aez,s_aizz’
aizl_asz = a§3_3123: 332,3_351’

which (we might remark, in passing) has a simple cormeetith the so-calletheorem
of sinesin spherical trigonometry. One finds, in the giveryweg.:

(a§3_a§1) - (aez,g_aizz)
= 2{A02— Aoz + Az — A1 — 2Cq}
:%{—P]_‘F Pl' —Pz—Pz' +P3+ P:;}: Ps - P-.

One can easily extend the argument that was just prdsemteelations between the
coefficientsay of arbitrarily high degree:

Gy

There exist:
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linearly-independent relations of degreén® 2) between the coefficientgogayy, ..., a3
of an orthogonal substitution of three variables. They can all be wiittdre form:

20
2 FR® =0,
i=1

as long as Fare homogeneous functions of degree 2in the coefficientsg@, azs, ...,
az3 , and ®; mean the left-hand sides of the twenty relatiohslegree two that exist
between ther(l).

Any expressiorF of degreen in the quantitiesay can, in fact, be written as an
expression of degreen2n the parametersy, ..., a3, and conversely. However, there are

2n+3 . -
only ( 3 j such expressions; the remaining expressionsust then be equal to zero

identically. IfF vanishes identically then, once one has expressed#fcEntsay in
terms of the parameteuns, ..., as, the various terms of the form:

Aagatayay (ko + ki + ka2 + ks = 2n)

must affect each other reciprocally. However, thodévidual terms differ by only the
numerical values of the coefficiemg (whose sum is equal to zero), and by the way that
the parametersr, ax are combined pair-wise in them. If one then [dtslenote any
expressions of the formai 0o as — ajai Ok as then one can pi into the formX F; &;,
without decomposing the productgai into their factors, as the theorem asserts.
Naturally, there are many forms that the expressiongh® individual relatiorF = 0 in

the form 2 F &; can take. For example, one will get the mutually-eqaival
representations for the third-degree relations (2) ine§ al:

ago_|a11azzas3|
(7) =a,R+ , R+ gy Rt @y F (i=1,23).
=R +a R+ 3R+ g,f

Like the second-degree relations between the icaafts ago, az1, ..., asz, formulas
(1) also easily lead tdoilinear relationsbetween those coefficients and the parameters
o, ..., as — i.e., the expressions that are linear and honexges in the quantitiag , as
well as in the quantitieasi , and which will vanish identically when one exmes the
coefficientsay in terms of the parametess.

We shall communicate those relations here in tmenfand arrangement by which
they can be usefully employed in many calculations.

One first has the three formulas:

() As will be shown in another place, the methodgheftheory of invariants lead to a deeper insight
into the structure of these systems of relations.
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alail + a2a‘21+ a 3a3l: aOOW 1
(8) ala12 + a2a‘22+ a 3a32: aOOW 2
ala13 + a2a‘23+ a 3a33: aOOW 3

which go to each other by cyclic permutation of the 1, 2 MRreover, there are nine
more similarly-constructed formulas whose represamstmight be the following three:

Qydy, — 0@, +a ;= aoow 0 [3]1
(9) Qpd, —a @1 a 5= aoow 3 [3]1
Qo3 — @+ a A= aoow 2 [3]

These twelve bilinear relations yield twelve more whea switchesy with a, and
simultaneously replaces, a», as with — a1, — a2, — a3.

We then know 24 bilinear relations. However, theg not linearly-independent, but
they are coupled by four mutually-independent idiexst namely, these:

[ay(a,—ay) —aa,+a A
—[ay(a,—ay) taa,-a aj
+ay(a, —ay) ~a@,*ta 2l
—[ay(a,,—ay) taa,—a a))
tay(a5—ay) —a 2t a @5}
—[ay(as;—ay) +a 85— a @;} =0,
(10)

[ava, — a8, a{a,t ag)]

Haya, a8, —a{a, + ay)]
—[aa,—a(astay taal
—[agay, taast ay) —a a,]
—[a(a,—ay) taa,ta Ay
+a(a,—a) +aa,taa}=0 [3].

Four of our relations are superfluous in thiShe remaining twenty, however, are
linearly-independent. The represent the totality of all linearly{eshelent bilinear
relations between the parameters ... , as and the transformation coefficientsoaay i,

.., 3.

The proof is entirely similar to the argument tivais carried out above (pp. 78).

We would now like to apply some of the formulasttivere summarized here by
investigating how the parameteus, () can be expressed in terms of the transformation
coefficients.
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Equations (1) yield four different expressions for thgos of the quantities; that
can be represented lagear functions of the transformation coefficieras :

a,.a .a,.a,
=(agtayta,ytagi(ay a):i(ay ay(ay a)
(11) = (a3~ 8g) (8t a,~ &, ayi(agt a)i( aft a)
=(ag —ap) (@t &) (At ay a3 ai( a4 a),
=(a,—ay) H(ayt a) 1(ast ayi(agt a ar a)

These equations represent a somewhat clearer formladions (2), at their basis.
One then sees that:

If any of the sixteen terms on the right-hand sidd djvanish then, at the same time,
either all terms that are in a column with them or all of them #ratcontained in the
same row as them will vanish.

In the first case, the corresponding parametevsill have the value zero. Likewise,
due to the symmetry of the table (11) in its diagonal, dnis cows will also vanish, and
one of its four proportions will take on the undetermife@an O : 0 : 0 : 0. Since that
obviously cannot be the case for all four proportiong, wil get a uniquely-determined,
rational expression for the ratios of the quantitiesnderall circumstances.

One might use, perhaps, the first of our proportiosspRag asago + a;1 + a2 + ag3 #

0. However, when that expression vanishes, the cmefficmatrix will be symmetricai
= ayj), and one will get the ratios of the quantitig$rom one of the proportions:

a,;  a, - a, I a,

(11b) =0: (agtay): &, - Ay
=0: a, (tay): A3
=0: a - Qy (3t A

Of these, the first one is useful only whajg + a;1 # 0. If ago + a1 vanishes then one
will also havea;; = ag1 = 0, and one will have two proportions:

a,. a,;: a, . a,
(11c) =0:0: (@ptay,):  ay
=0:0: A3 : (300_322)1

of which, once more, perhaps the first one is usefubag asay + az, does not vanish.
If that case also occurs then one will ultimatelyehav



84 Study — On motions and transfers

(11d) {

Once we have found the ratios of the parametgerfom this, we will get the
parametergs by solving the linear equations:

aoﬁo+a1 1+a2:32+a383201
Zaz
0'1,30—0'0,31—0'332+0'233:%alo aOI )
0

(12) a?
azﬁo +a3ﬁl_aoﬁz_a183:%azo%’
0

2
a:
03,30—02,314'0],32—0033:%&30%.
0

In order to find& from this, one multiplies the left-hand and right-theaaxde of each of
these equations by a factay that will make the coefficient g& in the sum of products
on the left equaEai2 . One will then come to the formulas:

@y, + Q850 A= 28,8,
Aoy =0 Byt A Ay~ —28,0 B,
Q830+ A By~ 0 @3~ —28d B ,
—Q,8,t A @yt O A= 28, B,

(13)

Not only does a well-defined motion belong to any system of pararfete®s but
conversely, any motion belongs to a system of parameters.

Here, it is assumed that the determinant of the systeequations (12) does not
vanish, so the motion does not degenerate. Naturallghat case, which we will
exclude, the theorem will no longer be true.

The considerations that were communicated in this papagcan be generalized in
many directions. In regard to them, we remark only oim&t can solve equations (5) and
(6) of 8§ 4 for the products: A, and that one can consequently give the mutually-
independent second-degree relations that exist between theafttiesax and the nine
guantitiesby with no further assumptions. Due to the large numbehade relations
(there are no less than 208 of them), we shall, hewewoid treating them exhaustively.
It might suffice to exhibit, in addition to the ratats (8), § 4 that we gave already, some
of them that emerge from equations (7), 8 4 with the bélthe formulas that were
developed already:
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a21b31+ azzb32+ a23b33: aooajo[?’]’
(14) a31b21+ aazb22+ 833b23: - a00a10[3]’
a11b11+ a12b12+ a13b13: 0 [3]

When the equations of motion are given in line coordingtesy will yield the
expressions for the coefficierds .

A second system of relations of this kind will angleen one exchanges the quantities
ai, bik in (14) with the quantitiea, by .

§ 6.
Another derivation and generalization of the parameterga, £).

One can arrive at the parameters £ by which we have represented the motions in
space in several other ways. Here, we would like tangonicate a derivation that has
the advantage of being very short, and assumes nothimgdbelge known connection
betweerEuler’s formulas and the theory of quaternions, moreover.

Let ey, €1, &, e; be the quaternion units, such that:

e’=-&@ [3, ea=--eae=e [3]

and leta, 5, x, ... be quaternions for example, ones for which:

(1) a=metme+tmetaes,
and finally, let:
(2) O =me-—me-0e— 06

be the so-called conjugate quaternion to the quatemione will then have:

(3) ad =aa =) a’=Na).
One will further have:
(4) X = axa

for the abbreviated expression for Euler’'s represematicthe rotations around a fixed
point, which will be the origin of the coordinates, asd as one interprets the quantities
Z =% | Xo as rectangular coordinates in space; The formulathéoconnection between
the parameters likewise coalesce into a single equation:

5) a=ada.

We will now have an expression for a general motefore us if we write the
following equation in place of (4):
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(6) X = axa—-2ap,,

and as long as we choose the quaterfiauch that the second term on the right-hand
side of (6) makes no contribution to the valuexgf That will be facilitated by the

demand that one should have:
) aB+pa = ap+pa
=2 (0'0,&)4'0'1,814'0'2,324'0'333) =0.

If we calculate the expression on the right-hand sfdé) under that assumption then
we will come to the system of equations (1), (4), (g d. One then shows, as in 8§ 5,
that any system of coefficientsg belongs to just one system of parameter<.

One now asks how the parametersf) that are found in that way are combined.

If we perform the transformation:

X'=axa -2ap'%
after the transformation (6) then we will find dirgcthat:
X'=aaXaa -2@ap+aaa )X,
should this equation once more have the form (6), thaheuld one have:

X" - ﬁ"xa" — Zﬁ"ﬁ"% ,
then it would have to follow that:

8) o' =aa, @ =aad, PB"=af+pa

The second of these equations is only another formeoffitt one; however, if one
calculates the first and third ones then formulas {8) 2 will arise.

With that, we have proved the most important of tleotems that we have derived
up to now in a new way, while generally ignoring thewfedge that we obtained in 8 1
that our parametric representation is the only onesdfind. However, at the same time,
we arrive at a new result.

Namely, instead of formula (6), we can make a somewliwat general Ansatz by
employing eight parametets, £ that are not coupled by any relation. The formula:

(9) X = axa-2@pg-pa)x,
can be employed to represent the general motion in .spbae once more ask about the

composition of parameters then we will get the follmyviormula in place of (8):

C_J’" - ﬁ'a’, Bﬂ - CTIB+B’CT.

(10) { a"=aa', p'=af +pa,
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The last two equations are again only another form ofitétetwo. However, if one
expands them then one will obtain formulas (8) of § @xanIf one expands the right-
hand side of (9) then one will, in turn, come to thesfarmation formulas (1), (4), (5) of
8 4. We then have the theorem:

If one considers the parameters in our expressions for the gerffiGy in terms of
the parameterqa, [), not, as before, as being dependent upon each other, but as
completely arbitrary quantities then the same formulas will befoughe representation
of motions that are true for the composition of parameters.

Finally, in connection with what was stated, we mightvpriormula (3) of 8 3. With
our present notation, it reads:

(11) O'"B"'i'ﬁ"c_?'" — arc—rr(aﬁ+ﬁﬁ)+ac—r(arﬁr+ﬁrc—yr) .
However, it follows immediately from formulas (10path

a'f'+p'a" =ad@B+pa)+(af +pa)aa
=a'd'(aB+pa)+aaf +pa)a
=a'a(aB+pa)+aa(a'f +La).

The fact that the theorem that was just pointed austrbe true could have been
predicted; it can just as easily be linked to the thmoabout the groujs; that was
treated in 8 2 and § 3.

As we saw there, the gro@y contains a one-parameter distinguished subgfaup
whose general finite transformation reads, in the rootaif § 2:

(12) X =X (e +h &),
as long av means a numerical parameter. [Cf., § 2, (6)]. NawtHe moment, leX’ =

xa denote any transformation 6% , so one can always determine the quattitgnd in
only one way, such that the second factor on the right-ka&e of the equation:

(13) a=@+hsa)a
satisfies the conditiob(a, f) = 0, so:
(14) X =xa andx =xa

will be corresponding transformations of the isomoralhyerelated group&; andGg.
One finds directly that:
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(15) h=t@.F)
N(a",B")
(16) a’=a, B=B+ha.

If one now introduces the parametets, (5), which do not satisfy the condition
L(a, B) = 0, into formulas (4) and (5) of § 4, in placetiee parametersa{ f), which
satisfy the conditio(a, §) = 0, by means of the substitutions (16) thenehosmulas
will not change in form. That is the theorem thats proved above in a new form. We
likewise recognize wherein the meaning of that tesolies:

The theorem that was just pointed out will no lanige true when one changes the
expressions for the coefficientg g terms of the paramete(s, /) in such a way that
one adds multiples of the vanishing expressian b to their right-hand sides.

We can then say that, in a certain sense, thessjons that we chose are shaplest
of all the forms of representation that one wouké ko consider to be equivalent. The
isomorphism of the group of motions with the grdsipthat belongs to the biquaternions
finds its purest expression in them.

Naturally, it is, as a rule, much more convenigntrepresent the motions by the
parametersd, ), which are present in only one way, than to empie parameters(,
£), which contain the superfluous parameterwe will then make no use of the
parametersd , ) in this study.

The latter considerations relate to only our eggpian of the motion bgoint or plane
coordinates. However, a corresponding theorem is also trudif@ coordinateswhen
one write the unabbreviated equations in placejafgons (2), 8§ 4, which are implied by
equations (1), § 4:

Por = @00 @11 Por™ 8, Post 5P 3],
Prs = (Bgob =2 L&) Port 8y Py

+ (80, —2Lay,) Pot Ay, Pay

+ (@b~ 2Lay,) Pt BgedisPi, 3]

(17)

If one adds the factoa?, = N° to the left-hand side of this and replaces thentjties
Po1, Po2, Pos, P23, P31, P12 With ai, az, as, by, by, bs then one will obtain the expression for

the adjoint of the grouf®- in terms of the parameters, (§) of that group.

We would then arrive at a knowledge of the theotieah was already stated on pp. 87
if we did not abbreviate the calculations therarirthe outset by employing the relation
L(a, B =0.
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§7.
Geometric interpretation of the parameters(a, f).

Our arguments up to now have been based upon the sisglengtion that the
motions being examined did not degenerateasgovas non-zero; everything that was
presented is just as true for real values of the casftica, and parametersy £), as it is
for complex values. However, from now on, for gake of brevity, we would like to
restrict the consideration to real values of the dtageantities, and thus to the
investigation ofeal motions.

In what follows, we shall ascertain the geometnieaning that the parameters (5
— or rather, their ratios — take on relative to therdomte systemz, z, z;). The simple
calculations that relate to that might be left te tkader; we remark only that one can
appeal to the relations that were developed in 8§ 5 in peirigrthem to one’s advantage.

In order to find the middle complex and screw axis ef thotionSa, £), one can
perhaps proceed in such a way that one will discovdresl) linear complexes that are
fixed by the motion by starting with equations (2) in § 4.e@nds that, in general, their
coordinategi will be represented by the equations:

) { Po = M1y, Po2 = HA 5, Pos= Ha 4
Pas = /'1:31 -va, P31 = /'1:32_ va , P~ HB 3 Va,

and further such complexes will appear only when eithesr an® + &> + a5° vanishes.
The middle complex, as well as teerew axisof the motionS is contained among the
complexes (1), among others. One finds that the fifstthe parameter values
corresponds tu : i = 0, while the second one corresponds to the paranedtes:

alﬁ1+a2ﬁ2+a383:_ aOﬁO

v
Z = 5
M aa taa,taga, 8y~ Q)

(2)

The first result of this needs to be emphasized especial

The middle complex of the motiofaSH) has the coordinates:

Por: Poz: Pozs P Psr Pr
3) { o1+ Poz- Poz- Paz: Parr B

=a,: a,. a;: B B, Bs

The null systemJ — viz., the association of a chord midpoit with the normal
planeT of the associated chord — will then be representedebgdhations:
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L=j0 = 0 =BX =B% —B%,
(4) Ezlz Bi% O —aX +aX,
U, = B% tazx U -aX%
L:Js: BX%, —a% +a X, 0,
= 0 -au _azzz —0'3ﬁ3
(5) X = a@o D_ _:83:2 +:82?3
X = a5l +:83U1 O _ﬁzna
X = a3ﬁo _ﬁzﬁl +:81ﬁz O

Each of these two systems of equations is the solufothe other one; their
determinants have the common value:

(6) @B+ mfp + a5B) = a3

The two cases in which the null syst@hdegenerates then correspond to the two cases

in which eitherap or & vanishes.

We will obtain a more precise breakdown of the meanfrigeequationgy, = 0, &
= 0 when we calculate the screw height and the scngfe @f the screwing motioH a,
p). Both expressions are summarized in the followingrémao

Let 25 be the screw angland let27 be the screw height of the screwing motifm, S
p); finally, let A1, A2, A3 be the angles that the screw axis makes with the coordinate axes
so one has the proportions:

@) { cotd: cosd, : cod, :cod, 77

=a,. a, . a, . a; B,

One infers the special consequences from this:

@®) {ao: a,: a,: a;: By B By B
:O: pOl: p02: p03: 0: p23: p31: p31
It follows from (7) that:
a,
9 cotd= 0 ,
Jai+ai+a’l

n= )
Jai+ai+a’l

in which one must determine the sign of the square robawe the same sense both
times. If the denominator vanishes ti&will be a translation. The expression fpwill
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then take on the undetermined form O : O; one finds the vallee of one-half the
translation magnitude to be:

(100) o NE BB

a,

We will also be led to some very remarkable resultserw we express the
transformation&’;, T, andT that are linked with the motid®in terms of the parameters

(a, B.
As in 8 5 of the first section, we consider the figureg are composed of points and
planes whose elements are related to each other by:

X{ T1} X {T2}X, W I} U{%}u, X{ T} ﬁ{T}X’
If we recall the meanings of these formulas then wiecaine to the theorems:

I. The dependency of the endpoinEs 'xpfxa chord xx upon the midpoint of the
chord X will be expressed by the formulas

X =A%

X =B %+ XA X+ a X,
X = BX t A%t %~ X
X3 = BXo = Q%+ O %ot X

(11a) T

A%,
—BXta Xt a X a X,
~BoX =A%t a Xt a X
“BX T A% A Xt a X

X
I

(1 ]b) 12 . X,l
X2

X

() These formulas (11), or ones that do not differ friliam very much define the nucleus of the
treatise ofRodrigues “Des lois géométriques qui régissent les déplacéments gaténse solide dans
Iéspace,” Liouville J5 (1840), which is still worthy of attention to this dajhey seemed so remarkable to
the author that he did not consider it to be trivial tovprthem in four different ways. He erred only
insofar as he believed that he had shown that his faswatre valid without exception.

The parameters that were employed by Rodrigues are conmdgtitetthe ones that are used here very
simply. One has:

A:—Zﬁ’ B:—Z&’ [_:—2&’
aO aO aO
m= Zﬂ, n= 2%, p= 29

a, a, a,’
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The only exceptions are the unscrewings (viz., the motions whose eparam
vanishes)

II. The dependency of the two mutually-associated planes on uheir angle
bisector of the first kindr will be expressed by the formulas:

Uy = aoUy— ﬁlul_ ﬁznz_ :83TJ3
(12a) 12—1: u = O +0’O?1—0'3?2+0'2_TJ3
u, = U +a,u+au,—au,
u, = U -a,u+au,+anu,
U(’) aOu0+ﬁlul+ﬁ2u2+ﬁ3T'l3
(120) T u’1 = 0 +croul+cr{12—a2_ﬂ3
u, = U -au+a,u,+au,
u= 0O +a,u,—au,+au,

Once again, the unscrewings are excluded, however.

lll. The dependency of the endpoints’xpfxa chord on its normal plana will be
expressed by the formul@$:

Xo = O _alﬁl_azﬁz_asns
(13a) T X = alzo+ﬁoil_ﬁ3§2+ﬁzi13
X = 0’2U0+,33U1+,30u2—,31U3
X = asﬁo_ﬁzﬁl'*'ﬁlﬁz'*'ﬁoﬁal
X(’): O +0’1ﬁ1+0'2ﬁ2+0'3ﬁg
(13b) T Xi :_alﬁ:o'*'ﬁoil'*'ﬁsijz_ﬁzi"a
X'2 =—ayY, _ﬁ3u1+:80u2+:81u3
X = _a3ﬁo +:82ﬁ1_:81ﬁz+ﬁoﬁa'

Here, the rotations (viz., motion whose paramggranishes) are excluded.

If one then eliminates the coordinatesof the midpoint of the chord from equations
(11) or the coordinatest, of the angle bisector from equatio(k2), or finally, the
coordinatest;, of the normal plane from equatio(t3), then the equations of the general
motion in space will come about.

() Formulas (11), ..., (13) were given by the author in &t publication on the topic that is treated
in this paper. (Séchs. Ber. Oct. 1890, pps. 347 and 348) Aathe timeLindemann also made some
suggestions on the parametric representation of motia®mne finds in formulas (12)Vérlesungen utber
Geometrige Bd. I (1891), pp. 373, below]. Meanwhile, he did not fellitirough on his ideas. He also (if
I understand correctly) denied the presence of fopa@as of type (11) or (13).
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Meanwhile, the unscrewings are excluded in the first two cases amdtétens in
the last one: These special motions cannot be obtained in that way.

In order to obtain a clear presentation of how theeptional cases come about, we
imagine that we have added a proportionality fagttr the let-hand sides of the systems
of equations (11), (12), and (13), strictly speaking. If ve that factor to be equal
in the first two cases anf} in the last one then our equations will be complegelyeral.
Equations (11), e.g., then say that the chord midpointlegy the screw axis in the case
ao = 0. Naturally, one can now no longer express thesaif the quantitieg; or x in
terms of the ratios of the quantitiés. Corresponding statements are true in the other
cases.

The determinants of equations (11a), (11b), (12a), or (12bhavie the valuey, O
ao®, while the determinants of equations (13a) or (13b) wilkttéae value:

(14) (@ + @’ + a5d) B+ (o + BB + a5B5)° = a0 R

One then sees that equations (11) and (12) can be dolvéte quantitiesx (U, ,
resp.) whema # 0, and equations (13) for the quantitiégswhen/ # 0. In this, it is

assumed thaf, must vanish at the same timeag + a5, + a3 However, even if

one would like to regard the parameters that enter iatoflas (13) as entirely
independent quantities, they would still not be useful énrépresentation of rotations: In
that case, one would obtain only the identity tramsfdion by eliminating the quantities
U . [One compares formulas (4) and (5), pp. 89.] If one acwally solves the stated

equations then one will find that:

Xy = 2850 %
(11c) %, i_ﬁ =apXt(ayt a9 Xt a, X%t asx
X, = Xt 3, Xt (@t ) X+ asX

Xy = Q5%+ 8y X+ 3, X%+ (a5t &) %

(after moving a factor ofdo oo to the left-hand side), and furthermore:

Uy = 28y5Uy + 3y T apU, + Gy,
(12c) Lo Fl = 0 (@t ag Ut a,u+ a,u
u,= 0 a,u+(a,t+ ay u+ a,u,
U= 0O ayut ap,lt(agt ag U

(again, after moving a factor oég) (o to the left-hand side). Finally, one will have:
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Up =20 % @ X+ &% + &%
(130) T U= apXt(a; 8 X+ a,%t a3%
U, = 3%t anX+ (a8, & X+ a%
Uy = apXt 8%t 3%t (& a) %

after moving a factor of 2ago % to the left-hand side and writing:

(15) doo= " + B° + B + B,
to abbreviate.

If one connects formulas (land (1t), (12b) and (12), (13b) and (18) then, as
stated, one will come back to the transformation tdas of § 4 in all cases; however, as
one can anticipate, one will not obtain every foranin the form that was given there
immediately, but only when one has dropped the factags 2, 264, resp. from their
right-hand sides.

The way that the parameteus, () enter into formulas (4), (5), (&L (11b), (12a),
(12b), (13a), 13) is remarkable in several respects. They enter itofdahem only
linearly. Furthermore, the parametaerg % are missing from (4) and (5), while the
parameteyy is missing from (11) and (12), amd is missing from (13). In emphasizing
this last fact, we might remark that the transforoveiz,* and¥,, T, and %,*, TandT™*

invert their roles when one switches the mot®with the inverse motios™. It then
suffices to say:

The motions in space that are linked withThe motions in space that are linked with
the transformation&, (%1, resp) define a| the transformations T define a six-fold
six-fold extendedlinear manifold when €xtendedinear manifold when regarded as
regarded as transformations betweeliansformations between points and planes.

points (planes, resp.).

If one interpretsthe ratia : a1 . a» . a3 : [ : 5 @ 35 of the coefficients of, e.g%5,

as homogeneous coordinates in a six-fold extended dgatieen one will obtain a
generally single-valued, invertible map of the manifold @ftions to the points of that
space. Only thainscrewingsexhibit singular behavior under that map, besides the
degenerate motions: All unscrewings with the same axiscettespond to one and the
same point of the spaé® . An entirely similar map will arise when nonertdawith the
theorem on the right. However, thetations will now be the singular elements. All
rotations around the same axis will correspond to the gemm¢; however, the identity
transformation will correspond to a completely indetaate point.

Naturally one can also establish theorems I, lliintinediately with no knowledge of
the theory that was developed in 88 1, ..., 6, which is, i) ¥éltatRodrigues succeeded
in doing in the case of equations (11). If one then duces the missing superfluous
parameters with the help of the relatiofzr, 5) = 0 in every case then one will have a
third way of arriving at our parametric representation ofioms. We content ourselves
with the suggestion that a deeper insight into the essefithe last theorems can be
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deduced only from the general theory of quadratic formssiwivould then require tools
(for a proper presentation) whose application we witljdeurselves here.

§ 8.
The canonical parameters of motions. Continuous groups of motns.

If we specialize our parameters by the introductionmoindinitely small quantityX
whose square can be neglected, in the following way:

(1) a=1 (=0, aga=ad LG=bd, i=1273)

then we will once more get the formulas:

-2{b,-a,z+a,30,t
2Ab,~a,z+a,29,t
Ab,~a,z+a,Z0,t

2=12
(2) Z=12
z,=1z

which represent the general infinitely-small motion; wavéh already introduced that
infinitesimal transformation, whose symbol is:

@3) XF= 2@ X F+6Y 1),

in 88 1 and 2.
That infinitesimal motion generates the generatiomo“by infinite repetition,” and,
following S. Lie, its equation can be written in this way:

4) 7 =7 +X() +% X(X(@)) +%X(X(X(z))) .o

The parameters;, b; that appear in this are called tb@nonical parametersf the

motion. One asks how they might be coupled withgarametersq, £).

In order to ascertain that connection, we willgged most simply and intuitively in
such a way that we now express the screwragisthe motiors its screw height 2 and
the screw angle2 which we have all represented in terms of thepeters €, £), in
terms of the canonical parametersbi, as well. One then obtain the screw axis, as well

as the quantitieg and ¢ for the infinitesimal motiorXf from (1). If one considers that
the screw axis will be the same for all motionsthe one-parameter group that is
generated b¥f, and thaty and & change in proportion to the paramet@f the group
then one will get the following expression for tpharameters «, £) of our general
transformationt) of our one-parameter group:
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pa, =, mcoty mt, pB, =nt,
pa, =a,, pﬁlzbl+1(w/mtt¢ot«/mt—l)ul,
m
®) n
pa,=a,, pB,=b,+—(/mtleoty/ mt—1p,,
m
pa; =a,, pﬁ3=b3+1(«/mtﬁot«/mt—l)33,
m

in which, we have set:

(6) m=aia; +axax+ asas, n=aib1 +axbs+ az b3,
to abbreviate.

One easily convinces oneself by actual calculatibat equations (5), in fact,
represent the group that is generated by the iefimal transformation (2) avaries. If
one sets the proportionality factorequal to unity, for the sake of simplicity, ancedats
a;’, B° denote the values of the parametersfj that emerge from the values , 4" in
(8), 8 2 when one replaces 5 and a/, B with the values ofi(t), A(t) andai(t'), A(t')

then the quantitiesr”, B~ will be proportional to the values @f(t + t'), 4(t + t') that

emerge from (5):
a’=/m(cotymt+cot/ mt )@ ¢+t),
B = m(coty mt+cot/ mt' YB €+t');

the relationS(t) (Ht') = St + t') then exists between the three moti&ty, St'), St +1').
If a1, az, andas do not have the value zero simultaneously them fionite value ot,

formulas (5) generally give a well-defined infinitalue for the ratios of the parameters
(a, P); these formulas only appear to contain the oratlity / m . However, ift is a

(7)

whole number multiple OfT/\/; - say, Kﬂ/ﬁ - then the proportionality factqe

must increase to infinity in order to still getifm values for the quantities, 5. The
associated motions will be translations:

paO:M’ pﬁi :I‘lﬂ(mi,
m

(5b) (=12 3).

B, =0, a, =0,
Finally, translations will also arise whenvanishes:

(50) pa=1, [o=1, a =0, PG =at (i=1,23).
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The formulas that were developed will give the cononachetween the parameters
(a, p) of a motion and the canonical parametgrs; of the same motion completely, as

soon as one sets= 1 in them. If we solve equations (5) under that apsiomthen we
will find:

a, =cosA [P, b, =cosl,[hf cof - B, [P
(8) a,=cosA, P, b,=cosl,[flf col- B u,H
a,=cosA, [P, b,= cosl,[fj0f cof— B u,[F

in which the quantities ca¥, 7, cosA, 1 have the following values:

Cotﬂ:%’ O:Lz’
8y~ By~
9
COSAi:LZ, M= ’8' -
By~ By~

Equations (8) and (9) provide the canonical parameteranpmotion that is not a
translation. One will get infinitely many values ftvetquantitiesy; , b; for any motion

Sa, p), which correspond to just as many infinitely-small s that generate the
motion §a, f). However, the case in whichis a rotation £ = 0) is excluded. In that
case, the canonical parametersb; have uniquely-determined ratiddwill be generated

by onlyoneinfinitely-small motion, although it will be repeatedinitely often.
The translations exhibit an essentially different belta The canonical parameters
of a translation will, in fact, be indeterminate.offe considers that the relations:

(10) m=aatan,tag, =5
n=ab +ab,tap,=-nd

follow from equations (8) and (9), and that the quantaieshe right-hand side also take
on finite values for the translations then, with the athe abbreviations:

-8 _NBHBE
SAI = I ’ - ’
(11) co I RY: n a

that will imply that one can make two different Angtior a translation with the
parametersy, 0, 0, 0, 04, %, 5 . Either one sets:

(8b) a; = cosA; [krg az = cosA, [krg az = COSAs [k7g
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in which one understandsto mean a non-zero whole number, and chobgeb,, b3

according to the condition:
(10b) a1b1 + agby + asbz =— 1 k77

but otherwise arbitrary, or one sets:
(80 { a, =0, a,=0, a,=0,
b,=—-ncosA,, b,=-ncosl,, b,=-n cos,

Equations (B) and (1®) collectively contain the general solution to equati¢fp).
Corresponding to any value af one will obtainw? values of the canonical parameters
ai, bi ; they generate the translatid{a, £) by infinitely-small screwing motions.

However, equations ¢ correspond to equationscf5 They give the parameters of the
infinitely-small screw that generates the transtagta, J).

Finally, the canonical parameters of the identity ti@msation (whose easily-derived
expressions might be suppressed) are undetermined toeanhgher degree than the
canonical parameters of a general translation.

It is remarkable that not only the quantitigs?, Ai, which were discussed already,
but also the quantitieg on the right-hand sides of equations (8), have a siggaenetric
meaning. Namely, the middle complex of the mot®a, f) is linked in a known way
with an extension of rank two or a force system tin&t can represent by:

(12) { cosh e,g]+ cosl, [g el cosl,[g €]

+uleel+ uled+ uf e

if one applieGrassmanris notation. In thisgy means the origin of the coordinates,
&, e; are the segments of length one that are parallaktodordinate axes, ang €] are
the exterior products of rank two of those quantitiessehexterior product of rank four
[en €1 e €3] is set equal to one. If one represents the extemgii?) as sums of two line
segments then (as is known) they will describe aftethan of constant volum& 6J
will be equal to the exterior square of the expressiddy; (i.e., one will have the
equation:

(13) J=-%ncotd.

The quantitiegs, (b, (s are then represented directly in the simplest wahesix-
fold sums of two tetrahedra, or as the moments offtihee system relative to the
coordinate axes.

One can introduce the canonical parametgits into any expression that contains the

transformation coefficients;, or the parametersy( £) of a motion with the help of the
formulas that were developed. One can derive the fedgeations of the canonical
parameter group, e.g., from equations (8), 8 2. The constuztithose equations will
then become so complicated that there is no pointiting them down. In most cases,
one will appeal to the parameters, (f) to much greater advantage then the canonical
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parametersa;, b;, whose introduction would require the solution of trensiental
equations.
An important peculiarity of the canonical paramet@&rs; consists of the fact that

they can be represented lnyear equations for all continuous groups of motions. The
parametersd, £) do not have that property. However, it is notewotttat, at the very
least, the groups of motions whose translations can be charactelyedlgebraic
equations in the coefficients, [namely, the subgroups 2), 35)45), 6), 7), 8), 9) of
the classification that was given in the first settid 8 9] with the use of the parameters
(a, p) can likewise be defined year equations in those parameters.

One will arrive at the group obtations around a given poingyyi : Y2 : y3 when one
chooses the parameters 5 according to the conditions:

B =0,
Yo = A3, a,Y,
Yo, = Q1Y = Q3Y,
YoBs = QLY ~ @Y,

(14)

There is no difficulty associated with expressingcaiitinuous groups of motion with
the help of the parameters, () and examining them. Those parameters will probably
also be of use in the representation of non-continuougogrof motions (as well as the
groups of motions and transfers; cf., 8 9). In generdiave still not made any
investigations of that vast subject.

§0.
Expressing transfers in space in terms of the paramete(gr, £).
In order to go from the analytical expression fa general motion in space to the
expression of the general transfer, one needs onlyrtorpea reflection in the origin of

the coordinates before or (as we would like to do) afterntbéion. The following
formulas will then emerge from formulas (1), (2), (3)8at:

0%

0%t & Xt 8%t a5%
QX T & Xt B, X1 8%
QX T B Xt 8, Xt 8%

S D

(1)

RaSICONP QS S
1

p('n ==, Po1~ AP0~ Q3008 [3]
(2) p’zg = bu Por b12 Post b13 Pos
Ay; Por T A5 Ppot A13P03 [3]
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Uy = = ool ~ 8oaUy~ 8gp ™ B3tk
U = U+ 8,U+ gl
= U+ &,rUt 35U
= Qg Uy T 85, Uy,+ 85Uy

3)

These equations then represent the general transfer in space, as loogeas
expresses the coefficientg,a, in terms of the paramete(g&, £) with the prescription
of 8 4. Every system of these parameters that satibBesonditiondN(a, £) # 0, L(a, )
= 0 corresponds to a transfer in space, and conversely.

Since the transfers define a group in conjunction with rtiotions, that raises the
guestion of whether one can also summarize the tranatmms of that extended group
with the help of the parameters, (§) in a simple way. That is, in fact, the case: @lse
finds that there is dilinear combinationof the parametersa( p) for the enveloping
group. Namely, it consists in the following easily-prd¥beorems, the first of which is,
in principle, only a slight extension of the main trexa that was proved in § 2:

If Sa, p) is a motion and S(a’, £’) is a motion or transfer in space then the
parameterqa”, £”) of the composed transformatiorf $SS, which is a motion in the
former case and a transfer in the latter one, are both obtained fronufasi(8), 8 2 (pp.
71).

By contrast, if &, f) is a transfer and Ja’, £’) is a motion or a transfer then the
parameters(a”, £”) of the composed transformations $ SS, which is a transfer
(motion, resp.), will be deduced from the formulas:

a,= ao,-aq,—ag,—ag,
a = amtaa,tag-ag, etc, [3]
B =-aBrafitafraf,

+ B0, Ba, = BaA,~ By
B=-ap-af;-af.raf,
+Bya,+ Bay+ Ba's-Bay etc., [3]

(4)

Formulas (4) differ from formulas (8) of § 8 simply the fact that the quantitie§’
are replaced witk B on the right-hand side. An especially important spease of the
last theorem is the following one:

The inverse of a transfer with the parameters:
. . . a: LSS
.~ .~ -G - L L.

has the parameters:
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Here, as everywhere, as well, we assume that tiaeneters are chosen to satisfy the
conditionL(a, p) = 0.

The geometric structures that are linked with a transi@n be represented
analytically by the parameters,(f) relatively simply, correspond to what we have seen
in the theory of motions.

The middle plane of a transfe(& £) has| The middle point of a transfer(&@ p)

the coordinates: has the coordinates:
(5) Up- Ups U0 Yy (6) X X X X
=6, a,:a,: a, =a,: B: B, Bs

The rotational axis of a transfe(& p) has the coordinates:
(7) pOl : p02: p03: p23 : p31 . p12
=a,a,: a@,: afg —(@Bmaf) —@frap)—(@p yapB)
The special cases that emerge in the theory offeranare characterized as follows:
The parameteny vanishes for transfers with an infinitely-distant middle point.
The parameters: The parameters:

ao, B, B, B B, a1, @2, 03

vanish for reflections in the planes (invanish for reflections in the points of
space. space.

We then have the following principal types of trarster distinguish, analytically, as
well as geometrically, in their classification:

|. The general case: ap# 0, a’+ o’ + a5’ 2 0.

Only one finite point will be fixed — namely, the middleirgoof the transfer — and
likewise one point at infinity, whose coordinates are:

Xo:X1: % X3=0:mm:02: 3.
Moreover, in addition to the plane at infinity, yeb#her plane will be fixed, namely,
the middle plane.
The transfer can be generated by a reflection in tidelenplane (5), and a prior or

subsequent rotation around the axis (7). (Cf., I, 8 10, pp. 40)
The reflection has the parameters:

(8a) O::pm-m:a3::0:0:0,

the rotation has the parameters:
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(8b) - (012 + )’ + 6732) - o a0 . Qo3

0 —(B-mf)  —(Blh-af): - (k- af);

the associated anglé/2is then given by the equation:

Jar+ai+al
(8c) coty =-X 1L "2 3

a,

The transfer can, moreover, be generated by a riefieictthe midpoint:
X ==X, X =-2B%+tmx (=12 3)
i.e., by a transfer with the parameters:
(9a) :0:0:0:006:: 565,
and a prior or subsequent rotation around the axis (7) wlavaeneters are:

(gb) 0’02 . aoM L aos . aods

0 (- mB) - (f-af) (- )
and an angle of rotationSZor which:

ay
[ 2 2 2
a; +0'2 +0'3

[Cf., formula (&), as well as formula (9) in 8 7, pp. 90]

(90) cotd =

In fact, if one performs the sequence of transfoionat{&) and (&) on pp. 101 or
the transformations € and (%) that was given above, one after the other, thenialhe
come back to formulas (1), after one has removed ttterfa (a® + & + a3 in the
first case (andx?, in the second) from the parameters of the compoaasdftrmation.

[I. Transfers with midpoints at infinity.
a =0, m’+ @+ a’ 20, B2+ 37+ B2 #0.
As before, the point at infinity Oay : a- : as that is perpendicular to the middle plane
will now be fixed, but also every point at infinity dig middle plane, and thus, every

point of the line:
0:0:0n:-x»: a5
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Moreover, in addition to the middle plane, any plahe pencil of planes that are
parallel and perpendicular to the middle plane will Bedi namely, any plane through
the line:

0:0:0:8:5: 5.
[ll. Reflection in the plane of space:
ao =0, al+a’+a’ £ 0, Bi=B=3=0.
The middle point is an undetermined podrtf the middle plane:
LoXo+taXi+ X+ azxs=0.

Among the planes, in addition to the middle plane @laireflection), all planes that
are perpendicular to will be fixed — i.e., all planes whos@rdinates satisfy the equation:

Ui+ adu+ azus = 0.
IV. Reflections in the points of space.
%20, m=mm=a3=0, [ =0.
Among the points, in addition to the midpoint, all psiof the plane at infinity will
> ﬁTXheed.foIIowing theorems that are based in formulag éhd (%) might be pointed

out, in particular (:

The reflection in a given plang ws : v, : | The reflection in a given poingyy: : V- :

v3 has the parameters: y3 has the parameters:
a,.a,:a,:a,: By By B, B a,:a,:a,:a;: By B By B,
=0:vi v, vy 00 00 0. =Y,: 0: 0 0 Oly, 1Y, Y,

() Buchheimhas remarked already that it is useful to relate bioniates of the special form:

metmetmetHs

with planes, and biquaternions of the form:

Metfa+tBlbostFs

with points. He was led to that convention, not by mering reflections, but by considerations of
convenience of a different kind. (Am. J., v. Mbg. cit, no. 8). The relationship between biquaternions of
the special kind:

met+tmetmatfatBeitAhe

and linear complexes was found already by Clifford. N&juria is only an expression of a fact that was
known in a different form for a long time. (Cf., them. on pp. 69)
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8 10.
Motions in a ray bundle.

If one sets all of the parametgfsequal to zero then the analytical representation for
the motions and transfers that fix the coordinate oregmill emerge from our formulas.

As in 8 12, we now consider the rgyand the plang/ through the poinb that is
perpendicular to it to be spatial elements. If wegven a line that includes the origin
and has the coordinates:

Po1:Po2:Po3:P23:P31:P12=01:02:093:0:0:0,
and a plane that goes through the origin and has thdicates:
U Ui iUs=0:)i:)s: )8

then the dualistic transformatidf of the absolute polar system will be represented by
the equations:
(1) OiGiG=M Iy ).

In place of the motions and transfers, we now al#asontinuous group:

(i=1,2,3),

) { 9 =30t XG* A%

Yi=ahta),tads

in which the expressions for the coefficieatsare once more inferred from formulas (4)
of 8 4. (Cf.,, pp. 77)

As before, the formulas for the composition of pagters will be provided by the
multiplication theorem for quaternions, whose equatiwaswould now like to arrange
somewhat differently:

0’3 = aoa’;)_alall_azalz_agla
af = 0’00'1 + ala'O ta 20,13_ a g'2
0"2' = 0’00"2 —0'10"3+0'20"0+0'9"1
0’; = aoa;+ala’2—a,g'1+ag’0

3)

We can now write down the expressions for the toanstions®;, T, T, T’ that
were introduced in 8 12 of the Part | with no further dismrs They are:

T':9=®(a,9), %,:d=9@,0),
Ly=0(,y), T/ =0@.y),
Th:g=d(a,y), T:d=o@.y),
T"y=0(,79), T:y=0@,0)

(4)
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when one writes, for example, the equatgpr ®(a, §g) as an abbreviation for the
system:

0,= a,0,t0,0,t0,0,
(4b) 9,= 0,0,+a,0,-0,0,

0, =—0,0,ta,0,~ 0,0,

and the equatiog =®(&,g) for the system of formulas)(

0, = 0,0,+0,0,-a,0,
(4c) 9, =-a,0,+a,0,%a,0,
0;= 0,0,—-0,0,+0,0,

In order to get back to formulas (2) from formul@b) and (£), one must solve the
system of equations ¢4 for the quantitiesg, and then introduce the values thus-found

into equations (@. One will then obtain the following equations:

ao Choo g’ = ap (a1 G + @2 G2 + &3 G3),
in place of equations (2).
One then sees that formulas (4) will become usedleshe case for whiclry = 0,
without formulas (2) themselves ceasing to applyuin ().

The program whose foundation was the purpose isfahtire study- namely, the
construction of a theory of invariants of motiohattis analogous to the usual theory of
invariants— can be realized most easily in the case that weasisked here. In the year
1886, on the basis of formulas that are not esdgntifferent from those oEuler, the
author had already developed a complete theorynafriants of the group of a conic
section in plane, which can be regarded as disshgd by the great simplicity of the
formulas and the fact that it is an intermediaryween the theory of binary forms and
that of ternary forms. He hopes to be able togmethose investigations soon in order to
then extend the argument to the complicated behafithe Euclidian plane and non-
Euclidian and Euclidian space.

It is easy to devise a passage to the limit byctvioine can go from the formulas that
were just developed to similar expressions for amsiand transfers in the plane.
We first set:

5) {gfxl, 9,=A%, G=AX
y,=Au, y,=u,, V3= U,

() As we already said, the originator of these formwasRodrigues Later,Hermite andCayley
extended the argument to quadratic forms that are not egpedsas sums of squares.
(") Cf.,Bachmann Crelle’s J. Bd. 76 andermite, Ibidem Bd. 78.
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If we then pass to the limk = 0, and interpret the ratios:

y=-=2 and z:é

X X

as the rectangular Cartesian coordinates in the pheemettbhe absolute cone of the pant
g+g+0 =0, pHy+y=0
will become the pair of so-called circle points atnitj:
X1 =0, U? +us? = 0.

At the same time, the motions of the ray bundld gol to motions and transfers in the
plane; indeed, one will obtain theotionswhen one introduces new parameters by the
formulas:

(6) aop = 0’0*, = 0'1*, ar = /]0'2*, as = /]0'3*,

simultaneously with the substitutions (5), and ttensfers when one appeals to the
substitutions:
(7) ap = /]O'o*, aL = /]0'1*, ar = 0'2*, az = 0’3*,
instead of (6).

The formulas that will be summarized in the next paalgrwill be obtained in that
way. As one will see, they confirm, in every respeesults that were derived in 8 13 of
Part | by geometric considerations.

8§ 11.
Motions and transfers in the plane.

Just as for the motions in a ray bundle, so can alse assign four homogeneous
parameters to the motions in a plane in essentially one way such that bilinear
combination exists for those paramet€js

At the same time, a parametric representation arigfers is determined (up to linear
transformations of the parameters) by this représton of motions such that bilinear
combinations likewise exist for the motions anagfars collectively.

The formulas fomotionsread, in rectangular parallel coordinayez

(12) { (as+al)y = (ag-a)y+2aq v+ 2ag ~a gy,

(a5 +a))Z =-2a0,0y+(@g-ai)z+ 2@ g ra g ),

() Wiener Monatshlpc. cit, §§ 15 and 16.
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or, in homogeneous point coordinake$ x; =y, X3/ X, = Z

X = (a5 +aj)x ,
(1) X = 2(,0, — A @ )X+ @5+ Q%) X+ 20 @ [X,
X; = 2(a3al+aoa2)xl_ zang(2+ (azo_azl)xﬁl

or finally in the associated line coordinates:

Ui: (a§+af)ul+2(alaz+a(a3)uz+2(agl—ag2)u3
(2) u; = O +(a§_0'12)u2 +2a g, [, )
U = O —20001D112+(a§—af)u3

However, the corresponding formulas for ttensfersare these:

(3a) { —(aZ+al)y = (ai-ad)y+ 2ap,2+2@p,—ag),

_(0'22 +0’§)Z’ = 20'20'3[5/_ (0'2—0'5) z+ 2(agl+ag 2)'
or
x= —(a;+a)x ,
€) Xlz =2(a@,-ag@ )X+ (0’22—0’23)X2+20’9’Q3 J
X =2(a.0,ta @)Xt 20 g X, - (0,22_0,23))(3
or finally:
Ui :_(a§+a§)u1+2(ap’2+a(g?)uz+ z(agl_a & )us
(4) u, = O +(a; —az)u, +2a 4500, ,
u;: [ + 2a,0, U, —(0';—0'5)%

The product 3= SS of two transformations(8) and S (&) of our group is:
When S and ‘@re motions, a motion whose parameters are:

ay=a,a,-aa; :
ay =amtaa, '
0"2' = 0'00"2—0'10"3+0'20"0+0'g'1
0’; = aoa;+ala’2—a,g’1+ag’0

(5)

When S and ‘@re transfers, a motion whose parameters are:

107
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ay = —a,a,-aa,
af = + 0’20"3 —agq '2’
0’; = 0’00"2 _ala,3+ 0'20"0'*'0' 9"1

0’; = 0’00"3 + alalz_ 0'20"1'*' a 9"0

(6)

When S is a motion andiS a transfer, a motion whose parameters are:

0’3 = aoa"z_alall_azalz_agla
af = 0’00'1 + ala’o ta 20,13_ a g'2
0"2' = 0'00"2—0'10"3 g
a;=aa,+aa,

(7)

When S is a transfer andiS a motion, a transfer whose parameters are:

Qy=a0,-aa,—aQq,-adg,
(8) af: 0’00'1+0'10"0+0'20"3—0'g'2
a, = ta,a,ta gy,

n

a; = - 0’20'1 tag 'o-

Formulas (5) define the multiplication theorem ofyatem of complex numbers that
is a degeneration of the quaternions:

(9)

D D D (ISP
|

ND D D <D |LD

O O «D D D
|

O O ND oD D

S @ LD

If one appeals to the quaternions themselves insteadsadytsiem (9) then one can
summarize formulas (1), ..., (4) and formulas (5), ..., (8hwhe help of a further
symbolevery simply. Ifa; are the parameters of a motion then we set:

(10a) A=me+me+eme+emes,
to abbreviate, but if are the parameters of a transfer then we writeéespondingly:

(10b) a=Em&temetmetases.
In addition, we set:

1) { X= Xg+exe+te xg
useugt uet yg
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If we now assume tha is equal to zero and that the quanatgommutes with the
guaternion units then we can draw formulas (1), ..., (4)ttegento two formulas:

(12) X = axa, u=aua,

and formulas (5), ..., (8) into a single one:

(13) a' =aad.
In that way, we have brought the defining law for thesemtilas into its simplest
expression.

One easily ascertains the geometric meaning thatotimufas (5), ..., (8) take on

when one interprets that quantitiesas homogeneous coordinates in a triply-extended
space. (Cf., Wiener MonatsHgc. cit, 8 16) Naturally, the relationship between
formulas (1) and (3) and the geometric defining data obaom or transfer can also be
given with no further analysis.

In the case of enotion
(14) X1 X! X3=:: 3

are the coordinates of the center of rotation; the aafjlotation 29 is given by the
equation:

(15) tand = ¢ﬁ,
aO

such that the motion (1) will coincide with the rotation

(y’_ﬂj:(y_ﬂjcos$$(z—&j sinZ

0’1 al al

(Y’—ﬂj:i(y—ﬂjsin 219{2—%} cos?
0’1 al al

The appearance of the double sign in formulas (15) and (&8)lmaxk to the fact that
we have still made no convention as to the senséhichvwve are measuring the angle in
the , 2 plane. If we then decide upon the positive sensetafion as being the one
that takes the positivgaxis to the positive-axis then only the upper sign will be valid,
while only the lower sign will be true for the othesea

From what was said, the motion will be a transfeema, vanishes, and it will be a
translation whemr; vanishes.

If Sa) is atransferthen:

(17) U Us3=a01 . Q> . O3

(16)

will be the line coordinates of thriddle line;one-half the magnitude of the translatipn
will have the components:
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a0a3 _ a0a2
al+a?’ al+a?

and thus, the length:

(18) %

T ara

The transfer will therefore be a reflection whgyvanishes.

The expressiomy’ + a’ (@ + a5, resp.) plays the role of @giscriminantfor the
motions (transfers, resp.); it can always be assumée non-zero. If one denotes it by
N then one will have the following formula for the compimn of motions, as well as
transfers:

(19) N(a) N(a”) =N(a”),

just as in the theory of quaternions. [Cf., eq. (10), 8T2e following theorem can
likewise be carried over with no further discussion:

The inverse of a motion or transfer whose parameters are:
. 1. Qo. 3
will have the parameters:

o.— L .— a2 . —(3 .

If @) is a non-involutorynotionthen the endpoints of a chaxa will depend upon
its midpoint X in this way:

X = g% )
(20) Il_l: X = A A X—a X
X =A% A Xt 0 Xy
X = ag% !
(200) Ty X, = =A%+ X+ X,
X = A% A%+ 0%,

and similarly, the connection between any pair of egponding liness, U’ and their
angle bisectoo of the first kind will be:

u = aoul - a3U2 ta 2TJ:«7
+a,u,—a,u,
+au,+a,u,,

(21) T

c C
W ON
I
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(21b) T

|
K
=
N
+
Q
o
C
o

By contrast, ifya) is a non-involutoryransferthen one can represent the endpoints
of the chordkx in a simple way in terms of the norniat

X = —asu,+asu,
(22) T X, = au,+a,0,-al,
X =—a,U +a,U,+ agU,
Xi = +tau,—a,u,
(220) T: X, =—a,U, +au,+a U,
X; = au-au,tagl

We have derived the parametric representation of moéindsransfers in the plane
from the formulas for motions in a ray bundle by a pgedo the limit in order to obtain
them in a convenient form directly. We might remark,passing, that one can also
manage without this passage to the limit. The motionthenplane, as well as the
transfers, can be regarded as motions or transfesestbfee-fold extended space that
contains the plane, if desired.

If we start with, say, thenotionsin space then we will need only to introduce the
assumption that:

(23&) 0’2:0'3:,&):,31:0

into the formulas of 8§ 4 in order to obtain the matiamthe plane; = 0. Likewise, the
transfers in that plane will arise when we make tisaragtion:

(23b) w=mn=£L=£=0.

Of the formulas that emerge from the formulas (1§ df we drop the equation that gives
the expression fox; in terms ofx;, and then once more wrikg, instead ok, . Finally,

if we introduce some new parameters, and in fact with dassumption (28, by the
substitutions:

(243) o = o , a=m, B=as, B=—a,

and with the assumption (B8 by the substitutions:

(24b) fo=ao, pi=ar, ®m=as, B=-a,

then we will, in fact, arrive at the formulas thatre just presented all over again.
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At this point, it deserves to be remarked that one eamittedly, simplify the
(developed) form of formulas (1), ..., (8) with the helpaof imaginary transformation
().

Namely, there is a natural system of parallel coatém in the plane that consist of
the two pencils of straight lines that run through thealled circle points at infinity. It
will be introduced by the imaginary transformation:

y+iz=Xx, y—-iz=X,
or if we set:

in order to make things homogeneous, by the transformatio

(25) { X =&, 2%=&,+&, 2A%,=&,~&,

u=w, U=w,tw, U= (w,—w)li.

If we convert, e.g., formulas &L accordingly then that will itself suggest new
parameters, which we would like to denote by:

Vu=aptia,  y,=-a;7ia,

(26) . .
Vou=a5;—1a,, V= a,71ay,

We now give the formulas that emerge from our forsw(d), ..., (8) by these
substitutions, and labeled by the same equations numbers:

(161)* { Viu X =y [X=2y,,

Voo X =y X+ 2,

51’ = y11y22|}l’
Q(é = y22(_2y21|-_4(1+ yzzgz)’
53’, = y11( 2}/125,(1'*' yllgs)'

*

(1)

(2)
of = ylzlm)Z’ Wy = yzzzm3

120 X = —y21x—2y22,

Vor X ==y, X+2),..

* { ("{ = y11y22m1+ 2y1y21|]:‘) 2 2y ¥ 2@) 3
(3a) {

() A corresponding simplification is also possible for filrenulas of § 10; however, there, it will come
about through a nonlinear transformation.
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51' = y12y21|‘_4zl’
é = _y21(2y22 |‘_4zl+ yzlge)!
53', = y12(2y11|‘_4zl_ y12|‘_4z z)-

*

3)

("{ =~V B‘)1_ 2y11V21B‘) ot Zy T4 2@‘) 3

*

(4)

{ of = y123 Lév,, = yzmmz
(5)* { = ViV O, Vo=V itV ¥
Vo = ViVt VoV e Ve O V¥
(6)* { Vu= 0 +VoVie V=V ViV ¥ 1w
Voo =ViVat VoV o ViV 2 O,
7Y { Vio=ViVutVa¥ne Ve O vy ¥,
Vo =ViWn O Vu=V VotV ¥ »
(8)* { Vir=ViVut Vo V=YY, O,
Vo= O +Voow Vom ViVt Vi »

These formulas, which we will have to speak about @tea bccasion, show clearly
the behavior of the two families of curves that arariant under the motions, as well as
the decomposition of the degenerate motions and transterdwo disjoint families,
which is important in the theory of invariants of our groupis in just that way that it
becomes possible for the coefficients to enter into formulas @ and (%) only
linearly.

Since one can easily derive formulag)(l ..., (8) from the usual formulas for the
transformation of rectangular coordinates, one wéhthave another path into the theory
that was founded in the present paragraph.

Marburg , 26 July 1891.



