
MÉMORIAL 
 

DES 
 

SCIENCES PHYSIQUES 
 

PUBLISHED UNDER THE PATRONAGE OF 
 

THE PARIS ACADEMY OF SCIENCES 
 

AND THE ACADEMIES OF BELGRADE, BRUSSELS, BUCHAREST, COIMBRA, KRAKOW, KIEV, 
MADRID, PRAGUE, ROME, STOCKHOLM (MITTAG-LEFFLER FOUNDATION), 

WITH THE COLLABORATION OF NUMEROUS SCHOLARS 
 

DIRECTORS: 
 

Ch. FABRY 
Member of the Institute 

 
H. VILLAT    J. VILLEY 

Member of the Institute   Professor at the Sorbonne 
 

________________ 
 
 

FASCICLE XXIX 
 

THE EUCLIDIAN ACTION OF DEFORMATION 
AND MOTION 

 
BY J. SUDRIA 

Professor on the free faculty of sciences. 
 
 
 

Translated by D. H. Delphenich 
 

 
 

PARIS 
GAUTHIER-VILLARS, EDITOR 

LIBRARY OF THE BUREAU OF LONGITUDES OF L’ÉCOLE POLYTECHNIQUE 
QUAI DES GRANDS-Augustins, 55 

__ 

1935 



Table of contents 
____ 

 
 

 Page 
 
PREFACE……………………………………………………………………….   1 
 
PRELIMINARIES……………………………………………………………….   3 
 1. Notations adopted………………………………………………………..   3 
 2. The displacements D and ∆………………………………………………   3 
 3. Special formulas………………………………………………………….   4 
 4. Classical formulas………………………………………………………..   5    
 5. Partial gradients…………………………………………………………..   5 
 6. Relativity of partial gradients…………………………………………….   6 
 7. Functions that are invariant under a Euclidian displacement…………….   6 
 8. Case where certain vectors satisfy some scalar relations………………...   8 
 9. The solution in this case, as deduced from the general solution…………   9 
 

CHAPTER I 
 

The Euclidian action of deformation 
 

 10. Concrete representation of a deformable line…………………………….. 12 
 11. The Euclidian action……………………………………………………… 13 
 12. Expressions for the Euclidian action……………………………………... 14 
 13. The external force and moment, the external effort and moment of  
   deformation.  The effort and moment of deformation at a point of the  
   deformed line…………………………………………………………… 15 
 14. Rigorous definition of the notion of Euclidian action…………………….. 17 
 

CHAPTER II 
 

The Euclidian action of deformation and motion 
 

 15. Concrete representation of a deformable curve in motion……………… 19 
 16. Euclidian action of deformation and motion for a deformable curve in 
   motion…………………………………………………………………. 20 
 17. The external force and moment.  The external effort and moment of  
   deformation. The effort, moment of deformation, quantity of motion,  
   and kinetic moment of the deformed medium in motion at a given 
    point and instant………………………………………………………. 20 
 18. Notion of energy of deformation and motion……………………………… 22 
 19. Comparison with other formulations……………………………………… 24 
 20. Use of a fixed trihedron…………………………………………………… 26 



Table of contents                              ii 

CHAPTER III 
 

Various applications, and notably displacements in bodies 
with a mean fiber 

 
 21. The flexible and inextensible curve……………………………………... 30 
 22. Calculation of the displacements………………………………………… 31 
 23. Body with a mean fiber………………………………………………….. 35 
 24. New formulas……………………………………………………………. 36 
 25. Calculation of the coefficients…………………………………………… 37 
 26. Algebraic translation of some vector equalities…………………………. 38 
 

CHAPTER IV 
 

The deformable surface 
 

 27. Extension of the preceding notions to the case of surfaces……………… 41 
 28. Transformation of the elementary variation of the action……………….. 42 
 29. Examples…………………………………………………………………. 44 
 

CHAPTER V 
 

The deformable medium.  Outline of the problems that are posed 
in the subject of deformable media 

 
 30. The preceding notions can be extended to the case of three-dimensional 
   media………………………………………………………………….. 46 
 31. Interpretation of the elementary variation of the action…………………… 48 
 32. Formulas of E and F Cosserat that are deduced from the preceding vector 

relations.  Problems that are posed by the theory of the Euclidian action. 50 
 

 
 

_________ 
 



PREFACE 
 

 The aspiration to contribute to the diffusion of the theory of the Euclidian action was 
what led us to take on the production of this fascicle.  This did not come about without 
two reservations: The reader who judges it from the purely formal viewpoint and who 
begins the Théorie des corps déformables of E. and F. Cosserat will find us to be 
insufficiently faithful to the way of looking at things of those authors.  In order to give 
our presentation some concrete support, we have made use of the notions of energy and 
force.  Now, one knows about the difficulties that the definition of energy presents; as for 
force, it can give rise to interminable discussions.  Lazare Carnot was sufficiently hostile 
to that notion being given a priori that he deemed any proof that contained the word 
“force” to be absurd! 
 We can remark that the method of exposition that is called formal is not recognized 
today without some inconvenience.  It is universally accepted when one defines, for 
example, the length of an arc of a curve by an integral that this is the way to make the 
common notion of length for a rectilinear segment persist; however, when, by a 
tyrannical lack of logic, one extends to some other notions, one must meet up with some 
setbacks.  One no longer accepts the definition of velocity for a rectilinear motion that 
Lagrange gave in his analytical mechanics, which amounts to taking that quantity to be 
the coefficient of t in the Maclaurin series that represents the space that is traversed as a 
function of time.  Therefore, here are some natural notions, as Ch. de Freycinet would 
say, that, to be suitably precise, necessitate the previous knowledge of the development of 
the functions into series as if the idea of velocity and that of force are not, in our sense, 
previous to the study of algebra. 
 Eminent professors do not hesitate to utilize the notion of force in their teaching.  
However, there is more: In the work that we shall present, it will be a question of a 
function W playing the primordial role; it depends upon geometric and kinetic arguments.  
It is defined by E. and F. Cosserat as a scalar function that must remain invariant when 
one subjects these arguments to a transformation of the group of Euclidian displacements; 
i.e., to speak simply, when one gives the body, which is assumed to be instantaneously 
undeformable, an elementary helicoidal displacement.  How does one content oneself 
with this definition?  If W is such a function then the same will be true of f(W), where f is 
an arbitrary function.  Now, in the course of the theory, W will take on a precise 
significance.  In the case of a static deformation, it will coincide with the energy of 
deformation per unit volume. 
 One will then understand our infidelity.  In order to justify it, we will say that the 
excess of abstraction has probably retarded progress in the theory.  At its debut, it 
received the warmest of welcomes, and P. Appel’s Cours de Mécanique (2nd edition) 
carried a note in its third volume that was a detailed discussion of it that was edited by E. 
and F. Cosserat (1).  After the premature death of the latter, an engineer for the eastern 
railroads, E. Cosserat, who has been the eminent director of the Toulouse Observatory up 
to these latter years, dedicated himself to other work, and, despite his generosity, it has 

                                                
 (1) The same discussion is reproduced in the French translation of volume two of Chwolson’s Physique 
(Hermann, editor).  
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not been easy for him to recall the path that he followed before without a certain tragic 
sense of loss. 
 Another scruple makes us hesitate before the purely mathematical aspect of a theory 
that is destined for the Mémorial des Sciences physiques.  The desire for a concrete 
presentation that we already expressed made us simplify the algebraic apparatus.  We 
have naturally taken explicit pains to make use of the vectorial calculus and its 
innumerable pages of equations, which is heresy for the theory of deformable bodies, so 
one finds it reduced considerably.  The unpublished study that is carried out in the first 
chapter avoids the repetition (up to five times) of an argument that is, moreover, 
insufficient in form and occasionally in its conclusions (1). 
 One should not be deceived by the spirit of these observations; we cannot admire that 
Théorie enough in all of its various parts as it was described by E. and F. Cosserat.  If 
those authors left anything further to be gleaned from it, it is for them to recognize.  Their 
collaboration was arduous: The Cartesian calculations, which were in favor only in 
France at the beginning of the century, were tedious whenever they applied them to 
quadruple integrals.  The use of vectorial calculus, which condenses the mathematical 
content, permits us to perceive some imperfections.  Nothing will diminish our 
admiration for the creators of the theory. 
 The method of Euclidian action was first introduced in dynamics, and in this field of 
study it gives a generalization of ordinary mechanics; it seems to be a first-order 
approximation (2).  Whereas the mass of a material element in the general theory is a 
function of velocity, it is constant in the first approximation.  By this important detail, 
one sees the possibility of rejoining the modern physical theories, since the Euclidian 
character can be replaced by another that better conforms to these theories.  In the case of 
the determination of the function W that was mentioned above, this happens by writing 
that this function remains invariant for any transformation, not just the group of Euclidian 
displacements, but, in fact, the group that one has, by definition, chosen in order to 
explain the universe (3). 
 This fascicle is limited to the theory of deformable bodies by the method of Euclidian 
action, and does not pretend to establish the principles of a new mechanics. 
  Here, one will find a generalization of the theory of elasticity in the sense that one no 
longer postulates the reduction of the actions that are exerted upon a material element to a 
unique force; that reduction likewise involves a couple. 
 In addition, the theory is not confined to the consideration of infinitely small 
deformations.  It thus presents itself as a double generalization of the classical study of 
deformations. 
 Finally, one can see a liberating effort of all metaphysics, as one said at the time of L. 
Carnot and Lagrange.  We must confess that it is not this aspect of the study that can 
seduce the reader.  “The artifices that are put to work by the greatest minds do not suffice 
to replace the concepts that are suggested by the nature of things itself.”  It is with that 

                                                
 (1) For example, in the chapter on action at a distance that we treated completely in a previous paper 
[“Contribution à l’étude de l’action  euclidienne,” Annales de la Faculté des Sciences de Toulouse (1926)].  
 (2) V. CHWOLSON, Traité de Physique, French translation by E. DAVAUX, marine engineer.  Tome 
I, pp. 236, et seq.  Note of E. and F. Cosserat (librairie Hermann). 
 (3) Another comparison can be deduced from this is that Planck’s quanta are fragments or “grains of 
action.”  
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thought by Ch. de Freycinet that we conclude by adding that the procedures that are 
placed at our disposal by the method are indeed very precious so that one should not seek 
to augment their value by giving them a purely abstract basis. 
 

 
PRELIMINARIES.  

 
 1. – Notations adopted. – In principle, we adopt the vectorial notations of Burali-
Forti and Marcolongo, which have been recommended in France for some years now by 
Bricard (Nouvelles Annales de Mathématiques, 1923). 
 In general, a vector will be denoted by just one letter (most often, Egyptian).  In some 
exceptions, it can be a set of two letters.  The elementary displacement vector of a point 
M from M to M′ will be denoted by ∆M. 
 The scalar and vector products of two vectors u and v are written u × v and u ^ v, 
respectively. 
 Finally, for a vector u that is a function of one parameter t, we utilize the notion of 
relative derivative of a moving reference system (notation: du / dt).  The absolute 
derivative, when taken in a fixed reference system (notation: DU / Dt), will be linked 
with the preceding by the relation: 

D

Dt

U
= 

d

dt

u
+ ΩΩΩΩ ^ U, 

 
ΩΩΩΩ being the instantaneous rotational velocity vector of the moving reference system, 
while the parameter t plays the role of time (1). 
 
 
 2.  The displacements D and ∆. – Consider a curve A0 M0 B0 , at each point of which 
a trirectangular trihedron that has that point as its summit is attached.  The orientation of 
that trihedron varies with the point M0 in a continuous and known manner. 
 Imagine that one deforms the curve in such a manner that each point M0 of the initial 
state corresponds to one and only one point M of the deformed one.  The orientation of 
the trihedron that is attached to that point is likewise modified in a continuous manner 
from one extremity of the curve to the other.  This comes about through a succession of 
deformed states. 
 If u is a uniform vector function of the point M0 of the curve (which is the summit of 
the trihedron that is attached to that point) then one can establish the equality: 
 
(1)      D(∆u) = ∆(Du) 
 
by an argument that is utilized in the calculus of variations, where D denotes an absolute 
variation that corresponds to an arbitrary displacement of the summit at M along one of 
the deformed curves and ∆ denotes an absolute variation that provides the passage from a 
point of one deformed curve to the corresponding point of another deformed one. 
 

                                                
 (1) J. SUDRIA, “Sur la dérivée relative d’un vecteur,” Nouvelles Annales de Math. (5), t. 11. 
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 3.  Special formulas. – If one envisions two elementary displacements D and ∆ and if 
one lets α and θ denote the elementary rotation vectors of the trihedron in each of these 
two cases then one can establish some results that are very useful for what follows: 
 
 a. Take the vector u to be the vector OM that joins a fixed origin to the summit of 
the trihedron.  The preceding relation can be written: 
 
(2)     d(∆M) + α ^ ∆M = δ(DM) + θ ^ DM, 
 
where d and δ now denote the relative variations when they are evaluated using the 
trihedron whose summit is at M. 
 If ds0 is the arc of the undeformed curve that corresponds to the displacement that is 
envisioned along that curve, and ω is the instantaneous rotational velocity of the 
trihedron when one makes s0 play the role of time then one can again transform the 
relation (2) thus: 

0

d

dx
(∆M) + ω ^ ∆M = 

0 0

DM DM

Ds Ds
δ θ
 

+ ∧ 
 

, 

or furthermore: 
(3)     (∆M) + V0 ^ θ = δV0, 
 
v0 being the velocity of displacement of the summit of the trihedron along the 
undeformed line when s0 plays the role of time. 
 
 b. If one chooses the vector u of the fundamental relation to be a well-defined vector 
that is at rest in the moving trihedron then one has: 
 

∆u = θ ^ U and Du = α ^ V. 
 

 Equality (1) then gives, successively (1): 
 
 Dθ ^ U + θ ^ DU  = ∆α ^ U + α ^ ∆U, 
 Dθ ^ u + θ ^ (α ^ u)  = ∆α ^ u + α ^ (θ ^ u),   
 Dθ ^ u − ∆α ^ u = α ^ (θ ^ u) + θ ^ (u ^ α) = (α ^ θ) ^ u. 
 
Since the last relation must be true for any u, one then infers that: 
 

Dθ = ∆α + α ^ θ, 
or furthermore: 

0

D

Ds

θ
 = ∆ω – θ ^ ω = δω 

or 

                                                
 (1) The second equation follows from the identity a ^ (b ^ c) + b ^ (c ^ a) + c ^ (a ^ b) = 0.  
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(4)      δω = 
0

d

ds

θ
+ θ ^ ω (1). 

 
 4. Classical formulas. – One thus finds two relations (3) and (4′) proved and 
attached to a common origin that were obtained by E. and F. Cosserat by means of 
Cartesian calculations. 
 We point out, in passing, that when D and ∆ denote two displacements of a point on 
two coordinate lines of a surface the relations that were obtained give, in one case, the 
Kirchhoff formulas, and in the other, those of Combescure-Darboux (see G. Darboux, 
Théorie des surfaces, t. I, pp. 55 and 49). 
 We finally point out the following relation (5): 
 Consider a vector u that is united with a moving trirectangular trihedron.  One has: 
 

u = u × I  ⋅⋅⋅⋅ I  + u × J ⋅⋅⋅⋅ J + u × K  ⋅⋅⋅⋅ K  
and 
(5)    Du = u × I  ⋅⋅⋅⋅ α ^ I  + u × J ⋅⋅⋅⋅ α ^ J + u × K  ⋅⋅⋅⋅ α ^ K , 
  = u × I  ⋅⋅⋅⋅ DI  + u × J ⋅⋅⋅⋅ DJ + u × K  ⋅⋅⋅⋅ DK . 
 
 
 5. Partial gradients. – We extend the notion of gradient, which is defined in the 
context of a scalar function of a point M, to the case of a scalar function of several 
vectors.  (The ordinary case can be considered to be that of a function of a vector OM.) 
 If one is given a scalar function f of the vectors v1, v2, …, vp then we refer to the 
partial gradients of f, which we denote by grad

1
fv , grad 

2
fv , …, when we are dealing 

with the vectors that are defined by the equality: 
 

df = grad
1

fv × dv1 + grad
2

fv × dv2 + … + grad
p

fv × dvp , 

 
where the infinitesimal variations dv1, dv2, …, dvp are arbitrary. 
 For example, if the function f is written: 
 

                                                
 (1) In order to facilitate the reading of the book by E. and F. Cosserat, upon starting with the intrinsic 

formulas above, recall that ∆(OM) is represented by its projections 
x

δ ′ , 
y

δ ′ , 
z

δ ′  onto the axes of the moving 

trihedron.  δI′, δJ′, δK′, are the components of Θ, p, q, r are those of ω, and finally ξ, η, ζ are the 
components of V.   Equation (3) gives: 
 

d

ds
δ′x + q δ ′y – r δ ′z = δξ + z δJ′ − η δK′ 

 
and two other analogous relations, while equation (4) gives: 
 

δp =
0

d

ds
δI′ + q δK′ + r δJ′ 

and two other analogous relations. 
 These formulas are used continually in Théorie. 



Preface                        6 

f(X1, Y1, Z1, X2, Y2, Z2, …, Xp, Yp, Zp), 
 
in which Xi , Yi, Zi are the components of the vector vi, then one will have: 
 

i

f

X

∂
∂

, 
i

f

Y

∂
∂

, 
i

f

Z

∂
∂

 

 
for the components of the partial gradient 

i
fv . 

 
 
 6. Relativity of partial gradients. – We say that a vector is referred to a trihedron 
when the variations of that vector are evaluated in that trihedron when it is taken as the 
reference. 
 Let there be given a vector that we denote by U when it is referred to a fixed trihedron 
and by u when it is observed in a moving trihedron. 
 If F is a scalar function of the vectors U, V, … then one has, on the one hand: 
 

dV = grad Fu × DU + grad Fv × DU + … 
  
 If one refers the vectors to a moving trihedron whose pair-wise rectangular axes carry 
the unit vectors I , J, and K  then F(U, V, …) becomes Φ(u, v, …, I , J, K ), and: 
 

dF = dΦ = grad Φu × Du + grad Φv × Dv + … 
+ grad ΦI × DI  + grad ΦJ × DJ + grad ΦK × DK . 

 
On the other hand (formula 5): 
 

DU = du + a ^ u = du + U × I  ⋅⋅⋅⋅ DI  + U + U × J ⋅⋅⋅⋅ DJ + U + U × K  ⋅⋅⋅⋅ DK  
and 

dF or dΦ = grad FU × (du + U × I  ⋅⋅⋅⋅ DI  + U × J ⋅⋅⋅⋅ DJ + U × K  ⋅⋅⋅⋅ DK ) + … 
 

Finally: 
    grad Φu = grad FU, 
    grad ΦI = grad FU ⋅⋅⋅⋅ U × I  + grad FV ⋅⋅⋅⋅ V × I  + … 
 
 Remark. – If the function F already depends upon the vectors I, J, K  then 
 

grad ΦI = grad FI + grad FU ⋅⋅⋅⋅ U × I  + … 
 
 
 7. Functions that are invariant under a Euclidian displacement.  – If one is 
given a scalar function W of several vectors V1, V2, …, Vp then the equation: 
 

grad 
1

WV  ^ V1 + grad 
2

WV  ^ V2 + … + grad 
p

WV  ^ Vp = 0, 
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or, more simply: 

(E)     
1

grad
i

p

i
i

W
=

∧∑ V V  = 0, 

 
translates into the fact that the function W is invariant under any elementary Euclidian 
rotation of the system of vectors around one axis and also under any Euclidian 
displacement of the set of vectors. 
 Indeed, taking the scalar product of the left-hand side of the preceding equation with 
θ dt gives: 

1

grad
i

p

i
i

W
=

∧∑ V V  × θ dt = 0, 

or 

1

grad
i

p

i
i

W
=

∧ ∆∑ V v = 0. 

 
 Here, ∆vi is the variation of the vector vi under a rotation of the set with an angular 
velocity of θ; the latter result amounts to the equality dW = 0. 
 
 Remark. – Equation (E) is equivalent to the system of three partial differential 
equations: 

(8)     

0,

0,

0,

i i
i i i

i i
i i i

i i
i i i

dW dW
y z

dz dy

dW dW
z x

dx dz

dW dW
x y

dy dx

  
− =  

 
   − =  

 
   − = 
  

∑

∑

∑

 

 
in which xi, yi, zi are the components of vi; the number of scalar variables is then 3p.  In 
order to solve the system of three equations above, it will suffice to find 3(p – 1) 
independent solutions: 

ϕ1(xi, yi, zi), ϕ2(xi, yi, zi), …, ϕ3(p−1)(xi, yi, zi). 
 
The general solution of the system will be: 
 

W = F(ϕ1, ϕ2, …, ϕ3(p−1)), 
 
in which F is an arbitrary function of the arguments ϕ1, ϕ2, …  One can take these 
arguments to be: 
 
 1.   2 2 2

i i ix y z+ +  or 2
iV  (i = 1, 2, …, p), 

 2.   x1 x2 + y1 y2 + z1 z2 or V1 ⋅⋅⋅⋅ V2, 
 3. The 2(p- 2) solutions: 
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x1 xi + y1 yi + z1 zi , x2 xi + y2 yi + z2 zi , 
or 

V1 × V i  and V2 × V i  (i = 1, 2, …, p), 
 
so one has, in all: 

p + 1 + 2(p – 2) = 3(p – 1) 
independent functions. 
 
 
 8. Case where certain vectors satisfy some scalar relations. – The function thus 
obtained is the general integral that satisfies equation (E) identically. 
 In the sequel, it will be necessary to know how to find the most general function that 
satisfies the same equation, no longer identically, but now only under the hypothesis that 
the vectors v1, v2, …, vp satisfy certain scalar relations. 
 For our ultimate applications, we set aside the case where these relations are not 
intrinsic – i.e., independent of the coordinate axes. 
 Let: 
      f1(v1, v2, …, vp) = C1, 
      f2(v1, v2, …, vp) = C2, 
      …………………….., 
      fn(v1, v2, …, vp) = Cn 
be these constraint equations. 
 They are equivalent to n relations between xi, yi, zi, which are the components of vi , 
namely: 

(L)      

1 1

2 2

( , , ) ,

( , , ) ,

...........................

( , , ) .

i i i

i i i

n i i i n

x y z C

x y z C

x y z C

ϕ
ϕ

ϕ

=
 =


 =

 

 
 ϕ1, ϕ2, …, ϕn are solutions of equation (E), since relations (L) are indeed independent 
of the axes, so this must persist when one gives the reference system an elementary 
rotation θ – i.e., the functions ϕk must verify the relation: 
 

      
i

grad iϕ 
× ∆ 

 
∑ K

v
v  = 0 

 
for ∆vi = θ ^ V i , which gives, after one has factored out the vector θ: 
 

i

grad iϕ 
× 

 
∑ K

v
V  = 0  for K  = 1, 2, …, n; i = 1, 2, …, p. 
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 Having said this, take 2p − 3 – n other solutions of (E) that are independent of ϕ1, ϕ2, 
…, ϕn (with the meaning that is given to that word in the theory of functions of several 
variables), namely: 

ϕn+1, ϕn+1, …, ϕ3p−3 . 
 
Finally, if α, α ′, α ″, β, β ′, β ″, and γ, γ ′, γ ″ are the components of three vectors that 
appear in equation (E) (for example, the last three Vp−2, Vp−1, Vp) then keep the 
components α, β ′, and γ ″, in particular.  They are independent of each other and of the 
functions ϕk, since otherwise α, for example, would be a solution of the system (2), and 
one can see that this is impossible unless α ′ = α ″ = 0, which are not intrinsic relations, 
and are thus rejected (1). 
 Having said this, let Φ(xi, yi, zi) be a function that satisfies the system (S), thanks to 
equations (L). 
 
 
 9. The solution in this case, as deduced from the general solution. – We shall 
show that Φ can be deduced from the general solution F when one takes the conditions 
(L) into account. 
 Make a change of variables in Φ by taking the new arguments, which number 3p and 
are independent: 

ϕ1, ϕ2, …, ϕ3p−3, α, β ′, γ ″. 
Φ will then be of the form: 

Φ(ϕ1, ϕ2, …, ϕ3p−3, α, β ′, γ ″), 
 
or, upon taking equations (L) into account: 
 

Φ(ϕn+1, ϕn+2, …, ϕ3p−3, α, β ′, γ ″). 
 
We now show that α, β ′, γ ″ do not figure explicitly in Φ. 
 In order to simplify, let E(W) denote the left-hand side of the vectorial equation E. 
 We remark that: 
      α = Vp−2 × X, 
      β = Vp−1 × Y, 
      γ = Vp     × Z, 
 
in which X, Y, Z are unit vectors that are carried by the fixed axes.  Therefore: 
                                                
 (1) Indeed, one can, as we will do later on, set α = Vp−2 × X, where X is a unit vector that is carried by 
the x-axis, so it results that grad(α) vp−2 = X. 
 For W = α, the vectorial differential equation (E) reduces to X ^ Vp−2 = 0. 
 If we project this relation onto the y-axis and then onto the z-axis then we get: 
 

X ^ Y ^ Vp−2 = 0,  X ^ Z ^ Vp−2 = 0, 
or 

Z × Vp−2 = 0, Y × Vp−2 = 0; 
i.e., one finally has: 

α ′ = 0  and α ″ = 0. 
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grad 
2p

α
−v  = X, grad 

2p
β

−
′v  = Y, grad 

2p
γ

−
′′v  = Z, 

and 
E(α) = X ^ Vp−2 , E(β ′) = Y ^ Vp−2 , E(γ ″) = Z ^ Vp−2 . 

 
 It is easy to see that: 
 

E(ϕ) = 
1nϕ +

∂Φ
∂

E(ϕn+1) + … + 
3 3pϕ −

∂Φ
∂

E(ϕ3p−3) 

+ 
α

∂Φ
∂

E(α) + 
β

∂Φ
′∂
E(β ′) + 

γ
∂Φ

′′∂
 E(γ ″), 

 
in such a way that if one writes that Φ is one solution then what remains is: 
 

α
∂Φ
∂

E(α) + 
β

∂Φ
′∂
E(β ′) + 

γ
∂Φ

′′∂
 E(γ ″) = 0. 

 
 Upon taking the vector product with X, Y, Z, successively, one gets: 
 

      β ″ 
β

∂Φ
′∂
 − γ ′

γ
∂Φ

′′∂
  = 0, 

      γ 
γ

∂Φ
′′∂

   − α ″ 
α

∂Φ
∂

 = 0, 

      α ′ 
α

∂Φ
∂

 − β 
β

∂Φ
′∂
   = 0, 

and these equations in: 

α
∂Φ
∂

, 
β

∂Φ
′∂
, 

γ
∂Φ

′′∂
 

can have no other solutions than: 

α
∂Φ
∂

= 
β

∂Φ
′∂
= 

γ
∂Φ

′′∂
 = 0, 

unless the determinant: 
0

0

0

β γ
α γ
α β

′′ ′−
′′−
′

 

 
is zero, i.e., unless α ′β ″γ = α ″β γ ′, a relation that is not intrinsic, because it can be 
written: 

α ′(β ″γ − β γ ″) = β (α ″γ ′ − α ′ γ ″). 
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If X, Y, Z are, as always, three unit vectors that are carried by the reference axes and I , J, 
K  are the three vectors (1) whose components are α, α ′, α ″, β, β ′, β ″, γ, γ ′, γ ″, 
respectively, then one has: 

α ′ = I  × Y, 
 
and β ″γ  − β γ ″ is the component of J ^ K  along OY, so: 
 

β ″γ  − β γ ″ = JKY . 
 

 Upon similarly transforming the right-hand side, one will finally have: 
 

I  × Y ⋅ (JKY ) = J × X ⋅⋅⋅⋅ (KIX ). 
 

 Now, if one changes the Y-axis without changing the X-axis then the left-hand side 
varies, but not the right-hand side. 
 The relation α ′β ″γ = α ″β γ ′ is not intrinsic, and one cannot find solutions of the 
system (S) that satisfy that system identically, in which one must take equations (1) into 
account, other than the ones that are deduced from the solution W. 
 The size of the introduction above is justified by the following considerations: 
 The problem of determining a function W that is invariant under the group of 
Euclidian displacements was first examined by E. and F. Cosserat in the note by these 
authors that appeared in Chwolson’s Traité de Physique (t. I). [French translation by 
Devaux, a marine engineer (librairie Hermann)] 
 The solution to the first question is easily found and leaves no doubt (pp. 246).  
However, the result is then extended to a different case by analogy (pp. 268).  It alludes 
to a simple calculation that, in fact, was given only in another work, and which was, in 
fact, Théorie des corps déformables. 
 We have shown that this calculation was based upon an inexact assertion (2).  Since 
the argument is repeated several times and it leads to erroneous results in certain cases, it 
is necessary to give it a firmer foundation. 

                                                
 (1) They are the vectors that were previously denoted by Vp−2, Vp−1, Vp .  
 (2) That assertion amounts to this: If a vector is framed with respect to two trihedra with the same 
summit then one knows the position of one of these trihedra with respect to the other one. (See 
“Contribution à la Théorie de l’action euclidienne,” Nouvelles Annales de la Faculté des Sciences de 
Toulouse, 1926.) 



CHAPTER I. 
 

THE EUCLIDIAN ACTION OF DEFORMATION 
 
 

 10. Concrete representation of a deformable line. – One will understand the theory 
more easily if one represents a deformable body as an agglomeration of undeformable 
particles. 
 Without going into the refinements to that notion that are appropriate in order to 
account for the progress in modern physics, we can take the preceding particles to be 
atoms and imagine that one has linked each one of them to an undeformable reference 
system – for example, a tri-rectangular trihedron. 
 The study of the deformation of a body amounts to the consideration of the 
modification of the situation that relates to the trihedra.  No matter how large, if not 
inconceivable, the number of elements is, they do not constitute a continuum in the 
mathematical sense of the word; however, it will be entirely advantageous to treat them 
as a continuous set.  This will notably permit the utilization of the procedures of the 
infinitesimal calculus. 
 Therefore, suppose that a tri-rectangular trihedron is given at each point of a space 
(M0) that is described by the point M0, whose edges carry the unit vectors a0, b0, c0, 
respectively.  We suppose that these vectors are continuous functions of the point M0 by 
the intermediary of their direction cosines. 
 If the space (M0) is the natural state of the body then give each point M0 a 
displacement ∆M0 and imprint an elementary rotation on the trihedron M0 a0 b0 c0 ; it will 
become a trihedron Mabc.  The continuous, three-dimensional set of all such trihedra 
constitutes the deformed state. 
 For more simplicity in the presentation, we first consider the case of infinitely slender 
body that we call a deformable curve.  We then show how the calculations and the results 
that are obtained are reproduced in the study of a surface or a three-dimensional body. 

 If the natural state of the curve is given then one considers a continuous sequence of 
trihedra whose summits are the various points of the curve.  The positions of the 
summits, as well as the orientation of the axes, are known as functions of the argument s0, 
which is the arc length from one of the extremities (A0, for example) up to the point M0 . 

 

A0 

M0 

B0 

s0 

 
 

Fig. 1. 
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 One can follow the displacement of a point M and the variations of the orientation of 
the axes on the deformed state of the curve (see above) by varying s0 . 
 In order to characterize the deformation of the line at a point M that comes from a 
point M0 with argument s0 on the line before deformation, E. and F. Cosserat take a 
function W of two infinitely close positions of the trihedron Mabc – i.e., a function of s0, 
x, y, z, α, α ′, α ″, …, γ ″ and their first derivative with respect to s0 .  (x, y, z, α, α ′, α ″, 
…, γ ″ are the components of OM, a, b, c.) 
 
 
 11. The Euclidian action. – These authors consider the integral: 
 

0

0
0

B

A
W ds∫ , 

 
which is taken along an arbitrary portion of the line (M0), and then impose the condition 
on that integral that it have “a zero variation when one subjects the set of all trihedra of 
the deformable line, when taken in its deformable state, to an arbitrary infinitesimal 
transformation of the group of Euclidian displacements.”  This integral is called the 
action of deformation on the deformed line between the points A and B, which 
correspond to the points A0 and B0 of (M0). 
 What must one have in mind with the term Euclidian action?  The question is 
paramount.  The words employed recall the principle that was obscurely-stated by 
Maupertuis and then repeated by several mathematicians, to the extent that Jacobi found 
it so incomprehensible that he completely recast it. 
 Here, the risk is not the same, since the obscurity does not come from the complexity 
of the statement, but from an inadequacy that is initially quite shocking.  The definition 
of Euclidian action is not only appropriate to the notion that E. and F. Cosserat had in 
mind, but to an infinitude of other ones. 
 It is curious to remark, as we will do later on, that it suffices for the function W to 
satisfy the condition of invariance that is demanded in order for the curve to receive an 

arbitrary elementary deformation, so the integral 
0

0
0

B

A
W ds∫  takes on a variation of the 

form: 

− 
0

0

B

A∫ X δx + Y δy + Z δz + L δI + M δJ + N δK 

+ [F δx + G δy + H δz + R δI + S δJ + T δK 0

0
]B

A , 

 
in which δx, δy, δz are the components of the displacement of a point whose argument is 
s0 , and δI, δJ, δK are the components of the elementary rotation of the corresponding 
trihedron. 
 This expression is, up to sign, the one that gives the work done by the forces that are 
applied to the curve (X, Y, Z being the components of the force per unit length at a point 
and L, M, N being those of the external moment at this point). 
 F, G, H, and R, S, T are the components of the forces and moments that act on the 
extremities.  More precisely, if one makes an imaginary cut in the line at M then F, G, H, 
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R, S, T are the components of the force and the moment that are exerted by the part MB 
on the part MA. 
 
 Among the functions W that answer to the single condition that was imposed above, 
one must then find the energy of deformation of the curve (with its sign changed), and it 
is that particular solution that will be truly the Euclidian action per unit length. 
 This definition clarifies the notion in the particular case where the forces simply give 
rise to the static deformation (i.e., when they take their values by starting with zero and 
progressing infinitely slowly). 
 However, in the general case (viz., deformation and motion) it will be simple to 
extend the notion without it being confused with the energy of the deformed body (see pp. 
30). 
 
 
 12. Expression for the Euclidian action. – We thus seek the condition that must be 

imposed upon the integral 
0

0
0

B

A
W ds∫  in order for it to be invariant under all 

transformations of the group of Euclidian displacements. 

 This demands that 
0

0
0

B

A
W dsδ ∫  = 0 for such a transformation, or, in a more concrete 

manner, that the value of W does not change when one displaces the line (M) in the 
manner of the undeformable lines of rational mechanics.  In order to find the expression 
for W, we shall utilize the study that we carried out in paragraph 7, in place of the 
argument that was employed by the authors of Théorie and insufficiently explained. 
 Let: 

0
0 0 0 0 0 0

, , , , , , , , , , , , , ,
dx dy dz d d d

W s x y z
ds ds ds ds ds ds

α α γα α γ
 ′ ′′′ ′′ 
 

… … , 

 
which we write with vector notation, letting I , J, K  be three unit vectors that are carried 
by the axes Ma, Mb, Mc: 

0 0
0 0 0

, , , , , , , ,
d d d

W s OM
ds ds ds

 
 
 

I J K
I J K V

�����

. 

 
 The vectors dI  / ds0, dJ / ds0, dK  / ds0 can be replaced with: 
 

Ω0 ^ I,  Ω0 ^ J,  Ω0 ^ K , 
 
where V0 and Ω0 are the velocity of the point M and the instantaneous rotation of the 
trihedron when one makes s0 play the role of time.  The function W can then be written: 
 

W(s0, OM, V0, Ω0, I , J, K ). 
 

 Imagine that one gives the curve a translation, so the variation of W reduces to: 
 

grad WOM × ∆M = 0, 



Chapter I – The Euclidian action of deformation                                             15 

which demands that grad WOM must be identically zero, or furthermore that the function 
W does not depend upon OM explicitly.  (In the form that was proposed by E. and F. 
Cosserat, it did not contain x, y, z.) 
 On the other hand, we can suppose that one has introduced V0 and Ω0 into W, where 
these vectors are referred to the trihedron Mabc and are denoted by v0 and ω0, which 
amounts to modifying the influence of the vectors I , J, K , as we explained before (§ 6). 
 Once the function has been put into the form: 
 

W(s0, v0, ω0, I , J, K ), 
 
we write down that it does not vary when one gives the set of trihedra Mabc a rotation θ, 
which gives, since δv0 = δω0 = 0: 
 

grad WI × ∆I  + grad WJ × ∆J + grad WK × ∆K  = 0, 
or 

grad WI ^ ∆I  + grad WJ ^ ∆J + grad WK ^ ∆K  = 0, 
 
a vector differential equation for which we must find 3 ⋅⋅⋅⋅ (3 – 1) = 6 solutions.  They are 
obviously: 

I2,    J2,    K 2,    J × K ,    K  × I ,    I  × J, 
 
and the general solution is: 
 

W(s0, w0, ω0, I
2,    J2,    K 2,    J × K ,    K  × I ,    I  × J). 

 
 Upon taking into account the relations between the cosines of the edges of a tri-
rectangular trihedron, this relation reduces to: 
 

W(s0, v0, ω0). 
 

 Recall that v0 and ω0 must be framed relative to the moving trihedron M(abc).  In 
other words, W contains only the components ξ, η, ζ, p, q, r of these vectors along the 
moving axes. 
 
 Remark. – The function W is called the density of action per unit length along the line 
before deformation.  One deduces the density per unit length of the deformed line from it, 
namely, W ds0 / ds. 
 
 
 13. The external force and moment.  The external effort and moment of 
deformation.  The effort and moment of deformation at a point of the deformed line. 
– We write down the Euclidian action of deformation between two points A and B of the 
line (M) for an arbitrary variation.  Upon suppressing the index 0 in the vectors v and ω, 
one has: 

0

0
0

B

A
W dsδ ∫  = 

0

0
0(grad grad )

B

A
W W dsωδ δω× + ×∫ v v . 
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Recall that: 

     δv = 
0

D

Ds
∆M + v ^ θ, 

which permits one to write: 
 

0

0
0

B

A
W dsδ ∫  = 

0

0
0

0 0

grad grad 
B

A

D D
W M W ds

Ds Dsωθ θ
  

× ∆ + ∧ + ×  
  

∫ v v , 

 
and upon integrating by parts: 
 

= [grad WV × ∆M + grad Wω × θ 0

0
]B

A  − 0
0

grad 
D

W M ds
Ds

 
× ∆ 

 
∫ v  

− 0
0

grad grad 
D

W W ds
Ds ω θ

 
+ ∧ × ⋅ 

 
∫ VV . 

 If we set: 
     E = grad WV ,  M = grad Wω , 

      

     
0

D

Ds

E
 = ϕ,   

0

D

Ds

M
+ v ^ E = µ 

then we get: 
0

0
0

B

A
W dsδ ∫ = EB × ∆B – EA × ∆A + MB × θB – MA × θA 

− ϕ∫  ds0 × ∆M + µ ds0 × θ. 

 
 At a point whose argument is s0, E is called the external effort of deformation, M, the 

external moment of deformation, ϕ, the vector of the external force per unit length of the 
undeformed line, and µ is the vector of the external moment or couple per unit length of 
the undeformed line. 

 

A 

M 

B 

 
Fig. 2. 

 
 In a more precise manner, consider an arbitrary point M between A and B.  Suppose 
that one has separated the curve into two portions on one side of M and the other.  If one 
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imagines that the portion MB has been isolated then E and M are the force and moment 

that are exercised by the part AM on the portion MB. 
 (These quantities constitute the generalizations of the sectional effort and bending 
moment of the strength of materials.) 
 The variation of the action with the sign changed is written: 
 

− 
0

0
0

B

A
W dsδ ∫ = EA × ∆A − EB × ∆B + MA × θA − MB × θB 

+ 
0

t
ϕ∫  ds0 × ∆M  + µ ds0 × θ. 

 
 On the right-hand side, one finds the elementary work done by the forces and couples 
that are distributed along the length of the curve and the forces and moments that act on 
the extremities. 
 
 
 14. Rigorous definition of the notion of Euclidian action. – This permits us to make 
the thoughts of the authors of Théorie more precise.  W must not be merely a function 
that satisfies the formal conditions that were studied above.  It is necessary that – W ds0 
is, up to an additive constant, the energy of deformation on the element ds of the 
deformed curve that is due to an element ds0 of the curve before deformation. 
 Indeed, imagine the curve in two states, one of which is the state before deformation 
and the other of which is the an arbitrary current state, and suppose that the passage from 
the first one to the second one happens progressively and infinitely slowly by means of a 
continuous succession of equilibrium states.  One can suppose that the quantities define a 
state that depends upon one parameter h, which will give the curve before deformation 
for the value zero. 
 The work that is done by external forces for a variation h is: 
 

δTe = − 
0

0
0

B

A
W dsδ∫  = − 

0

0
0

B

A

W
dh ds

h

∂
∂∫ . 

 The total work will be: 

Te = − 
0

0
0 0( )

B

A
W W ds−∫ . 

 Without changing anything in the preceding, one can always suppose that the 
function W0 = W(v0, ω0, s0) is identically zero for the natural state.  The quantity – W(v0, 
ω0, s0) ds0 will then be the energy stored in the portion of the deformable curve that is due 
to an element ds0 whose argument is s0 in the natural state. 
 One further says that – W is the density of energy of deformation per unit length of 
the undeformed curve at the point whose argument is s0 . 
 However, that definition is valid only for deformed curves that are in equilibrium.  
We will give a more general definition later that applies to the case of a body in motion 
(see § 18). 
 Nevertheless, we point out that the following relations were given by Thomson and 
Tait only for the infinitely small deformations and by means of a posteriori hypotheses.  
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The condensed form that we gave to them makes these relations obvious in the equations 
of definition: 
 At a point of the deformed line, one has: 
 

ϕ = 
0

D

Ds

E
  and µ = 

0

D

Ds

M
. 



CHAPTER II 
 

THE EUCLIDIAN ACTION OF DEFORMATION AND MOTION (1). 
 

 15. Concrete representation of a deformable curve in motion. – Consider a curve 
(M0) that is described by a point M0 and attach a tri-rectangular trihedron M0 a0 b0 c0 to 
each point M0 of the curve whose axes are defined in direction and sense by means of the 
unit vectors I0, J0, K 0, which are functions of the point M0 .  The continuous set of these 
trihedra can be considered to be the position at the epoch t0 of a deformable curve that is 
defined in the following manner: 
 Give a displacement M0M to the point M0 that is a function of time t and the point M0 
and is, in addition, annulled for t = t0 .  On the other hand, imprint a rotation on the 
trihedron M0 a0 b0 c0 that finally brings the axes into coincidence with those of the 
trihedron Mabc that we attach to the point M.  We define that rotation by saying that the 
unit vectors I , J, and K  that are carried by the trihedron Mabc, respectively, are functions 
of M0 and t. 
 The continuous set of trihedra Mabc for a given value of t will be called the deformed 
state of the curve at the time t.  The doubly-infinite continuous set that is composed of the 
sets thus defined for all values of t will be the trajectory of the deformed state of the 
deformable curve. 
 We continue to let v0 and ω0 denote the velocity of the point M0 and the instantaneous 
rotation of the trihedron M0 a0 b0 c0 (

2) when only s0 varies and plays the role of time.  We 
let v and ω denote the analogous vectors that relate to the point M and the trihedron M0 a0 

b0 c0, where s0 is always the derivation parameter. 
 On the other hand, we let vt and ωt denote the velocity of the point M and the 
instantaneous rotation, properly speaking, of the trihedron Mabc − i.e., while preserving 
the character of a derivation parameter for t. 
 If one imprints an infinitely small displacement upon each of the trihedra of the 
trajectory of the deformed state that varies in a continuous manner with these trihedra 
then we have, with the notations that are already employed, as we have said: 
 

     δv = 
0

D

Ds
∆M + v ^ θ, 

     δω = 
0

D

Ds
θ, 

     δvt = 
D

Dt
∆M + vt ^ θ, 

     δωt = 
D

Dt
θ. 

 

                                                
 (1) This chapter is not explicitly a part of the Théorie of E. and F. Cosserat.  It will prepare the reader 
for the study of a medium in motion, which appears to be more complicated. 
 (2) I.e., in the undeformed state.  
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 16. Euclidian action of deformation and motion for a deformable curve in 
motion. – Consider a function W of two infinitely close positions of the trihedron Mabc – 
i.e., a function of M0 and t, and of I , J, K  and their first derivatives with respect to s0 and 
t. 
 We propose to determine what the form of W must be in order for the double integral: 
 

0W ds dt∫∫ , 

 
which is extended over an arbitrary portion of the curve (M0) and an interval of time that 
is comprised of the instants between t1 and t2, to have a zero variation when one subjects 
the set of all the trihedra that we have called the trajectory of the deformed medium to the 
same arbitrary infinitesimal transformation of the group of Euclidian displacements. 
 The argument that we have already employed and the study that we made on pp. 14 
permit us to assert that W will have the following form: 
 

W(s0, t, v, ω, vt, ωt). 
The integral: 

2 0

1 0
0

t B

t A
W ds dt∫ ∫  

 
is the action of deformation and motion on the curve (or on a portion of it, if A0 and B0 
are not the extremities of the given curve).  W is the density of action at a given point and 
instant when it is referred to the unit of length of the undeformed curve and a unit of 
time.  The density when referred to the unit of length of the deformed curve and the unit 
of time is: 

W 0ds

ds
. 

 
 

 17. The external force and moment.  The external effort and moment of 
deformation.  The external effort and moment of deformation, quantity of motion, 
and kinetic moment of the deformed medium in motion at a given point and instant. 
– Consider an arbitrary variation of the action on the line and in the time interval t1, t2, 
namely: 

   
2 0

1 0
0

t B

t A
W ds dtδ ∫ ∫  = 

2 0

1 0

(grad  grad 
t B

t A
W Wωδ δω× + ×∫ ∫ v v  

        0grad  grad )
t tt tW W ds dtωδ δω+ × + ×v v . 

 
By replacing δv, δω, δvt, δωt with their expressions above, and then integrating the terms 
that contain the derivatives with respect to s0 by parts over s0, and then the ones that 
contain the derivatives with respect to time over t, one obtains: 
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2

0

0
1

[grad grad ]
t B

At
W M W dtω θ× ∆ + × ∆∫ v  

   + 
2

0

0
1

0(grad grad )
t t

tB

A t

W M W dsω θ × ∆ + × ∆
  ∫ v  

   − 2 0

1 0
0

 grad  grad 
t

t B

t A

D D
W W M

Ds Dt

 
+ × ∆ 

 
∫ ∫ v v  

    + 
0

 grad  grad 
D

W W
Ds ω


+ ∧


vv  

     + 0 grad  grad 
t tt

D
W W ds dt

Dt ω θ + ∧ × ∆ 
 

vv . 

 We call the vectors: 
 

   ϕ = 
0

 grad  grad 
t

D D
W W

Ds Dt
+v v , 

 

   µ = 
0

 grad  grad 
D

W W
Ds ω + ∧ vv +  grad  grad 

t tt

D
W W

Dt ω + ∧ vv  

 
the external force and external moment at the point M and instant t, when referred to the 
unit of length of the curve before deformation.  Upon considering the integral taken over 
time, we call the vectors grad Wv and grad Wω the external effort and moment of 
deformation at the point M, respectively, when referred to the unit of length of the curve 
before deformation; more precisely, they are the effort and moment that the part AM 
exerts one the part MB.  We denote these vectors by E and M, in such a way that: 

 
      E  = grad Wv, 

      M = grad Wω 

 
at the points A and B.  These efforts and moments are called external. 
 Finally, upon considering the integral taken over the length A0B0 , and taking the 
difference between the values at the epochs t1 and t2, we call the vectors grad 

t
Wv  and 

grad 
t

Wω  the quantity of motion and the kinetic moment at the point M and the epoch t; 

one denotes them by Q and H. 

 The relations below results from the preceding definitions (1): 

                                                
 (1) With the notation of E. and F. Cosserat (notations that one must not lose sight of if one desires to go 
into the presentation of those authors in detail, which is strongly suggested), one will have, for the first 
formula: 

 
0
′X  = 

0

grad 
t t

t t

d d
r q r

ds dt

W W W W W W
q

ξ ζ η ξ ζ η
− + + −

∂ ∂ ∂ ∂ ∂ ∂
+

∂ ∂ ∂ ∂ ∂ ∂
, 
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   ϕ = 
0

D D

Ds Dt
+ Q
E

, 

 

   µ = 
0

D D

Ds Dt
+M

H  + v ^ E + vt ^ Q. 

 
 The presence of the arguments vt and ωt in W implies some expressions for ϕ and µ 
that, in fact, reduce to the ones that we already found in the study that we made (§ 13) in 
the case of equilibrium.  In the general case, these expressions bring us into the presence 
of “the notion of kinetic anisotropy that was already imagined by Rankine, and which 
was then introduced into several theories of physics in the theory of double refraction 
and in that of rotatory polarization, for example” (E. and F. Cosserat). 
 By making an idea of the authors of Théorie more precise, we have shown that the 
arguments V2, 2

tV , and V × Vt . (“Contribution à la Théorie”) 

 
 “When the mixed argument V × Vt does not occur in W, one must, in general, 
consider the state of deformation and motion that is infinitely close to the natural state in 
order to find where the action of deformation is completely separate from the kinetic 
action in the case of classical mechanics.” 
 
 
 18. Notion of energy of deformation and motion. – We now propose to determine 
the work that is done by the external forces and moments and external efforts and 
moments of deformation during an arbitrary time interval for a real deformation. 
 The elementary work done during a time dt is: 
 

 
0

0

[
B

t tA
dt dtϕ µ ω× + ×∫ v  

                                                                                                                                            
 

0
′Y  = …………………………………………………………, 

 
0
′Z  = …………………………………………………………, 

 
and for the second one: 
 

 
0
′L  = 

0
t t

t t t

d d
r q r

ds dt

W W W W W W
q

p p r q r q
+ − + −

∂ ∂ ∂ ∂ ∂ ∂
+

∂ ∂ ∂ ∂ ∂ ∂
 

  + 
t t

t t

W W W W
η ζ η ζ

ζ η ζ η
− + −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
, 

 
0
′M  = ……………………………………………………, 

 
0
′N  = ……………………………………………………. 

 
 The advantage of the vector notations is even greater when one considers a deformable surface or 
three-dimensional medium. 
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  + EA × t
Av dt + MA × tω A dt − EB × t

Bv dt + MB × tωB dt] ds0 . 

 
 By replacing ϕ, µ with their expressions that were given above as functions of W and 
by a calculation that we have detailed (§ 13), and which one can characterize by saying 
that it is the inverse of the one that led to the definition of ϕ and µ, one gets: 
 

0

0
0

B

A

dE W
dt ds

dt t

∂ + ∂ 
∫ , 

 
in which E is, by definition, the scalar function: 
 

grad 
t

Wv × Vt + grad 
t

Wω × ωt – W. 

 
 In the particular case where ∂W / ∂t ≡ 0 – i.e., where W does not contain t explicitly – 
the expression found is the differential with respect to time of the quantity: 
 

U = 
0

0
0

B

A
E ds∫ . 

 
E is called the energy of deformation and motion per unit length of the original line; the 
definition of U is deduced from it.  U remains constant when the external work done is 
zero; this leads to the notion of the conservation of energy under the hypothesis that the 
deformable curve is isolated from the external world. 
 In the preface, we said how the definition of W was hardly acceptable to a physicist.  
Since that definition involves only the invariance of W under the group of Euclidian 
substitutions, it cannot be made precise, since an arbitrary function of W will also be 
invariant.  The significance becomes definitive when one sees that, as the authors of 
Théorie reasoned, W coincides with the energy of deformation per unit length of the 
original line, with the sign changed, in the case of static deformations.  In the case where 
the deformable line is in motion, the function W, when imagined in reality, is, among all 
of the functions that satisfy the conditions of invariance that were proposed, the one that 
is, in addition, a solution of the partial differential equation: 
 

grad 
t

Wv × Vt + grad 
t

Wω × ωt – W  = E, 

or furthermore: 
 

W W W W W W
p q r

p q r
ξ η ζ

ξ η ζ
∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

− W = E, 

 
in which E is the energy of deformation and motion per unit length of the original line; 
this will be made more precise later on. 
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 We compare the method that was just presented with the one that was recently 
employed by R. Ferrier (1) in order to construct a theory of the ether.  After having shown 
that there was an original sin being committed in the conceptions of the old theories, 
Ferrier was led to consider a function: 
 

Ω(r12, …, r ij, …, 12r ′ , …, ijr ′ , …), 

 
where r ij represents the distance between two arbitrary points that belong to the frames of 
a medium; ijr ′  is the derivative of r ij with respect to time.  The law of motion of the 

frames is given by the condition that the integral: 
 

1

2

( , )
t

ij ijt
r r dt′Ω∫  

 
be an extremum, which produces the same equations that are obtained by the Lagrange 
method and a remarkably simple interpretation when one takes into account the 
interdependence of the r ij .  Ferrier was then led to consider a function W that is defined 
by the equation: 
 

W = Ω − ij
ij

r
r

∂Ω′
′∂∑ , 

and to call it the energy of the system. 
 From what was said, it is painfully necessary to remark that if a function Ω1 obeys 
equation (1) then the same thing will be true for Ω1 + u, where u satisfies the equation: 
 

u − ij
ij

u
r

r

∂′
′∂∑  = 0. 

  
 This equation is a particular case of the one that is known in analysis under the name 
of the “equation of homogeneous functions.”  More precisely, it is the equation that is 
obeyed by homogeneous functions of first order relative to the arguments mnr ′ . 

 
 
 19. Comparison with other formulations. – One can make the same remark for the 
function W of E. and F. Cosserat (2), which, from the standpoint of mathematical 
analysis, plays the same role as Ω in R. Ferrier’s theory of the ether. 
 We return to the equations that we are occupied with, and which we write: 
 

                                                
 (1) Quelques idées sur l’Électrodynamique (librairie A. Blanchard).  Here, it amounts to a formal 
comparison of the two theories, which do not seem to have any point in common; we simply point out the 
similar use of the generalized Legendre transformation. 
 (2) In several places in the Théorie des corps déformables, E. and F. Cosserat likewise made use of the 
calculus of variations. 
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W W W W W W
p q r

p q r
ξ η ζ

ξ η ζ
∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

 − W = E. 

 
If W1 is a solution to that equation in which E is the unitary energy then the general 
solution for W will be: 

W = W1 + u, 
 

where u is an arbitrary homogeneous function of first order in ξ, η, ζ, p, q, r that can 
contain the arguments ξ0, η0, ζ0, p0, q0, r0, in addition.  One thus sees that there is a 
precision that one can bring to this that is, moreover, very possible, and in several ways. 
 We put ourselves in the case of classical mechanics. 
 If one evaluates the kinetic energy of an element ds whose argument is s0 then one 
finds precisely: 

1
2 ds0 [Q × vt + K  × vt], 

 
so it suffices to apply Koenig’s theorem to that element: It is the vis viva that the element 
ds0 will have if the matter that it is composed of is concentrated and its center of inertia is 
ds0 Q × vt .  In addition, in the motion around the center of inertia, the relative via viva is 
the scalar product of the kinetic moment K  with the vector ωi , a scalar product that is, 
moreover, independent of the mode of framing of these vectors. 
 One thus has: 

1
2 ds0 [grad 

t
Wv × vt + grad 

t
Wω  × ωt] 

 
for the kinetic energy of the element and: 
 

C = 
0

0

1
02 [grad grad ]

t t

B

t tA
W W dsω ω× + ×∫ v v  

 
for the total kinetic energy.  Having said this, from the relation between W and E, one 
deduces that: 

2C = 
0 0

0 0
0 0

B B

A A
E ds W ds+∫ ∫ . 

 
The first integral is the total energy U of the curve, and since U = V + C, V being the 
potential energy (here, it is the work done by molecular forces, with the sign changed), 
one finally has: 

− 
0

0
0

B

A
W ds∫  = V – C = H. 

 
 Finally, the action of deformation and motion will be: 
 

2 0

1 0
0

t B

t A
W ds dt∫ ∫  = − 

2

1

t

t
H dt∫ , 
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H being the kinetic potential that was considered by Helmholtz (1). 
 One confirms that in the case of static deformations the action ∫ W ds0 reduces to – V, 
which is the potential energy that results from the deformation, with the sign changed. 
 
 In summation (2): In the general case (deformation and motion), the action is 
homogeneous as the product of an energy with time, so it is exactly the integral 

2

1

t

t
H dt−∫ , H being Helmholtz’s kinetic potential. 

 
 
 20. Use of the fixed trihedron. – It results from what we said on pp. 15 that if one 
expresses W as a function of V and W, when referred to a fixed axis, then W will contain 
scalar functions of unit vectors that are carried by the axes of the moving trihedron, or 
furthermore, functions of the cosines of the angles that the moving axes make with the 
fixed axes.  These cosines can be expressed by means of three parameters λ1, λ2, λ3; for 
example, the Euler angles. 
 On the other hand, p, q, and r can be expressed by means of these same parameters 
and their derivatives: 

     p = 31 2
1 2 3

0 0 0

dd d

ds ds ds

λλ λϖ ϖ ϖ′ ′ ′+ + , 

     q = 31 2
1 2 3

0 0 0

dd d

ds ds ds

λλ λχ χ χ′ ′ ′+ + , 

     r = 31 2
1 2 3

0 0 0

dd d

ds ds ds

λλ λσ σ σ′ ′ ′+ + , 

or, in summation: 

     Ωɺ  = 31 2
1 2 3

0 0 0

dd d

ds ds ds

λλ λΩ + Ω + Ωɺ ɺ ɺ , 

 
in which hΩɺ  is the instantaneous rotation of the moving trihedron when one makes only 

λi vary, and iϖ ′ , iχ ′ , iσ ′  is the projections onto the moving trihedron. 

 If I ′, J′, K ′ are the projections of the external moment of deformation M onto the 

same axes then we set: 
     I = 1 1 1ϖ χ σ′ ′ ′ ′ ′ ′+ +I J K   = M × Ω1, 

     J = 2 2 2ϖ χ σ′ ′ ′ ′ ′ ′+ +I J K  = M × Ω2, 

     K = 3 3 3ϖ χ σ′ ′ ′ ′ ′ ′+ +I J K  = M × Ω3 . 

 
 If one considers the fact that, with the new variables: 
 

                                                
 (1) More precisely, in a definition of action that would characterize the evolution of an isolated system.  
In order to justify this analysis, we cite Léon Brillouin: “Among the physicists, who dares to boast that they 
have a clear idea of action?” (R. G. E., 17 November 1934). 
 (2) One will find the result above exactly by studying the deformable surface and medium in motion. 



Chapter II – The Euclidian action of deformation and motion                                    27 

0

dx

dx
, …, λ1, …, 1

0

d

ds

λ
, … 

 
then the external work that is done by deformation can be written: 
 

 δTe = − 
0

0
0

B

A
W dsδ∫  

  = − 
0

0

1
1 0

10 1 0

0 0

B

A

dW dx W W
ds

dx dds ds
ds ds

λδ δλ δλλ

 
 ∂ ∂ ∂
 + + + + +

∂ ∂ ∂ 
 

∫ ⋯ ⋯ ⋯ , 

 
so the integration by parts of the terms that contain the derivatives dx / ds0, dλ1 / ds0 
permits us to transform δTe into: 

 

 δTe = − 

0

0

1

1

0 0 0 0

B

A

W W W W
x y x

ddx dy dx

ds ds ds ds

δ δ δ δλ
λ

 
 

∂ ∂ ∂ ∂ + + + +
        

∂ ∂ ∂ ∂        
         

⋯  

 

  + 
0

0
1 0

0 0 11

0 0

B

A

d W d W W
x ds

ds ds ddx

ds ds

δ δλ
λλ

  
  

∂ ∂ ∂  + + − +
  ∂   

∂ ∂            

∫ ⋯ ⋯ , 

 
which is a form that we compare to: 
 

δTe = − [F δx + G δy + H δz + I δI + J δJ + K δK 0

0
]B

A  

+ 
0

0
0( )

B

A
X x Y y dsδ δ+ +∫ ⋯ , 

 
δI, δJ, δK being the components of the elementary rotation of the moving trihedron that 
is attached to the infinitely small displacement considered, namely: 
 
     δI  = ϖ1 δλ1 + ϖ2 δλ2 + ϖ3 δλ3 , 
     δJ  = χ1 δλ1 + χ2 δλ2  + χ3 δλ3 , 
     δK = σ1 δλ1 + σ2 δλ2 + σ3 δλ3 , 
in such a way that: 
 

I  δI + J δJ + K  δK = (ϖ1 I  + χ1 J + σ1 K ) δλ1 + … = I δλ1 + J δλ2 + K δλ3 . 
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The complete integral term is written: 
 

[F δx+ G δy + H δz + I δλ1 + J δλ2 + K δλ3
0

0
]B

A , 

 
and the comparison that we mentioned gives: 
 

   F = 

0

W

dx

ds

∂
 

∂  
 

,  G = 

0

W

dy

ds

∂
 

∂  
 

,  H = 

0

W

dz

ds

∂
 

∂  
 

, 

 

   I = 
1

0

W

d

ds

λ
∂
 

∂  
 

,  J = 
2

0

W

d

ds

λ
∂
 

∂  
 

,  K = 
3

0

W

d

ds

λ
∂
 

∂  
 

. 

 
In other words, whereas the external effort of deformation is found directly by the first 
three formulas, which can be summarized into the vector equality: 
 

E = grad Wv , 

 
the external moment of deformation is given by the linear combinations: 
 

I = ξ1 I  + χ1 J + σ1 K , …, 

 
or, if one prefers, by the scalar products: 
 

I = M × Ω1 ,    J = M × Ω2 ,    K = M × Ω3 . 

 
One will likewise have the external effort and moment at the point M by considering the 
integral that figures in the expressions for δTe and comparing it with the one that we have 

already given, namely: 
 

X0 =
0

0

d W
dxds
ds

 
 ∂
 
 ∂ 
 

, Y0 = 
0

0

d W
dyds
ds

 
 ∂
 
 ∂ 
 

, Z0 = 
0

0

d W
dzds
ds

 
 ∂
 
 ∂ 
 

, 

and 

L0 = 
10 1

0

d W W
dds
ds

λ λ

 
 ∂ ∂
 −

∂ ∂ 
 

, M0 = 
20 2

0

d W W
dds
ds

λ λ

 
 ∂ ∂
 −

∂ ∂ 
 

, 
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N0 = 
30 3

0

d W W
dds
ds

λ λ

 
 ∂ ∂
 −

∂ ∂ 
 

, 

upon setting: 
L0 = µ × Ω1,    M0 = µ × Ω2,    N0 = µ × Ω3 . 



CHAPTER III. 
 

VARIOUS APPLICATIONS – DISPLACEMENTS IN BODIES 
WITH A MEAN FIBER. 

 
 

 21. The flexible and inextensible curve. – The preceding results permit us to recover 
all of the properties of funicular curves, which amount to flexible curves that are or are 
not inextensible, or even the deformable line that was studied by Lord Kelvin and Tait, in 
particular.  The consideration of the latter is of paramount importance in the theory of the 
strength of materials. 
 The advantage of the method consists in precisely that generality; in addition, it goes 
further than the predecessors had gone, since they had considered the infinitely small 
deformation exclusively, in most cases. 
 The introduction that we gave permits us to expand upon the details of all the 
examples that were contained in the work of E. and F. Cosserat.  Always with the goal of 
giving us guidance, we shall recall an important case, for which we appeal to the 
notations of vector calculus; it will be extremely simple for the reader to transpose them 
to the other examples. 
 Consider the case where W depends upon only ξ, η, ζ, which will correspond to the 
particular nature of the curve. (This would entail that grad Wω = 0.) 
 Suppose that L0, M0, N0 are zero for all deformations. 

 Finally, assume that X0, Y0, Z0 are given functions of s0, x, y, z, dy / ds0, dx / ds0, dz / 
ds0, λ1, λ2, λ3 . 
 The fact that L0, M0, N0 are zero implies the same condition for L0, M0, N0 , and one 

has, consequently, by virtue of the vector equation: 
 

M0 = grad Wω + grad Wv ^ V, 

grad Wv ^ V = 0, 
so 

grad Wv = λ V, 
in which λ is a scalar. 
 Give W a virtual variation without modifying s0; one gets: 
 

δW = grad Wv × δv = λ V × δv = 
2

λ δ(V2), 

 
which shows that W depends upon just the argument mod V, and perhaps, on s0 . 
 Set: 

µ = 
0

ds

ds
− 1 

and 
W = W(µ, s0). 
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 The external effort is written (1): 
 

E = 
W

µ
∂
∂

grad µv , 

 
and the gradient of µ is nothing but ds / ds0 , when considered as a function of the vector 
V; it is a unit vector I  that is carried by the positive semi-tangent to the deformed curve. 
 Finally: 

E = − T ⋅⋅⋅⋅ I , 
 
in which T is the scalar − ∂W / ∂µ.  Hence, one has equations that are analogous to the 
ones that classical mechanics gives for filaments: 
 

0

d

ds

E
+ ϕ0 = 0, 

or 

     
0

d dx
T

ds ds
 
 
 

+ X0 = 0, 

     
0

d dy
T

ds ds
 
 
 

+ Y0 = 0, 

     
0

d dz
T

ds ds
 
 
 

+ Z0 = 0, 

 
equations in which one can suppress the index zero, from the definitions of X0, Y0, Z0 . 
 In the Théorie des corps déformables, one will find the study of several other 
interesting cases (flexible and inextensible filament; deformable line, when one supposes 
that one edge of the trihedron that is attached to each point of the curve remains tangent 
to the deformed one (2); deformable line when a plane of the trihedron remains osculating 
to the deformed one (3); deformable line subject to constraints, etc.). 
 
 
 22. Calculation of the displacements. – The theory of the Euclidian action permits 
us to evaluate the elements of the deformation by starting with the expression for W.  One 
will find a general method in the book of E. and F. Cosserat.  We have presented it in 

                                                
 (1) These equations were given by Lagrange in a particular case.  In our presentation, they correspond to 
the hypothesis that W does not contain s0 explicitly, which can be interpreted by saying that the material 
curve is homogeneous. 
 The general procedure above avoids an obscurity in Lagrange’s argument (Mécanique analytique, Part I, 
Section V, § 11) that was pointed out by E. and F. Cosserat. 
 (2) This is the case that was studied by Lord Kelvin and Tait, in particular, for an infinitely small 
deformation.  
 (3) A case that was studied by Lagrange and generalized by Binet. 
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vector notation while rectifying a conclusion that was insufficiently exact that related to 
the case where W is quadratic in F, G, H, I, J, K (1). 
 We shall examine this useful case directly: 

 Since the function W is defined up to a constant, one can always suppose that its 
value is zero for the natural state of the body considered; in other words, one can suppose 
that W(ξ0, η0, …, r0) = 0. 
 On the other hand, ∂W / ∂ξ0, ∂W / ∂η0, ∂W / ∂ζ0 are the components of E in the 

undeformed state.  These partial derivatives are therefore zero, as well as: 
 

0

W

p

∂
∂

, 
0

W

q

∂
∂

, 
0

W

r

∂
∂

. 

 
 Therefore, if one develops W(ξ, η, …) in powers of ξ – ξ0, η – η0, ζ – ζ0, …, r – r0 
then the terms that are independent of ξ, η, ζ, p, q, r and the terms of first degree are 
separately zero.  For these sufficiently small deformations, one will have, upon limiting 
oneself to terms of second degree: 
 

W = quadratic function of (ξ – ξ0, η – η0, ζ – ζ0, …, r – r0). 
 

Now, the relations: 
E = grad Wv,  M = grad Wω 

can be just as well written: 
 

E = grad 
0

W −v v , M = grad 
0

Wω ω− , 

 
in which the notations v0 and ω0 refer to the undeformed state. 
 These equations amount to the following ones, in which F′, G′, H′ are the components 
of E, and I′, J′, K′ , those of L along the axes of the moving trihedron whose origin is at 

the point considered: 
 

  F′ = 
0( )

W

ξ ξ
∂

∂ −
, G′ = 

0( )

W

η η
∂

∂ −
, H′ = 

0( )

W

ζ ζ
∂

∂ −
, 

 

 I′ = 
0( )

W

p p

∂
∂ −

, J′ = 
0( )

W

q q

∂
∂ −

, K′ = 
0( )

W

r r

∂
∂ −

, 

 
equations that are linear in the differences ξ – ξ0, η – η0, …, r – r0, and which permit one 
to express them as linear functions F′, G′, …, K′. 

                                                
 (1) “Contribution à l’étude des corps déformables,” Annales de la Faculté de Toulouse (1926), §§ 44 
and 45. 
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 Upon substituting the values thus found in W, that quantity is expressed as a quadratic 
function of F′, G′, …, K′. 
 It is easy to see that when this substitution has been carried out, one has: 
 

ξ – ξ0 = 
W

F

∂
′∂
, …, r – r0 = 

W

K

∂
′∂
. 

 
This results from a property of quadratic functions.  Indeed, let F(λ, µ, ν) be such a 

function of the variables λ, µ, ν. 
 From a theorem of Euler, it results that: 
 

2F = λ µ ν
λ µ ν

∂ ∂ ∂+ +
∂ ∂ ∂
F F F

 = λ u + µ v + ν w , 

if one sets: 

u = 
λ

∂
∂
F

, v = 
µ

∂
∂
F

, w = 
ν

∂
∂
F

; 

hence: 
2(u dλ + v dµ + w dν) = u dλ + v dµ + w dν + λ du + µ dv + ν dw, 

 
and upon simplifying this, one gets: 
 

dF = λ du + µ dv + ν dw. 

 
Therefore, if one expresses F as a function of u, v, w then one has, in fact (1): 

 

λ = 
u

∂
∂
F

, … 

 
 Applications to the displacements in bodies with a mean fiber (2). – Equation (1) 
amounts to two vector relations: 

                                                
 (1) In the general case – i.e., when W is not quadratic – one obtains some general formulas for the 
displacements by considering the function: 
  

E = 
W W W

r
r

ξ η
ξ η

∂ ∂ ∂
+ + +

∂ ∂ ∂
⋯  − W; 

 
Upon making an inversion that is analogous to the Hamilton-Poisson transformation, which is a 
generalization of the Legendre transformation, one finds that: 
 

0

dx

ds
=

E

F

∂

∂
, 

0

dy

ds
=

E

G

∂

∂
. 

See J. S., loc. cit., pp. 78. 
 (2) This topic is not treated in the Théorie of E. and F. Cosserat.  
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      δV = grad WE , 

      δΩ = grad WM , 

 
in which δV and δΩ are the variations of V and Ω that were defined at the beginning of 
our study – i.e., with respect to the moving trihedron.  It then results that the absolute 
variation of V is: 

∆V = grad WE + θ ^ V. 

 
The left-hand side is nothing but ∆(DM / Ds0) or D(∆M) / Ds0 . 
 Finally, upon taking the geometric integral from a point A to the point M: 
 

∆M = ∆A + 0 0
0

grad 
M M

A A

DP
W ds ds

Ds
θ+ ∧∫ ∫E

. 

 
The P inside the integral sign denotes the point that describes the curve from A to M. 
 On the other hand, one knows that: 
 

δΩ = 
0

D

Ds

θ
  (see, § 3), 

so: 

(S1)    θM = θA + 0grad 
M

A
W ds∫ M

. 

 Integrating by parts gives: 
 

(S2)  ∆M = ∆A + 0 0grad (grad )
M MM

AA A
W ds OP W OP dsθ + ∧ − ∧ ∫ ∫ɺ
E M

. 

 
This is the fundamental vector equality from which we shall infer a general method for 
the calculation of deformations. 
 In the case where the curve remains planar during the deformation, if the applied 
forces are in the plane then the equality (S2) gives the classical formulas of Bresse for the 
deformation of the mean fiber of the bodies that are considered in the strength of 
materials. 
 It suffices to project the vector equality onto two coordinate axes whose origin will be 
at M.  If uM and uA are the components along one of the axes of the displacement of the 
points M and A then one gets: 
 

uM = uA + 0 0 0 0 0grad ( )
M M M

M AA A A

MM
W i ds z z z ds ds

EI EI
θ× + − − +∫ ∫ ∫ E

E
, 

 
in which i is a unit vector that is carried by the projection axis. 
 The part of W that depends upon the external effort is written: 
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− 
2 2N T

E G

 
+ + Ω Ω 

⋯ , 

 
in which Ω is the normal section to the mean fiber at the point considered.  The gradient 
of W with respect to E thus has the components N / GEΩ along the tangent and T / GΩ 

along the normal; the projection onto the x-axis, or i × grad WE, is obtained immediately. 

 
 
 23. Body with a mean fiber. – It is intuitive that the study of small displacements 
could be utilized in the strength of materials. 
 Indeed, that discipline studies the deformations of bodies with mean fibers that one 
can assume to be generated in the natural state by a planar section that is deformed and 
which displaces while remaining normal to the mean line (the center of the section 
describes the latter line). 
 To each point of the mean line, one can therefore attach a tri-rectangular trihedron 
such that one of its edges Gx is tangent to the line, while the other two are in the plane of 
the generating section and can coincide with the principal axes of inertia of the section. 
 One can abstract from the body and only take into consideration the mean line and the 
set of trihedra, and then repeat the argument that was already made on the deformable 
line. 
  
 It is very simple to give a generalized Bresse equation that applies to the most general 
skew system and the most general elementary deformation by translating the general 
equality (S2) by means of projections onto the three axes.  In order to underscore the 
possible interest in that extension, recall the following lines of Mesnager (Bull. de la 
Société d’encouragement pour l’industrie nationale, t. CXXXIII, no. 4, April 1921): 
 
 “As far as the three-dimensional systems are concerned, the use of geometry and 
kinematics gives rise to some difficulties and complications such that the authors have, in 
general, eluded these difficulties and complications by the introduction of unjustified 
hypotheses into the calculations that eliminate any value in the results thus obtained.” 

 
 

Mean line 

y 
G 

x 

z 

 
 

Fig. 3. 
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 24. New formulas. – There have been other criticisms of the Bresse formulas, 
notably, the inevitable introduction of auxiliary unknowns, in the form of linear and 
angular displacements (1). 
 We shall deduce some formulas from the general equation (S2) that are, once and for 
all, devoid of any auxiliary unknowns.  The formulas, which apply to a deformed skew 
system, involve only two coefficients (just one for planar systems) that can be calculated 
in advance, independently of the form of the system and the applied forces. 
 This method also seems to be as easy to apply as the method that Bertrand de 
Fontviolant has made known.  We will show this by means of some examples.  In 
addition, it does not involve fictitious forces. 
 We shall content ourselves with the following obvious remark: The body with a skew 
mean fiber has at least three fixed points, while the body with a planar mean fiber has two 
fixed points (2). 
 We treat the first case, which is the most general: 
 Call the fixed points A1, A2, A3 .  We wish to find the component ∆x of the 
displacement of a point M along a direction that is defined by a vector I  that will be taken 
to have unit modulus in what follows. 
 When one takes the point O to be the fixed point Ai then equation (S) is written: 
 

∆M = 0 0grad grad 
i i

M M

M i iA A
W ds A M W A P dsθ+ ∧ − ∧∫ ∫E M

. 

 
 Multiply both sides of the equation by λi and add the corresponding sides of the three 
analogous equations, upon choosing the coefficients in such a manner that: 
 

( )i i
i

A Mλ∑  = I . 

One gets: 

∆x ∑ λi = ( ) 0[grad grad ]
i

M

i iA
W A P W dsλ + ∧ ×∑ ∫ Iɺ
E M

. 

 
 This is the formula that we have in mind.  It can also be written: 
 

∆x = 0[grad grad ]
i

M

i iA
W A P W dsµ + ∧ ×∑ ∫ Iɺ
E M

, 

with 

µi = i

i

λ
λ∑

. 

 
 In the most general case, there are, in reality, only two independent coefficients 
because ∑ µi = 1. 
 

                                                
 (1) MESNAGER, loc. cit.  
 (2) Upon giving this manner of speaking a general sense, this case includes both recessed (encastrés) 
systems and ones with rolling supports. 
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 25. Calculation of the coefficients. – I.  It is easy to geometrically obtain the 
coefficients, or rather, some proportional quantities. 
 Let S be the oblique projection (made parallel to I ) from the point M onto the plane 
A1, A2, A3 . 
 The relation: 

λ1 A1M + λ2 A2M + λ3 A3M = I  
implies that: 

λ1 A1S + λ2 A2S + λ3 A3S = 0. 
 

 

T 

A3 

A1 A2 

S 

 
Fig. 4. 

 
 Draw a parallel A1T to SA3 through the point A1 until it meets SA2 . 
 If S is interior to the triangle then one can take: 
 
      λ1 = 1, 
 

      λ2 = 
2

mod 

mod 

ST

A S
, 

 

      λ3 = 1

3

mod 

mod 

TA

A S
, 

and indeed: 
A1S + ST + TA1 = 0. 

 
 II. If the point S is outside of the triangle A1, A2, A3 then one of the λ coefficients will 
be negative. 
 The figure shows this immediately. 
 
 III. If the direction of I  is in the plane MA1, A2, for example then the formula 
simplifies: Indeed, one has seen that λ1, λ2, λ3 are chosen in such a manner as to annul the 
trivector or mixed product: 

(λ1 A1 P + λ2 A2 P + λ3 A3 P) θ I , 
 
but here λ3 = 0, and it suffices to take λ1 and λ2 in such a manner that: 
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λ1 A1 P + λ2 A2 P = I , 
or 

λ1 A1 S + λ2 A2 S = 0, 
 

so if the point S is interior to the segment A1 A2 then: 
 

  1

2

λ
λ

 = 2

1

mod 

mod 

A S

A S
, 

 

 µ1 = 1

1 2

λ
λ λ+

= 2

1 2

mod 

mod 

A S

A A
, 

and 

 µ2 = 2

1 2

λ
λ λ+

= 1

1 2

mod 

mod 

A S

A A
. 

 
 
 26. Algebraic translation of some vector equalities. –  
 
 1. In order to simply the presentation, take the case of a planar system that is subject 
to forces that are situated in the plane.  One then has: 
 

W = − 
2 2 21

2

N T M

E G EI

 
+ + Ω Ω 

. 

 
The gradient of W with respect to the effort has the components N / EΩ, T / GΩ, so it is 
easy to project them onto an arbitrary axis, a projection that we have denoted by grad WE 

× I  (I is a unit vector that is carried by the axis). 
 
 2. As far as grad WM is concerned, it reduces to its component M / EI along the 

normal to the plane of the system.  It is measured positively according to the convention 
that links the positive sense of a semi-normal to the plane to the positive sense of rotation 
in the plane. 
 If x and y are the coordinates of the point P with respect to the rectangular axes that 
issue from A1 and one of which – viz., x – is directed along A1A2 then the external 
products such as A1P ^ grad WM have either (M / EI) y for their component along ox or – 

(M / EI) x for their component along oy. 
 
 The integration by parts, by means of which we have obtained the formula (S) is not 
valid if the deformable line is composed of articulated segments.  The rotation Θ varies 
discontinuously by a finite quantity Θ2 – Θ1 when one passes from the extremity of one 
segment to the continuous extremity of the following segment. 
 In order to simplify the presentation, take a planar system with intermediate joints.  
Upon operating with each segment as we said, one gets: 
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∆P = 
1 2 1 1 1( )P

A P
C

AC A Pθ θ θ+ − ∧ + ∧∑I  

 
for an arbitrary point P, upon representing the integral of grad WE + A1P ^ grad WM by 

1

P
AI , while the sum is taken over all segments that connect A1 to P.  Similarly: 

 
∆P = 

2 1 2 2 2( )P
A P

C

A C A Pθ θ θ+ − ∧ + ∧∑I , 

 
where the sum ∑ is extended over all of the segments that connect P to A2 .  If one 
projects onto the line of support A1A2 then this becomes the algebraic translation of the 
vector equality that we obtained by subtracting two sides of the two formulas (1): 
 

2 12 ( )i
i

f θ θ−∑  = 
2

1
0

A

A

M
y ds

EI∫ , 

 
in which fi denotes the height of the segment Ci above the line A1A2 . 
 
 Recall, the example that Mesnager (2) treated by the Bresse formulas and then those 
of Bertrand de Fontviolant, successively. 
 Calculate the vertical displacement dh of an arbitrary point P of an arc of three 
segments that is subject arbitrary loads that are situated in the plane of the mean line of 
that arc.  Although it is very easy to take into account the external effort, we shall neglect 
it, to simplify: 

δh = µ1Y × 
0

P
AI + (θ2 – θ1) ^ A1C + µ2

0

P
AI × Y, 

 
in which Y is an ascending vertical unit vector: 
 

µ1 = Pl x

l

−
,  µ2 = Px

l
. 

 
However, from the preceding remark: 
 

θ2 – θ1 = 
2

1
0

1 A

A

M
y ds

f EI∫ , 

so 

δh = 
2 2

1 1

0
0 0 0

( )

2

P A A
P P

A P A

xl x xM M l x M
xds ds y ds

l EI l EI f EI

− −+ −∫ ∫ ∫ . 

 

                                                
 (1) To simplify, we neglect the effort that is involved with cutting; it is obviously very easy to take into 
account.  
 (2) Bulletin de la Société d’encouragement pour l’industrie nationale, t. CXXXIII, no. 4, April 1931.  
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 In our previous paper, one finds the solution, based upon this same method, to an 
example that was mentioned (but not treated) in the same article of Mesnager. 
 



CHAPTER IV. 
 

THE DEFORMABLE SURFACE 
 
 

 27. Extension of the preceding notions to the case of surfaces. – In order to 
complete this presentation, which must be, above all, a guide, we now pass on to the case 
of deformable surfaces, and then to deformable bodies. 
 We suppose that the position of a point M0 on the undeformed surface (M0) is defined 
by means of two curvilinear coordinates ρ1 and ρ2 . 
 Any point M0 is associated with a tri-rectangular trihedron whose summit is M0 and 
whose edges have directions that are continuous functions of M0 – i.e., the two 
coordinates ρ1 and ρ2  . 
 The deformed state of the surface can be imagined by supposing that each point M0 
has received a displacement M0M and that the directions of the trihedron of the 
modifications are continuous functions of  ρ1 and ρ2 . 
 The deformed state and the natural state are thus defined by two sets of trihedra, sets 
that are continuous in two parameters. 
 The undeformed surface element can be represented by the expression ∆0 dρ1 dρ2 , in 

which ∆0 = 2eg f− if one takes the linear element to have the form: 

 
2 2 1/2
1 1 2 2[ 2 ]ed f d d g dρ ρ ρ ρ+ + . 

 
 We shall define the action of deformation W per unit of undeformed surface.  On a 
portion Σ of the surface in question, the total action will be: 
 

0 1 2W d dρ ρ
Σ

∆∫∫ . 

 
 W is a function of two neighboring positions of the trihedron Mabc; i.e., of  ρ1, ρ2, x, 
y, z (the coordinates of the points M), of α, β, γ, α′, …, γ″, and finally of the derivatives 
of these twelve quantities with respect to  ρ1 and ρ2 .  In a more condensed manner, one 
has: 

W(ρi, OM, V i, I , J, K , i
′I , i

′J , i
′K ), 

 
in which V i, i

′I , i
′J , i

′K  are the derivatives of OM, I , J, K  with respect to the parameter 

ρi. 
 However, equalities such as: 

i
′I  = Ωi ^ I i , 

 
where Ωi is the instantaneous rotation of the trihedron when only the coordinate ρi varies 
and plays the role of time, permit us to put W into the form: 
 

W(ρi, OM, V i, Ωi, I , J, K ). 
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 As for the deformable curve, we impose the constraint on W that it remain invariant 
under a transformation of the group of Euclidian displacements.  It will suffice to have 
δW = 0 for an infinitesimal transformation of the group. 
 In order to pursue a unique method, suppose that instead of V i, Ωi, which are vectors 
that are framed in a fixed reference system, one makes vi and ωi intervene – i.e., the 
preceding vectors when framed with respect to the trihedron M, which amounts to 
modifying the manner in which W depends upon I , J, K  (1). 
 The infinitesimal transformation can be performed in two steps: 
 
 1. A translation that alters only OM, since the point O is fixed.  One then has: 
 

δW = grad WOM × ∆M = 0, 
 

which demands that grad WOM = 0; i.e., that W does not depend upon the point M 
explicitly. 
 
 2. A rotation Θ. 
 Since the frames vi and ωi remain unchanged, one then gets: 
  

δW = grad WI × δI  + grad WJ × δJ + grad WK × δK  = 0, 
with 

δI  = θ ^ I , …, 
and finally: 

grad WI × I  + grad WJ × J + grad WK × K  = 0. 
 
 This differential equation, which is equivalent to three Cartesian equations between 
the nine components of I , J, K , is solved by first considering the six obvious solutions: 
 

I2,    J2,    K 2,    J × K ,    K  × I ,    I  × J, 
 
which are all functions that remain constant.  Therefore, W, which is a function of these 
six solutions, does not contain I , J, K  explicitly. 
 
 
 28. Transformation of the elementary variation of the action. – By analogy with 
the case of a deformable curve, take the elementary variation of the action on a portion S 
of the surface (M) that is bounded by a curve C.  If S0 and C0 are the initial states of that 
portion and its contour then one will have: 
 

                                                
 (1) Therefore: 

V1 = V1 × I ⋅⋅⋅⋅ I + V1 × J ⋅⋅⋅⋅ J + V1 × K ⋅⋅⋅⋅ K  = ξ1 I  + η1 J + ζ1 K , 
 

ξ, η, ζ being the frames or projections of V1 onto the axes of the moving trihedron; on the other hand, I , J, 
K  already figure in W. 
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0
0 1 2S

W d dδ ρ ρ∆∫∫ = 0 1 2(grad  grad )
i ii i

i

W W d dωδ δω ρ ρ× + × ∆∑∫∫ v v , 

 
which, from the formulas of the previous page, can be written: 
 

0 1 2

( )
grad grad 

i ii
i i i

D M D
W W d d

D Dω
θθ ρ ρ

ρ ρ
  ∆ ∆ × + ∧ + ×  
   

∑∫∫ v V . 

 
If one integrates the terms that contain a derivative by parts one time and then applies 
Green’s formula to these terms then one gets: 
 

 
0

0 1 2S
W d dδ ρ ρ∆∫∫  =  

1 1
0

0 2(grad grad )
C

W M W dω θ ρ× ∆ + × ∆∫ v  

  − 
2 2

0
0 1(grad grad )

C
W M W dω θ ρ× ∆ + × ∆∫ v  

  − 0( grad )
i

i i

D
W M

Dρ
∆ × ∆∑∫∫ v  

  + 0 0 grad  grad 
i ii

i

D
W W

D ωρ
 

∆ + ∧ ∆ 
 

vv × θ dρ1 dρ2 . 

 
The curvilinear integral must be taken in the usual direct sense. 
 Set (1): 

                                                
 (1) One can transform these results by means of Beltrami formulas.  We have also given (loc. cit., pp. 
71) some other formulas that are based upon the equalities: 
 

1d

ds

ρ
= − v1

0

e

∆
,  2d

ds

ρ
= + v2

0

g

∆
. 

 

N1 N2 

T1 
ρ2 = const. 

ds 

T2 

ρ1 = const. 

M 

 
 

Fig. 5. 
 

v1 and v2 are the cosines of ds with respect to the semi-normals N1 and N2, respectively, which point along 
the coordinate curves at the point M.  The senses of the semi-normals are obtained by moving (décalant) the 
positive semi-tangents T1 and T2 by –π /2.  This convention seems preferable to that of Beltrami to us, 
which involves, not the element, but the curve that passes through the element. 
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  ∆0 
1 2

2 1

0 0

grad grad 
d d

W W
ds ds

ρ ρ 
− 

 
v v  = − E, 

  ∆0 
1 2

2 1

0 0

grad grad 
d d

W W
ds dsω ω
ρ ρ 

− 
 

 = − M, 

so 

0(  grad )
i

i i

D
W

Dρ
 

∆ 
 

∑ v  = ϕ ∆0  

and 

0 0(  grad )  grad 
i i i

i i

D
W W

D ωρ
 

∆ + ∆ ∧ 
 

∑ v v  = µ ∆0 , 

 
and one finally gets: 
 

0
0S

W dSδ ∫∫ = − 
0

0 0C
ds M ds θ× ∆ + ×∫ E M  − 

0
0 0S

ds M dsϕ µ θ× ∆ + ×∫∫ . 

 
 
 29. Examples. – As for the deformable curve, one deduces that E and M are the 

external effort and external moment of deformation at a point M of the contour C of the 
deformed surface, when referred to the unit of length of the contour C0 . 
 The results above comprise, in particular, the equations that relate to the infinitely 
small deformation of a planar surface that were utilized by Lord Kelvin and Tait.  One 
can, moreover, point out several aspects of these results (see Théorie, pp. 77, et seq.).  
Notably, one will find equations that are obtained by introducing, as in the example of 
Poisson, the coordinates x and y as independent variables in place of ρ1 and ρ2 .  One then 
introduces new auxiliary variables that are provided by considering the non-tri-
rectangular trihedra that are defined by the normal to the deformed surface and the 
tangents to the conjugate curves. 
 It is painfully necessary to confirm the analogy between the given formula 

0
0S

W dSδ ∫∫  and the analogous formula that relates to deformable curves.  Also, the 

integral: 

0
0S

W dS−∫∫  

 
will represent the energy of deformation.  Indeed, by changing the signs in the expression 

for 
0

0S
W dSδ ∫∫ , one finds δTe (elementary work done by external forces).  We say that – 

W represents the density of energy of deformation with respect to the unit of undeformed 
area. 
 We again point out that if one supposes that W does not depend on ω1 and ω2 then in 
the case of infinitely small deformation the surface behaves like the membrane that was 
studied by Poisson and Lagrange. 
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 The theory also studies the flexible and inextensible surface of the geometers and 
shows how one must take W in order to be dealing with reinforced (armée) surfaces, such 
as those of aerostats; i.e., elastic surfaces in which a fabric of inextensible filaments is 
embedded. 



CHAPTER V 
 

THE DEFORMABLE MEDIUM. 
OUTLINE OF THE PROBLEMS THAT ARE POSED IN THE SUBJECT OF 

DEFORMABLE MEDIA. 
 
 
 30. The preceding notions can be extended to the case of three-dimensional 
media. – The extension of the theory of action to the case of a deformable medium is of 
paramount importance for mathematical physics.  That extension leads one to envision a 
more general medium that the one that is usually considered in the theory of elasticity.  
We have already spoken of the two differences between the theories in the preface. 
 Let a three-dimensional space (M0) be described by the point M0 that is framed with 
respect to a fixed reference system (by means of arbitrary curvilinear coordinates or 
simply Cartesian coordinates). 
 Attach a tri-rectangular trihedron M0 a0 b0 c0 to each point M0 whose axes have the 
direction cosines α0, 0α ′ , 0α ′′ , …, 0γ ′′  with respect to the fixed axes, the latter being 

functions of the independent variables.  The continuous, three-dimensional set of of these 
trihedra constitutes the deformable medium. 
 If one gives the point M0 a displacement M0M and one imprints a rotation on the 
trihedron M0 a0 b0 c0 that takes the trihedron into a position Mabc then the continuous, 
three-dimensional set of trihedra Mabc constitutes the deformed state of the medium. 
 Consider a function W of two infinitely close positions of the trihedron Mabc; i.e., of 
M0, OM, I , J, K , and the derivatives: 
 

i

M

ρ
∂
∂

, 
iρ

∂
∂

I
, 

iρ
∂
∂

J
, 

iρ
∂
∂
K

 

 
(in which ρi denotes one of the coordinates of the point M), so we can represent it as: 
 

W(M0, OM, I , J, K , i
′I , i

′J , i
′K ). 

 
 We propose to determine W in such a fashion that the elementary variation δW is zero 
when one subjects the set of trihedra of the deformed state to the same arbitrary 
infinitesimal transformation of the group of Euclidian displacements.  Here, we again 
replace i

′I , … with Ωi ^ I , …, so W takes on the form: 

 
W(M0, OM, I , J, K , V i, Ωi), 

 
in which we suppose that V i, Ωi figure by their frames of the moving trihedron Mabc in 
such a way that W will finally take on the form: 
 

W(M0, OM, I , J, K , vi, ωi), 
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in which vi and ωi have the significance that was already given in the preceding case. 
 It is pointless to repeat the argument that was already made (§ 12) in order to 
establish that in this case the frames of I , J, K  do not figure in W, nor does the vector 
OM. 
 W thus has the form that was found before: 
 

W(M0, vi, ωi), 
where i can take the values 1, 2, 3. 
 We shall again exhibit the effort and moment of deformation at a point of the 
deformed medium. 
 Take a portion τ of the medium in question that is bounded by a surface S, and let τ0 
and S0 be the initial states of τ and S.  Consider the integral of the volume: 
 

0
0W d

τ
τ∫∫∫ , 

 
which is extended over the portion in question, while W is calculated for the deformed 
state of the initial element dτ0 . 
 An arbitrary elementary variation of that integral will be: 
 

δ 
0

0W d
τ

τ∫∫∫  = 
0

0(grad grad )
i ii i

i

W W dωτ
δ δω τ× + ×∑∫∫∫ v v , 

 
in which, moreover: 

δvi = 
( )

i

D M

Dρ
∆

+ vi ^ θi and δωi = 
i

D

D

θ
ρ

, 

 
so one integrates the terms that contain a derivative once by parts and then applies 
Green’s formula to these terms.  One again finds that: 
 

δ 
0

0W d
τ

τ∫∫∫ = − 
0 0

[ ]
S

d M d dr d M dr d
τ

σ σ θ ϕ τ µ τ θ× ∆ + × − × ∆ + ×∫∫ ∫∫∫E M . 

 
E is the unitary effort at a point of the surface that bounds the portion τ (per unit 

undeformed surface area).  M is the moment of deformation that is exerted on that 

surface (always per unit undeformed surface area). 
 In a more precise manner, if the surface S separates the region τ from an external 
region τ′ then E and M are the effort and moment that are exerted at a point of S of the 

region τ on the region τ′. 
 ϕ and µ are the force and moment vectors at a point of τ (per unit of undeformed 
volume). 
 As was the result of all of the preceding, the original integral, with its sign changed, 
will be the energy of deformation of the portion. 
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 31. Interpretation of the elementary variation of the action. – This interpretation 
is deduced from the fact that if one seeks the elementary work done by the forces and 
moments that we just enumerated then one finds that: 
 

0 0
0( ) ( )

S
M d M d

τ
θ σ ϕ µ θ τ× ∆ + × + × ∆ + ×∫∫ ∫E M , 

 
and since the elementary work done is equal to the increase in energy (or the variation of 
the action, with the opposite sign), the preceding is justified. 

 If we recall the first expression for δ 
0

0W d
τ

τ∫∫∫ and use identities such as: 

 
( )

i

D M

Dρ
∆

= 
( ) ( ) ( )

i i i

D M x D M y D M z

Dx Dy Dzρ ρ ρ
∆ ∂ ∆ ∂ ∆ ∂+ +

∂ ∂ ∂
 

then we will have: 
 

 δ 
0

0W d
τ

τ∫∫∫ = grad 
i

i

W
τ∑∫∫∫ v  

 × 0( ) ( ) ( )
i

i i i

dD M x D M y D M z

Dx Dy Dz H

τθ
ρ ρ ρ

 ∆ ∂ ∆ ∂ ∆ ∂+ + + ∧ ∂ ∂ ∂ 
v  

 + grad 
i

i

Wωτ∑∫∫∫  

 × 
i i i

D x D y D z d

Dx Dy Dz H

θ θ θ τ
ρ ρ ρ

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
, 

 
in which H is the functional determinant: 
 

0 0 0

0 0 0

0 0 0

x y z

x x x
x y z

y y y

x y z

z z z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

. 

 Set: 

     px = 
1

 grad 
i

i

x
W

H ρ
∂
∂∑ v , 

 

     qx = 
1

 grad 
i

i

x
W

H ωρ
∂
∂∑ , 

 
in which py, pz, qy, qz are defined analogously.  One then gets: 
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 δ 
0

0W d
τ

τ∫∫∫ = 
( ) ( ) ( )

x y z

D M D M D M
p p p d

Dx Dy Dzτ
τ ∆ ∆ ∆× + × + × 

 
∫∫∫  

 

 + x y z

D D D
q q q d

Dx Dy Dzτ

θ θ θ τ 
× + × + × 

 
∫∫∫  

 + grad 
i i

i

d
W

Hτ

τθ ∧ × 
 
∑∫∫∫ v v , 

 
and upon integrating by parts: 
 

 = 
S∫∫ [(c1 px + c2 py + c3 pz) × ∆M + (c1 qx + c2 qy + c3 qz) × θ] 

 − yx z
DpDp Dp

M d
Dx Dy Dzτ

τ 
+ + × ∆ 

 
∫∫∫  

 − 
 grad 

iiyx z

i

WDqDq Dq
d

Dx Dy Dz H
ω

τ
θ τ

∧ 
+ + + × 

 
∑∫∫∫

v
. 

 
Upon comparing the one result obtained above with the other, one gets: 
 
 E  = − (c1 px + c2 py + c3 pz), 

 M = − (c1 qx + c2 qy + c3 qz), 

 ϕ  = x y z

D D D
p p p

Dx Dy Dz
+ + , 

 µ = 
1

(  grad )
ix y z i

i

D D D
q q q W

Dx Dy Dz H
+ + + ∧∑ vv . 

 

In order to interpret the vector 
1

(  grad )
ii

i

W
H

∧∑ vv , we look at its projections onto the 

axes. 
 The projection onto Ox is: 
 

1
(  grad )

ii
i

W
H

× ∧∑ vI v = 
1

( ) (  grad )
ii

i

W
H

∧ × ∧∑ vJ K v , 

 
or furthermore, by virtue of a well-known identity (1): 
 

                                                
 (1) I , J, K  are now three unit vectors that are carried by the projection axes.  In addition, one knows 
that:  

(a ^ b) × (u ^ v) = a × u ⋅⋅⋅⋅ b × v − a × v ⋅⋅⋅⋅ b × u. 
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1
( grad ) ( grad )

i ii i
i i

W W
H

 × ⋅ × − × ⋅ × 
 
∑ ∑v vv K J v J K . 

 
However, vi × K  = ∂z / ∂ρi , so one sees that the first term of the sum is the projection 

onto Oy (or the scalar product with J) of  grad 
i

i i

z
W

f

∂
∂∑ v , or furthermore, the projection 

of pz onto Cy.  From a notation that is frequently employed in the theory of elasticity, one 
can write: 

pyz – pzy , pzx – pxz , pxy – pyx 
 

for the projections of the vector 
1

(  grad )
ii

i

W
H

∧∑ vv . 

 
 
 32.  Formulas of E. and F. Cosserat that are deduced from the preceding vector 
relations.  Problems that are posed by the theory of the Euclidian action. – In the 
formulas that give E and M, if one sets c1 = 1, c2 = c3 = 0, for example, then one sees that 

E reduces to px, so the latter vector is the effort per unit area on an element whose exterior 

semi-normal is directed along Ox.  Likewise, qx is the moment of deformation per unit 
area on the same element; py, pz, and qy, qz are similarly interpreted. 
 In order to recover the Cosserat equations from the preceding ones, it suffices to 
project the equations of the system onto the three coordinate axes. 
 One thus has: 
 Ex = c1 pxx + c2 pyx + c3 pzx , 

 Ey = c1 pxy + c2 pyy + c3 pzy , 

 Ez = c1 pxz + c2 pyz + c3 pzz , 
 
 Mx = c1 qxx + c2 qyx + c3 qzx , 

 My = c1 qxy + c2 qyy + c3 qzz , 

 Mz = c1 qxz + c2 qyz + c3 zzz , 

 

 ϕx = yxxx zx
pp p

x y z

∂∂ ∂+ +
∂ ∂ ∂

, 

 ϕy = xy yy zyp p p

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
, 

 ϕz = yzxz zz
pp p

x y z

∂∂ ∂+ +
∂ ∂ ∂

, 
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 µx = yxxx zx
qq q

x y z

∂∂ ∂+ +
∂ ∂ ∂

, 

 µy = xy yy zyq q q

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
, 

 µz = yzxz zz
qq q

x y z

∂∂ ∂+ +
∂ ∂ ∂

. 

 
These formulas were given for the first time, and in this latter form, by the Cosserats in 
their Théorie des corps déformables.  Formerly, Voigt made known some formulas that 
corresponded to a particular case, namely, the one in which the three vectors qx, qy, qz are 
zero at all points (1). 
 We repeat some of the inumerable remarks of the creators of the Théorie that show 
how one deduces from the preceding results the equations that relate to the deformable 
body of the strength of material, the ones concerning the perfect fluid medium, and the 
theory of ethereal media that one imagines for the study of luminous waves, from 
McCullagh to Lord Kelvin.  These same results lead naturally to the consideration of the 
vector B (viz., induction) in a magnetized medium, etc. 

 We think that, when one is endowed with the precision that we have tried to invest 
the principles with, the reader will easily approach the original work of E. and F. 
Cosserat, notably the chapters that we were unable to develop for lack of space (2), 
namely: 
 
 1. The study of the deformable body in motion.  One will ultimately follow the path 
that was presented in the context of the deformable line (3) in motion.  One finds, as a 
particular case, the gyrostatic medium that L. Kelvin imagined in order to account for the 
elastic properties of the luminiferous ether.  In addition, the notion of kinetic anisotropy 
that we spoke of for a deformable curve served as the basis for the theory of double 
refraction of light, such as Lord Kelvin and Glazebrook have discussed. 
 
 2. Study of the Euclidian action at a distance, the action of constraint, and the 
dissipative action. 
 
 3. Finally, the last chapter is very useful for researchers: the Euclidian action from 
the Eulerian viewpoint. 
 
 In the preceding presentation, one took the variables to be the initial coordinates of a 
point and time (i.e., Lagrange variables), but one can also take the current coordinates of 
the point and time (i.e., Euler variables).  One is then led to the Eulerian action that was 

                                                
 (1) “Theoretischen Studien über die Elasticitätsverhältnisse der Krystalle.” 
 One will find a very complete bibliography, notably for the case of the deformable surface and 
deformable media, in the Théorie of E. and F. Cosserat. 
 (2) The original presentation is already extremely condensed. 
 (3) P. LANGEVIN, “Aspect général de la relativité,” Bull. scient. des Étudiants de Paris.  
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imagined by H. Poincaré (1), and one arrives at conclusions that are analogous to the ones 
that Lorentz stated in the context of the theory of electromagnetism in a moving body.  It 
is pointless to emphasize the importance of that assertion. 
 
 

______________ 
 

                                                
 (1) “Sur la Dynamique de l’électron,” Circolo Matematico di Palermo, t. XXI, pp. 129. 


