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PREFACE

The aspiration to contribute to the diffusion of thedry of the Euclidian action was
what led us to take on the production of this fascidléis did not come about without
two reservations: The reader who judges it from the pdogmal viewpoint and who
begins theThéorie des corps déformables E. and F. Cosserat will find us to be
insufficiently faithful to the way of looking at thingd those authors. In order to give
our presentation some concrete support, we have mad# tlse notions of energy and
force. Now, one knows about the difficulties tHa tlefinition of energy presents; as for
force, it can give rise to interminable discussiobhazare Carnot was sufficiently hostile
to that notion being givea priori that he deemed any proof that contained the word
“force” to be absurd!

We can remark that the method of exposition thatiedformal is not recognized
today without some inconvenience. It is universally a@ampthen one defines, for
example, the length of an arc of a curve by an intagedlthis is the way to make the
common notion of length for a rectilinear segment iperdrowever, when, by a
tyrannical lack of logic, one extends to some otherongtione must meet up with some
setbacks. One no longer accepts the definition ofcitgldor a rectilinear motion that
Lagrange gave in his analytical mechanics, which amourtiskbog that quantity to be
the coefficient ot in the Maclaurin series that represents the spacesthaversed as a
function of time. Therefore, here are sonaural notions, as Ch. de Freycinet would
say, that, to be suitably precise, necessitate thegueknowledge of the development of
the functions into series as if the idea of veloeitg that of force are not, in our sense,
previous to the study of algebra.

Eminent professors do not hesitate to utilize theonoaf force in their teaching.
However, there is more: In the work that we shallsprng, it will be a question of a
functionW playing the primordial role; it depends upon geometriclametic arguments.

It is defined by E. and F. Cosserat as a scalar funtt@nmust remain invariant when
one subjects these arguments to a transformation gftlg of Euclidian displacements;
i.e., to speak simply, when one gives the body, wiscassumed to be instantaneously
undeformable, an elementary helicoidal displacemenbw ldoes one content oneself
with this definition? 1fWis such a function then the same will be tru&\®#, wheref is

an arbitrary function. Now, in the course of theottye W will take on a precise
significance. In the case of a static deformationyiil coincide with the energy of
deformation per unit volume.

One will then understand our infidelity. In order tatjty it, we will say that the
excess of abstraction has probably retarded progress in eébey.th At its debut, it
received the warmest of welcomes, and P. App@bsirs de Mécaniqué2™ edition)
carried a note in its third volume that was a detailedusision of it that was edited by E.
and F. Cosserat)( After the premature death of the latter, an engif@ethe eastern
railroads, E. Cosserat, who has been the eminentatirecthe Toulouse Observatory up
to these latter years, dedicated himself to other wamil, despite his generosity, it has

() The same discussion is reproduced in the Frenchatiamsof volume two of ChwolsonBhysique
(Hermann, editor).
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not been easy for him to recall the path that he vi@tb before without a certain tragic
sense of loss.

Another scruple makes us hesitate before the purelyjemmatical aspect of a theory
that is destined for th&émorial des Sciences physique$he desire for a concrete
presentation that we already expressed made us sintpdifalgebraic apparatus. We
have naturally taken explicit pains to make use of thetorial calculus and its
innumerable pages of equations, which is heresy for theytisé@eformable bodies, so
one finds it reduced considerably. The unpublished studyislwarried out in the first
chapter avoids the repetition (up to five times) of an e that is, moreover,
insufficient in form and occasionally in its conclussaf).

One should not be deceived by the spirit of these edisens; we cannot admire that
Théorieenough in all of its various parts as it was described.tgn F. Cosserat. |If
those authors left anything further to be gleaned froinig for them to recognize. Their
collaboration was arduous: The Cartesian calculatiarigch were in favor only in
France at the beginning of the century, were tedioushexer they applied them to
guadruple integrals. The use of vectorial calculus, whaidenses thenathematical
contenf permits us to perceive some imperfections. Nothing) diminish our
admiration for the creators of the theory.

The method of Euclidian action was first introducedynamics, and in this field of
study it gives a generalization of ordinary mechanicsseiéms to be a first-order
approximation ). Whereas the mass of a material element in thergetheory is a
function of velocity, it is constant in the first @oximation. By this important detail,
one sees the possibility of rejoining the modern physlabries, since the Euclidian
character can be replaced by another that betterrcosfim these theories. In the case of
the determination of the functioi that was mentioned above, this happens by writing
that this function remains invariant for any transforowmtinot just the group of Euclidian
displacements, but, in fact, the group that one hasjdiyition, chosen in order to
explain the universée)

This fascicle is limited to the theory of deformabtedies by the method of Euclidian
action, and does not pretend to establish the principesiew mechanics.

Here, one will find a generalization of the theofglasticity in the sense that one no
longer postulates the reduction of the actions that>aesl upon a material element to a
unique force; that reduction likewise involves a couple.

In addition, the theory is not confined to the consitten of infinitely small
deformations. It thus presents itself as a double genatial of the classical study of
deformations.

Finally, one can see a liberating effort of all metagidsg; as one said at the time of L.
Carnot and Lagrange. We must confess that it is mstaspect of the study that can
seduce the reader. “The artifices that are put to wotkdogreatest minds do not suffice
to replace the concepts that are suggested by the nattimagd itself.” It is with that

() For example, in the chapter on action at a distancenateated completely in a previous paper
[“Contribution a I'étude de l'action euclidienne,” Annalesld Faculté des Sciences de Toulouse (1926)].

() V. CHWOLSON,Traité de PhysiqueFrench translation by E. DAVAUX, marine enginediome
I, pp. 236.et seq. Note of E. and F. Cosserat (librairie Hermann).

() Another comparison can be deduced from this is thatcRE quanta are fragments or “grains of
action.”
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thought by Ch. de Freycinet that we conclude by addingth&afprocedures that are
placed at our disposal by the method are indeed very presoaihsit one should not seek
to augment their value by giving them a purely abstract.basis

PRELIMINARIES.

1. — Notations adopted— In principle, we adopt the vectorial notations of &ur
Forti and Marcolongo, which have been recommended in Ffans®me years now by
Bricard (Nouvelles Annales de Mathématiquig23).

In general, a vector will be denoted by just one Idtterst often, Egyptian). In some
exceptions, it can be a set of two letters. The akang displacement vector of a point
M from M to M’ will be denoted byAM.

The scalar and vector products of two vectoandv are writtenu x v andu ” v,
respectively.

Finally, for a vectowu that is a function of one parameteme utilize the notion of
relative derivative of a moving reference system (nmtatdu / dt). The absolute
derivative, when taken in a fixed reference system f{ootaDU / Dt), will be linked
with the preceding by the relation:

—=—+QA"U,

Q being the instantaneous rotational velocity vector ef thoving reference system,
while the parametdrplays the role of time'Y.

2. The displacement® and A. — Consider a curv®, Mo By , at each point of which
a trirectangular trihedron that has that point asutsmit is attached. The orientation of
that trihedron varies with the poilty in a continuous and known manner.

Imagine that one deforms the curve in such a manneedictit pointVip of the initial
state corresponds to one and only one pdirdaf the deformed one. The orientation of
the trihedron that is attached to that point is likewnsodified in a continuous manner
from one extremity of the curve to the other. Thimes about through a succession of
deformed states.

If u is a uniform vector function of the poikt, of the curve (which is the summit of
the trihedron that is attached to that point) thenaareestablish the equality:

(1) D(Au) = A(Du)

by an argument that is utilized in the calculus of van, whereD denotes an absolute
variation that corresponds to an arbitrary displacegmé the summit aM along one of
the deformed curves addenotes an absolute variation that provides the passagef
point of one deformed curve to the corresponding point athen deformed one.

() J. SUDRIA, “Sur la dérivée relative d’un vecteur,” Nelies Annales de Math. (5), t. 11.
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3. Special formulas— If one envisions two elementary displacemé&nendA and if
one letsa and @ denote the elementary rotation vectors of the trinedrceach of these
two cases then one can establish some results eheer useful for what follows:

a. Take the vectou to be the vectoOM that joins a fixed origin to the summit of
the trihedron. The preceding relation can be written:

) d(AM) + o~ AM = JDM) + 6/ DM,

whered and d now denote the relative variations when they arguated using the
trihedron whose summit is &t.

If dg is the arc of the undeformed curve that correspondlsetalisplacement that is
envisioned along that curve, an@ is the instantaneous rotational velocity of the
trihedron when one makesg play the role of time then one can again transfone t
relation (2) thus:

9 amy+ wram= ol PM 1 gnPM
dx, Ds, Ds
or furthermore:
(3) QM) + Vo™ 8= V,,

Vo being the velocity of displacement of the summit tbé trihedron along the
undeformed line whes, plays the role of time.

b. If one chooses the vectorof the fundamental relation to be a well-defined vector
that is at rest in the moving trihedron then one has:

Au=6"U and Du=a”"V.
Equality (1) then gives, successively: (

DrU+6~DU =Aa”™U+a"AU,
DOMu+ 8" (a™u) =Aa™u+a”™ (6"Mu),
DNu-Aa™u =g @ W)+ ura)=(a™ g "u.

Since the last relation must be true for angne then infers that:

Dé=NAa+a" 6
or furthermore:

D—e =Aw- 0" w= ow

Ds,
or

() The second equation follows from the idenéity (b ~c) +b~ (c”~a) +c” (@~ b) = 0.
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(4) ow=3% 100 0 .

ds

4. Classical formulas.— One thus finds two relations (3) and)(#roved and
attached to a common origin that were obtained byrf. B Cosserat by means of
Cartesian calculations.

We point out, in passing, that whBnandA denote two displacements of a point on
two coordinate lines of a surface the relations that wbtained give, in one case, the
Kirchhoff formulas, and in the other, those of Combesdarboux $¢eeG. Darboux,
Théorie des surfaces |, pp. 55 and 49).

We finally point out the following relation (5):

Consider a vectar that is united with a moving trirectangular trihedrome®as:

u=uxIlO+uxJ+uxK K

and

(5) Du=uxlMNl +uxJo”"J+uxK Oo"K,
=ux| Dl +uxJ[DJ+uxK [DK.

5. Partial gradients. — We extend the notion of gradient, which is definedhm t
context of a scalar function of a poikt, to the case of a scalar function of several
vectors. (The ordinary case can be considered to beftadunction of a vectodM.)

If one is given a scalar functidnof the vectorsry, vz, ..., vp then we refer to the
partial gradientsof f, which we denote by grafj , grad f, , ..., when we are dealing

with the vectors that are defined by the equality:

df = gradf, x dvy + gradf, xdvz + ... + gradf, xdvp,

where the infinitesimal variatiordyy, dv, ..., dv, are arbitrary.
For example, if the functiohis written:

() In order to facilitate the reading of the book by Ed &. Cosserat, upon starting with the intrinsic
formulas above, recall thA(OM) is represented by its projectiod$, J;, J, onto the axes of the moving

trihedron. A’ &’ &K' are the components @, p, q, r are those ofwy and finally & #, { are the
components of. Equation (3) gives:

A 5%+qd'y—rdz=+z"-n XK’
ds

and two other analogous relations, while equation (4) gives

d):id’+qd<’+r a’
ds,
and two other analogous relations.
These formulas are used continuallyiméorie.
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f(xll Yll le x21 Y21 ZZ! sy xpl Ypl Zp)l
in whichX;, Y, Z are the components of the vectgrthen one will have:

of of of

oX,  aY ' azZ

for the components of the partial gradiefit.

6. Relativity of partial gradients. — We say that a vector is referred to a trihedron
when the variations of that vector are evaluated amh ttihedron when it is taken as the
reference.

Let there be given a vector that we denot&hbwhen it is referred to a fixed trihedron
and byu when it is observed in a moving trihedron.

If F is a scalar function of the vectddsV, ... then one has, on the one hand:

dVv = gradF, x DU + gradF, x DU + ...

If one refers the vectors to a moving trihedron whosewisie rectangular axes carry
the unit vectors, J, andK thenF(U, V, ...) becomesb(u, v, ..., 1, J, K), and:

dF =d® = grad®, x Du + grad®, x Dv + ...
+ grad®, x DI + grad®; x DJ + graddk x DK.

On the other hand (formula 5):
DU=du+a”u=du+Ux|[DI+U+UxJ[DI+U+UxK [DK
e dFord®d =gradFy x (du+U x| DI +UxJ[DJ +UxK [DK) + ...
Finally:
gradd, = gradFy,
grad®, = gradFy U x | + gradFy [V x| + ...
Remark— If the functionF already depends upon the vectigrd, K then
grad®, = gradF, + gradFy U x| + ...
7. Functions that are invariant under a Euclidian displacemen - If one is

given a scalar functiow of several vector¥4, V, ..., V, then the equation:

gradW,, *Vi+gradW,, "Vz+ ...+ gradW, "V,=0,
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or, more simply:

G > graW,, OV, =0,

translates into the fact that the functidhis invariant under any elementary Euclidian
rotation of the system of vectors around one axid also under any Euclidian
displacement of the set of vectors.

Indeed, taking the scalar product of the left-haid& of the preceding equation with
ddtgives:

p
D gradwy, OV, x 8dt=0,
i=1

or
p

> gradw, OAv,=0.

i=1

Here,Av; is the variation of the vectaf under a rotation of the set with an angular
velocity of & the latter result amounts to the equadity = O.

Remark.— Equation E) is equivalent to the system of three partial edéhtial
equations:

dw dw
——7— =0,
2\ ¥ dz i dyj

dw  dw
8 L REVELLY P}
(8) Z 2 dzj

Z)Qd_w—yﬂ/ =0
~dy T )

in which x, yi, z are the components ©f, the number of scalar variables is thgn 3n
order to solve the system of three equations abbwejll suffice to find 3p — 1)
independent solutions:

$106, Vi, 2),  @20%, Vi, Z), .., Bap-1)(X%, i Z)-

The general solution of the system will be:

W=F(g1, @2 ..., P3p-1)),

in which F is an arbitrary function of the argumengs, ¢,, ... One can take these
arguments to be:

1. X¥+y'+7Z or V2 (i=1,2 ..p),

2. XiXo+tY1Vot+2Z21 2 or Vi Vo,
3. The 2p- 2) solutions:
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X1Xtyhyit+tzz, XoXitYo Vit 7,
or

Vi x Vi and V3 xV; i=1,2 ..p),

so one has, in all:
p+1+2p-2)=3p-1)
independent functions.

8. Case where certain vectors satisfy some scalar relateonr- The function thus
obtained is the general integral that satisfies equéEpientically.

In the sequel, it will be necessary to know how to fimel most general function that
satisfies the same equation, no longer identicallynbut only under the hypothesis that
the vectors/y, v, ..., Vp satisfy certain scalar relations.

For our ultimate applications, we set aside the cdaseravthese relations are not
intrinsic — i.e., independent of the coordinate axes.

Let:

fl(Vl, Vo, ..., Vp) = C]_,
fz(Vl, Vo, ..., Vp) = Cz,

fn(Vl, V2, sy Vp) = Cn
be these constraint equations.
They are equivalent to relations betweeRr, i, z, which are the components af,
namely:

(%, %,2)=G,
® P
?.(%, ¥, %)= G.

@1, @2, ..., ¢ are solutions of equatiolk), since relationsl( are indeed independent
of the axes, so this must persist when one givesdfegence system an elementary
rotation 8- i.e., the functiongy must verify the relation:

Z(grad¢K xAvij =0
for Av; = 8" Vi , which gives, after one has factored out the veftor

Z(gradmxvij =0 forK =1,2,..n; i=1,2,..p.

Vi
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Having said this, takep?- 3 —n other solutions off) that arandependentf ¢, ¢,
..., ¢n (With the meaning that is given to that word in the tiiedf functions of several
variables), namely:

¢n+1, ¢n+1, ey ¢3p—3 .

Finally, if a, a', a", B, B', B",and y; y', y" are the components of three vectors that
appear in equationEj (for example, the last thre¥,», V,-1, V) then keep the
componentsr, B', andy”, in particular. They are independent of each othdrcdrthe
functions ¢y, since otherwiser, for example, would be a solution of the system &y
one can see that this is impossible unless= a” = 0, which are not intrinsic relations,
and are thus rejected) (

Having said this, let®(x;, yi, z) be a function that satisfies the syste#)) (hanks to
equationsl().

9. The solution in this case, as deduced from the genésolution. — We shall

show that® can be deduced from the general soluowhen one takes the conditions
(L) into account.

Make a change of variablesdnby taking the new arguments, which number8d
are independent:

P1, @2, ..., P33, @, B, Y.
D(P1, @2, ..., Pp-3, @, B, V"),

or, upon taking equationg)into account:

@ will then be of the form:

P(Prs1, Prvz, .oy Pap-3, @, B, ¥").

We now show thatr, B', y" do not figure explicitly in®d.
In order to simplify, leE(W) denote the left-hand side of the vectorial equdtion
We remark that:
a= Vp_2 x X,
B=Vp1xY,
y=Vp xZ,

in whichX, Y, Z are unit vectors that are carried by the fixed axes. efter.

() Indeed, one can, as we will do later on,®etV,, x X, whereX is a unit vector that is carried by
thex-axis, so it results that gram(vy— = X.

ForW = g, the vectorial differential equatiof)reduces t&X "V, = 0.

If we project this relation onto theaxis and then onto theaxis then we get:

XAY MV, =0, XNZ™MVp =0,
or
ZxV,5=0, YXxV,,=0;
i.e., one finally has:
a'=0 and a"=0.
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grada, =X, gradf, | =Y, grady, , =Z,
and
E(a) =X "Vp=2, E(B')=Y "Vp2, E(")=Z"Vpo2.

It is easy to see that:

0 Ef) + ... + =22 E(p2)

E(¢) = 20 Y
o0 b _ . 0D
+£E(a)+a—ﬁ,E(,3)+ o) E(y"),

in such a way that if one writes thitis one solution then what remains is:

0P 0P N 0D o~
%E(a)-l-a_ﬁE(ﬁ)-l-a_V' E(y") =0.

Upon taking the vector product wik Y, Z, successively, one gets:

, 00 0D
oF Moy T
yaﬁ -a" aﬁ =

)% oa
, 0P 0P
a g '36_,3’

and these equations in:

0> 0P 0P

aa’ a8’ oy

:O,

can have no other solutions than:

unless the determinant:
O ﬁ" _V

a [ 0
is zero, i.e., unlesg’'B"y= a"fy', a relation that is not intrinsic, because it can be

written:
0"(,3"1/_,3}/") :,3(0’"1/' - al yn).
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If X,Y, Z are, as always, three unit vectors that are carrigtieoyeference axes ahdJ,
K are the three vectors) (whose components awe a', a”, B, B, B". v V', V",
respectively, then one has:

a' =1xY,

andS"y — B y" is the component ¥ K alongQY, so:
B"y - By" =JKY.
Upon similarly transforming the right-hand side, ond fihblly have:
| x Y QIKY) =J x X OKIX).

Now, if one changes théaxis without changing thX-axis then the left-hand side
varies, but not the right-hand side.

The relationa'S"y= a"fy' is not intrinsic, and one cannot find solutions of the
system §) that satisfy that system identically, in which anast take equations (1) into
account, other than the ones that are deduced fromIth@®sdV.

The size of the introduction above is justified byftiilowing considerations:

The problem of determining a functio that is invariant under the group of
Euclidian displacements was first examined by E. and Bs&at in the note by these
authors that appeared in Chwolsoisité de Physiqudt. I). [French translation by
Devaux, a marine engineer (librairie Hermann)]

The solution to the first question is easily found deaves no doubt (pp. 246).
However, the result is then extended to a differese ¢&y analogy (pp. 268). It alludes
to a simple calculation that, in fact, was givemyan another work, and which was, in
fact, Théorie des corps déformables.

We have shown that this calculation was based updnexact assertiorf). Since
the argument is repeated several times and it leadsoioeeus results in certain cases, it
IS necessary to give it a firmer foundation.

() They are the vectors that were previously denotedyby V,1, V.

(®) That assertion amounts to this: If a vector is frdmvith respect to two trihedra with the same
summit then one knows the position of one of these dréhewith respect to the other one. (See
“Contribution a la Théorie de l'action euclidienne,” Nollee Annales de la Faculté des Sciences de
Toulouse, 1926.)



CHAPTER |I.

THE EUCLIDIAN ACTION OF DEFORMATION

10. Concrete representation of a deformable line- One will understand the theory
more easily if one represents a deformable body ayglomeration of undeformable
particles.

Without going into the refinements to that notion thet appropriate in order to
account for the progress in modern physics, we can takereceding particles to be
atoms and imagine that one has linked each one of thean tindeformable reference
system — for example, a tri-rectangular trihedron.

The study of the deformation of a body amounts to ¢baesideration of the
modification of the situation that relates to thihd@dra. No matter how large, if not
inconceivable, the number of elements is, they do nostitote acontinuumin the
mathematical sense of the word; however, it will brely advantageous to treat them
as a continuous set. This will notably permit the w#ilan of the procedures of the
infinitesimal calculus.

Therefore, suppose that a tri-rectangular trinedragivien at each point of a space
(Mp) that is described by the poiM,, whose edges carry the unit vectass by, Co,
respectively. We suppose that these vectors are contifurmeigons of the poinM, by
the intermediary of their direction cosines.

If the space Nlp) is the natural state of the body then give each pbinta
displacemenfAM, and imprint an elementary rotation on the trihedvtarag bo Co ; it will
become a trihedroMabc The continuous, three-dimensional set of all suittedra
constitutes the deformed state.

For more simplicity in the presentation, we first consider theeaa infinitely slender
body that we call a deformable curv@/e then show how the calculations and the results
that are obtained are reproduced in the study of a suofaa three-dimensional body.

If the natural state of the curve is given then omesilers a continuous sequence of
trihedra whose summits are the various points of th@ecurThe positions of the
summits, as well as the orientation of the axeskaown as functions of the argumegt
which is the arc length from one of the extremitikg {or example) up to the poiMy .

Bo

Mo

Fig. 1.
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One can follow the displacement of a pdvhiand the variations of the orientation of
the axes on the deformed state of the cuseegbove) by varyingy .

In order to characterize the deformation of the Abhex pointM that comes from a
point My with arguments, on the line before deformation, E. and F. Cossetla¢ &
function W of two infinitely close positions of the trihedréabc— i.e., a function o$,
x,V,z a a',a", ..., y" and their first derivative with respectdp. X, v,z a,a’', a”,

..., y" are the components 6V, a, b, c.)

11. The Euclidian action.— These authors consider the integral:

L:OW ds,

which is taken along an arbitrary portion of the liMy), and then impose the condition
on that integral that it have “a zero variation wioene subjects the set of all trihedra of
the deformable line, when taken in its deformable statgntarbitrary infinitesimal
transformation of the group of Euclidian displacement3his integral is called the
action of deformationon the deformed line between the poiftsand B, which
correspond to the poinfs andBg of (Mo).

What must one have in mind with the teiuclidian actior? The question is
paramount. The words employed recall the principlg thas obscurely-stated by
Maupertuis and then repeated by several mathematiciatise txtent that Jacobi found
it so incomprehensible that he completely recast it.

Here, the risk is not the same, since the obscuritg doecome from the complexity
of the statement, but from an inadequacy that is init@lite shocking. The definition
of Euclidian action is not only appropriate to the notibat E. and F. Cosserat had in
mind, but to an infinitude of other ones.

It is curious to remark, as we will do later on, thasuffices for the functioW to
satisfy the condition of invariance that is demandedrder for the curve to receive an

arbitrary elementary deformation, so the integf/%ol\/v dg takes on a variation of the

form:
—jf: X&K+YH+Za&+LA+MI+N K

+[FX+GH+HIZ+RA+SA+T XK]?,

in which &, dy, dz are the components of the displacement of a poins&vaogument is
S, andd, A&, K are the components of the elementary rotation ottreesponding
trihedron.

This expression is, up to sign, the one that gives thk dane by the forces that are
applied to the curveX( Y, Z being the components of the force per unit length atirat p
andL, M, N being those of the external moment at this point).

F, G, H, andR, S T are the components of the forces and moments thatnaithe
extremities. More precisely, if one makes an imagicat in the line aM thenF, G, H,
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R, S T are the components of the force and the momentteagxerted by the pavtB
on the parMA.

Among the functions W that answer to the single condition that was imposes] abo
one must then find the energy of deformation of the curve (wgigitschanged), and it
is that particular solution that will be truly the Euclidian action per uergth.

This definition clarifies the notiom the particular case where the forces simply give
rise to the static deformatiofne., when they take their values by starting withozand
progressing infinitely slowly).

However, in the general case (viz., deformation andompftt will be simple to
extend the notiomwithout it being confused with the energy of the deformed (seepp.

30).

12. Expression for the Euclidian action— We thus seek the condition that must be
imposed upon the integra]:OW dg in order for it to be invariant under all

transformations of the group of Euclidian displacements
This demands thacﬁj:’W dg = 0 for such a transformation, or, in a more concrete

manner, that the value & does not change when one displaces the hheif the
manner of the undeformable lines of rational mechanliesorder to find the expression
for W, we shall utilize the study that we carried out in geaph 7, in place of the
argument that was employed by the authorBhaforieand insufficiently explained.
Let:
, , dx dy dz @& da' '
W[%, Xy zaa,.y— ,—y T T T e ,lg,
dg, dg ds ds ds d

which we write with vector notation, lettirlg J, K be three unit vectors that are carried
by the axeMa, Mb, Mc:

W[%,W,I,J K yo,% ,(;% %)

The vectorsll /ds, dJ / ds, dK /ds, can be replaced with:
Qo M, Qo " J, Qo MK,

whereV, and Qg are the velocity of the poiritl and the instantaneous rotation of the
trihedron when one makasgplay the role of time. The functidi can then be written:

W(&)l OM! VOa QOa Il Jl K)
Imagine that one gives the curve a translation, seahation ofW reduces to:

gradWom x AM = 0,
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which demands that gratlom must be identically zero, or furthermore that the fiomct
W does not depend upddM explicitly. (In the form that was proposed by E. &nhd
Cosserat, it did not contaxyy, z.)

On the other hand, we can suppose that one has intrody@aiQ, into W, where
these vectors are referred to the trihedktabc and are denoted by and as, which
amounts to modifying the influence of the vectigry, K, as we explained before (8§ 6).

Once the function has been put into the form:

W(&)l VOa aba Il 'Jl K)a

we write down that it does not vary when one givesstteof trihedraviabc a rotationg,
which gives, sincevy = dwp = O:

gradW x Al + gradW; x AJ + gradWk x AK =0,
or
gradw Al + gradW; A AJ + gradWk " AK =0,

a vector differential equation for which we must find(3 — 1) = 6 solutions. They are
obviously:
12, J%, K% JIxK, KxI, Ix],

and the general solution is:
W(so, Wo, @, 12, J%, K% JIxK, KxI, |xJ).

Upon taking into account the relations between thenessof the edges of a tri-
rectangular trihedron, this relation reduces to:

W(so, Vo, ap).

Recall thatvp and ap must be framed relative to the moving trihedid(abg. In
other wordsW contains only the componenfs 7, ¢, p, q, r of these vectors along the
moving axes.

Remark — The functionV is called thedensity of action per unit length along the line
before deformation.One deduces the density per unit length of the deformedtdineit,
namely,W ds / ds

13. The external force and moment. The external efforand moment of
deformation. The effort and moment of deformation at a poiniof the deformed line.
— We write down the Euclidian action of deformation kegwtwo point® andB of the
line (M) for an arbitrary variation. Upon suppressing the indléex the vectory and w
one has:

By B
5JAOWd% = jAO (gradW, xdv + grad/\, x dw g .
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Recall that:

ziAM +v g

Ds,
which permits one to write:

By (B D D
5JAOW dg = L\) {grad\Nv X(D_SOAM +v D€j+ grad/\{vxD—%e} ds,
and upon integrating by parts:
= [gradWy x AM + gradW,, x 817 - I{D—DSOgrad\/\/V xAMj ds

- j(igradwaﬁv O grad/\(,jxetblg.

Ds,
If we set:
E = gradW, , M = gradW,,,
bé =g, DM +tvirhE=u
Ds,
then we get:

5JZ°Wd§:<‘,’BXAB—5AXAA+MBXQB—MAXHA
—j¢ ds, x AM + 7 ds % 8

At a point whose argumentsg £ is called theexternal effort of deformation\, the

external moment of deformatiog, the vector of thexternal force per unit lengtbf the

undeformed line, angl is the vector of thexternal moment or couple per unit length
the undeformed line.

Fig. 2.

In a more precise manner, consider an arbitramyt pd betweenA andB. Suppose
that one has separated the curve into two porbonsne side oM and the other. If one
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imagines that the portioMB has been isolated théhand M are the force and moment

that are exercised by the pAi¥ on the portiorMB.

(These quantities constitute the generalizations efsdttional effort and bending
moment of thestrength of material$

The variation of the action with the sign changedrigten:

—5ij°Wd%:5AxAA—5BxAB+MAxeA—MBx98

+I;¢ ds x AM + udg x @

On the right-hand side, one finds the elementary wlorie by the forces and couples
that are distributed along the length of the curve andaifees and moments that act on
the extremities.

14. Rigorous definition of the notion of Euclidian action. T his permits us to make
the thoughts of the authors of Théorie more precigé must not be merely a function
that satisfies the formal conditions that were stddabove. It is necessary that — W ds
is, up to an additive constant, the energy of de#dgion on the element ds of the
deformed curve that is due to an elemeptofishe curve before deformation.

Indeed, imagine the curve in two states, one of whithesstate before deformation
and the other of which is the an arbitrary current statd suppose that the passage from
the first one to the second one happens progressivelynmtely slowly by means of a
continuous succession of equilibrium states. One can segpat the quantities define a
state that depends upon one parametevhich will give the curve before deformation
for the value zero.

The work that is done by external forces for a Vaneh is:

J-Ban

:—jZ"aw M dhds

The total work will be:

== ], W-w) ds.

Without changing anything in the preceding, on@ edways suppose that the
functionWp = W(vo, aw, S) is identically zero for the natural state. Theuatity —\\(vo,
w, S) ds will then be the energy stored in the portionhef teformable curve that is due
to an elementlsy whose argument & in the natural state.

One further says that W is the density of energy of deformation per ueitgth of
the undeformed curve at the point whose argumest. is

However, that definition is valid only for deformedrves that are in equilibrium.
We will give a more general definition later thapées to the case of a body in motion
(see§ 18).

Nevertheless, we point out that the following tielas were given by Thomson and
Tait only for the infinitely small deformations aty means o& posteriorihypotheses.
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The condensed form that we gave to them makes theg®mnelobvious in the equations
of definition:
At a point of the deformed line, one has:



CHAPTER Il

THE EUCLIDIAN ACTION OF DEFORMATION AND MOTION().

15. Concrete representation of a deformable curve in motion- Consider a curve
(Mo) that is described by a poiMy and attach a tri-rectangular trihedrdlg ap bo ¢o to
each pointM, of the curve whose axes are defined in direction and $gnseans of the
unit vectorslo, Jo, Ko, Which are functions of the poiMy . The continuous set of these
trihedra can be considered to be the position at the g¢potladeformable curvehat is
defined in the following manner:

Give a displacememiloM to the pointiVp that is a function of timeand the poinMg
and is, in addition, annulled fdr=t, . On the other hand, imprint a rotation on the
trihedron Mg ap b ¢p that finally brings the axes into coincidence with thad the
trihedronMabc that we attach to the poiM. We define that rotation by saying that the
unit vectord, J, andK that are carried by the trihedrtdabg respectively, are functions
of Mg andt.

The continuous set of trihedkabcfor a given value of will be called thedeformed
stateof the curve at the time The doubly-infinite continuous set that is composethef
sets thus defined for all values bWill be the trajectory of the deformed state of the
deformable curve.

We continue to lety, and apy denote the velocity of the poiMy and the instantaneous
rotation of the trihedroMo ap by ¢y () when onlys; varies and plays the role of time. We
let v and wdenote the analogous vectors that relate to the pbantd the trihedroMg ag
bo co, Wheres, is always the derivation parameter.

On the other hand, we let and w denote the velocity of the poi and the
instantaneous rotation, properly speaking, of the trihebitalnc — i.e., while preserving
the character of a derivation parametertfor

If one imprints an infinitely small displacement upeach of the trihedra of the
trajectory of the deformed state that varies in a continuous mamitbrthese trihedra
then we have, with the notations that are alreadyl@ed, as we have said:

d/ziAM +v” g
Ds,
5&):3&
Ds,
d/t:RAM +Vt/\€,
Dt
D
3= —
“ Dt

() This chapter is not explicitly a part of ti@éorieof E. and F. Cosserat. It will prepare the reader
for the study of a medium in motion, which appears to be warglicated.
() le., inthe undeformed state.
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16. Euclidian action of deformation and motion for a deformablecurve in
motion. — Consider a functioW of two infinitely close positions of the trihedrdabc—
i.e., a function oM, andt, and ofl, J, K and their first derivatives with respectspand
t.

We propose to determine what the fornWomust be in order for the double integral:

[wds dt

which is extended over an arbitrary portion of the ciiMg and an interval of time that
is comprised of the instants betwdeandt,, to have a zero variation when one subjects
the set of all the trihedra that we have called taedtory of the deformed mediuim the
same arbitrary infinitesimal transformation of tgeup of Euclidian displacements.

The argument that we have already employed andttidg shat we made on pp. 14
permit us to assert the will have the following form:

W(so, t, v, W Vi, ).
The integral:

j:z j:OW ds dt

is the action of deformation and motion on the cuoreon a portion of it, itA; andBy
are not the extremities of the given curvi.is the density of action at a given point and
instant when it is referred to the unit of length of theleformed curve and a unit of
time. The density when referred to the unit of lengtrefdeformed curve and the unit
of time is:
w s
ds

17. The external force and moment. The external efforand moment of
deformation. The external effort and moment of deformaibn, quantity of motion,
and kinetic moment of the deformed medium in motion aa given point and instant.
— Consider an arbitrary variation of the action onlite and in the time intervdi, t,,

namely:
t

t, By B,
5L1 LOW dg di= L LO (gradw, xdv + gradh, x dew
+grad\NVt ><5Vt + grad/\{q X&A{ ﬂ% d.
By replacingdv, dw ovi, da with their expressions above, and then integratiegterms

that contain the derivatives with respectsgoby parts overs, and then the ones that
contain the derivatives with respect to time dy@ne obtains:
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[ [oradwy, xAM + gradw, x A6 § dt
to

+ UZD (gradw, xAM + grad/, xA8 )dg}

i}
t; #By D D
- —gradw, +— gra xAM
HJAOKDSOQ + 5 9 dl\cj
+ D radw,, +v [0 grad\|
Dsog w

+%graow@ +v, O gradMIJXAH} ds d.

We call the vectors:

D D
= —gradw, +— grad\[ ,
Ds, J ' Dt J ‘

= igrad\Nw+vD gradj\| + Rgraowwt +v, O grad\,
Ds, Dt ‘

the external forceandexternal momenat the pointM and instant, when referred to the
unit of length of the curve before deformation. ddgconsidering the integral taken over
time, we call the vectors grad/ and gradW,, the external effortand moment of
deformationat the pointM, respectively, when referred to the unit of lengththe curve
before deformation; more precisely, they are tferefand moment that the paftiv

exerts one the pakMB. We denote these vectors®gnd.M, in such a way that:

E = gradW,,
M = gradW,,

at the pointA andB. These efforts and moments are cadigtbrnal
Finally, upon considering the integral taken otleg lengthA.B, , and taking the
difference between the values at the epdclandt;, we call the vectors grad/ and

grad W, thequantity of motiorand thekinetic momenat the pointM and the epoch

one denotes them I§y andH.
The relations below results from the precedingnitéfns ():

() With the notation of E. and F. Cosserat (notatitxas one must not lose sight of if one desires to go
into the presentation of those authors in detail, wiécstrongly suggested), one will have, for the first
formula:

d6W+ oW 9dW d oW oW oW

=———+g— -r—+—_grad -r—,
ds 9¢ qa( on 4 ag “a¢ ‘an,

r

0 G
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D¢ D

¢:_+_Qi
Ds, Dt

M= DM+RH +vrE+V Q.
Ds, Dt

The presence of the argumewtand «p in W implies some expressions fgrand
that, in fact, reduce to the ones that we alreadydomithe study that we made (8 13) in
the case of equilibrium. In the general case, thggeessions bring us into the presence
of “the notion of kinetic anisotropy that was already imagined by Rankine, and which
was then introduced into several theories of physics in the theadgulifie refraction
and in that of rotatory polarization, for exampl€Z. and F. Cosserat).

By making an idea of the authors Tfiéorie more precise, we have shown that the

arguments/?, VZ, andV x V. (“Contribution a la Théorie”)

“When the mixed argumer¥ x V; does not occur iWW, one must, in general,
consider the state of deformation and motion thatfieitely close to the natural state in
order to find where the action of deformation is caetgly separate from the kinetic
action in the case of classical mechanics.”

18. Notion of energy of deformation and motion— We now propose to determine
the work that is done by the external forces and momamnds external efforts and
moments of deformation during an arbitrary time intefeal real deformation.

The elementary work done during a tidtas:

[ 1gxv, dt+ pxeq ot

Y ,

0

T ,
and for the second one:

, _ d aw+daw+qaw_raw+qaw oW
° dygp dtgp  “ar aq ar aq
W OW  dW W

= ——*n — ¢,
¢ an o,

The advantage of the vector notations is even gredten one considers a deformable surface or
three-dimensional medium.
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+Ep xvidt+ Ma xaf dt— & x v dt + Mg xaf df] ds .

By replacingg, i with their expressions that were given above astions ofW and
by a calculation that we have detailed (8 13), and whiéhaam characterize by saying
that it is the inverse of the one that led to thenitdin of ¢ andz, one gets:

dE oW
dt ,
Ja (m mj ?
in whichE is, by definition, the scalar function:

gradW, x Vi + gradW,, x w —W.

In the particular case whed®V /ot = 0 — i.e., wher&V does not contaihexplicitly —
the expression found is the differential with respedtme of the quantity:

u:jSEd%.

E is called theenergy of deformation and motion per unit lengttthe original line; the
definition ofU is deduced from it.U remains constant when the external work done is
zero; this leads to the notion of the conservatibanergy under the hypothesis that the
deformable curve is isolated from the external world.

In the preface, we said how the definitionvidfwas hardly acceptable to a physicist.
Since that definition involves only the invariance Wfunder the group of Euclidian
substitutions, it cannot be made precise, since an aybiwaction of W will also be
invariant. The significance becomes definitive when eees that, as the authors of
Théorie reasonedW coincides with the energy of deformation per unit lengttthe
original line, with the sign changed, in the case dicstieformations. In the case where
the deformable line is in motion, the functidh when imagined in reality, is, among all
of the functions that satisfy the conditions of invacathat were proposed, the one that
is, in addition, a solution of the partial differemgguation:

gradW, x Vi + gradW, x w—W =E,
or furthermore:

ow_, ow_ oW, oW_ oW JoW
+ + + + + r-wW-=E,
655 6/7,7 il4 ¢ ap P daq a or

in which E is the energy of deformation and motion per unit lergtthe original line;
this will be made more precise later on.
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We compare the method that was just presented witloteethat was recently
employed by R. Ferrief)in order to construct a theory of the ether. Aftaving shown
that there was an original sin being committed in theceptions of the old theories,
Ferrier was led to consider a function:

OI (ST (R N (A B

wherer;; represents the distance between two arbitrary pdiatdelong to the frames of
a medium;r; is the derivative of; with respect to time. The law of motion of the
frames is given by the condition that the integral:

t ,
J_ Qi)

be an extremum, which produces the same equatianhsate obtained by the Lagrange
method and a remarkably simple interpretation wilogre takes into account the
interdependence of thg . Ferrier was then led to consider a function W tisatiefined
by the equation:

0Q
W=Q->r —,
z 1] arij’
and to call it the energy of the system
From what was said, it is painfully necessarydamark that if a functiof2; obeys
equation (1) then the same thing will be true(r+ u, whereu satisfies the equation:

u- rij’a—u, = 0.
or;

This equation is a particular case of the oneithkhown in analysis under the name
of the “equation of homogeneous functions.” Moregsely, it is the equation that is
obeyed by homogeneous functions of first ordetikedo the arguments,, .

19. Comparison with other formulations.— One can make the same remark for the
function W of E. and F. Cosseraf)( which, from the standpoint of mathematical
analysis, plays the same role(as R. Ferrier’s theory of the ether.

We return to the equations that we are occupigl, wnd which we write:

() Quelques idées sur I'Electrodynamiq(érairie A. Blanchard). Here, it amounts to arhal
comparison of the two theories, which do not seem e laay point in common; we simply point out the
similar use of the generalized Legendre transformation.

() In several places in tHEhéorie des corps déformahlds and F. Cosserat likewise made use of the
calculus of variations.
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6W5+6W,7+6WZ+6 Wp+6 Wq+6 Wr B

o¢é on il4 ap daq or

W=E.

If Wi is a solution to that equation in whigéhis the unitary energy then the general
solution forwW will be:
W=W, +u,

whereu is an arbitrary homogeneous function of first ordeg,im, ¢, p, g, r that can
contain the argument&, 7, {o, Po, Qo ro, IN addition. One thus sees that there is a
precision that one can bring to this that is, moreoxeny possible, and in several ways.
We put ourselves in the case of classical mechanics.
If one evaluates the kinetic energy of an elentsnivhose argument i then one
finds precisely:
2d9 [Q x v+ K x vy,

so it suffices to apply Koenig’s theorem to that elemkns thevis vivathat the element
ds will have if the matter that it is composed of isicentrated and its center of inertia is
ds Q x v¢. In addition, in the motion around the center oftiagthe relativevia vivais
the scalar product of the kinetic moméntwith the vectora , a scalar product that is,
moreover, independent of the mode of framing of thestrec

One thus has:

309 [gradW, x v+ gradW,, x «j]
for the kinetic energy of the element and:
C =4[ lgradw, xv, + gradw, &y Ids

for the total kinetic energy. Having said thiorr the relation betweeWw andE, one
deduces that:

2C:jZ°Ed%+j:°Wd§.

The first integral is the total enerdy of the curve, and sindd =V + C, V being the
potential energy (here, it is the work done by roolar forces, with the sign changed),
one finally has:

- [ wds =v-C=H.

Finally, the action of deformation and motion viaé:

“[*wdg di=- ["Hdt,
4t JA Y
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H being the kinetic potential that was considered by Helmli(b).
One confirms that in the case of static deformatibasactionf W dsg reduces to -V,
which is the potential energy that results from theeétion, with the sign changed.

In summation(®): In the general case (deformation and motion), the action is
homogeneous as the product of an energy with time, so it is exactiytdgeal

jttz—H dt, H being Helmholtz’s kinetic potential.

20. Use of the fixed trihedron.— It results from what we said on pp. 15 that if one
expressedV as a function o/ and W, when referred to a fixed axis, th&mwill contain
scalar functions of unit vectors that are carried lgydakes of the moving trihedron, or
furthermore, functions of the cosines of the angles tti®a moving axes make with the
fixed axes. These cosines can be expressed by meanseopénaeneterd;, A,, As; for
example, the Euler angles.

On the other handy, g, andr can be expressed by means of these same parameters
and their derivatives:

p=al o+t Gl

dg ds
gz Iy o B, dA,
ld% 2 d% 3 d§’

2oy B 0
d d ds

or, in summation:

G- 0, W
d d

dA,
ds’

.
+Q,

in whichQ, is the instantaneous rotation of the moving trinedroeanne makes only
Aivary, andw, , x/, o/ is the projections onto the moving trihedron.

If 1', J’', K' are the projections of the external moment of deddion M onto the
same axes then we set:
I=wl'+xJd +oK'" =M xQqy,
J=a,"+x,J' +o,K' = M xQ,,
K="+ ;' +o,K' = M xQ3.

If one considers the fact that, with the new varistble

() More precisely, in a definition of action that woultacacterize the evolution of an isolated system.
In order to justify this analysis, we cite Léon BrilloufAmong the physicists, who dares to boast that they
have a clear idea of actionR.(G. E, 17 November 1934).

(® One will find the result above exactly by studying deéormable surface and medium in motion.
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&;:—jf:é\Nd%
__J‘BO ow ﬂ+...+a_W5)|l+...+ OW5d4, . ds,,
ds, dg

so the integration by parts of the terms that contfaénderivativesdx / ds, dA: / ds

permits us to transfor@iZe into:

By
Ole =~ —a\év Ox+ a\év oy+ 6\(le O x+ ad\:lv oM+
) e e A%
ds, ds ds ds N
+'[B° ia—W5X+...+ _da—W_a_VV 5/]l+... d%,
Ay ds;)a dx d%a dA ) oA
ds dg

which is a form that we compare to:
Je=-[FXx+Gy+HEZ+1A+ID+K KR
By
+ XOX+YO y+---
[, (Xox+Yayr--) ds,

d, aJ, XK being the components of the elementary rotatiothefmoving trinedron that
is attached to the infinitely small displacememsidered, namely:

A =am o +ap Oy + @ s,
fo)| :)(15/]1+)(25/]2 +)(35/]3,
K=0a11+ 03 N+ 03 N3,

in such a way that:
| d+JAJ+K d<:((ﬂ_]_| +)(1J+01K) N+ .. =ZN+ TN +K Ns.
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The complete integral term is written:
[Fox+Gy+HEZ+I M+ TN +K MR,

and the comparison that we mentioned gives:

Fo_OW Go W Ho W
I G
ds, ds, ds,
Lo W oW oW

NEZAY NEZA of 34 )
ds, ds, ds,
In other words, whereas the external effort of de&diom is found directly by the first
three formulas, which can be summarized into the vexjoality:

& = gradw,,
the external moment of deformation is given by thealiredmbinations:
I=&l+xpnd+akK, ..,
or, if one prefers, by the scalar products:
I=MxQ, J=MxQ;, K=MxQ3.

One will likewise have the external effort and momatnthe pointM by considering the
integral that figures in the expressions &g and comparing it with the one that we have
already given, namely:

d| aw d| aw d| aw
Xo =— Yo= — | 21 =

i ds a% i ds, aﬂ “ ds, aﬂ

ds, ds, ds,

and

d| ow | aw d| ow | aw

Lo=—— 2 Me=— ALy

"Tdg | 504 | 04, T dg| 594 | 04,



upon setting:
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_d|ow | aw
ds| 0% | o,
ds,

No

Lo=uxQi, Mo=uxQy, /\/E):quQ3_

29



CHAPTER III.

VARIOUS APPLICATIONS — DISPLACEMENTS IN BODIES
WITH A MEAN FIBER.

21. The flexible and inextensible curve- The preceding results permit us to recover
all of the properties of funicular curves, which amotanflexible curves that are or are
not inextensible, or even the deformable line that wadies by Lord Kelvin and Tait, in
particular. The consideration of the latter is of panamhamportance in théheory of the
strength of materials.

The advantage of the method consists in preciselygrarality; in addition, it goes
further than the predecessors had gone, since they haderedsthe infinitely small
deformation exclusively, in most cases.

The introduction that we gave permits us to expand upon tlalsdef all the
examples that were contained in the work of E. anddsserat. Always with the goal of
giving us guidance, we shall recall an important case,wiich we appeal to the
notations of vector calculus; it will be extremelynple for the reader to transpose them
to the other examples.

Consider the case whe¥e depends upon only, 77, ¢, which will correspond to the
particular nature of the curve. (This would entail thaidyw,, = 0.)

Suppose thafo, Mo, Np are zero for all deformations.

Finally, assume thaXo, Yo, Zp are given functions o, X, y, z, dy/ ds, dx/ ds, dz/
ds, A1, Ao, 13

The fact thatCo, M, No are zero implies the same condition ligr Mo, No , and one
has, consequently, by virtue of the vector equation:

Mo = gradW,, + gradwW, "V,
gradW, *V =0,
SO
gradW, =4V,
in which A is a scalar.
Give W a virtual variation without modifying,; one gets:

I = gradWi, x & = AV x d/:%cf(vz),

which shows tha¥V depends upon just the argument ivgcand perhaps, o% .
Set:
_ ds

=—_1
ds;

and
W=W, ).
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The external effort is writterf)
ow
E=—grady, ,
ou

and the gradient gf is nothing butds/ ds, , when considered as a function of the vector
V; it is a unit vectot that is carried by the positive semi-tangent to therdefd curve.
Finally:

E=-TA0O,

in which T is the scalar- W/ du. Hence, one has equations that are analogous to the
ones that classical mechanics gives for filaments:

d&
_ + :0’
ds, Po
or
i(TQ( + X0 =0,
ds\ ds
i(Tﬂl +Yo:0,
ds\ ds

d dz
— | T— |+Z, =0,
dsb( ds %

equations in which one can suppress the index zero, frodeflmtions ofXo, Yo, Zo.

In the Théorie des corps déformablesne will find the study of several other
interesting cases (flexible and inextensible filamdatprmable line, when one supposes
that one edge of the trihedron that is attached to edoh gdfathe curveremainstangent
to the deformed oné)( deformable line when a plane of the trihedron remastsilating
to the deformed oné)( deformable line subject to constraints, etc.).

22. Calculation of the displacements- The theory of the Euclidian action permits
us to evaluate the elements of the deformation byirgjasith the expression folV. One
will find a general method in the book of E. and F. CagseWe have presented it in

() These equations were given by Lagrange in a particular dasour presentation, they correspond to
the hypothesis thaly does not contais, explicitly, which can be interpreted by saying that ithaterial
curve is homogeneous.

The general procedure above avoids an obscurity in Lagsaaggiment lflécanique analytiquePart |,
Section V, § 11) that was pointed out by E. and F. Cosserat.

() This is the case that was studied by Lord Kelvin anit, Tra particular, for an infinitely small
deformation.

() A case that was studied by Lagrange and generalized by Binet.
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vector notation while rectifying a conclusion that wasuffisiently exact that related to
the case wher@/ is quadratic irF, G, H, I, J, K (%).
We shall examine this useful case directly:

Since the functiorW is defined up to a constant, one can always supposetghat i
value is zero for the natural state of the body a®rsd; in other words, one can suppose
thatW(Eo, o, ..., I'o) =0.

On the other handdW / 0&, oW / o, OW / 0{, are the components &f in the

undeformed state. These partial derivatives are thergto, as well as:

ow ow ow

ap, 0q,  ar,

Therefore, if one develops(é, 7, ...) in powers off — &, 7 — 1o, {— (o, .., ¥ —To
then the terms that are independentof, ¢, p, q, r and the terms of first degree are
separately zero. For these sufficiently small de&droms, one will have, upon limiting
oneself to terms of second degree:

W = quadratic function of{— &, /7 — 10, {— (o, ..., I —T0).

Now, the relations:
& = gradW,, M = gradW,,
can be just as well written:

&=gradW,_, , M =gradW,, , ,

in which the notations, and ap refer to the undeformed state.

These equations amount to the following ones, in whicts’, H”are the components
of £ andl’, J’, K’, those ol along the axes of the moving trihedron whose origirt is a
the point considered:

,_ 0w oo OW oo W
0E-&) o(n—1,) ¢ ~4,)

oW Jo_OW ,_ 0w
o(p-m) o(q-a) or =)

equations that are linear in the differenéesé, 17— o, ...,r — ro, and which permit one
to express them as linear functidn'sG’, ..., K".

() “Contribution & I'étude des corps déformables,” Annalesadeaculté de Toulouse (1926), §§ 44
and 45.
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Upon substituting the values thus foundAinthat quantity is expressed as a quadratic
function ofF’, G/ ..., K".
It is easy to see that when this substitution has lbarried out, one has:

oW oW
-&H=—, ..., TI—Tog=—.
kOl o7 K’

This results from a property of quadratic functions. éatldet (A, 1, V) be such a

function of the variableg, (4, v.
From a theorem of Euler, it results that:

2]-“:/16}—+,ua}—+va}— =Autuv+vw,
oA ou
if one sets:
_O0F _0F _O0F .
u= —, V= —, W= —:
0A ou av
hence:

2bdd+vdu+wdy) =udd+vdu+wdv+Adu+ gdv+vdw,
and upon simplifying this, one gets:

dF =Adu+ udv+ vdw

Therefore, if one express@sas a function ofi, v, w then one has, in fact)(

oF

A=—
ou

Applications to the displacements in bodies with a meanbfer (%). — Equation (1)
amounts to two vector relations:

() In the general case — i.e., wh@his not quadratic — one obtains some general formulathéo
displacements by considering the function:

Upon making an inversion that is analogous to the HamlPoisson transformation, which is a
generalization of the Legendre transformation, one finds

dx _oE dy OE

ds, OF  dg G’
See J. Slpc. cit, pp. 78.
(® This topic is not treated in thiéghéorieof E. and F. Cosserat.
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oV = gradW, ,
X2 = gradW

in which &V and X are the variations of andQ that were defined at the beginning of
our study — i.e., with respect to the moving trihedronthéin results that the absolute
variation ofV is:

AV = gradW; + 8™ V.

The left-hand side is nothing biy{DM / Dsy) or D(AM) / Ds, .
Finally, upon taking the geometric integral from a p@inb the point\:

AM = AA+J' gradw, d%+J' QD—SOdg

TheP inside the integral sign denotes the point thatdees the curve fror to M.
On the other hand, one knows that:

n =27 (see 8§ 3),
Ds,
so:
(S) G = 6+ I:A gradw,, ds .
Integrating by parts gives:
M . M M
(S) AM =AA + jA gradw, ds +[ 60 OP], —jA (gradVy, 0 OP) ds.

This is the fundamental vector equality from whiweé shall infer a general method for
the calculation of deformations.

In the case where the curve remains planar duhegdeformation, if the applied
forces are in the plane then the equal#y @ives the classical formulas of Bresse for the
deformation of the mean fiber of the bodies tha eonsidered in the strength of
materials.

It suffices to project the vector equality ontmtaeoordinate axes whose origin will be
atM. If uy andua are the components along one of the axes of g@adement of the
pointsM andA then one gets:

Uw = A+I gradw, xids +6,(z, - 2> ¢ .[AE dst AE ds,

in whichi is a unit vector that is carried by the projectaos.
The part oW that depends upon the external effort is written:
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NZ T2
- —4— ... ,
{EQ GQ }

in which Q is the normal section to the mean fiber at the pmnsidered. The gradient
of W with respect tc€ thus has the componemtis/ GEQ along the tangent and/ GQ

along the normal; the projection onto thaxis, ori x grad\W,, is obtained immediately.

23. Body with a mean fiber.— It is intuitive that the study of small displaceitse
could be utilized in the strength of materials.

Indeed, that discipline studies the deformations of Isodith mean fibers that one
can assume to be generated in the natural state byax gkction that is deformed and
which displaces while remaining normal to the mean lilne Center of the section
describes the latter line).

To each point of the mean line, one can therefoelata tri-rectangular trihedron
such that one of its edgé is tangent to the line, while the other two are & plane of
the generating section and can coincide with the prinexeg of inertia of the section.

One can abstract from the body and only take intoideraion the mean line and the
set of trihedra, and then repeat the argument that inemdy made on the deformable
line.

It is very simple to give a generalized Bresse equahanapplies to the most general
skew system and the most general elementary defermay translating the general
equality &) by means of projections onto the three axes. Inraeinderscore the
possible interest in that extension, recall the foihg lines of Mesnager (Bull. de la
Société d’encouragement pour l'industrie nationale, t. CKIXXo. 4, April 1921):

“As far as the three-dimensional systems are comderthe use of geometry and
kinematics gives rise to some difficulties and caogtions such that the authors have, in

general, eluded these difficulties and complicationstHey introduction of unjustified
hypotheses into the calculations that eliminate anyeva the results thus obtained.”

Mean line

Fig. 3.
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24. New formulas. — There have been other criticisms of the Bressetas,
notably, the inevitable introduction of auxiliary unknowns, in the form of linear and
angular displacement@).

We shall deduce some formulas from the general equ@ipthat are, once and for
all, devoid of any auxiliary unknowns. The formulas, athapply to a deformed skew
system, involve only two coefficients (just one foamdr systems) that can be calculated
in advance, independently of the form of the systaethtae applied forces.

This method also seems to be as easy to apply ameheod that Bertrand de
Fontviolant has made known. We will show this by meahsome examples. In
addition, it does not involve fictitious forces.

We shall content ourselves with the following obviousaek: The body with a skew
mean fiber has at least three fixed points, while tiiylvath a planar mean fiber has two
fixed points ).

We treat the first case, which is the most general:

Call the fixed pointsA;, A;, As . We wish to find the componeitx of the
displacement of a poifl along a direction that is defined by a vedttiat will be taken
to have unit modulus in what follows.

When one takes the poidtto be the fixed poing& then equationS) is written:

AM = J':I gradw, dg +6,, U AM—L:A gradW, O APds

Multiply both sides of the equation byand add the corresponding sides of the three
analogous equations, upon choosing the coefficiarggch a manner that:

2 (AAM) =1.
One gets:
AXY A = Z(/li J':I [gradw, + A PO gradw, )XI' ds.

This is the formula that we have in mind. It ed$p be written:

M .
AX = Z,uijA [gradW, + APO gradw(, ki ds,
with

— Ai
M_ZAi.

In the most general case, there are, in realityy owo independent coefficients
because. 1 = 1.

() MESNAGERloc. cit.
() Upon giving this manner of speaking a general sensecdbis includes both recessed (encastrés)
systems and ones with rolling supports.



Chapter 11l — Various applications. 37

25. Calculation of the coefficients.— I. It is easy to geometrically obtain the
coefficients, or rather, some proportional quantities.
Let Sbe the oblique projection (made parallelljdrom the pointM onto the plane

Ay, Ao, As.
The relation:
AL AIM + Ao AoM + A3 AsM = |
implies that:
AL AiS+ Ao AS+ A3 AsS=0.

Fig. 4.

Draw a paralle”A; T to SA; through the poingy until it meetsSA .
If Sis interior to the triangle then one can take:

Al = 1,
_ modST
*” modAS'’
_ modTA
* " modAS’

and indeed:
AS+ST+TA = 0.

[I. If the pointSis outside of the triangld;, Az, Az then one of thd coefficients will

be negative.
The figure shows this immediately.

lll. If the direction ofl is in the planeMA;, A;, for example then the formula
simplifies: Indeed, one has seen thatl,, A; are chosen in such a manner as to annul the

trivector or mixed product:
(A]_A]_P + AzAzP + A3A’g P) gl ,

but hered; = 0, and it suffices to tak& andA, in such a manner that:
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MAIP+ AL, AP=I,
or
A]_A]_S'i' AZAZS: 01

so if the pointSis interior to the segmew A, then:

A _modAS
A, modAS’
A, _ modAS

A+ 1, modAA,

and
A, _ modAS

A+, modAA,’

e

26. Algebraic translation of some vector equalities-

1. In order to simply the presentation, take theecof a planar system that is subject
to forces that are situated in the plane. One hasn

2 2 2
W:—E N +T +M :
2|EQ GQ EI

The gradient oW with respect to the effort has the compon®h{EQ, T/ GQ, so it is
easy to project them onto an arbitrary axis, agqmtan that we have denoted by gh&d
x| (I is a unit vector that is carried by the axis).

2. As far as gradV,, is concerned, it reduces to its componkght El along the

normal to the plane of the system. It is measpsitively according to the convention
that links the positive sense of a semi-normah#oglane to the positive sense of rotation
in the plane.

If x andy are the coordinates of the poltwith respect to the rectangular axes that
issue fromA; and one of which — vizx — is directed along\A; then the external

products such a&;P * gradW,, have eitherN! / El) y for their component alongx or —
(M / El) x for their component alongy.

The integration by parts, by means of which we habtained the formulgS) is not
valid if the deformable line is composed of artatatl segmentsThe rotation® varies
discontinuously by a finite quantiy, — @1 when one passes from the extremity of one
segment to the continuous extremity of the follayveegment.

In order to simplify the presentation, take a plasystem with intermediate joints.
Upon operating with each segment as we said, aise ge
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AP=1;+> (6,-6)0AC+6,0AP
C

for an arbitrary poinP, upon representing the integral of ghad + AP ~ gradW,, by
7 Z , While the sum is taken over all segments thaheot®; to P. Similarly:

AP =TIF +3(6,-6,)0AC+6, OAP,
C

where the sun} is extended over all of the segments that conRetd A, . If one
projects onto the line of suppoktA; then this becomes the algebraic translation of the
vector equality that we obtained by subtracting siges of the two formulas)(

M
25, 16,-6) = [, S vds.

in whichf; denotes the height of the segm€naibove the linéyA; .

Recall, the example that Mesnag@rtteated by the Bresse formulas and then those
of Bertrand de Fontviolant, successively.

Calculate the vertical displacemedtth of an arbitrary point® of an arc of three
segments that is subject arbitrary loads that iamated in the plane of the mean line of
that arc. Although it is very easy to take inte@mt the external effort, we shall neglect
it, to simplify:

d1:,u1Y X IEO+ (&-6)"AC +/,121",_\POXY,

in whichY is an ascending vertical unit vector:

| —x
= ”2:%'
However, from the preceding remark:
1AM
—6=="=vyds,
%-6 fJa EIy ®

SO

ah:I—xPL:M wd +EJAZM(I—X) dg—ijﬁzm yds.

| JaEl | pE) of Ja EJ

() To simplify, we neglect the effort that is involvedtlweutting; it is obviously very easy to take into
account.
(® Bulletin de la Société d’encouragement pour l'industri@nate, t. CXXXIII, no. 4, April 1931.
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In our previous paper, one finds the solution, based upisrsame method, to an
example that was mentioned (but not treated) in the satmée of Mesnager.



CHAPTER IV.

THE DEFORMABLE SURFACE

27. Extension of the preceding notions to the case of surface- In order to
complete this presentation, which must be, above gliidge, we now pass on to the case
of deformable surfaces, and then to deformable bodies.

We suppose that the position of a pdiiiton the undeformed surfackld) is defined
by means of two curvilinear coordinatesandp; .

Any point M is associated with a tri-rectangular trihedron whasarsit is My and
whose edges have directions that are continuous dunsctof My — i.e., the two
coordinategy; andp, .

The deformed state of the surface can be imagined by soggbat each poinig
has received a displacemehtyM and that the directions of the trihedron of the
modifications are continuous functions pf andp, .

The deformed state and the natural state are thus défineed sets of trihedra, sets
that are continuous in two parameters.

The undeformed surface element can be represented bygtessio\, do, do, , in

whichAo = \Jeg— f? if one takes the linear element to have the form:

[edp +2 f do, do,+ g p3]™*.

We shall define the action of deformatidper unit of undeformed surface. On a
portion of the surface in question, the total action will be:

[ LWAO dp, dp, .

W is a function of two neighboring positions of the edhonMabg i.e., of o, 0, X,
y, z (the coordinates of the point4), of a, B, ¥, a’, ..., y’, and finally of the derivatives
of these twelve quantities with respect gg andp,. In a more condensed manner, one
has:
W(a, OM, Vi, I, J,K, I}, J7, K?),

in whichV;, 17, Ji, K| are the derivatives @M, |, J, K with respect to the parameter

o}
However, equalities such as:
|; = Qi A Ii ,
whereQ; is the instantaneous rotation of the trihedron when tdycoordinategs varies
and plays the role of time, permit us to @dtnto the form:

W(,Q, OM, Vi, Qi, l,J, K).
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As for the deformable curve, we impose the consti@intV/ that it remain invariant
under a transformation of the group of Euclidian displaa@s It will suffice to have
AW = 0 for an infinitesimal transformation of the group.

In order to pursue a unique method, suppose that instaad@f which are vectors
that are framed in a fixed reference system, one makasd « intervene — i.e., the
preceding vectors when framed with respect to the trdmedt, which amounts to
modifying the manner in whicW/ depends upoh J, K (4.

The infinitesimal transformation can be performethn steps:

1. A translation that alters on@M, since the poinD is fixed. One then has:
A = gradWom x AM = 0,

which demands that gradiom = O; i.e., thatW does not depend upon the polvit
explicitly.

2. A rotation®.
Since the frameg and w remain unchanged, one then gets:

AW = gradW x d + gradW; x & + gradWk x K =0,
with
a=80nl,
and finally:
gradW x| + gradwW; x J + gradWk x K = 0.

This differential equation, which is equivalent to thfzstesian equations between
the nine components bfJ, K, is solved by first considering the six obvious solutions

12, 32 K2 JIxK, KxI, |x],

which are all functions that remain constant. ThlareefW, which is a function of these
six solutions, does not contdind, K explicitly.

28. Transformation of the elementary variation of the action— By analogy with
the case of a deformable curve, take the elementargticariof the action on a portidh
of the surfaceN]) that is bounded by a cure@ If § andCy are the initial states of that
portion and its contour then one will have:

() Therefore:
V.=V x1 0 +V1XJ|:U+V1XK|:K=§(1| +/71J+Z;|_K,

& n, { being the frames or projections\6f onto the axes of the moving trihedron; on the ottzard,|, J,
K already figure inn.
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JJ.J‘%WAO dp, do,= HZ(grad\Nvi xdv; + grad\, xdw R, do, do,,

which, from the formulas of the previous page, lbamwritten:

(AM)
E A d\N X v, oe dN x——: do, do, .
H {gra { ,0 + }+ gra Dp}

If one integrates the terms that contain a demneally parts one time and then applies
Green’s formula to these terms then one gets:

5.[.[30WA0 do, do, = ICO (gradW, xAM + gradh, x6 A, do,

- Ico (gradW, xAM + grad/, x6 A, do,

- ZHDLIO(AO gradw, xAM

D
+ (EAO gradw,, +v; A, grad\, j x @doidp; .

The curvilinear integral must be taken in the usliact sense.
Set §):

() One can transform these results by means of Beltiemmiulas. We have also givetod. cit, pp.
71) some other formulas that are based upon the equalities:

Fig. 5.

v; andv; are the cosines afs with respect to the semi-normals andN,, respectively, which point along
the coordinate curves at the pdimt The senses of the semi-normals are obtained by m(éeglant) the

positive semi-tangent§; and T, by —77/2. This convention seems preferable to that ofr&ali to us,
which involves, not the element, but the curve thases through the element.



Chapter IV — The deformable surface. 44

do
A radw/, 2 - gra - ¢,
O[g oy, IR d%j

Do [grad\N ap, _ — gradw, dpj - M,
ds, dg
SO

Z{% (A, gradw, )} =9 N

and

D
Z{E(Ao gradw,, )+ 4, grady; Dvi = o,

and one finally gets:

5”30"\’ ds=- jcogdsoxAM+M dgx6 - jjso¢ds)xAM+y dgx8.

29. Examples.— As for the deformable curve, one deduces ¢hand M are the

external effort and external moment of deformatioa @bintM of the contoulC of the
deformed surface, when referred to the unit of lengthettntourCy .

The results above comprise, in particular, the egosatthat relate to the infinitely
small deformation of a planar surface that werezeiliby Lord Kelvin and Tait. One
can, moreover, point out several aspects of thesgtsgseeThéorie pp. 77,et seq).
Notably, one will find equations that are obtained by mhix@ng, as in the example of
Poisson, the coordinatgsandy as independent variables in placeopfindp, . One then
introduces new auxiliary variables that are provided by idensg the non-tri-
rectangular trinedra that are defined by the normal & déformed surface and the
tangents to the conjugate curves.

It is painfully necessary to confirm the analogy bemwethe given formula

5I J‘SDW d§ and the analogous formula that relates to deformableesur Also, the

integral:

HSO—W ds

will represent the energy of deformation. Indeed, angmg the signs in the expression
for 5”30\/\/ dS, one findsdT. (elementary work done by external forces). We bay+

W represents the density of energy of deformation veispect to the unit of undeformed
area.

We again point out that if one supposes Watoes not depend an and ap then in
the case of infinitely small deformation the surfaebdves like the membrane that was
studied by Poisson and Lagrange.
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The theory also studies the flexible and inextensibiéase of the geometers and
shows how one must tak® in order to be dealing with reinforced (armée) surfasesh
as those of aerostats; i.e., elastic surfaces in wditdbric of inextensible filaments is
embedded.



CHAPTER V

THE DEFORMABLE MEDIUM.
OUTLINE OF THE PROBLEMS THAT ARE POSED IN THE SUBGE OF
DEFORMABLE MEDIA.

30. The preceding notions can be extended to the case of @&rdimensional
media. — The extension of the theory of action to the adse deformable medium is of
paramount importance for mathematical physics. Th&nelon leads one to envision a
more general medium that the one that is usually comsiderthe theory of elasticity.
We have already spoken of the two differences betweetheories in the preface.

Let a three-dimensional spaddo be described by the poiMg that is framed with
respect to a fixed reference system (by means of agbitnanvilinear coordinates or
simply Cartesian coordinates).

Attach a tri-rectangular trihedrdvly ag by co to each pointMy whose axes have the
direction cosinesxn, a,, a,, ..., ¥, with respect to the fixed axes, the latter being

functions of the independent variables. The continuousetiimensional set of of these
trihedra constitutes the deformable medium.

If one gives the poinM, a displacemenMoM and one imprints a rotation on the
trihedronMg ag by ¢ that takes the trihedron into a positislabc then the continuous,
three-dimensional set of trihedkéabc constitutes the deformed state of the medium.

Consider a functiolV of two infinitely close positions of the trihedrdeabg i.e., of
Mo, OM, I, J, K, and the derivatives:

oM d 9dJ 0K
dp  dp  dp  dp

(in which g denotes one of the coordinates of the pbiptso we can represent it as:
W(Mo, OM, |, J, K, I}, Ji, K1),

We propose to determitW in such a fashion that the elementary variatdhis zero
when one subjects the set of trihedra of the deformatke ¢b the same arbitrary
infinitesimal transformation of the group of Euclidiarsglacements. Here, we again
replacel;, ... withQ; I, ..., soWtakes on the form:

W(Mo, OM, 1, J, K, Vi, Q)),

in which we suppose thaf;, Q; figure by their frames of the moving trihedrbrabc in
such a way thatV will finally take on the form:

W(Mo, OM, 1, J, K, Vi, @),
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in whichv; and w have the significance that was already given irptieeeding case.

It is pointless to repeat the argument that was alreadde (8 12) in order to
establish that in this case the framed,af, K do not figure inW, nor does the vector
OM.

W thus has the form that was found before:

W(Mo, Vi, @),
wherei can take the values 1, 2, 3.
We shall again exhibit the effort and moment of deforomatt a point of the
deformed medium.
Take a portiorr of the medium in question that is bounded by a suifaead letr
andS be the initial states afandS. Consider the integral of the volume:

] Wdr,,

which is extended over the portion in question, whiles calculated for the deformed
state of the initial elemeiotr .
An arbitrary elementary variation of that integrall \e:

5HLWdT0 :m > (gradw, xdv, + gradw), 3w Y,

in which, moreover:
Wi

:D(AM)+vi’\6{ and 5cq:D—e

Do Do’

SO one integrates the terms that contain a devevaince by parts and then applies
Green’s formula to these terms. One again findt th

5IIITWdr0:— jjso[gdaxAM +/\/ld0><9]—m'r @ drdr xAM+ pz dr dr x 6.

£ is the unitary effort at a point of the surfacattlbounds the portiorr (per unit

undeformed surface area)M is the moment of deformation that is exerted oat th

surface (always per unit undeformed surface area).
In a more precise manner, if the surf&eeparates the regionfrom an external

regionr’then& and M are the effort and moment that are exerted atirdt pd S of the

region7 on the regiorr”.

@ and i are the force and moment vectors at a point {ger unit of undeformed
volume).

As was the result of all of the preceding, thgioal integral, with its sign changed,
will be the energy of deformation of the portion.
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31. Interpretation of the elementary variation of the action.— This interpretation
is deduced from the fact that if one seeks the elemewtarly done by the forces and
moments that we just enumerated then one finds that:

”%6XAM4ﬁwxmdU+LJ¢XAM+yxmdQ,

and since the elementary work done is equal to theaserm energy (or the variation of
the action, with the opposite sign), the precedinggsfied.

If we recall the first expression far I j I W dr, and use identities such as:

D(AM): D(AM)%+ D(AM)QJF D(AM)E
Dp, Dx odp Dy o0p Dz o0p
then we will have:

5[], w aro= [[], Zoracw,

« [ D@M) 3x  D(AM) oy | DAM) 0z 5 )dT,
Dx dp Dy dg Dz dp

+ jﬂrzi:gradw@

,[D8ox Dooy D8oz) o
Dxdp Dyop Dzop

H 1
in whichH is the functional determinant:

0% 0¥, 9%
OxX 0X 0X
9% 0y, 9%
oy dy dy|
9% 0y, 9%
0z 0z 0z

Set:
1 1)
:—E —gradW/,
Px H a,qg v,

1 1)
= — Yy — qgrad\w. ,
q Hng A

in whichpy, p, gy, g, are defined analogously. One then gets:
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D(AM D(AM D(AM
5.”'LOW dr, = .U.L pxx%+ pyx(Ty)+ pzx%jdr

+.U'L quD_9+qy &9+ quD—ej or

+ .U'L > gradw, Dvijxe%,

and upon integrating by parts:
= [[. [(cupc+capy+Copa) X AM + (1 G+ C2 Gy + Ca ) X G
-[I1, [Dpx L pszAM dr
Dz

m[% qv+qu Zngraa\N der.

Upon comparing the one result obtained above with tier obne gets:

E =—(cipctCapy+Capy),
M==(CLox+C0y +C30y),

¢ —Rp +Rp +Rp
Dx * Dy’ Dz *“
D D D 1
=—¢q +—0q,+—0q+— > (v.Ograd :
ol vl el HZ‘(' gradw )

. 1 . "
In order to interpret the vectel_|'|—2(vi Lgradw, ), we look at its projections onto the

axes.
The projection ont@x is:

&I x> (v; Ogradw, )= &(J OK)xQ (v, Ogradw, ),

or furthermore, by virtue of a well-known identiy:

™ 1, J, K are now three unit vectors that are carried by thiegtion axes. In addition, one knows
that:
@"b)yx@unrv)=axulbxv-axvhxu.
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&{Z(V‘ xK [gradw, xJ )3 {;*J Ograd\, xK i

However,v; x K =0z / 0g , so one sees that the first term of the sumasptiojection

onto Oy (or the scalar product with) of Z% gradw, , or furthermore, the projection

of p, ontoCy. From a notation that is frequently employedhia theory of elasticity, one
can write:

pyz—pzy, Pzx — Pxz » pxy—pyx

for the projections of the vecteSl"—Z(vi Lgradwy, ).

32. Formulas of E. and F. Cosserat that are deduddrom the preceding vector
relations. Problems that are posed by the theoryfdhe Euclidian action. — In the

formulas that give and M, if one setg; = 1,¢, = ¢3 = 0, for example, then one sees that

£ reduces t@y, so the latter vector is the effort per unit aneaan element whose exterior

semi-normal is directed alor@x. Likewise,qx is the moment of deformation per unit
area on the same elememy; p,, andqgy, g, are similarly interpreted.

In order to recover the Cosserat equations froenpiteceding ones, it suffices to
project the equations of the system onto the tboeedinate axes.

One thus has:

gx :Clpxx+c2pyx+c3pzx,
& = CiPxytC2Pyyt+ C3Pyy,
gz :C1pXZ+C2pyz+C3pzz,

Mx :Cqux+02CIyx+03Csz,
My :Cquy+C2qyy+C3qzz,
Mz :Cquz+c2qyz+CSZzz,

¢X = apxx +apyx +apzx

ox o9y 0z
4 - Py , 9Py , 9Py
ox 0y 0z

¢Z = apxz +apyz + apzz ’
oXx 0y 0z
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- aqXX + aqyx + anX

ox oy 09z

Y ox ody o0z

= aqXZ + aqyz + aqzz )
ox ody 0z

7

4

These formulas were given for the first time, andhis tatter form, by the Cosserats in
their Théorie des corps déformablegormerly, Voigt made known some formulas that
corresponded to a particular case, namely, the one Thwine three vectorsg, gy, g, are
zero at all points'].

We repeat some of the inumerable remarks of the ¢seatdheThéoriethat show
how one deduces from the preceding results the equatiahsethte to the deformable
body of the strength of material, the ones concerningénect fluid medium, and the
theory of ethereal media that one imagines for thelysof luminous waves, from
McCullagh to Lord Kelvin. These same results lead adljuto the consideration of the

vectorB (viz., induction) in a magnetized medium, etc.

We think that, when one is endowed with the precidiat e have tried to invest
the principles with, the reader will easily approach thginal work of E. and F.
Cosserat, notably the chapters that we were unable telogetfor lack of space?)
namely:

1. The study of the deformable body in moti@ne will ultimately follow the path
that was presented in the context of the deformable(fjnim motion. One finds, as a
particular case, the gyrostatic medium that L. Keimagined in order to account for the
elastic properties of the luminiferous ether. In addjtthe notion of kinetic anisotropy
that we spoke of for a deformable curve served as the fmasthe theory of double
refraction of light, such as Lord Kelvin and Glazebroakédiscussed.

2. Study of the Euclidian action at a distance, the action of constraint, and the
dissipative action.

3. Finally, the last chapter is very useful for reskars:the Euclidian action from
the Eulerian viewpoint.

In the preceding presentation, one took the variableg tie initial coordinates of a
point and time (i.e., Lagrange variables), but one cantalee the current coordinates of
the point and time (i.e., Euler variables). Onehentled to the Eulerian action that was

() “Theoretischen Studien uiber die Elasticitatsverhésmider Krystalle.”

One will find a very complete bibliography, notalfigr the case of the deformable surface and
deformable media, in thEhéorieof E. and F. Cosserat.

() The original presentation is already extremely condensed.

() P.LANGEVIN, “Aspect général de la relativité,” Buficient. des Etudiants de Paris.
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imagined by H. Poincaré)( and one arrives at conclusions that are analogathe tones
that Lorentz stated in the context of the theorgle€tromagnetism in a moving body. It
is pointless to emphasize the importance of that @sser

() “Sur la Dynamique de I'électron,” Circolo MatematigioPalermo, t. XXI, pp. 129.



