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FOREWORD

From the lectures in the worthwhile Ergebnisse textbi@ddebraic Surfaces” by O.
ZARISKI, the thought of writing an introduction to algalz geometry took on a definite
form for me. Such an introduction should contain thlerhents” of algebraic geometry
in the classical sense of the word; i.e., it should plethe necessary foundations for
going further into the deeper theory. Also, Herr GEPPERD intended to write a book
on algebraic surfaces in this collection, emphasizeaé¢bessity of such an introduction,
to which he could then refer, and encouraged me to writdotmk.

What | learned in the course of my own very substhlettdures on algebraic curves
and surfaces proved useful to me in the process of writiogn therefore employ a
lecture preparation that was prepared by Dr. M. DEURING@n V. GARTEN. Thus,
much material was borrowed from my series of articlethe Mathematischen Annalen
“Zur algebraischen Geometrie.”

In the choice of material, it was not the aestheiewpoint, but ultimately the
distinction between being necessary and being dispenstiat was definitive.
Everything that is derived from the “elements” without diedtion will have to be, |
hope, assumed. The theory of ideals, which led me toamiigreinvestigations, seems to
be dispensable for laying the groundwork; the far-reachingadstbf the Italian school
will take its place. For the explanation of the haets and extension of the problem
statement substantial individual geometric problems wouleé ha be addressed; for that
reason, | have also sought to restrict that extensioa tertain degree here, since
otherwise the scope would easily grow without bound.

| was assisted in the correction process by Herren ProGEPPERT, Dr. O.-H.
KELLER, Dr. H. REICHARDT, and Prof. G. SCHAAKE, whalso pointed out many
improvements, and for this they have my deepest gratitdder Dr. REICHARDT made
the sketches of the figures. The publisher has given tlok Baoeir well-known
impeccable attention, which is the culmination of mystrgpecial wish.

Leipzig, February 1939.
B. L. VAN DER WAERDEN
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Introduction

Algebraic geometry came about through the organic blendittgedhighly developed
theory of algebraic curves and surfaces in Germany with higher-dimensional
geometry of the Italian school; function theory agkehra both share its cradle. The
creator of algebraic geometry in the strict sensthefterm was MAX NOETHER,; its
final unfolding into a mature flower was the work of thalian geometers SEGRE,
SEVERI, ENRIQUES, and CASTELNUOVO. A second blosswas the algebraic
geometry of our own time, since topology has placedf igedur service, while algebra
was simultaneously developing from the examinationsofbitindations.

This little book will not go any further into these fouhdas. The algebraic basis for
algebraic geometry is now flourishing to such an exteat ithwould not be possible to
present the theory “from the top down.” Starting framarbitrary ground field, one can
develop the theory of algebraic manifoldsnilimensional space just like the theory of
fields of algebraic functions in one variable. By spézadion, one would then obtain
plane algebraic curves, space curves, and surfacescoinhection with function theory
and topology will subsequently present itself when om®sés the ground field to be the
field of complex numbers.

This type of presentation will not be chosen heRather, the historical development
will be followed consistently, although one also cdess the examples in a somewhat
abbreviated and distorted form. We will therefore abvayrive to first make the
necessary intuitive material available before we agveéhe general notions. First, we
treat the elementary structures in projective spadasafl subspaces, quadrics, rational
normal curves, collineations, and correlations), thes plane algebraic curves (with
occasional glimpses of surfaces and hypersurfaces), andrtanifolds im-dimensional
space. At first, the ground field will be the field @@mplex numbers; later, the use of
more general fields will be introduced, but always oties include the field of all
algebraic numbers. We will seek to do this in each,csbkde drawing upon the most
elementary lemmas possible, even when the theoremeestion themselves prove to be
special cases of more general theorems. As an exahgiie,the elementary theory of
point groups for curves of third order, in which use is mddeedher elliptic functions
nor the fundamental theorem of NOETHER.

This manner of presentation has the advantage théethgiful methods and results
of the classical geometers such as PLUCKER, HESSE,LEX, and CREMONA, up
until the school of CLEBSCH, once again take theihtfigg place. Moreover, the
connection with the function-theoretic way of lookiagthings is likewise present from
the onset in the theory of curves, in which the notibthe branch of a plane algebraic
curve will be clarified with the help of PUISEUX’s sesidevelopment. The oft-heard
reproach that this method is not purely algebraic igyesguted. | know full well that
the theory of valuations makes possible a beautiful andrgealgebraic foundation, but
it seems to me that for a correct understanding imjgortant that the reader be first
familiar with PUISEUX'’s series and have an intuitifom the singularities of algebraic
curves.

In chapter 4, we first encounter the general theorglgébraic manifolds. At the
center of this, we have their decomposition into irrdalecmanifolds, along with the
notions of general points and dimension.



2 Introduction

An important special case of an algebraic manifold igemiby the algebraic
correspondences between two manifolds, to which chaptedé&dicated. The simplest
theorem concerning irreducible correspondenrcesparticular, the principle of constant
count— generates numerous applications. Chapter 6 introdueesstential feature of
the Italian way of treating things: viz., the linear faesi that lie at the basis of the theory
of birational invariants of algebraic manifolds. Inpte 7, the fundamental theorem of
NOETHER will be presented, along with itsdimensional generalizations and various
corollaries, among which is the BRILL-NOETHER remainterorem. Finally, chapter
8 will give a brief outline of theory of points that &nefinitely close” to plane curves.

Whoever is somewhat familiar withdimensional projective geometry (chap. 1) and
the basic notions of algebra (chap. 2) can just aksh&gin the lectures in this book with
either chapter 3 or chapter 4; both of them are indep¢rmd@ach other. Chapters 5 and
6 refer to only chapter 4 in an essential way. The tinge that we will use everything
that preceded our discussion will be in chapter 7.



CHAPTER ONE.

Projective geometry ofn-dimensional spaces

Only the first seven sections and 810 in this chapterbailiequired throughout this
book. The remaining sections have only the goal obdhicing intuitive material and
simple examples that can be treated without the aldgbier algebraic concepts, and can
therefore prepare one for the general theory of algebranifolds later on.

8 1. The projective spaces, and its linear subspaces.

For quite some time, it has been found to be conveniestémd the domain of real
points to that of complex points in the projective gemyn®f planes and spaces.
Whereas a real point of the projective plane will neeg by threereal homogeneous
coordinates o, Y1, ¥2) that are not all zero and can be multiplied by a fadte 0O, a
“‘complex point” will be given by threeomplexnumbers Yo, Y1, Y») that are also not all
zero and can be multiplied by a factor O .

One can define the notion of a complex point in a pugelymetric way, as in VON
STAUDT (8. It is, however, much simpler to define the notidgebraically and to
understand a complex point of the plane to be simplydtiadity of all triples of numbers
(Yo A, y14, y2 A) that can be obtained from a fixed triple of complarbers Yo, y1, y2) by
multiplying with an arbitrary factod. Analogously, a complex point of space will be
defined to be the totality of all proportional quadruples winbers. These algebraic
definitions will be established in the sequel.

Once one has been so far removed from geometric imtuitithis way, by regarding
points as purely algebraic structures, nothing else stantse way of making am-
dimensional generalization. One understandsmplex point of n-dimensional spaoce
mean the totality of allnt1)-tuples of numbergf A, yi1, ..., ya A) that can be obtained
from a fixed (+1)-tuple of complex numbersi( vi, ..., Yn) that are not all zero by
multiplying with an arbitrary factod. The totality of all points that are defined in this
way is called the-dimensional complex projective spage S

One can pursue this generalization even further. Nanoglg, can consider an

arbitrarycommutative fieldk, in the sense of algebra, in place of the field of plem
numbers, a field that we shall only assume is, like fialel of complex numbers,
algebraically closed; i.e., that any non-constant rootyial f(X) over the fieldK can be

completely decomposed into linear factors. Exampleslgdbraically closed fields are:
the field of algebraic numbers, the field of complexnbers, and the field of algebraic
functions ofk indeterminates. All of these fields lead to projecBpaces that agree in
their properties so closely that we can treat alhefm the same way.

() Cf., the thorough presentation of G. JUBIgrlesungen (iber projective Geometrigerlin 1934,
which appears in this collection.



4 I. Projective geometry oFdimensional spaces.

It is now convenient to relate the notion of projeetspace to that of vector space.
An n-tuple {1, ..., yn) of elements oK is called avector. The totality of all vectors is

called then-dimensionalvector space £ Vectors can be added, subtracted, and
multiplied by field elements in a well-known way. Amy vectorsl/, ...,\n;are called
linearly independemvhen\l/yi + ...+ \n;%n =0 always implies that = ... = =0. Any
n linearly independent vectoxla \n; span the entire vector space; i.e., any vectoay
be written as a linear combinatioi'\yi + .+ \n/yf1 = v . The totality of all linear

1 m
combinations ofm linearly independent vectors ...,.v (m < n) is called anm-
dimensional linear subspace,Bf the vector spack,. Thedimensiormis the number

1 m
of linearly independent basis vecturs..,v (9.

1 1
In particular, a one-dimensional subspace consistdl @kctorsv A, wherev = (yo,
v1, ..., Yn) IS fixed vector that is different from zero. A pooftthe projective spacs§,,
with the definition above, is nothing but a one-dimenal subspace, aay, in Env. S
is then the totality of all rays in the vector spdg1.
A subspac&, of S, can now be defined as the totality of all rays in a suledgag
of En+1. Therefore,S, is comprised of all pointg whose coordinates depend linearly

m

0
upon the coordinategy v, ..., ym) of m+ 1 linearly independent poirys ...,y :

0 1

) Y= Y o+ Y At Y k=0,1,..n).

The field elementss, ..., can be referred to @somogeneous coordinatégsr

0 m

parametery in the subspace&s, . The pointy, ...,yare the basis points of this
coordinate system. Thus, since every point of the subsigadetermined byn + 1
homogeneous coordinatgg ..., the notationS, for the subspace will be naturally
justified.  The one-dimensional subspaces are cdlilees the two-dimensional
subspacesplanes and the if — 1)-dimensional subspaces are caliggerplanesn S..
An & is a point.

Formula (1) will thus still be valid whem = n, whenS,, agrees with all of the space
S. The parametens, ...,Jm will then be new coordinates for the pomtthat are
connected with the old coordinates by the linear transdtion (1). We now write it as
follows ():

yk:ZBI/kVi-

() For the proof of this, see perhaps B. L. VAN DER WAEEN: Moderne Algebra,|§ 28 or Il, §
105.

() Here and in the sequel.Zasign with no other givens means that one sums ovetvemydentical
indices (preferably one above and one below).
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0 m
Since the pointg, ...,ywere assumed to be linearly independent, one can solse the
equations for ther:

M:Zﬂk)’k -

The y are calledgeneral projective coordinatg#n the plane: triad coordinates, in space:

tetrad coordinates). In particular,('ﬁkjis the identity matrix then thg will be the

original y .

d independent homogeneous linear equations in the coordipates..., y, define a
Si-4 In S;; as is well known, their solutions can then be lineaktained froorm—-d + 1
linearly independent solutions. In particular, a singledr equation:

(2) Wyo + Uty + ... +u"y, =0

defines a hyperplane. The coefficienfs u*, ..., u” are called theoordinatesof the
hyperplanaus. They are determined only up to a common fadtar0, since equation (2)
may be multiplied by precisely such a factor.

We denote the left-hand side of equation (2), once andlifoby uy, or U y). We
then set:

Uy =u=yuy==y+uy+. .. +uy.

Any linear spac&; in S, be defined by —d linearly independent linear equations. If

0 d
Siis determined by the poinys ...,y then thed + 1 linear equations:

(UY)=0, UY)=0, .. (uy=0

in the unknowns®, u', ..., u® will have preciselyn — d linearly independent solutions.
Any of these solutions defines a hyperplane, and thesetgon of thesen — d

0 1 d
hyperplanes is af; that includes the pointg, y, ...,y, and therefore must be identical
with the givenS; .

n

1
Problems. 1. n linearly independent points, ...,y determine a hyperplang Show that the

coordinatesl” of this hyperplane are proportional to theowed sub-determinants of the matfigi«kj .

2. nlinearly independent hyperplanes ..., u, determine a poing. Show that the coordinatgg of
this point are proportional to tlieowed sub-determinants of the ma([jlk).

m

0
3. Being given the basis points ...,y in a space&, does not uniquely determine the coordingges

..., }n Of @ pointy, since one can multiply the coordinates of thesbasints by arbitrary non-zero factors
Aos ..., Am . Show that the coordinates for each pgiatte uniquely determined up to a common faédtgf
as long as one is given the “unity poiet'which has the coordinatgs= 1, ..., ,,= 1. Can the unity point
in S, be chosen arbitrarily?
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4. Show that a®,; in S, is given by a linear equation in the coordingtgs.., 4.

5. Show that the transition from one system of patarsg, ..., 4, in an S, to another parameter
system (defined by other basis points) for the pointe@sames, can be mediated bylmear parameter
transformation:

V=20,

8 2. The projective combination theorems.

From the definitions in 81, there immediately follove timutually dual combination
theorems:

l.  m+ 1points in &that do not line in anSvith g< m determine an,a
Il. d hyperplanes ins3hat have no Swith g> n—din common determine an-§.
We now prove, in addition that:

lll. When p + & n, an $and an §in S, will have a linear space;®f dimension &
p + g — n for their intersection.

Proof: S is defined byn — pindependent linear equations, &éhds defined byn — q
linear equations. Collectively, that is 2 p — dlinear equations. If they are independent
then they will define a space of dimensior-(2n —p—-q=p + q — n. If they are
dependent then one can omit some of them, and thendiomeof the intersection space
will go up.

IV. An § and an §that have an &n common lie in anPwithm<sp +q—-d.

Proof. The intersection spa€gis determined byl + 1 linearly independent points.
In order to determin&,, one must adg — dmore points to thesg+ 1 points in order to
obtainp + 1 linearly independent points. In order to deterngnene must likewise add
g — dmore points. All of these:

(d+1)+p-9d+@-9d=p+q-d+1

points will determine ai%+q-¢, In the event that they are linearly independent. She
that is thus determined with< p + q — dwill contain all of the points that determi&g
as well as the ones that determiehence, it will contairg, andS, themselves.

If there is no intersection spaggthen the same argument will teach us that:

V. An § and an galways lieinan gwithm<sp+qg+1.

With the help of Ill, one can sharpen IV and V to:
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VI. An § and an $ whose intersection is ar, §s empty, resp.) lie in a uniquely
determined Sq-d (Sy+q+1, resp.).

Proof. First, let the intersection Bg. From IV,S, and§; lie in anS§, withms<p + q
—d. On the other hand, from IlI:

d=p+qg-m hence, m=p+q-d.

From this, it follows tham=p + g - d If § andS; were contained in yet anoth&s
then the intersection of these tWg would have a smaller dimension, which, from what
we just proved, would not be possible.

Now, let the intersection be empty. From%,and$, lie in anS,withm<p + q+
1. Ifm< p+ gthen, from Ill,S andS, would have a non-empty intersection. Hence,
one must haven=p + q + 1. Just as in the first case, one further getsShat unique.

The spac&,+q-d (So+q+1, resp.) that is defined by VI is called floen of S, andS,.

Problems. 1. Derive the combination axioms for the pldethe spaces;, and the spac§, by
specializing I, II, 1ll, VI.
2. If one projects all of the points of a sp&gn S, onto another spa& in S, in which both are

linked by a givers,.n-1 and the coupling spa& -, always intersect§ , then there will be a one-to-one
map of the points o, onto the points a , assuming thak, 4 has points in common with eith&,

ors, .
8 3. The duality principle. Further concepts. Doubleatio.

A space$§, is calledincident with an §; when eitherS, is contained ing, or §; is
contained inS,. In particular, a poiny will be incident with a hyperplane when the
relation (0 y) = 0 is valid.

Since a hyperplane, like a point®{ is given byn + 1 homogeneous coordinaifs

., U" (Yo, ..., Yn, resp.), which can be multiplied by a factde 0, and since the
incidence relationy y) = 0 involves botlu andy in the same way, one will then have the
n-dimensional duality principle, which says that in any correct staterabout the
incidence of points and hyperplanes, these two notions may be interchanged without
influencing the validity of the statemerfor example, in the plane, the notions of points
and lines, and in space, the notions of points and pleaese interchanged in any
theorem that treats only the incidence of points arekl{planes, resp.).

One can also formulate the duality principle as: Agure that consists of points and
hyperplanes may be associated with a figure that cerdidtyperplanes and points and
exhibits the same incidence relations as the original &f@mely, one can associate any
point y with a hyperplanel with the same coordinatgs, ..., y», and any hyperplane
may be associated with a point with the same cooetindt ..., u”. The relationi y) =
0 will thus remain true. The association itself is gipalar correlation or duality. The
space of pointslf, ..., u") is also called thdual spaceo the originalS, .

We would now like to investigate what a linear sp8georresponds to under duality.
Sy will be given byn — mindependent linear equations in the point coordinatd$ one
now regards thg as the coordinates of a hyperplane then onenhasnindependent
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linear equations that express that the hyperplarshall go throughn — m linearly
independent points. These— mpoints determine af, - , -1, and the linear equations
state that the hyperplane shall be contained in the spaBge_- n -1 .Thus, anyS,
corresponds to a®, - m -1 under duality, and the points &, correspond to the
hyperplanes throug§, - m ;..

Now let S, be contained in af,, i.e., let all of the points d, be likewise points of
S Dually, S corresponds to a, -, -1 and§; to an§, - q -1, such that all hyperplanes
through§, -, -1 likewise go througlt, - -1. However, that means th& _ 4 -1 is
obviously contained in aB, -, -1. The relation of inclusion of linear spaces is thus
inverted under duality.

On the basis of this consideration, one can apply tineiple of duality to not only
figures that consist of points and hyperplanes, but fadswes that consists of arbitrary
linear spacess,, §, ..., as well as theorems concerned with such figures. itual
associates arfg with anS,_p _1, and all incidence relations & remain true: Wheg,
is contained ir§,, the§, -, _1 that corresponds t§, will be contained in th&, - 4 1 that
corresponds t&,.

A series of derived notions arise from the basicamstiof projective geometry that
were defined in 8§ 1, and we shall summarize the most taumtoones here.

The totality of points on a line is called a (lineamnfly of points. The line is called
the carrier of the family of points. Dual to this is the totaldy all hyperplanes i, that
contain arS,—, . One calls this totality pencil ofhyperplanegn = 2: pencil of raysn =
3: pencil of planes) and ti®_,, thecarrier of the pencil. For the pencil, just as for the
family of points, one will have a parametric represaomta

(1) U= Ao s+ A 1<
The totality of points in a plar® is called a plangpoint fieldwith thecarrier S,. Dual

to this is the notion of aet or abundleof hyperplanes ir§, that contain arg,—3 as a
carrier of the bundle. The parametric representation ot @&ne

Uk:Aork‘FAlSk'*'Aztk.

The totality of all linear spaces through a pgim S, is called astar with carrier y.
If u, v, x, yare four different points on a line, and one sets:

(2) {Xk i ukAO + VkAl’
Yo = Uy T Vikhy
then one calls the quantities:
X
(3) { y} ~ At
u v /]olul

thedouble ratiosof the four pointa, v, X, y. The double ratio obviously does not change
when the coordinates afor v, orx ory are multiplied by a factot # 0 ; thus, it depends
only upon the four points, not their coordinates.
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One also defines the double ratio of four hyperplanes innailp@r perhaps four
lines in a planar pencil of rays) by precisely the s&omaulas (2), (3).

Problems. 1. Under duality, the intersection of two linealasgs corresponds to the join, and
conversely.

2. Prove the following transformation principle by prtijeg onto anS, in S, + 1 from a point ofS; ; 1:
Any valid theorem concerning the incidence of pointsgdin..., hyperplanes in & corresponds to an
equally valid theorem concerning the incidence of liptmes, ..., hyperplanes of a staSin 1.

3. Prove the formulas:

fu v _[x y]=[v u] =y x
X y] |u v y X v oul
x oyl[y X[ =1,

lu v]lu

x oy] 4 [x ul=q

LU V] y v

4. Ifa, b, c, dare four points in a plane, no three of which lie iime, then their coordinates can be
normalized so that one has:
a+b+c+di=0.

The “diagonal point’p, g, r of the “complete rectanglegbcd i.e., the intersection point ab with cd, of
ac with bd, andad with bc, can then be represented by:

P =ac+ b =—c—dg
G =a+Cc =—by—d
=ac+d =—by—c.

5. With the help of the formulas, and with the notatériProblem 4, prove thEomplete Rectangle
Theoremwhich says that the diagonal poiptandq lie harmonically with the intersection poirgandt of
pqwith abandbc, i.e., the double ratio is:

P A=
s t

6. How does the theorem in the projective geometryhef plane that is dual to the Complete
Rectangle Theorem read?

8 4. Multiply-projective spaces. Affine space.

The totality of pairs of pointsx(y), wherex is a point of ar, andy is a point of an
S, is thedoubly-projective spacens A point of Sy, is thus a pair of pointsx(y).
Analogously, one defines triply and multiply-projectigpaces. One considers the
numberm + nto be the dimension of the spa&e.

The goal of the introduction of multiply-projective spaas to treat all problems in
manifolds of point pairs, point triples, etc., or equadion which more homogeneous
families of variables appear in a manner that is analogotige corresponding problems
in manifolds of points and homogeneous equations in ondyfamvariables.
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One understands algebraic manifoldin a multiply-projective spac&,, to mean
the totality of pointsx, v, ....) in the space that satisfy a system of equafigrsy, ...) =
0 that is homogeneous in each family of variables. Stohation of asingle equationF(x,

Yy, ...) = 0 of degree numberg h, ... will define analgebraic hypersurfacén S, of
degree numberng h, ...

A hypersurface in an ordinary projective sp&gdias only one degree number: viz.,
the degreeor order of the hypersurface. A hypersurface of degree 2, 3, oaldascalled
a quadratic, cubic, or bi-quadratic hypersurface. A hypersuife$ or S, ; is called a
curve and a hypersurface #, asurface. A curve of degree 2 i%; is called acone and
a hypersurface of degree 2 is generally callgdadric

One can map the points of a doubly-homogeneous spa¢to the points of an
algebraic manifolds, , in an ordinary projective spa&n+m+n IN @ one-to-one manner.
To this end, one sets:

(1) Zk = % Yk i=0,1,..mk=0,1, ...n)

and regards ther(+ 1)(n + 1) elementgy, which are not all zero, as the coordinates of a
point in Spn+m+n . Conversely, one can determine xtendy uniquely from thezy , up to
a common factord . Hence, when perhapgs # 0, from (1), thexo, ..., Xn will be

_ _ m+1)( n+1 _
proportional tazoo, zi0, ..., Zo - Thezk will be coupled by th{ 5 j[ 5 j equations:

(2) Zk Z) = 7 Zk (#j, kzl.

. : : fm+1 n+1 .
The manifold Sy, will thus be defined by a system ) ) quadratic

equations. They are calledtional, since their points admit the rational parametric
representation (1).

The simplest case of the map (1) is the case 1,n = 1. Equations (2) will then
define a quadratic surface in three-dimensional space:

3) Z00 211 = 201 Zio

and any non-singular quadratic equation (viz., an equationgofédric with no double
points) can be brought into the form (3) by a projectre@sformation. We thus have a
map of point pairs of second degree to the points oflatrany double-point-free quadric
before us. This map will be used in the sequel, in oalstudy the properties of points,
lines, and curves on the quadric.

Problems. 1. Two systems of linear spac&s (S, resp.) lie on the manifol&.,,, which can be
obtained when one holds ther they constant [special case: two families of lines onstindace (3)]. Any
two spaces in different families have a point in comnamg any two spaces in the same family have no
point in common.

2. An equatiori(x, y) = 0 that is homogeneous of degr@ex,, x; and homogeneous of degmaén yy,

y; defines acurve Ci, of degreel( m) on the quadratic surface (3). Show that a line enstirface has
degree (1, 0) or (0, 1), a planar section of the surfacddgige (1,1), and an intersection with a quadratic
surface has degree (2, 2).



§ 4. Multiply-projective spaces. Affine space. 11

3. A curve of degree( I) on the quadratic surface (3) will intersect a plane-at points, in general.
Prove this assertion, and then make the expression fiargé more precise by enumerating all of the
possible cases. (Write down the equation of the curddtaat of a planar section, and then eliminatey
from these equations.)

If one omits all points of the hyperplapge= 0 from the projective spa& then what
remains will be thaffine space A. One hag, # 0 for the points of affine space, but one
can multiply the coordinates by a factor such tgat 1. The remaining coordinatgs
..., ¥n — Vviz., theinhomogeneous coordinates the pointy — will then be determined
uniquely. Any point of the affine spaég is thus in one-to-one correspondence with a
system oh coordinatey:, ..., Ya.

If one distinguishes a point (0, ..., 0) in affine spawentit will become a vector
space. There is then a one-to-one correspondencedmeps@its ¥, ..., yn) and vectors
(y1, ---,¥n). (Conversely, one can likewise regard any vector spaem affine space.)

Vector spaces and affine spaces are simpler from agbralig standpoint than
projective spaces, since one can recognize their poimtsbé in one-to-one

correspondence with elementsy,, ..., y, of the fieldK. Geometrically, however, the

projective spac&, is simpler and more interesting.

For the algebraic treatment of the projective sface is frequently convenient to
refer it back to an affine space or a vector space.mRie above, there exist two
possibilities: Either one regards the pointsSpfas rays in a vector spaég:1, or one
omits the hyperplang, = 0 fromS, , and thus obtains an affine space of dimension
One also calls the hyperplape= 0 theimaginary hyperplaneand the points witko # O,
thereal pointsof S,. By an appropriate renumbering of the coordinggeg, ..., yn, One
can make any pointinto a real point, as long as opeas # 0.

One may also go from the points of a multiply projeztspace to the points of a
space whose points can be represented by a one-to-omespmtdence with
inhomogeneous coordinat®s ..., Xm, Y1, --., Yo Dy omitting the points witkx, = 0, the
points withy, = 0, etc., and therefore we will again recognize thisepa be an affine
space. A doubly projective spa8g, yields an affine spac&.n in this way. This is the
basis by which we can consid&f , to be anih+n)-dimensional space.

Under the substitutiory, = 1, yo = 1, a homogeneous equation in the homogeneous
coordinates, y goes to a not-necessarily-homogeneous equation in tre@megx and
y. One then defines an algebraic manifold (hypersurfasp,) in an affine space to be
the totality of all solutions of an arbitrary system afebraic equations (one such
equation, resp.) in the inhomogeneous coordinates.

Conversely, one can change any inhomogeneous equat@n. in Xm, i, ..., Ya into
a homogeneous one by the introductiox®f/p, .... Any algebraic manifold in an affine
spaceA, (An+n+.., resp.) thus belongs to at least one algebraic manifdlteiprojective
spaces, (in the multiply projective spac®n+..., resp.).
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8 5. Projective transformations.

A non-singular linear transformation of the vector sfag:
: k
(1) Y= ay,
0

takes any linear subspaEg to another linear subspagg; in particular, any ra¥; goes
to a rayE, . It thus induces a one-to-one transformation ofpibimts of the projective
spacess, that can be given by the formulas:

@ py=Y aky, (0% 0).

Such a transformation (2) is called paojective transformation or also alinear
correlation.

A projective transformation takes lines to lines, ptate planes, an&, toS,,, and
leaves the incidence relations (e.§y lies in § or § containsS,) unchanged. The
converse of this theoremm®t true: Not every one-to-one point transformation thia¢$a
lines to lines (and therefore also planes to planes,jstprojective transformation. A
counterexample is the anti-linear transformatigf=y, that takes any point to its
complex conjugate point. The most general one-to-omd p@ansformation that takes
lines to lines is given by the formula:

Py =>asy,
0

in which Sis an automorphism of the ground fiéd

From (2), a projective transformation is given by a smmgular quadratic matrid
=(a/). Proportional matricesA and pA (o # 0) define the same projective

transformation. The product of two projective transfations is again a projective
transformation, and its matrix is the product matrix.heTinverse of a projective
transformation is again a projective transformationg @&s matrix is the inverse matrix
A™. The projective transformations & thus define a group, namely, theojective

group PGL(n, K) (1.

Projective geometryn S, is the study of the properties of constructionsSjrthat
remain invariant under projective transformations.
If one introduces general projective coordinatesmdz for the pointsy andy’, as in

8§ 1, by a coordinate transformation:

() PGL = projective general linear. For the propertithis group, see, B. L. VAN DER WAERDEN,
Gruppen von linearen TransformationeBerlin 1935.
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Yo =2 B 2,
© {VFZVM

then, on the basis of (2) and (3), tHewill be again linear functions of tze

(4) pz,=3 d; 7,
with the matrix:

D= (d.'): C'AB.

In particular, if the same coordinate system isseimofor botty andy' thenC =D and:

D=B"'AB.
We now prove the following:

Main theorem about projective transformations A projective transformation T of
0 1 n *
the space Sis uniquely determined when one is given 2points y,y, ..., y,y, and

0 1 n *
their image pointsT y, Ty, ..., Ty, T y, assuming that no # 1 of the points y or their
image points lie in a hyperplane.

n *

0 1
Proof. We choose the pointy,y, ..., y,y to be the basis points of a new
0 1
coordinate system for the poigtof S,, and likewise choose the pointsy,T vy, ...,

Ty, Ty to be the basis points for a coordinate systentterimage poinflTy. The
matrix D of the transformatioit will then be necessarily a diagonal matrix:

The condition that the transformatidrshall take the given poing with the coordinates

Z to the given poinf y with the coordinates now says that, from (4):

(5) pPZ, =437 (§=0,1, ...n).
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Since thez, like the Z', are different from zero, from (5), tldeare established uniquely,
up to a common factor. However, since a factgp does not enter into (4), the
transformation will be determined uniquely.

One will derive the following corollary from this proofTwo projective
transformations are identical only when their matrides’) and ('a’) differ from each

other by only a numerical factok. (af)=A(a’).

The definition of a projective transformation and rasglproof will remain the same
when one considers, not a projective transformatio®,afto itself, but a projective

transformation from a spa& onto anothelS,. In particular, we would like to consider
projective transformations froi®, onto S, when both spaces are contained in the same

larger space. Whereas we used the term “the coordipdtesour definition, we must
now replace these coordinates with parameggrs., i . In that case, the formula for a
projective transformation will then read:

pVi:Zaikyk -

We now have the:

Projection theorem Let S, and S, be two subspaces of the same dimension.in S
A third subspace,Sy-1 has points in common with eithes 8r S_. If the pointy of §
is projected ontaoS, in such a way that it is linked with aR-%-1, as well as an Sm ,
which always intersec§ , then that projection will be a projective transformation.

Proof. S,-m-1 has the equations:

(6) U2=0,(UA=0, .. (UH=0.

1 2 n-m

All points of the joinS,- nare linear combinations gfandn — mpoints z,z, ..., z of
Si- m-1 for which (6) is true. This is true, in particular, the intersection point/’ of
Si-mWwith S,. One then has:

n-m

1 2
(7) Ve= AWHA zZxt A, zw+ . A Z k.

n-m

SinceA # 0, one can choose= 1. It now follows from (6) and (7) that:
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Uy)=(uy =4
- ©y)=(uy=4

Uy)=(uy =4,

By means of the parametric representatio8,pf theyy, and therefore also th&, will be
linear combinations of the parametgss..., y, of the pointy:

9) B=>0%.

Likewise, they,, and therefore also th¢, will be linear combinations of the
parameterg,, ..., ), of the pointy':

(10) B=D &N .

SinceS, andS, have no point in common with,- -1, the linear transformations (9) and

(10) will be invertible if the linear forms on thght-hand side never assume the value
zero at the same time. Hence, tye will be linear functions of th¢g and thes are

linear functions of thgy, so they will be linear functions of the(and conversely), and
the projection theorem is proved.

A projective transformation d&, to S, that one constructs by way of the projection

theorem is called perspectivity.

The most important theorems of projective geomdtiipow from the projection
theorem and the main theorem above, viz., DESARGUEeorem and the theorem of
PAPPUS (cf., the problems below).

Problems. 1. A projective transformation of a line to ifshblat leaves three distinct points fixed is the
identity.

2. A projective relation between two intersectingéinthat takes the point of intersection to itself is a
perspectivity.

3. DESARGUE’s Theorem. If the six distinct poifts A, As, By, By, B; in space or in the plane lie
in such a way that the linégB;, A;B,, AsB; are distinct and go through a poiithenAA; andB,Bs, AsA;
andB;B;, AJ/A;, andB; B, will intersect in three point§,, C,, C; that lie on a line.

(Project the sequence of poift8,A; onto PAA; from C,, then ontdPAA; from C,, and finally back
to PAA; from C;, and then apply Problem 1.)

4. Theorem of PAPPUS. If one has six distinct paifita planeA;, Az, As, Ay, As, As, such that the
points with the odd and even indices lie on distinadithen the three intersection poiftspf A;A; and
AlAs, Q, of AAz andAsAg, R, of AsA, andAgAq, will all lie in a line.

(Project the sequence of poiAgAs onto AyAs from A, then ontoAA; from As, and finally back to
AAs from R, then apply Problem 1.)

5. A projective relationship between two skew lirggsh in a spaces; is always a perspectivity.
(Connect the three pointy, A, As of g with their image point8;, B,, B; on h and construct a line
through a third point of\;B; that intersect®,B, andA;B;. Projectg ontoh from s.)
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6. Give a construction for a projective transfornmatibat takes three given points of line to three
given points of another line on the basis of theqmtapn theorem.

7. Construct the projective transformation that igjualy determined by the main theorem that would
take five given point#, B, C, D, E in the spac&; to the same five points geometrically. (Projeetdpace
ontoCD from AC and apply Problem 6 to the resulting sequence of polnlkgwise, project ont@D from
AC, etc.)

8 6. Degenerate projectivities. Classification of projectivieeansformations.

In addition to one-to-one projective transformatioitsjs occasionally useful to
consider degenerate projective transformations. TheBebwidefined by the same

formula (2) (85), in which, however, the matfix=(a*) has rank < n. The pointy may
therefore belong to a spaSgand the image point, to a spac&, . For certain pointg
all of the coordinateg, will be zero; these pointg which define arg,-m, will therefore
have no well-defined image poiyit From (2) (85), all of the image pointswill be
linear combinations oh points & with coordinateg*, of which, r of them will be
linearly independent. The image poigtshus define a spa& in S,. Hence:

A degenerate projective transformation of rank n maps the spaceg ® an image
space S_1, except for a subspace S;, for whose points, the transformation will be
undefined

One obtains an example of a degenerate projectivefdraretion of rankr when one
projects all of the points &, from an§, - in S, onto anS _ ; that does not me&, _;
the projection is undefined for the points®f .. For the remaining pointsand their
projectionsy’, one has formulas of the form (8) and (10), as in 86 mi=r — 1, which

one can once more solve jgr. The parametess of y thus depend linearly upon tig,
..., Bm, @nd these, in turn, depend linearly ugen..,y,. Thus, one has, in fact:

(1) 4 :Zaikyk ,
in which the matriXa) has rank =m+ 1.

One can simplify the formulas somewhat more, by crgig the 5 to be
coordinates iy, instead of thg, . This is allowed, because, from (10) 8§ 5, thare

coupled to thg; by an invertible linear transformation. The formula tlee projection
then reads simply:

B = (til yj=Zuik Vi -
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In this expression, thé are completely arbitrary hyperplanes that are subjezhlypthe

condition that they determine & - n -1; I.€., [ukj Is anarbitrary matrix (withm + 1

rows andn + 1 columns) of rankn + 1. From this, it follows thatAny degenerate
projective transformation of rank+ m + 1 implies a projection of the spaceg, xcept
for a subspace,S i 41, onto a subspacedf S that is distinct from that subspace.

A projective transformatioi of S, into itself that has the matri has, as we saw,
the matrixD = B™AB relative to another coordinate system. By a suitablcetuf B,
one can, as is well knowrd)( now bring this matrix into “Jordan normal form,” ade
diagonal sequence of box matrices has the form:

A1 0 - 0
oA 1 " :
() P 0],
: oo 1
0 - o 0 A]

in which there is a “characteristic roof’in the main diagonal, whereas in the slanted
row above the main diagonal there is an arbitrary nom-zember, which can be chosen
to be 1. If the box matrices in (2) have degree (= nurabeows) 1 then there are no
ones above the diagonal, and the boxes will contathimg but the elemem. From
SEGRE, the JORDAN normal form can be characterized bghema involving whole
numbers that give the degrees (= number of rows) irbtlxes. If more boxes appear
with the same roofl then their degrees will be enclosed in a round bracKéke total
SEGRE symbol will ultimately be enclosed in a squaseket. Thus, there aree.g., in
the case of the plana € 2) — the following possible normal forms:

A 0 O0Y(A O O0Y(A O OY(A 1]0)(A 21|0)(A 1 O
0O A OO A O[,;JO A4 O/0 A|O[,|]O A|O[JO A 1].
0 0 A4J)0 0 4) 0 0 )0 0[A4)(0 O[A)l0O 0O 4

Their SEGRE symbols are: [111], [(11)1], [(111)], [21], [(213].

If one allows the roo#l to have the value 0, as well, then classificatioovabwill
also include the degenerate projective transformatives.thus restrict ourselves to one-
to-one transformations in the following discussion.

() See, perhaps, B. L. VAN DER WAERDEModerne Algebra |I§ 109. For a purely geometric
derivation, see ST. COHN-VOSSEN: Math. Ann. Bd5(1937), 80-86.
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The JORDAN normal form is very closely connected with question of points,
lines, etc., that are invariant under Namely, each box (2) witlalines is associated with
the following basis vectors in the vector space:

An “eigenvector’v; with Av; = Avy

a vector Vo With Awv = A + v

etc., up to Ve With AVe = AVe + Ve-1 .

The ray (1) is therefore invariant under the transformafignust as the spaceg;(\-),
(v1, V2, V3), etc., are. In projective space, this thereforddgiean invariant point, an
invariant line through this point, an invariant plane throulgis tine, etc., up to an
invariant spacé&._ 1. Linear combinations of eigenvectors with the sargeraialue are
again eigenvectors. If we thus assume that for an eigendatbere are, perhaps,
boxesA, then there will also bg linearly independent eigenvectors of eigenvalye
which will span a subspacEyg. The raysE; of E; are each invariant under the
transformationl, and together they define a pointwise invariant lineassadeS; — 1 in
S.. The same thing will again be true for every char@tierootA. This transformation
does not possess any other invariant points, sinaaahx A has no other eigenvectors.
There are some special cases of interest:

1. The “general case” [111...1], in whi€his a diagonal matrix with root4, ..., A,
in the diagonal that are all different. The invarigtints are the vertices of the
fundamental simplex of the new coordinate system amdhtfariant linear spaces are the
edges of this simplex.

2. The “central collineations,” which are charactdiby the property that all of the
points of a hyperplane transform to themselves. THeGE symbols are [(111...1)1]
or [(211...1)]. Besides the points of the invariant hyperpléimere is also an invariant
point — the “center” — with the property that all of the linspaces through the center are
invariant. The center does not exist in the case [(11...&ht),in the other cases it will
always be in the invariant hyperplane.

3. The projective transformations with period ®r “involutions” — whose squares
are the identity. Since the characteristic rootshef matrixA® are the squares of the
characteristic roots oA, and since, on the other harf, = 4E, A can only have two
characteristic rootd =i\/ﬁ. Since one can multiplx by a factor, one can assume that
A =1. If one now squares the boxes (2) then thatywald that only one-rowed boxes
appear. D will then be a diagonal matrix with the elements il & 1. There will be
two spacesS and S, - -1, whose points will each remain invariant. The linet tha
connects a non-invariant poiptto its image pointy’ will meetS andS, _, _; at two
points that lie harmonically with andy’'. Thus, we will assume that the characteristic of
the basic field is not equal to 2.
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Problems. 1. Give the invariant points and invariant linesdach type of projective transformations
of the plane.

2. A central collineation is given completely by theadaftan invariant hyperplars _; and the image
points X andy’ of two pointsx andy, such thatxy andx'y must intersectS, _;. Give a projective-
geometric construction of a collineation from these .data

3. Under a central collineation, the connecting lioenfa non-invariant poing with its image point
y' will always go through the center.

4. An involution in the line always possesses tweediht fixed points, and there exist point pais (
y') that lie harmonically with these fixed points.

§ 7. PLUCKERIian S,-coordinates.

Let an§, in §, be given bym + 1 points. As an example, we take= 2 andm + 1
pointsx, y, z We now define:

X X X
=) £X %A=Y, Y% Y|
45 4 £

The quantitiesrg, are not all = 0, since the poinis y, z are linearly dependent.
Switching any two indices will change the sigrvgf. If two indices are equal them, =
0. Thus, there are just as many essentially differestt,necessarily vanishingg as
there are combinations af+ 1 indices taken 3 at a time. For an arbitrarghe number

. n+1
of 75q will be equal to( j
m+1

We now show that thegg depend upon only the plars, not upon the choice of
pointsx, y, z in it, up to a proportionality factor. Namely,xif,y', Z are three other

points that determine the plane then, sikicg',Z belong to the linear space that is
determined by, y, z, one will have:

X = X 01+ Yk 2 + Z (13,
Vo= Xc Q21+ Yk G2 + Z Qo3
Z = X Q31+ Yk 032 + % 33,

and therefore, from the multiplication theorem fotedminants:

X X X |% % X/|lon a, a,
yi’ %( %:y| yk M 0'21 a22 0'2,
z 2 1|3 % 7|0y a5, a,
or.
nilkI:Hkla'
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Secondly, we show that the plaBeis determined by the quantitieg . To that end,
we state necessary and sufficient conditions foriat goof the planes,. They are based
in the fact that all four-rowed sub-determinants ofrtiarix:

« @ - h
X X X
Yo Y %
L 4 4

vanish. If one develops such a sub-determinant alon§rgheow then one will obtain
the condition:

1) W7~ QM+ a7~ @a=0.

We can regard condition (1) as #guations for the plan in the point coordinates .
However, a linear space is determined uniquely by its equations.

Precisely the same equations are valid for arbitma(@ < m<n). Since ther. | of
the spaceS, are determined uniquely, we can regard them as the comwlio&S, .
They are called PLUCKERNn Sy-coordinates They are homogeneous coordinates,
since they are determined only up to a fadtand not all of them can be equal to zero.

If we hold all of the indices up to the last one fixbdt letA range through all values,
then we can regard thesg, as the coordinates of a poirg, . This point will belong to
the spac&, since it is:

X j .
%

The vectorrgyis then a linear combination of the vectery, andz. Furthermore, one
has7gnhg= 0 andrgnn = 0 . The pointg thus belongs to the spaSe > with the equations
ay = =0.5 _2is one side of the basic coordinate simpl&ke pointrgy is therefore
the intersection point of the spacevith the side S, of the coordinate simplex.

Naturally, all of this will be valid only when not alf the 7gn (g andh fixed, | = 0, 1,
..., ) are equal to zero. If this is the case then oneslaw thatS, andS, — , will have at
least ones, in common, and conversely. We shall not go into thisfarther.

Relations exist between thg; . We obtain them when we express the idea that the
point belongs to the spa& in any case; hence, the equations (1) must be satisflad. T
yields:

(2) TGhi 7ha — Tghj 78ia + Tgnk 76 — Tghi 76k = 0 .

yg yh
Z 9 Z,

O

Tghl = X X

X|+

Now, if we let 75, be any quantities whatsoever that are not all zerottieesign will
change when we switch two indices and relations (2)satisfied. We would like to
prove that thegy will then be the PLUCKERIan coordinates of a plane.

In order to prove this, we assume, perhaps, ahatt 0 . Three points are defined by
way of:

Xi= T4 ,
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Yi=—T7ba,
Z = 7bii ,

and they span a plane with the PLUCKERian coordinates:

X % %
Piki :77(;122 i Y% M-
5 & ¢

(We will likewise see thatpoiz #0, which means the three points are linearly
independent.) For this plane, one likewise has rela{@ns the form:

(3) Pghi Piki = Pghj Piki + Pghk PBij — Pghi Pix = 0 .

We now compute thpps; :

X X X Ty O 7Ty
Poui :77_122 o Y1 >{:7T5122 0 Ty Ty
Z, % 7 0 0 7
_ Tl T5: /T _
=————=17b1 .
77312

One likewise finds that:
Poz =76z and Pis = 7&3 .

We thus see that all of tipgn; for which the two indiceg andh have the values 0, 1,
or 2 agree with the correspondivggh;. In particular,poi2 = 78207 0. We would now
like to prove that, in general, one has:

(4) Pghi = Tghi -
It follows from (2) and (3) that:

(5) T6hi= 7Ty ( 750 7112 — T 7802 + 7T o1 ),
(6) Pghi= P15 (Pgro Pit2 = Pgn Pioz + Ptz Pro1 )-

Now, when one of the indicgsor h equals 0, 1, or 2 then the right-hand side of (5)
will agree with that of (6). Hencegn = pgni , as long as one of the indiogsh has the
value 0, 1, or 2. Moreover, it then follows that whemenof the indiceg, h has the
value 0, 1, or 2 the right-hand sides of (5) and (6) alslb agree. Hence, (4) will be true
in general.

We summarize: Necessary and sufficient conditions for the quantitigs to
representPLUCKERan coordinates of a plane in, e that they do not collectively
vanish, they change sign under the exchange of any two indices, and thgyaatisins
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(2). If —say - 7p12# Othen all of therg will be rationally expressible in terms afy ,
762 , 701i -

All of the considerations up to now will be valid witle essential changes for the
PLUCKERIian coordinates &, in S, . In the general case, relations (3) read as follows:

m
(7) 77;3091"'9(1”%91"'% _ZO:ITQO“' 9-13 91 Qﬂﬂ - rﬁ: 0’
and in the case of a linen(= 1):

(8) TGi Thi — T 76 + 751 75 = O.

For further details orgy-coordinates, in particular, for the introduction of d&a
coordinates? ' with n — mindices and their reduction to th , | refer the reader to the
textbook of R. WEITZENBOCK?Y)

n+1 .. . o
If one regards th% +J quantitiesrg. | as the coordinates of a point in a sp&e¢e
m

n+1
N:( j_l
m+1

then the quadratic relations (7) will define an algebra&nifold M in this space.
Conversely, any point of this manifold will correspond to a unique subsp&sen S, .

The simplest interesting case of this map is the cb8e linesS; in the spac&; . In
this case, there is only one relation (7), namely:

9) Th17B3+ Th2 781+ TB3 72 =0 .

It defines a hypersurfadd of degree 2 irs5 . The lines of the space Say thus be
mapped in a one-to-one manner to the points of a quadratic hypersurface in S

A pencil of lines will correspond to a line M under this map. IX is the center of
the pencil and/ =AYy +A,y' is the parametric representation of one of the lingbe

plane of the pencil that does not go througthen one will obtain the PLUCKERian
coordinates of all lines of the pencil in the form:

7L =X (ALY +AY) - x(A Yy +A,¥)
=AY =X+ A% Y- x¥)
=\ T, + AT,

Conversely: If a lineg = A7, + A, 7, lies completely irM, hence, theg, satisfy the
condition (9) identically imi, A2, then it will follow with no further assumptions tha

() WEITZENBOCK, R.: Invariantentheoriepp. 117-120. Groningen, 1923.
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Tl Tl + o Jla ¥ MU T B T g g1 g =0,
or, in determinant form, when one sets:

Ty =% Y ~ X ¥, and  7,=x Y - XY,
one will have:

X % % X%
Yo o Y2 Vi_g
X X X% K
Yo i Y. ¥

The points<, y, X', y will thus lie in a plane, so the two lings and 77" will intersect

and will thus determine a pencil. One of the lines fletin M will thus always
correspond to a pencil of lines.

A plane in the spac8; will be obtained when one couples a fixed p&with all of
the points of a lindkRSby means of lines. If this plane is to lieNhcompletely then, at
the very least, the lind3R PS andRSmust lie inM. The points, R, S must therefore
correspond to three mutually intersecting linep, oin S that do not belong to a pencil.
However, three such lines will either lie in a @aor go through a point. If one now
connects the linerwith all of the lines of the pencih o by means of some pencil then
the totality of lines so obtained will either bdirze field or a star of lines. Conversely,
any line field or star of lines can be obtainedhat manner.Hence, there are precisely
two types of planes that lie in M: One type cormgys to a field of lines and the other, to
a star of lines in § Furthermore, FELIX KLEIN has proved the theoreAmny
projective transformation of the spadc® into itself corresponds to a projective
transformation of the spa& that leaves the hypersurfabtinvariant, and in this way,
one also obtains all projective transformationgvbinto itself that do not exchange the
two families of planes').

Problems. 1. The connecting space of &) with a point w that lies outside ofy, has the
PLUCKERIan coordinates:

1
Pik. 1=« M1~ Mk tawd  +..+ (‘1)m+ A Tk .-

2. The intersection of a, with a hyperplanes that is not contained in it has the PLUCKERian
coordinates:

Gea=0u ..
3. The condition for two lineg p in the spac&, to intersect or coincide reads:

TG P — 7ok A+ 75 P+ TR Qi — 7T Pox+ T Py =0

4. A ruled surface irgs (consisting of all lines that intersect three skewdjrerresponds to a conic
section orM, namely, the section ™ that contains a plar in the spacés .

() For the proof, cf., B. L. VAN DER WAERDENGruppen von linearen Transformatione&rgebn.
Math., Bd. IV, 2 (1935), § 7.
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8 8. Correlations, null systems, and linear complexes.

A (projective)correlation is an association of each poynin S, with a corresponding
hyperspace in S,, and its coordinates are given by:

1) pv =) a%y,,

in which thed® shall define a non-singular matrix. The associatiothésefore one-to-
one; its inverse is given by:

(2) Uyk=2[i<|\),

in which (&) is the inverse of the matrix?(). If the pointy lies on a hyperplane then
one will haveX, u*y, = 0, and it will follow from (2) that:

22 UGV =0,

i.e., the hyperplane will contain the star with the midpoint:

) X =2, Ba k.

Conversely, If the hyperplanecontains the star with the midpointheno V' x = 0, and
it will follow from (1) that:

4) 2> d*%y=0,

and therefore the poigtwill lie in a hyperplanes with the coordinates:

(5) k=D d*x.

The product of two correlations is obviously a projectiwiireation. The product of
a collineation with a correlation is a correlatiorniThe projective collineations and
correlations together thus define a group.

Formulas (3), (5) define a second one-to-one transfaym#tat takes hyperplanes
to pointsx, and which is connected with the original transformatid)y (2) by the
following propertiesif y lies in u then v will go through x, and corsely.

We regard the associated transformatipns vand u - xas an association that we
also call acomplete correlationor aduality. A complete correlation thus associates
each point y in Swith a hyperplane v and each hyperplane u witltomtx in a one-to-
one way such that the incidence relations betwesntp and hyperplanes thus remain
valid.

As in 8§ 3, in which we considered a special correlation y;, one proves that a
correlation associates each subsgcef S, with a subspacs, - -1 and that the relation
of inclusion is thus inverted.
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A correlation, just like a projective transformationdetermined uniquely as long as
the images oh + 2 given points, no + 1 of which lie in a hyperplane, are known. The
proof is the same as the main theorem in 8 5. The cwitistn of a correlation from this
data can happen in the way that was suggested for prejéciivsformations in Problem
7(85).

Two correlations, just like two projective transformatp are identical when and
only when their matrices differ from each other by anlyjumerical factoA:

a, = A o .

We now seek to determine timevolutory correlationsjn particular, i.e., the ones that
are identical with their inverse correlations. Sitioe inverse correlation to (1) will be
given by formula (5), for an involutory correlatioristnecessary and sufficient that:

(6) =2 d", 4#0).
It will immediately follow from (6) that:
a* =) ad"= X ad"
and since at least o # 0, one will have:
=1

There are therefore two cases: the chsel, for which the matrixd) is symmetric:

a“ = d,
and the casg@ = — 1, for which the matrix ianti-symmetric:
(7) o =-d*.

In the first (symmetric) case one calls the coti@faapolar systemor apolarity. In
this case, the symmetric matridk() defines a quadratic form:

22 A%,

and the hyperplane that is given by (1) isgb&r of the pointy relative to this form.

By contrast, in the anti-symmetric case the corigafa called anull systemor anull
correlation As is well known, a non-singular anti-symmetric nxats possible only
when the number of rows + 1 in the matrix is even, hence, when the dimensid
odd. It follows from (7), in particular, that' = 0, and furthermore, that:

PVY =20 d*yiw=0;
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hence, the hyperplane- viz., thenull hyperplaneof y — goes through the poigt— viz.,
thenull pointof v.

This latter property is also characteristic of the rudirelation. If a correlation
associates each powwith a hyperplane that goes througthen that will be true for the
point (1, O. ..., 0), from which it will follow tha® = 0 . Likewise, one shows that =
0 for each. If one now makes the same argument starting witlpoia (1, 1, O, ..., 0)
then it will follow that:

' +a°=0, hence, at=-a"

similarly, one will again have* = - @".

Along with the previously considered non-singular nullretations, we now also
discuss the degenerate ones, for which the anti-symnmesitix (@) is singular, and
correspondingly, the null hyperplanes of a point camrmetermined. Two points y
are calledconjugatefor a null system or polar system when one of thesiih the null
(polar, resp.) hyperplane of the other one. Equationis(4)efinitive of this, and its
meaning does not change when one exchargasdy . The conjugacy relation is
therefore symmetric in the poimntsandy: Whenx lies in the null hyperplane gftheny
will lie in the null hyperplane of .

We now consider the totality of all lingsthat go through a poitand that lie in the
(one, resp.) null hyperplane of this point.xis second point on such a line then (4) will
be valid, from which (7) will also allow one to write:

(8) Do (X —x¥)=0.

i<k

The bracketed quantities are the PLUCKERian coordinatesf the lineg; (8) is
then equivalent to:
(9) za’lk =0.

i<k

In this form, one sees that the character of thedirsecompletely independent of the
choice of pointy on the line. One calls the totality of all lingsvhose PLUCKERian
coordinates satisfy a linear equation (%inaar line complex.

Conversely, if one starts with a linear line compl@xtben all of the line complexes
through a poiny will lie in a hyperplane whose equation (8) will beagivas long as (8)
is not satisfied identically ir . If one writes (8) in the form (4) witt* = — @' then one
will again obtain equations (1) for the coordinatesf the plane. Hence:

To each linear complex of ling9) there belongs one (possibly degenerate) null
system(1), and conversely, in such a way that the line complex through a poirk y wi
satisfy the null hyperplane of y precisely. If the null hyperplayei®indeterminate then
all of the lines through y will be ray complexes, and conversely.

The projective classificatiomf the null system and thus the linear complex, as well
— is a very simple concern. F is a point whose null hyperplane is not indeterminate
andP; is a point that is not conjugateRg — i.e., does not lie in the null hyperplaneRaf
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— then the null hyperplane & will likewise not be indeterminate, and since it does not
go throughPy, it will be different fromP,. Both null hyperplanes will therefore intersect
in a space&, - ». The connecting line d?P; will touch the null hyperplane ¢%, only at

Po, and that oP4, only atP1, so it will have no point in common with _ ; whatsoever.

We now choos#, andP; to be the basic points of a new coordinate systemigw
the remaining points will be chosen frdn._ .. If any two points ir§, - ;are conjugate
then we will choosé,, ..., P, arbitrarily: these points will therefore all be coggte to
each other, as well as Ry andP; . If this is not the case then we will chod%eandPs
in §,_ 2 in such a way that they are conjugate to each othee null hyperplanes d?,
andP3 do not includes, _ ;; hence, they will each intersest_»in aS,-3. These twd, -

3 In §,_ > will be different, and they will thus intersectan S, _ 4, which (as before) will
have no point in common with the connecting > .

We then proceed. The basic poiRis ..., P, are chosen i&,_ 4. If all of the points
of S, - 4 are mutually conjugate then we will chodBg ..., P, arbitrarily in S, _ 4,
otherwise, we will choosB, andPs in such a way that they are not conjugate, and we
construct the intersection of their polar hyperplan &;_ 4, etc.

We finally obtain a system of linearly independent basimtsPo, Py, ..., Pax -1, ...,

Pn, in such a way that:
Po andPl,
P, andP3,

Par -2 andPy -1,

are not conjugate, and, by contrast, all of the remaipaigs of basic points are
conjugate. Therefor&™, o, ..., & %2~ 'are non- zero, and all of the other are zero.
For a suitable choice of unit points, one will hav& = ¢®* = ... = g* ~ 22~ 1= 1.
Moreover, equation (2) for the line complex that isoagged with the null system will
read like:

Th1+ 763+ ...+ 7 _22-1=0.

The matrix @) has rank 2(0 < 2 < n + 1); hence, the numbeis a projective invariant
of the null system. We thus conclude the projectiassification of linear complexes
with:

The rank of the anti-symmetric mat(ix“) of a null system is always an even number
2r. When one is given the rank, the null system, and therefore also toeatess linear
complex, will be determined uniquely, up to a projective transfasmat

In the casen = 1, there is only one null system: viz., the identiitich associates any
point of the line with itself. In the case= 2, there are only singular null systems of rank
2 that associate any point with its connecting line &itiixed pointO. The associated
linear complex is a pencil of lines with cen@r

In the case of ordinary spaae £ 3), there arsingular (or specia) linear complexes
of rank 2 andregular (or non-special) linear complexes of rank 4. A singlifear
complex has the equatiom; = 0, and thus consists of all lines that intersdctea line,
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namely, theaxis of the singular complex. A regular linear complex tresequatiorns;
+ 783 = 0 and belongs to a non-singular null system.

One obtains a non-singular null systengirby the following projective construction:
Any vertex of a spatial pentahedron will be associatithl the plane through it and two
neighboring vertices. These five planes might alldiféerent from each other. A
correlationK is then determined by these five points and five associsees. It is a
null correlation for which all pairs of consecutivertiees represent conjugate point pairs.
Proof: There is at least one linear compte® 77 = 0 that includes the 5 sides of the
pentagon; these 5 sides then give only 5 conditions éosithquantities’®. If I is such
a complex the will be non-singular when there is no axis that med#tS sides. Thus
I defines a null correlation. The null plane of a @emust include both of the faces that
go through this vertex, since it is a line complex. Hemiee null correlation in the 5
points and 5 associated planes agrees with the casrelgtiand is therefore identical
with it.

One obtains an intuitive picture of a null systenewlone subjects a chosen point to
a uniform screwing motion (a translation along an axisoupled with a rotation aboat
both with constant speed), and then associates eaah ypavith the plane that is
perpendicular to the velocity vector at this point. Whee axisa is assumed to be tize
axis, and whem is the ratio of the translational to rotationalogdy, one will find the
equation for this plane to be:

(X1Y2—X2y1) =P (X3Yo—XoY3) =0 .
In fact, this equation has the form of (8).

Problems. 1. Show that the equation for a non-singular nullesystan always be brought into the
form (8) through an orthogonal coordinate transformatiod,that any such null system is thus associated
with a screw motion.

2. Extend Problem 1 to dimension21 .

3. Anull systeno @* 71 = 0inS; is special when and only when one has:

AP +ad?a +d”a?=0;

(9) will represent the condition for the limeto intersect a given line in precisely this case.

4. Alinear complex of rank 2 i§, always consists of the lines that intersect a gien.

5. A null correlation determines not only a line coexpbf lines, but also (dual to that) a linear
complex of spaces, _, that are the intersections of any two conjugate hypeepla

8 9. Quadrics inS and the linear spaces that lie in them.

In the sequel, we shall understanduadric ,.; to be a quadratic hypersurface in a
spaceS . Thus, a quadri)o is a point pair, a quadri; is a conic section, and a
quadricf; is a quadratic surface. We assume that the equatiamjaédric takes the
form:

(1) Zr:a"kx,-xkzo @< =a).

j.k=0
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If we intersect the quadric (1) with a line:
(2) X =AY+ A2 %,

in which we substitute (2) in (1), then we will obtailquadratic equation fali, A, :

3) A aky g +244,> Ay g+ & z2=0.
ik ik

ik

Thus, when the line does not lie completely wittiie quadric, there will be two
(different or coincident) intersection points.
If the middle coefficient in (3) is equal to zero:

(4) Y akyz=0,
jk

then both of the rootd;: A, in equation (3) will be equal and opposite, ileoth
intersection points will either lie harmonicallytiithe two pointg, z or they will agree
with the pointy or the pointz. Wheny is held fixed ana is varied, equation (4) will
define a hyperplane with the coordinates:

(5) U= aly,
j

which is thepolar to y in the polar system that is defined by the quadviéhen the point
y is uniquely determined hy, it will be called thepoleofu. The pointz, which satisfies
equation (4), and therefore lies in the polay,taill be calledconjugateto y relative to
the quadric. l&is conjugate ty theny will also be conjugate to.

If the polar ofy is indeterminate:

(6) Za“jy,-:o k=0,1,...1

then the first two terms in (3) will vanish iderally; hence, each line throughwill
either have two intersection points with the quadhat agree withy or it will lie
completely within the quadric. In this case, tlwenpy will be called adouble pointof
the quadric. The quadric is thercanewith the vertex y; i.e., it has what are called
generatorghrough the poiny .

If the determinant 11"‘ | of the system of equations (6) is non-zero tifrenquadric
will be free of double points. In that case, tlwdap system (5) will be a non-singular
correlation. This not only associates each pgiwith a unique polamu, but also,
conversely, each hyperplaoevith a unique polg , and generally, each spagewith a
polar spac&_,1 . This association is involutory, i.e., the padpace t& - is againS,.
Hence, if all of the points &-_,1 are conjugate to all points &f then all of the points of
S will be conjugate to all of the points &f ;.
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If y is not a double point, but a point of the quadric, thea will call the lines
throughy that intersect the quadric doubly or lie within it thagentgo the surface at.
The condition for this is that not only the firstrtem (3), but also the second one, must
vanish, hence, tha will lie in the polar hyperplane tg. Thus, all of the tangents lie
within the polar hyperplane @f which is therefore also called ttengent hyperplaneor
the tangential hyperplaneto the quadric at the poiyt In particular, the tangential
hyperplane includes all of the lines that lie in the quaain@ go througly, hence, all of
the linear subspaces that lie in the quadric and go thnpugh

If the pointy lies outside the quadric then all of the pointthat are harmonically
separated from two points of the surface will lie ve polar ofy, just like all of the
contact pointg of the tangents that go through The latter will generate a cone with
vertexy whose equation is found by setting the discriminanhefjuadratic equation (3)
equal to zero:

Qv dga) - dyz?=0.

If (a,) is the inverse matrix to the non-singular mat@)(then one can solve
equation (5) foy with its help:
7) y =y ut.

The hyperplanal will be a tangent hyperplane when and only when it goesigr
its poley, hence, when:

(8) da,uu=0.
jk

The tangential hyperplane of a double-point-free quadric defises a quadric in the
dual space, or, as one saysyaerplane of the second class
As is well-known, equation (1) can always be brought th&form:

X§+X12+~--+ )sg_l:O

by a coordinate transformation; thysis the rank of the matrixal'). Thus, two quadrics
of equal rank are always projectively equivalet. quadric of rank 2 decomposes into
two hyperplanes, whereas a quadric of rank 1 is a hyperfflah& counted twice.

One can find the intersection of the quadRic; with a subspacs, of S

0 1 p
9) X =A YVt A Yt A0 Y,

which will be found when one substitutes (9) in (1); tdl yield a homogeneous
quadratic equation ifo, ..., Ap. Thus, the intersection will be a quadile-1 in the space

S, as long as the spaggis not completely included in the given quadiic; .
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Problems. 1. An involutory projective transformation of thied S into itself (i.e., aninvolution)
consists of all point pairs that are harmonic with\eemgy point. A degenerate involution consists of point
pairs that include a fixed point.

2. The point pairs that are conjugate, relative tajtreericQ,-1 to a given line of the spa& and do
not lie in Q-1 define a point pair.

3. If one connects all of the points of a quadtics with a fixed pointB that lies outside of the space
S then one will obtain a quadrig, with a double point &B.

4. Give an affine classification of the quadis-; .

The foregoing was only, on the one hand, a multi-dinseradigeneralization of well-
known facts from the analytic geometry of conic sewiand quadratic surfaces. We
now come to the discussion of linear spaces thatnliguadrics. We thus consider
guadrics without double points exclusively.

As is well-known, there are two families of linesttha in a quadratic surfac@; in

S, As we will show in 8 7 with the help of line geometthere are two families of
planes that lie in a quadris in Ss. We would now like to show that, in general, two
families of§, lie in a quadriaQ,n, but, by contrast, only one family 8f lies on a quadric
Qon+1, and that the quadrics in both cases cannot include any Bpeaes of higher
dimension.

What are we to understand a family to be then? Iflveady have the concept of an
irreducible algebraic manifold then we can clarify théarof a family by saying that it
is such an irreducible algebraic manifold. However, weld like our family to exhibit
something more than just irreducibility and continuous comedeess: we will assume
that any family inS, has a rational parametric representation such ttetigety one
elementS, of the family belongs to each system of values, aatttie entire family can
be exhausted by the parametric representation. In thse see will prove the existence
of a rational family of $onQ.n+1 (two disjoint rational families of Son Q, , resp.). In

addition, we will show that two spac&s on Q2, that have arg,-; as their intersection

will always belong talifferentfamilies.
In order to prove all of these statements, we use @mpiduction om. Forn=0, a
qguadric consists of two separated points, whereas a qudrihience, a conic section

contains a single rational family of points. Namelypne brings the equations of the
conic section into the form:

XX =XoX2 =0

then all of the points of the conic section will beeln by the parametric representation:
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Now, we may assume that our statements are truthéoquadricsQzn.2 and Qan.1.
We consider a quadriQz,. (The case of22:+1 can be handled in an analogous fashion,

so the reader can omit it.)
We would next like to prove that the spa&shat lie inQ,, and go through a fixed

point A of Q2, define two disjoint rational families. These spacedialin the tangent

hyperplanea. Now, if wis a fixed spacé&,-; that is contained ir and does not go
throughA (such a space exists, singés an $,) then the intersection al,, with cwwill

be adouble-point-freequadric Qzn-1 . Namely, ifQ.n-> had a double poinD then it

would be conjugate to all of the points afand toA, hence, the polar t® would
coincide witha, which is not true, since has only the polé. The lines that conne#t
with the points 0fQzq.2 lie completely withinQz, since they contact this quadricAatnd

contain every other point of it elsewhere. Thugné connects a spafg; that lies in
Non—2 With A then the connecting spa&ewill lie completely inQ,,. Conversely: If an

S lies inQ2, and goes through then it will also lie in the tangent hyperplaseand will
therefore have als,-1 in common witha that lies inQa> . — From the induction
hypothesis, two rational families &-1 lie in Qan»> and no space of higher dimension;
hence, two rational families of spac8swill also go throughA in 92, namely, the

connecting space & with eachS,-1, and
no space of dimension higher tham
Furthermore, from the induction

hypothesis, two space®-; in Qon— that S s
have anS,, in common always belong to A -
two different families. From this, it S| w
follows that two spaceS, that go through a S

A and have arg,-; in common will also
belong to two different families. We call
these familiez1(A) andZ,(A).

It should be remarked that each sp8cthat is inA and lies inQ,, also goes through
A and thus belongs tB;(A) or to3(A) . Namely, ifS, does not go through then the
connecting spac8,.1 of S, with A would lie completely inQ2,, which is impossible.

Now, in order to free the two families &f from the pointA and to make them span
the entire quadric, we proceed as follows: We choosedrthe space$§, that goes
throughA and lies in the quadric and consider all possible spaeeghat go through it.
They do not lie iz, , and they thus interseft,,, as well as a quadri,, that contains
an S, as a component, and thus decomposes intoSwolt is impossible that they
coincide, since every point & would then be a double point Q%, and would thus be

conjugate to all points d&..1, which is not true, since this polar space is onl\San
We denote the two spac8sthat the quadric decomposes into%yand S,. If S, and

S+ are given ther§, may be computed rationally when one draws (L) arbitrary lines
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through a poinB of S, that do not lie inS, and together spah.1, makes them intersect
the quadricQzn, and determines the linear spageby the intersection poin®y, ..., B

that differ fromB. All of these steps are rational. Now, if we $&trange through the
entire family 2,(A), and also le§.:1 range through all spaces throughthen we will
obtain a rational family of spac8s, we denote it b¥;. Likewise, if we letS, range

through the entire famil;(A) then we will obtain a second rational family of sp&8,,
which we denote by, .

It was not an abuse of notation, but our expliciemf that made us derivE from
25(A) and %, from Z;(A). Namely, if we choose the spaBe to be ina, in particular,
thenS, and S, will both lie in a and will thus go througA. (Namely, if S, did not go
throughA thenA would not be a double point of the quadig, that is determined b$,
and S|, and an arbitrary ling throughA in S,:1 would meetQ,, and thus als®,, at

two different points, which cannot happen, sigckes in a, and is therefore tangent to
Qon atA) S, and S, will have an intersectiof,-1 since they lie inS.1, and will thus

belong to different families; thus, & belongs ta&»(A) then S, will belong toZ;(A), and
conversely. The spaces of the famly that go throughA thus belong to the family
Z1(A), and the spaces of the family that go throGghoelong toZ,(A).

We now show that each of the spa&shat lie inQ2, belong to one and only one of
the familie;,%,. For the spaces that go throughthis is already clear from the
preceding: They belong &(A) when they belong t8, and they belong 8, when
they belong toX(A). Now, if a spaceS, in Q, does not go through then the
connecting space ok with S will be an S, whose intersection witkd,, will be a
quadricQ, that decomposes int§, and anothef, throughA. S, will belong to %, or
to 3, depending upon wheth& belongs ta1(A) or toZ,(A), respectively.

The families; and,, which we denote b¥; andZ, from now on, are thus disjoint
and exhaust the totality of &, in the quadricQ,,. A continuous transition from one

family to the other is impossible since the familiesuldohave to have an element in
common. Were we to start with another pdintinstead ofA, we would obtain the same

families as a result, but with a different parametejgresentation.
If two spaces§,, S that lie in Q2, have an intersectiof.-; then one can always

choose the poinA to be in this intersection and then conclude from tredoing
considerations th& andS’ belong to different familiesz1(A) and 2(A), hence, to

different familiesZi, Z,, as well. Thus, all of our assertions abQuf are proved-
assuming that they are valid fQg.-1. The induction is thus complete.

Last of all, we prove thatwo space§,,S of the same family always have an
intersection of dimension n2k, and, by contrastiwo spaces of different families always
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have an intersection of dimension-rek — 1, in which k is a whole numberThus, an
empty intersection will be considered to be one of dsmn — 1.

Once more, we employ complete inductionron The assertion is trivial fon = 0
since each family will then consist of a sin@g and the intersection of & with itself
will be of dimension 0, although its intersection watotherS, will have dimension — 1.
We thus assume that the assertion is true fogthen Qon».

If one projects both of the families &f-1 in Q> from A, as above, then one will
obtain both familiez1(A) and,(A) of spaces, throughA. Under projection, one raises
the dimension of the intersection space, like theesfag itself, by one; an intersection
of dimension 1§ — 1) — X will become one of dimensiam— Z&. Hence, our assertion is
valid for the spaces of the famili&s(A) andZ,(A), and since the poi can be chosen
arbitrarily the assertion will be valid for any two sps§, that have a point in common.

Now, let S andS| be two spaces that have no point in common. We chdtsde
inS, . The connecting spa&.: of A with S, has only the poin& in common withS’ .

It intersectsQa, in a quadricQ, that decomposes int§, and anothefS, which goes
throughA. Our assertion is already proved for b&hand S, since both of them go
throughA, i.e., only outside of the intersection that cossedftA does it have dimensian
2k when§, and S| belong to the same families and dimensior % — 1 whensS,
andS; belong to different families. In the first case, hvar S, and S, will belong to

different families, and their intersection will, fiact, have dimension — 1 = 0 — 1r=+{2k
—1)-1=n-2k+1). Ineither case, the assertion is thereforeqar¢o be true.

8 10. Maps of hypersurfaces to points. Linear families.

The higher-dimensional spaces are not only interestinhamselves, but they also
define an indispensable aid in the study of systems of algeburves in planes and
surfaces in ordinary space. This rests upon the fallgwi

One can map the planar algebraic curves and the algetweaces inS;, and
generally the hypersurfaces of deggeef a given spac&, to the points of a projective
spaceSy in a one-to-one manner, in which we have set:

+n
N= (9 j 1)
n
Such a hypersurface will, in fact, be given by an equation:

axg+ax x+t-+g %=0,
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whose left-hand side may be multiplied by a non-zertofat, and whose coefficients
may all be zero. The number of coefficients is skatbwn ¢) to be equal to:

+n +n
a0 e
n g
One can thus regard the coefficieags ..., ay as the coordinates of a pomin a space

S\, from which the stated map is obtained. If one is dgakith curves of degreg in
the plane then:

N = (gzzj—lzig(g+3).

The curves of degregin § may thus be mapped to points in a space of dimeAsigo

+ 3) in a one-to-one manner.

Under the map, a linear subsp&ef Sy corresponds to a family of hypersurfaces
that one calls déinear family of dimension r Special cases are: one-dimensional linear
families, orpencils whose elements are given by:

a=A1 b+ A2¢,

and two-dimensional linear families, wets whose elements are given by:

a=A1 b+ Az 0+ A3 dk.

One can write this equation in another wayB H 0 andC = 0 are two hypersurfaces
that determine a pencil then the equations of the hypersarfac the pencil will
obviously be given by:

A B+ A, Cc=0.
Analogously, the formula:

defines anr-dimensional linear family when the formBy, ..., B, are linearly
independent.

By means of the map of the points &f to hypersurfaces and linear subspaces to
linear families of dimensiom, one can carry over all theorems that pertain toafine
spaces irgy to linear families of hypersurfaces with no further agstions. In this way,
one will obtain, among other things, the theoréin— r linearly independent linear
equations in the coordinatesy,a..., ay define a linear family of hypersurfaces of
dimension r.

As an example, the hypersurfaces that go throuighr given points define a linear
family of dimensiorr, assuming that these points impasgependentinear constraints

() The proof is obtained quite easily by complete induction ® g, when one converts the forfigfxo,
..., Xn) of degreey into the formfy(Xo, ..., Xa-1) + Xn fg-1(Xos ..., Xn) .
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on the hypersurfaces. In order to apply this to any péaticase, if that is the case, one
arranges the given points into a particular sequeRge:.., Py - , and establishes
whether there is a hypersurface of deggethat goes througls, ..., Px - 1, but not
throughPy . If that is the case for any value lofwith 1 <k < N — r then the linear
conditions that the points impose on the hypersurfadébaevindependent. By skillfully
choosing the sequence of points, one can very frequehtipse the hypersurfaces
throughP;, ..., Px-1to be decomposable.

By this method, one effortlessly proves, e.g., thatetlage at most five points in the
plane, no four of which lie in a line, that always impasdependent conditions on the
conic sections in the plane. If one can always drgaiaof lines throughk — 1 € 4)
points, and does not go through a givérpoint, then one must have that tkf point
lies on a line with three others. From this, it fal®that:

Three given points always determine a conic section. Four points that de moa
line always determine a pencil of conic sections. Five givemgaio four of which lie
in a line, determine a single conic section.

Problems. 1. One proves by the same method that eight pointplare, no five of which lie in a
plane and no eight of which lie on a conic sectionaggvmdetermine a pencil of curves of third order.

[Hint: For curves througlk — 1 given points, use those third-order curves that decomptsea iconic
section and a line or into three lines.]

2. If a, b, ¢, dare four given non-collinear points in the plane andxy®)(always denotes the
determinant of the coordinates of three poxtg zthen the pencil of conic sections that go throagh, c,
d will be given by the equation:

A1 (@bX) (cdX) + A (acX) (bdX) =0.

3. In the notation of problem 2, the conic sectiorodlgh five given points will be given by the
equation:

(abx) (cdx) (ace) (bde — (acX) (bdx) (abe) (cde =0 .

4. Seven points in the spaBg no four of which lie in a line, no six of which lie a conic section,
and no seven of which lie in a plane, always determinet of second order surfaces.

[Hint: For the surfaces throudh+ 1 points, again use decomposable surfaces or, if that doasnko
cones.]

A single curve of ordeg goes through g(g+ 3)points of the plane “in general,” i.e.,

when these points represent independent constraintthdocurves of ordeg. The
exceptional case is the one for which the p&inbelongs to all of the curves of ordgr
throughPs, ..., Px-1, which obviously can come about only for particular posgiof the
point Py relative toPy, ..., Px-1.

If the hypersurfaceBy, ..., B; that determine a linear family (1) have one or more
points— or even an entire manifoldin common then these points, or that manifold, will
obviously belong to all hypersurfaces of the family. Thasiats will be then be called
the base pointof the family, while the manifold will be called tlhase manifoldf the
family. In particular, it can happen that all of thenfis B, ..., B have a common factor
A; in this case, all of the hypersurfaces (1) of the famill include A = 0 as dixed
component. For example, the conic sections in the plane llbat a given triangle for
polar triangle define a net with no base point, while tonic sections through three
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given points define a net with three base points, € @ivhen the three points lie in a
line) a net with one fixed component.

A pencil of quadrics is given by:
(2) Eljk:/]llj.k*'/]zCik,

in which the equation of a quadric is assumed to take the fo

d > akxx=0.
k

i
If D is the determinant of the matria() then the condition for a double point will read:
3 D=0.

By means of (2)D is a form of degrea + 1 inA; andA,. Equation (3) is either satisfied
identically byA;, Az, or it hasn + 1 (not necessarily distinct) roots. There is tfogseat
least one and at most+ 1 cones in the pencil (2), or else all of the hypdases of the
pencil are cones.

In the case of a pencil of conics, it will thus follalat a pencil of conics includes at
least one decomposable conic. If one looks at all pesgdsitions that a pair of lines
can have relative to another conic then one will #Hesly obtain a complete
classification of all pencils of conics (and theisbgoints). Since a pair of lines has four
(not necessarily distinct) points of intersectiorthav@nother conic or a component in
common with it, a pencil of conics will have eitherfimed component or four (not
necessarily distinct) base points. If the four basmts are actually distinct then, from
the above, the pencil will be determined by these fourtgolihwill consist of all conics
through these four points. The three decomposable cohibe pencil will then be the
three pairs of opposing sides of a complete rectangle.

For more on the theory of pencils of conics, one wayfer the classical work of
CORRADO SEGRE.

We will later see that a pencil af-ordercurves in the plane haé (not necessarily
distinct) base points or a fixed component. Likewisaet ofn™-order surfaces in the
spaceS; possesses eithat base points or a base curve or a fixed component.

For example, a pencil of%order plane curves has nine base points in general, of
which, from Problem 1, for certain assumptions, anytedfbthem will already determine
the pencil. Likewise, a net of quadratic surfaces in esgeas eight base points, in
general, of which, under certain assumptions, any sefvdrem will determine the net,
and therefore also the eight points.

Problems. 5. There are the following types of pencils of conics:

I. Pencils with four distinct base points and one comramgent whose double point defines a
common polar triangle for all curves of the pencil.

II. Pencils with three distinct base points and on@roon tangent at one of these points. Two
decomposable examples.

() SEGRE, C.: “Studio sulle quadriche in uno spazio lieeal un numero qualunque di dimension. “
Torino Mem., 2° Series36.
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[ll. Pencils with two distinct points and fixed tangentshese points. Two decomposable examples,
and a double line.

IV. Pencils with two distinct base points with giveangents and given curvature at each of these
points. One decomposable curve.

V. Pencils with one four-fold base point and a decomlplescurve (namely, a double line).

VI. Pencils of decomposable conics with a fixed compaonent

VIII. Pencils of decomposable conics with fixed double go{irtvolutions of line pairs).

§ 11. Cubic space curves.

1. The rational normal curvelf one applies the map that was discussed in 8§ 10 to
hypersurfaces iig;, in particular— i.e., to groups oh points in a line- then one will
obtain a map of this group of points to the points of ae@. In order to have
something definite in mind, we consider the case 3, although most of the following
remarks will be valid for an arbitrary.

Let the triple of points to be examined be given by eqnatof the form:

(1) f(X) = a,x -3a3 X % +3a,%x%~ 8% 0;

it will therefore be mapped to pointsyg( a1, az, az) in Ss. One must pay particular
attention to the triple that consists of three cmiant points; for them, one will have:

f0) = (ute —%t)” = X6 -3 0L+ 3x Kt~ XKE;
hence, the image point will have the coordinates:

Yo =16
Vi =4t
Y, = t12t2
¥s =t

(2)

By means of (2), theline S; is mapped to a curve in the sp&€S,, resp.) that one
generally (for arbitrary) calls arational normal curveand in the special case mf 3,
one calls it acubic space curv€'). The projective transformations of such a curve will
again be called cubic space curves.

The word “cubic” thus means that an arbitrary planatersects the curve in three
(not necessarily distinct) points. Namely, if ondb&titutes (2) in the equation for the
planeu then one will obtain a third degree equation:

(3) Ut +utts + u,tt,+ utf=0

that defines three points on thaxis.

() In the case = 2, the normal curve will be a conic.
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If these three points aig r, s then for a certain choice of the arbitrary factong
will have:

Upts + Ut + Uit + U= (it —02to) (Nta—T2t2) (S1t2—Sp o)
identically inty, to; hence, by equating coefficients, one will have:

Uy = Q1S

U =qnsS,+ qnst gLs
U, = LS+ GhS,+ GLS
U; = Q,1S,.

(4)

By means of (4), each triple of poinisq, r on thet-axis will correspond to a uniquely-
determined planel that intersects the curve at the poiRtsQ, R with the parameter
valuesp, q, r, resp. It is therefore not only the pointssafbut also, at the same time, the
planes ofS; that are mapped to triples of points on the parantieef, in a one-to-one
manner.

In particular, if the point® andQ coincide theru will be called a tangential plane at
the pointQ. Since theu depend upon the parameter®r a fixedQ = R, the tangential
plane will define a pencil whose carrier goes throQgand will be called théangentat
the pointQ. If all threeP, Q, Rcoincide theru will be called theosculating plando the

point Q.

Theorem. Any curve that permits a rational parametric representation by way of
functions of degree three:

(5) Ye= 8L+t + gL+ db

is projectively equivalent to a cubic space curve or a projection @fbéc space curve
onto the space,®r S.

Proof: The projective transformation:
Ye= Yot by +Cy2+0kys

obviously takes the curve (2) to the curve (5). If thesmisformation is degenerate then,
from § 6, it will amount to a projection onto a subsp&ca.

If one projects the cubic space curves from a point o€tinee onto a plan&, then,
as we shall see, one will obtain a conic sectiohonk projects from a point that lies
outside of the curve then one will obtain a plane euhat will obviously intersect any
line in three points, hence, (cf. below, 8§ 17), a planeecaf degree three. Finally, if one
projects onto a line then one will obtain this lineelitscovering itself several times.
Other projections will not be considered.

2. The null system linked with the curv8ince each point d& corresponds to a
point-triple in § in a one-to-one fashion, and since each such point-tripéen ag
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corresponds to a plane there will also be a one-tormaqe of the points 0% onto the
planeu. One obtains its equations when one writes the $amef(x), once in the form
(1) and once in the form (3) (with, x; instead ot, t;), and equates the coefficients. If
one writesz, 7, 2, z3, instead ofy, a1, az, as, then one will obtain the equations:

c
S
1

4

s
Il
w
N

(6) I

Z,.

c C
oo N
1

Since the matrix of this linear transformation is skaunmetric it will represent aull
systerm(}).

If one takesz in (6) to be, in particular, a poiryt of the curve in the parametric
representation (2) then one will immediately see tiaiplaneu is the osculating plane at
this point. HenceThe null system associates each point of the curve with itsatiagul
plane. From this, one obtains a simple construction ofrilié points of a plane that is
not a tangential plane: One attaches the osculatimg pdathe three intersection points of
the plane with the curve. They intersect it at polints of the plane. Since each point
can be regarded as the null point of its null plan&llbws that: Three (not necessarily
distinct) osculating planes go through each point of a cubic space curvecoiihecting
plane of their osculating points is the null plane of the points.

3. The chords of the curveln addition to the chords that connect two poirfta o
curve, in the sequel we will also tacitly compute thegeats to the curve. We now
prove:

Precisely one chord goes through each point outside of the curve.

Proof: We intersect the poiAtwith all possible planes. One then has:

QpU+tau+aU+aguz=0;

hence, from (4), iP, Q, R are the intersection points of the plane with the ednen:

e {ao%sﬁ (4Lt 4Lt GhY
+a (S GRS T GLY* AGLSTO.

For a giverQ andR, the linear equation (7) will generally determine a unigtie s, : S,
and therefore, the plane However, ifAQRIs a chord then each arbitrary po8of the
curve will come about as the third intersection pewth a plane through thAPQ in
guestion; hence, (7) will then be satisfied identicallg;iands,. That will yield:

() If, as we did at the start of this section, one skea@n arbitrary numbarto be the dimension of the
space then for evemone will obtain a polar system and for agda null system.
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(8) {aoqlrl+ a(qr* O, + a,8,r,=0
a,q,1, + a,( o1+ q,r) + ag,r,=0.

From these two equations, one can uniquely determinatios:r
Quri: (Our2+02ry) :02rz,

hence, the ratios of the coefficients of the quadejication whose valueg : g, andr; :
r, are determined uniquely. The assertion follows from this

On the other hand, in each plane there are obviously (hodenecessarily distinct)
chords. For this reason, one says that the chords @ibic space curve define a
“congruence of field degree 3 and bundle degree 1" (cf. hei34).

4. Projective generation of cubic space curvest QR andQ'R be two chords of the

curve. The pencil of planes that one obtains whenpoogects all of the pointS of the
curve ontoQRis represented by (4). As one see®nds; are the projective parameters
of the pencil. However, the same is true for evetheo chordQ’R. Hence:lf one

connects any two chords (or tangents) with all goof the curve by planes then one will
obtain two projective pencils of planes that eacher each other.

As is well-known, two projective pencils of planes gate a quadratic surface that
goes through the lines that carry thelence, one can pass a second-order surface of
that includes a cubic space curve through any thards of the curve If we next take
both chords to be skew then the surface will include dwstinct families of lines, and
since they are skew, both chords will belong to the dJamdy. In the exceptional case,
each plane through one of the chords will interseetctirve at the endpoints only once;
hence, each line in the other family will have onlyegpoint of intersection with the
curve. Exceptionally, any plane through such a secahttiwe curve will intersect the
space curve at the points of intersection of the $eg#h the curve only twice; hence,
any line of the first family will again be a chord.

Secondly, if we let both chords pass through the sarmespof the curve then the
qguadric that they contain will be a condence, the cubic space curve will be projected
through a quadratic cone from each of its points.

If we now consider three chords, the third of which sball belong to the ruled
family that is determined by the first two, then wel wlbtain three projective pencils of
planes that cover each other, in such a way that dmeh torresponding planes will
always intersect in a point of the curvdence, a cubic space curve will be generated by
the intersection of three mutually projective pé&nof planes.

Conversely: Three projective pencils of planes generally geteera cubic space
curve. Exceptions are:

1. When corresponding planes of the three penbilays have a line in common.

2. When the intersection points of correspondiigds of planes lie in a fixed plane.

Proof: Let:
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AlL+A),=0,
9) Am +A,m, =0,
An +A,n,=0

be the equations of three projective pencils of planésone uses these equations to
compute the coordinates of the intersection point ofthihee associated planes then it
will be represented by three-rowed determinants, henct&rins of degree 3 id; and
Azi

(10) YoiYi:iY2:Ya=go(l) 1 gu(l) : gA(1) 1 @5() .

If the four formsgo, @1, @2, @3 are linearly independent then, from the theorem in nd. 1 o
this section, the curve that is represented by (10) @il bubic space curve. However, if
there exists a linear dependency:

Cofo + C1¢p1 + Cogpo + C3gp3 = 0,

then this says that all of the pointsvill lie in a fixed plane. This plane will intersette
three projective pencils of planes in three projegbeacils of lines that generate a conic
or a line in it. However, if the three-rowed sub-deteants of which we spoke are
identically zero then each of the three associataagsl will go through a line; in general,
this line will define a quadratic surface.

Suppose we assume that equations (9) actually define a spdie curve. The
equations of these curves will then be found by settingwberowed sub-determinants

of the matrix:
L m n
IZ m2 n2

equal to zero. The cubic space curve will therefore bedhgplete intersection of three
guadratic surfaces. Any two of these three surfaces, e.qg.

limp—lom =0, linz—=l2n =0,
will have, besides the space curve, also theljiné, = 0, in common with each other.

Problems. 1. The residual intersectioRéstschnijtof two indecomposable quadratic surfaces with
different vertices that have a common generator, bubtbenalong it, is always a cubic space curve.

2. The quadratic surfaces that contain a given cubic spmee define a net.

3. A cubic space curve is uniquely determined by sixsgfaints.

4. A cubic space curve always goes through six points, nodbwvhich lie in a plane. (From
Problems 3 and 4, one uses two cones, each of whiehdmevof the six points for vertex and go through
the remaining five.)



CHAPTER TWO

Algebraic functions

As its name implies, algebraic geometry deals witkhlgeometric and algebraic
concepts and methods. Whereas in the previous chaptleasieeconcepts of projective
geometry were summarized, in this chapter the essafg@braic concepts and theorems
will be discussed. The reader can find the proofs oftteerems presented, e.g., in my
book that appears in this collection and is entitled dietme Algebra”y).

8§ 12. Concept and simplest properties of algebraic functions

Let K be an arbitrary commutative field, say, the field omptex numbers. The
elements oK are callecconstants Letug, ..., uy be indeterminates, or, more generally,

arbitrary quantities in an extension field Bf between which there are no algebraic
relations with constant coefficients. The field rational functions ofu;, ..., u, is
denoted byK(u) or P.

We denote any element of an extension fieldK¢h) by w and regard it as an

algebraic functionof uy, ..., u, when it satisfies an algebraic equati¢@ = 0 with (not
identically vanishing) coefficients iK(n). Among the polynomial§z) with the property

f(«) = 0 there is a polynomial of least degi#e), and one can prove algebraically that it
has the following properties (cModerne Algebra,ichap. 4):

@(2) is uniquely determined up to a factorkiin).

#(2) is irreducible.
Any polynomiaf(z) in P[Z] with the propertyf(¢) = O is divisible byg(2).

h wbd e

For a given non-constant irreducible polynon@éd) there is an extension field
P(¢) in which ¢(2) possesses a zetd

5. The fieldP(a) is uniquely determined by(z) up to isomorphism, i.e., da and
ap are two zeroes of the same polynon@éd), which is irreducible oveP(«), then one

will have P(aw) OP(ap), and this isomorphism will leave all elementPdixed and take
w to w.

() WAERDEN, B.L. VAN DER: Moderne Algebra,|2 ed., 1931; II, T ed., 1931; in particular,
chaps. 4, 5, and 11.
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Two such zeroes of a polynomial that is irreduciblerd® are calledconjugate
relative toP. In general, two systems of algebraic quantitées..., ay andd] , ...,w, are
called conjugate to each other when there is an isonsonaP{c, ..., a) O P(d,
...,aJ,) that leaves all elements Bffixed and takes eaals to «j .

The divisibility property 3 may be further sharpened in@age of® = K(n). f(2 and

#(2) only need to depend rationally upoy ..., u, alone. However, if one makes them
completely rationalin us, ..., uy by multiplying them by a rational function aof, ..., u,
alone and then assumes thé) is primitive in uy, ..., u, — i.e., it includes no polynomial
that depends upan, ..., u, alone as a factor (which one can obviously alwaysnge) —
then ¢(2) will be anirreducible polynomiain us, ..., u,, z, and f(2) will be divisible by

#(2) in the polynomial ringK[uy, ..., Un, Z. All of this follows from a well-known

lemma by GAUSS (cfModerne Algebra,I§ 23.)
If a, ..., ah are algebraic functions then all rational functiohgd ..., a andu,

..., Up Will define a fieldP(ay, ..., @) = K(uy, ..., Un, @, ..., a) Whose elements will be

all of the algebraic functions afy, ..., uy; it will be an algebraic function field.
Furthermore, one has theansitivity theorem:An algebraic extension of an algebraic
function field is again an algebraic function fieldf the extension is produced by the
adjunction offinitely manyalgebraic functions then one will call it fanite algebraic
extension

Any polynomialf(z) with coefficients inP possessessplitting field i.e., an algebraic

extension field of? in which f(z) is completely decomposed into linear factors. This

splitting field is again uniquely determined up to isomorphisimone decomposef$z)
into nothing but linear factors then one will cilk), along with the zeroes df2),

separable. An algebraic extension field @ whose elements are all separable dvés
called separable overP. In this book, we will be concerned only with separable
extension fields. When the fieldl includes the field of rational numbers (a field of

characteristic zero), all algebraic extension fieltl® will be separable.

For separable extension fields, one has phnitive element theorem: The
adjunction of finitely many algebraic quantitiea, ..., & may be replaced by the
adjunction of a single quantity:

=+t ..., (a2, ..., ar InP);

i.e., a, ..., @ may be expressed rationally in termsdof
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When a separable algebraic functions identical withall of its conjugates relative
to P, it will be rational; i.e., it will belong t@&. The irreducible equation whose rootus

then has only one simple root, and can therefore onlyéar!

The degree of transcendencéf w, ..., an are elements of an algebraic function
field, or at least an extension field d, then one will call themalgebraically

independentvhen any polynomidl with coefficients inK that has the propertya, ...,
ax) = 0 will necessarily vanish identically. One cagat algebraically independent
elements as indeterminates since their algebraic propargethe same. ¢, ..., an are
not algebraically independent, but also not all algelwa#r K, then one can always find

an algebraically independent subsystem ..., «_ such that all of thea will be
algebraic functions oty , ..., @ . The numbed of these algebraically independent

elements is called thdegree of transcenden¢er thedimension of the system 4y, ...,
wh} relative toK. If the a, ..., an, are all algebraic relative td then the systemd),

.., ain } Will have degree of transcendence zero.
In algebra, it is proved that the degree of transcerebkis independent of the choice

of algebraically independent elemerts, ..., « (cf., Moderne Algebra,|§ 64). Ifa,

.., Gk are algebraic functions @&, ..., &, while, converselyg, ..., 8, also depend
algebraically ona, ..., an, then the systemsd, ..., ax} and {4, ..., 6} will have the
same degree of transcendence.

A polynomial f(z, ..., z)) in P[z, ..., z)] is called absolutely irreduciblewhen it
remains irreducible under any extension of the ground Field'he following theorem is

true: A finite algebraic extension df is sufficient to decompose a given polynorhial
into absolutely irreducible factors

Proof. Let the degree dfbe less than. We replace each in f(z, ..., z,) with 7,
and thus define:

n-1

F() =f(t, t, t, ..., t).
Each termz 2z --- 2 off(z, ..., z,) then corresponds to a term:
tbl+bzc+-~-+k;]¢“‘1

in F(t). Different terms of yield different terms of, since a whole number can be
described in only one way &s + b,c + ... +b,c"* with b, < c. The coefficients of the

terms off are thus also coefficients K(t). If f decomposes in some extension fieldof
thenF(t) will also decompose in the same field if the faettth
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f(2) =9(9h(2)
implies that:

fit, 15 t, ) =gt 5 t, ) h, €1, L)
or that:
F(t) = G()H(D),

and the coefficients a@(z) andh(z) will also be coefficients oB(t) andH(t), resp.. Now,

a finite extension o will suffice to completely decompo$€t) into linear factors. The

coefficients of the factor&(t) andH(t) will also belong to this extension field, hence,
those off(z) andg(2), as well. The assertion is thus proved.

8 13. The values of algebraic functions. Continuity and diffentiability.

Let wbe an algebraic function of, ..., u, that is defined by an irreducible rational
equation:

(1) P(u, ) =ag(u) o +a(u) I+ ... +a5(u) =0.

Thus, theay, ..., a5 are assumed to be polynomials in theith no common terms.

We understand a values/’ of the function w for particular valuesu’ of the
indeterminatesl to mean any solutiow of the equatiorp(u, «) = 0. Whenag(u’) # 0O,
there will beg valuesw associated with any system of valuggor u, which we denote
by Y, ..., &9, and which will be defined by:

e P’ @) =a,(U)[[] (z-”).

Some of the root&)” will be equal to each other if and onlyDifu’) = 0, whereD(u)
is the discriminant of equation (1P(u) is not identically zero in the. The values’ for
which ag(u’) D(u) = 0 are callectritical valuesof the functionw In general, they are
associated with less thgrdifferent valuesd, and in some situations, even none at all.

Theorem. Any correct algebraic relation(d, «) = O will remain correctunder the
replacement of u with any valuéand wwith one of the associated valugs

Proof. It follows from § 12 that if(u, &) = O then there will be a factorization:
f(u, @ = ¢(u, @ 9(u, o
and therefore upon replacingandc«, one will be able to assert that:

f(u, @) =0.
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We now assume that the ground fiéddfrom which the valuesi” and & will be

chosen is the field of complex numbers. We investighé continuous dependency of
the values of the functiow on the values of the argumant We thus restrict ourselves
to the valuesi’in a neighborhoodl(a) of a non-critical locus (here, a locus will mean
simply a system of values, ..., a, of the independent values, ..., u,); thus we assume

that|ui’ - q| < ¢, in whichdis a positive number that is yet to be determined.

Sincea is not critical, the locus will be associated witly different value™, ...,
b@ of the functione which can be understood to be points of the complexbrupmlane.
We draw circleX;, ..., K4 around these points that have an arbitrarily smailisagiand
have no interior points in common.

Any locusu’ in a sufficiently small neighborhoad(a) is associated witly values
&Y, ..., &2 of the functionw One can now express tteeorem of the continuity of
algebraic functionsn the following way:

For a suitable choice of the

Kg neighborhood a) (hence, of the number
J), in any circle Kthere lies precisely one
o b9 valued” such that one can enumerate the

" in such a fashion thatd” lies in K.
With this enumeration, ang"” is a single-
valued function of Gthat is continuous in
the entire neighborhood (&).

o 09

Proof. If one setz = b® and takes the absolute value then it will follow fr¢@h
that:

‘¢(u', b®)
a,(U)

[¢]
- |—| ‘b‘” —
1

g(u',b")
a(U)
sufficiently small neighborhood(a), one therefore has:

Now, is a continuous function af’ that takes the value zero faf=a. In a

‘mu”b(l)) <&

a,(U)

hence, also:

<&\

g
|—| ‘b‘” —
1

If all of the factors on the left were £ then this inequality would be false. Hence, at
least one factor must besi.e., at least one” lies in the circlek; of radiuse around
b®. The same is also true for the circles ..., Kq . Since there are just as many points
" as circleK, and the circles are distinct from each other, arsfeck"? must contain
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precisely one pointd”, and we can choose the normalizatiorwd$t in such a way that
&? lies inK,. Any " is then determined uniquely. Furthermore, on theshaisthe
proof that we just carried outd” — b | < £ for an arbitrarily smalk, as long asy — & |

< d Thus, the functiornd” is continuous at the locus = a. Since one can ultimately
replace the locua with any other non-critical locus, hence, in particuwaith any locus
inside ofU(a), the functiona” will be continuous everywhere ld(a). Since the loci
inside ofU(a) are not critical, it will follow that the assocdiat valuessd?, ..., " will all
be different.

The differentiability of the algebraic functions les very easily from their
continuity. Thus, since we are only concerned with plartial differentiability with
respect to one of the variables ..., u,, we can restrict ourselves to the case of a single
indeterminatel. One may associate the functional vdiue a valuea of u, and the value
w'=b + ktou’=a+ h. One will then have:

(3) ¢(a,b)=0, ¢@a+hb+kK=0.

We now have to prove that likih exists wherh — 0. The partial derivatives of the
polynomial ¢(u, 2 may be denoted by, and@,. They refer to the coefficients of the
first powers inh in the development of(a + h, 2) [¢(u, b + K), resp.]. If one now
developsg(a + h, b + k) in powers oh and then in powers &fthen one will get:

(@) {¢(U+h, z+ R=¢(uy z B+ B(Uuhz X
=¢p(u, )+ (uhz B+ B,(uzk
with:
#1(u, 0,2 = @y,
@2(u, 0,2) = @,.

If one replaces = a, z=bin (4) then, due to (3), it will follow that:
0 =hgs(a, h, b + K) + hg,(a, b, K).

Sincea was not a critical value, one will hayg(a, b) # 0, and therefore one will also
have ¢»(a, b, k) # 0 for sufficiently smalk. One can therefore divide the functions and
get:

_#(ahb+ K

k_
h ¢.(a, b, k)
If one now letsh tend to zero then, due to the continuity of thection «J, k will also
tend to zero. Thusg(a, b, k) will tend to ¢»(a, b) and@.(a, h, b + k) will tend to ¢»(a,
b). It will then follow that:

dw — lim k__ ¢.(ab

du’ h™ 4,ab)
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Therefore, the differentiability is proved at any notical locus. One likewise shows
that the differential quotient at any such locus willéngive value:

© ful- L)
T YR

In my bookModerne Algebra8 65, | showed that one can also define the retiffigal
guotients of a separable algebraic functégnndependently of any continuity properties
and for an arbitrary ground field, by means of:

dw__ ¢,(uw)

du ¢, (U, )’

and all of the rules of differentiation can be ded from this definition immediately.

The analyticity of a complex-valued function ofngolex variables follows from its
differentiability. Therefore, the values”, ..., &9 of an algebraic function in the
neighborhood of a non-critical locus a are regular analytic functions of thepleom
variables U. Incidentally, the same thing is true for theuwesl of an algebraic function of
more than one variable at a non-critical locus.

8 14. Series development for algebraic functions of one variable

A regular analytic function of one variahlé may always be developed into a power
series. In particular, the regular function eleteed”, ..., &/ that were examined in § 2
have series developments at any non-critical lecus

=+ 1+ P+ L (T=u'-a).

They converge in any circle around that
contains no critical loci.

For a critical locus, the situation is somewhat
more complex. Let be such a critical locus in
the u-plane. We next assume that the initial
coefficient ap(u) in equation (1), 8§ 13, does not

, vanish at the locusi = a. One now draws a
<_ % sequence of circlel;, Ko, Kz in theu“plane that
go througha, such that any two of them have a
\ common neighborhood, which, however, contains
no other critical values, so there are regular
function elementsed”, ..., &9 in any of these
circlesg. In the common neighborhood of two
circles, thedd?, ..., J9 of one circle must agree
with the &V, ..., &9 of the other circle for any
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series. If one now starts, say, frad? in the first circleKy, and then seeks the element
in K, that agrees witkdY in the common neighborhood, and then goekstauntil one
again returns td<i, then it can happen that one will either obtain shene functional
elementsS” or that one will obtain the “analytic continuatioof another element say
? - by the process just described. However, in either camemust again return to
oV after a finite number of orbits. If this is true afteorbits then one will havé
functional elementsS®, ..., & that are analytically connected in a neighborhood ®f th
pointa, and which will define @ycle. Then functional elementsS®, ..., & will break

up into a certain number of cyclesfy, ..., ], [V, ..., S, ..., [™Y, ..., 9]

in this manner.

In order for us to exhaustively describe the sort oktimaluedness in our analytic
function wat the locuss = a, we would like to convert the multi-valued functiannto a
single-valued one in a neighborhood wf= a by the introduction of the “position
uniformization” r =§/u'—a. This comes about as a consequence of the following
argument:

u’=a + 7* is an analytic function of, and each” is an analytic function af’in
one of the circles that we just described. Onegetlad” as an analytic function afby
combining these analytic functions. If one now rotéespoint7 around the zero point
once theru’— a will rotate around the zero poikttimes;u’ will therefore encircle the
point a k times. Sinced?, ..., & can be cyclically permuted by a single orbit around
the locusa, they will go back to themselves precisely aftersuch orbits. In a
neighborhood of the locus= 0 (that does not include this locus itself) @&, ..., ¥
are therefore single-valued analytic functionsrof However, these functions will be
restricted under a reduction of the neighborhood aboubthest = O, since it is a well-
known elementary fact that one can estimate the behatitre roots of an algebraic
function by the behavior of its coefficients. Theree tlocusz = 0 will either be an
essential singularity or a pole, i.e., the locus nailt be a singularity, at all. One can thus
specify the values iV, ..., & at the locus = 0 in such a way that these functions will
be analytic in the entire neighborhood of 0, and can therefore be developed into a
power series irT.

W =a®+a®r+a®ri+..
W? =a®+aPr+aPr2+...

(1)

WP =a® + a7+ aPr+ ..

But there is more! If one describes a complete caoteind the point 0, or only thé&'

part of it:

r=re? 0< o< 22,
k

thenu’ will describe a complete circle, ard” will therefore go toed®, «? will go to
2, ..., andd? will go to . Hence, any power series”, ..., o9 will originate in

the previous one when one makes the replacement:
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2717
T -1¢, {=ek .

This becomes immediately remarkable in the form of theepcseries (1), since they
define a cycle.

In all of the previous considerations, nothing essent@llevchange ifag(a) = 0.
One could then introduce e.g.— ag(a) w instead ofwas a new function; the values of
this function would remain restricted far=a. One would also obtain a cycle of power
series in this particular case for which one would newe that only a finitely many
negative powers of could appear.

If one substituteg = (u’—a)** in the development (1) then these fractional powers of
u —a will become power series that one calls PUISEA&EXies we will denote these
power series b¥,. If one substitutes them everywhere in equation (2), a3 it will
follow that:

#(u’2) = a,(N)[] (2~ B).

Since this equation is valid for all of thg in a neighborhood of the locs one can
replaceu’—a in it with an indeterminatg and obtain the factor decomposition:

#(x2) _
2
&) T |‘|(

in which theP, are power series in the fractional powers afith finitely many negative
exponents.

The derivation of the power series developmepjsthat was used here, which
originated with PUISEAUX, is indeed the simplestdamost natural, but it leaves
everything unknown, since, in reality, it treatpuely algebraicsituation in the series
development, and it also gives no means of effelstigomputing the power series. We
thus present a second purely algebraic derivatiothe power series development of
algebraic functions that originates in the simgteam of OSTROWSKI, and is valid for
arbitrary ground fields of zero characteristic. eTéonvergence of the series will thus
generally remain outside of consideration; it isnteresting from an algebraic standpoint
and is, moreover, already proved by the foregommgction-theoretic considerations.
From now on, we will simply deal witformal power serie$, ..., P, , which involve
fractional powers ofi —a and satisfy equation (2) in a purely formal way.

The denominatoay(x) in (2) can be decomposed into linear factors, igdhverse
can be developed into a geometric series in

BB

ax , a’x’ j

(ax-p™ ,3_1(1——
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as long as it has the formm( - )™ with 8% 0. The left-hand side of (2) will then take
on the form of a polynomial ix whose coefficients are power serieidivided by a
power ofx, hence, power series with finitely many negative exptme
HENSEL'’s lemma. If F(X, 2 is a polynomial in x of the form:
F(x,) ="+ A2 + ... +A,
whose coefficients are complete power series in x:

A,=ap+agX+apX+ ...

and HO, 2) decomposes into two relatively prime factors of degree p and q with p +
n:

F(0,2) = gu(2) Cho(2): (@(2), ho(2)) = 1
then KX, 2 will decompose into two factors of the same degrees in z:
F(x, 2 =G(x, 2 [H(x, 9
whose coefficients are, in any case, complete power seriesdnethus has:
G(x, 2 = 9(2), H(X, 2 =ho(2).
Proof. We order(x, 2 in powers ok:

F(x, ) =F(0, 2 + X fi(2) +X*fx(2) + ...,
f1(2) =aw 2™+ ... +an,

and make the Ansatz f@(x, 2 andH(x, 2) that:

QX 2 =0(@ +Xx %@ + +X (...,
H(x, 2 =ho(2) + x hi(2) + +>¢ hu(2)...

With this Ansatz, the polynomiatsi(2), g2(2), ... will have degree at mopt- 1, and the
polynomialshy(2), hx(2), ... will have degree at mogt— 1. If we now form the product
G(x, 2 [H(x, 2 and equate it witlr(x, 2 then we will obtain a sequence of equations of
the form:

(1) 90(2) ho(2) + 91(2) he2(2) + ... +9x(2) ho(2) =T(2) k=1,2,..).

If we now assume that have already determmed.., gk-1 andhy, ..., h1 from the first
k —1 equations in (1) then, from (1), we will have an equatis the determination aji
andhy:

(2) 9(2 h(2) +ho(2) &(2) = BK(2),

in which By(2) will be a given polynomial of degree at most 1.
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This equation is, however, well known to always beilslel and indeed, in such a
way thatgx andhy have degrees at mgst- 1 andq — 1, resp. (cf.Moderne Algebra,I8
29). Therefore, one can determine all of ¢heandhy as series from (1). The power
series that they define f@&(x, 2) [H(x, 2, resp.] will be polynomials iz of degreep (q,
resp.) that go tgo(2) [ho (2), resp.] forx = 0. The lemma is thus proved.

Theorem. Any polynomial:

F(x, 2) ="+ A2 + ... +A,

whose coefficients are power series in x with only finitedyny negative exponents will
decompose completely into linear factors:

Fx,.2=@z-R)(z-R) .. z-R)

in which R, ..., P, are power serigseach of which lead to powers of a suitable
fractional power of x.

Proof. We may assume thag = 0, since otherwise we would need only to introduce

1, . . . . .
z——A in place ofz as a new variable. K, is not identically zero then the development
n

of A, will begin with a,x™ , wherea, # 0. If all of theA, = 0 then there will be nothing
to prove. Otherwise, latbe the smallest of the numberg/ v such tha®\, # 0. It is then

obvious that:

oy, —voz=20 v=1,2, ..n),
in which the equality is valid for at least one If we now introduce a new variabfeby:

z2=70x°
then our polynomial will be converted into:
(4) F(X, 2) = F1(x, Q) X" (" + AoX 2902 + ... + AnX ™).
If one now hasr=p / gwith g > 0, and one sets:
&=x1, x=¢&4,

then the brackets on the right-hand side of (4) csmlaé written:

D& ) =¢"+BA§"? + ... +By(9),
BA&) = A& X,

with:

As long as it is not identically zero, the power s&fi, (&) will begin with:
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8, &%= g IO,

which will then be a complete power seneshose constant ter,(0) will be non-zero
for at least one. The polynomial:

#H =20, ="+ ... +a, "7+ ..

will therefore not be equal t§". On the other hand, since the coefficient’dt is null,
#({) cannot be the™ power of a linear factof —a. ¢(¢) thus possesses at least two
different roots and may thus be decomposed into twovelatprime factors:

#(<) = 9o(¢) tho(4) -

From HENSEL'’s lemma®(x, 2), and therefore, alsb(x, z), will now decompose into
two factors of the same degreega&)) andhy(¢{) whose coefficients will be power series
in &

If we apply the same reasoning to the two factons(gfz) then we can also further
decompose these factors and proceed in this way untlet@mposition of(x, 2) into
linear factors is complete.

It is self-explanatory that one can examine the WWehaf the functionw in the
neighborhood ofi = « in precisely the same way as in the neighborhoad=o4, if one
now setai™ = x instead ofi —a = x. The rootsed?, ..., o will then be power series in
increasing powers of = u™.

Problem. 1. Determine the initial terms in the power semewelopment of the roots of the
polynomial:

Fu,2=Z-uz+u®

for the neighborhood of the locus= 0.
§ 15. Elimination.

In what follows, we will need some theorems fronmelation theory that we now
summarize briefly.

The resultant. Two polynomials with undetermined coefficients:
(D =aX"+a X+ ... +an,

o2 =box™+by X" + ... +by
possess a resultant:
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% & - 3
% & - 3

n - % a g
b B - b,

b B -k

with the following properties:

1. For special values of tlegandbx one will haveR = 0 if and only if eithegg = by
= 0 orf(x) andg(x) have a common facta@(x).

2. Any term ofR has degreen in the coefficientsy, degreen in theby, and weight
(viz., the sum of the indices of the factaysndby togetherm/n.

3. One has an identity of the form:

R=AfXx) +B dXx),

in which A andB areg;, b, andx, andA has degree at most— 1 andB has degree at
mostn — 1.

4. If &, ..., & is the zero locus dfx) and s, ..., 7m, that ofg(x) then one will also
have the following expression for the result&nt

R=ay[]9(£,)= D™ f @)
1 1
=200 [ )
1 1
One understands the resultant of two homogenesassfinx; andxs:

FX) =apX + g% ' %+---+ g %
Gx) =byx" + X" e+ By X

to mean the above determindftin any case. It will be zero if and onlyFH{x) andG(X)
have a common factor. By switching the rolesxpfand x;, the resultant will be
multiplied by& = (-1)™", which follows easily from the form of the detenait.

The resultant system of a sequence of polynomiasf;(x), ..., f,(X) be polynomials
of degree< n with undetermined coefficients, ..., e, . There is then one system of
formsRy, ..., Rsin the coefficientsy, ..., e, with the following properties:
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1. The expressiorg,, ..., Rs vanish for special values of the ..., e, if and only if

fi, ..., fr have a common factor, or the initial coefficient wh@s in all of these
polynomials.
2. All of the terms oR;, ..., Rs have the same degree in the coefficients of any

individual polynomial and the same weight as all ofdbefficients together.
3. One has identities of the form:

R =2 Ak (),
in which theAy are polynomials in they, ..., €., andx.

The resultant system of a sequence of homogeneous faetf, ..., f; be forms in
Xo, X1, ..., Xn With undetermined coefficients, ..., e,. There is then a system of forms
Ry, ..., Rswith the following properties:

1. The formdR, ..., Rs vanish for special values df, ..., e, if and only iffy, ..., f;
possess a non-trivial common zero loeuse., one that is different from (0O, O, ...,O)n
a suitable extension field.

2. Ry, ..., Rs are homogenous in the coefficients of any individuahftys ..., f, .

3. One has identities of the form:

X R = > A fi,
in which theAy are forms in they, ..., €y, Xo, ..., Xn.

One also calls the construction and the setting to @aéthe resultant system of the
polynomials (resp., formd), ..., f; the elimination of x (resp., ofXy, ..., X,) from the
equationd; =0, ...,f,=0.

If the equationd;, ..., f, are homogeneous in further sequences of variables then the
elimination of such a sequence will yield a system ofultasts that is again
homogeneous in the other sequences, such that onertanueahe elimination. There
is therefore also a resultant system for forms #nathomogeneous in further sequences
of variables, a resultant system with properties téwd completely analogous to
properties 1, 2, 3.

(For the proof, se®loderne Algebra lichap. 11.)



CHAPTER THREE

Plane algebraic curves

In this chaptery, y, z, u will mean indeterminates, whilg, ¢, ... will mean complex
numbers. The& and wthat will be introduced later on will be algebraic ftions of one
indeterminateu.

8 16. Algebraic manifolds in the plane

Let there be given a system of homogeneous equations:

(1) f1o, 171, 172) = 0 v=1,2,..r.

One calls the totality of pointg in the plane that satisfy equations (1) algebraic
manifold. However, the totality of points that satisfy a ssnbbmogeneous equation is
called amalgebraic curve

We would like to show that every algebraic manifoldhe plane is composed of an
algebraic curve and finitely many isolated points. Tat #nd, we define the greatest
common factog(y) of the polynomiaf (o, 171, 172) and set:

fuly) =a(y) huy).

The solutions of (1) will then reside on the points ef¢hrve:

(2) g(;) =0

and the solutions of the system:

() h/(n) =0 v=1,2, ...

Therefore, the polynomidl,(y) has the greatest common factor unity. If one rega@as i
a polynomial iny, with coefficients that are rational yg andy; then it is known that the
greatest common factor can itself be representedirgsaa combination of polynomials:

1 =au(y2) hu(y) + ... +a(y2) he(y).

The a,(y2) are completely rational i, and rational iny andy; . If one makes them
completely rational iryop andy; by multiplying them by the least common denominator
b(yo, y1) then one will obtain:

(4) b(yo, y1) = ba(y) hu(y) + ... +bi(y) he(y).

Shouldb(yo, y1) not be homogeneous, one would look for the terms ofeal filegree in
b(yo, y1) that will define a homogeneous, non-vanishing polynoofigl y1), and likewise
look for the terms of the same degree in the right-isadel of (4); one would thus obtain:
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(5 (Yo, Y1) =cu(y) ha(y) + ... +ci(y) he(y).

It follows from (5) that all solutions of the systeof equations (3) will
simultaneously be solutions of:

(Yo, y1) = 0.

However, this homogeneous equation determines only fimbalyy values of the ratios
o . m; one likewise finds finitely many values fagx : 77> and sz : 1. Therefore, the
system of equations (3) has only finitely many solutigns n: : 17, . These, together
with the points of the curve (2) will constitute all widns of the original system of
equations (1).

If one decomposes the polynonudy) into irreducible factors:

aly) =auy) ... 9dy)

then the curve (2) will obviously decompose imteducible curves:

0i(y) =0, ...,0sy) = O;

i.e., ones that are defined by irreducible form$hus, any algebraic manifol@l)
decomposes into finitely many irreducible curves and finitely maolgtesl points.
Naturally, one can also treat only curves or only igolgioints; one can also encounter
the case in which the system of equations (1) has no awutt all. Finally, if the
system of equations (1) is empty, or if all of thare identically zero then the manifold
that it defines will be the entire plane.

A curveg(#n) contains infinitely many points. If — says actually enters into the
polynomialg(#) then the equation:

g(/7) = ao(’?o,/h)/??+ ao(’701’71 r;_l+"'+ an(/7 0/7]): 0

will define at least one value (and at mostalues), for each value ratiay : 7, for
whichag(770, 171) # 0.

If an equation () = Ois true for all or almost all (i.e., all except for finitelyamy)
points of an irreducible curve(g) = 0 then the form (f) will be divisible byg(y).
Otherwise,f(y) and g(y) would be relatively prime, and from that it would follpas
before, that the equatiofgy) = 0 andg(s7) = 0 would have only finitely many common
solutions.

The last theorem is also true for hypersurfaces isphees, (as well as in affine and
multiply-projective spaces):

The STUDY Lemma (}). Let f and g be polynomials in,y..., y» . If all (or almost
all) solutions of the irreducible equatiorfsg = 0 also satisfy the equatioifh) = O then
the polynomial(y) will be divisible by ¢y).

(*) The STUDY Lemma is a special case of the HILBERTIstellensatz NMloderne Algebra |IChap.
11).
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Proof. If f(y) andg(y) were relatively prime then, assuming thatactually enters
into g(y), the resultanR(y: , ..., Yn-1) Of f(y) andg(y) would not vanish identically, and it
would be:

(6) R(y) = a(y) f(y) +b(y) o(y).

If one now chooseg, ..., /-1 such thaR(7 , ..., 77n-1) # 0 and such that the coefficient
of the highest power of, in g(y) is likewise non-vanishing foys = 771, ..., ¥n-1 = 1
then one can determing from the equatiomy(s, , ..., 7n-1) = 0. For all (or almost all)
suchm, ..., 7n-1 one will then also hav&n) = 0O; thus, the right-hand side of (6) will
vanish, but not the left-hand side, which is a contrafict

Corollary. If the equations(f7) = 0 and /7)) = O represent the same hypersurface
then the forms(¥) and (y) will be composed of the same factors, possibly with differing
exponents.

Therefore, from the STUDY Lemma, every irreducibledaof f(y) must appear in
g(y), and conversely.



8§ 17. The degree of a curve. BEZOUT's theorem.

If g1, ...,0s are various irreducible forms ya , y1 , y» then the equation:

g g,(7)%--- g ()*=0

will define the same curve as the equation:

9u(77) ..., 9{7) = 0.

On the basis of this, we can always assume thatdbation of a plane curve is free of
multiple factors. If this is the case then one wdll the degrea of the formgi(#) ...,
gs(77) thedegreeor the order of the curvg= 0 ().

The degree also has a geometric meaning. Namely, iht@esect a line with the
curve, after we have introduced the parametric repraisemt

n=MAp+Aq

into the equation of the curvg(s)) = 0, then we will obviously obtain anf’-degree
equation for the determination of the ratip: A, . Therefore, there will be at most
points of intersection, in the event that the equatioes not vanish identically, in which
case, all of the points of the line will lie on thenee. From the STUDY Lemma, it will
follow that in the latter case the equation of the kvill be contained in the equation of
the curve as a factor.

In the next paragraph, we will see that there areydwines that actually have
different points of intersection with the curvélhe degree n of the curve is then the
maximum number of its intersection points with a line that is not coxtarie

An extremely important question is that of the numiffeintersection points of two
plane curve$(n7) = 0 andg(s) = 0. Let the form$(y) andg(y) be relatively prime; then,
from § 1, only finitely many intersection pointg”, ..., 7™ will be present in any case.
Now, Bezout'sTheoremstates that one can provide these intersection poitiisswch
(positive whole number) multiplicities that the sufrtltese multiplicities will be equal to
the producim - n of the degree of the forniandg.

In order to grasp the intersection points algebraicatigt define their multiplicities
we first consider two undetermined poirgsand g and their connecting line in the
parametric representation:

(1) n=7Ap+A0q.

If we substitute (1) into the curve equation then wé @btain two forms of degreean
andn in Ag and A; whose resultanR(p, g) will depends upon onlp andqg. R(p, q) will
vanish if and only if the connecting Iinﬁq includes an intersection point of the two
curves, thus, when one of the determinants:

(*) Occasionally, the degree of a polynonialith multiple factors is also called the degree ateorof
the curvef = 0. The irreducible components of the curve will thermultiply counted.
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vanishes. From the corollary to the STUDY Lemma (8 t6yjll then follow thatR(p,
) is composed of the same irreducible factors as the pgroduc

h
|‘| (pan™).
One will then have:
h
(2) R(p, g) = C|‘| (par™)*,

in which ¢ does not depend upgnandq and is# 0. We now defineg, to be the
multiplicity of the intersection poimf®” of f = 0 andg = 0.

BEZOUT’s Theorem now states thahe sum of the multiplicities of all intersection
points is equal to mn:

(3) Y. g,=m-n.

In order to prove it, we now need to determinedbgree oR(p, ) in thep. If we
set:

f(7) =f(Ao p+A10) = @A + @A A+ + g Ay,
o77) =9(do p+A10) = RA} +BAT A+ + R AG

then eaclax and eaclo, will be homogeneous of degrken thep. Since, from § 15, the
resultantR(p, g) has the weighin - n it will be homogeneous of degree- n in thep.
The assertion (3) will follow immediately from thisn account of (2).

The multiplicitieso, are invariant under projective transformationdamely, under
a projective transformation that acts on the poiptp, q, 7, ..., 7% in the same way
the determinantsp(q /7(")) will remain invariant, up to a constant factorhile the
resultantR(p, ) was already defined in an invariant way.

There exists a series of methods for the effeativeaduation of the multiplicities,
that can be derived from formula (2) by speciaiaat If we first setlo= 1,4 = A, p=
(4,u, 0),g=(0,v, 1), so, from (1):

=1,
m=u+Ay,
e = A,
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thenR(p, ) = N(u, v) will be the resultant o1, u + vA, A) andg(1, u + vA, A) in A, and,
from (2), one will have:

h
(4) N(u, v) = C|'| (Wl =Y =) .

One callsN(u, v) the NETTO resolvent.Its factorization allows a direct computation of
the multiplicitiesg, . If one carries out the specialization evenhfert when one sets=
0, then one will obtain the resultantsf(f, u, z) andg(1, u, 2) in z

(5) R(u) = C|] (uzs” =n")” .

It allows the determination of the, only under the assumption that no two intersection
points 7, i have the same ratig : 71 .

Formulas (4) and (5) indeed appear to be trulypEmalthough the practical
computation of the multiplicities on the basis bkde formulas seems truly tedious,
firstly because the resultants are large deternsnamnd above all, because the entire
extent of the curve$ = 0 andg = 0 enters into it, whereas, in truth, the intetisa
multiplicity depends upon only the behavior of theves in the immediate neighborhood
of an intersection point. Expressing this is, heeve possible only when one carries out
the PUISEAUX series development of the algebramctions. We will come back to
this in § 20.

Problems. 1. The multiplicities of the intersection of a line Witn curve are the same as the
multiplicities of the roots of the equation that one oitavhen one solves the equation of the line for one
coordinate and substitutes it into the equation of the curve

2. Ifthe equationt= 0 andg = 0 are ordered into increasing powerggthat begin with:

afg 1+t agg my+-=0,
by7o ", + bg75 e =0

then the multiplicity of the intersection point (1, O, G)l e equal to 1 or greater than it, depending upon
whethera; b, —a, by is# 0 or = 0, resp.

8 18. Intersection points of lines and hypersurfaces. Pokar
The intersection point of a line with anﬁh-degree plane curve or, more generally,
with a hypersurface in the spaBe- is calculated most conveniently by substituting a
parametric representation:
n=Ar+As
for the line into the equation of the hypersurffigg = 0. One gets:

1) f(Aur + A28 = A"+ AMALf -+ ATF = 0.



§ 18. Intersections of lines and hyperplanes. Polars. 63

Thereforefo =1(r) is of degreem inr, and likewise, =f(s) is of degreem in s, while f(0

< k< m) is homogeneous of degree- k inr and of degrek ins. The expressiorfs, fi,

..., fm are calledpolars of the formf. Their defining rule comes to light when one
develops the left-hand side of (1) in a TAYLOR serrepawers of1; ; one finds, when
Jkx means the partial derivative ffk) with respect to , that:

fo =1(r),
f1= z%ak f(r),

k

1
fz:EZZ%Sak@ f(r),
A

One also calls the hypersurfaces polars whose ieqaatre given by, = 0,f, = 0 for
fixed s and variable, and indeed one calig = O thefirst polar of the points, f, = 0 the
secondone, etc. By contrast, for fixedand variables, f; = 0 is the fn— 1)" polar ofr, f
=0 is the th— 2)" polar, etc.

In the case of a plane curve, the multiplicitieshod roots of(1) will agree with the
multiplicities of the intersection points of thenaei with the line, as defined §17.

Proof: The resultanR(p, g) of 8 17 is, in this case, the resultant of adinlerm inAgy
, A1 and a form of degrem; it can be calculated when one substitutes aobtite linear
form into the form of degrem. The root of the linear form belongs to the iséetion

point of the Iineﬁ with the liner s ; this intersection point is, from the computatiahs
§ 10, problem 2:
t=Pans-pPaqs9r.

If we substitute this int§(t) then we will obtain the desired resultant:

Rp,) =f((pans-pPqs)r).

It will therefore be equal to the forfU;r + A,s) forAs=—(pg9andA=(p qr). If
the formf(Air + A, ) then decomposes into linear factors with multifis ok thenR(p,
g)will correspondingly decompose into linear fastarnth the same multiplicities, which
was to be proved.

We now come to the practical determination of ¢hesiltiplicities. The roo#l; = 0
of equation (1) ik-fold when the left-hand side of the equation igigible byA,; thus,

when one has:
(2) fo:0, f]_:O, ...,fk_1: 0.

It follows from this thatThe point r is a k-fold intersection point of theel g with the
hypersurface £ 0 when equation§2) are valid for any second point s of this lin€he



64 lll. Plane algebraic curves

first of these equations says only thdies on the hypersurfade= 0. The others are the
terms of the series that are linear, quadratic, ..., udegveek — 1 ins.

If equations (2) are satisfied identically sSn- so eachline throughr intersects the
curve at the point at leastk times (hence, not necessarily precidetymes)- then one
will call r a k-fold pointof the hypersurface. For example, in this nomenaatury
multiple point will also be called a double point.

A line through thek-fold point r that intersects the hypersurfaceratore thank
times is called gangentto the hypersurface at If g is such a tangent then every pant
of g will satisfy the equation:

3) fc =0,

in addition to equations (2).The tangents to r will thus define a conic hypersurface
whose equation is given by (3). The equation is of ddgree the cone will be of degree
at mostk. In the case of a plane curve, the cone will decompat® at mosk lines
throughr. There are thus at most k tangents to a k-fold point of a plane curve.

In the case of a simple point, (3) will representam@lwith the equation:

Y scokf(r) = 0.

All tangents to a simple point r of a hypersurface will thus lie in getplane whose
coefficients are given by:
4) Uk = Ok f(r);

it is called thetangent hyperplaneln the case of a given curve, there is a singlgdat
u to a simple point that is given by (4).

We now ask which tangents one can draw from a momitside of the hypersurface
to the hypersurfack= 0. Ifr is the contact point of such a tangent then the equsatio

(5) fo=0, f1=0

must be true. They are of degredm — 1, resp.) irr. They are, however, satisfied not
only whenr is the contact point of a tangent, but also whésna multiple point of the
hypersurfacd = 0. In order to study them more closely, we think ofv@mpoints as
being located at the point (0, O, ..., 1). Equations (5) welhttread:

(6) f(r) =0, onf(r) = 0.

If the formf(x) is free of multiple factors then, as is well-kmgvi(x) and its derivative
with respect tax, will have no common factor. In the case of a planere, the two
curves (6) will have finitely many — namely, at mogm — 1) — intersection pointsOne
can therefore draw at most (m — 1) tangents from a point s to a plane curve of degree
m. Its contact points, as well as the double points of the cuntehenmhe intersection
points of the curve with the first polar of the pointla particular, it follows that a plane
algebraic curve can have only finitely-many double points.

One will find the equations of the tangents at the poihnt (@, ..., 1) to the
hypersurfacd = 0 when one constructs the resultantrfpfrom the two equations (6).
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One will obtain a conic hypersurfaBro, ..., r,-1) of degreem (m— 1) with its vertex at
s=(0, 0, ..., 1). The generating lines of the cone wilth® tangent or go through the
multiple points of the hypersurfacéll remaining lines through the point s will intersect
the hypersurface to m different points.

Problems. 1. Thek" polar of a point relative to thé™ polar of the same point is thie€ |) " polar of
2. Thek™" polar ofr relative to thé™ polar ofq is equal to th&" polar ofq relative to the&™" polar of
3. Iff(s) =2 ... 2 & §...S then the successive polars of a poinill be given by:
f1=22..2a..1rs.S,
fb=m(m-1)2 ... X & hilS..S,
etc. On this, cf., the theory of quadric polars!

4. The coordinate origin (1, 0, 0) isk&old point of the curvé = 0 if and only if the terms in the
polynomialf whose degree ipy andy, is lessk are absent

§ 19. Rational transformations of curves. The dual curve.

We speak of aational transformatiorof an irreducible curvé= 0 when each poim
of the curve (possibly with finitely many exceptionsyirsquely associated with a poigit
of the plane whose coordinate ratios are rationaitfons of the coordinate ratios of the

point 77:
Syl s
" 4 ¢[/70’/7J’
$o | M 112
'8 w{%’noj

If one writes the functiong and ¢ as quotients of complete rational functions, puts them
over the same common denominator, and then multipleesuimerator and denominator
by a suitable power af, then, from (1), one will have:

& 9(70.77071,)
$o 9(70:170:17,)
$o _ 95 (10:17:,17,)

o 9o(0:1017,)
or also:

(2 $o: ¢ &2=go(h) - gu(h) : g(h).

Theg will be forms of the same degree that are nathadle divisible by the forrfy since
otherwise the ratios (2) would be undetermined.weiger, there can be finitely many
pointsn onf = 0 for which it happens thas(/7) = 91(#7) = g2(#7) = 0; the image poing of
these pointg will then be undetermined.
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Theorem 1. Under the rational transformation®) of an irreducible curve £ 0, the
image points{ will all lie on an irreducible curve k& 0. It will be determined uniquely
unless the poin{’is a constant point.

In order to prove this, we first introduce the notioh abgeneral pointof an
irreducible curve = 0. Letu be an indeterminate and letbe an algebraic function af
that is defined by the equatid(i, u, @ = 0. We then call§, &, &) = (L, u, o) a
general pointof the curve. £ is indeed not a point in the sense of Chap. 1, since the
coordinates of are not complex numbers, but algebraic functionbpatjh we can still
treaté as a point insofar as its coordinates are elemertdield, so the algebraic rules of
calculation will still apply.

A general point has the following propertya homogeneous equatiofég &1, &) =
0 with constant coefficients is true for a general point x then thra %o, X1, X2) will be
divisible by txo, X1, X2), and therefore the equatior(/g, 771, 772) = 0 will be true for all
points 7 of the curve.Fromg(1, u, ) = 0, it will then follow, from § 12, thag(1, u, 2) is
divisible byf(1, u, 2):

o(1,u, 2 =f(1,u, 2 q(1, u, 2.

If one makes this equation homogeneous then the asserigibility of g(Xo, X1, X2) by
f(Xo, X1, X2) will follow.

The rational transformation (2) associates the gépeiat & with a point{” whose
coordinates are:

¢y =1,

70280 _0luw)
Ygo(d) gLuw)
70=%) _g,Au.w)
© 006 gL uw)

{; and ¢ are algebraic functions af, so the system{,{,) has a degree of
transcendence of at most 1. There are therefaeptwsibilities: Eithef,’,¢, are both

algebraic over the constant fiehkd— hence, since it is algebraically closed, they el
constants irK — or one of the two quantities — sagj,’ - is transcendental and the other

one {; is an algebraic function of,”. In the latter case, there will exist a single
irreducible equatioh({,’,{}) = 0, or, when it is made homogeneous:

h({,,¢;.¢5) =0.
From the meaning of , this says that:

(3) h(go($), 91($), 9($)) = 0.
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Equation (3) is valid for the general poifitand thus, for every point of the curve 0.
Hence, wherd is determined using (2) one will always have the equation:

h(<o, {1, {2) = 0.
With this, Theorem 1 is proved.

Theorem 1 is also true with a small alteratior for rational maps of hypersurfaces
in § . Here, there is also a general point {1, ..., U-1, @ whose image point
L4+, ¢") has a degree of transcendence of at leasfl. There is thuat leastone
irreducible equatiorh(Z,’,--+,¢")= 0, and therefore at least one irreducible hypersurface
h(&, ..., &) = 0 on which the image points lie. In the case of@egf transcendence-

1, there will indeed bpreciselyone irreducible hypersurface, but all values of the degree
of transcendence from 0 to- 1 will be possible.

One will obtain an important example of a rationadapmof a curve when one
associates each pointof the curve with the tangemntto the curve and regardg vi, V2
as point coordinates in a second plane: viz.diked plane From § 17, the equations of
the map will read:

Vo :Vaii Vo =00 f(7) 01 1(r) 2 021(n) .

The map will be undetermined at only finitely many double {goiriThe ratios of the
will be constant only when the constant Imeontains all curve pointg; hence, when
the curve is a line. In all other cases, the imawgetp will lie in the dual plane, so from
Theorem 1, on a single irreducible curve: viz.,dbal curve i) = 0.

The tangents to the simple points of the originatewvill correspond to points of the
dual curve. However, we will see that, converselg, tdmgents to the dual curve will
also correspond to points of the original curve. Najreate will have:

Theorem 2 The dual curve of the dual curve is the original one. If the tangent at
n corresponds to the point v of the dual curve then the tangent at \ow#lspond to the

point 7.

Proof. Leté=(1,u, &) again be a general point of the cufwe0. One then has:

f(o, é1, &2) =0,

and from this, after differentiating hy

0o f(77) - déo + 0. (1) - déy +02f(77) - d&2 =0,
or, if V' is the tangent at a general point:
(3) Vod&, + [ dé, + v &= 0.

Furthermore, since the tangent contains the point,itsa¢ will have:
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4) Voot V& +VR¢,= 0.

If one differentiates (4) by and subtracts it from (3) then it will follow that:

(5) vy +&,dy +&, dw= 0.

(5) is dual to (3), while (4) is dual to itself. For one has the equation:
h(vo, v1, V) = 0.

If one now denotes the tangent to this curve at the poify & then one will get
equations that are analogous to (3), (4):

(6) Vodo +Vi & +V,65=0,
@ £+ E0d + €D = 0.

These determine the poiét uniquely; otherwise, all two-columned sub-determinants of

the matrix:
v VoY%
dy, dy dv

would vanish, and that would mean that:

|
av 0 and v

i_ZD:O
du duy

hence, the ratios; : \/': v, would be constant. However, we saw before that shike

case only for curves of degree 1. Hence, the ppithiat is determined from (6) and (7)
will coincide with the point that is determined from (5) and (4), which one can express
through the equations:

C/(j(/(k _(,(kD(,(j:O-

However, since these equations are valid for the genaraé point they will also be
valid for every particular curve poift Thus, if the tangent &t corresponds to the point
v of the dual curve then the tangent to this curve at ti powill correspond to the
point /7. With this, Theorem 2 is proved.

We will give a second proof of Theorem 2 later on tedtdased upon PUISEAUX’s
series development, and which is valid for the tangahtswultiple points. The proof
above is, however, more elementary, and can beyemsilied over to hypersurfaces, as
long as they possess a uniquely determined dual hypersurfacd, ot always the
case. E.g., if = 0 represents a developable ruled surface or a cohe spaces; then
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the image pointy of the tangent plane will not define a surface in thd dpace, but
only a curve. The developable ruled surfaces are themedeliy saying that all of their
points possess a generator of the same tangent plaefrai the tangent plane at a
general poin¥ will depend algebraically upon not two parameters, but ondy

The degreeof the dual curve is equal to the maximum number of itsrsection
points with a line, or, what amounts to the same thirgntaximum number of tangents
that one can draw from a poinbf the plane to the original curve. This number isechll
the classof the curvef = 0. From § 18, the class of a curve of degne@mounts to at
mostm(m — 1), and it will then be smaller when the curve posseassdigple points. In
order to compute the class more precisely, one must kieewmany intersection points
of the curve will be absorbed into the polar of an anyitpoint of the multiple points.
The means to do this is given by the power series expaaibtie curve branches, which
we will discuss more thoroughly in the next paragraph.

Problems. 1. Every double point is an at least two-fold inteisacpoint of the curve and its polar,
and will thus reduce the class by at least 2 (cf., $10h. 2).

2. An irreducible curve of order 2 (conic section) hassla An irreducible curve of order 3 can
have only one of the classes 6, 4, or 3

8 20. The branches of a curve.

Let f(7) = O be an irreducible curve, and et (1, u, @) be a general point of this
curve; wwill then be any solution of the equatifii, u, &) = 0. However, from § 14,
these solutions will be power series in fractional pewau —a or u™. In the former
case, one has:

u-—a=7 or u=a+ k> 0),
W=CnT" + Cpia T+ ... (h>0,h=0, orh < 0);
hence:
&=l
(1) &=a+rh,

el

52 = ChTh + Gl
In the latter case, one has:

ut=r or u=rX
W=CnT" + Cpea T+ .
hence:
& =1
(2) &=17",

el

$ :Chrh + Gl a

In both casesé, &, & are therefore power series in the position unifornopat.
Any k power series that go into each other under the sufisti 7 — ¢7, = 1 will
define a cycle. Such a cycle is callebdranchof the curvd = 0.

We now consider, more generally, any non-constant pointhe curve whose
coordinates are each a power series in one var@ble
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— ki
pE=a,0" +a,.0 "+
k+1

(3) pfl = bpa’p + bp+10- +..

pé,=c,og”+c 0

k+1
" +...

Since the quotient of two power series will agagnad power series, we can divide all
threepé, by p&, and obtain the normalized coordinates:

$ =1,
(4) é = dgag + dgﬂgg*l +...

_ h h+1
52 =60 +Q1+10-+ +-

The power series fofy cannot exist as just a constant term, sinc® dnd & were
constant then, on the grounds of the equdt(i@n= 0, & would also be constant; hende,
would be a constant point, contrary to the assumpti

We will now show that any power series triple ¢&n be brought into one of the
forms (1) or (2) by the introduction of a new véter, instead o

In order to prove this, we distinguish betweenthsegy > 0 andg < 0. In the case
of g = 0, we write the power series fér as follows:

& =a+dd + e+ (A % 0).

Using the development theorem of § 14, we now sthigeequation:

I = A + A1 7 + L. (dy % 0)
by a power series:
r=bio+ by + ... (b1 % 0)
It will follow that:
gzl =a-+ Zk

It is not difficult to transform the powers series:
(5) G=ed +end ™+ ...

into a power series im  If the powers”, 7™, ... are power series mthat begin with
terms in &, &', ... then one can obtain the power series (5) byitatse linear
combination of these power series. We will thusob

$ =1
(6) §=a+r,
&= ChTh + Gl

el
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In the event that the exponents that enter into theepaeriesé;, & have a common
factor d, one can introduce® as a new variable, and thus force the exponents to be
relatively prime. The power series representation thtained will have the form (1)
and must also agree with one of the developments (anelN, if one introduces:

r :(u—a)%

into (6), whereu is an indeterminate, then this will make = 1, & = u, and & will
become a power series in fractional powers ofa that satisfies the equati®fi, u, &) =
0. On the basis of the factor decomposition:

f(1,u, 2) :aoﬁ(z—af”))

that is valid in the domain of this power seriésmust then agree with one of the power
seriesad”, which was to be proved.
The second cage< O is then treated in a completely analogous way.thafe seg =
-k and have, from (4):
S=dy 0 +dywr 0+ L [ 2 0)

We now solve the equation:
"y o +dye ¥+ ) =1
by a power series:
r=bio+bd+ ... (b1 % 0)
and then have*& = 1; hence:
51 = T"k.
The power series:
52:a10h+en+1 0h+1+

can be further transformed into a power series in

S=cn T " +cn T+ L

We thus come to a power series development of the @ynwhich, on the basis of the
argument followed above (possibly with the introductior %fn place ofr), must agree
with the development (2).

We thus seeAny power series developm€B) belongs to a certain branch of the
curve, and may be reduced, to one of the poweesa@evelopmentd) or (2) of that
branch by the introduction of new variables

From this theorem, it will now follow easily thate concept of brancis invariant
under projective transformations, and in fact, more gégemander arbitrary rational
transformations.Namely, if such a rational map is given by:
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(7 G G=0u(é) 1 ai(é) fg2Aé)

and one substitutes the power series (3¥daré; : &, then one will again obtain power
series int for &1 : { : {3, which, from the theorem above, will belong to aaearbranch
of the image curve.Thus, any branch of the curve=fO will correspond to a certain
branch of the image curve under the rational ri&p

The proportionality factop in (3) is arbitrary. If one choosgsto be a power ot
whose exponent is equal to the smallest of the numtecs r then will one find
developments fo& : & @ & in which no negative powers appear, while the constant
terms are not all three equal to zero. In the seguelshall always assume this
normalization of the proportionality factgx If one now seter= 0 then one will retain
only the constant terms of the power series, and olhget a certain point of the plane:
viz., thestarting pointof the branch in question. In (1), e.g., foz O, the starting point
will be the point (14, ¢), although, in the cade< 0 the point will be (0, Gg). In (2),
for h > -k it will be the point (0, 1, 0), fon = - k it will be the point (0, 0, 1), and fdr<
-k it will be the point (0, Og). If the point (0, 0, 1) does not lie on the curve, witok
can always insure for some choice of coordinate sydtean one must always hake 0
in (1) andh=-kin (2).

The starting point of a branch is always a pointhef ¢urve, since the equati§(id ,
&, &) = 0 is valid identically ing; hence, also foo= 0. However, one also has
conversely:Any curve point h is the starting point of at least one branthorder to
prove this, we further assume that the point (0, O, £sdwt lie on the curve. In the
equation:

f(1,u,2) a0 Z" +a(u) 2" + ... +am(u)

one will then havep # 0. Now, if at firstrjo # 0 — say/o = 1,71 = a, 1 = b — then we
will assume the factor decomposition:

®) (1.2 =a[](z-@)

at the locusi =a. Foru=a, z=Db the left-hand side will become zero, hence, aofagh
the right-hand side will be zero, as well, whicHlwnake one of the power series
assume the valdeforu=a, r=0.

Secondly, ifp = 0, m # 0 — sayyn = 1, . = b — then we will form the factor
decomposition (8) at the locus= », and thus assume that the power sexess inu™.
We multiply both sides by™™ and obtain:

fu™®, 1,zu?) = 3[] (zu'- U'w).
1

If we setu™ = xandz u™* =y then it will follow that:
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©) f(4 1) = [ (y= ).

Therefore xa, will be a power series in non-negative fractiopawers ofx = u™ = 7¥,
namely:
10)  xw=E@f ot ) 0P gt

If we now substitutex = 0,y = 0 in (9) then the left-hand side will becomeazédrence,
one of the factors on the right-hand side, as wallth that, one of the power series (10)
will assume the valub for t = 0, and everything will also be proved in thisea What
remains is the second case, which can also rewethd first one by a projective
transformation.

One understands tlerder of a non-zero power series mto mean the exponent of
the lowest power of that appears in it. The order will remain unchethgvhen a new
variablecis introduced in place afby way ofr=b,o+ b,d® + ..., withb, # 0; it can be
positive, zero, or negative. When one substittiteppower serie&, &, & for a branch
into a formg(<, &1, &), that will yield a power series that likewise pesses a certain
order that igpositiveor zerq depending upon whether the curye 0 does or does not
include the starting poimy of the branch, resp. We will call this order therder of the

form g on the branch, or also thantersection multiplicity of the curve g 0 with the
branchj. It is obviously invariant under projective tréorsnations.
We now prove the extremely important theorem:

The multiplicity of an intersection poirptof the curves £ O and g= Ois equalto the
sum of the orders of the form g on the brancheéleoturve £ 0 that have their starting

point at 7.

Proof. We choose the coordinate system suchAh&t0, the point (0, 0, 1) does not
lie on the curvé = 0, and no two intersection points of the cufve andg = 0 have the
same ratiogo i1 . For an intersection point, leb = 1,71 =a, 172 = b. From 817, the
multiplicity of 77 as the intersection point 6f= 0 andg = 0 will then be equal to the
multiplicity of u — a in the factor decomposition of the result&) of f(1, u, 2) andg(1,

u, 2. One now has the formulas:

fl,u, 2= aoﬁ (z-w,)

(®) R = &[] ot.uw,).

In them, a is the coefficient ofZ" in f(1, u, 2), and @, ..., wn are power series in
fractional powers ofi —a.

The factor g(1, u, &%) has the orders; as a power series in the position
uniformization7 = (u —a)'". The orders, is the same for all power serigl, u, V),
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..., 91, u, ") that belong to the same cycle. The product of theepmaries of this
cycle:

(©) Motu.w,)

has the ordek 5 as a power series i and thus the ordex as a power series in— a =
*. Correspondingly, the remaining branches of thietp(1, a, b) yield products like (9)
of orders, , ..., s . However, the branches that belong to the gblarts give rise to
only factorsg(1, u, «),) of order zero, since one hgd, a, b') # 0 for all points (1a, b)
with b # b that lie onf = 0. The total order of the product (8) as a posegies iru—ais
therefore equal te, +s, + ... +s. With that, the theorem is proved.

A quotient of two forms of equal degree:

9(40,¢1:9>)

#(S) =
h(&,41,¢2)
is a function that depends upon the ratiocs & : & andw=&: & . One callsg(é) =
#(u, &) arational function of the general curve poifit- or, briefly — a rational function
of the curve. Such a function has a certarder at each branck of the curve, namely,

the difference between the orders of the numematdrthe denominator. If the order is
positive then one will speak ofzgroof the functiong(é); if it is negative therp(&) will
have apole The sum of the orders of the functigt¥) on all branches is equal to the
sum of the orders of the numerator minus that ef denominator. Hence, from
BEZOUT's theorem, it will be zero, since the nunteraand denominator have the same
degree. It the follows that:

The sum of the orders of the zero loci and poles ohtional function on an
irreducible curve is zero

ZEUTHEN's rule. If one assumes thgt= 0 also includes the point (0, 0, 1) then one
can decomposf1, u, 2), as well agy(1, u, 2, in the domain of the power series into
linear factors:

oL U =6,[](2-4,).

One will then have the expression:
(20) R(u) :agcomﬂ (w,-4,)
u=l v=

for the resultanR(u). The differencesy, — ¢, are power series in fractional powersuof
—a. Each of them has a certain orgeri.e., it begins with a certain powan € a)".
From (10), the order d®(u) is equal to the sum of the orders of the diffeesay, — ¢, .
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If ., {v, or both of them belong to branches that do not indliegoint (1a, b), then
the differencew), — ¢, will have order zero. One will then g8EUTHEN's rule:

The multiplicity of an intersection poi(t, a, b) of the curves £ 0and g= 0is equal
to the sum of the orders of the power setigs ¢, as functions of & a, where(1, u, &,)
and(1, u, ¢,) are the power series developments of those branches of the carbes
g = Othat have the poirtL, a, b) as starting point.

ZEUTHEN's rule shows that the intersection muitpy is composed of
contributions that originate in the individual branch paiff andg. The computation of
this contribution takes on an especially simple formmwtiee branches atleear; i.e.,
when they exist as power series in integer powews-od. If the power seriegy), andd{,
then agree in the ternas + cy(u—a) + ... +csa1(u—a)° *, but differ in the terms withu(—
a)°, thens will be the contribution of the branch pair to theatomultiplicity of the
intersection point (1a, b).

Problem. 1. Compute the multiplicities of the three intetigcpoints of the circle)” +72 -5 7,= 0
with the cardioid(r7? +12)*—2n47,(12+n2)—-n g1 2= 0.

8 21. The classification of singularities.

For a closer examination of the branch of a ciirvé, we assume that the pofdt=
(1, 0, 0) is the starting point of a branch. We thaxehthe development:

& =1
(1) & =1
& =G+ Gl

el

The ratio& : & is a power series that begins with®. For 7= 0, this ratio will assume a
definite value wherh = k; however, ifh < k then we will say that the ratié, : &
“becomes infinite” forr = 0. In each case, however, the valuesof & for 7= 0 will
define a certain direction at the starting point whdsection constant is exactly this
value. The line that is defined by this direction isezhlihetangentto the curve branch.
The tangent is, by definition, the limit point of a athpone end of which is the starting
point O. We will likewise see that the notion of tangentirded here agrees with the
previously defined (818) notion of curve tangent.

If we define the coordinate system such that the tarigison the axigz, = 0 thenrh
> k; say,h =k +1. One callsk |) thecharacteristic numbersf the brancly. One can
characterize them geometrically as follows: Any tamgéwat differs from the lines
through the poinO will intersect the branchat O with the multiplicityk, but the tangent
will intersect it with multiplicityk + 1. Namely, if one substitutes the power series (11)
for m : 2 in the equatioy(n) = a1 71 + a2 172 = 0 of such a line then, in the caseap¥
0, g(&) will be divisible by7¥, but in the case; = 0 it will be divisible by7™, and that
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means that the intersection multiplicitypandg = 0 will equalsk in the former case and

k +1 in the latter. The numbéris sensibly called theultiplicity of the pointO for the
branch;. Fork =1, one will have &near branch

If r branches with the multiplicitiek, ..., k- come together at a poiQ, then the
multiplicity of the pointO on the curve will b&;+ ...+ k ; each line througl® that
contacts no branch will then intersect the individuahibhes aO© with multliplicities ki,
..., k-, and the total curve thus intersects it with multiplié&+ ...+ k.. However, if the
line is tangent to a branch then the multiplicity vioé increased.The tangents to the
curve at the point O are thus precisely the tangents to the individuad buanch at O

Theorem. If the curve = 0 has a p-fold point and g 0 has a g-fold point then the
intersection multiplicity of O will always B pq. The equality sign will be valid if and
only if the tangents to one curve at O are different from those otliee curves.

Proof. We apply ZEUTHEN's rule and assume that no tangess dbrough the
point (0, O, 1). There ane power seriesy, andq power serieg, . The differencew,
- ¢, will have order one at when the branch tangents are different; otherwise,avder
would be > 1. The assertion follows from this.

The dual curve. We would like to compute the branch *of the dual curve tha
corresponds to the branch (1). For the computatioheofangents at the general point
X, we use formulas (3) and (4) of 8 4. In our case (I yiblds:

v dé, +V,dE, =0,
{ Vo + Vi + Vi, =0,
or:
vikr tdr + {( k+ ) ¢, 7" +-.} d =0,
{ Vo + T+ G, 7 #1320,

or finally, if one chooses, = 1 then:

V) =1,
k+1
0 k
vV =———C, T +-,

VOD:(%CMITI +“_ka _(Q<+|Tk+| +0),

| +
:Eckﬂz'k l ...

The starting point of this brangh is the pointv = (0, 0, 1), which is the image point of
the tangent to the brangh The tangent to the brangh is the line vy= 0 with the
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coordinates (1, 0, 0), which is the image line of the pGint (1, 0, 0) of the original
plane. The characteristic numbers of the branchre {, k), which are equal and

opposite by comparison to those of the branchence:

There exists a one-to-one correspondence between the brgnohasurve and the
branches;” of the dual curve. Thus, the starting poing @brresponds to the tangent of
3 and the tangent tg, to the starting point of . The characteristic numbers gf are
those ofy in the opposite sequence.

Classification of the branchAlmost all points of a curve are simple points (iteere
are only finitely many multiple points). Only one lindmanch can have its starting point
at a simple point. For almost all branches, onétiwils havek = 1. Since the same is
true for the dual curve, one will also almost alwayseav 1. Almost all branches will
thus have the characteristic (1, 1). One calls sulstaach arordinary branch and its
starting point, in the event that it carries only orenbh, arordinary pointof the curve.

If a linear branch has the characteristic (1, 2) thertangent will intersect the branch
at the pointO three times. Such a point is callediaftection pointand its tangent, an
inflection tangent.A point that carries a branch with the character{dt, 1) with | > 2, is
called ahigher inflection pointfor | = 3 in particular, it is called f#fat point The tangent
intersects the branch at a flat point four times.

The inflection point corresponds, dually, to tusp whose characteristic is (2, 1). If
the pointO is a double point of the branch then the tangent midirgect it precisely three
times. For the characteristic (2, 2), the tangentsintersect a branch four times, and
one will speak of &beak Therefore, the most frequently-occurring singulariaes
described by the individual branches. The figures show heveurves appear over the
reals in the neighborhood of the po@t

— | <

Ordinary point | Inflection point Flat point Cusp Beak

11 1,2 (1,3) (2, 1) (2, 2)

One obtains another type of singularity when sevberahches come together at a
point. If two linear branches with different tangentssdé precisely the same starting
point then one calls thisjanction; if there are linear branches then one will speak of an
r-fold point with separate tangentsHowever, when two linear branches contact each
other at the poinD then one will call this aontact junction

One will obtain singularities of the dual curve when salvbranches have the same
tangent. The corresponding duals to the junction poiittiaer-fold point with separate
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tangents are thadouble tangenand ther-fold tangent with r different contact point3.he
contact junction is clearly dual to itself.

VN

Junction Triple point with Contact junction Double tangent
separate tangents

The class. We would now like to examine the influence that ¥aeious types of
singularities have on the class of a curve. The dsaf® number of intersection points
of the dual curve with a ling, or, what amounts to the same thing, the number of
tangents to the original curve at a po@t where the multiplicities with which these
tangents are to be counted are to be computed on thewlvalaccording to a rule that is
well-known to us. ThereforeQ is completely arbitrary; we can thus cho@ddo be
external to the curve and external to the tangentsetonultiple point<'.

We will thus obtain the tangents @when we eliminate the multiple poi@, with
its respective intersection multiplicities, from th€m — 1) intersection points of the
curve f = 0 with the first polarf; = 0 of the pointQ, and connect the remaining
intersection pointO with Q. If one can still establish that the multiplicitie$ the
remaining intersection poir® (when calculated in the plane of the cufve 0) agree
with the multiplicities of the tangents that corresgpdo them (when calculated in the
dual plane) then it will follow that the desired numbétamngents is equal to(m — 1),
minus the sum of the multiplicities of tka as intersection points 6f 0 andf; = 0.

LetQ=(0,0, 1) andd’' = (1, 0, 0). The decompositionfdl, u, 2) into linear factors
reads:

(2) f(lu2=z-a) Z-a) ... 2-an.
By differentiating with respect tg it will follow that:
3) fi(1,u,2) = Zm:(z—cq) (Z—w-1) Z-w+1) ... (Z2— ).

i=1

The multiplicity of the intersection of the pofar= 0 with the branch, which belongs to

the power seriegy, will be found when one substitutes aj in (3) and then examines
the order of the corresponding product:

4) @ —w) (-a) ... (W —an)

as a power series im  Summing over all branches at the pa®itwill yield those
multiplicities as intersection points bandf;.
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First, if O' is anh-fold point with separate tangents then all of theed#hces & —
ai) will have the order 1; the product (4) will thus havdesn — 1, and the poir®" will
have the multiplicityh(h — 1). In particular, one will obtain the value 2 for @dinary
junction.

If O' is a cusp them = u*? will be the position uniformization, and:

W=CT+...,
W=—C T +..,

from which, (@ — @) will have the order 3. A cusp will thus have muliggl 3 as an
intersection point of andf; . All types of singular points will be treated analodpus

We now still have to calculate the multiplicitiestbe simple pointD whose tangents
go throughQ as an intersection point bandf; . The pointO has the characteristic ([13;
the power series development of the branch of thee¢u\0 is then given by:

u=7*4
W =CT+Cl+ ... ¢ #0),

W =ClT+C O+ ... ¢ t=1),
CQ+1:C1ZI+1+

The differencesdy — «) all have order 1 i, so the product (4) will have order The
multiplicity of the tangentOQ to the corresponding point in the dual plane as an
intersection point of the dual curve with the ligethat does not contact it will be,
however, likewise equal toif we assume that only one branch of the dual curvehiss
point as its starting point. The two multiplicitiedlwhus agree, in fact.

It follows that: The class mof a curve of M order that has no other singularities
than only d junctions and s cusps will be given by e CKERformula”

(5) m=mm-1)-2-3%

If other singularities are present then one must subtract furthenstehat can be
calculated as intersection multiplicities of f anddas above.

Problems. 1. Examine the singular points of the “CARTESIAN {éaf

X +y? = Xy,
the “heart line” (cardioid):
(¢ +y?) (x—1F =%,
the four-leafed rosette:
(€ +y)° = 4XY.

2. A contact junction has multiplicity 4 as an intets@ point off andf; (or higher, if the two
branches exhibit a higher contact, but in any caseyan number).

3. A beak has multiplicity 5 as an intersection point ahdf; (or higher, when the power series of
the branch lacks thg term).



80 lll. Plane algebraic curves

4. If the branch tangent does not go thro@hthen the part of the product (4) that relates tokthe
power series of a single cycle will have order at I¢last 1) k — 1); hence, in the case of a nonlinear
branch, its order will be at leastiB« 1).

8 22. Inflection points. The HESSian curve.

If 7is an inflection point (the higher inflection points asecluded) of the curve=0
then one will have the followingequations for all geid of the tangeng:

fo(7) =0,
(1) fl(ﬂi() = 01
f2(’7!() = O

For variabled, the third equation will represent a conic sectianviz., thequadratic
polar of the point. In our case, the tangegwill be included as a componentkn K
will then decompose into two lines.

Conversely, ifp is a simple point of the curve whose quadratic poladdsK thensn
will be an inflection point. One proves this as followke polar of; relative toK is the
linear polarfi(n7, {) = 0; hence, the tangegt Sinces lies onK, it will follow that g is
included inK as a component. Now, wh&ndecomposes, as wed),will be included as
a component ifK. Equations (1) will then be valid for all poinfof g, so the linag will
cut the curve at least three timegjatOne then has:

Theorem 1. The simple points of the curve 0 whose quadratic polar decomposes
are its inflection points (and higher inflection points).

One must further remark that the quadratic polar of ablgo point likewise
decomposes namely, into two double point tangents. Moreover, onstimemark that
in the case of an inflection point, the second compohesftK cannot go through the
point h, since otherwise the polérrelative toK — hence, the linear pol&(n, {) = 0
—would vanish identically, whereas, by contrast, it regmesthe tangent.

The necessary and sufficient condition for the dec@aipitity of the quadratic polar:

22 & &oiokf(n) =0

is the vanishing of thelESSiardeterminant:

0,0,f(7) 00,f(7) 9P ,.f(n)
H(7) =] 0,0,f(7) 00.f(n) 00.f(n)]|.
0,0,f(n7) 00,f(n7) 09,f(1)

The equatiorH = 0 defines a curve of degree8f 2) — viz., theHESSian curve.From
Theorem 1, it now follows:
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Theorem 2. The intersection points of the curve D with its HESSian curve are its
inflection points and its multiple points.

The following theorem is important for the calculatiof the number of inflection
points:

Theorem 3. The ordinary (not higher) inflection points have multiplicity one as
intersection points of the curves Dand H=0.

Proof. Let 7 = 0 be the tangent to the inflection point (1, 0, 0)e @avelopment of
the formf(x) in increasing powers of, reads, since the term8, x'"'x,x " *x’ are
absent:

f(x) = x[tax, + (b x+ ck)+ F3( dik+e)+-e

We now develop the determinad(x), but only look at the terms that are divisible by
eitherx, or X°. It becomes:

0+--- 0+-... (m—]_)a)g“2+...
H(X) =|0+--- 6d XX+ b i+
(m—l)a)én_2+... b)§*2+... 2Cgr2+...

=—6Mm-17da& X" X + ...

If r =(1, 0, 0) is a simple point 6& 0 thena# 0. Ifr is an ordinary inflection point
thend # 0. With these assumptions, the cuke O will also have just one simple point
at (1, 0, 0) and its tangent will be different frahe tangent to the curde= 0. It will
follow from this that the point is a simple intersection point of the two curves.

From BEZOUT's theorem, the curvds= 0 andH = 0 will have 3n(m — 2)
intersection points. These will then decompose the inflection points and multiple
points of the curve. It thus follows that:

Theorem 4. A double-point-free curve of order m has(m — 2) inflection points.
Therefore, ordinary inflection points are to be oted simply, while higher inflection
points are to be counted multiply (correspondingthieir multiplicity as intersection
points of the curves$ 0 and H= 0). The presence of double points or multiple points
will decrease the number of inflection points.

In particular, a double-point-free curve of or@ehas nine inflection points. There
will be no higher inflection points in this casance the inflection tangent cannot
intersect more than three times.

In conclusion, we would like to derive a remarkaptoperty of the HESSian curve of
a curve of order 3. The pointsof the HESSiarcurve are defined in such a way that
their polar conic section:
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(2 2 kokf(H=0
possesses a double pami.e., one has:

> p, o (X akacf@) =0 identically irz
i

or:
() > Y piokdokf(2 =0 identically iz

Equation (3) is symmetric ip andq. The pointp thus also belongs to the HESSian
curve, and its polar conic section has a double pout #tfollows that:

Theorem 5. The HESSian curve of a plane cubic curve is alsddbus of the double
points of all decomposable polar conic sectig®ps Its points define pairgp, g) such
that the polars of p will always have their doupteEnts at g, and conversely.

Problems. 1. Show that a flat point in the sense of theorem—-4must be counted as two inflection
points, and, in general, a point with the characteristip,(asl — 1 inflection points.

2. One can characterize the pard) of theorem 5 by the fact that it is conjugate tooéithe conic
sections of the net (2).

§ 23. Third-order curves.
Projective generation A pencil of conic sections:
A Qu(n) +22Q2 () =0

ALla(n) + 212 () =0

and a pencil of lines:

that is projective to it will generate a curve of ordeeé:

Qu(n) 11(n7) + Q2 (1) 12(17) = 0

when corresponding elements of the two pencils inteessch other.

Any curve of order three can be obtained in this walyer&fore, if an arbitrary point
of a curve can be chosen to be the vertex (1, 0, @)obrdinate triangle then only terms
that are divisible byy; or 77, can appear in the equation of the curve; the equatiomeof t
curve will then read:

Qu(m)m + Q2 (m)n2=0.

Subdivision. We would like to ascertain the possible forms thatri@diicible curve
of order three can have. Such a curve cannot havedwble points, since the
connecting line between two double points would cut theecatveach double point
twice, and thus, in total, four times, which is impossib@n the same basis, no triple
points can be present if the connecting line of the tgolmt with a simple point also
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cuts the curve four times. |If a double point with two ddfe (linear) branches is
present, then they cannot contact each other, sincemgbeahe common tangent to both
branches would double each branch, and thus cut the twwdimes. Finally, if a
double point with a branch is present then it will hthwe characteristic (2, 1), and will
therefore be an ordinary cusp, since otherwise the tatméme branch would cut it more
than three times. There are thus three types:

[. Cubic curve with no double point.

[I. Cubic curve with a junction.

[11. Cubic curve with a cusp.

Normal forms In case |, we choose the coordinate system in auwehy that the
point (0, 0, 1) is an inflection point angy = O is the inflection tangent. (If the

coefficients of the curve equation are real then, beddwgseumber of inflection points is
odd, there will be a real inflection point.) The equiatis then:

ag; +bpyl + 1, st @t g @=0 @z 0).

One must havd # 0, since otherwise the point (0, 0, 1) would be a double.pd&p the
substitution:

, o f
=t —=n +—
=2t 5qh T 5q e

one can arrive at the result tltat f = 0. By the substitution:

, b
m :/71+£/701

one can further arrive at the fact that 0. The equation will then assume the form:
ap; +dngr; + e1gn,+ 975 = 0,
or, when written inhomogeneouslgy(= 1):
ap; +dp; +e),+ g=0.

By a suitable choice of unit point, one can ultimatiéynand thatl = -1 anda = 4 ().
What will then remain is the equation:

(1) ’722: 4’713 —09/~ Qs

() The factor 4 was chosen in order to arrive atctirnection with the well-known equation from the
theory of elliptic function:

A W =40u)°-g Au) - g
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The first polar of the inflection point (0, 0, 1) exigtsoreover, on the sideg = 0 andr.

= 0 of the coordinate triangle. The second polar of th&rsection point (0, 1, 0) is the
third sides; = 0. Thus, if one of the nine inflection points is séio to be the vertex (O,
0, 1) then the coordinate triangle will be determined iawaly, and the individual
coordinate transformations that do not disturb the fdnwill have the form:

Mo = A,

= Aun,

1y = i,
The quantity:

1"
©|©
N W

W N

will remain invariant under this transformationt id therefore a projective invariant of
the curve that depends upon at most the choiagflettion point used.

In order for the curve (1) to have, in fact, naible point, the discriminant of the
polynomial 4G — g, x — gs would have to be non-zero.

In case Il, we choose the two tangents of the idopbint to be the sideg; = 0 and
n2 = 0 of the coordinate triangle. The equationhefturve will then read:

a1, o7; + o1, A+ @5=0 @z 0).
By the substitution:
Ny =am+cm+dn,
m==pBm G =h),
Ny==Vyne ¢ =b),

one immediately brings the equation into to thenfor
) Mo M 12 =175 +17;.
All third order curves with a double point are thus projectively equntale

In case lll, we choose the cusp to be the vertef,(0) and the cusp tangent to be the
sider, = 0 of the coordinate system. The equation otthee will take on the form:

g1 + by + ap,+ Ay s+ @3= 0 @#0,b#0).
By the substitution:

, C
m= m+ 5/731

one will makec = 0. Thus, by the substitution:
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- = an +dm + en,,
one will arrive at the ultimate form:
3) Nd13= 1 -

It then follows:All curves of order three with a cusp are projectively equivaiemrtach
other.
The curves (2) and (3) possess rational parameter egpaéiens, namely:

&=+, &=t
4) &=t () & =t resp.
g(2 :tltg’ g(2 :tg’

On the basis of things that we will explain latdre curve (1) possesses no rational
parameter representation, expect for a multi-values by means of algebraic functions,
or a single-valued one by means of elliptic funasio

®) $=1, a=Pl),  L=P'(u).

Remark. The form of equation (1) can also be employedtod order curves with
double points (cusps, resp.). Namely,lfer27 the equation (1) represents a curve with a
double point, and fog, = gz = 0 it represents a curve with a cusp.

Tangents. From formula (5), 8§ 21, the curve (1) will havass 6, the curve (2) will
have class 4, and the curve (3) will have classABa pointQ outside of the curve (1)
one can therefore draw six tangents to the cuileeir contact points will lie on a conic
section, namely, on the polar of the po@t Of the six tangents, two of them will
coincide if the tangent in question is an infleattangent. I lies on the curve then two
of the six tangents will coincide with the tangemthe pointQ; if Q is an inflection point
then three of the six will coincide with the inftem point. In all other cases, the six
tangents will be different from each other, as ovik immediately recognize upon
considering the dual curve. For the curves (2)(@hdthe number of tangents will reduce
to two and three, resp. One can then draw fouw, amd one tangent, resp., at a pQint
of the curve (1), (2), or (3), resp., to the cufvesides the tangent @). These numbers
will be reduced by one whe@ is an inflection point.

Transformations of the curve into itselfThe curve (3) possesses projective
transformations into itself:

Ny =A°n,,
/71 =An,
1, =1,

The curve (2) has six projective transformatiors itself:
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Mo =M Mo =M
= pn, .= PN, @ =1).
Ny = PN, n, =P,

As we will see the curve (1) admits, a group of at l&&8sprojective transformations that
permute the nine inflection points transitively. Namelye has:

Theorem 1. Each inflection point w is associated with one projective refleation
the curve into itself that permutes the remaining inflection pointsvpae.

One can read off the theorem from (1) directly: THkc#on is given by, = - 17 .

One can also prove the theorem without coordinate tramstions, if one starts with the
fact that the polar of the inflection poimt will decompose into two lines, namely, into
the inflection tangent and a ligethat goes throughv. Now, if sis a point ofg then the

intersection point of the linevs with the curve will be found from the equation:
fo(WA + f(W, 947, + T(w 9445+ §( $45=0.

Now, one hady(w) = 0 andfz(w, ) = 0 in this, because lies on the curve anslon the
first polar ofw. Thus,— A; : Az is also a solution of the equation, along with A, . The
projective reflection that takes the poiw + A sto — Ayw + A s will then take the
curve into itself.

Any two points that are permuted by the reflection Wellon a line throughv. The
connecting line ofw with another inflection point will then always includetlard
inflection point, and sinces was an arbitrary inflection point, it will follow #t:

Theorem 2. The connecting line between two inflection poirltgags includes a
third inflection point.

This theorem is also valid, as its proof shows, fovesiwith a double point. In fact,
as one immediately recognizes by constructing the HEBES&iave, the curve (2) has
precisely three inflection points, which lie on theeliy = 0. The theorem will find no
application to the curve (3), since it possesses onlyrdleetion point (0, 0, 1).

Theorem 3. Any two inflection points will be permuted by ofehe reflections that
were mentioned in Theorem 1.

From theorem 2, their connecting line will then includk & third inflection pointw,
which belongs to a reflection that, from theorem il permute any two inflection points
that lie in a line withw.

It will first follow from theorem 3 that the projece invariantl of the curve (1) does
not depend upon the choice of the inflection point that eesen to be the vertex (0, O,
1). It will follow further that the groug of projective transformations of the curve into

itself will permute the inflection pointsansitively. From theorem 2, the subgroup®f
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that leaves the point fixed will have order at least two. Its cosdielhenklassgnwill
takew to all nine inflection points of the curve. Therefaitee group® will be of order

at least 18.

The inflection point configuration.We would now like to examine a configuration
that is defined by the nine inflection points of a double4pfvee cubic curve. The
examination proceeds in a purely combinatorial manner.

Four lines emanate from an inflection pointthat will include any other two
inflection points. If one choosegto be the sequence of all nine inflection points then
one will obtain 9 - 4/3 = 12 connecting lines that, alority ¥he nine inflection points,
will define a “configuration 912" (nine points, through each point of which there are
four lines, and 12 lines, on each of which there are thoeds).

If a1, ap, ag are three inflection points on a ligeghen three more lines will go through
ay, ap, ag that are all different. We will then get (togethethvg) 1 + 9 = 10 lines through
ay, ap, orag. Two lines will remain, which will go through eithay, a;, oras. If his one
of these andb,, by, bs are the inflection points that lie dnthen, along withg, h, and the
nine linesa; by will exhaust the set of all lines that go throughay, as, by, by, orbs .
One line will remain from the 12 lines that will go thgh eitheray, a,, as or by, by, bs .

It is calledl and goes through, ¢, Cs.

Any line like g will thus belong to one single triple of lineg, h, 1) that includes
precisely all nine of the inflection points. Since eathhe 12 lines belongs to one and
only one such triple, there will be four such triplese thus have:

Theorem 4. The nine inflection points can be decomposed into three triples in four
ways, such that each triple lies on a line.

If we denote a decomposition into triples by:
ay, ap, az | by, by, b3 |y, €, C3
then we can choose the numberindpodndcy in such a way that a second decomposition
will be given by:

a, by, ¢ |ap, by, 2 | as, bs, Cs.

The third and fourth decomposition can then only read lmsvi

a, by, Gz |ap, bs, €1 |ag, by, ¢,
a, bs, & |az, by, C3 |83, by, ¢ .

If one chooses the coordinate system in such a wayhddour pointsy, as, ¢, C3 take
on the following inhomogeneous coordinates:

ay(1, 1); a(1,-1);  a(-1,1)  a(-1,-1)

then, on the basis of the position relations betwbemtne points, which are given by
our 12 lines, the remaining points will inevitably have thétweing coordinates:
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ax(1, w); bi(-w, 1);  bs(w, -1);  cx(-1,-w); bs(0, 0) W = - 3].

The positions of the nine inflection points will then determined uniquely, up to a
projective transformation, and independently of the iavdrli of the curve. The
inflection point configuration cannot be realized by maihts, since the equatianf = -

3 is not soluble by real numbers.

If one regards the previous four triples of lines as deosable curves of order three
then two of them will determine a pencil whose basistgoare our nine inflection
points. This pencil will also belong to the other twplas of lines, as well as the
original curveC, since they all go through the nine basis points ofpéecil. On the
same grounds, the HESSian curve will also belong to theilpeThe pencil is therefore
also given by:

A C+A,H=0.

One calls it thesyzygetic penciloo{vyoc = yoked together) of the curg

Theorem 5. If nine different points of the plane have the position that was deslcrib
in theorem 4, and one determines a pencil of third-order curves by tihe &ur triples
of lines, which naturally also belongs to the two other triples of lithes) all curves of
this pencil will have their inflection points at the nine given points.

Proof. If wis one of the nine points then the first polamatlative to the curves of
the pencil will define a pencil of conic sections. Th&pw will be the inflection point
of a curveC that goes throughv if and only if the first polar ofw relative toC
decomposes. Now, there are four exemplars of the glatihave an inflection point at
w, namely, the four triples of lines that were mengmm theorem 4. There are then four
decomposable conic sections in the pencil of conic sectidiewever, when not all
elements of the pencil decompose, a pencil of conicosectvill contain at most three
decomposable conic sections. Hence, all of the conitosscof the pencil will
decompose; i.ew will be an inflection point for all curves of the pdnci

It follows from theorem 5 that all curvds C + A, H of the syzygetic pencil have the
same inflection points as the cui@e

Problems. 1. There is a group of 216 projective transformatioas ttlansforms the inflection point
configuration and the syzygetic pencil into themselésncludes, as normal a subgroup, the group of 18
collineations that, from theorem 1, is generated byréflections that transform each curve of the pencil
into itself.

2. The parameter valusst, u of the three points on the curve (4) ((5), resp.) ighaut out of a line
satisfy the equation:

St +Sthbuw=0,
resp.:
Shh+Stib+Stu =0,

or, after introducing the inhomogeneous parameters; : s, etc.:

stu=-1,
resp.:
s+t+u=0.
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3. The well-known addition theorem for elliptic functitormay be expressed as follows: The
parameter values, v, w of three intersection points of a line with the thirder curve that is represented
by the parametric representation (6) satisfy the oeglati

u+tv+w=0 (mod periods).

8 24. Point groups on a third-order curve.

We would like to examine the point groups @n a third-order curvés that will be
intersected by other curvés, . Thus, the multiple intersection points will beunted
with the correct multiplicity. It will be generally sssmed that multiple points & do
not appear in the point group considered; the cukyethat intersect the curv€; shall
therefore avoid the possible multiple pointKef.

Theorem 1. If, among the3m intersection points of a curve,kf order m with a
curve kg of order three, three of them intersect a line G outside;ah&n the remaining
3(m— 1)of them will intersect a curveyK of order m— 1that is outside of K.

Proof. The lineG has the equationy = 0, the curvés isf = 0, and the curv&n, is
likewiseF = 0. Thus, we first have to show that-éld intersection point oKz andG is
also at least arfold intersection point oK, and G. We show this as follows: The
branch development of the linear brancbf K3 at the pointS agrees with the branch

development of the lin6 in its terms in 17, ..., 7. Thus, if the fornF has ordek u
at the branch then it will also have order at legstat the corresponding branch of the

line G. The pointSwill therefore be at least/afold intersection point oKy, with G.

If one now setsp = 0 in bothF(Xo, X1, X2) andf(xo, X1, X2) then the three zero loci of
the formf(0, x4, X2) will appear in the zero locus of the foff{0, x;, X2) with the correct
multiplicity, and thereford=(0, x1, X2) will be divisible byf(0, x1, X2):

F(O, X1, Xz) = f(O, X1, Xz) . g(Xl, Xz).

If one now adds the terms containing the fastoback intoF andf then it will follow
that:
1) F(Xo, X1, X2) =f(Xo, X1, X2) - 9(X1, X2) + Xo - h(Xo, X1, X2).

It follows from (1) that the order of the forR(x) on each branch of the curfre O will
equal to the order of the forrg - h. The 3n intersection points df = 0 andf = 0 thus
divide the three intersection points xaf = 0 withf = 0 and the 30 — 1) intersection
points ofh = 0 andf = 0.

Theorem 2. If one connects the six intersection points of a conic secticané a
curve kg pairwise with three lineg; , g2, gs that cut the curve Kthree times at B P, ,
Ps; then R, P, , Ps will be the intersection points of;Kvith a line. (Arbitrarily many of

(*) The phrase “point group” has nothing to do with thecept of “group.” Rather, it denotes a finite
number of points in which the same point might appear miargst
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the 6 + 3 points can coincide, but the conic sectionccemtain no double point of the
curveKs.)

Proof. K, and PP, may, together with the curi, andg;, define the lineG of

theorem 1. BP, cutsKj; for the third time aQ andg; cutsK; atA; , B . It then follows
that A>AsB,B3P,Q will lie on a conic sectiork,.

3 of these 6 intersection points will lie on a limamely,Az, By, P.. Thus (again,
from theorem 1)As, Bz, Q will be the intersection points &% with a lineK; . This is,
however,gs ; henceQ =Ps.

WhenK3; decomposes into a conic section and a line Kkndecomposes into two
lines, theorem 2 will include the special case of PASGAIhieorem, with all of its
asymptotic cases. (One needs to draw a figure!)

One can also prove theorem 2 directly when one sg®an exemplar from the pencil
of curves that is determined by the curtesandg:;g.gs, such that it includes any seven
pointsQ of the conic sectioi, . This exemplar, since it has seven points in common
with the conic section, must then include the coniti@e@s one component. The other
component will be a line that includes the polisP- , Ps.

If one lets the conic section of theorem 2 degenentbetwo coincident lines then
one will get:

Theorem 3. The three tangents to the three intersection points of a linglgawi
third-order curve K cut the curve again at three points, P, , Ps that lie on a line

If one chooseg to be the connecting line of two inflection points tlome will obtain
theorem 2 of the previous paragraph all over again: Ondheecting line between two
inflection points, there will always lie a third inflzn point.

From now on, the curvis will be assumed to be irreducible. We choose a fixed
point Py of the curve (naturally, not a double point) and nowngesisumof two arbitrary
pointsP, Q in the following way: The connecting lirRQ cuts the curve again B, and
the connecting lin@R’ further cuts the curve & We then write® + Q =R. (9

The addition thus described is obviously commutative and alyigavertible. The
point Py is the zero element of addition:

P+Py=P.

We will prove that the addition is also associative:

() One is led to this definitior which seems remarkably strange, at firsthen one starts with either
the theory of divisor classes in algebraic functiotdfieor the theory of elliptic functions. Namely, ifeon
represents the coordinates of the point of the casvelliptic functions ofi, such thatP, belongs to the
parameter value E to the valuass , Q to the valualy , andR to the valueig then one will haveir + ug =
Ur (Mmod periods). Proof: If = 0 and, = 0 are the equations of the lire@R’andP,RR’then the quotient
[, : 1, will be a rational function of the coordinates of aiafale curve point, hence, an elliptic functionuof
with the zeroesir andug and the polesg and 0. Now, the sum of the zeroes of an elliptic fonctminus
the sum of the poles, is always a period. It follows tha ug — ug = 0.



§ 24. Point-groups on a third-order curves. 91

(P+Q +R=P+Q+R).

WesetP+ Q=S S+R=T,Q+R=U, and have to prove th&a + U = T. By the
definition of the addition:
P Q Smay be cut out of a ling;

PSS *“ ¢ ‘ hy
SRT * * ! o2
PoTT *  ° ! |
QRU * ¢ ! h,
PoUU” *  ° ! O3 .

We would like to prove tha® U T’can also be cut out of a lifg ; we apply theorem 1.
The pointsP Q SS R TPy U U’ will be cut out of a third-order cungg.gs, butPy; S S
will be cut out ofhy; hence, the remaining poirisQ R T U U’will be cut out of a conic
section. HoweverQ R U'will be cut out ofh, ; thus (again, from theorem B, T U’ will
be cut out of a lind; . From this, it immediately follows th&+ U =T if P, T T will be
cut out from a lind; . Thus, all of the rules of ordinary addition ardadzal

Now, we prove the decisive:

Theorem 4. The3m intersection points S ..., S, of Kz with a curve K, of order m
satisfy the equation:

(2) S+S+...+Sn=mP,.

Therefore, R is a fixed point, namely, the third intersection point of the tangeng at P
with K3 .

Proof, by complete induction om. Form= 1, the assertion will follow immediately
from the definition of the sur§; + S + S = (S +$) + S . Namely, ifR is the third
intersection point 0% Py with the curve then, since tlie S S will lie ona line,§ +$
=RandR + S =P; . We now assume that the assertion is true foresuo¥ degreenf —
1). $S will cut the curve for a third time &, and likewise S S, at Q, andPQ at R.
The pointsS,, ..., Sm, P, Q, R of a curveKs of degree iy + 1) that exists oK, and the
line P Q Rwill then be cut out oK3 . Of these points$, $, P will be cut out of a line;
hence, from theorem 1, the gro8p ..., Ssm Q Rwill come from a curve of orden, but
then agains S Q will come from a line, hencé&s,... Sy, R comes from a curvi€n,; of
order fn—1). From the induction assumption, one will thenehav

S+.+Sn+tR=M-1)P;.
One adds to this:
S+S+P=P,
S+S+Q=P,
and obtains:
S+S+ ..+ +P+R=(Mm+1)P;.

If one subtract® + Q + R =P; from this then the assertion (2) will follows.
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It follows from theorem 4 thatEach of thé8mintersection points of a fixed curveg K
with a curve Ik, that does not go through a double point gfiskkdetermined uniquely by
the3m — lremaining ones.

We now show that one can choose the-31 intersection points,, ..., Ssnarbitrarily
onKs , except for the double point; in other words, at least curve of ordem that does
not contairkKs will go through any 81— 1 points oK3 . The assertion will be clear far
=1 andm = 2; we thus assume that> 3. The linear family of aK, that go through the
3m— 1 given points has a dimension of at least:

m(m+3) _(3m-1)= m(m-3) 41
2 2

The linear family of alK, that includeKs as a componerk,, = K3 K3 , however,
has the dimension:
(m=-3)m
>

The former dimension is greater; hence, there angabctrvesK,, throughS, ..., S
that do not contailk; as a component. Then3 intersection point oKy, with K3 is the
point Sy, that is determined by (2). We thus have:

Theorem 5. The necessary and sufficient condition 3or points of Kto be cut out
of asecondcurve kK, is condition(2).

A generalization of theorems 1 and 2 follows immedjjdtem theorem 5:

Theorem 6. If, of the3(m + n) intersection points of a with a Kn.n , any 3m of
them on K are cut out of a i then the remainingn will be cut out of a K.

Then, from:
S+S+ ... +Smam=(M+n) Py
and:
S+S+..+Sy=mP

it will follow by subtraction that:

Sm1t .+t Sman =N P
Finally, we prove:

Theorem 7. If Ky and K/, cut out the same group 8m points from Kthen a
decomposable curves;Kny-3 will be present in the pencil of curves EndK' , and the
rest of the h— 3n = m(m — 3)intersection points of Kand K;, will lie on Ky .
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Proof. LetQ be any point oK3 that does appear in the group af Boints. There is
a curve through the poi@ in the pencil that is spanned By, andK/ . It has 3n+ 1

points in common withKs ; hence, it will contairk; as a component, and we can denote
it by Ks Kms. The intersection points &, andK' are the basis points for the pencil.

Hence, so are the intersection pointKafand Kz K3 ; i.e., they are the intersection
points ofK,, andK3, augmented by those Kf, andKn,-3 .

Theorems 5, 6, 7 admit very many applications, only a femhach will be selected.
First, we once more come back to the inflection poarifiguration. There is always an
inflection point, so we can assume tRatis the inflection point. One will then hat? =
Po ; we will denote this point b (i.e., the origin). The determination of the infleat
point W comes from the solution of the equation:

3W=0.

If there is yet another solutids, in addition to the solutiow = O, then 2J =U + U will
also be a solution, and one will have:

O+U+2U0=0;

i.e., the three inflection point3, U, 2U will lie in a line. If there is another inflection
pointV, along withO, U, 2U, then there will be nine different inflection points:

O, U, U,
(3) V, U+V, 2U+V,
N, U+, U+ N

That is also the maximum number. In fact, we sawtti@three curve types I, II, | of
the series possess one, three, and nine inflectiomspo@sp.. The configuration of nine
inflection points should be removed immediately from shbema (3); it is only when
three of the nine points yield the sunthat they will lie on a line. That is the case for
the points of the rows and columns in schema (3), akasgelor the triple that (like
determinant terms) includes precisely one point from eawhand column.

It now follows thatA real curve of order three has one or three real inflection points.

One gets the fact that there is one real inflegbioint from the fact that the imaginary
inflection points can occur only in complex conjugateaifhus, we can choose a real
inflection point forP, . If U is then a second real inflection point thdn &ill also be
real, and there will be three real inflection po@®dJ, 2U. There cannot be a fourth real
inflection point, since then the entire inflection gogonfiguration (3) would be real,
which, from § 23, is impossible.

We understand th@angential pointof a pointP on the curveK; to mean the third
intersection point of the tangent Btwith the curve. The tangential poif@t will be
defined by:

2P+Q=P;.
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For a given tangential poi, there will be four point® on a curve of type I, two points
P on a curve of type Il, and one poiRton a curve of type lll, resp. Therefore, the
equation:

(4) X=P-Q

will always have four solutions (two solutions, one sohitresp.).

We now consider a curve of type |; henc&savithout double points. K andY are
two solutions of (4) then the differen¥e- Ywill be a solution of:

2(X—Y) :Pl—Pl;

hence, it will be one of the four points whose tangépbint isP; . LetPy,D;, D2, D3
be these four points. Thus, all solutiofisf the equation (4) will arise from a solutiyn
by addingPy, D1, D,, or Ds. For each, the association:

X=Y+D; i=1,273)

will be a one-to-one correspondence of period X 3Y + D; then one will also havé =
X + D; . There are thus three involutions of the point p&¢sY) on the curve such that
one always has X Y, while X and Y always have the same tangential point. Any point X
will be in one-to-one correspondence with a point Y under any involution, armabitite
Y, on the other hand, will be associated with X in the same way.

The tangents to a varying curve poilathave the remarkable property that their
double ratio is constant. This follows from:

Theorem 8. If one draws all possible lines a through a fixed curve point Q that may
cut the curve at two further pointg And A, and then one further links both and A
with a fixed curve point S, and seeks the third curve point8Bf these lines with the
curve, then the connecting lines=tB;B, will all go through a fixed curve point.Rf the
line a runs through the pencil Q then b will run through the pencil R, asd#siociation
a - b will be a projectivity.

Proof. We have: Q R

Q+A +A =Py,
AL +S+A, =Py,
A+S+A, =Py,
B,+B,+R =P;.

From this, by addition and subtraction,
one will get:

(5) Q+R-25=0, B A, b
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from which,R will, in fact, be constant (independent of the l&@e The associatioa —
b is obviously one-to-one. In order to show that it iprojectivity, we choose a fixed
positiona’of the linea, properly construct the poinég, A, B/, B;, and the lind’ from

it, denote the intersection point afandb’ by C, that ofa’andb by C’, and then prove
thatS C, C’will all lie on one line. To that end, we apply thewr 7 withm = 4. K,
exists on the four linea, b, ASB;, A SB, , just asK/ lies on the four lines’, b’

A1SB, ASB . K and K/ cut out the same point groug¥A A AA SSBB BB from

the curveKs; . Hence, from theorem 7, the rest of the four sgetion pointsS S C, C’
will lie on a line. The associatian— b may be arranged in the following way: One cuts
awith b' , projects fromS ontoa’, and connects witR. The association will thus be a
projectivity.

For a giverQ andR one can always find a suitat$en the basis of equation (5).

If one chooses a tangent farin particular, them\; = Ay, B = By, and therefore also
b, will be a tangent. Hence, the four tangent®Qab the four tangents & will be
projective and will have the same double ratio. S@@ndR are arbitrary curve points,
it follows that:

Theorem 9. The double ratio of the four tangents that one can draw from a point Q
of the curve Kto the curve is independent of the choice of point Q.

If one chooses an inflection point f@ then one of the four tangents will be the
inflection point. If we puQ at (1, 0, 0) and the tangent to the linex@t 0 then it will
follow that the double ratio that was mentioned in tkeoB is equal to the partial ratio
(e1 — &)/(e1 — &) of the three root®y, e, s, of the polynomial # — g, x — gs that
appeared in the normal form (1), § 23.

Problems 1. A cubic curve with no double point possesses thystems of triply-contacting conic
sections. In each system, one can choose two dhtbe contact points arbitrarily; the third one wikith
be determined uniquely.

2. There are 27 non-decomposable conic sections thigict@ double-point-free curve of order three
at each point with the multiplicity 6. Its contact geimill found when one draws the three tangents to the
curve from each of the nine inflection points.

§ 25. The resolution of singularities.

Let f(r0, 1, 172) = O be a non-decomposable plane algebraic curve of degrek
We would like to transform this curve into another ahat possesses no other
singularities besidessfold points withr distinct tangents. The Lemma for this defines a
very simple transformation of the plane (vigremona transformatigrthat is rational in
both directions, and is given by the formulas:

(1) o:G:L=mne Mo Mol
(2) No:m: =543 (6o (ol -
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It is clear that (2) is the solution of (1) in these@po/./7. # 0. The transformation (1) is
therefore its own inverse. It is one-to-one, exdeptthe sides of the fundamental
triangle, but all points of the sidg = O will go to the opposite cornef = { = 0;
corresponding statements are true for the remaining.si@lbe transformation (1) will be
undetermined for the vertices of the fundamental treangl|

If one substitutes the value (2) of the ratio in ¢l@ationf(s, /71, 172) of the present
curve then one will obtain a transformed equation:

(3) f((12, {240, $0¢1) = 0.

If the original curvef = 0 does not go through a corner of the fundamentalgigathen
each point of this curve will originate uniquely from a pahthe curve (3), and (from 8
19) the latter will be irreducible. However fiE 0 goes through a vertexsay, through
(1, O, 0) — then all of the terms f(yo, Y1, ¥2) = O will be divisible byy; ory, , and
therefore the factaz, will split off from f(z z, z 2, zyz). If f = 0 has am-fold point at

(1, 0, 0) then it will be the factoz, precisely that indeed splits off frofte, z, z 2, %
7). We thus set:

(4) (az z2,202)=222 3% z 2,

and callg(2) = 0 thetransformed curveff = 0.
By the substitution:

Z=Y1Y2, 71 =Y2Yo, 2 =YoY1,

one will obtain, from (4):

Ko y1.y2)" T = Vo ' Y YA MY %% %Y

n-s-t,,nt-r ,r-s

(5) aY1Y2 Y2Yo, YoY1) = Yo~ Vi Y A Y % W)

Hence, one will also have, conversely, that O is the transformed curve gf= 0. |If
d(Yo, Y1 Y2) were decomposable then, from (&Yo, y1  y2) would also be decomposable,
contrary to the assumption. Hengé) = 0 is anon-decomposableurve.

By differentiation with respect t , it will follow from (4) that if f,, f,, f, are the
derivatives of and g,, g;, g, are those of then:

2f(z22, 2% g4+ ¢4 22 ,2,2,3
:tz(r)ié_lq%’ g 9+ r(ZSthZZIZG OZIZQ'

If one multiplies this equation on both sideszbyand applies the EULER identity:

Yo fo(W+ Y (Y + v, T Yy=nf(y)
then it will follow that:

6) nfzz zn202)-22%(32 23 zx=tz32d1+ 222 '§).
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Analogous equations are naturally valid for the other twivalévesf; , f,' .

As for any rational map, each branch of the curwe O corresponds to a unique
branch of the curvg = 0, and conversely. (1), m(7), 72(7) are the power series
developments of a branghof the curvef = 0 then one will obtain the corresponding

branchj’ of the curveg = 0, in which one first forms the produgi(7)7:2(7), 7:.(7)170(7),
no(7)nu(7) and then removes a possible common fartorom the three power series:

{o(M)T* =0y (T)n (1),
(DT =n,(D)ny(1),
£,(n)1" =n,(T)ny(7).

The factor 7’ appears only when the starting point of the brandh a vertex of the

coordinate triangle. If we assume, perhaps, thatis$ the vertex (1, 0, 0) and the tangent
to the branch is not a side of the coordinate gdethen the power series development of
the branch will read thusly:

n,(1) =1,
(7) /71(T):bkrk +h<+1rk+l+"' (b( ¢O),
M,(T) = G + T -+ (G #0).

One will then find tha#d = k and:

() =bcr“+(bc,, + b, QOr"+--,
(8) (1) =C + G T+,
{,(T)=b +b 7+

In this case, the starting poigt will thus lie on the opposite side of the coorténa
triangle. Conversely, if one forms:

no(7) = {(0)4a(1),
m(7) = &(0)(1),
nA1) = (1) 4u(1),

while starting from the branc), then one will get back the original brangrexcept for

an inessential factor @k(7) (7).

We now go on to the “resolution of singularitiesWe select a certain singularity
i.e., a multiple poinO — on the curvé = 0 that we would like to resolve — i.e., convert
into simple singularities. We place the vertexQ1Q) of the coordinate triangle @ and
choose the three other corners outside the curol that the sides of the coordinate
triangle are not curve tangents and include no npoiets of the curve beyon@. In
equation (4), one will then hags=t = 0, whiler will give the multiplicity of the poinDO.
We now have three things to examine:
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1. The effect of the transformation on the brankcthe pointO,
2. Its effect on the branches at the intersectiontpof the triangle with the curve,
3. lts effect on the remaining curve points and its lrasc

We introduce a measure for the complexity of a singylanamely, the multiplicity
of the intersection point @ as an intersection point of the cufve 0 with the polar of a
point P, which is chosen such that this multiplicity will be small as possible. @ is a
simple point then this measure will have the value zetole it will always be > 0 at
multiple points.

The intersection multiplicity of the curve with tipelar combines contributions that
originate in the different branches of the paint We will now show that for each such
branchj; of the pointO, the contribution will always be reduced under the Cremon
transformation above in the event tlais actually a multiple point; hence, wher 1.

We understandp, {1, (> to mean the power series (8), angl /71, /7. to mean the
power series:

o = (14>, m = {4, 2 = {1

that are proportional to (7) and represent the branchhe polar of a poin®(7s, 72, 75)
will have the equation:
1, fo(7) + £ () + 11,1 07) = 0

and will cut the branch with a multiplicity that will be> the minimum of the orders of

the power seriesf (7), f/(7), f,(7) and which will be equal to this minimum, in

general (except for special locations of the pBt We can assume that the vertex (0, O,
1) of the coordinate triangle has no such special lmgaséind thus, that the orderof the
power series,(#7) is already equal to the minimum in question.

If one now substitutes the power serggsi, ¢» for zy, z1, z in (6) then, since=t =
0,f(n) = 0,9(n) =0, it will follow that:

- ZozleI(OO’Ol’O 2) = Z(;ZZQIZ(ZOaZyZz) ’

or, after cancelingo:
9) = $u8301012) = 467¢,95(¢0 1<)

The left-hand side will have order precisely, since, from (8); has order zero. The
factor ¢;™* on the right will have order (- 1) k and & will have order 0. Hence, the

factor g,({,,{,,{,) will have the order:

H——1Dk<pu
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The minimum of the orders of,({), 9,({),9,({) will be <y, moreover. Thus, the
minimal intersection multiplicity of the branch Wwithe polar has, in fact, diminished
under the Cremona transformation.

We now turn to the second issue of the intersectiontpof the triangle with the
curve. If such a point lies — say — on the triangle g = O then, since the intersection
point shall be a simple ong; will have order 1, whilez, and/s; have order zero:

No=ag+aiT+ ... @ %= 0),
m=bo+br+ ... (o #0),
m=cr+... €%z 0).

The transformed branch will read:

o= =boci T+ ...,
Q=M =agCL T+ ...,
H= ot =agho + ...

One is thus dealing with a linear branch at the poin@(@,) whose tangent direction is
given by the ratidy, : a ; thus, it will depend upon the location of the poast bo, 0) on
the opposing side of the triangle, which is where taetesd from. Since the intersection
point of the curve = 0 with the triangle sides outside Of were all assumed to be
different, we will obtain nothing but distinct tangeior the transformed linear branches
at the vertices of the triangle. Thuww singularitieswill appear under the Cremona
transformation, namelynultiple points with nothing but linear branches with separate
tangents.

In the third case, we must consider points that lleeeiat a vertex or on a side of the
fundamental triangle. The Cremona transformatioh gl one-to-one for these points.
It will transform linear branches into linear bransias one easily verifies), and it will
also transform the tangent directions of the brancueh a point in a one-to-one manner.
Simple points will thus go to simple points, agdold points withq separate tangents
will again go to others of that sort. If one is dealinghva singular point then it will
follow from formula (9), which will also be true fohis case, that the intersection
multiplicity of the branches with the polars will reimainchanged in this case; thus, the
measure of the singularity will not be raised.

If one now defines a whole numbg(f) for each curvd = 0 to be the sum of the
singularity measures over all of the singular point$ #ra not merely multiple points
with separate tangents then it will follow from therdgoing that the numbexf) can
always be diminished by a suitable Cremona transfoomatien it is non-zero. After
finitely many such transformations one will hgwg) = 0, and we will get the theorem:

Any irreducible curve £ 0 may be converted into one that possesses only “normal”
singularities ( i.e., multiple points with separate tangents) by aibirat transformation.

Problem. Show that the theorem proved above is also true tmnagosable curves.
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§ 26. The invariance of the genus. The PLUCKER formulas.

Let m be the degree of a plane irreducible cufvand letnt be its class. We compute
the characteristick(l) for all non-ordinary points df and form the sums:

s=Y (k- 1)
s=Y (I - 1).

S is called the “number of cusps” asdis the “number of inflection points.” In fact,
when there are no other extraordinary branches thanugge (2, 1) and the inflection
point (1, 2),swill actually mean the number of vertices, aiavill mean the number of
inflection points.

We now set:
(1) m+s—-2m=2p-2

and call the rational numberthat is defined by (1) thgenusof the curve. We will later
see thatp is a whole numbee 0, and thafp will remain invariant under all birational
transformations of the curve.

We first give the definition of the genus a somewhffergnt form. We again
assume, for the sake of simplicity, that the pointd(0l) does not lie on the curve. We
consider a general point (4, ) of the curveK, in which wis thus an algebraic function
of u, and consider the branching points of this functon i.e., the valuea = a or « at
which several power series developmeais ..., ay come togetherzisammentretgn
into a cycle. The numbér— viz., the order of the branching — is the order of tinetion
u—a(u™, resp.) on the branch in question. If one now addsesseclassification of the
branch (8 21) then one will see that:

h
h

k when the branch tangent does not go through (0, 0, 1),
k +1 when the branch tangent goes through (0, 0, 1).

When one sums over &l> 1, it will then follow that:
2(h=-1)=x2(k-1) +2'I,

in which the last sum is taken over only the branches&kangents go through the point
(0, 0, 1). 2" | will then be the sum of the multiplicities of trengents to (0O, O, 1), or the
class i The sum) (h — 1) is called théoranching numbemw of w as an algebraic
function ofu. Finally, one hag (k— 1) =s, so:

w=s+m’
If one substitutes this into (1) then it will follothat:

(2) w—2m=2p-2.
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In words: The branching number of an algebraic functi@nminus twice its degree, is
equal to2p — 2,when p is the genus of the associated algebraic curve.

It is not difficult to also prove this theorem for tbase in which the point (0, O, %)
which, up till now, has been assumed to lie outside theectiis ag-fold point of the
curve with nothing but ordinary branches. In this case,degree of the functionw
will not be equal tan, butm - g, and als@_' | will not be equal ton’, butm’- 2g, and it
will follow that:

w—2n=2p-2.

The genus is closely connected with thierentialsof the function fieldK(u, «). By
this, we mean the following: The differential of thelépendent variabledu shall be
merely a symbol, or, if one wishes, an indeterminatarelver, if7 is any function of
the field then we set:

We understand therder of the differentialdu on any branch of the curve to mean the
order of the differential quotientd7 / dr with respect to the position uniformizatian
The order ofin is, correspondingly, the order of:

dn _ dp du
dr dudr’
If u—ahas ordeh on a branch:
u-a=c, '+ ...

thenduwill have the ordeh — 1, and then it will follow by differentiation that:

h is different from 1 only at the branching points; thene thus also only finitely many
branches for the differentidalu on which its order is different from zero. uf= o on a
branch then one will have:

ut=ch "+ ...,
u=c'r"+ ..,

du -1.-h-1

_= - T + ;

dr G

hence, the order afu will become -h — 1 there. Now, one has:

-h-1=h-1)-2.
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The sum of the orders of the differentdalon all of the branches will equal:

Sh-1)=h=Yow—2n=2p—2,

in which 2. means the sum over all branches with= o, hence, over all intersection
points of the curve with the lingy = 0. Since this intersection point has, at the same
time, the multiplicityh on any branch.. h will be equal to the degree of the curwme
Thus:

The sum of the orders of the differential du over all curve branshesguial ta2p — 2.

Now, if dr7/ dr is a function of the field then this will be truer foot onlydu, but

also for any differential:
dn =% du
du

and the sum of the orders of such a function overatidhes will be equal to zero (8 20).
What now follows immediately from this remark is theeorem of the invariance
of the genus:

If two curves = 0and g= 0 can be mapped to each other birationally then they will
have the same genus.

Thus, if (4, @) is a general point of the one curve anddj is a point of the other then
any functionh(u, «) will correspond to a functioh’'(v, ) by means of birational map,
and each branch will correspond to a branch. The posiniformizationr of the branch
will again correspond to the position uniformization, tlikerential quotients will again
correspond to the differential quotients, and it willldel that the orders of the
differentialds will be preserved, and therefore the sym-2, as well.

As a first application of the theorem of the invacamf the genus, we prove that the
genus is always a whole numkze0. From § 25, we can convert any curve birationally
into a curveK with nothing but “normal” singularities, namelyfold points with distinct
tangents. If the curve has degre¢éhen, from § 21, its clasg will equal:

m=mm-21)-2r(r-1),
in which the sum is taken over all multiple pointswill follow that:

p-2=m+s-2n=m(mM-1)-2r (r—1)—2n
2p=M-1)M-2)->2r(r-1).

The right-hand side is an even numberp sall be a whole number. We can set:

2r(r—1) =2,
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r
and then calld the “number of the double point,” if we count ae#fiold point as(zj

double points. One will then have:
m-1)(m-2
) o= (M-D(M-2)_

2

A curve that has at least an{1)-fold point at each-fold point of the curvek (with
normal singularities!) is called adjoint curveto K. In order for a given point to be an
r-fold point of a curvéh = 0, its coefficients must fulfit (r — 1) / 2 linear equations, so if
—say- (1, 0, 0) is the point then the developmenh(@d, xi1, X2) in increasing powers of
x1 andx, must lack the terms of order O, 1, r.+ 1. An adjoint curve thus hasr (r —

1) / 2 =d (dependent or independent) linear conditions to fulfillcuts the curve in the
multiple pointsr (r — 1)-fold, hence, @fold, in all.

There exist adjoint curves of order— 1; e.g., the first polar of an arbitrary point.
Since the total number of intersections of a curve apdlar amounts ton (m — 1), it
will follow that:

(4) Ad<m(m-1).

There are indeed adjoint curves of the order 1 that include, other than the
multiple points, also:
(m=-1)(m+ 2)_d
2

arbitrarily given points. A curve of orden— 1 will then haven (m + 1) / 2 coefficients,
so that one can impose:
d+(m—1)2(m+ 2)—d= m(r2+2)_

1

conditions, which, when false, would imply that thedl vanish. Since the number of
intersection points again amountsigm— 1), it will follow that:

2d+%—dsm(m—l)

or:
(5) d< (m—1)2(m+ 2),
or, from (3):

p=0.

As the proof shows, the inequality (4) is valid, not diolly irreducible curves, but
also for arbitrary curves with no multiple componenthjle the inequality (5) is valid
only for irreducible curves, but with arbitrary singuladti Both inequalities are the
sharpest of their kind.
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The notion of genus can be carried over to reducibleesurthe definition (1) will
remain the same. Since the class, cusp count, and ddgredeoomposable curve are
equal to the sums of the classes, cusp counts, and degheecomponents, one will then
have:

p-2=(P-2)+...+ (-2
or:

(6) p=p1+..+p-r+1
for a curve that decomposes imtoomponents of genep, ..., pr .

The PLUCKERIian formula.From the theorem on the invariance of genus, the dual
curve of an (irreducible) curve will have the same genubkasriginal curve. One will
then have:

(7) m+s—2n =2p-2
dual to (1).

To the formulas (1), (3), one now adds formula (5) of 8witfich expresses the class
' in terms of the degram and the type and number of singular points. If thest asd
junctions ands cusps then, from § 21, one will have:

(8) m=m(m-1)—2 -3

By a suitable definition of the numbdy this formula will also be valid when the curve
possesses higher singularities. For example, one mwust anr-fold point with separate
tangents as (r — 1) / 2 junctions, and likewise, a contact junctiorves junctions, etc.
In each individual case, the methods of § 21 will givepghbssibility of computing the
guantities that one must addfo(m — 1) in order to obtain the class, and one can
always put this quantity into the fornad 2 3s; then, from § 21, problem 4, it will always
be> 3s, and it will always differ from 8by an even number, since, from (j,+ sis an
even number.

Dual to (8), one has the formula:

(9) m=m (m - 1) - & - 3¢,

in whichd" means a suitably-defined number of double tangents.
We then summarize the formulas that we have found:

1), (7) m+s—2n=m+s —2n = 2p - 2,
(8) m=m(m-1)-2 -3,
(9) m=m(m-1)-2" - 3.

In thesem means the degree of the curne, the classs ands, the number of cusps and
inflection points, respd andd’, the number of double points and double tangents, resp.,
and finally,p is the genus.

It follows by subtracting (1) and (7) that:

(10) § —s=3(m -m),
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or, if the value ofri from (8) is substituted in this:
(11) Ss=3m(m-2)-6a-8s.

Dual to this, one will have:
(12) s=3n(m-2)-& - 8s.

(8), (9), (11), (12) are called tiRLUCKERIian formulas.One can calculater, s, d
from them whemn, s, d are given.

If one substitutesY from (8) into (1) then what will follow, after a coersion, is the
convenient genus formula:

(13) p= (M= D(M=2)_, ¢

2
As examples of its application, we compute the numbenftection points and
double tangents of a double-point-free curve of onder
From (8), it will first follow that the class is:
m =m(m-1).
Thus, it will follow from (10) or (11) that the numbef inflection points is:
S =3n(m-2),

and finally, from (9), that the number of double tangénts

2d' = mi(m-1)- m-35
=m(m-1)(nf- m1)- m9nm?2)
=m(m-2)(nf-9)
d'=im(m-2)(rd-9).

(14)

In particular, a double-point-free curve of order 4 has 2®atangents').

(*) These curves have very interesting geometric propereg STEINER (J. reine angew. Math.
Bd. 49), HESSE (J. reine angew. Math. Bd. 49 and 55), ARONHQ@er. Akad. Berlin 1864), and M.
NOETHER (Math. Ann. Bd. 15 and Abh. Akad. Miinchen Bd. 17). fdrds a good introduction to the
subject in H. WEBER’$.ehrbuch der Algebra ll



CHAPTER FOUR

Algebraic manifolds

8 27. Points in the broader sense. Relation-preserving spaizations

Up till now, we have only considered points with constarttrdinates in a fixed field
K. Now, we extend the notion of a point by also alloyvpoints whose indeterminates,
or algebraic functions of indeterminates, or still moreegal elements, are in any
extension field oK. A “point in the broader sense” of the vector spBgas thus a
system ofn elementsys, ..., y, of an arbitrary extension field &, and a point in the
broader sense of the projective sp&eavill be defined accordingly. Furthermore, the
notion of a linear space, hypersurface, etc., will bereded by regarding the particular
points of the linear space in the broader sense (regatitkncoefficients of the equation
for the hypersurface as arbitrary elements of an exterfield ofK, resp.).

The extension field from which the elemews..., y, are taken is not to be thought
of as a fixed field, but rather as an enlarged field tlset lbe extended as often as
necessary in the course of a geometric consideraéian, by the addition of new
indeterminates and algebraic functions of the indeternsnatét the moment of the
introduction of a sequence of new indeterminates all ef pheviously introduced
indeterminates will be regarded as constant, and the graiddwill be thought of as
having been augmented. That means: By the introductioewfindeterminatesy, ...,
Um, the ground field will become the field that comes about by adjoining all previously
considered indeterminatgs ..., X,, ... to the ground field.

The algebraic extension of a given field will alwdys tacitly carried out, when
required. If, e.g., a hypersurface with coefficients m extension fieldK' of K is
intersected by a line then the intersection point bellobtained by solving an algebraic
equation. We then always think of the fi&ltdas being extended by the adjunction of all
of the roots of this algebraic equation. In this sense,care regard any algebraic
equation as soluble in this enlarged fild®).

We understand the terangeneral pointof the projective spac8, to mean a point
whose coordinate ratiogi/xo, ..., X/Xo are algebraically independent relative to the
ground fieldK. Thus, there shall exist no algebraic equat{@iX, ..., X/%) = 0, or,
what amounts to the same thing, no homogeneous algediaionF(xo, ..., X,) = 0 with
coefficients inK, unless the polynomidl(the formF, resp.) vanishes identically. One
obtains a general point, e.g., when one chooses &lleotoordinatesy, ..., X, to be
indeterminates, or also when one sgts 1 and chooses, ..., X, to be indeterminates.

A general hyperplanén S, is hyperplanas whose coefficient ratios:/uo, ..., Uy/Uo
are algebraically independent relative Ko It is most convenient for one to simply

() Through this sort of consideration, we avoid “trarigfiinduction,” which is necessary in order to
extend the fielK' to one that is actually algebraically closed (cf.SEEINITZ: Algebraische Theorie der
Korper, Leipzig 1930). Transfinite induction is then necessarynwdre wishes to solve an infinite set of
equations. However, only finitely-many equations will app® geometric problems, and they can be
solved among themselves in the order of their appeavdtiasut having to introduce transfinite induction.
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chooseup, uy, ..., Uy to be indeterminates. Analogoushygeneral hypersurface of degree
m will be one whose equation coefficients are nothingrmependent indeterminates.

A general subspacenSs one whose Plicker coordinates satisfy no homogeneous
algebraic relation with coefficients K, except for relations that are valid fany
subspaces,, . One can obtain a genef&l , for example, as the intersectionrof m
general (mutually-independent) hyperplanes or as the jaim-6flL independent general
points.

Relation-preserving specializationsA point (in the broader sense) is called a
relation-preserving specializatioaf the same poinf when all homogeneous algebraic
equations=(&, ..., &) = 0 with coefficients in the ground field that are valid for the
point £ are also valid for the poimg, and thus it always follows frof(¢&) = 0 thatF(7) =
0 for any formF. For example, any point of a space is a relationepveyy
specialization of the general point in the same spac@ther example: Lef, ..., & be
rational functions of the indeterminate parametand lets, ..., 7, be the values of
these rational functions for a particular value. of

One defines a relation-preserving specialization of atgsir (£, #), a point-triple
(& n, ¢, etc., analogously. If{ n) - (&, 77) is to be a relation-preserving
specialization then all equatioR$é, 17) = 0 that are individually homogeneous in the
and 7 must remain true under the replacemenf with {”andn with 7.

The most important theorem on relation-preserving apeations, which will come
before everything else in chap. 6, reads like:

Any relation-preserving specializatiog— ¢ may be continued to a relation-
preserving specializatio, 7)) — (&, 17) when (¢, n) is any point-pair in the broader
sense.

Proof. From the totality of all homogeneous equati&(4 77) = 0 one can, from the
HILBERT basis theorent), select a finite number of them from which all bé tother
ones follow. One eliminates thgfrom these finitely-many forms i.e., one constructs
the resultant syste@, ..., Gx. One will then hav&,(é) = 0, ...,G(é) = 0. Due to the
relation-preserving specialization, it will follow frothis thatGi(¢”) = 0, ...,Gk(¢) = 0.
From the meaning of the resultant system, the systeegwationsF.(¢%7) = 0, ...,
F«(é%n7) = 0 will then be soluble fory. That is, there will be a poimf such that all
equationd=(¢, n7) = 0 will also be valid fo’,7'.

Essential use was made in the proof of the fact thmisodealing with homogeneous
equations, and therefore homogeneous coordinatas least, relative to thg. The
theorem will no longer be true in affine spaces, in Whiwe specializatiod- ¢’ can
take the pointy to infinity. On the contrary, it is essential tlaate deals with only one
point ¢ and one pointy, or else the theorem would be true for a whole sequefice

S

1 r 1
further points¢, ..., &,n, ...

1) Cf., Moderne Algebra [1§ 80.
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Problems. 1. A system of homogeneous linear equations alwagsepees a general solution, from
which any solution will arise by relation-preservinppsialization.

2. If n depends rationally upofiand some further parameteand these rational functions still make
sense wheid”’ is substituted fo€ andt’, for t, andé — ¢’is a relation-preserving specialization thénrj)

- (&% ) will also be a relation-preserving specialization.

3. If is the general solution to a system of linear equatidmsse coefficients are homogeneous
rational functions off, and if £ is specialized taf” in a relation-preserving way, where the rank of the
system is not reduced, andrifis a solution of the specialized system of equations tge7) - (& 77)
will be a relation-preserving specialization. (Onpresents the solution’ with the help of determinants,
and likewise, the general solutignand applies problem 2.)

§ 28. Algebraic manifolds. Decomposition into irreducibl@nes

An algebraic manifoldin the projective spac§, is the totality of all points (in the
broader sense) whose coordinaggs..., /7, satisfy a system of finitely or infinitely many
algebraic equations:

(1) f]_(/70, ceey /7n) =0

with coefficients in the constant field. If there is no such point then one calls the

manifoldempty. We will always exclude this case from consideration.

Due to the HILBERT basis theorem, one can replacmfinite system of equations
by an equivalent finite system.

Similarly, one defines an algebraic manifold in double ptoje spaceS, » by a
system of homogeneous equations in two sequences of hoeaagevariables:

(2) fi(oy ..oy ém MOy ooy 110) =0

If equation (1) ((2), resp.) is made inhomogeneous by thstitution o = 1, & = 1,
resp.) then one will obtain the equations of an algebmanifold in an affine spac&,
(Am+n, resp.). From now on, we always writ@), f(7), f(¢, ;7), etc., instead of(x, ...,
%), f(770, -, 77n), T(os -, &mi Moy .., 1), €LC.

The notion of algebraic manifold can be generalizdtifatther by considering, in
place of the point; and the point-paié, 77, other geometric objects that are given in
terms of homogeneous coordinates; e.g., hypersurfaces, §nbapace&, in S,, etc.
For example one can, speak of the manifold of all glam&,; its equations are given by
(2),87.

The intersectioM; n M, of two algebraic manifoldM; andM is obviously again
an algebraic manifold. However, the unidhdr sumof two algebraic manifolds is also
one. Namely, iffi(r7) = 0 andgj(/7) = O are the equations of the two manifolds being
united then the equations of the union will be:

fi(n7) g(n7) = 0.

(*) The word “union” (or sum) is used with its set-theoretiganing. Components, suchMsand
M, in the sum are to be counted only once, and no madfeltiply-counted manifolds will first be
introduced much later (8§ 36 and 8§ 37).
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An algebraicM in §, is calleddecomposabler reducible when it is the sum of
distinct - i.e., disjoint from each other submanifolds. An indecomposable manifold is
calledirreducible

Lemma. If an irreducible manifold M is contained in the union of two algebraic
manifolds M andM, then M will be contained in either \Nor M, .

Proof. Any point ofM belongs to eithel; or M,, hence, to the intersectidvh n M;
or the intersectioM n M. HenceM is the union oM n M; andM n M,. However,
sinceM is irreducible, one of these manifoldlsn M; or M n M, must coincide withiv
itself; i.e.,M will be contained in eithevl; or M.

This lemma may be immediately carried over to seveaiifmlds Ms, ..., M; by
complete induction.

A special case:

If a product {f, of two forms is zero at all points of an irreducible manifold them f
f, will have the property of being zero at all points af M

On the other hand, M is decomposable perhaps intdvl; andM, — then there will
be, firstly, a formf; among the defining equations Mf that is zero at all points &,
but not all points oM, , and likewise there will be a forfa that is zero at all points of
Mo, but not all points oM; . The product; f; will then be zero at all of the points g
but neither of the factoffs, f, has this property. Thus, we have:

First irreducibility criterion. A necessary and sufficient condition for the
decomposability of a manifold M is the existence of a produgtthat is zero at all
points of M, without either of the formsf: being zero on M.

Moreover, for algebraic manifolds, we have the:

Chain theorem. A sequence of manifolds:

(3) M; OM, 0O ...

in A, or S, in which M. is a proper submanifold of Mnust terminate after finitely many
terms.

Proof. The equations of the manifoldd;, M, ... allow us to write down the
sequence as:
f1:0, f2:0, ...fh:O; fh+1:0,...,fh+h:0;...

From the HILBERT basis theorem, all of these equatimlow from finitely many of
them. However, that means that the equation8lof..., M, collectively comprise the
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equations of all further manifolds, hence, alkr, no further proper submanifolds can be
given in the sequence.

We now come to the fundamental:

Decomposition theorem. Any algebraic manifold is (either irreducible or) the sum
of finitely many irreducible manifolds:

(4) M=Mi1+Mx+ ... +M,.

Proof. Assume that there is a manifold that is not the sum') of irreducible
manifolds. M is then decomposable, perhaps ift6andM”. If M"andM” were the
sums of irreducible manifolds thévh would also be. Henc®] would possess a proper
submanifoldM” or M ” that would not be the sum of irreducible manifolds. Tieer
likewise would possess a proper submanifold, etc. One whukl dbtain an infinite
chain (3), which is impossible. Hence, any manifold ésshm of irreducible ones.

Uniqueness theorem.The representation of a manifold M as an unshortenable sum
(a sum is called “shortenable” when one summand in the sum containsniaenneg
ones; hence, one can omit them) of irreducible ones is unique, up to theobriie
summands.

Proof. LetM =My + ... +M, = M; +---+M_ be two unshortenable representations.
It follows from the lemma tha¥l; is contained in one of the manifolls . By altering
the sequence o;, we can assume th&ll; is contained inM;. LikewiseM; is
contained in sombl, . If one hags# 1 then one would havé, 0 M, 0 M ; hence, the

sumMg + ... + M, + ... could be shortened, and therefore one could pavd andM;
=M, . Further summands! , can therefore no longer appear in the second sune, ginc

r+i
was unshortenable.

The irreducible manifolds that appear as an unshortesabiein the representation
of M are called tha@reducible componentsf M.

The proof above still gives no means of effectivelyyag out the decomposition of
M into irreducible components when the equationMadre given. This means is first
provided by the elimination theory that will be presentegl 1.

829. The general point and dimension of an irreducible marofd

A point ¢ is called ageneral pointof a manifoldM when & belongs toM and all
homogeneous algebraic equations with coefficients ihat are valid for the poirf are

() We always understand “sum” to mean a finite sum,.h&rsum can also consist of just one term.
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valid for all points ofM. In other words¢ shall belong tdvl and all of the points dl
shall emerge as relation-preserving specializations qidire.

Second irreducibility criterion. If a manifold M possesses a general point then it
will be irreducible

Proof. If M were decomposable then there would be a prdduct two forms that
vanishes everywhere & without one of the factors doing so. It would follthat:

f($) [o(4) = 0.
Hence, sincé(¢) andg($) belong to a field:
f(d)=0 or  9(¢)=0,

and consequently one would have that eitheO at all points oM or g = 0 at all points
of M, which would contradict the assumption.

Existence theorem. Any non-empty irreducible manifold M possesses a general
point & (for a suitable extension field of K).

Proof. Any quotient of two forms of the same degree:

0% %0 %)
906, %5 %)

defines a rational function on the manifoM, as long as one assumes that the
denominator is not zero at all points\df Two such functions are said to be equal:

i:f—, when fg’=fg onM.

g g9

Addition, subtraction, multiplication, and divisiar rational functions oM yields other
rational functions oM. The rational functions oMl then define a field that includes the
constant fielK.

We can assume thgf is not equal to zero at all pointsMf We denote the rational
functions:

X% %

X X X

by &, &, ..., & . Furthermore, we séb = 1. (&, &, ..., &) is then a general point bf.
Then, from the fact that:

f(Q(Oa gla cany an) =0

or, what amounts to the same thing:
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f [Lﬁ P ,ij: 0 onM,
%o X

it will follow, sincef is homogeneous, that:
f(x0, X1, ..., %) =0  onM,

and conversely. Hence, all homogeneous equationsrihaabd for the point will be
valid for all points oM, and conversely.

A point is callednormalizedwhen the first non-zero coordinate is equal to one; any
point can be normalized in that way. By renumberingdberdinates, one can indeed
assume thaf, # 0, hence, thafy = 1. Theé, ..., & are then called the inhomogeneous
coordinates of.

Uniqueness theorem. Any two normalized pointg, 7 of a manifold M can be
mapped to each other by a field isomorphis(g) K1 K(#) that fixes the elements of K.
The algebraic properties afand 77 thus agree precisely.

Proof. From the definition of a general point, all homogersealgebraic equations
that are valid foif will also be valid forn, and conversely. Thus, § = 0 then one will
also havey, = 0, and conversely. i is the first non-zero coordinate éthen the same
will be true for ;. By a renumbering of the coordinates we can, by medns
normalization, deduce thal = 70 = 1. Any polynomial iné, ..., & can be made
homogeneous by the introductiondffactors to the individual terms. We now associate
each such polynomi&{éi, ..., &) with the same polynomial i, ..., 7n. Iff(&, ..., &)
= 9(&, ...,¢é&) then one will havef(é) — g(é) = 0 and this relation, when made
homogeneous, will also be true fprfrom the original remarks:

f(m) —a(n) = 0, hencef(7) = g(7) .

Our associatiof(é) — f(#) is therefore unique. On the same grounds, it is alkd va
in the opposite direction. It takes sums to sums and p®tlugroducts, and is therefore
an isomorphism. Moreover, it takésto 77.. The isomorphism of the ring§ &, ..., &
andK[ 71, ..., n7q] thus obtained may be extended to an isomorphism of thieequéelds
K(&, ..., &) andK(m, ..., ) with no further assumptions. With that, everything is
proved.

Converse theorem. Any pointé (whose coordinates belong to any extension field of
K, e.g., algebraic functions of undetermined parameters) is associaidd an
(irreducible) algebraic manifold M whose general poin€is

Proof. One can choose a finite badis (.., f;) with constant coefficients that has the
property thatf(&) = O for the totality of all formd(xo, X1, ..., X)) by means of the



§ 29. The general point and dimension of an irreducilaleifeid. 113

HILBERT basis theorem. The equatidas O, ...,f, = 0 define an algebraic manifold.
The given poini is a general point d¥l. £ will then belong tdM, and all homogeneous
equations that are valid fdrwill be consequences of the equatibns O, ...,f, = 0, and
will thus be true for all points d¥l.

On the grounds of the existence and uniqueness theoremsanvealefine the
dimensionof an irreducible manifold to be the number of algedaily independent
coordinates of a normalized, general pajmdf M. One can also call this number the
dimensionof a general poinf€. The dimension of a decomposable manifelds the
highest dimension of the irreducible components; mhat amounts to the same thing
the highest dimension of a pointidf When all of the irreducible componentadvhave
the dimensiom, one calldvl purely d-dimensional

Dimension theorem. If M and M’ are irreducible and one has M] M then the
dimension of Mis less than the dimension of M.

Proof. We can assume thd#l, and therefore alsdl, do not lie in the ideal
hyperplanery = 0; thus, we can normalize a general pdif M and a general poinf’
of M’ in such a way thaf, =& = 1. Any relatiorf(é) = 0 that is valid for the general
point £ of M can be made homogeneous by the introductiofa pfind will thus be valid
for &'

Now, let, say,¢/, ...,&, be algebraically independent. Thén ..., & will be, as
well; hence, one will haved > d”. If one hadd = d’then all § would be algebraically
dependent oif, ..., & . SinceM’is a proper submanifold &fl there will be a forng
that is everywhere zero o', but not orM. Thus, one has:

9(¢) #0, 9(¢) = 0.

g(é) is algebraically dependent diy ..., & ; hence, it is a root of an algebraic equation:

ao() 9(&" +au(d) 9" + ... +an(d) =0,

where thea, are polynomials irfy, ..., & andan(é) # 0. If one replaces all of thgin this
equation withé” then one will havey(&) = 0, hencean(&) = 0, in contradiction to the
assumption of the algebraic independencé& of.., & .

Corollary. Any pointé’of M (in the broader sense) has a dimensios d, where d
is the dimension of the irreducible manifold M. 1&=dd thené” will be a general point of
M.

Proof. From the converse theorem, any podritof M is a general point of a
submanifoldM “ of M of dimensiond’. From the dimension theorem, one bas d for
M’0OM, andd’=d for M’'= M.
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Therefore, any point of a zero-dimensional irreducibéaifold M is algebraic oveK
and a general point &. From the uniqueness theorem, all of these pointsganeadent
overK. With that, we have:

A zero-dimensional irreducible manifold ip iS a system of conjugate points relative
to the ground field K.

The only n-dimensional manifold inS, is the entire spac&, . Thus, ifis a
normalizedn-dimensional point of space then one will haye= 1 andé, ..., & will be
algebraically independent oviér There is no relatiof{$i, ..., &) = 0, and therefore also
no homogeneous relatid(, ¢, ..., &) = 0 with coefficients irK that is identically
valid in theé, hence, for any point of the entire sp&ge

A pure (n — 1l)-dimensional manifold M in ,Swill be given through a single
homogeneous equatiortsf) = 0, and any form that has all points of M for its zero locus
will be factorizable through ().

Proof. It suffices to carry out the proof for irreducible matds, since by
multiplying the equations of the irreducible components,wifi@btain the equations for
a general manifold.

Let M be irreducible and lef be a general point. Let — say& = 1 and leté, ...,
én-1 be algebraically independent, anddgbe linked to them by the irreducible equation
h(&, ..., &) = 0. Then, from field theory, any polynomféfy, ..., & -1, 2) with the zero
locus &, will be factorizable through(éy, ..., & -1, 2), or — what amounts to the same
thing — since one can also replace the algebraically-indepegdent, & - 1, zwith other
indeterminatesy, ..., X, -1, Xn, any polynomiaf(x, ..., x,) with the zero locug will be
factorizable througlh(x, ..., X,). The factorizability remains true when one makasd
h homogeneous by the introduction>gf. From the definition of a general point, this
means thah(x) = h(Xo, ..., X,) will have all points oMM for its zero locus, and that any
form f(x) with this property is factorizable througfx). Thus, everything is proved.

One also easily proves that, conversely, any nem@atiiomogeneous equatidfr) =
0 defines a purelyn(— 1)-dimensional manifold. For the proof of this, we dgoose the
form f into irreducible factor$, f, ... f, . From § 19, any irreducible hypersurfdge 0
will possess a general point (@3, ..., Uy - 3, @) of dimensionn — 1. Thus, the
hypersurfacd = 0 will decompose into nothing but irreducible compondnts 0 of
dimensiom — 1. We thus obtain the theorem:

Any hypersurfacgf) = Ois a purely(n — 1)-dimensional manifold, and conversely.

The manifolds of dimension less than- 1 may not be defined by equations so
simply. In the next section, we will therefore dbat any irreducibled-dimensional
manifold may be represented in a certain way as the lpartexsection ofn — d
hypersurfaces.
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8 30. Representation of manifolds as partial intersections abnes and monoids

If £is a general poindf a d-dimensional irreducible manifoll in S, then one can
assume, with no loss of generality, that that 1 and that, , ..., & are algebraically
independent quantities upon whiéh. 1, ..., & depend. We assume, moreover, faat,

..., é&n are separable algebraic quantities relative toK(é1, ..., &), which is always the
case when the ground field has characteristic zero.

From the theorem on primitive elements, one can géaéne fieldP(&+ 1, ..., &) by
the adjunction of the single quantity:

gu=Cdrv1t Qgr2gr2 ot n.

We perform a coordinate transformation by which weomhiice,,, instead of&; + 1

as new coordinates, and we omit the prime, from now@me will thus havé®(&i+ 1, ..,

&) =P(& +1). The quantitiesty + 1, which are algebraic ovél, satisfy an irreducible
equation:

¢(§(l! "'lgzdigzd"'l)zoi
which one can make homogeneous by the introductids:of
(1) ¢(§(0! "'lgzdagzd"'l)zo'

Theé&y+2 ..., & are rational functions aof, ..., &G+ 1:

Ul
2 | =g =d+ 2, ...,n).
) S Ggy TATE D

If one multiplies the denominatgg and makes the equation homogeneous through
the introduction o, then it will follow that:

(3) & x(o, ..., &a+1) — (o, ..., &a+1) = 0.

Then - d equations (1), (3) are valid for the general pdintf M, and thus for any
particular point; of M:

(4) { P(1os-+* 1441) = O,
/7i)(i(/70""1/7d+1)_¢/i(’70!"'1/7d+1):01 Q:d+2;" n)

Henceforth, equations (4) will define an algebragnifold D that, as we shall show, will
containM as an irreducible component.
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Let y be the least common multiple of the forgps. We will show that all of the
points ofD for which y # 0 belong tdM. Let 77 be a point withy(#) # 0 for which (4) is
true. We have to show thatis a relation-preserving specialization of the generaitpo
& hence, thak(r, ..., 77,) = 0 will always follow fromf(&, ..., &) = 0 wherf is a form.

If one substitutes the values that (3) yieldsdas, ..., & into the equatiori(&, ...,
&) = 0 then one will obtain:

W,o(&) W (&) _
5 f vy C s R _0
©) [50 ¢ X2 (&) )(n(f)j

It follows from this that the polynomia&(1, xi, ..., X4+1) IS factorizable through the
defining polynomialg(1, x, ..., X¢+1) Of the algebraic functiods:1 . The factorizability
remains true when this polynomial is made homogeneoushpttioduction ok :

(X0, ++., Xd+1) = P(Xo, ..., Xa+1) LO(X0, ..., Xd+1) -

If one now replaces the indeterminages ..., {1 With 70, ..., 74+ then, due to (4), the
right-hand side will become zero; hence:

90, -y Nar1) =0 .

From the manner by whighwas defined, this means that:

Ysna)) wn(n)j o

f I/ /SEER 7 I R =0;
[0 X)X ()

however, due to (4):
f(/]o, vony Na+1y Ma+2, 10y /7n) =0,
which we wished to prove.

The pointsy of D thus decompose into two classes: The ones y{ith # 0, which
belong toM, and the ones witl(#) = 0, which define a proper algebraic submanifdid
of D. As a resultb will decompose into the two submanifolslisandN.

Since thejq.z, ..., /7o do not enter into the first equation in (4), it wilpresent a cone
whose vertex can be taken to be an arbitrary @@iot the spacey, = ... =n¢.1 = 0. We
chooseO in such a way thatjg.2 # 0, ..., 7, # 0. Any further equation (4) will then
represent a hypersurface that has a single intersgmionhbeside®© with a general line
throughO. Such a hypersurface is callechanoid

In the case of a curve # , equations (4) assume the form:

(6) d(Mo, N1, 12) =0,
(7) N3 X(Mo, M, N2) = .o, M 172) -

From the foregoing, the intersection of the conewi@) the monoid (7) will consist
of the curveM and a manifoldN whose equations are given by (6), (7), and:
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(8) X0, 1, 172) =0 .

Tt follows from (7) and (8) that:
(©) Uno, M, 172) = 0.

The pair-wise distinct equations (8), (9) define finitelgny ratioso : /m1: 1772, thus,
finitely many lines through the poi@(0, O, 0, 1). If one eliminates from these lines the
one that does not lie on the cone (6) then the rentaomes will define the manifol.

The complete intersection of the cd®@ with the monoid7) thus consists of the
curve M and finitely many lines through the point O

The representation by cones and monoids is most meahfogthe theory of space
curves. HALPHEN ) and NOETHER {) have made it the foundation of their
classification of algebraic space curves. SEVERh4s recently examined the monoidal
representation of higher algebraic manifolds and utilizéor the theory of equivalence
families on algebraic manifolds.

8 31. The effective decomposition of a manifold into irreduble ones
by means of elimination theory

Let a manifoldvl be given by a homogenous or inhomogeneous system of ewiatio

1) fi(n, ...,m) =0

We are free to interpret thgas either inhomogeneous coordinates in affine space,
in the case of homogeneolis as homogeneous coordinates in a projective space.
Thus, we temporarily call any system of valugs ..., 7, simply a “point,” which is
therefore based in the affine meaning. We can assuahehi polynomiaf; does not
vanish identically.

In order to find all of the solutions of (1), one can € #ms is the basic principle of
elimination theory — successively eliminatg ..., 771 in (1) by constructing resultants. If
the system of resultan&(s1, ..., 7n-«) is identically zero aftek steps then the;, ...,
h-x can be chosen arbitrarily, and (1) will have an - K-dimensional solution
manifold.

These simple basic principles will now be complicateg three kinds of
circumstances: First, one will obtain not only theducible components of the highest
dimensionn — kof the manifoldM, but also all of the components of lower dimension.
Thus, one may not go so far as to say that a systeesultants is identically zero, but
rather, before any elimination step can be carried @, must remove the greatest
common divisor; the remaining polynomials will themeen relatively prime, and their

(*) HALPHEN, G.: J. Ec. Poly., v. 52 (1882), pp. 1-200.
() NOETHER, M.: J. reine angew. Math., v. 93 (1882), pp-274.
() SEVERI, F: Mem. Acad. Ital., v. 8 (1937), pp. 387-410.
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system of resultants cannot be zero. Second, befoyeebmination step can be
performed one must insure, by a linear coordinate transfarmahat the highest power
of the variable to be eliminated in one of the forms appevith a non-zer@onstant
coefficient; only under these assumptions will theiitest theory be valid (cf., Chap. 2,
§ 15). Third, in order to put the equations of the manifolatgioed into a useful and
formally beautiful form, following LIOUVILLE, one approjately introduces one more
unknown into the unknownsg, ..., /7, , hamely:

(2) Z:u1/71+...+Un/7n,

in which therm, ..., 7, are indeterminates. One thus considers not only theiegsiél),
but also the system of equations (1), (2). Whenthed ¢ have been replaced with the
indeterminatesy and z, the left-hand sides of these equations will have emnion
divisors, since the linear polynomial- u1y: — ... — u, y» will enter into none of the
polynomialsf(ys, ..., yn). This relative primeness thus guarantees that thenfioigy first
step does not yield an identically vanishing resultartesys

The stepwise elimination @f, ..., 7, will now be carried out in the following way:

Stepl. By an appropriate linear transformation:

M= 1+ Vi /T (k=1,..,n-1),
2= Vn I

in which thevi are suitably chosen constants, one can insure gaaétims; ”, wherep is

the degree of; in 77, appears with one of the non-zero coefficiefts Theus, ..., U, in
(2) will then be transformed accordingly, in such a Watu; /1 + ... + Un/7n Will remain
unchanged. After performing the transformation, the @siron//, U may again be
omitted.

Therefore, the resultant system of the systemaqofgons (1), (2) forp, will be
defined by:

(3) gi(Us, ..oy Un, 71, ooy -1, {) = 0.

Since equation (2) is homogeneouginy, ..., u,, the same will be true for tigg.

One now replaces;, ..., U,-1, { with the indeterminateg, ..., ya-1, z and the
greatest common divisdu, y, 2) of the formsg;(u, y, 2) defines thdirst sub-resultanbf
the system (1). As we already stipulated, the faafiory, z) must be removed from the
g , and thus the second elimination step does not giesudt that is identically zero. We
therefore set:

(4) gi(u, ¥, 2 =h(u, y, 2) Ui(u, y, 2,

() The coefficient of/7r’1p in the transformed polynomi&lwill be equal td; (v4, ..., V), hence, for a
suitable choice of # 0 (in the ground field or an algebraic extension field).
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in which thel; are relatively prime polynomials. Any solutior, (¢) of (1), (2) is
simultaneously a solution of (3); hence, one will hatieee:

(5) h(u,y,2=0
or.
(6) lj(u, y, 2) = 0.

We will later see that the solutions of (5) yield gsely the purely {f — 1)-
dimensional components ®fl, whereas those of (6) yield the components of lower
dimension.

From (6), we would like to define a further system of ¢iqna that is independent of
the {andu. To that end, we construct the resultant sysig¢my) of thel;(u, y, 2) for z,
order thery(u, y) in powers ofu, and define the coefficien&s(y,, ..., yn - 1) of these
products of powers. They do not all vanish identicallycesithelj(u, y, z) are relatively
prime. Any solution of (6) will then be simultaneoualgolution of:

rdu, y) =0,

and thus whempy, ..., 77, are independent af (%) it will also be a solution of:

(7) &(7, s fn-1) = 0.

Hence: Any solutionh 2) of (1), (2) in which thep, ..., n, are independent afwill
also be a solution of either (5) or (6) and (7).

Conversely: Any solutionv, ..., /n-1, {) of (5) or of (6) and (7) is also a solution of
(3), and one can determine thein it in such a way that one will obtain a solutimin(1)
and (2). Thus, ifp, ..., nn -1 are independent af then so will7, be, sincer, must
satisfy an algebraic equatidi(/7) = 0 in which the ternm® does not actually appear.

Hence, for giveny, ..., 1. - 1, it can be only one of the finitely-many roots ofsthi
equation.

Step2. One proceeds with equations (6), (7) exactly as @h@od(1), (2). After an
appropriate transformation g, ..., 77,- 1 [which is possible, because t§€74, ..., /7n-1)
do not all vanish identically], one eliminatgs - 1, from (6), (7), by which, one will
obtain:

(8) 9; (U, 71, s Ta-1, {) = 0,

splits off the greatest common divisor from the polyrasg; - the second sub-

resultant K(u, y, 2):
9) g;(uy,2=huy 20y 2,

() le., algebraic over the original constant fielkd or also algebraic functions of other
indeterminates, but not of, ..., u,.
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further defines the resultant system oflthier z, and obtains a system of equations:

(10) |;(U1, vory Uny 71, ...,/7n_2,Z):0,
(11) € (M, s h-2)=0

by setting theu,, ..., u, to zero identically.
Then again, this means thatis a homogeneous form muy, ..., U, that theg do

not vanish identically, that any solution of (6) and (7#) vidhich ther, ..., 7, -1 are
independent ot will either be a solution of (10), (11) or a solution of

(12) h’(u, h, 2) = 0,

and that conversely any such solution of (10), (11) qd®f will give rise to a solution
of (6) and (7), in which the, -1 will also be independent of

One proceeds in this way until all of theare eliminated. Since the process is
arranged in such a way that tge€e, ... do not vanish identically, the fina"™ will be

non-zero constants, and the final system of equatie?h‘@ = 0 will therefore be

contradictory The final sub-resultarit” = *(u, 2) will contain only they; andz . If the
original equations (1) are homogeneousin..., 77, then the resultants, h’, ..., K~
will also be homogeneous¥, ..., Yn, Z

Any solution of (1), (2) for which thg do not depend on thewill be a solution of
(5) or of (6) and (7); any such solution of (6), (7), wihwever, again be a solution of
(12) or of (10) and (11), etc., up until the repetition of lieer alternative ultimately
leads to a contradictory system of equations. Onet tigsefore choose the former
alternative; i.e., there must be a vanishing sub-regult&/e thus have:

Theorem 1. Any solution(s, {) of the systenl), (2)in which then do not depend
upon the u will simultaneously be a solution of one of the equations:

(13) h(u, 7, )=0,Nun =0, ..h""Yu d=0.

Conversely, any solutiory, ..., 7 -, ¢) of ther™ equation (13) can be completed to a
solution of equations (1), (2), and i1, ..., 7n -  are either constants or new
indeterminates that are independent of whihen the remainingp, - ¢ + 1, ..., /7 Will
likewise not depend on the. Hence, one has:

Theorem 2. Any solution ¢ of the ' equation (13) for given (constant or
indeterminate)y, ..., 7ln-r has the form:

(14) Z:u1/71+...+Un/7n,

in which thery are independent of the and define a solution ¢t).
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Any individual sub-resultarii(u, y, 2) orh'(u, y, 2) ... can be further decomposed into
irreducible factors. In order to have something specifimiind, we consider, e.g., the
second sub-resultant:

h(u, Y1, ... Yn-2 2 =0(y, u)[ ] H.(u v 2™

Should factors o®(y, u) that do not depend upaappear during the decomposition,
these factors can remain out of consideration,esthey can never be zero for constant
M, ..., In-2. If they were zero then they would be zero fdntaary ¢, not just for ones
of the form (14), which contradicts theorem 2.

On formal grounds, we replace the , ..., yn - 2 in each factorh, with new

indeterminates , ..., é-2. In a suitable algebraic extension fieldkgt, &), h, (u, & 2)

will decompose completely into linear factas ¢, by which, from theorem 2, the zero
loci {will all have the form (14) witlg, = &, ..., fn-2=En-2:

(15) h;1(u’ $2= ynl_l (Z-ud— -~ U o™ Uy E}Ii)l_ qﬁt(:))-

Thus, the various®” will be conjugate to each other relative B¢, &), i.e., all

systems of value&” will go over to one of therd = & by field isomorphisms (i.e., they
will be equivalent toé). If &, ..., & - 2 are indeterminates anfl _ 1, & are algebraic
functions of them then thi§ will be an ( — 2)-fold indeterminate point of the manifold
M. The factory, will depend upon only¥y, ..., & -2, and we will no longer need to
concern ourselves with it.

If we substitute the value (14) fgrin b, (u, &, 2), develop in powers of products of

the u;, and set all of the individual coefficients to aeghen we will obtain a system of
equations:

(16) N,(7)= 0, ..., Hip ()= 0

that define an algebraic manifold . Theorems 1 and 2 now imply that the manifdld
that is defined by (1) will be the union of all ni@fds M, ,M_, ... that are defined by

the irreducible factors of the successive sub-tastdh, h', ..., by (16). We will see that
all of these manifold#,, ,M;,, ... are irreducible, and that the poifithat was defined

above represents a general pointMgf, in the sharpened sense that (not just
homogeneous) equations that are valid for the gomtl be valid for all points oM, .

It is next clear thaf is a point oM ,. Furthermore, it follows from the derivation of
theorem 2 that the poimtof M, or — what amounts to the same thinghe solutions A,
{) to the equatiorh, (u,77,{)= 0 with {=uy /71 + ... + Uy /7n , Will simultaneously be

solutions of (7) and (1), that therefapg_ 1 and 77, will be coupled withyy, ..., 77n -2 by
algebraic equations in which terms/m-1 (1., resp.) actually appear. This, will
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indeed contain then(- 2)-dimensional point§, but nothing more thann(- 2)-
dimensional points.

Lemma. When a manifold Mcontains the poinf of transcendence degrée — 2),
but no points of higher transcendence degree, then when the aforementionedtieln
process is applied to Mit will yield a constant for the first sub-resultant, while the
second sub-resultant will contain the factdy. M’ will thus include the manifold

that is defined by16).

Proof. If it would give a non-constant first subOresultdrgrtM~ would also contain
a point ¢ of transcendence degree— 1, contradicting the assumption. The pofit
however, lies oM™ and thus{=u; /1 + ... +u, 77, will either be a zero locus of the
second one or a higher sub-resultant. Since the hsgieresultants only yield points of
transcendence degreen<- 2 ,{=u; /1 + ... + Uy /7, must be a zero locus of the second
sub-resultantt” (U, &, ..., & -2, 2). Howeverh (u, &, ..., & - 2, 2) must include the
entire irreducible factoh;, (u, &, ..., &-2, 2, whose zero locus i§

Now, we can finally prove:

Theorem 3. The submanifol¥l, that is defined by16) is irreducible and has the
point ¢ for its general point.

Proof. The pointé obviously belongs tav,. We thus have only to prove that any

equationf(é) = 0 with coefficients irK that is valid for the poin€ will also be valid for
all of the pointsy of M, .

The equations oM, together with the equatid(v) = O, define a manifoldyl” that
is contained inM , and containg ; hence, the assumptions of the lemma are satisfied.
follows thatM” contains the manifollfl,, and therefore that all of the points Mf, will,
in fact, satisfy the equatidifvy) = 0.

In the formulation and proof of theorem 3 we considete case of a manifolt¥,

that arises from the second sub-resultérds only an example. It is self-explanatory
that the consequences will persist precisely for anyratb-resultant, as long as the
dimension ofM , is notn — 2, but any other numbar-1,n-3, ..., 1, 0.

The elimination process that was just described thusgesviin the form of (16)-
the equations of the irreducible manifog, M, ... of dimensions - 1,n-2, ..., 0,

from whichM is comprised; however, it will likewise provide a gengraint & for each
of these manifolds. In order to obtain timnimal decomposition of M into irreducible

() Since we are looking at things from the standpoint BhefspacesA, , we understand the
dimension of a point to mean the number of algebraicalgpendent coordinates (not coordinate ratios)
for the point.
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manifolds,one needs only to discard the manifolds, M/, ...that are already included
in another manifold of higher dimensidy or M, . A criterion for- e.g.—a M to be
contained inM) is that the general point dfl; must satisfy the equations &f ;.
Another criterion is that the elimination processewtapplied to the equations ™),
and M together, must yield a power bf for the second resultant, and not a constant.

Likewise, our investigation teaches us how one obtaies equations of the
irreducible manifoldM¢ for a given general poiné{, ..., &). We formulate this result
as:

Theorem 4. If &y, ..., & are complete algebraic functio§ of the algebraically
independené,, ..., &, and furthermore4) ..., U, are indeterminates, and=u; & + ...
+ uy & , as an algebraic function of;, ..., &, W, ..., Uy, is the zero locus of a
polynomial Ifu, ¢, 2) =h(uy, ..., Un, &, ..., &, 2), then one will obtain the equations of an
irreducible manifold M when one develops:

h(u h,u & + ... +un &)

in powers of yand sets all of the coefficients of these products of powersao @me
will obtain the finitely many valuegy.1, ..., 7n that belong to the given, ..., 774 from
the zero locug’=u; & + ... +u, & of the polynomial fu, 7, 2).

Thish(u, 77, 2) is, in fact, therh, of the results above.

If the equations (1) are homogeneous then they will represeone manifold that
includes, not only any pointyy, ..., /7,) that is different from the origi@®, but also all of
the points A7, ..., Ang) of a line throughO. The irreducible components of the
manifold (1) will also be cone manifolds. If one noweipirets the lines through the
origin as points of the projective spage 1 then eacld-dimensional cone manifold with
d > 0 will yield a @ — 1)-dimensional manifold i - 1. Nothing will change in the
formulas of this section, only their interpretationdahe dimension numbers will be
lowered by 1.

The developments of this section obviously yield new fsréor the possibility of
decomposing manifolds into irreducible ones, the existencegesieral points of
irreducible manifolds, and the unique determination of marsfoigdone of their general
points. We ultimately prove:

Theorem 5. An irreducible d-dimensional manifold M will remain purely d-
dimensional under an arbitrary extension of the ground field K. A fingebahic
extension of K will suffice for the decomposition of M into absolutedgucible
manifolds, i.e., into ones that remain irreducible under further exteasf the ground
field.

() This means that any of the quantitigs, ..., & satisfy an equation with constant coefficients in
K[&, ..., &] whose highest coefficient is equal to one.
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Proof. From theorem 4, the equations of the manifold read:
(18) h(u huwé +...+u &) =0 identically inu.

The polynomialh(u, & 2) is irreducible ovelK. Under an extension df, h(u, ¢ 2)
decomposes into conjugate factors:

h(u, ¢ 2) :|_| h,(u,é, 2).

The manifold (18) will thus decompose into mard&M, with the equations:
(19 h(u nu é&+...+u &) =0 identically inu.

Any M, will belong toa polynomialh(u, &, ..., &, 2) in the same way that the original
M belonged td. Any M, will thus be an irreducibld-dimensional manifold.

From § 12, a finite algebraic extensionkofwill suffice in order to decompose the
polynomial h(u, é 2 completely into absolutely irreducible factorsatthdo not
decompose any more under further field extensiofise associated manifoldg, will
then be also absolutely irreducible, from what sed above.

The absolutely irreducible factong(u, &, 2) of h(u, & 2) will be conjugate relative to
K. Hence, the associated absolutely irreducibleifimids M, will be conjugate oveK.

Appendix to Chapter Four
Algebraic manifolds as topological structures

From the standpoint of topology, the complex poye spaceS, is not ann-
dimensional manifold, but anzdlimensional one, since its points in the neighborhof a
fixed point will depend upon complex, hence,r2real parameters. Likewise, as we will
see, anyd-dimensional algebraic manifold will bed2limensional in the eyes of
topology.

The topology of algebraic manifolds is being thagbly examined in the present era,
especially by LEFSCHETZ. In this introduction, wan treat only the most general
principles {). We confine ourselves to the essentials of ttufpthat d-dimensional
algebraic manifolds aredzlimensional complexes, in the sense of topology, that
they can be decomposed into finitely many curvdima&l-dimensional simplexes.

Before we go on to the multi-dimensional case weelld like to treat the case of an
algebraic curve in the complex projective plane.e Would like to show that such a
curve can be decomposed into finitely-many curegin triangles (viz., topological
images of real rectilinear triangles), any two dfieth will have either one side or one

() For far-reaching inverstigations, see S. LEFSCHHEPhalysis situs et la géométrie algébrique
and B. L. VAN DER WAERDEN: “Topologische Begrtindung der&tenden Geometrie,” Math. Ann.
102 (1929), pp- 337, and O. ZARISKAlgebraic SurfacesErgebn. Math. v. 3, 1935, issue 5.
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vertex in common. Thus, we must assume that theeslsmof function theory are
known.
Let the equation for the curve be regularin

(1) (0, m, m2) = 0y +alne.nynst+---+a,7,1,).

Any ratio 7o 171 is associated with infinitely many values/pf. The ratiosy,: /71 can be
interpreted as points on a GAUSSIAN number sphere. Axkneav, there are then
finitely many critical points on the number sphere, which are found by setting the
discriminant of equation (1). We now subdivide the numdgghere into curvilinear
triangles, and indeed in such a way that the criticaltpahus appear as vertices and the
points 7, = 0 and;; = 0 do not lie in the same triangle. If, in such angie, one has,
say,no # 0 — i.e., the pointyy = O lies outside the triangle — then one will noraelihe

coordinates so thatp = 1. Then roots 7{” of equation (1) are regular analytical

functions of7; in the neighborhood of each point of the triangle. &itie triangle is
simply connected, one can assume that thdsactional elements will be single-valued

over the entire triangle: there will thus besingle-valued analytic functiong”,...,7"

in the entire triangle.n™",...,n{" will be then regular and analytic on the sides of the
triangle. The regular character can break down onhhaitctitical vertices: thus, the

functions will remain continuous there.
If one now selects any of these analytic functigfi®n a triangleA then one can

map the pointsrfo, 71, 7)) of the complex curve to the pointgo( 771) of the triangleA

in a one-to-one and continuous way. They will thus dedicervilinear triangleA” out
of complex curves. Any triangke will be associated with such trianglea”, and all of
these triangles will collectively cover the enteerve, since equation (1) can have no
other solutions than thg!”. If two trianglesA and A’ abut on the sphere then any

function 7%’ on one of the triangles will agree with one of thiections;{” on the other

triangle on the common side; i.e., the triangi€sandA’™” will have a common side. In

all of the other cases, two triangles on the complexe will have at most common

vertices, and by a further subdivision of the trianglee can arrange that any two of
them will have at most one common vertex. Witht,tivee have found the desired
triangulation of the complex curve.

It is clear from the construction that any side Wigllon precisely two triangles. If we
now consider all triangles that have one vertex commoalong with all of their sides
that go througlk, then one can go from any such triangle to a neigh@driangle over
such a side, etc., until one comes back to the initeahdle. In this way, the triangles

that border orE will define one or more “wreaths.” IAY,AY”, ...,A"” is one such
wreath then it can clearly be the case that thesefiassociated trianglés, A, ... on
the sphere will already be closed. Thus, whereasmigath A", A, ... will be

completed once, the corresponding wreth/,, ... on the sphere will be completed
perhapsk times on many occasions.
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One sees that thisfold completion of the wreath;, A,, ... on the sphere tallies
completely with thek-fold circumscribing of a critical point, through which, wefined
the cycles or branches of the curve in 8 Thus, each branch of a critical locus will
correspond to a wreath of triangles around a point E on the complex curve.

The trianglesA™ will define a topological “surface” that possessisslar points
wherever one vertex carries several wreaths. Ifreselves each such point into several
points that each carrgne wreath of triangles then one will obtain a non-siagu
topological surface that one calls tReemann surfacef the curve. It now follows from
the previous statements that the points of the RIEMASuNace will be in one-to-one
correspondence with the branches of the curve.

Here, we shall go no further into the theory of RWEINN surfaces, but only refer to
the booklet of H. WEYLDie Idee der RIEMANNschen FlagHgerlin, 1923.

In order to go on to the-dimensional case, we next prove an algebraic:

Lemma. If M (# S is an irreducible algebraic manifold in complex,Sand one
insures, by a linear coordinate transformation, that one of the equatigy)ssFoon M is
regular in 77, then M will possess a projection ‘Mnto the subspace, S ; with the
equations, = 0,in such a way that each point (1o, ..., /7n-1, 0) of M” will correspond
to at least one poing(7o, ..., In-1, 11n) OF M. M’is again an algebraic manifold. If one
selects a particular proper submanifold that belongs t@MNM’then for a givern’ the
coordinatess, of the associated poimp of M will be found by a solving an algebraic
equation €7',7,) = 0 that is rational in#n” and integral ins, , and which will have
nothing but distinct roots for aly” on M” — N

Proof. The equations of the projectidvh” are obtained by eliminating, from the
equations oM. The irreducibility ofM’ follows from the first irreducibility criterion (8
28); if it is true that when a produit 7o, ..., /n-1) 9(/o, ..., /ln-1) is zero for all points
of M’ then it will also be zero for all points &, then it will be true that if a factor is
zero onM then it will also be zero oM. (Inthe case ad=n—-1,M" fills all of §,_1.)

A general pointé” of M’ corresponds to a finite number of poirfsof M. The
coordinatesé, of this point are solutions of an algebraic equation ¢me finds in the
following way: One substitutes the coordinatges..., & -1 for the o, ..., 7n -1, resp.,
and an indeterminatefor 77, in the equations, = 0 forM, and finds the greatest common
divisor ofd(¢, 2) of the polynomiaf (¢, 2) thus obtained. One will then have:

(1) {fv(f, 2)=q,(& D&, 3

d(&2=Y h(& 2 (& 2

in whichd, g, andh, are rational in&, ..., & -1 and integral ire. It follows from (1) that
the intersection of the zero loéj of the polynomiald (¢, 2) will be precisely the zero
locus ofd(¢, 2).

We now ridd(¢, 2) of multiple factors by taking the greatest commaowsadr of d(¢,
2) and the derivativel' (¢, z2) and dividingd(¢, 2) by this greatest common divisor. The
resulting polynomial, which can be assumed to be integr&, ..., & - 1, will be called
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e(¢, 2); its degree will bdn. (¢, 2) will be then a divisor oll(¢, 2), or a power o&(¢, 2)
will be divisible byd(¢, 2). Thus, it will follow from (1) that:

) {fv(5,2)=6},(5,2)€€5, 3,

o2’ =Y h(E D fE 2

One infers from (2) that the intersection of the Zer ¢, of (¢, 2) is precisely the
zero locus ok(¢, 2. This will remain true for any specialization éfas long as the
denominators ig,(¢, 2 andh,(¢, 2) are not zero.

Now, letp(é) be the product of these denominators, multiplied bydiberiminant of
e(¢, 2) and the coefficient of the highest powerzaf e(§, 2. Then, by a specializatiafy
- Mo, ---, én -1 - N -1 the polynomiale(x, z2) will always haveh distinct roots, and
indeed precisely the same roots as all offff€ 2), as long ap(77) remainsz 0. Instead
of &(¢, 2) andp(#) we can also write(s7, z) andp(r7'), since neither of them depend upon
I .

The equatiomp(/7) = 0, together with the equations bf, will define a proper
submanifoldN’of M’. Thus, if77 is a point oM ’— N’ then one will have(s7') # 0, and
the associated pointg on M will be exactly the solutions of the equatie(,7,) = 0.
With that, the lemma is proved.

If a system of several manifold$ of the highest dimensionis given then one can
apply the lemma to all of thedimensional irreducible componenit of this manifold.
The associated projectiodd; will all have dimensiom, and therefore thé\! will have
dimensions <. The intersection®j, of any two irreducible manifoldsl; and My, will
likewise all have projection®,, of dimensions <. If one now selects from the points of

N, the points7, which belongs to one of thB, , then the roots of the equatia7,/n)

= 0 will not only be distinct from each other, butoafsom the roots of the remaining
equations,(/7,nn) = 0; usually, a poing must belong to; as well asM,, hence, tdi,
and therefore/ must belong tdD,, .

The union of all theD,, and N, will be calledV’. It then follows that:

If one selects from the manifold M those points whose projectiobglong to a
manifold V of dimension < r then all of the remaining points will be found to be
solutions of equations(e',/7,) = 0 with nothing but distinct roots, whilg (s, ..., n-1,

0) will range over a manifoldV; in §,_1.

Meanwhile, the pointg of the manifoldM whose projectiong’ belong toV’ define
a submanifoldQ of dimension <. If one applies the same theorem to the mani@®Id
once again and repeats the process until one arrivesmaniold of dimension zero then
one will ultimately obtain acomplete decomposition of M into pieces of varying
dimensions such that any piece is determined by an equatpm.g = O in the
aforementioned way, wherg meanwhile ranges over a piece of the projection WVhe
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pieces of the projection are, at the same time, differences\J where U and V are
algebraic manifolds.

We now go from complex projective to real Euclidipaces.

A simplex Xin A, will be defined thus: ArXp is a point, arkK; is a line segment, an
Xz is a triangle. Ar¥ . 1 consists of all of the points of af that are connected by line
segments to a fixed point outside of the linear spaateXhbelongs to. ArX; hasr + 1
vertices, and ang + 1 of them define aide X of X, whens<r. A topological image of
a simplex is called aurvilinear simplexand will likewise be denoted bB§. A union of
finitely many (rectilinear or curvilinear) simplexe§, any two of which have either
nothing in common or an entire side (along with its gidesscalled a (rectilinear or
curvilinear) r-dimensional polyhedron. A triangulation of a region of space is a
subdivision of this region into curvilinear simplexesyyawo of which have either
nothing in common or exactly one side in common.

Theorem 1. Let there be given finitely many algebraic manifolds M and a ball K:
A gs

in real A,. There is then a triangulation of the ball by which the manifolds Noragas
they lie in the ball, consist entirely of sides of the triangafati

Proof. 1. Forn =1, the ball is a line segment, and any manifdI¢# A;) consists of
finitely many points. These points decompose the linmeaginto sub-segments. Thus,
the desired triangulation has already been found.

2. The theorem may thus be assumed to be true fepdeA, 1. We begin with
the sphere for the manifoldd. By an orthogonal transformation, one can arrghge
each manifoldV possesses an equatib(v, ..., 7n) = 0 that is regular iy, .On the
basis of the lemma, we then define the projectMrisf the M onto the subspadk, - 1
and decompose them, as above, into pieces V’'. We apply the induction hypothesis
to the algebraic manifoldd’ andV’ and to the balh? +72+---+n2 < &. There is a

triangulation of this ball by which each of theg andV’ (as long as they lie in the ball)
will consist of simplexes of the triangulation. Any posetU’ — V' will thus be
obtained when one discards the simplexes that comprisérom the simplexes that
compriseU’. What remain will be the interior points of certgimplexes (of varying
dimensions) of the triangulation.

The logic of the following proof can be sketched out enftilowing way: The points
n of the ball whose projectiong’ belong to a simpleX, of the triangulation define a
cylindrical point set. They will be subdivided into “blotksy means of the various
manifolds M that they consist of, which prove to be curvilinear palyhe If one
decomposes them into curvilinear simplexes then onebt#in the desired triangulation
of the entire ball.
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3. In order to carry out this manner of proof, we congiderinterior pointsy’ of a
simplex X; that belongs completely 10" —V’. Certain pointg; of the manifoldM lie

over 17, whose coordinateg, will be found by solving the equatiets;’, 77,) = 0. This
equation will have the same degireéor any 7’ in X, as well as the same number of

distinct (complex) roots. However, the number of reals of the equation must also be
constant. Thus, by a continuous change of the pgihtsxe can go from a pair of real
roots only to a complex conjugate pair if the pair coincfda® time to time.

Therefore, let the real roots of the equat&n’, /7,) = O be ordered by increasing
magnitude:

(3) ,7(l)<,7(2)<“.<,7(|)

From the theorem of the continuity of the rootsatgebraic equations, thg!",
...,n" are continuous functions gf inside ofX; .

We now examine the behavior of the functiogf§, ...,7"’ in the vicinity of the
boundary of the simplex. I’ is close to a boundary poigt of X' then then®,

....,.1" will be, in any case, restricted as roots of the equéfem, ..., 77,) = 0. Now, if

n" were not close to a boundary valde then one could choose two convergent
sequences with different limiting values:

n"w - ¢, mow) - &,
7w) - ¢, AOW) ~ (% .

Now, one can connect’ (V) to /'(v) by a line segment in the neighborhood of the
limit point ¢’ If one then moveg’ on this line segmer®(1V) then the associateg(®

O
will vary continuously fromy® (v) to 74 (v). By a suitable choice of pointg(v) on
O
this line segmentS(v), one can obtain a third sequenggV) that converges to an

~ a0
intermediate value betweeh and {,,. Hence, there will be finitely-many poin{s with

the same projectiogf” that all lie on the manifoltl. However, this does not agree with
the equatior~({i, ..., {) = 0, which is regular i, , and which all points ol must
satisfy.

Therefore, the pointg™, ..., 7 are continuous functions @f’ in the interior and
on the boundary oX; .

Remark. When the functiong®, ...,7"’ take on the boundary valugs”, ...,¢"
on one sideX! of X! (s<r), the points¢®, ...,{" thus defined will again belong to
the manifoldM. The point{ of the manifoldM that lies over the poinf” of X. will,



130 IV. Algebraic manifolds

however, be given by continuous functiofi¥’, ...,{™ on X! (exactly as was the case
forX!). Thus, the boundary valueg®, ...,{" are found among the continuous
functions Y, ...,Z{™, and will share their properties. It follows from thésg., that any

two functions¢“ and ¢ will either agree in all ofX. or will be different in the entire
interior of X_.

4. Since the hypersurface of the spherappears among the manifoli¥s both of
the points of the spherical hypersurface that lie ep@nust appear among the point?),
..., 1V, and indeed, due to the ordering (3), the first and lastpmust be;™ and7®.

We now subdivide the ball into “blocks.” A block consisf all pointsx that satisfy
one of the following conditions:

a) n'isinX, m=ny;

b) n’isinX!, % <n,<n!
Naturally, the blocks b) no longer appear on the boundatiieoprojection of the ball,
wheren = p\b,

It is clear that any poink of the ball will belong to one and only one block.
Furthermore, it is clear that the closed hull of acklavill again consists of similarly-
defined blocks. In Fig. 1, the subdivision of the plaedicated in the case where the
only manifoldM is a conic section. In Fig. 2, (left) the form oblack of type b) is

indicated in the case of three-dimensional space. upper and lower surfaces of this
block (the upper one is shaded) are blocks of type a).

4 <

\_ ——

v+1)

M 7
-
\ /
_ \
Fig. 1. Fig. 2

5. We now have to show that any block, along with @snalary, can be mapped
topologically to a rectilinear polyhedron; hence, itself a curvilinear polyhedron.

This is very easy for the blocks of type a): The praecy — 77 maps the block a),
along with its boundary, topologically onto the curvecthgexX;, along with its
boundary; hence, the block is itself a curved simplex.

We map a block of type b) in two steps: In the firsfpstthe coordinateg, of the
point /7 of the block will be left unchanged, whilg, ..., 7,1 will be transformed such
that the simplexX/ over which the block lies will be mapped onto a rect@msimplex

X, . After the map, we will thus have a block whose somill be defined by:
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7 inX, n<np<nt,

whereX; will be a rectilinear simplex, whilg!” and 7 will be continuous functions
of /7 in the closed simpleX; . As we have seen, we will hayg’ < 7" in the interior

of X;, while we will haven’ < n“*? on the boundary, and indeed, in each boundary

(v+1)

simplex Xs of X, one will have eithers = n%*" without exception orn!” <

n everywhere in the interior of; .

The simplex X; will now be subdivided “barycentrically.” The baryten
subdivision of a simplex is defined recursively: Aa is subdivided into two line
segments by a division poidi, and when all of th&; _ ; on the boundary oX; have
already been barycentrically subdivided then eachlsimgf this subdivision that has an
interior point J; of X, will be linked to new simplexes, which will then defitiee
subdivision ofX; . The vertices of such a simplex will thusJeJs, ..., J, whereJ is
an interior point o¥; , while X1 is always a side ofx (k=1, 2, ...,r).

We would now like to approximate the continuous functiggjd and 7% by
piecewise-linear functions. We remark that a linkarction of the coordinates in a
rectilinear simplex is established completely whenever vhlues of the function are

known at the vertices of the simplex. We accordirdgfine two linear functiong;"’
and 77" on the simplexJ Ji ..., J), whose values at the vertickgk =0, ...,r) agree
with the given valueg®’ (J) and7*™ (J).

If two different simplexes J; ..., J)) have a common side then the functiayi8

that are defined on them will agree on the common skdience, the functiong®’ that
are defined on the sub-simplexes will merge togetherantontinuous, piecewise-linear

function 77 that is defined on all of;, together with its boundary, and the same will be

true forn®*™.

If a linear function is greater than another onelbibr some of the vertices of a
simplex, but equal at the remaining vertices, then it aldlo be greater in the interior.

Thus, one will have:
(v+1)

" <y

in the interior ofX; .
However, one will correspondingly also have on eaga i of X;: If one hasp <
n™M for the interior points of one such side then thmesavill be true for7"’ and

(V+l)

74 however, it = n®* onXsthen one will also havg®’ = there.
n

Now, one can map the block that is defined by:

(V+l)

7 inX, n" << n

along with its boundary, topologically onto the blockttisebounded by linear spaces:
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= (V+1)

7 in Xs, v <pg <g¥,

along with its boundary, in such a way that one leavestiordinateg, ..., /7n-10f a
point /7 unchanged, but replaces the coordingtesith 77, , wheres, and /77, are coupled
to each other by the formulas:

M =1+ A =ny) (0<A<1),

R, =0 +Aqd0 -q).

One easily proves that the map thus defined is one-tandecontinuous in both
directions. However, the image block may be decompasedrectilinear simplexes
with no further constructions (e.g., barycentric sulsibn). Hence, any block b) can be
topologically mapped onto a rectilinear polyhedron. Thasethe proof.

Remark. If one goes through the proof of part 5 again then oles&a that the map
of the curvilinear simplexes of the triangulation orgatilinear ones can be arranged in
such a way that the coordinates of the point of a dneal simplex areontinuous,
differentiablefunctionsof the coordinates in the interior of the rectilineaage simplex.
One must naturally include the continuous differentigbihf the mapping functions in
the induction hypothesis, and assume that the map dblblo& b) in the first step is

differentiable. Since the algebraic function’ are also differentiable outside of their

critical loci the second step of the map will alsadléaonly differentiable functions.

The next question that we have to examine is thesitianm from complex algebraic
manifolds to real ones. Here, we employ a map ottmplex projective space onto a
real algebraic manifold that is given by the followiogriulas:

¢, =0;,
4) Z,Z_k =0 tir,  (j <k),
ZkZ_j:Ujk_iTjk (j <k).

Thus, ¢, ..., ¢ are the homogeneous coordinates in comflewnhile thegy (0< j <k
<n) and 7k (0 < j <k <n) are homogeneous coordinates in a al The Z_J are

complex conjugates of thg¢ . One immediately sees from equations (4) thatghand

Ii have to be real. If one setg = g, & = — Tk, Ij = 0 then one can write (4) more
concisely as:
(5) G &= Ok + T G, k=0,1, ...n).

Similarly, as in § 4, thej and 7 will be coupled to each other by the relations:
(6) @ +i5) (G +itm) — (g +i7) (G +iT) =0 .

The relations (6) are necessary and sufficienafogal point of5, to be the image point
of a point{ in complexS, . Equations (6) define an algebraic manifoldaal &, viz.,
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the SEGREmanifold 6. As in 8§ 4, one sees that the map of the si@ocento the
manifold S is one-to-one. Naturally, it is also continuous, dredefore topological.
The SEGRE manifold has no point in common with the hyperplane:

(7) 2 Oj=0Oo+ 0+ ..+0nm=0,

SO ZZJ Z_] iIs nowhere zero when not gl= 0. Moreover, one has:

|0j-k+izjk|:|ZjZ_k |:\/ij_j Dljfkf_kz\/UT;El/Ukk < Gj + G < 2.0

everywhere oI®.

If one thus regards the hyperplane (7) as an ideal hyper@ad introduces
inhomogeneous coordinates by the normalizatiep = 1 then all of the coordinates
and 7y under consideration will ke 1. Thus, the manifol® lies in a restricted subset of
Euclidian space (e.g., in the b}l o7, + > 72 < n+1).

An algebraic manifold %, with the equations:

(8) fld) =0

will correspond to an image manifold & whose equations will be found when one
multiplies equations (8) by their complex conjugates:

f,()f,({)=0

and then substitutegi + iz for the productsg;, g, -

Now, if finitely-many algebraic manifolds! in S, are given then they will likewise
correspond to finitely-many real submanifolds@f From theorem 1, there will be a

triangulation of & for which all of these submanifolds consist of simpke of the
triangulation. We have proved:

Theorem 2. There is a triangulation of complex &r which finitely many given
manifolds M in $consist of nothing but simplexes of the triangulation.

Up to now, we have not worried about the dimensionshef dimplexes of the
triangulation. It is, however, clear from the prodfteeorem 1 that only simplexes of
dimension at modd will be appear in the triangulation ofdladimensional manifoldM in
real §,. The example of a plane, cubic curve with one isdlgieint shows that
simplexes of dimension & can also enter into the triangulation, and indeed niyt &s
sides of simplexeXy .

One will double the dimension of an irreducible manifgldby going from complex
S, to the SEGRE manifol@, since the real and imaginary coordinates of the poirit
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will then take the form of independent variables. Herite simplexes of the
triangulation ofM will have dimension at mostd2 However, one can prove even more,
namely:

Theorem 3. Only 2d-dimensional simplexesyXand their sides will appear in the
triangulation of a d-dimensional algebraic manifold M in complex S

Proof. As in 8 31, we choose the coordinate system in such athatythe
coordinates& + 1, ..., & of a general point d¥1 are complete algebraic functions £&f,
..., & . Then, from theorem 4 (8§ 31), each system of val@idseacoordinatesy, ..., &

H H
will be associated with certain poingg of M (m = 1, ..., k), whose coordinateg, ,

an will be found by factoring the polynomials:

9) h(uo, ..., Un, &, ..., G4, z):ﬂ(z—Zﬂ),

U u

7
Z/l: UOZO+U1(1+"'+LLZH-

We have seen that the coordinates of a point obirailinear simplexX; in the
triangulation ofM are continuous, differentiable functionsrofeal parameters. If we
now projectX; onto a subspace & by replacing the coordinat&s+ 1, ..., {, with zero
then the projection aX; will be a point set whose points will again depeondtinuously
and differentiably uponreal parameters. Such a point set is, howevevhare dense in
Siwhenr < 2d. If one carries out the projection for all sim@eX; (r =0, 1, ..., 21 + 1)
of the triangulation then one will obtain a nowhdense point satV in S for the union
of all of the projections. Any poinf”of W will thus be the limit of a sequence of points
{(v) that do not belong t@/.

As we remarked above, the projection{dfis associated with a systemlopoints
1 k 1
{, ....,{ of M, and likewise any” (V) is associated with a systemlopoints {(v), ...,

k
{(v) of M that will each be determined by the factorizati®h If one normalizes the

coordinates by way ofy = {(V) = 1 then all of the coordinate V) will be restricted
simultaneously. Thus, one can select a convergdigequence from the sequence of the
system ok points. One will then have:

1 1 2 2 k k
cWy-n, 4W)-n, ...4W)-n (N - o)
for this subsequence. Since equation (9) will renraie under passing to the limit, but,
1 k
on the other hand, the factorization of a polyndusiainique, the limit pointg, ...,7 of

1 k 1 k
any sequence must coincide wgh ...,{ . However, any of the pointg, ...,{ will be
limit points of points oM whose projections do not belong to only the pséti\V.
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However, this means: Any point of a simplkx(r < 2d) of the triangulation oM is
the limit point of points oM that do not belong to any with r < 2d, and which can
therefore only be interior points of simplexés . It will follow from this that any such
X; (r < 2d) will be a side of aiXyq of M.

One can also obtain the triangulation of the compianifoldM in a manner that will
be similar to the triangulation of a plane curve thas given at the start of this section
from a triangulation of the spa& , when one assumes that any pajhof & is the
projection ofk points { of M. One thus has to triangulag in such a way that the
branched manifold that originates in the zero locus@fdiscriminant of the polynomial
(9) will be triangulated along with it. WIRTINGER andRBUER () have examined
algebraic functions of two variables in this way.

(*) BRAUER, K.: Abh. Math. Inst. Hamburg, v. 5.



CHAPTER FIVE

Algebraic correspondences and their applications

Algebraic correspondences are almost as old as ailgegeometry itself is
nowadays. A theorem of CHASLES on the number ofdfigeints of a correspondence
between points of a straight line (cf., § 32) was gemmmliby BRILL {) to
correspondences between the points of algebraic cuamgcover by SCHUBERTY,
with great success, to systemsdfpoint-pairs in space, and further refined and applied
to many things by ZEUTHEN).

However, it was the Italian geometers, namely, SEV&d ENRIQUES, who first
recognized the general significance of the notion obaespondence as one of the
foundations of algebraic geometry. In any case wheosenggic structures were related
to each other in such a way that this relation couléxpessed by algebraic equations,
the notion of a correspondence found an applicatiorre,Hee shall mainly discuss this
general and fundamental interpretation of the notidncarrespondence. For the
aforementioned investigations of numbers of fixed pointsoofespondences, the reader
must refer to the literature cited) (

From now on,)x, vy, ... will no longer mean indeterminates exclusively, bisb a
complex numbers or algebraic function, as the sitonatiotates.

8 32. Algebraic correspondences. CHASLES's correspondenpgenciple

Let S, and S, be two projective spaces, which may also be the samee An
algebraic manifold of point-pair,(y), in whichx belongs toS, andy belongs taS,, is
called analgebraic correspondencg. The correspondence will be given by a system of

homogeneous equations (homogeneous as well as ity):

(1) (X0, ..oy Xm Yo, «.o, Yn) = 0.

We will say that the points in the correspondena®rrespond toor areassociated
with the pointsy; an associated poigtwill also be called aimage pointof x under the
correspondence, while conversglwill be called asource poinbfy.

Examples of correspondences are correlations (edigep@ar systems and null
systems), which will be given by a bilinear equation:

2 akX =0,

and finally, the projections are further given by the ptojedransformations:

(*) BRILL, A. v.; Math. Ann. Bd. 6 (1873), pp. 33-65 and Bq1874), pp. 607-622.

() SCHUBERT, H.Kalkiil der abzahlenden Geometrikeipzig, 1879.

() ZEUTHEN, H. G.Lehrbuch der abzéhlenden Methoden der Geomelrigpzig, 1914.

(*) On this, confer S. LEFSCHETZ; Trans. Amer. M&bc.,28 (1928), 1-49, and various notes of F.
Severi in Rendiconti Accad., Lincei 1936 and 1937.
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Yi=XaxX or  yi(Xakx) -y(Xakx) =0

(y is the projection ok onto a subspac® of the spacé&,, whilex belongs to an arbitrary
manifold M).

The notion of correspondence can thus be generalizedapwygs that other
geometrical structures can be chosen — e.qg., point-fiagar spaces, hypersurfaces — in
place of the pointg andy, as long as these structures are given by one orsaeqteences
of homogeneous coordinates. Equations (1) must then bedemeous in each
individual sequence of coordinates. All of the followaansiderations will be valid with
no further restrictions for this general case, whichexremely important for the
applications. For the formulation of the theorenebkelves, we will, however, restrict
ourselves to the case whetrandy are points; we thus do not speak of the “structure”
and the “structurey, but simply of the points andy.

If one eliminatey from equations (1) then one will obtain a homogeneosisitent
system:

(2) 0uXo, .-y Xm) =0

with the property that for any solutiorof (2) at least one point pai, () will belong to
the correspondence. Likewise, the eliminatiorx @fill yield a homogeneous system of
equations:

(3) hyo, ...,¥n) = 0.

Equations (2) define an algebraic manifdidin S, : viz., thesource manifoldof the
correspondencg; likewise, (3) defines a manifol in S;: viz., theimage manifoldof

the correspondence. One also speaks of a correspondéeateeen M and NIf (X, y)

is a point-pair of the correspondence tlkemill belong toM, andy will belong toN, and
each point of M (ory of N) will correspond to at least one poindf N (x of M, resp.).

If one fixes the poink then equations (1) will define an algebraic manifold in the
spaces,, and indeed a submanifadldk of N. Ny is totality of all pointsx that correspond
to the pointy. Conversely, each poigitof N will correspond to an algebraic manifdig,
of pointsx of M.

If M andN are irreducible (the corresponder®ean be reducible or irreducible) and

each general point d¥1 corresponds t@ points ofN, while conversely every general
pointy of N corresponds tar points ofM then one will speak of am( ) correspondence
betweenM and N. A particular point ofM can therefore correspond to finitely or
infinitely many points olN; later, we shall have to deal with the transiticonirgeneral
points to particular points more extensively.

If the manifoldR is irreducible then one will call it arreducible correspondenceln

that caseM andN will also be irreducible, so when a product of two feffaix) [G(x)
becomes zero at all points & then it will be zero for all point-pairs¢,(y) of the
correspondence ; hence, the factd¥ or G will become zero for all point-pair,(y) of
R, and thus, for all points of M.

As the simplest, but most important, case we fiostsider an ¢, f)-correspondence
between the pointsandy of a lineS; . The correspondence is purely one-dimensional; it
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is then a hypersurface in the doubly projective sigmgand (like any hypersurface) will
be given by a single equation:
(4) f(x, y) =0,

which we will assume is free of multiple factorsheTequation is homogeneous in both
of the coordinates, , x; of the pointx, and likewise in thosg, , y1 of the pointy. If ais

its degree in the and S is its degree in thg then each general poirtwill obviously
correspond tqB different pointsy, and a general poiryt will likewise correspond tar
different pointsx.

The fixed points of the correspondence will be foundmdnee setg =y in (4). That
will yield an equation of degreg + S iny that will either be fulfilled identically or will
possess precisely + [ roots (each counted with its multiplicity)The correspondence
(4) will thus either include the identity as a component or have preciselys fixed
points that one obtains from the equatig¢x k) = O, when one counts the fixed points
with their multiplicities This iSCHASLES's correspondence principle.

In order to give a simple application of CHASLES'srespondence principle, we
consider two conic section§, K' that do not touch. From a poiRs of K, we draw a
tangent tK that intersect&’ a second time &&; .

A second tangent td' goes throughP; that Po=Pa

intersectsK a second time aP, . One thus

proceeds to construct the ch#dg Py, Py, ..., Py. P,
We now asserttf the chain once concludes with

Pn = Po in a non-trivial way then it will always

conclude this way, no matter how one choosges

on K We then say that the sequeReeP, ...,Pn  P;

concludesn a trivial waywhen either (for even)

the middle termF’%n IS an intersection point df

and K', or when (for oddn) both of the middle P,
terms P, P, coincide, and their connecting line is a common tahge both conic

sections (cf., the second and third figures). In bothsgdke second half of the chain
will be equal to the first one in the opposite sequenceceh®, = Py . This trivial case
arises (whethen is even or odd) many times, since there are four Etéo points and
four common tangents. The correspondence bet®RgandP, will therefore be a (2, 2)-

P, P.=P;

P1:P3

Po:P4
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correspondence that always has four trivial fixed poititst had one more fixed point,
moreover, then, from CHASLES’'s correspondence priacigi would contain the
identity as a component. One can thus produce a closedwiiaiR, = Py that begins
with any pointPy . The same chain, when traversed in the oppositetiding will yield a
second closed chain with the same starting feyntHence, both chains that beginPat
will terminate, no matter hoW, was chosen.

8 33. lIrreducible correspondences. The principle of cotent count.

An irreducible correspondence (like any irreducible manifiddjletermined by its
general point-paird, /7). The characteristic property of this general point-gaihat all
homogeneous algebraic relatidfs, 7) = 0 that are valid for the general point-pair will
be valid for all point-pairsx y) of the correspondence. In other words: All point-pairs
the correspondence will arise from relation-preservingcigiizations of the general
point-pair ¢ 7). If one wishes to define an irreducible correspond¢hea one will
start with a suitable (arbitrarily-defined) general pgafr. The totality of pairsx( y)
that arise from this general point-pair by a relatiorspréing specialization will then
always be an irreducible correspondence.

For example, leM be a given irreducible manifold, and I&tbe its general point.
Now, if @0 , @1, ..., @n are forms of equal degree that are not all zero tlsstand point
n will be given by means of:

(1) Mo: M 1= 9u(d) - 9a(9) - .. ()

that will depend upod rationally. The point-paird 77) will be the general point-pair of
an irreducible correspondence whose point-pairs origifia@ten relation-preserving
specializations of it. Such a correspondence is calledional mapof M. — On the

grounds of the relation-preserving specialization, theioslst

i #($) —m $i(S) = 0,

which are equivalent to (1), must also be valid for gmoticular point-pair oR:

(2) Yi (¥ -V éi(¥) = 0.

If not all ¢i(x) = 0 then the behavior gfwill be determined uniquely by (2). However, if
all ¢i(x) = 0 for a pointx of M then formula (2) says nothing more than which pgithtat
the pointx is associated with. One must then resort to othenodst e.g., by passing to
the limit while one approaches the pomf M from both sides and thus watching which
limit point the image poiny will go to. Due to the continuity of the forms ttufine the
correspondence, each pair ¥) thus obtained will belong to the correspondence; en th
other hand, it follows from Theorem 3 of the Appendix ta@ter 4 that all pairxy) of

the correspondence can be obtained in this way.
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The dimensiorg of an irreducible correspondengeis the number of algebraically-

independent coordinate ratios of the general point-gaip)( If — say —& # 0 andrp # 0
then we can assume thd& =70 = 1; q will then be the number of algebraically
independent quantities among&t, ..., ém, 71, ..., n . Now, if a is the number of

algebraic independents amongst feelative to the ground fieltl andb is the number

of algebraic independents amongst theelative to the field& (&, ..., &), then one will

obviously have:
(3 g=a+h.

Likewise, whert is the number of algebraic independents amongsy eadd is the
number of algebraic independents amongstthe the adjunction of, one will have:

4) g=c+d.

Geometrically, the numbegs b, ¢, d mean the dimensions of the manifolds. khe
define a general point & when each homogeneous relati€d) = O that is true for the
point £ is also true for all points of M, and conversely. Therefor@js the dimension of
M, and likewisec is that ofN. It will now be further asserted thidite submanifold Nof

N that corresponds to the general poéof M is irreducible relative to the fiell (¢,
..., ém) and has dimensiob.

N¢ exists for all pointy such that the point-paig(y) belongs to the correspondence;
I.e., such that any homogeneous algebraic relationghate for € #) will also be true
for (& y). Under the substitutiod = 1, these relations will lose their homogeneityha t
& but will retain it in therp. One can then regard them as homogeneous relatioresdn th

with coefficients in the field&(¢é) =K (&, ..., ém). Therefore, all homogeneous algebraic

relations with coefficients ifK(¢) that are true for the poim will also be true for all

pointsy of Ng, and conversely; however, that says thatill be a general point dfls. It
follows thatNgs will be irreducible with respect to the fieldl(¢) and will have dimension

b. The manifold\s can be decomposed completely by an extension of tldekt{&), but

its absolutely irreducible components will all have tlaene dimensiorb (cf., 8 31,
Theorem 5).
Moreover, therinciple of constant courfollows from (3) and (4):

If a general pointé of an a-dimensional source manifold M corresponds to a b-
dimensional manifold of points in N under a g-dimensional irreducible sporedence
between M and N, and conversely, a general ppioft the c-dimensional image manifold
N corresponds to a d-dimensional manifold of points in M then one will have

5) g=a+b=c+d



§ 33. Irreducible correspondences. The principle ddtemr count. 141

Thus, one must remark that all general point-pafrg) of the correspondence will
be equivalent to each other; the same will usually e of the general points df and
N. It is therefore irrelevant whether one startgai general point of M and then seeks
a general associated point Mf or conversely starts with a general point\Npfone will
always find the same numbexsb, ¢, d and the same properties of the general point-pairs
(&, n) of the correspondence.

In most applications, one employs formula (5) in otdedetermine the dimensian
of the image manifoldN whena, b, andc are given. If one thus finds that n then one
can conclude that the image manifold is the entire sface

Examples and applicationsl. Let the question be posed of how many parameters a
third-order plane curve with a cusp will depend upon; in otherdsyowhat is the
dimension of the manifold of cubic curves with cusps?

We define a correspondendge between pointx and cubic curvey in which we

associate a point with all curvesy that have a cusp at One can provide a general
element pair § /) of this correspondence in the following way: One takegei@eral
point £ and draws the most general limen the plane through it. Thus, a cubic cuye
that has a cusp dtwith a tangenu musthave coefficients that satisfy a system of five
linearly independent equationy.( Since ten coefficients appear in the equation of the
general cubic curve, one of which can be equal to oeegeheral solution of the system
of equations will depend upon 9 — 5 = 4 arbitrary parametersnelthen counts the one
arbitrary constant upon which the tangerdepends (for a given poid) then one will
obtain five parameters. If one lets all of these p@&tars be indeterminates then one will
obtain a general point-paié,(/), from which, all pairs X, y) will arise by parameter
specialization (hence, by the simplest relation-px@sgr specialization).  The
correspondence will therefore be irreducible. The priaayb constant count will yield:

2+5=c+0;c=7.

With this, the desired dimension is equal to 7.

One may also express the result thus found as: There’ @lane cubic curves with
cusps. One can carry out the most diverse determinatiodsnension in a precisely
analogous way (cf., example 3 below, as well as prot)em

(*) If one puts the coordinate origin at the pafnthooses the lina to be thex-axis, and poses the
equation of the cubic curve in inhomogeneous coordinatée ifollowing way:

oty Xy tap Xy + 33)(f+ o X1 Xo + a.5X§+ ...=0
then the conditions for a cuspvith tangenu will read:
=y =ap=a=a=0.

If one subsequently transforms the equation of the d¢oraay other coordinate system then naturally these
linear equations will also be transformed; howeveg hrearly-independent equations will remain.
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Example 2 Given a cubic space cur@ prove that a chord or a tangent of the curve
goes through each point of space. (In § 11, the proof wasdaut by calculation.)

A chord goes through two general point of the curvee @il obtain all chords and
tangents from this chord (the latter come about whentwlee points coincide) by a
relation-preserving specialization. Thus, the chords,thegewith the tangents, will
define an irreducible two-dimensional manifold. Furthermowee define a
correspondence between the choxdend their pointy, under which we will associate
each chord with all of the pointg that lie on it; the correspondence will again be
irreducible. One seis= 2 andb = 1 in formula (5). In order to determidewe remark
that at most one chord goes through each pomaitside the curve. Two intersecting
chords would then determine a plane that had four pamcommon with the curve,
which is impossible; therefore,= 0. Moreover, it follows from (5) that = 3; i.e., the
manifold of pointsy is the entire space, which was to be proved.

Example 3 The subspacg, of a space, will be mapped onto pointsof an image
space by means of its PLUCKER coordinates. We wouél tikshow that the image
points define an irreducible manifold of dimensiomt+{)(n-m). In other words, there
arec™D0M gyhspaces, in S, .

Proof. (m+ 1) generally-chosen points § determine a subspa& . One obtains
any arbitrary system ofn{ + 1) linearly independent points from these points by a
relation-preserving specialization, and therefore, onkobthin an arbitrarg, from the
points ofS,. It was already proved that the subsp&géefines an irreducible manifold.

If we call the general system ah{ 1) pointsé and the subspace that is determined by
them 77 then the pair 4, #7) will determine an irreducible correspondence whose genera
element will be just this pair. Since a systemraf{ 1) general points it%, depends
upon fn + 1) n parameters, but a system of £ 1) general points in a gives, depends
upon M+ 1) m parameters, one will then have:

a=(Mm+1)n; b=0; d=(Mm+1)m.
Moreover, it follows from (5) that = (m+ 1)(n —m).

Problem. 1. There areo™® plane curves of order four with one double poiff with two of them,
and ! with three double points. The totality of fourth-orderves with one or two double points is
irreducible; that of the curves with three double pointdgoses into two irreducible submanifolds of
equal dimension 11.

In conclusion, this allows us to mention about a wpgcialized- but still often-used
— criterion for the irreducibility of a correspondence:

Lemma. The equations of a correspondergenay be decomposed into equations in

the x alone that define an irreducible source manifold M and equationsimal ¥ that

are linear in y and always have the same rank, which therefore asseatateoint x of

M with a linear space Nthat always has the same dimension b. Such a correspondence
is irreducible.
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Proof. A general point-pair{, /7)) of the correspondence will be obtained in the

following way: Leté be a general point dfl, and letr7 be an intersection point of the
1 b
linear space\s with b general hyperplanes, ..., u. We now have to show that each

pair (X, y) of the correspondence is a relation-preserving speatimlizof ¢, 7). Thus, let
F(¢ n) = 0 be any homogeneous relation; we have to shavwrtkay) = 0 is also true.

1 b
We likewise pas$® hyperplanesv, ..., v through the poin that intersectNk at
precisely the poiny. One can compute coordinate ratios in determinant form:

(6) Yo:Vii.o :¥n=Do(X V) :Di(X, V) : ... : Dn(X, V)

1
from they equations of the correspondence and the equations bjpeeplanesv, ...,

b
v. Since the determinaniy , ..., D, are not all zero for the for the particular poirgnd
the particular hyperplanas they will also be non-zero for the general poidf M and

1 b
the general hyperplanes, ..., u. Thus, the solution of the linear system of equatiyns
determinants will also be true whemandv are replaced by andu:

(7) No:N1i... :Ma=Do(&u):Di(é u) ;... :Dn(é u).

Due toF(¢, 1) = 0, it now follows from (7) that:

F($, DUS, m) = 0;
hence, since is a general point d¥l:

F(x, DUx, u)) =0,
and further, by replacing the indeterminatesith v:

F(x, DX, v)) =0,
or, due to (6):
F(x,y) =0.

Thus, €, 1) is a general pair of the correspondence, which is irfetiuc
8 34. Intersection of manifolds with general linear spaces
and general hypersurfaces
Theorem 1. The intersection of an irreducible a-dimensionalnihald M (a > 0)

with a general hyperplan@ X) = Ois an irreducible manifold of dimension-al relative
to the field KU°, ..., u").
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Proof. If one associates the pointf the manifoldM with the hyperplang that
goes throughk then one will obtain an algebraic correspondefcel he equations of the

correspondence will be the equationd$/band the equatiorx(y) = 0, which expresses the
idea thatx lies in the hyperplang. From the Lemma of § 3% will be irreducible and

will contain a general point-paié(s) of 8 when one passes the most general hyperplane

n through the general poinf of M. Whenc andd have the usual meaning for the
correspondence, the principle of constant sum wilblyiel

1) a+(n-1)=c+d.

Since the general hyperplanghat passes through a general paintill not contain a
second arbitrary, but fixed, poirt of the manifoldV, its intersection with the manifold
M will be at most4 — 1)-dimensional; thusi<a— 1. It now follows from (1) that > n;
hence, the image manifoltd will be the entire dual space (i.e., the totality d¢if a
hyperplanes in the spa&g). Furthermore, one finds that in the inequatity a — 1 only
the equality sign can be true, since otherwise it woaltbw that ¢ > n, which is
impossible. Therefore, under the correspondence, a gérypexplanas will correspond
to a manifold of pointx of dimensiona — 1 that is irreducible relative to the fietquo,
cvey Un).

In precisely the same way, one proves that in general

Theorem 2. The intersection of an irreducible a-dimensional manifolddv> 0)
with a general hypersurface of degree g is a hypersurface of dioneast 1 that is
irreducible relative to the field of coefficients.

If one applies this theoreatimes then it will follow that:

Theorem 3. The intersection of an irreducible a-dimensional manifold with a
general hypersurface of arbitrary degree is a system of fimtelyy conjugate points.

In particular:

Theorem 4. A general linear subspace,$ of S intersects an irreducible a-
dimensional manifold M in finitely-many conjugate points.The number of these
intersection points is called tlegreeof M.

One can prove this latter theorem directly when onesiders the correspondence
that associates each pointhfwith all of the spaceS,_a that go through this point. One
obtains a general pair of this correspondence when onespdes most general space of
dimensionn — athrough a general poirf of M, perhaps when one linkSwith n — a
general points of the spag. As in the proof of the Lemma in § 33, one shows @Hat
pairs &, y) of the correspondence are relation-preserving spettialis of ¢ 7). (One
can, in fact, apply the Lemma directly by using the PLER#an coordinates af.) The
irreducibility of the correspondence follows from thispplying the principle of constant
count then easily yields Theorem 4.
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Theorem 5. An a-dimensional manifold M in,$as no points in common with a
general linear subspace,@s long as a + iz n.

Proof. A general linear spacs, will be given byn — m= a + k general linear
equations. From the previous Theorexf these equations will define finitely-many
conjugate points. However, they do not satisfy theltiaguk equations, whose new
coefficients will be indeterminates that are indepehdéthe previous ones.

An important Theorem on correspondences then folfoave Theorem 5:

Theorem 6. If a general point of the irreducible manifold M corresponds to a b-
dimensional manifold of image points under a correspondéhtieen each individual

point of M will correspond to a manifold of image points that is at leastnensional.

Proof. The image manifold d#1 may belong to a projective spage If one addd
general linear equations for the image point to the equeatbthe correspondence then a
new correspondence will come about, in which a generait pdiM will always be
associated with at least one image point. A generat pdiM will thus belong to the
source manifold of this new correspondence. Thus, all ol will belong to this
source manifold; i.e., each point Bf will also be associated with at least one image
point under this correspondence. That means, in turnfhit@amage point of each point
of M will have at least one point in common with a gehiamaar subspac&,, under this
correspondence. The dimension of this image spacethersfore amount tb. (Here,
one must understand the word “dimension” to mean the s$iigtenension of the
manifolds in its decomposition.)

When the image manifold does not belong to a projecpeees but to a multiply-
projective space (e.g., a manifold of point-pairs, paiptds, ...), one needs only to
embed this multiply-projective space in a projective (8d) in order to return from the
general case to the already-dealt-with projective case.

One might also seek to carry over Theorems 1-4 os#ution to multiply-projective
spaces, but one will then encounter occasional execeptioE.g., in the multiply-
projective case, Theorem 1 will reathe intersection of an irreducible a-dimensional
manifold of point-pairgx, y) with a general hyperplanéu X) = 0 of the x-space is an
irreducible manifold of dimension-al relative to the field Kuo , ..., Um), excluding the
case in which the ratios of all of the x-coordinates of the general poirg-p&iM are
constant, in which case the intersection is empty.

Theorem 2 will then be true in the doubly-projective cag@out exceptions only
when the equation of the hypersurface considered hasta/@akegree in the, as well
as in they. The argument in the singly-projective case willdfeto the reader.

Problem. With the help of Theorem 6, one shows: If a corregdpaceR associates each pobf an
irreducible source manifoll with an irreducible image manifold, that always has the same dimengion
then& will be irreducible.
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Analogues to Theorems 1-4 are also true in line geoméirgm § 33 (example 3),
there areo® lines in the spac8&. One calls a purely three-dimensional line manifold a
line complex a purely two-dimensional one lame congruence and a purely one-
dimensional one, auled family. By the same method with which we proved Theorem 1
above, one can now show:

An irreducible line complex has' lines in common with a generéle., determined
by a general pointstar of lines, which define a (relatively) irreducible conez.vihe
cone complex of this point. Likewise, the complexdidimes in common with a general
(i.e., determined by a general plafie)d of lines, which define an irreducible dual curve
in the plane: viz., the curve complex of the plane. The degrée abhe complex and
the class of the curve complex are both equal to the number of lindbaél@implex has
in common with general pencil of line$his number is called thaegreeof the complex.

Something more complicated is true for a congruence:

An irreducible line congruence has finitely many points in common witmerae
star of lines, excluding the case where the congruence existasoayme (algebraically
conjugate) field of lines, in which case, it will naturally have nothimngommon with a
general star of lines. Dually, the congruence thus has finitely-maeg ih common with
a general star of lines, excluding the case in which it exisisasbome (conjugate) star
of lines. The number of lines that the congruence has in conwitbina general star of
lines (field of lines, resp.) is called tHmundle degree(field degree resp.) of the
congruence.

Proof. We define an algebraic correspondence by associatiiglieacf the given
irreducible congruence with all of its points. From themma of 8§ 33, the
correspondence will be irreducible. Furthermere,2,b =1, and thuss + b=c +d=
3. Since the image manifold (viz., the totality of alime of all lines of the congruence)
must be at least two-dimensional, only two cases @ssilple:

1
0.

1. c=2,d
2. ¢c=3d

We now still have to show that in the first case ¢bngruence only exists as finitely
many (conjugate) fields of lines. In case 1, onedhasdl, i.e., if one chooses a general
point of a general line congruence thehrays of the congruence go through this point.
We think of the congruence as being decomposed into ablgolitreducible
congruences; we then have to prove that such an absalugelycible congruence is a
plane field.

If g is a general line congruence then the lines of the cenge that intersegt will
define an algebraic submanifold of the congruence. Therdiimn of this submanifold
will be, however, equal to that of the entire congruemeenely, two;c" lines of the
submanifold will then go through each point of the line. Nswge the congruence was
absolutely irreducible, it will be identical with thelsuoanifold. We thus see that a
general line of the congruence will be intersected bgfalhe lines of the congruence.
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Now, letg andh be two general lines of the congruence. Since theysett, they
will determine a plane. A third general lifeof the congruence that is chosen
independently o§ andh, will intersectg, as well a$, but will not, however, go through
the intersection point of andh (only ' lines of the congruence will go through this
intersection point then). Therefodewill lie in the plane that is determined Qyandh.

All lines of the congruence will come about by a relafipeserving specialization &f
thus, they will all lie in the one plane. The totahgruence will therefore be contained
in a plane field, so, due to the dimensional equalityjlith® identical with it.

8 35. The 27 lines on a third-degree surface

As an application of the methods of this chapter, wenex@ the question of how
many straight lines lie on a general surface"ddegree in the spa& .

Let p; be the PLUCKERIan coordinates of line, andf(g} = 0 be the equation of a
surface of™ degree. The line lies on the surface if and only ifititersection point of
the line with an arbitrary plane always lies on thefem@. The coordinates of this
intersection point are:

X= D U,
k

and the desired condition will thus be given by:

@ f(Xpyu)=0

identically in theu®. Thus emerges the PLUCKERian relation:

(2) Po1 P23 + Po2 P31 + Poz P12 = 0.

Equations (1) and (2) define an algebraic correspondeaedie the lineg, on the
one hand, and the surfatéhat contains them, on the other hand. The irreduygilof
this correspondence follows from the Lemma of § 33 ifdtpeations (1) are linear in the
coefficients off, and always have the same rank 1. (They indeed express the fact that
the surfacd shall contain a prescribed line, and for this to be trudllibe sufficient that
it containsn + 1 different points of the line.)

The linesg define a four-dimensional manifold. The surfategfine a spac& of
dimensionN, whenN + 1 is the number of coefficients in the equations of regd
surface of™ degree. The surfaces that contain a given line defiirearIsubspace of
dimensionN — (n + 1). If we thus apply the principle of constant caonbur irreducible
correspondence then it will follow that:

3) 4+N-(n+1)=N—-n+3=c+d.

In this, c means the dimension of the image manifold, i.e.nthaifold of those surfaces
f that generally contain lines, and each such surfacaiosrat leasto” lines (cf., § 34,
Theorem 6).
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Now, if n > 3 then it will follow thatc + d <N, hencegc <N; i.e.,a general surface of
n™ degree(n > 3) will contain no lines. The cases = 1, 2, 3 then remain. It is well-
known that a plane contains® lines and a quadratic surfae€, in accordance with
formula (3). In the case= 3, from (3), one will have:

c+d=N.

If we could now show thal = O then it would follow that = N; i.e., the image manifold
would be the entire manifold. Each third-degree surface wbukl contain at least one
line, and, in general, only finitely many of them.

Wered > 0 then this would say that each surface of third degvbiEgh generally
contains lines, likewise contains infinitely many oétih namelye®. Thus, if we can
give a single example of a cubic surface that indeethownlines, but only finitely many
of them, then we must hade= 0.

That example is easy to give now: We consider a auiace with a double point at
the coordinate origin. The equation of this surface reads:

Xo F2(X1, X2, X3) + f3(X1, X2, X3) = O,

in whichf, andfs; shall be relatively prime forms of degree 2 (3, resp.e fWgt examine
whether a line through the origin lies on the surfackoneé introduces the parameter
representation of the line:

Xo = Ao, X1 = A1y, X2 = A1 Yo, X3 = A1 Y3,
into the equation of the surface then one will finddbeditions:

fo(X1, X2, X3) = 0 and fa(y1, Y2, y3) = 0.

These two equations represent a quadratic cone and a cubiwito@ecommon vertex.
We assume that they have precisely six different gesrsran common, which is indeed
the case, in general. There will thus be six linethersurface through the origin.

We then examine which lines that lie on the surfaceal@a through the origi®.
If his such a line then the connecting plané efith the origin will intersect the given
surface in a third-order curve whose one component withedine h, while the other
component will be a conic section that must have a dopdilet atO, and will thus
decompose into two lines through These lineg; and g, must be among the six
previously-found lines throug® (*). There are 15 such pairs, and each pair determines a
plane that intersects the given surface in a line outsidéis pair. There are thus (at
most) 15 lined on the surface that do not go through In all, the surface contains (at
most) 6 + 15 = 21 lines.

It is thus provedThere are finitely-many lines on a general surface of degree three,
and each particular surface contains at least one.

1) One easily concludes thaitandg, cannot coincide.
y g
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We would now like to determine the number of these lEmestheir mutual positions,
and indeed not only for the general third-degree surface, utf@ any cubic surface
with no double points.

The equation of the surface might read:

(4) (X0, X1, X2, Xa) =CopoXg + CopyXg Xy +++F CygpX = 0.

In any case, there will be a lihen the surface; we choose the coordinate system in
such a way that this line obeys the equatiersx; = 0. We would now like to first look
for those lines on the surface that intersect thellinTo that end, we pass an arbitrary
planeAd; Xp = Ao X1 through the liné; for the points of this plane, we can then set:

(5) Xo = Ao t, X1 =1 t.

Any point in the plane will then be determined by the hgem@ous coordinatesx,, Xs.
The intersection point of a surface with the plank ba found when one substitutes (5)
in (4):

(6) f(ﬂo t, Alt, X2, )('g) =0.

This homogeneous equationtjng, X3 represents a curve of degree three. Since the line
= 0 (orx =x = 0) lies on the surface, this third-degree curve willbdgaose into the
linet =0 and a conic section whose equation might read:

(7) a11t2+2a12tx2+2a13txo,+ azzxi +2a23X2)(3+833X§ =0.

Equation (7) will be found from (6) by splitting the factorTheay are thus forms id; ,
A2, and indeed one has:

a11: OOCﬂ?)-i_ COOﬂz(ﬂ l+ C014 ’621+ Cldsil
2a11 = OOZA(Z) + COIJ & l+ Cllé 21’
(8) 2813 = OOQA(Z) + COIJ & l+ Cllé 21’

a22 = OZZA 0+ ClZﬁ 1
2a23 = OZQA 0+ ClZﬁ 2

a23 = OSQA 0+ C13ﬁ 1

Now, in order for the plane to contain a line in &ddito the lind, the conic section
(7) must decompose; the condition for this is:

8, &, 8
(9) A=18, 8y By =0.
8y 83 g
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On the basis of (8), the determin&nill be a form of fifth degree iy andA;. If it
does not vanish identically then (9) will be an equatibfifth degree in the ratidy : As,
which will then possess five roots. One will thus find folanes, each of which has two
lines in common with the surfaée= 0 besides the link Under the assumption that the
surface is free of double points, ee now show:

1. Ineach plane, the three lines are actually diffefrom each other.

2. The determinan is not identically zero, and its five roots are alfefiént from
each other.

Proof of 1. We assume that the surface has two overlappingdiaesl a further line
h in common with a plane

At each point ofg, e is then the tangent plane of the surface; all limes through
such a poinP will then have two overlapping intersection points vl surface. We
now pass any other plagethrough they. € intersects the surface in not oglybut also
in any conic section, which must have at least one poinbmmon withg. We again
call such a poinP. Each line througl? in € has two overlapping intersection points
with the surface alP; hence,€ will be the tangent plane of the surfacePat However,
this property is already attached to the planeSince there is only one tangent plane to
each point of a surface that is free of double pointshave arrived at a contradiction.

Proof of 2. Assuming thatl, : A; are double roots of the fifth-degree equation, we
then choose an associated plane thrdugh

A1 %= Ao X1

to be the coordinate plamg = 0. The parameter ratio that is associated witlpliuee is
then 0 : 1 4o = 0), andA is divisible by AZ. We will thus derive a contradiction, and one

will see, with no further assumptions, that the saorgradiction will also appear whén
is identically zero.

As we have already proved, the plapdnas three different lines in common with the
surfacef = 0. We thus have two cases to distinguish:

a) The three lines define a triangle.
b) They go through one point.

In case a), we choose the triangle of the line®tthb coordinate triangle in the plane
Xo = 0, and in the case b), let the intersection poirthefthree lines be a corner point of
the coordinate triangle. The intersection point efttlio lines that are different froims
calledD in both cases; in case &,= (0, 1, 0, 0), and in case ),= (0, 0, 1, 0). In any
case,D is a double point of the conic section (7) whose cdefftcmatrix, from (8), is
given by:

1
Ci1 EC112
1

EC112 Cio

1 1
2 Cll3 2 C123 Cl33
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for Ao = 0. In this matrix, sincB is a double point, one must have in case a) that gte fir
row and column vanish, while in case b), the secondammvcolumn must vanish:

a) C111=Ci2=Cu3=0.
b) Ci12=Ci22=C123=0.

In order to now express the condition thatis divisible byld?, we developA

[equation 9] in the first row in case a), and in theosel row in case b). In case a), the
elements of the first row and column are divisibledpy so the terms ia;> anda;s will
be divisible by};. Thus, the term:

aﬂ# a,
a; A,

will be divisible byA?. The second factor &0 for Aq = 0, since otherwise the two lines
into which the conic section (7) decomposes would have itewide, which, from 1,
would be impossible. Thus;; must be divisible by?; i.e., one must have:

Co11= 0.

Likewise, in case by, must be divisible by?, from which, one will obtain:

Co22 = 0.

Furthermore, in each case, one will haye = c23 = 0, since the lineg = x; = 0 lies
completely on the surface. Thus, in case a) the iequat the surface will lack terms in:

2 3

XX X0 XKy XX,

and, in case b), terms in:

2 2 3 2
XZXO’ X2X1’ XZ’ XZXS'

However, this means that the poihtwill be a double point of the surface in both cases.
Now, since the surface was assumed to be free of doubits,pilne assumption that
was divisible byA? will lead to a contradiction. With that, the asserti® proved.

We thus see that there are precisely five planes threagh line of the surface that
contain two other lines of the surface. Consequeatly,line of the surface will intersect
ten other lines of the surfacd.et 7be a plane that intersects the surface in three llines
m, n. Any further lineg of the surface will intersect the plaman a pointS that lies on
the surface, as well as on the planéence, its intersection curve, and therefore, dne o
the three lined, m, n belongs to that plane. Now cannot lie on — say +andm
simultaneously, since three tangehtsn, g that do not lie in a plane would then go
throughS andSwould be a double point of the surface. All lines & slurface that are
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different froml, m, n will thus intersect precisely one of the lifem, n. In addition tom
andn, there will be eight more lines that intersgcand likewise eight that intersect
and eight that intersect If one adds these m, andn to these 24 lines then one will
obtain 27 lines. Hence:

A double-point-free surface of third order ipc®ntains precisel@7 different lines.
These 27 lines, each of which will intersect ten othdefine a very interesting
configuration, about which an extensive body of litera@xists {)
§ 36. The associated form of a manifolt¥
In 8 7, we learned how to determine the linear subspaic@s spaceS, by their
PLUCKERIian coordinates. We will now learn how tooatepresent arbitrary purety
dimensional manifoldM in S, by coordinates in the same way.

It is best for us to start with the zero-dimensionahiolds. An irreducible zero-
dimensional manifold is a system of finitely many confegaoints:

b:(bm Iplf"’ pn)

Thus, it can be assumed that perhaps 1. Now, ifuo, Uy, ..., Uy are indeterminates
then the quantity:

1 1 1
e e L
will be algebraic oveK(u; , ..., uy), hence, it will be a zero locus of an irreducible
polynomial f(up) with coefficients inK(u; , ..., uy). The remaining zero loci of this
polynomial will be thed conjugate quantities:

e U e e ' T

hence, one will have the factoring:
f(uo) = o[ ] (U =#)
=p|f|(pouo+ py+-+ R uj-

Thus,f(up) will be completely rational im , ..., uy; we can thus write:

() See A. HENDERSON: “The twenty-seven lines upondhisic surface.” Cambridge Tracts, v. 13
(1911).
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f(uo) = F(uo, U1, ..., Up).

Sincef(up) is irreducible inup, and sincd=(up, Uy, ..., Uy) contains no factors that depend
upon onlyu, ..., Un, F(uo, W, ..., Uy) will be an irreducible form inu, ..., u, with
coefficients inK. It is called theassociated fornof the point system. With the well-
known abbreviation:

up=ey=2pny,

we can therefore write:
(1) F(u) :'0|__| (u pj.

A reducible zero-dimensional manifold exists as varioutesys of conjugate points.
We now understand the phrase “associated form” oflaciele manifold to mean the
product of the associated forms of the conjugate poirtteeahdividual systems:

F:Fle...Fh.

One can also visualize the conjugate points of the mhd@lisystems as having arbitrary
multiplicities o« and refer to the product:

F(U) = Flpl szz e thh

as the associated form of the system of points, inoudiultiplicities. The fornf(u)
always has the form (1) and determines the irreducystes of points, counting their
multiplicities, uniquely.

Now, letF(uo, uy, ..., Uy) be any form of degreg We would now like to exhibit the
condition for this form to be the associated form @éeo-dimensional manifold. For this
to be true, it is necessary and sufficient that thenfbe completely decomposable into
linear factors:

(2) F(uo, s, ---,Un)zpu(li%uﬁipl l{+"'+iR Hj-

If one compares both sides of (2) with the coeffitsesf the corresponding products of
powers ofuy, ..., U, then one will obtain the conditions:

@) au=pwv[i>,~-i’oj,

where W, is a homogeneous form in each individual sequeoicecoordinates .

Eliminating o from (3) will yield the homogeneous equationsheﬁ) :
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From 8§ 15, the conditions for solubility of this systefequations are found by

1 g
setting the resultant systems|n, ..., p equal to zero. One thus obtains a homogeneous
system of equations:
(5) R(@) =0

whose satisfaction is necessary and sufficientferfarmF with the coefficients,, to be
an associated form.
Now, let an irreducible-dimensional manifoldV be given. We intersedfl with a

r

0
general linear subspa& , which is the intersection efgeneral hyperplanes, ...,u.
Each symbolu thus stands for a sequencenof 1 indeterminatesio, Ui, ...,u,. The

1 g 1 r
intersection pointy, ..., pare conjugate to each other oWé(u,W,UJ. The associated

form of this point system is the product:

)

0 0 0 0
in which u means a new sequence of indeterminakgsu:, ..., U». It is completely
0 1 r
irrational in u and rational in theu, ..., u. If one makes it completely rational and
1 r 1 r
primitive relative to theu, ..., u by multiplying with a polynomial in the, ..., uthen

one will obtain an irreducible polynomial that isnapletely rational in all indeterminates
1 r
u,..,u:

(o) fin)

0
namely, theassociated fornof the manifoldM. Its degree inu will be equal to the
degregy of the manifoldM.
It is clear that two different irreducible manidasl cannot have the same associated

0
form. One could then obtain a general painbf the manifoldM from the associated
form by factorizing (6), and these general pointsulg thus establish the manifoM.
The associated forif thus determines the manifoldl uniquely, and the coefficients Bf
can be taken to be tlveordinates of the manifald

Example. LetM be a line that is determined by the pontndz. We writeu andyv,

0 1 1
instead ofu andu. The intersection point of the line with the hgglane u= v will be
found from:
(v, A1y + A22) = A1(vy) + A2(v 2 = 0.

One solution of this equation is:
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A= (v 2, A== (V).
The intersection point is then:
p=V3y-Wyz
and the associated linear form is:

Huv)=Puy=vayu-¢yzy
=2 2. (VA - ¥%2) yy.

j k
The coefficients of this form are the PLUCKERIiamtinates:

=YiZ&—Y 3.

Problems. 1. If M is a linear subspac® then the coefficients of the associated form wdlthe
PLUCKERiancoordinates of.
2. If M is a hypersurfacé= 0 then the associated form Mf will arise from the fornf when one
i
replaces the variableg, ..., X, in f with then-rowed determinant of the matrixc =0, ...,n—1;k=0,
..., ), with the usual alternating signs.

One can also define the associated form in anethgr We define a correspondence
between the pointg of M, on the one hand, and the sequencestoi hyperplanetg/,\l/,
\r/ that go through them, on the other. The equatidrithie correspondence express
the ideas thay belongs taM, and that\o/,\l/, \r/ goes througly. One obtains a general
pair of the correspondence when one replgcedth a general poin€ on M and \0/\1/

r 0 1 r
...,V withr + 1 general hyperplanes, w, ..., w that contairé. The correspondence is
therefore irreducible.
In the formula:
a+b=c+d

which expresses the principle of constant cours, ltas:

a=r,
b=(r-1)0-1),
c=0;

hence:
d=(r+1)n-1.

Thus, the image manifold of the correspondencebeila hypersurface in the< 1)-fold

0 1 r
projective space of hyperplangsv, ...,v. There is thus a single irreducible equation:

7) ﬁ{&Qnuﬂ:o
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0 1 r
whose existence is necessary and sufficient for therpjanesv,v, ...,v to have a point
in common withM.

1 r 1 r
If one takes they, ...,v in (7) to be general hyperplanes ...,u that intersecM atg
1 r 01 r

points p, ...,p thenF, (v,u,n-,uj will be zero if and only if one of the linear facso

. . I 0 0 1 r . . . -
SatISerS(ij: 0; henceFO(u,u,m,uj will be divisible by the product of the forms

i 0 . . . . 01 r .
(puj, I.e., by the previously-defined associated fé| uuj However, sincé

is irreducible, it will then follow that:
Fo(u) = F(u);

i.e., the fornFo(u) will be the associated form of the manifdfdexactly.
An important property will follow from this new #eition of the associated form,

0 1 r
sincev,v, ...,v are on an equal footing in it:

0 1
The associated form(&) is homogeneous of degree g, not onlyinbut also inu,
' i
...,u, and it will go to itself, up to a factor, undertlexchange of any two.
We now go on to the irreducible, purehdimensional manifolds. The associated

form of one such will be defined as the producthef associated forms of its irreducible
components, when equipped with arbitrarily-chosesitpre exponentg:

(8) F=FAF/---F”.

If g1, ..., gs are the degrees of the irreducible components therdegree of the total
form F in each of its individual sequences of varialigsu; , ..., u, will equal:

9=>.ng.

The associated fori will determine the manifol®l uniquely, just as its multiplicities
will determine its irreducible components uniqueBlurthermore, one will have:

01 r
The condition F(u,u,n-,uj: 0 is necessary and sufficient for any r

0 1 r
hyperplanes,v, ...,v to have a point in common with M.

We already saw above that this theorem is truarfeducible manifolds. By means
of the factorization (8), it carries over to decaspd manifolds with no further
assumptions.
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Problems. 3. Iff, =0 are the equations of an irreducible manifdland one further adjoins the+ 1
linear forms(ﬁ x)’ (G x) (fj Xj to the formd(x), and then constructs the resultant system of all of
these forms then the greatest common factor ofdbgltant system will be a power of the associated form

F(u).
4. How does the corresponding theorem for decomposatigatas read?

§ 37. The totality of all associated forms for all manifold$/.

We first ask: How does one find the equations of a manNbwhen its associated
form F(u) is given?

0 r
If a pointy lies onM thenr + 1 arbitrary hyperplanes, ...,v throughy will always
have a point in common witM. However, ify does not belong t& then one can

0 r
always pass suitable hyperplanes...,v throughy that have no point in common with

M. Namely, one choosars such that they intersebt on only a manifold of dimension
— 1, and apply complete induction grsince the assertion is clear for 0. With this)y
belongs tavl when and only when + 1 arbitrary hyperplanes that go throughlways

01 r
satisfy the conditior (v, V-, vj =0.

One obtains an arbitrary hyperplane that goesitfirg most conveniently as the zero
locus ofy relative to an arbitrary null system (which masaabe singular):

V=D 5y G =-s).
We write this briefly as:
v=2_Sy.
0 1 r i i
Thus, if sy, sj, ..., S are simple indeterminates withh = -s;andS, S, ..., S are the

associated null system then the conditionyftr lie onM will read:

(1) F(SY, Sy, -...Sy) =0

(identically in s; ). If one sets the coefficients of all powers adgucts of the; equal

to zero in (1), in which one has replacedéthe/vithj > | by—é.,- , then one will obtain the
equations oM.

01 r
The main question of this section read#hat conditions must a for (u,u,m,uj

1 r
that has the same degree in all sequences of \asal ...,u satisfy in order for it to be
the associated form of a manifold?
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Obviously, there arthree necessargonditions:

0
1. F(u), when considered as a form in, must decompose completely into linear
factors:

@ F = o[ P}

1 r
in an extension field & (uuj

r

i 1
2. The pointg that are defined by (2) must lie in all of then#au, ...,u:
ik
3) (puj =0 i=1,..gk=1,..rn.
3. They must further satisfy the equationdvbf

(4) F(Sb NS P S §>=0-

0 r
Condition3 can also be formulated: If the hyperplanes..,v go through one of the
i 01 r
pointspthen F (v, Vo, vj =0.
We now prove that these three conditions arealfitcient.

There is (relative to the ground fiel) an irreducible algebraic manifold; that

1
possesses the poirg as general pointsMy, ..., Mg will be defined correspondingly;
naturally, they do not all need to be different.heTunion of all of the irreducible
manifoldsMy, My, ..., My is calledM.

1 g
From 2, the points p, ...,p lie in the linear spac&,, that is defined by the

r

1 1 g
hyperplanesu, ...,u. Condition3 now states that, outside gf, ...,p, S+ has no
further general points in eithdy, Mo, ..., orMg . Namely, if this were the case, then
S+ would contain a further general poopbf M. Then, on the basis of the uniqueness

1 1
theorem (8 29), there would be an isomorphls(q) DK(pj that would takey top.

1 1 r

1 r
That would give rise to an isomorphisté'(q, U+, uj 0K ( p,W,---, Wj. The relations:

(qajzo k=1, ..n),
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which say thaq lies in S, , are preserved under isomorphisms; thus, it wouldviollo
that:

1k
(pujzo k=1, ....n,
0 1 10 .
Now, if w were another arbitrary plane through- hence,(pwj: 0 - then it would
follow from condition3 that:
0 1 r
F(W,W,n-,wj: 0.
0 0
From the STUDY lemma (8 16), when one replaces whewith indeterminatesu,
01 r 10

F(u,w,n-,wj would be divisible by{puj. Applying the isomorphism in the opposite

01 r 10 .
direction would give that~ (u,u,m,uj is divisible by (q uj; l.e., due to (2)g would

coincides with one of the points.
Now, since a general linear sp&age intersects only finitely many general points of

the irreducible manifoldM; (and indeed at least one point, namety), M; will be
preciselyr-dimensional; the same will be true fol; , ..., My . The associated form of

M3 will be the product:
i 0
Fi= |_| (puj :

i 1
which is extended over thoge that are conjugate tp.

When the||o are combined into the groups of conjugate pothts,product (2) can,

moreover, be written:
10 e 0\)2 (/e10 e+f 0)) 7P
= =o|(p)- (B | B4 "0y

= pRAE ...

This factorization shows thdt is equal to the associated form of a manifeldhat is
comprised of the componertt , Me+1 , ... with the multiplicitiesor , ger1 s ..

Conditionsl, 2, 3 are thus sufficient.

We will now show that conditionk 2, 3 can be expressed by homogeneous algebraic

01 r
relations between the coefficierstsof the formF (u, u,---, uj )



160 V. Algebraic correspondences and their applications

In order to express conditioh by homogeneous algebraic equations, we proceed
precisely as we did at the start of this section, wherfirst equated the coefficients of

0
the products of powers af in:

thus:

and then eliminateg:

©)) GuWy— ¢y Y = 0.
Condition2 reads:

(6) (bbj =0 i=1,..0k=1 ...

Condition3 will be evaluated when one sets the coefficieritthe products of the

powers of the indeterminat@ in (4) equal to zero:
™ x(2p)=0 (=1 .9

One eliminates tthJ from the homogeneous conditions (5), (6), (7)cbgstructing
the resultant system:

1 r
Rx(a/], U---, uj:O_

1 r
These equations must be satisfied identically jn..,u. If one then sets the coefficients

k
of the products of powers of thasequal to zero then one will obtain the desiredesyst
of equations:

(8) TJay) =0.
01 r
The fulfillment of8) is necessary and sufficient for a forlﬁ{u, U, -, uj of degree g

with the coefficients ato be the associated form of an r-dimensional manifold M of
degree g

By a small amendment to the above proof, one tsanexhibit the conditions for the
manifoldM to lie on another manifold.
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1 g
The equations dfl might ready, = 0. IfM lies onN then the general pointg, ..., p

of the irreducible components Bf must lie onN. This gives the conditions:

©) gv[ioj:o (=1, ..9.

We add these equations to (5), (6), (7), and again elimihatqlat This yields a system
of equations that is completely analogous to (8) an@dessary and sufficient féd to

lie onN. If N is given by its coordinatds, , or — what amounts to the same thiady its
associated form, then one can derive the equatipng by the method that was given at
the beginning of this section and then obtain the cimmgitforM to lie onN in the form

of a doubly-homogeneous system of equations:

(20) Tas, by) = 0.

Example. We would like to actually present the conditions (B)he simplest case

0 1
=1,9=1. If we writeu andv, instead ofu and u, then any form of degree 1 in the
andv will have the form:
F=> > a,u\.

1
In this case, when we wrifeinstead ofp, conditionl:

(11) P = Zajkvk -

We can do without making these equations homogeneous,tssedimination of thep;
can come about simply by the substitution (11). ComaRiyields:

2P =0,

or, when (11) is substituted and the coefficient; of is set equal to zero:

(12) aj'k + akj = 0

0 1
When one sets; =s; ands; = tj condition3 will yield:

>Ya(Xsn)Xtp)=0

or, when (11) is substituted and the summation sigmiplgiomitted, one will have:

Ak Sj @ Vr tw as Vs = 0
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identically in thes;, ty, andv, . Equating the product powers yields:
(13) (1 _Pij)(l —Puw) (1 +Pys) a dir As = 0,

if P; means the permutation of the indidgeandj. Equations (12) and (13) are thus
necessary and sufficient for the fofhwith the coefficientsy to be the associated form
of a line, or for they to be the PLUCKERian coordinates of a line. The cahigations
(13) must be equivalent to the previously derived quadrdéitiors (cf., 8 7):

ajag+taka +taax=0

The meaning of the results obtained up to now lies nthdanconcrete form of the
equations of condition obtained, since the example alstrows that they are already
very complicated in even the simplest case. Rathdrs in the fact we can now
consider the totality of the puretydimensional algebraic manifolds of given degree as
an algebraic manifold in which the points represent iddizi manifolds.

The associated form of a manifold will then be giventbycoefficientsa, . If one
regards them as the coordinates of a paiimt a projective spac® then each manifold

M of a given degree and dimension will correspond tstracture point A and
converselyM will be determined uniquely b&. B is called thestructure spacef the

manifoldsM of degreey and dimensiom. We have already presented the totality of all
structure pointé\ as an algebraic manifold 8 whose equations are:

T.a) = 0.

One understands the teatgebraic system of manifolds tdd mean a set of manifolds
M whose structure set # is an algebraic manifold. For example, the totadityall

manifoldsM (of given degree and dimension) is an algebraic makitmd likewise for
the totality of allM that lie on a given manifold or contain a given manifold. These
relations will then be expressed by the algebraic equsaft0).

One can carry over the ideas and theorems that péstaigebraic manifolds in this
structure space to algebraic systems of manifolds vaitfurther assumptions by means
of the one-to-one map of the manifoldsto the points of a structure spaBe One can,

e.g., decompose any algebraic system into irreduciblesgstene can speak of the
dimensionand general elemenbf an algebraic system; one has the theorem that an
irreducible system of manifolds is determined uniquely bgéseral element, etc. One
can also consider correspondences between algebraidoltsrand other geometric
objects and apply the principle of constant count. Fooser treatment of these ideas,
we refer to a paper of CHOW and VAN DER WAERDEW, @nd for applications, to
other paper of the authdi) (

(*) CHOW, W.-L and B. L. v. d. WAERDEN: “Zur algebraiimmn Geometrie IX,” Math. Ann.,, Bd. 113
(1937).

() WAERDEN, B. L. v. d.: “Zur algebraischen GeometXieand XIV,” Math. Ann.,, Bd. 114 and
115.



CHAPTER SIX

The concept of multiplicity

8 38. The concept of multiplicity and the principle of theconservation of count

We would like to examine the question: What happens tedhgions to a geometric
problem under a specialization of the data of the problem?

Let the data of the problem be given by (homogeneous aymaobeneous)
coordinates, . Let the desired geometric structure be given by onmease sequences
of homogeneous coordinatgg . In order to have something specific in mind, we
imagine that there isnesequence of homogeneous coordinates fox,ths well as thg,
and correspondingly speak of the “point’and “point”y. These assumptions are not
essential. However, what is essential is anotiner that we shall now makéet the
geometric problem be given by a system of equations:

) fuxy) =0

that are homogeneou&t least, in they-coordinates). We shall call such problems
normal problems.

Equations (1) define an algebraic correspondence betweguothtsx andy. One
can thus also define the normal problem by means ofgabic correspondence; that
definition will be equivalent to the previous one.

The pointx may run through amreducible manifoldM. For a general point of this
manifold, the problem may have at least one solutiomth f,(x, y) = 0. The problem
will then also have at least one solutpifor each poin of M; if the resultant system
that comes about from (1) by eliminatings fulfilled for a general point d¥1 then it will
be fulfilled for each point oM. Secondly, we assume thiae problem has only finitely-
many solutiongor a special point x of M.Then, from Theorem 6 (8 34), the problem
will also have only finitely-many solutions for the gerigpaint £ of M. Let these
finitely-many different solutions bg®, ..., 7.

From a general theorem on relation-preserving speaimlirs (8 27), one can
establish the relation-preserving specializatfon x by means of a relation-preserving
specialization of the total system:

(2) gz - X, /7(1) — y(l), ey /7(h) — y(h)

We also express this dsg™, ..., 7™ will go toy™®, ...,y under the specializatiod —

x,” All y® will be solutions of the equations (1); the relatiés7") = 0 must then

remain preserved under any relation-preserving specdializaHowever, it is not clear at

this point whether one will obtain all solutions of gystem of equations (1) in this way.
The points/Y), ...,y do not need to be all different; i.e., there cary veell be some

“overlapping” solutions under the specializatién- x, 7%, ..., y¥. The number that

gives how often a particular solutigrof the problem (1) will occur among the solutions
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vy, ..,y is called themultiplicity of this solutiony under the relation-preserving
specialization (2). The sum of the multiplicitiesadifthe solutions of the problem (1) is
obviously equal tdh; i.e., it is equal to the number of solutions of fireblem for a
general point¢ of M. We thus obtain therinciple of the conservation of count: The
number of solutions of a normal problem is preserved under the spat@ié - X,
assuming that under this specialization one counts each solution as manyasiniss
multiplicity.

In order for this principle to actually bear fruit, dweconditions must generally be
satisfied: First, the multiplicities must be deteredminiquelythrough the specialization
& -~ x alone (i.e., independently of how one specializesstietions/"), and second,
one must be certain that one obtaatissolutions of the problem by the specialization (2);
in other words, that no solution will take on multigljczero. Now, the requirements are
in no way fulfilled by themselves: One can very wellggexamples of normal problems
in which the multiplicity is not unique or in which thelstions come about with
multiplicity zero. However, the following theorenivgs a sufficient condition under
which these untoward circumstances cannot happen.

Main theorem on multiplicities:

1. If the (normalized) coordinates of the poifitare rational functions of some
algebraic independents under it, and these rational functions remain meaningful under
the specializationf — x, then the specialized solution®y...,y™ will be determined
uniquely by the specializatich— x, up to the sequence.

2. If, in addition, the correspondence defined(byis irreducible then each solution
y of the problengl) will appear among the solution& ..., y" at least once.

Proof of 1: The solutions/’), ...,y™ that belong to a generalsubdivide into a
system of algebraically conjugate points. It sufficesconsider such a systent”,
., and to prove that the relation-preserving specializatdnthis system is
determined uniquely fof — x. For the point/"), there will be at least one coordinate —
say 7{” — that is non-zero; this coordinate is then non-ferall conjugate points and

can be set equal to ong{”’= 1. The coordinateg!” will then be algebraic quantities

over the fieldk(&). Let the coordinated, ..., " be indeterminates, while the remaining
ones are algebraic functions of them.

Furthermore, leu, u, ..., U, be more indeterminates. The quantity,7® — ...
- un® will be algebraic over the field(&, u) and will therefore be a zero locus of an

n/n
irreducible polynomialG(up) with coefficients inK(é1, ..., ém, U1, ..., Up). In a suitable
extension field, this polynomial will decompose comgieteto linear factors that are all

conjugate toup + u®P+ ... + un®, and will thus have the formg + un® + ... +

n/n ?

u w).

n/n -
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3) G(uo) = (&) ] Uy +ul” +--+ ) = N wn™).

We think of the arbitrary facton(é) as being determined in such a way that the
polynomialG(ug) is not just rational, but integer rationaldh ..., &", and none of thé
include factors that depend upon it alone; we thah it G(¢ u). G(& u) is an
indecomposable polynomial i&, ..., &, W, ..., Uy, and, from § 36, it is called the
associated fornof the point systen™, ..., 7/%. This associated form will now give the
means of establishing the relation-preserving spieation of the point systems
uniquely.

If we develop both sides of the identity (3) imgucts of powers of the and equate
the coefficients of this product of powers then améobtain a system of relations:

(4) ai($) =h(4) ba(n),

from which, we will derive the homogeneous relasion

Q) ai(é) bn) —alé) ba(n) =0.

These homogeneous relations must remain valid ura®y relation-preserving
specializatiord - x, 72 - y". It will then follow that:

(6) ai(x) bAy) —adX) ba(y) = 0.

However, these relations state that &) will be proportional to thd,(y). Theb,(y)
are the coefficients of the forﬁ (uy™): therefore, they do not all vanish. Thus, it

follows from (6) that:
(7) ai(x) = pba(y).

However, this says that tlag(x) will be coefficients of the forns(x, u):

®) G(x, u) = p[Uy").

If we can still confirm that the fori@(x, u) does not vanish identically then one must
havep# 0 in (8). On the basis of the theorem of unicaedrization, the linear factors
on the right-hand side, and thus also the pgffts..., Y™, are then determined uniquely,
up to their sequence.

In order to confirm the non-vanishing of the fo@(x, u), we replace the unknowns
Yo , ---, Yo With indeterminate¥y, ..., Yo and construct the resultant system of the forms
f.(¢ Y) and the linear formwY) in theY. For special values af, the formsR(¢, u) of
this resultant system will be zero if and onlyhiétplaneu goes through one of the points
Y. Therefore, the formR;(& u) will then be divisible by the linear formg{ u), and
therefore their product, as well, and thus the f¢8n One setg, = 1 inR(&, u) and, on
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the grounds of assumption 1, replacesdhe , ..., & with rational functions o, ...,
ém. One then multiplies with a principal denominatdagptnennex N (&, ..., &n) such
that the produdi,($) Ri(¢, u) becomes integer rational &, ..., & . SinceN, Ry(&, u) is
divisible by G(¢, u), and since5(¢, u) possesses no factor that depends upon jusf, the
the stated divisibility will also be valid in the domaifithe polynomial in the& andu:

N($) Ra(S, u) = Ax(é, u) G(x, u).

This identity will remain valid under the replacementéofith x. Now, if G(x, u) = 0
were the case then, sinbi(x) # 0, it would follow thatR,(x, u) = 0. However, that is
not the case, so thei(x, u) will define the resultant system of the forfméx, Y) and a
linear form (1Y), and this will vanish for special valueswbnly when the plana goes
through one of the infinitely-many poingghat satisfy the equations (1). In fact, one will
thus haves(x, u) # 0, from which, the proof will be concluded.

Proof of 2: When the correspondence (1) is irreducible, any pointégaiy will be a
relation-preserving specialization of the general point-pdi 7). & will then be an
arbitrary general point dfl andz will be any of the associated poim&’ — say,n = .
From 8 27, the relation-preserving specializationsf) — (X, y) can be extended to a
relation-preserving specializatiod, (7, 72, ..., /™) = (X, y, ¥, ..., y¥"). From the
prewousla/ proved uniqueness theorem (Part | of this prgoyj, y’ must a%;ree with
vy in some sequence. Therefoyenust be one of the pomyé1 which
was to be proved.

It will follow from the theorem that was proved ththe multiplicities of the
individual solutionsy of the problem (1) will be determined uniquely and positiveler
the given assumptions.

Assumption 1 is fulfiled — e.g. — whell is the entire projective or multiply-
projective spaceé, ..., & will then be simply the inhomogeneous coordinates of point
& However, it will also be fulfilled wheM is the totality of all subspac&y in S, .
Then, from § 7, all of the PLUCKERIAN coordinates of samS; will then be rational
functions ofd(n — d — 1) of them.

The given assumptions may indeed be weakened, but naedmimpletely. In
place of assumption 1, one might satisfy — e.g. — thekereassumption that poirtis a
simple point ofM (}). Likewise, as the proof shows, one might satisfyplaxce of
assumption 2, the weaker assumption that the point(pay) is a relation-preserving
specialization of any of the point-pairg, ()). However, if one makes absolutely no
assumptions then both of assertions 1 and 2 will bedals®, as the following examples
show:

Example 1. The equations that arise from setting all two-rowda determinants of
the matrix:

() For the proof, cf., B. L. v. d. WAERDEN, “Zur algeisehen Geometrie VI,” Math. Anril10
(1935), pp. 144, § 3.
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equal to zero will define an irreducible (1, 1)-corresponddietereen the plane cubic
curve:

X, % ><2H
o¥. Yo¥ %t ¥

XoX1 X = Xy + X
and they-lines. A general poinf of the curve will correspond to a single pamt

No:Mm=46%:é.

The double point (0, 0, 1) of the curve, however, wilrespond to two different-points
(0, 1) and (1, 0), which will both be relation-preservingcsggdeations of the general
point-pair ¢ 7). The relation-preserving specialization will notdetermined uniquely
then, and the multiplicity of one of the solutions {9 or (1, 0) can, from preservation, be
set equal to zero or one.

Example 2. Let there be given a binary bi-quadratic form:
(9) aotg + alt(3)t1+ aztgti'*' aStOti+ alt‘t

(or, geometrically: a system of four points on a lindVe ask about all projective
transformations:

t =2 et

that transform the form (or the point-quadruple) inteelits The problem may be
paraphrased, with no further assumptions, in terms afogeneous equations for the
unknown coefficient®y, €1, €10, €11 ; ONe then needs only to define the coefficients of
the transformed form and (by setting the two-rowed detembs equal to zero) express
the idea that these should be proportional to thggrai coefficientsa, a1, ap, as, as . It

is known that the problem has four solutions for a gdnferm (9): There are four
projective transformations that transform a generaitpguadruple on the line to itself.
(They define the KLEIN Vierergruppe.) However, if thergeguadruple is a harmonic
one, in particular (i.e., one with double ratio — 1),nthtere will be eight such
transformations. There will then be an involutoryngfarmation that has two of the four
points as fixed points, and one can then multiply ithwtlhe transformations of the
Vierergruppe. In the case of an equiharmonic quadruple ¢ie.,with double ratio

%i—;\/—_&‘;), there will indeed be twelve transformations of tjuadruple into itself that
permute them according to the alternating group. The &ght( resp.) new solutions to
the problem that come about will obviously have multiptizero, now; they do not then
go to one of the four solutions by a relation-preservingiapeation in the general case.
The assumption of irreducibility of the correspondendenat actually be fulfilled, here.
After these two unfavorable examples, we now give diveer ones for which all of

the assumptions for the application of the principlehefconservation of count are valid.
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Example 3. Let an irreducible manifoltl of dimensiord in S, be intersected with a
subspac&,4 . From § 34, a gener&|_y will intersect the manifold/ in infinitely-many
points. Now, when a speci&,q likewise intersects the manifold in only finitely-
many pointsx, each of them take will take on a well-defined muttip} (viz., the
multiplicity of the intersection point). From theimeiple of conservation of the count,
the sum of the multiplicities of all intersectionipis will be equal to the number of
intersection points d¥1 with the genera$,4 , and will thus be equal to the degree of the
manifold.

We already saw the irreducibility of the corresponddmeteveernx and S, in 8 34
when we gave a general pat S ), from which, all of the pairsx( S,-4) with x onM

andx in §,-¢ would came about by a relation-preserving specializatiome “method of
problem inversion” that was used for this will also leadvesy many other normal
problems as its goal. This is due to the fact that wendlicstart from a gener&,, but

from a general point of M, and we then draw the most general spgcg through this

point. We thus do not start with the data of the nopnalblems, but with the solution,
and then seek suitabtebut as general as possiblelata.

Moreover, since all of the assumptions of the mheotem are given, it will then
follow that the multiplicities of the intersection points of M with aRy &re determined
uniquely and positive.

The concept of the intersection point multiplicityndae carried over, with no further
assumptions, to a decomposable, pudedymensional manifoldM.

Example 4. Let the problem be that of determining the lines on a -thaglee
surface. We already saw in § 35 that the problem will teahomogeneous equations in
the PLUCKERIAN coordinates of the lines. We likewssav that the correspondence
that is defined by these equations will be irreducible.cuBic surface is given by 20
unrestricted, variable coefficients. As we saw in §tBé&re will be 27 different lines on a
general cubic surface. Naturally, under a relation-pvesg specialization, intersecting
lines will go to intersecting lines; in that sense, ¢bafiguration of the lines will remain
conserved. When only finitely-many lines lie on a spesuiaface (i.e., when the surface
is not a ruled surface), it then follows from the midnaorem on multiplicities that each
of these lines will preserve a certain positive miittigy under this specialization and
that the sum of these multiplicities will be equalit

In connection with the most important example 3, wesgme the following
definition: A pointy of M is called &-fold pointof the manifoldV when a general linear
spaceS, that goes through intersects the manifoldl aty with multiplicity k. 1f k=1
theny will be called asimple pointof M.

8 39. A criterion for multiplicity one.

The main theorem on multiplicities that was provethaprevious paragraphs gave a
criterion by which one could decide whether the solutioh® normal problem had
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positive multiplicities in most of the important caseBy an application of the principle
of the conservation of count — in particular, “enumeeageometry” — it is, however,
likewise important to have the means in hand to evalomtiéplicities as above. The
most important of these means is a theorem that tb@aysunder certain conditions the
multiplicity of a solution will be< 1. With the help of this criterion and the main
theorem on multiplicities, one can conclude thatrthatiplicity of a solution to a normal
problem will be equal to exactly one. From this, it wikn follow from the principle of
the conservation of count that the number of diffeisolutions to the problem in the
general case will be precisely equal to the numberlofisos in the desired special case.
The latter number is often easier to determine tharfiditmer one.

The criterion for multiplicity< 1 rests upon the concept of {p@ar — or tangential—
hyperplaneto a hypersurface. ifis a point of a hypersurfadé = 0 anddx means the
partial derivative with respect t then the polar or tangential hyperplaneHoft the
pointy will be given by:

(1) Zo OoH(Y) + 71 01H(y) + ... +z,09,H(y) = 0.

From EULER’s theorem, the poigtitself will lie in this hyperplane:
(2) m [CH(Y) =2z 0oH(y) + z 01H(y) + ... +z,0,H(y) = 0.

If one introduces inhomogeneous coordinates by means=0f, = 1 and one subtracts
(2) from (1) then one will obtain the equation of théaptiyperplane in the form:

() (@ —y1) 01H(y) + ... + @ —Yn) OnH(y) = 0.
The lines througly in the tangential hyperplane (1) will be tiamgentgo the hyperplane
H at the pointy. In contrast to Chap. 3, we would like to also presés expression
wheny is a double point off and therefore equation (1) is fulfiled midentically: In
this caseall of the lines througly should be called tangentshbat the poiniy.

The desired criterion then yields the following:

Theorem. If a normal problem is given by the equations:

HA¢, ) =0,

and two different solutiong’, 7' go to a single solution y under the relation-preserving
specializationé - x then the specialized hypersurfaces:

4) Hux y) =0
will have a common tangent at the point z.= y

The proof rests upon the fact that the connectingoling and#” will go to a tangent
under the specialization.
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We can assume thgf# 0: One will then also havg, # 0 ands, # 0. Thus, one can
assumejp =17, =17, = 1. We set:
Me =M = T

one will then havery = 0, sor is the ideal point of the connecting limg, 77'. The
relation-preserving specializatiod (7, ') - (X, ¥, Yy") can be extended td,(/7, 7', 1)
- (X, ¥,Y", ). This yields the equations:

HW(¢ 77) =0,
HAS, 7) =HUS, 7 + 1) = 0.

The latter equation can be developed in powers,af., 7, . That will then yield:

(5) > 10,H,(&7") +terms of higher degree = 0.

k=1

In the terms of higher order, we can, in any evieegp a factory and further replace the
Ii in the remaining factors with, —7,. With that, (5) will become homogeneousrin

..., In. If we also make (5) homogeneous in thend ;" by the introduction ofy;, and
n, then we will obtain an equation that is preserwawler a relation-preserving
specialization §, 17, ', 1) - (X, Yy, ¥, t). The differences;, -7, (or, homogeneously,

", I I n

o —n1, ), however, will vanish under the specializationcsi/7 and ;" will both go
toy. Therefore, all that remains of the entire equrafb) will be the first term:

ztkakHu(Xa y)=0.
k=1

The tangential hyperplanes of the specialized Isypéace will then have a common
(ideal) pointt. Since they will also have all of the (ideal) msiy in common, they will
have a common tangent, as we asserted.

The criterion for multiplicity onevill then follow immediately from the theorem that
we just proved:

If a normal problem fulfills the conditions for tineain theorem on multiplicities and
if the specialized hypersurfacé$ have no common tangent at y then the solutionly wil
have a multiplicity of precisely one.

Namely, two different solutions of the general ldean cannot go to the same one
under specialization.

The beauty of this criterion is that in order fuply it one needs only to focus one’s
attention on the specialized problem (which is llgwampler than the general one); as
for the general problem, all that one needs to km®what the assumptions for the
application of the concept of multiplicity are \dli
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§ 40. Tangential spaces.

The concept of tangential space that was explained®ifiog curves and in 8 39 for
hypersurfaces shall now be explained for arbitrary purelynensional manifold# in
S .

Lety be a point oM. We consider all of the tangential hyperplanes tafthe
hypersurfaces through the poiptthat containM. In the event that this space has
precisely the same dimensioras the manifoldM itself, it shall be called tangential
spaceto M at the poiniy.

We now show that an irreducible manifdil will possess a tangential space at any
generalpoint & We normalize the pointto haveé, = 1 and assume thdt, ..., & are
algebraically independent quantities, so the remaining énes..., & will represent
algebraic functions. These algebraic functions canifterehtiated; the derivative af
with respect toé will be denotedé; . We now consider the linear spaSewhose
equations read (in inhomogeneous coordinates):

Zr+1_§(r+1:2§(r+1j (% _gj)
1)

4—5n=25n,j(4—a).

We would now like to show that this spages precisely the tangential space, and thus,
the intersection of the polar hyperplanes:

2) @—¢1) 01f () + ... + @& —4n) Onf(x) = 0,

wheref = 0 are the equations of 8 that include hypersurfaces. We must then show,
first, thatS is included in this intersection, and second, that thiersection is included
nsg.

The fact that the spa& is included in all hyperplanes (2) will emerge immediately
when one substitutes (1) in (2). The left-hand sid@)pwill then be:

Y (2,-6)0, (O + Y Y&, (2-£)d, (&)

=1 k=r+1j=1

=Y, —fj){aj &+ 4, f(g)gk,i}.

k=r+1

By differentiating the equatiofté) = O with respect td;, one will see, however, that
the last bracketed expressions has the value zero.

We will show that the intersection of the hypengs (2) is included & when we
give n — r particular hyperplanes (2) whose intersection ecigelyS . To that end, we
consider an irreducible equation that lirkks; to &, ..., & :
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(3 fi(é, ... & &+1) = 0.

The equation can be made homogeneous by the introductign 8fnce it is true for the
general point oM, it will be true for all points oM; thus,fi = 0 will belong to the
hypersurfaces that contdih Its polar hyperplane (2) reads:

r

(4) D (2, =)0, T(&) + @+ —&wi) 9w Fi(X) = 0.

j=1

If one divides this by,.; f then one will get:

- i(zj _gj)gzrﬂj + (Zr+i —§(r+i) =0,

from the definition o, j .

However, that is exactly what equations (1) amdantTherefore, the intersection of
the polar hyperplanes (4) will be precisely the cgp&, from which the proof is
concluded.

There then exists a tangential sp&et a general point dfl. That is, the linear
system of equations:

Z000f(X) + 2001 f(X) + ... +2,0,f(X) =0

will have the rankn —r. The rank cannot get smaller under specializadioé (since a
sub-determinant that is zero cannot become nor)-zdfdhe rank becomes larger then
the intersection of the polar hyperplanes will baeca spac&, with g >r. However, if
the rank remains the same under specialization therspaceM will have a tangent
spaceS at the pointy that will represent a relation-preserving speralon of the
tangential space at the general pdint

The tangential space can be used for the applicadf the criterion of 8§ 39 to
advantage. With the help of this criterion, wevarce.g., the theorem:

If M possesses a tangential spac@tShe point y then y will be a simple point of M

Proof: If one draws a general linear sp&e throughy then it will have only the
point y in common withS . S+ will be the intersection of hyperplanes, and the
tangential spaces to these hyperplaney atill be the hyperplanes themselves; its
intersection will then once more Bg:. The intersection of the tangential hyperplarfes o
the hypersurfaces that contdihwill be the tangential spac® . If one now regards the
determination of the intersection points & and M as a normal problem then the
equations of this normal problem will be the equagi of S and those oM, taken
together. The intersection of the polar hyperpdaoiey relative to all of these equations
will be the intersection of th& andS,~, and therefore only the poiwtitself. Therefore,
the solutiony will have multiplicity one; i.e.y will be a simple intersection point &4
andS,~ . The assertion will follow from this.

One also has the converse of this theorem:
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If y is a simple point of M then M will possess a tangential spage

Proof: First, the theorem is true for hypersurfaces. Nanklyis a simple point of
the hypersurfackl = 0 then the equatidd(y + Az) = 0 will have a simple root = 0 for a
suitablez, so the derivative:

d

d—AH(YﬁLAZ): 2. z0H(y+42
k=0

will be non-zero for! = 0; i.e., the equation of the polar hyperplang: of

> 20, H(Y =0

will not be fulfilled identically inz.

Now, letM be a purely-dimensional manifold, and Igtbe a simple point dil. We
draw a spac&,-; throughy that intersect®! aty only once. Let its other intersection
points withM beys, ...,yy . We draw &,~-1 in S that does not contay, ...,yy. One
will ultimately choose ai%,+- in S, that does not go through If one now links all
of the points oM with all of the points 0fS, then one obtains a projected cdfe
whose dimension equats- 1, from the principle of constant coutt (

K is therefore a hypersurface. If a general SpéntersectK in just as many points
as the connecting space 8&f and S+
has intersection points witM then the
degree oK is equal to the degree bf. If
one chooses these lines especially so that
the go througly and lie inS,+, but not in
Snh+4 , then one will see thatis a simple
point ofK. The tangential space Kfaty
will be a hyperplane through,— whose
intersection withg, is preciseh\g,+ .

If one now rotatesS,,; aroundy
without leaving the spac&,. then the
intersection of all of these spac®s;.; will be just the poiny. Therefore, the tangential
hyperplanes of all of the conds will have only the pointy in common withS,; .
Therefore, the intersection of these tangentialehylanes will be a linear space whose
dimension does not amount to more thawhich was to be proved.

() More precisely: One associates every priot M with all pointsz of the connecting space pfvith
S+= . With this, a correspondence will be defined that deom®s into just as many irreducible pieces as
the manifoldM. From the principle of constant count, the dimensibtine image manifold, and thus, the
totality of all pointsz, will be equal to:

r+(n-r-1)=n-1.

By the way, for a suitable choice of coordinatescitreeK will benothing but the one that was used in §
32 (viz., the representation of manifolds as partig@rsections of cones and monoids).
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8 41. Intersection of manifolds with special hypersurfacesBEZOUT's theorem.

Let C be an irreducible curvé], a general hypersurface of deggg@andH’, a special
one, where we assume thdt does not contain the curve, so it has only finitely ynan
points in common with it. Leg™®, ..., 7 be the intersection points 6fandH. Under
the specializatiord — H', 7%, ..., 7 will go to y®, ..., y" in a relation-preserving
manner, and any intersection pointof C and H' will obtain a uniquely determined
multiplicity under the specialization that we shadll theintersection point multiplicity
of y as the intersection point GfandH'.

The intersection point multiplicity is always positive.

Proof. From the criterion of 8 38, it will suffice for us tehow that the
correspondence between the hypersurfat@esd their intersection pointg with C is
irreducible. That is, however, clear (and was alreadptpdiout in § 34); one then
obtains a general pair of this correspondence when one difavsnost general
hypersurfacéd through a general poidtof C.

In precisely the same way, one proves, more gengthdyonly points with positive
multiplicity will appear in the intersection of a d-dimensional manifdidwith d
hypersurfaces that intersect M in only finitely many points andhemeght of as arising
from the specialization of general hypersurface®ne also calls these multiplicities
intersection point multiplicities.

From this fact, follows a:

Dimension theorem. The intersection of an irreducible d-dimensional manifold M
with a hypersurface Hthat does not contain M will contain only components of
dimension d 4.

Proof. Suppose that the intersectibrhas an irreducible compondbdi of dimension
<d-1. Lety be a point ofD; that does not belong to one of the other irreducible
componentd;, ..., D, of D (e.g., a general point @;). One drawsl — 1 hyperplanes
U,, ..., U, through the poiny that intersecb in only finitely-many points, moreover.
Of these intersection points, now, the pgmhas multiplicity zero. Then, iH is a
general hypersurface, akd, ..., Ug-1 are general hyperplanes then one can perform the
relation-preserving specializatith - H', Ui — U/ in two steps: First, one specializés
- H' such that {4, ..., Ug-1) - (U;, ..., Uy,). Under the first specialization, the
intersection pointg™, ..., 7Y of M, H, Uy, ..., Ug1 go to intersection pointd", ..., &"
of M, H', Uy, ..., Ug—1, and thus, oD, Uy, ..., Ug-1 . On dimensional grounds, whén
has no points in common with the general hypersurfages.., Ug-1, none of these
points will lie onD1. Thus,&, ..., &7 will all lie in the unionD, + ... +D, . That will
remain true, however, when one specialidgs..., Ug1 to U], ..., U, moreover .,

.., &Y will then go to pointy™, ..., y" that lie onD, + ... +D;, and thereforg will not
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appear among them. On the other hand, as we haveasgentersectioty will have a
positive multiplicity. The contradiction will provéat our assumption was false.

The dimension theorem that was just proved is a dpmse of a general theorem on
the intersection of two manifolds of dimensiarends with r + s> n, which is, however,
essentially more difficult to prové)(

We now turn to the case of a curve that intersectsy@ersurface and prove
“BEZOUT's theorem,” as it relates to this case:

The number of intersection points of an irreducible curve C with a gkner
hypersurface H is equal to the producygf the degrees of C and H.

Proof. Consider the irreducible correspondence that assoeatdspoint of C with
all hyperplanesv that go throughy. One will obtain a general pair,(u) of the
correspondence when one either draws the most gengratpigne through a general
point 7 of C or when one starts with a general hyperplarnend chooses any of the
intersection points oft with C for /7. From thefirst way of picturing the general point-
pair (77, u), one will learn that the hyperplanedoes not contain the tangent to the curve
C at the pointy, but has only the poigtin common with it. It will follow that the same
will also be true for the second way of generating a gépeiat-pair, so the algebraic
properties of the general pair will always be the sartehen follows that:A general
hyperplane has only one point in common with the curve tangent to iteattenspoint
with the curve C

Furthermore, by a relation-preserving specialization, gee from the general
hypersurfaceH to a hypersurfacel' that decomposes into mutually independent general
hyperplanes, ..., L, aty. The number of intersection poingof C with H' is obviously
equal tog y The multiplicities of these intersection poimsare, on the one hand,
positive, but on the other hand, from the criterio® 80, also not greater than one, since
otherwise the tangential space of the curve at the pgofot., 8 40) would have at least
one line in common with the polar hyperplanejatlative toH'. If 7 is, perhaps, a point
of L1, then the polar hyperplane gfrelative toH" will also beL;, andL; will have only
one point 7 in common with the tangent of the curve. The mlidtigges of the
intersection pointg will all be equal to one. From the principle of #t@nservation of
count, the number of intersection pointstbfind C will now be also equal tg ynow,
which was to be proved.

Generalization. The intersection of an irreducible manifold M of degseeith a
general hypersurface of degree g has degrge g

Proof. M has the dimensiody, so the intersection witH will have dimensiorl — 1.
If one intersectdVl with d — 1 general hyperplanes then, from 8§ 33, one will obtain an
irreducible curve of degreg From BEZOUT's theorem, this will intersekt in g y

() SeeB. L. v.d. WAERDEN: “Zur algebraischen GeomeXiie’ Math. Ann., Bd. 115, pp. 330.
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points. The intersection & andH will cut the general spac®-4:1 in gy points, which
was to be proved.
Repeated application yields:

The intersection of an irreducible d-dimensional manifold of reduced dggwh k
< d general hypersurfaces of degrees.e, & will have degreg/e, ..., &. In the case
where k = d, it will then consist ¢fey, ..., & points

If one goes from the hypersurfadds, ..., Hi to the special hypersurfacés, , ...,
H, then the intersectioM 0O H; ...H, might decompose into the irreducible

componentd;, ..., I, . None of them will have a dimension that isl< k. We will
assume that they all have precisely the dimengiek.

We would now like to define thenultiplicity or intersection multiplicity of an
irreducible component, that has dimensiod — k. To that end, we add — k general
hyperplanes,, ..., Lqx that cutl, in g, conjugate points. Any of these intersection might
have the multiplicityy, , since they are the intersection pointdvbfHy, ..., Hy, L, ...,
Lax . We call them thentersection multiplicitie®f I, .

The numbeg, is the number of intersection pointsigfwith Ly, ..., Lg«, SO it is the
degree of,. The sums of the multiplicities of all conjugatéensections of,, Ly, ...,
La« is gy iy SO the sum of the multiplicities &, Hy, ..., Hy, La, ..., Lo« Will be equal.
gv U4v. On the other hand, this sum is equay&e; ... & . It will then follow that:

The sum of the degree of the irreducible components of the itiensed! H,;
... H,, multiplied by their multiplicities, is equal to the product of tegrees of M and
H, ...H.:
zgv,uv =ye e ... &.
One can generalize from this theorem in two directiofést, one can carry it over to multiply
projective spaces, as was done in “Zur algebraischem&ee |,” Math. Ann., Bd. 108, pp. 121. Second,

one can also apply it to manifolds of arbitrary dimensiin projectives, (cf., Zur algebraischen Geometrie
XIV, Math. Ann., Bd. 155, pp. 619).

Problem. Show that the multiplicities of the irreducible drgection components that one obtains
when one first intersectd with Hi and then the individual intersection components \Mg”n will be the
same as their multiplicities as components of thergsictionM Hi H;. [The method of proof will be the

same as for the dimension theorem: The specializé@tigrH,) — (Hi , H;) can also be performed in two
steps.]

The connection of these paragraphs with the previous ofidncan be exhibited by
the following theorem:

In the case of two plane curves, the multiplicities for the iatgi@n points that were
defined in§ 17will coincide with the ones that were defined here.
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Proof. First, let one of the two curves be a general cti'ed the degree in question.
From “BEZOUT's theorem” that we proved in these parplgsathe number of
intersection points will then be equal to the produdthefdegree numbers. The sum of
the intersection point multiplicities that was define@® 17 will be, however, equal to the
product of the degrees: These multiplicities must theedogl to one. The resultaR{p,

g) that was defined in § 17 will thus have the following factecomposition with the
exponents one:

(1) R(p. q) = c[](pas”).

If one now goes from the general cuideo a special curvel’ by a relation-preserving
specialization then the factor decomposition (1)1 wemain preserved [cf., the
corresponding consideration in 8§ 38, formulas (8)Y8)]. The multiplicities that are
defined by the relation-preserving specializatiol then agree with the ones that
emerge from the factor decompositiorRgp, g), which was to be proved.

In conclusion, we prove the theorem:

If f and g are forms of equal degree, the secondtoth (but not the first) is zero on
the irreducible manifold M, then the intersectionM with the hypersurface f 8 will
agrees precisely with the intersection of M with g = 0, and also as far as the
multiplicities of the irreducible components arencerned.

Proof. M again has the dimensiain If g is zero orM then one will also havie+ g =
0 an the points o wheref = 0, and conversely. By the definition of muligities of
the irreducible components of the intersectiomMoWwith f = 0, we must next add — 1
general hyperplands, ..., Ls—1 and then produce the hypersurfdeeO by specializing a
general hypersurfacé = 0; the relation-preserving specialization of th&ersection
points will then provide the desired multiplicitie¥Ve now perform the specialization in
two steps: First, we Idt go tof + Ag, whereA is an indeterminate, and then we specialize
A - 0,orA - 1, if we would like to havd + g instead off. As a point set, the
intersection oM with f + Ag = O will again be the same as thatMfwith f = 0. The
intersection points d¥l with Ly, ..., Lg-1, f + Ag = 0 (which will be independent aj will
have certain multiplicities for undetermingdwhich can be determined as exponents in a
certain factor decomposition, and there will themb other functions of besides whole
numbers. These multiplicities cannot change utigeispecializationd - 0 ord - 1,
since they do not depend updat all. The assertion follows from this.



CHAPTER SEVEN

Linear families

8 42. Linear families on an algebraic manifold.

Let M be an irreducible’} algebraic manifold of dimensiothin a spaces, . Let a
linear family of hypersurfaces:

(1) AFo+AtFi+ .. +AF=0 €=0)

be so arranged that no hypersurface of the family contaementire manifoldM. The
hypersurfaces (1) will then cut certain submanifdijsof dimensiond — 1 out ofM.
From 8 41, the irreducible components\pfwill be endowed with certain multiplicities
(viz., intersection multiplicities). If one variek, ..., A then N, will run through a
collection of manifolds that one calldiaear familyof dimension r

The definition above will now be extended to something ncoresenient by adding
an arbitrary fixed (i.e., independent 8f manifold that lies orM and has the same
dimension as it, with arbitrary (positive or negativ@)ltiplicities to the manifold®,, or
also by dropping a fixed componentNfthat is perhaps present.

In order to make that more precise, we define: A sumreducible manifolds of the
same dimension that are endowed with positive or negatiultiplicities is called a
virtual manifold. If the multiplicities are all positive then onelwhave aneffective
manifold Any set of effective manifolds will possess a (pogsibpty) greatest
common submanifoldf the same dimension that will consist of the dueble
components that are common to all of the manifolds enset, each of which will have
the lowest multiplicity with which it enters into yamanifold of the set.

Let A be the largest common submanifold to all of the intgise manifoldsN, that
are cut out of th& by the hypersurfaces (1). If one then $¢fs= A + C, then theC,
will define alinear family with no fixed component-urthermore, iB is an arbitrary,
virtual manifold of dimensiord — 1 in M then the sum8 + C, will define the most
generallinear family with the fixed componerB. With this definition, the components
with negative multiplicities can therefore only be incldide the fixed componeri, but
not in the varying par€, .

Example 1. LetM be a plane, cubic curve with a double point. Let the lsyptces
(1) be the lines through the double point. The manifdNgsconsist of the doubly-
counted double point and the moving po@t . After dropping the doubly-counted
double point, we will obtain a linear family with no ftkeomponent whose elements are
the single points of the curve. The double point appeace &is an element of the family
(corresponding to the double tangents).

() One can also drop the irreducibility condition when exldire concept in a somewhat different
way. Cf., on that, F. Severi, “Un nuovo campo dinébe,” Mem. Reale Accad. d'ltalia, v. 3 (1932).
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Such a linear family of single points is not possibfea double-point-free, plane,
cubic curve. If the hypersurface (1) has degrethen and carriesfi3— 1 intersection
points with the curve then, from § 24, the"Bintersection point will then be determined
uniquely. In this case, the moving p@art of a linear family will then consist of at least
two points.

Example 2. LetM be a quadratic surface & . Let the hypersurfaces (1) be planes
through a lineA that lies on the surface. The manifolds consist of that linéA and
some varying line€, . If M is a cone then all generators of the cone will thmough
C,; If M is not a cone then one of the two families of lioéthe quadriavi will run
throughC, . These two families of lines will then be lineamiaes.

We now drop the assumption that no hypersurface ofahmelyf (1) contains the
manifoldM. Perhaps linearly-independent forms of the family (1) might comtd; we
can assume that they d&ew1, ..., Fr . Any hypersurface (1) will then have precisely the
same intersection witl as the hypersurface:

(2) Ao F0+A1 Fi+ ... +Ar_1 F-1=0,

so the rest of the sum on the left-hand side of (1l)indeed become zero ad (4.
However, the hypersurfaces (2) cut a linear family ofetisionr — 1 out ofM. It
follows from this that:

Theorem 1. A linear family of forms(1) of dimension r in which t linearly-
independent forms contain M will cut a linear family of dimensieri put of M

The dimension of a linear family can be characterized by intrinsicperties of the
family; it thus does not depend upon which hypersurfaces twhedamily.

Namely, letP; be a point oM that is not a basis point for the family of hyperaaes
(1). If one then wishes to look for those manifoldsin the family that include the
points P; then one must substitute the padifitin equation (1). That will yield a linear
equation for the parametets, ..., A;, and thus, a linear sub-family of dimension 1. If
one now chooses a second pditthat is not a basis point for this sub-family and
proceeds in that way up 8 then one will ultimately obtain a sub-family ohansion O,
and thus, a fixed eleme@; of the original family that includes the poiRRg ..., P . It
then follows that:

Theorem 2. The dimension r of a linear family is equal to the number of arbitrary
points through which an element of the family is determined.

Corollary. The dimension of a linear family of point-groups on a curve is at most
equal to the number of variable points in a point-group of the family.

() Cf., the last theorem in § 41.
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In the sequel/\ will denote a sequence of undetermined quanttigs.., A . The
associated elemef, (B + Cx, resp., when the family contains a fixed compori)rwill
be called thgeneral elemendf the linear family.

Theorem 3. A linear family is determined by its general elementst EC,,
independently of the family of forr{is.

Proof. By intersectingVl with a general, linear spa& 4.1, the dimension oM can
be reduced to one, the dimensionBof Cy, to zero, and the dimension of any special
elementB + C, of the family to zero, in any case. However, & thtersection oB + C,
with a general, linea®,-¢+1 is known then the manifol8 + C, itself will also be known.
We can then restrict ourselves completely to treeaaf a curved = 1). With that,
Theorem 3 then comes down to the following one:

Theorem 4. Let a linear family be given on a curve Nis general element B C,,
just like any special elementBC,, will then be a point-group (i.e., a zero-dimensional
manifold) on M. The points of BC, will then emerge from the points oftBC, through
the relation-preserving specializatign - A.

Proof. We set:
Fx=NoFo+ A1 F1+ ... +A\/ F,
Fi=AoFg +A1F + ... +A F,

and understandc to be a general form of the same degreeFasand Fn . The
multiplicities of the points oN, (viz., the intersection d¥1 with F5) will be defined by
the relation-preserving specializatibn- F, ; likewise, the multiplicities of the points of
N, will be defined by the specializatiof — F, . The last specialization can be
performed in two step$ — Fa andF - F,. Thus,Na will go to N, precisely under the
relation-preserving specializatidn — A. That will remain valid when the fixed poims
are dropped, and if new fixed poinBsare added then these fixed points will remain
simply unchanged under the relation-preserving spedimiizaThusB + Cy will go to B
+ C, under the relation-preserving specialization. A.

The linear family whose general elementjswill be denoted by €, |.

Problems. 1. A linear family of point-groups on a curve is eeducible system of zero-dimensional
manifolds, in the sense of § 37. (One employs Theorem thandethod of § 38.)

2. Alinear family of  — 1)-dimensional manifolds oy is an irreducible system, in the sense of §
37. (One uses problem 1.)

Any effective, linear family B + Cx | is connected with an algebraic correspondence
between the parameter valutand the pointg of B + C, . This is seen most easily with
the linear family of the complete intersectiohly of (1) with M; the associated
correspondence is, in fact, defined by the equatioi of

(3) a(n) =0,
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and through the equation of the hypersurface

(4) Ao Fo(n) + A1 Fi(n) + ... + A F(n) = 0.

We now first cease to consider all of the basisggoof the hypersurfaces (1), and
then seek to get all of the remaining pairs of the spoadence from a general palr,(
d. To that end, lef be a general point dfl, and letA” be the general solution of the
linear equation:

(5) AF(E) + A F () +-+ AR () =0.

We now assertAll pairs (A, ;) of the correspondence that is defined(8), (4) for
which not all F(77) = Oare relation-preserving specializations of the general pair &).

Proof. LetFo(7) # 0. If a relatiorH(A", & = 0 is true then we set:

(6) A = AF (O +-+AF (&)
—F(4)
in it; it will then be fulfilled by A, ..., A” identically. From now on, we replace the

general poin¥ of M with a special poing. Finally, we replacel’, ..., A” with Ay, ..., A
. Due to (4), one will have:
AR @)+ +AF () -
_Fo(/7)

05

S0 one can once more subsequently cancel the teiosti(6). It will then follow that
H(A, n) = 0. Thus, 4, n) will be a relation-preserving specialization af,(&).
The general pair A, & defines an irreducible correspondenge Under this

correspondence, a general ponwill correspond to a relatively irreducible marndfaf
points 77 of dimensiond — 1, which, from what was just proved, will incudt least all
points of N = A + C, that are not basis points of the family (1). Tiheducible
components o, that consist of nothing but such basis points bellfixed, and will thus
be components . From what was just said, the remaining irrediegcdomponents of
Na will all be contained in a single, irreducible nifatd of dimensiond — 1, and will thus
be identical with it. ThereforeZs will consist of only a single irreducible compohen
Furthermore, if= is a general point o€, then (\, =) will be a general pair of the
correspondencé that must agree with the pait’( & in all of its algebraic properties.

With that, we have proved:

Theorem 5. The general element\®f a linear family with no fixed component is
irreducible over the field g\). If = is a general point of Cthen the point paif/A, =)
will agree with the paifA’, & in all of its algebraic properties.lt is then completely
irrelevant whether one first chooses a generaltppwf M and draws the most general
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elementC ; of the linear family Ca | through it, or starts with the general elemenof

the linear family and chooses a general p&ioin it.
We now go from the general elemé&y of the linear family to any special element
C, and prove:

Theorem 6. The irreducible correspondenckthat is defined by the general element

(X, & or (A, =) associates any valué with the point G precisely That then means: A
pair (A, 1) is a relation-preserving specialization Af E) if and only if 7 is a point ofC,.

Proof.

1. Lets be a point ofZ, , and thus, a point of an irreducible componghtof C, .
Let 7 be a general point dE;. 7 will then be a relation-preserving specializatiomaf
It will then suffice to prove thatA( 7) is a relation-preserving specialization &f E).

One can obtaim as the intersection point &, and a general linear spaGeqd.1 .

The dimension oM will be reduced by 1 by intersecting it wih4+1 . M will then go to
a curveM, from which a linear family of point-groups will be doy the hypersurfaces
(1). From Theorem 4, any special point-group of this famill emerge from the
general point-group of the family by a relation-preservipgcglization. Thus,A( 7),
and therefore alsol( 1), will be a relation-preserving specialization 4f E).

2. Let (A, n) be a relation-preserving specialization &f E). Thus,= can again be
described as one of the intersection point€ofvith a general linear spa&-4.1 . We
now also draw a linear spac®_,,, throughs that intersectdN, only at finitely many

points; e.g., when we connegtwith n —d + 1 general points of the spaSe. As one
easily sees, one will then have a relation-presersjiggialization:

N\ =, Sa41) - (A1, S ga)-

If =0, ..., =9 are all intersection points @x with S,-¢+1 then one can extend this
relation-preserving specialization to a similar spea@aitin of all intersection points:

A Ser, =0, 29 L, S 7Y L g9,

Thus,=®, ..., =@ will be solutions to a normal problem into whibhandS, 1 enter as
data, and which will also possess only finitely-many swohst under the specialization
A\, Sie1) = (A, S_4.1) Since, in factN, has only finitely-many intersection points with
S 4. The relation-preserving specialization will be deteedifrom the main theorem
of § 38.
We can do this in steps, if we first lAtgo to A and thenS,g+1 to S _,,,. From

Theorem 4 (when applied to the intersection curvel avith S,-4+1), under the first step,
the intersection point d@ and$,4+1 will go to that ofC; andS,4+1 . Under the second
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step, the points of, must remain oi€;, sinceA will no longer vary. Thusg®, ..., 79
will all be points ofC, ; in particular,; will be a point ofC, .

8 43. Linear families and rational maps.

The preeminent importance that linear families possessgebraic geometry is,
above all, based upon the fact that they mediatenedtimaps.

We first consider a one-dimensional famil@,| | with no fixed component that might
be defined by the family of forms:
(1) A Fo+A1F1=0.

If n7is a point ofC, that does not belong to the basis manifédd= F, = O then it will
follow from (1) that:

) _A K@)
()
A rational function on M:
Fo(7)
3 = _o\/J
() o(n) F(0)

will then belong to a linear family, which is natlly defined only where its numerator
and denominator do no both vanish. In particulaat will be the case for any general
point ofM. This rational function will bring about a mapMfonto a straight line. If the
denominator is zero, but not the numerator, thenitlage point will be the imaginary
point of the straight line.

The locus of pointg of M at which the functio®(#) assumes a well-defined value:

A:—i
AO

(which can also be)) will be precisely the manifol@€, . This locus will then be given
by equation (1), in which the points with(7) = F1(#7) = O will once more be omitted
from consideration.

For example, iM is a curve the(n) will be a rational function on the curve that
assumes a well-defined value at every point, withefly-many exceptions. (Indeed, one
can ignore these exceptions by invoking the conokatbranch; the function will assume
a well-defined value on any branch). For a fixedhe function will have finitely-many
A-points, at which it takes on the valde namely, the points of the point-gro@) .
WhenA varies, this point-group will run through the lardamily |Ch |.

We now go on to the general case of a linear fap@h | that is defined by the family
of forms:

(4) AFo+A1F1+ ... +A F =0.
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We next once more omit all points BF at which allF, become zero; in particular, the
fixed components of the linear family that is defined Hywill drop out of the analysis.

If one now poses the condition for a painbf M that the element, should contain
the point; then one will obtain a linear equation fy ..., A :

(5) Ao Fo(n) + A1 Fi(n) + ... + A () = 0.

The coefficients of this linear equation can be regardembardinates of a point in the
spaceS , which will be:

(6) n; =F(n) (G=0,1, ...

Since (6) is especially meaningful whenis a general point of M, and since a
rational map is determined by the map of a general @diM, to begin with, (6) will
define arational map of M into S

In order to determine the map numerically, one must kihewormsFo, ..., F, . For
the geometric determination of the map, however, it sdlffice for one to know the
manifold C, for each value ofl. One can then pose the linear conditionl ifor C, to
contain the pointy for any general poing. However, from § 42, Theorem 3, in order to
establish theC,, it will suffice to know the general eleme@h of the linear family. It
will then follow that:

Two linear families will define the same map if their genemineints & agree with
each other when one omits their fixed components.

The converse of this theorem is also tidfiewo linear families define the same map
of M into S then they will agree with each other, except on their fixed components

Proof. Let the two families be given by:

(7) A Fo+A1Fi+...+A F =0,
(8) A Gy +A1G1+ ...+, G =0.
The corresponding maps:

$ =F(),

¢ =Gi(4),

resp., of a general poigtof M must then coincide; i.e., one must have:

Fo(&) :Fi(é) : ....:F (&) =Go(&) : Gu(§) : ...: G($),

or, what amounts to the same thing:

Fo($) Gi(é) — Go(é) Fi(§) =0 (=1,...r.
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This equation, which is valid for the general pafntmust be true for any point df:
(9) Fo Gj - Go Fj =0 onM.

If one now multiplies equation (7) I8, and similarly multiplies (8) b¥o, then only the
fixed components of the two linear families will changed one will get:

(10) Ao GoFo + A1 GoF1 + ... + A, GoF, =0,
(11) A FoGo+ A FoGr+ ... +A FoG, = 0.

On the basis of (9), (10) and (11) will define precisely shene intersection witM.
Thus, the two linear families will coincide, up to fixechgmonents.

The forms of equal degréeg, ..., F, in (4) were entirely arbitrary, up to the condition
that no linear combinatiofy Fo + A; F1 + ... + A F; should be equal to zero on all Mt
For the map (6), that would means that no linear equatidm s@nstant coefficients
should exist between thg;; in other words, that the image manifold should not be

contained in a proper linear subspaceSof We can then summarize what we have
proved up to now in the theorem:

Any rational map of M into Sor which the image manifold Mioes not lie in a
proper linear subspace of, Svill correspond to a unique linear family on M, and
conversely.

This map (6) does not need to be birational;, indéeadan get mapped to a lower-
dimensional image manifolsl”. If r = O then the map will become trivial: It will mép
to a single poinPy .

If two manifoldsM; andM, are mapped to each other birationally then each &dtion
map ofM; will correspond to a rational map bk, and conversely. Now, since rational
maps are facilitated by linear families, it will follothat:

Any linear family with no fixed components on; Mill be in one-to-one
correspondence with a similar linear family on M

The one-to-one correspondence does not extend to xbéd Gomponents. For
example, ifM; is a cubic curve with a double point, avd is a line onto whiciM; can
be mapped birationally by projecting its points from thelkde point then the double
point itself will correspond to two points dW, . If the double point then enters into a
linear family as a fixed point then one will not know alnpoint ofM, one should make
it correspond to. In order to make the one-to-one foamsition of individual points
possible, one must next decompose the multiple poirdghetr individual branches, and
then consequently speak, not of the pointsgfbut of the branches. Fdrdimensional
manifolds, one can also correspondingly decomposesitigular ¢ — 1)-dimensional
submanifolds into several “sheets.” Therefore, we fivét consider this modification of
the concept of linear family later. For the time lpewe take the manifol¥ to be such
as it is, and we can, as a result, define a birativaatformation only for linear families
without fixed components.
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Problem. 1. IfM; is mapped td/, birationally then every linear family without fixedrmponents on
M, will correspond to a unique family of that kind gh .

2. If the linear family orM, in prob. 1 is cut out by the family of formsA F« , and the map d¥l;
to M; is defined by¢, = ¢(<) then one will obtain the corresponding linear fanoih M; by replacing the
variables in the form. A F, with the formsg, .

3. What linear family mediates the projectiorMbfrom a subspacg.; to a subspac8, of $,?

4. What map of the plane will be mediated by a nebofasections with three basis points? (One
chooses the basis points to be the corners of treioate triangle.)

An elementC, of the linear family (4) will correspond to the intecson ofM “with a
hyperplane whose coordinates dee ..., A. under the map (6); it will then follow from
(5) and (6) that:

(12) ASl ¥ AN+ + A =0.

We would now like to examine the extent to which theespondence between the
points ofC, and the points of the hyperplaestill remains valid when one adds points
for which Fo(77) = Fi(#7) = ... =F(n7) = 0. Such a poing can correspond to several
image pointsy’under the map. We now assert:

If 7 lies on G then at least one of the corresponding pointswill lie on the
hyperplang12). Conversely, if7’lies on the hypersurfadé?2) then s will always lie on
C,.

In order to prove this, we consider the irreducibleespondence between the point
pairs (7, /') of the map, on the one hand, and the hyperplarleat go throug’, on the
other. The equations of the correspondence expressethehat £, /7’) is a point-pair of
the map, and that goes throughy’, which is equation (12). One obtains a general pair
of elements — or even better, a tripe €, 1) — of the correspondence when one starts
with the general pait§ &) of the rational map and draws the most general hypergia
through¢&’; A™ will be defined precisely as in § 42. H,(7) is a point-pair of the map,
and Ais a hyperplane througly’ then @, 7, A) wil be a relation-preserving
specialization of§ &, 1), so (7, A) will be a relation-preserving specialization éf{).
From Theorem 6 (8 42), it will follow thag will be a point ofC, . Conversely, if7 is a
point of C; then ¢, A) will be a relation-preserving specialization gf 4°) that can be
extended to a relation-preserving specializatipn/(, A) of (&, &, A). There will then
be a points’ that is associated witly by the map and lies in the hyperplade
Everything is proved with that.

The theorem that was just proved yields a remarkabl@laor. The pointsy of M
that correspond to a manifold of poims$ that is at least one-dimensional by a rational
map are calledundamental point®f the map. Ifn is a fundamental point then any
hyperplane in the image space will contain at leastasseciated poing’, so 7 will lie
on all of the manifold<C, . Conversely, ifr lies on allC, then any hyperplane in the
image space will contain at least one associated pgirgo the pointg; will define a
manifold in image space of dimension at least one. :Thos fundamental points of a
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rational map are precisely those points of M that are common to all mdsitdl the
linear family that mediates the map.

If M is a curve then it can have no fundamental points wiepoint-group£, have
no common component. In the case of a surface, howehexe can be finitely-many
fundamental points. For example, the quadratic Cremaarssformations that were
treated in 8 25 have three fundamental points.

The principle of constant count is true for rationaps (as it is for all irreducible
correspondences), which reads:

d=d’+e

in this case, wherd andd’are the dimensions & andM’, resp., an@ is the dimension
of that submanifold oM that is mapped to a general pogitof M. One obtains this
submanifold in the following way: One takes a general péit M and looks for those
manifolds of the linear family Ca | that go througké. Let the intersection of these
manifolds beE. E will then consist of a fixed — i.e., independen§ efsubset Ewhose
points are the fundamental points of the map, and a suls#taE includesé and is
irreducible over the field &), whose points possess the common image goinThe
subsetE, can also possibly be absent or be completely orafigrdontained irEs. By
contrast, ifEs containsé thenEs cannot be absent.

Proof. If 7 belongs tcE then allC, that go throughf will also go throughy. These
C, will correspond to the hyperplanes throuffh Thus, all of the hyperplanes that go
through &’ will contain at least one image point of 7. However, that is possible only
when either the image point gf defines at least one curve (i.e., whgis a fundamental
point), or when one of the finitely-many image points/ptoincides withé”. The
conclusion can be inverted word-for-word; thus, will consist of precisely the
fundamental points of the map and the points that Baas their image point. However,
the fundamental points define a fixed, algebraic manii|dand, from § 33, the points
whose image point i&” will define a manifoldE, that is irreducible over the field($).

The dimension o, is the number that was denotededgbove. If it is zero thed =
d’, andE¢ will consist of infinitely many points. If its numbe 5 then we will have aZ,
1)-map ofM ontoM". Finally, if 8= 1 then the map will be (1, 1), and thus birational.

If E£ consists of only one point — thus, if the elemedt=of the linear family that
contain the given general poiéthave only the basis points of the family in commothwi
each other, besides- then the family € | will be calledsimple In the opposite case
and thus, th&, that contain the poinf have points in addition to themselves (not basis
points) in common that define a manifdig — the linear family |Ca | will be called
compositeand indeecdomposed of the system of irreducible manifpkls| whose most
general element is £

It then follows that:A rational map that is mediated by a linear family will be
birational if and only if the family is simple.
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Let it be mentioned that in the case 0— so the manifold&s will be point-groups-
the irreducible systenmHs | will be called amnvolution

Problems 5. An involution can also be defined as an algebratesyof zero-dimensional manifolds
(non-associated point-groups) bhsuch that a general point lgif belongs to precisely one element of the
system.

8 44. The behavior of linear families at the simple pointsf M.
This paragraph is based entirely upon the following:

Theorem 1. A k-fold point of M that is not a fundamental point will correspond to at
most k image points under a rational map of M.

Proof. One draws a general linear sp&e through thek-fold point P. Since the
manifold of fundamental points has a dimensiom,<and sinceP cannot also be a
fundamental point, this manifold will not ent&y4 . The intersection points & with
M will thus not be fundamental points.

Let the intersection points of a gene&l, with M beQ, ..., Qq. They are general
points ofM, so they will correspond to uniquely-determined image pa@jts..., Q;
under the map. The poin@, ..., Qq, Q;, ..., Q; might go toPy, ...,Py, B, ...,P] ina
relation-preserving manner under the specializagn - S.. Since Q,, Q) is a
pair of the map, Ry, P/) will be one, as well( =1, ...,9). P4, ..., Py will be the

intersection points 08,4 with M, when counted as often as their multiplicities would
suggest. SincP is ak-fold point, we can assume tet=P, = ... =P, =P, while all of
the othePw1, ...,Pg# P. If we can still show that all image points®appear amongst
the pointsfF’, ...,R then it will follow that there are at mdssuch image points.

The point-pairsR,, P) are solutions of a normal problem, in the sense of §T3®
equations of this normal problem express the ideas thagaihéP,, P') belongs to the
map and thaP, lies in S.4 . When theS,q is replaced with the gener&. ,, the
problem will have precisely the same solutio®s, (Q,) (v =1, .., g), but the problem
will also have only finitely-many solutions under theesializationS', - S« . The
intersection point®, of S,-¢ with M will then have only finitely-many image point3 .
Therefore, from the main theorem of § 38, the specahla®utions By, P) will be

determined uniquely, up to their sequence. Furthermorepthespondence between the
Si4 and the P, P') will be irreducible. One will then obtain a genepdir of the
correspondence when one starts with a gen&aR( of the map and draws the most
generalS,4 throughR. Once more, from the main theorem on multiplisitige will then
happen that any paiP( P') that fulfills the equations of the normal problemlappear
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at least once in the sequené&g, (P/). That will be true, in particular, wheéhis already
thek-fold point that is denoted By andP is its image point. Thus, B will equalP'.

We still have to show that is one of the numbers 1, 2, .h, and not one of the
numberk + 1, ...,g. If the latter were the case thBhwould be the image point of one
of the pointPy.4, ..., Py at whichS,4 cuts then manifold/l, outside oP. However, that
would not be possible when those points Mfwhose image point i$' define a
submanifold of dimension d, and such a submanifold would no longer enter into a
general spac§,-4 that goes through outside ofP.

A special case of Theorem 1 #Assimple point of M that is not a fundamental point of
the map will have precisely one image point.

This special case rests upon:

Theorem 2. Those manifolds of an effective linear family of dimension r on M that
include a given simple point P of M will define a linear sub-fanfilgimension -1 as
long as P does not belong to all manifolds of the family.

Proof. The linear family, whose fixed component we can omédiates a rational
map ofM into S,. From Theorem 1, the poiRtwill correspond to a single image point
P' as long a® is not a fundamental point. From § 43, the elementhefinear family
will correspond to hyperplanes #. In particular, the elements that contain the pBin
will correspond to hyperplanes through However, the phrase “goes through
implies a linear condition on the parametdss ..., A of the family. With that, the
assertion is already proved.

Remark. The assumption tha® is a simple point is essential, as the following
example shows: IP is ak-fold point then one can likewise prove that the eledmehthe
family that go throughP will define at mostk linear
sub-families of dimension— 1. P

Example. Let M be a fourth-order plane curve
with a cuspD. The lines that go throudb will cut
out a linear family of point pairs outside of the
doubly-counted pinD. If one fixes a poinP that is
different fromD then one will obtain a single element
of the family, which will contairP. However, if one
fixes D itself then one will obtain two different point-
pairs that correspond to the two tangents at the point D
D.

It follows from ak-fold application of Theorem 2 that:

If one fixes any simple points,P.., P« of M then those elements of an effective linear
family on M that contains these points will define a linear sub-fanfilgimension f
with:

r—k<r’sr.
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(In the case k r, the sub-family can also be empty.)
It follows further from this that:

Theorem 3. If one fixes any irreducibléd — 1)-dimensional manifoldsiF..., Fx on
M that do not consist of only multiple points of M then the elementireaa family on
M that contain thesef ..., Fx with arbitrarily-given multiplicities § ..., s« will define a
linear sub-family (which can also be empty).

Proof, by complete induction on+ s, + ... +s.. The cass; = ... =5 = 0 is trivial,
let s > 0. IfF; is contained in all elements of the family as a ponent then we will
omit the fixed component, and will obtain a family bétsame dimensiomand look for
the elements in it that contaify, F», ..., Fx with the multiplicitiess,— 1, 5, ..., . From
the induction assumption, they will define a linear subiia We can now once more
add the fixed componefy to them.

If F1 is not a fixed component of the family then we wilbose a poinP of F; that is
either the basis point of the family or a multiplenppaf M. Those elements of the family
that contain the poirf® will define a sub-family of dimension— 1. From the induction
assumption, the elements of this sub-family that e¢orsieF; + ... +s¢ Fx as a component
will again define a linear sub-family. With that, thgsertion is also proved in this case.

Theorem 3 is also valid for linear families of virtuahnifolds when they can be
made effective by the addition of fixed components, whieegiven multiplicities, ...,
S are correspondingly raised. In particular, it follawat:

Theorem 4. The effective manifolds in a linear family of virtual manifoldsen they
are present, will define a linear sub-family, assuming that none ofxx® ¢omponents
of negative multiplicity consist of nothing but multiple points.

Under the same assumption, it also follows that:

If r + 1linearly-independent elements of an r-dimensional linear family aretef#e
then all of the elements of the family will be effective.

From all of these theorems, one sees that lineaitiégnexhibit a much more sensible
behavior at the simple points of an algebraic manifiadoh they do at the multiple points.
It is therefore of great advantage in the study of lin@anilfes to convert algebraic
manifolds into ones without multiple points by a biratbtransformation, when that is
possible. In the next paragraphs, we would like to do thisaat in the case of curves.

8 45. Transformation of curves into ones without multiple pints.
Places and divisors.

One understands tlaegreeof a linear family of point-groups on a curve to mea t
number of points that each point-group of the family cieaf. Ifmis the degree, and
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is the dimension of the family then, from § 42, Tleor3 (corollary), one will have the
inequality:
1) r<m.

The composite families (in the sense of § 43) obey am sharper inequality.
Namely, if one fixes a general point of the compositaily then, by the definition of the
composite familyk points will simultaneously remain fixed, wheke= 2. If one then
fixes a second, .1 general point (cf., § 42, Theorem 2) tHepoints will remain fixed
in each case. One will then have the inequality:

rk<m,
from which, since = 2, it will follow that:
2r<m.

Although we shall not need it in what follows, we @asert the remark here that the
equality sign in (1) can be true only when the curve camaégped birationally onto a
line. Namely, ifr = m, and one lowers the dimension of the familynby 1, when one
fixes m — 1 general points in sequence, using the process thatppigedan 8§ 42 in the
proof of Theorem 2, then one will obtain a linear fanufydimension 1 with precisely
one variable point. This linear family will map the ceianto a line birationally.

Any algebraic curve can be converted into a plane clyea birational
transformation— namely, by projection (cf., say, 8 30). If we pose the prabbf
transforming all algebraic curves into ones withouttipld points birationally then we
can restrict ourselves to plane curves.

Letl be a plane curve of degree The curves of degree— 2 cut out a linear family
of dimension:

= (n=2)(n+1)
2
and degree:
m=(n-2)n

n
fromrl. There are theEZJ =r + 1 linearly-independent curves of this degree, and, from

BEZOUT, each of them will interse€t in (n — 2) n points. For this linear family, one
then has:
(2) Z>m.

It will then follow from this that the family canndse composite. It will then map
birationally onto an image curvyg in the spac& . The point-groups of the family will
be cut out of the hyperplanes®falong this curve.

Now, if the curvel’; has a multiple poinP then we will consider the sub-family of
dimensionr — 1 that is cut out of the hyperplanes that corfeainVe then omit the fixed
point P from the point-groups of the sub-family as often asppears in these point-
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groups. Sinc® should be a multiple point &, it will appear at least twice in the all of
the point-groups that contain it. The degree of the famill then diminish by at least
two by the omission of the fixed points. The inequaliy Will be preserved under the
transition to the sub-family, as long as the leftdhaide is reduced by two and the right-
hand side by at least two.

We now repeat the same process that always redunes, as long as it is possible;
i.e., as long as the image curve that is each timeateedby linear family still has
multiple points. That process must terminate, smogill always become smaller, and
the valuem = 0 cannot be attained; fon = O, it would follow from (2) that > 0, in
contradiction to generally-valid inequality (1). Now, whine process terminates, we
will have a linear family that maps birationally into an image curve in a projective
space that has no multiple points.

With that, it is proved that:

Any algebraic curve can be converted into a curve with no multiple points by
birational transformation.

One calls a curvé' with no multiple points onto which is mapped birationally a
singularity-free modeffor the curvel. Naturally, two such modelf’, " are also
mapped birationally to each other. The latter map isn(8c44, Theorem 1) even one-to-
one, without exception Any point of " corresponds to a single point 6f, and
conversely. The map défto I'" is, by contrast, single-valued without exception only in
the inverse direction. Any point df will correspond to a single point éf, but a
multiple point ofl” can correspond to several points af One understands the phrase
place (Stelle) on the linE to mean a poinP of I', together with an image poifRt’ of P
on a fixed singularity-free modél. Which model (i.e.[" or ") one then bases things
upon will be irrelevant, since the pointsiéfwill be in one-to-one correspondence with
those ofl”. For a simple point off, the given of the poin® by itself will suffice to
determine the place, since a simple p&mf " will have only one image poif’onl".

By contrast, ak-fold point of  can correspond to several (and indeed, from § 44,
Theorem 1, at mo#) places.

The concept of place is (in contrast to that of pdanationally invariant. If ' and
I, are birationally mapped to each other then every pddde will be in one-to-one
correspondence with a placelaf. One and the same singularity-free mddetan then
be employed for both andl";. Any place ori” will correspond to a point df', and any
point of " will again correspond to a place bq.

From now on, in the theory of linear families onadgebraic curve, we will no longer
base things upon thgointsof I', but only upon itplaces. In that way, the theory will
take on an invariant character under birational transfoomms (). From now on, an
element of a linear family will not be a group of psimtith multiplicities, as before, but
a group of places with multiplicities. One also calsh groups of places with arbitrary

() One will obtain an equivalent, likewise invariandhy when one considers only linear families on
the singularity-free moddl'; therefore, for many purposes, it will be more advgedas to be able to deal
with an arbitrary curv€. Instead of points, one must then consider just places.
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(positive or negative) multiplicitiedivisors. If all multiplicities are positive or zero then
one will have areffective(or completg divisor (4).

In order to ascertain the multiplicities of a dosighat enters into a linear family, one
proceeds as follows: One goes from the general point-gZauim the sense that we have
been using up to now (thus, with the omission of all fixemhtgp. The points o€, are
all general points off, so they are not multiple points; they will themefeorrespond to
uniquely-determined places. From § 42, any point-g@upf the family will arise from
the general point-grou@, by a relation-preserving specialization. If one caromisthis
relation-preserving specialization, not just for thenpoofl™, but simultaneously for the
points ofl “that they correspond to, as well, then one will abtauniquely-determined
group of points onl with images onl’, hence, a uniquely-defined divisor that
corresponds to the point-grop that we have been considering. One now adds an
arbitrary fixed divisor to the divisors thus obtained, amgstobtains the most general
linear family of divisoronT .

The concept of place that was defined here has prediselysame scope as the
concept of the branches of a plane curve that wasdunted in 8 20 in a completely
different way. In fact, one has the theorem:

The branches of a plane, algebraic cuivare in one-to-one correspondence with
the places offi.

Proof. Letl “be a singularity-free model 6f and let; be a branch df. The branch
was defined by series development of a general gaiht :

&= tartar o
&=by+br+br’ +-
52 :CO+ClZ'+CZZ'2+---

The general poin€ corresponds to a poidt of ' “whose homogeneous coordinates are
entire, rational functions ofy, ¢, &, so they are once more power serieq.inAfter
bringing out a common power @fas a factor, they will read like:

& =r"@,+a,r+d,r°+ ) (v=0,1,...n).

The coordinate&, when one also drops the factdt will fulfill the equations of the
curvel . However, this will remain correct when one sets0, and thus specializes the

() The word “divisor” is taken from the DEDEKIND-WEBE&Rithmetic theory of algebraic functions.
In that theory, which agrees completely with the geaméteory in its results, one calls the entities tha
were always called theum(difference resp.) of point-groups or divisors here gireduct(quotient resp.).
One thus also explains the word “divisor.” See the toktof BLISS,Algebraic Function®r the work of
M. DEURING on algebraic functions that will appear saonthis collection. The original paper of
DEDEKIND and WEBER is also found in J. reine angew. &2 (1882), 181-290.
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point £ to the pointP’ with the coordinates,, (v =0, 1, ...,n). Likewise, fort =0, ¢
will go to a well-defined poinP, which is the starting point of the brangh Under the

birational map of ontol’, P’will be an image point d?; the equations of map that are
true for ¢ ¢’) will also remain true for = 0 then. The pairR, P') will thus define a
place orl. Therefore, any branghof I will correspond to a uniquely-determined place.

We still have to prove that one will obtaatl places ol in this way, and indeed,
each of them precisely once. Therefore, RRtH') be a well-defined place dn. We
would now like to také "to a plane curv€; by projection, and indeed in such a way that
the simple poinP’will again correspond to a simple poft of I'; under the projection.
To that end, we draw a subsp&e throughP’that intersects the cur¥e only simply
atP’ InS,1, we draw arf,-; throughP’that contains none of the intersection points of
S-1 with the curve, except fd?”. Finally, inS,-», we choose af,-; that does not go
throughP’, and project the curve’ from S,z onto an$;, with which, a curvd ; will
arise. One now sees very easily that the projeatitirmediate a birational map dt’
ontol;, and that the poirf®” will therefore go to a simple poify of I'; . This simple
point P; will carry a single branchy of I'; . Just as every branglof ' corresponds to a

point of "/, the branch; of I'1 will also correspond to a point 6f. It can only be the

point P, if P’is the single point df “that goes t®, under projection.
Now, the plane curves andl"; are, however, also mapped to each other birationally
by means of ’; therefore, any branch of I'; will correspond to precisely one branch

of I (cf., 8 20). Thus, the poift’of I' “will correspond to a single branglof I', which
we wished to prove.

The geometrically-defined concept of place is then Bl@téor taking over the role
that was played by the concept of branch (which is baseskties developments), up to
now. The advantage is obvious. In place of an ir&igéries, a rational map appears that
is representable by closed formulas. Places are alspletely defined by themselves
for curves inn-dimensional space. Finally, the restrictions o& tharacteristic of the
ground field that are necessary for the PUISEUX sexfescompletely unneeded here,
although we shall not go further into that topic.

The “intersection multiplicity of a branch with a cutwbat was explained previously (8 20) can also
be redefined with the help of the concept of a place,canried over tm dimensions. Lef be a curve in
S, and letH be a hypersurface that cuts the curvB.afThe pointP can correspond to several places; we
choose one of them that is defined by an image [tioh a singularity-free modé&l’. We now embedH
in the linear family of all hypersurfaces of equal degis®se general element is, s&y, This linear
family cuts a linear family €, | out ofl” whose image ofn “will again be a linear familyg, | . A certain

number of points o€, will go to the point under the specializatidd™ - H; (by definition) this number
will be the intersection multiplicity off andl™ at the poinf. However, it will also take a certain number

of points of C; to P this number shall be called tivgersection multiplicityof H with ™ at the place(P,

P'). Obviously, the total intersection multiplicity bf andl™ at the poin® will be equal to the sum of the
intersection multiplicities ol andl" at the various places bfthat belong td.
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The concepts of place and divisiannotbe carried over to @dimensional manifold
M with no further restrictions. Namely, first of atl,is still questionable whether every
manifold possesses a singularity-free image dor 2 (). However, secondly, two
different singularity-free models are in no way mappabledch other in a one-to-one
manner, so the meaning of the concepts of place anddivisuld depend upon which
model one employed.

From now on, we will therefore employ the concepts of place anaddiaisd > 1
only in the case of a singularity-free manifold &hd we will then understandptaceto
be a point oM, while adivisor will be a virtual f — 1)-dimensional submanifold &A.
Ford =1, soM is then a singularity-free curve, these concepts gotovhe previously-
defined ones, whil&/ itself can be chosen to be a singularity-free motiél.o

8 46. Equivalence of divisors. Divisor classes. Complete fdies.

Theorem 1. If two linear families on M have an elementi® common then both of
them will be contained in an enveloping linear family.

Proof. One family might be given by:

(1) A Fo+A1Fi+...+AF =0,
and the other, by:
(2) /JQGQ+/J]_G]_+...+,UrGr:0.

The fixed virtual manifold#A andB will be added to the complete intersectidnsand
M, of (1) [(2), resp.] witiM, and will thus contain the elements:

D,=A+L,,
E,=B+N,
of the two linear families.
The two families of common manifold might be determined by, say, andGg .
We then define the family of forms:

(3) AMFoGy+Gy (A Fi+ ... + A F) +Fo (A1 Gy + ... + A5 Go),

intersect it withM, and add the fixed manifoldl + B — Dg to the intersection manifolds.
The family of forms (3) includes a sub-family:

Go (ﬂo F0+A1 Fi+ ... +Ar Fr)

that will cut out precisely the linear familDjy | = |A + La | by the addition oA + B —
Do, and likewise includes a sub-family:

() For a proof in the cask= 2, see R. J. WALKER: Ann. of MatB6 (1935), 336-365.
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Fo (Ao Fo + Ar+1 G+ ... +Ar+5 Gs)

that will yield the linear family Ea | = |[B + Na | by the addition oA + B—Dy . Theorem
1 is proved with that.

The theorem is certainly true for manifolfswith arbitrary singularities; however,
one first learns its true meaning in its applicationingdarity-free manifolds. Namely,
it can happen with manifolds with multiple points that lihear families Pa | and [Ea |
consist of nothing but effective manifolds, while theylude enveloping linear families
of fixed components with multiplicities)(

However, ifM is free of multiple points then, from § 44, Theoremhg éffective
manifolds that are contained in the enveloping family défine a linear sub-family that
envelops the two given linear families. What followant this is the:

Corollary to Theorem 1. If two effective linear families on a singularity-free
manifold have an elementon common then both of them will be contained in an
effective, linear family.

Two divisorsC and D on a singularity-freed-dimensional manifoldM are called
equivalentwhen there is a linear family that conta@sandD as elements. One then
writes:

C~D.

Likewise, two divisors on an algebraic curve are cadlqdivalentwhen there is a
linear family of divisors that contains both of theiBy going to a singularity-free model
of the curve, this equivalence will reduce to the former. oné one recalls the
interpretation of the one-dimensional linear familieat we gave in 8§ 43 then one can
also say:Two divisors on an algebraic curve are equivalent when their differenc
consists of the zero loci and poles of a rational function on the cuhexewthe zero loci
are understood to have positive multiplicities and the poles, negativiplnities.

The concept of equivalence is obviously reflexive and symemeHowever, from
Theorem 1, it is also transitive: Frda D andD ~ E, it will follow that C ~E. One can
then combine all of the divisors that are equivalent drgisnto aclass of divisors.

FromC ~ D, it will obviously follow thatC + E ~D + E. One can thus define the
sum of two divisor classds/ choosing a divisor from each class and adding théhe
class of the sun€ + E is independent of the choice of divis&@@sandE. The divisor
classes define an Abelian group under addition.

We now consider theffectiveor complete divisors that are obtained in a classe O
can easily show that the dimension of a linear fawilgffective divisors that contains a

() Example. Let M be a fourth-order cone with a double libehat has separate tangent planes that
intersect the curve in the lindsandB, outside oD. The planes through cut out a linear family of line-
triples outside o\, and similarly, for the planes throu@gh These two linear families have the triple 3
(viz., the triply-counted lindd) in common. (3) is the family of quadratic cones tigtoA, B, D; its
intersection withM, when augmented by A— B — 3D, will define a linear family of virtual curves from
four lines of positive multiplicity and a lin@ with multiplicity — 1.
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given divisorD is restricted ). We will need this theorem as a tool only for theecaf a
curve; however, in that case it will follow immedigt from the inequality (1), 8§ 45. If
one now considers a linear family of maximal dimenglmat contains a given effective
divisor D then, on the basis of Theorem 1, this family will dopeall of the effective
divisors that are equivalent @, otherwise, in fact, from Theorem 1, one would be able
to define a more-enveloping linear family. Such a maxilingar family is called a
complete family. It then consists of all effective divisors of a giveimisor class. Its
dimension is called thdimensionof the class?. However, it can also happen that a
class contains no effective divisors at all; in tbase, one will set the dimension of the
class equal to — 1.

The complete family that is determined by the effectivisorD will also be denoted
by |D |.

One understands thhemainderof a divisorE relative to a complete familyD | to
mean the complete family of all complete divisoratthre equivalent t® —E, if there
are any. IfF is such a divisor then:

D~E+F.

One can therefore also define the remaindé&t i&lative to D | to be the totality of those
complete divisor$ that, together witlie, make up a divisor of the complete family.

From the first definition, it will follow thaequivalent divisors will possess the same
remainder relative to a complete famiji |.

Problems. 1. Carry out the induction proof that was suggested indo® ¢) on the previous page.

2. Two point-groupsy, ..., Py andQy, ..., Q, on a cubic curve with no double points will be
equivalent if and only iy = h and the sum of the poini in the sense of § 24, is equal to the sum of the
pointsQ.

3. Two divisors of the same degree are always equivalerd line, and therefore also on any
birational image of a line. The dimension of a complateily is therefore equal to the degree of a divisor
of the complete family, assuming that iig.

8 47. BERTINI's theorems.

BERTINI's first theorem relates to linear familie$ point-groups on an algebraic
curve and states:

Theorem 1. The general point-groupCa | of a linear family with no fixed points
consists of nothing but simply-counted points.

Proof. The point-group€a + A will be cut out by the hypersurface:

() The theorem will follow, e.g., from that fact thaettotality of alld-dimensional manifolds of given
degree orM is an algebraic system of finite dimension, in theseeof § 37. However, it can also be
proved by complete induction @hwhen one cutd with a general hyperplane.

() In the arithmetic theory, one prefers to understaaditmension of a family to mean the number of
linearly-independent elements of the family; thus, eses the number+ 1. All dimension numbers will
thus be increased by 1 when one goes to the arithmebigythe
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(1) NoFo+ N1 Fi+...+A\/F =0,

where/\4, ..., /\; are indeterminates. The points@f are algebraic functions of these
indeterminates. Ifis such a point the&dwill be a general point d#l, and one will have:

(2) No Fo(qz) + A1 F]_(qz) + ...+ /A, Fr(qz) =0.

If an algebraic function is equal to the constant zkem its derivatives will also be zero;
one can thus differentiate (2) with respecf\fo

(3) F(O + TUNDFAO +ADF(O -+ A OF () o= 0,

K 6/\J.

If one now assumes thaft is a multiple intersection point of the curké with the
hypersurface (1) then, from 8§ 40, tangents to theecat the poin€ must lie in the polar
hyperplane to the hypersurface (1). However, thetp

05, & 0§,
oA, ON, TN,

J

will always lie on a curve tangert)( One will then have:

0¢,

4) Z{AOGKFO(E)+/\16kFl(f)+...+/\rak|:r(<z)} " - 0.
It follows from (3) and (4) that:
Fi()=0 (=0, 1, ..0):

thus, { will be a basis point of the family (1), in contrettbn to the assumption thdt
should be a point of the point-gro@a, which consists of nothing but variable points.
It follows almost immediately from Theorem 1 that:

Theorem la. The general element Cof a linear family of effectivdd — 1)-
dimensional manifolds with no fixed components ¢&sss no multiply-counted
component.

One then comes back to Theorem 1 by intersectitigargeneral linear spa&s_g+1.

() If the hypersurfacé= 0 contains the curve then it will follow froft¥) = 0 by differentiation that:

of 0g, of o0& of & _
0&, O\, 9, AN, & on,



8 47. BERTINI's theorems. 199

However, BERTINI's second theorem says a little enaramely, that the general
elementC, will possess no multiple points at all, besides tasidpoints of the family
and the multiple points of the carrier maniféd | can prove the theorem here only in
the following, somewhat specialized, form:

Theorem 2. The general hypersurface of a linear family:
(5) NoFo+ N1 Fi+...+A/F =0

cuts a manifold ¢ out of M that possesses no multiple points outside of the basis points
of the family(5) and the multiple points of M

Proof. We first return to the case of an arbitrary, linéamily in the case of a
bundle:
(6) ANFo+F=0 E=N1Fi+ ... +A\F),

when we append the quantitids, ..., /A of the basis field in (5), which are then treated
as constants. Once the assertion has been prowvéidefdundle (6), it will then follow
that any multiple poinP of Cx that is not a multiple point &l will necessarily be a basis
point of the bundle (6), and will thus satisfy the equralEo(P) = 0. In precisely the same
way, it will follow that Fy(P) = 0, ..., F/(P) = 0, soP will also be a basis point of the
family (5).

It will then suffice to consider the case of a then Call the general hypersurface of
the bundleF,; its intersection wititM will be C5 . Now, letP be a multiple point o€x
that is not the basis point of the bundle. The (&) is defined to be the general pair
of an irreducible correspondence. Under this correspoagdéme general point of the
parameter lines of the bundle will correspond to-dimensional manifold of points’
that are relation-preserving specialization®?pfind thus multiple points &, . When
one cuts this manifold with a linear spa8ge,, one can reduce its dimensibnto O,
without the property of the poini’that they are double points GA being thereby lost.
In the principle of constant count:

a+b=c+d

one must now sed=1,b=0. Ifone hac =0,d=1
then a pointP’ of the image manifold would correspond
to all of theoo! pointsA of the parameter line, contrary to
assumption. All that remains is the possibility tbat 1,

d = 0. The image manifold of the correspondence will
then be a curve.

The hypersurfaces of the bundle cut out a linear
family of points groups froni’, and indeed the general
hypersurface=, will cut out the pointP, among others.
From Theorem 1P will be a simple intersection point of
Fa andl". The proof of Theorem 1 teaches us that, in

addition, the tangential spafe1 of Fy does not contain the tangentd cdit P.
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If P is now a simple point d¥1 thenM will possess a tangential spa&eat P (cf., §
40). The tangent tb will lie in S . SinceS,-1 does not contain this tangef,; cannot
containg; , either; the intersection &1 and&; will then be anS;.; . However, that
means that the intersection manif@gd of FA andM will possess a tangential spa&e;
at P, soP will be a simple point o€x, which contradicts the assumption. Thereféte,
cannot be a simple point bf.

The following two theorems might be proved here fordmmilies of curves on an
algebraic surfac#, although they can be extended to linear familielgl@f on My with
no trouble ¥). The proofs go back to ENRIQUES.

One understands th#egreeof a linear family of curves to mean the number of
intersection points of two general curves of the fatdgides the basis points.

One understands laundle of curve®n M to mean an irreducible one-dimensional
system of curves oNl that sends precisely one curve through any general pbt o
The concept of an irreducible system of curves is thutaiega as in 8 37. If one is
dealing 2vvith a one-dimensional linear family, in paracuthen one will speak oflmear
bundle().

Theorem 3. A linear family| Cp | of degree zero with no fixed components is
composed of a bundle whose general curves are absolutely irreducible.

Proof. The curves of the-dimensional linear family €a | that go through a general
point P of M will define a linear sub-family of dimension- 1. If one now associates the
general pointP with a general element-pat, C’ of this sub-family then an irreducible
correspondence between the poiRtand the curve-pair€, C’ will be defined by the
general tripleP, C, C". In the principle of constant count:

a+b=c+d,

one must sed =2 andb = 2(r — 1). Now, if one had = 0 then one would hawe= 2r;
i.e., the pair C, C') would be a general element-pair of the family. Tisatany two
general curve€, C’of | Cx | would have a (general) poiatof the surface in common, in
contradiction to the assumption of degree zero. Téhes]; i.e., if two curveL, C’are
drawn through a general point bf then they will have, not just one, but at least
points in common. (Naturally, more tha is not possible; thusl = 1.)

This will remain true when one choos€sto be a general curve throudh but
choose<C’to be a particular one. The common componer@ ahdC’ might define a
curve K. It will be composed of irreducible components of fixed curveC’, so it
cannot depend on the (undetermined) parametetsapfall. We then see thall curves
C of the family Cx | that go through P will have a fixed curve K in common that depends
upon only P.

Now, if P”is another point oK (but not a basis point of the famil\C}, |) then the
curves of [Ca | that go througP’will once more define a linear family of dimensior

() SeeB. L. v. d. WAERDEN, “Zur algebraischen GeoneeXj’ Math. Ann.113(1937), pp. 711.
(®) There are also nonlinear bundles; e.g., the sysfeafl generators of a cubic cone with no double
points. However, on many surfaces — e.g., planesbuitlles will be linear.
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1 that will envelop the previous one, so it will be ideaitio it. The curves of the family
|Ca| that go through any point of K will thus again have the curve K in common

The curveK might decompose into absolutely irreducible compon&aisKy, ...
None of the componenk§, will stay fixed wherP is varied, since otherwise all curves of
the family |Ca | would have these fixed components in common. The intddugystem
|Kv], whose general elementikig will then have a dimension of at least 1. We wdildel
to show that Ky | is a bundle.

We exhibit an irreducible correspondence between theeaksnof the systemH, |
and the points oM. One will obtain the general paiKy P,) of this correspondence
when one chooses a general p&ipon the curveK, . In the principle of constant count:

a+b=c+d
one will have: a=1, b=1, so: a+b=2
but one will also have: c<2,d=0, so: c+d<2,
and therefore: at+tb=c+d=2,a=1,c=2.

The system |K, | is therefore one-dimensional, and the image manifdldhe
correspondence is the entire surféte It follows that at least one cunk of | Ky | will

go through a general poiit of M, at least one curv, of | K, |, etc., and in allh
different curvesK| . All of these curves will be general elements ofrthgstems K, |.

From what was said in the third paragraph of the proof, fathe curvesC of the
family | Ca | that go througl® must contain alh curvesK|. That is, at leadt different

components of any curv@ will go through the poinP.

However, we saw in § 42 that one will arrive at th@esahing whether one draws the
most general curv€ through a general poift of M or one first chooses a general curve
C of | Ca | and then a general poiatof a component of. If one does the former then,
from the foregoingP will be at least ah-fold point ofC; however, if one does the latter
thenP will obviously be a simple point &. Thereforen=1. That is, there will only be
a single system K, |, and only one curve in it will go through the general {p&in
Therefore, Ky | will be a bundle. Furthermore: If one chooses aiggmpointP on any
irreducible component of the general cu@ethen it will always lie on a curv&| that

is contained irCy ; therefore, any irreducible component@fwill be one of the curves
K, of the systemK, |. Thatis, Ca | will be composed of the bundI& |.

Theorem 4. A linear family| Ca | with no fixed components whose general curye C
is absolutely irreducible will have degree z€emd, as a result of Theorem 3, it will be
composed of a bundle).

Proof. LetC; andC; be two general curves of the familg/ |. If C; andC; have an
intersection poinP’besides the basis points of the family then this pg@inwill never be
a double point of the surface or a double poin€pf C; will then contain only finitely
many such double points, and the generally-chosen «ytbat is independent df;
will go through none of these finitely-many points, @sgl as they are not basis points.
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C: andC; define a bundle in the familyd, |, and sinc&; andC, go throughP’, all
curves of the bundle will go throud®. Like any linear bundle,Q, | will have degree
zero, and from Theorem 1 it will therefore be complosea bundle K | whose general
curveK is absolutely irreducible. The general cu@egoes throughr’, so at least one
irreducible componerkK of C; must go througl?”. However, if a general curve of the
system K | goes through poiR’ then all curves of the systerK || will go throughP”.

In particular, all irreducible components®©f will go throughP’. By assumption, at least
two such components exigt; will therefore be a multiple point &, . The property of a
point that that it is a multiple point will be presedvunder the specializatioh - O.
Therefore,P” will be a multiple point ofC;, as well, in contradiction to the initial
statements. Therefore, the pdititcannot exist.

When taken together, Theorems 3 and 4 will give an exkauanswer to the
guestion: What is the nature of a linear family whose iggredement is irreducible?
Namely, such a family will either have a fixed compainer it will be composed of a
(linear or nonlinear) bundle.

An immediate consequence of Theorem 4 is the followiegrdm:The intersection
of an absolutely irreducible surface with a general hyperplane is an absolutely
irreducible curve. The hyperplanes will then cut a linear family outle#f surface whose
degree is positive (namely, equal to the degree of thacg)rftherefore, a general curve
of the family cannot be reducible.

We will return to linear families of algebraic cusvan the next chapter (8 49-51). For the detailed
theory of linear families of curves on algebraic swrfove refer to the report of ZARISKA&lgebraic
SurfacesErgebn. Math., Bd. 3, Heft 5, as well as the liteatbat is cited there.



CHAPTER EIGHT

NOETHER'’s fundamental theorem and its consequences.

8 48. NOETHER'’s fundamental theorem.

Let f(x) andg(x) be two relatively prime forms in the indeterminakgsxi, X2 . In
order for there to exist an identity of the form:

(1) F =Af+Bg

for another fornt(x), whereA andB are again forms, it is, in any case, necessary that al
intersection points of the curvéds= 0 andg = 0 must also lie on the curye = 0.
However, as we will see, that condition will be fauént only in the case where all
intersections of = 0 andg = 0 have multiplicity one. Further conditions mustduided

for multiple intersection points.

The celebrated “Fundamental theorem of NOETHER,” Wwhias first published by
MAX NOETHER in Math. Annalen, Bd. 6, gives necessary suificient conditions for
the identity (1) to exist.

We will call all theorems that give necessary andigaht conditions for (1)
“NOETHER theorems,” in the broader sense.

According to P. DUBREIL, all of these theorems tenderived from the following
lemma:

VAN DER WOUDE'’s lemma. Suppose that the form F contains the texfn and

let:
(2) R=Uf +Vg

be the resultant of f and g by ¢cf., 8 16). (1)will be true if and only if the remainder T
of VF under division by f (both of which are considered to be polynomiats) irs
divisible by R.

Proof. Dividing VF byf yields:

(3) VE=Qf +T.
It follows from (2) and (3) that:

RF =UFf +VFg
=UFf+(Qf+T)g
=UF+Qg)f+Tg

or
(4) RF =Sf+Tg
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Now, if T is divisible byR thenSfwill also be divisible byR, so, sincd contains no
factor that depends upon jugtandx;, Swill be divisible byR. One can then candglin
(4) and obtain (1).

Conversely, if (1) is true then one can always rephaandB in (1) with:

Ar=A+Wg B, =B —Wf.

If one choose¥V especially such thd&; has a degree & in Xy (division with remainder
of B byf) then the representation:

F=Af +Blg

will be single-valued }j. If one multiples this single-valued representationRogind
compares with (4), in whicl; will have degree € in x,, in any case, then it will follow
from the single-valuedness of the representation that

S=RA, T=RB,

so T will, in fact, be divisible byrR.

1 2 h
Now, lets, s, ..., s be the intersection points bf 0 andg = 0, and leta, ..., o, be
their multiplicities. From § 17, one will then have:

gy

(5) R=|‘|(svo>a—§>sj

We can arrange the coordinates so that no two inteysqmints have the same rago:

St . The factorsvj X~ % % in (5) will be all different then.VF will be divisible byR if
and only if all of the individual factors:

gy

H(svoxl—%%j

\

are divisible. We then already have a first “NOETHBE&orem.”

Theorem 1. (1)is true if and only if for every intersection stbé curves £ Oand g
= 0 with multiplicity s the remainder T that was defined in the lemma abswivisible
by:

(S0 X1 —S1 X0)°.

The proof yields the following:

(l) It would then follow fromF = Asf + B;g = ASf + B,g that @&, —Ay) f = (B, —By) g, soB, —B; would
be divisible byf, which would be not possible wh&a andB, both have degreer
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Corollary. The coefficients of A and B can be calculated rationally from the
coefficients of the given forms f, g, F.

On the basis of Theorem 1, any individual intersegbioint s will be associated with
certain conditions that express the divisibilityToby (s X1 — s %)%, and which will be
collectively (i.e., for all intersection points toget) necessary and sufficient for (1). We
call them the NOETHERconditions for the intersection poins in question. The
NOETHER conditions are obviouslynear conditions on the forrk: i.e., whenF; and
F, fulfill them, F = F; + F, will also fulfill them.

In order to give an application of Theorem 1, we carsitle caser= 1.

Let, perhapsQ = (1, 0, 0) be a simple intersection point of the cufve® andg = 0.
We choose the coordinates once and for all such tedintx; = 0 and the curvé= 0
contact nowhere, and intersect only at finite poirtsfollows from (2) thatV must be
zero at then — 1 intersections points 6= 0 andx; = O that are different frorQ; R will
then contain the factog, andg will be # 0 at these points. Now, it follows from (3) that
T will also be zero at these pointS.andf will vanish at the poinQ itself, so from (3);T
will, too. Now, if one setg; = 1 andx; = 0 inT then one will obtain a polynomial i
of degree< n — 1 that will haven different zeroes, so it must vanish identically. tTisa
T will be divisible byx; . One will then have the result:

The NOETHER conditions are already fulfilled at a simple intersegidint of f= 0
and g= Owhen F= 0goes through that point.

We next consider the case in which the p@rt (1, 0, 0) is a simple point of the
curvef = 0. That curve will then have a single bragét the poinQ. For the existence

of the identity (1), it is, in any case, necessary the formF have the same ordée}) @s
the formg on the branch. We will now show that this condition is also sti#nt in the
sense of the NOETHER conditions.

Let T be precisely divisible by :

T=x'T;.

If A= othen the NOETHER condition (viz., the divisibility ®foy x’) will be fulfilled.

Therefore, leto < A. If will follow from (4) that the fornrRF will have the same order as
Tg on the branch. If one hadT; # 0 at the poinQ thenT would have orded andR,

orderg, soR would have a higher order th@nand furthermore, by assumptidhyvould

have at least the same ordergasvhich would giveRF a higher order thamg, which is

not true. ThereforeT: must be zero at the poiQ. However, precisely the same
conclusion will also be true for the all brancheshatremainingh — 1 intersection points
of f = 0 with the linesx; = 0; g indeed has order zero at these points. Therefore, the

polynomial T, will have n different zeroes foxo = 1 andx; = 1. It will follow from this,

as in the previous proof, thai is divisible byx; and therefordl is divisible by x/*™*,

() The order of onj is the intersection multiplicity of = 0 with the branch (cf., § 20 and § 45)
or, what amounts to the same thing in this cattee intersection multiplicity of = 0 andf = 0 atQ.
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which is contrary to the assumption thatis precisely divisible byx!. With that, a
theorem of KAPFERER is proved:

Theorem 2. If all intersection points of the curves=f0 and g= 0 are simple points
of f=0,and if they are also intersection points af 0 and g= Owith at least the same
multiplicity then the identity1) will be true.

The NOETHER conditions cannot be expressed as mendgtyphcity conditions at
the multiple points of the curvés= 0 andg = 0. Later (viz., Theorem 4), we will bring
the precise necessary and sufficient conditions infor@ that is independent of the
coordinate system. However, in any case, there wilinb#iplicity conditions that are
sufficient for the identity (1). In that regard, we harat the case in which the curfve
0 has amr-fold point withr separate tangents@t Let the associated branches;he..,

3r; the curveg = 0 will intersect these branches with the mukiples o3, ..., . The

total intersection multiplicity of the poin® will then beoc = + ...+ ¢ . We now
prove:

Theorem 3. If the curve F= O cuts each of the r branchgs(j = 1, 2, ...,r) of the

curve f= 0, which does not contact it, at Q with a multiplicity of at legst r — 1then
the NOETHER conditions for Q will be fulfilled.

Proof. As in the proof of Theorem 3, let:
T=x'T1

andA < 0. RFwill have the same order ag on any branch; . That is, wherj is the
order ofTy ongy;:
ogt(G+r-1)<A+g+g.

SinceA < g- 1, it will then follow that:

(6) r<g.

We would now like to show that the curVehas an at leastfold point atQ. If that
were not the case, so it would have an at mostl)-fold point atQ, then it would also
have at most — 1 tangents af, and since the branchegs ..., 3. collectively haver

different tangents there would be a braggctinat contacts no branch of the cuiie= 0.
From the rules of § 20, the intersection multiplicatyT: = O with this branch; would

then seem to be at most— 1. However, that would contradict the inequality (6).
Therefore,T; = 0 will have an at leastfold point atQ.

In addition, the curvé; = 0 will contain the remaining — r intersection points df=
0 andx; = 0, as before. In total, the polynomialwill have ann-fold zero forxg = 1,x;
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A+1

= 0. As above, it will follow from this thak; is divisible byx;, soT is divisible by x' ",
which is contrary to the assumption tfias divisible by x;' , precisely.

Remark. The last part of the proof can also be carried ouuah @ way that the
assumption that the ling = O cuts the curve &t — rdifferent points is not used in it, but
only the assumption that = 0 is not a tangent to the poi@t and does not go through
any other intersection points bf 0 andg = 0, and that its imaginary point (0, O, 1) does

not lie on the on the curfe= 0. One then concludeR:andT are divisible byx! in (4),
soSmust also be divisible by . If one dropsx; then it will follow that:

RlF:S_|_f+Tlg.

If one setsq = 0 here theS;, Ty, f, gwill go to S°, T2, £ 2, ¢, while Ry will be divisible
by xa; it will then follow that:
- Sf0=T¢".

f © contains the factox , which also comes out @°; f = 0 andT; = 0 will both have an

r-fold point atQ then. The remaining factors bf are relatively prime t@®, since the
line x; = 0 contains no other intersection pointd &f 0 andg = 0 thanQ. Therefore,

these factors must drop out b and T,. Therefore, T will be divisible byf °.

However, T, has degree # in X, while f ° has degree. Thus,T= 0; i.e., T will be
divisible byx;, etc., as before.

Now that we have cast a glance over the most itapbspecial case, we go on to the
general case. NOETHER®Indamental theorengives the necessary and sufficient
conditions for the existence of the identity (1) inlsacform that we avoid the singling
out of x, that we have been doing. We sgt= 1 and then go over to inhomogeneous
coordinates. In order to be able to formulate the rdreoand its proof simply, we
introduce the concept of tleeder of a polynomial(ki, x2) at a point Q:f has order atQ
when the curvé = 0 has am-fold point atQ. If one again ha® = (1, 0, 0), and one
develops in increasing powers o andx, then the development will begin with terms
of degree (in x; andx, collectively). NOETHER’s theorem now reads, in aridhat P.
DUBREIL gave to it:

Theorem 4. Let f and g be relatively prime polynomials inx . Let the orders of f
and V be r and |, resp., at the point s. Let the intersectioripticity of f = 0and g=0
be s. If there are then two polynomialsafd B such that the difference:

A=F-A’f-B’g
has an order of at least:
o+r—-1-
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in s then the NOETHER conditions for F will fulfilled at the psint

Proof. If A andA’f+ B’ g both fulfill the NOETHER conditions at the poisithen
their sumF will also fulfill them. From Theorem 1A’ f + B’ g will always fulfill the
NOETHER conditions. Hence, it will suffice to protreatA fulfills them, as long as the
order ofAinsis at leasio+r — 1 —I.

In order to be able to apply the previous conditionsagen callA, F. We again
assume that = (1, 0, 0), and draw the line = 0 throughx in such a way that it does not
contact the curve &

Again, let:

T=x'T, A<a
It will then follow from (3) that:
(7) VF=Qf+x'Ty.

If we develop both sides of (7) in increasing powerg;andx, then the left-hand side
will be missing all terms whose degree Xinandx, together) is less thaor+r — 1 —I.
Since the last term in (7) is divisible by , any term inQf whose degree is less thar+

r — 1 must be divisible by . The developments @ andf in components of increasing
degree might read:

Q=Q+Q1+Q+ ...,
f :fr +fr+1+fr+2 +
It will then follow that:

Qf = QO fr + (Ql fr + QO fr+1) + (QZ fr + Ql fr+1 + Qo fr+2) + ...
+ (QU—Zfr +Qa—3fr+1 + ) + ...

On the left-hand side, all components of degree+<o — 1 are divisible byx'. The
same thing must also be true on the right. Howdyvexrelatively prime to. One then
sees successively th@s, Q, ..., Qo2 must be divisible by . We can then write:

(8) Q=x C+D,
in whichD has ordee g-1 ins.
If one substitutes (8) in (7) then that will give:

VF - Df = x! (T, - Cf).
The left-hand side has order + o— 1 ins. Thus the parenthesis on the right, namely:
T, —Cf,

will have order=r + 0— 1 —-A>r. SinceCf also has ordex r ins, T; will have order=
r.
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From here on, the proof proceeds in exactly the samehadyt did in the last part of
the proof of Theorem 3.

The importance of NOETHER'’s fundamental theorentsregpon the following:
Assume that one finds that of the nintersection points of the curvés= 0 andf = 0
(wherem s the degree df andn is the degree dj, a certain numban’n of them lie on
a curveg = 0 of orderTm’< m. If the NOETHER conditions are fulfilled at thgseints,
in addition, then one can conclude that the remaimimg if7) [h intersection points will
lie on a curveB = 0 of degreem — m. Namely, it will follow immediately from the
identity (1) that then nintersection points df = 0 andf = O will be the same as those of
Bg = 0 withf = 0, and will thus consist of the’ n intersection points dfwith g and the
(m—m) [h intersection points df with B. We saw in 8 24 how important theorems of
this kind can be: Theorems 1, 2, 6, 7 in that sectionbeaderived immediately from
NOETHER’s Theorem 2 in the given way.

Problems. 1. If two conic sections intersect two other casgctions at 16 different points, and if 8 of
these 16 intersection points lie on another conic setttemthe same will be true for the other 8.

2. One derives the so-callesithple case of NOETHER's theorerfndm Theorem 3 or Theorem 4:
If, at an intersection point of the curvies 0 andg = 0O that is arr-fold point of the first curve andtafold
point of the second curve, thgangents to the first curve are different from thiangents of the second
curve at the poing, and ifF has order at least+ s— 1 at that point, then the NOETHER conditions will be
fulfilled at that point.

3. Prove NOETHER'’s fundamental theorem in the origim@ENITHER formulation: If an identity:

F=Pf+Qg

is true at any real intersection point (with the inhgemeous coordinateg s;) of the curved = 0 andg =
0, wheref, g, F are polynomials irx;, X, andP, Q are power series iy —s;, X, —$, , then an identity (1)

will also be true with polynomial& andB. [One truncates the power series after the tefrdegree ( + o
— 1 -l) and makes the equation thus-obtained homogeneous.]

8 49. Adjoint curves. The remainder theorem.

One can just as well base the considerations ofpdmagraph on the concept of
branch that was defined in 8 20 as on the concept of phetewas defined in § 45
independently of it. We choose the former, becausee&d the conceptual machinery of
Chap. 3, as well. In connection with that, we understapldce on a plane curvé to
mean a branch, together with the starting point dftthench. Adivisor on the curvd is
a finite set of places with whole-number multipliegi Thesumof two divisors will be
defined by combining the places that appear in them and addingrthltiplicities. An
arbitrary curveg = 0 that has no component in common Wittvill cut out a well-defined
divisor froml". A linear family of formsip go + A1 g1 + ... + A, g will cut out alinear
family of divisorsfrom ", to which one can add a fixed divisor (cf., § 42). Two ORds
of the same linear family will be callestjuivalent A complete familys a linear family
of complete divisors that are all equivalent to a giemsor. The goal of this paragraph
is the construction of complete families from a gieenve. The adjoint curves will serve
to facilitate this construction, which we shall now epl
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Let sbe a multiple point of an irreducible plane cufvavith the equatiori = 0, and
let 3 be a well-defined branch at the pantThe polars of the pointsof the plane whose
equations reads:

Yo Oof +Vy1 01 f +Vyo 0,f=0

will all go throughs. They will then cut out a linear family of divisof®m I' in which
the place §, s) appears as a fixed component with a certain multiphcit Naturally, for

specialy, the intersection multiplicity of the polar withetlbranchy can be higherny will
then be defined to be the smallest value that this imyeemultiplicity can assume.
The points also has a well-defined multiplicity on the branch (cf., 8 21);« is the
smallest intersection multiplicity gfwith a line througts.
We will later see that the difference:

o=v-(k-1)

is always positive. We understaadcurve adjoint td” to means a curvg = 0 whose
intersection multiplicity with any branch (at each multiple point df) is always= o
The formg is then also called aadjoint form

For a simple point of the curve, one will have 0, k= 1, sod= 0. Therefore, there

is no adjointness condition on it. For &fold point with separate tangents, from § 25,
one will have:

soo=r —1. An adjoint curve will then have to cut all braeslof thisr-fold point with a
multiplicity of at leastr — 1. In the case of an ordinary vertex, one will hawe3, x = 2,
so 0= 2. An adjoint curve shall then cut the vertex brawith a multiplicity of at least
2; i.e., it shall go through the vertex at least simply.

Problems. 1. Any adjoint curve must have an at least (1)-fold point at arr-fold point with
separate tangents.
2. Establish how the adjointness condition will reachfbeak and a contact junction.

For the computational evaluation of the adjointnemsdiion, it is convenient to
know that is it not necessary to define the polaralitpointsy (as often happens in the
definition) in order to succeed in calculating the diffeed, but only the polar to an
arbitrary point outside of the curve. Namely,ebe the intersection multiplicity of the
polar to such a fixed poistwith the branch, and let' be the intersection multiplicity

of the connecting lingswith the branchh. We will then show that the difference:
o=V -(K-1)

is independent of the choice yénd equal t@.
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If we compare two different pointg, y' with each other then we can assume that
they do not lie on a line with the poist otherwise, we could interpolate a third point
outside of the line as an intermediate term and compavéh both of them. We can
then assume thaty', y' are the vertices of a coordinate triangle:

o or
or o
=K

<<
noon

N N’ N

The polar ofy is 0:f = 0, and that of” is d-f = 0. Let the intersection multiplicity of
these polars with the branglbev' (V', resp.). Let the intersection multiplicities of the
liness y (x2 = 0) ands y' (X1 = 0) with the curve b& and«”, resp. We will then have to
prove that:

V-(K-1)=v'"-(K"-1).

Let a general point of the curve ée (1, &, &). We then know that:

o CRAIGY
& 0.1

When expressed in terms of the position unifornerabf the branchy, & will have

order ¥, so d& will have orderk — 1, and likewise,dé& will have orderk” - 1;
furthermore 9:f(&) andd.f(&) have orders’ andv’. It will then follow from (2) that:

(K-1)—K —1) =V -V'
or
V' = (K —1) =V - (K — 1).

It is thus proved thad’ is independent of the choiceyf If one choosesg such that’ is
minimal then, since:
o=V -(K -1),

V' will also be minimal, an@” will go to &. One will thus have:
o=V — (K - 1),
independently of the choice of the poynt
The fact thaty = ¥ — 1 (with the equality sign only in the case ddimple point)
follows immediately from the developments in 8§ 21,(prob. 4 there). It then follows

that:
0=0,

with the equality sign only in the case of a simpdant.
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The adjoint forms of degrae— 3 (wheren is the degree of the curve) have a special
meaning due to their relationship to the differentialghef first kind of the associated
algebraic function field. Namely, ¢f is such a form of degree— 3 then one will define
the expression:

do = g(f)(godgl_gldgo)
0,f($)

for an arbitrary poin€ of I'. Since one can also write this expression as:

do= 9O &
0,f(¢) &

in which the numerator and denominator in the firattion have the same degree, it will
depend upon only the ratios of tfei.e.,dQ will be a differential of the field(&; : &, &
: &), in the sense of § 26.

9($) has order at leagion a branch of I'. Sinced.f(é) has ordev and& d& — &

d& has ordew’ — 1, moreover'), dQ will have order at least:
o-V+(K-1)=0

on the branchy. That means that the differentid2 has no pole then (i.e., it is

“everywhere finite”). One calls such a differehi@adifferential of the first kind More
precisely, the calculation that we just performealdg that:If g has orderd+ £ onj then

dQ will have ordere.
The divisor that consists of places that belonghto multiple points of, with the
multiplicities J for branchy that were defined above, is called tdwible-point divisoof

the curvel. Any multiple point will thus contribute to theodble-point divisor. Amnr-
fold point with separate tangents will contributeri places (which correspond to the
branches of the-fold points), each with the multiplicity — 1. An ordinary cusp will
contribute the place of the cusp with multiplickyetc. The double-point divisor will be
suggestively denoted (.

The most important theorem on adjoint curves —,vihe BRILL-NOETHER
remainder theorem — can be derived from the folowiiouble-point divisor theorem:

If a curve g= 0 cuts out the divisor D frofi, and if an adjoint curve E O cuts out at
least the divisor Dr G then there will exist an identity:

(3) F=Af+Bg
with an adjoint B.

(l) If one further assumes = 1 thené, d& — & dé will go to d&, and we already saw before thidt
has a real place of ordet— 1. In the case of an imaginary point, one simplyches the roles of, and

&
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Otherwise expressetf:the intersection multiplicity of E 0 with any branchs of I

contributes at leastd + g, where J is defined as above, and is the intersection
multiplicity of g= Owith I, then(3) will be true, and the curve 80 will be adjoint tor .

The last part of the statement — viz., the adjointiné$s — is a consequence of (3).
Then, from (3)F = 0 has the same intersection multiplicity with thheanch; asBg = 0,

and sincgg = 0 has only the intersection multiplicitg butF = 0 has at least+ J, one
must haveB = 0 for the remaining.

In the case where all multiple points [ofhave separate tangents, the double-point
divisor theorem will obviously be contained in Theorem 8 48). Then, if the
NOETHER conditions are fulfilled at every interseatipoint off = 0 andg = 0 then (3)
will indeed be true. We will resolve the more difficgeneral case in the next paragraph.

We now come to the BRILL-NOETHER remainder theorem. its most succinct
formulation, it states:

The adjoint curves of any degree m will cut out a complete familyfroatside of
the double-point divisor D.

If we recall the definition of a complete familyetth we can also express the same
thing as:

If an adjoint curvep cuts out the divisor D + E from, and if E’'is a complete divisor
that is equivalent to E then there will be a second adjoint curvecthtatthe divisor D +
E’out ofT".

Proof. The equivalent divisor& andE’will cut out a linear family of forms through
two formsg andg’, which might cut out a fixed divis@, in addition. The form:

F=¢g’

cuts out the divisob + E + C + E’, but the forng will cut out the divisoIC + E. From
the theorem of the double-point divisor, one will theweha

F =Af + Bg

Thus,F andBg will cut out the same divisdd + E + C + E”. ThereforeB must cut out
the divisorD + E’, with which the assertion is proved.

The remainder theorem gives one the means to constmycaraitrary complete
family. Namely, ifG is any complete divisor then one will draw an adjcintve through
G + D. It might cut out, in all, the diviso& + D + F from . One then draws all
possible adjoint curves of the same degngroughD + F; one thus obtains only point-
groupsG’+ D + F, whereG’is equivalent tdG. Conversely, ilG’is equivalent tdG
thenG + F will be equivalenG’+ F, soG’+ F will belong to the complete family that is
cut out by the adjoint curves of degmegi.e., there will be an adjoint curve of degree
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that cuts out the divisdg’+ D + F. The desired complete familys | will then be cut
out from the adjoint curves, which will cut out the fixed divisor B, in addition. One
can also express this afhe complete familyG | is the remainder of F relative to the
complete family that is cut out by the adjoint curves of a suffigieigh degree m

If one would like to decide whether two divisdCs C’ are equivalent then one can
represent the differenc@— C’ as the difference of two complete divisors:

C-C =G-G,
and observe wheth&’belongs to the complete familg||.

Problems. 3. A complete family of degreewill have dimensiom on a line.

4. A complete family of degreewill have dimensiom — 1 on a cubic curve with a double point for
n> 0.

5. An isolated point or a point-pair on a fourth-ordgnve with a junction or a cusp will determine a
complete family of dimension 0, assuming that the pointigs on a line with the double point. A point-
triple will determine a complete family of dimension d@nd a point-quadruple, a complete family of
dimension 2.

8 50. The double-point divisor theorem.

In § 49, we proved the double-point divisor theorem forsgiexial case in which the
base curvd = 0 has no other singularities than multiple pointhvweparate tangents.
Here, the general case shall now be solved.

Lemma. If two power series:

A(t) = ay, t* + ayer 0+ L @, # 0),
B(t) =by t' + byt + ... (b, % 0)
are such that the first one has at least the same order as the second.enef:
MU=V,
then the first one will be divisible by the second one:

(1) A(t) = B(H) Q).

Proof. We assume:
Qt) = ¢y 7 + Cyir T

substitute that into (1), and compare the coefficieft, t“*, ... on both sides. That
will yield the condition equations:

by Cyv=2ay,
bv C/I—V+l + b|/+l C/I—V = a;/+l ’
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from which, one can determimg-,, Cy-1, ... sinceb, # 0.

In the following,f(t, 2), g(t, 2), etc., will mean polynomials inwhose coefficients are
power series ib (with all non-negative exponents). We assumefthad) is double-root-
free and regular irz (i.e., that the coefficient of the highest powerzoéquals 1).
Furthermoref(t, z) might divide completely into linear factors:

(2 ft,2=2Z-w)(z-w) ... (Z-w)

in the domain of the power series.
Under these assumptions, one will have:

Theorem 1. If F(t, 2 and dt, 2) are so arranged that the order of the power series
F(t, @), forj=1, 2, ...,n, is equal to at least the order of the product:

(3) @-) .. (G- 1) (= ). (9 — ) (L, @)
then one will have an identity:
(4) F(t, 2 = L(t, 2 f(t, 2 + M(t, 2) g(t, 2.

Proof. From the lemmék(t, «y) will be divisible by the product (3); in particularrfo
] =1, one will have:

Ft, @) = (W —@)... (@—a)g(t, @) R({),

whereR(t) is a power series in The difference:
Ft,2 - (Z-w) ...(z-w) 9(t, 2 R(),
will be zero forz = a, so it will be divisible byZ —a):
) Ft, 2 =R(t) z-a) ...(z—an) 9(t, D + St, ) (2 — ).
In the case = 1, this equation reads simply:
F(t, 2 =R() 9(t, 2 + St 2) f(t, 2);

the assertion (4) is already proved for 1 with that. It will then be assumed to be true
for polynomials of degree — 1.

If one setz = (j = 2, ...,n) in (5) then the first term on the right will vanisind
one will see tha8(t, w)(w — a) has the same order Bf, «), so it has the same order
as:

(@—a)(q—a) ... (@4—q-1)(Q—as)... (@ —ahn) 9t ).

As aresult, for = 2, ...,n, §t, &) will have at least the same order as:
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(4-a)... (4 —g-1)(dg—a)... (4—ap)9(t, @)

When the induction assumption is appliedite (z —a)... (z — @), it will follow from
this that:

(6) St,2=C(t,2 (z-w)... (Z-wy) +D(t, 2 g(t, 2.

If one substitutes (6) into (5) then one will obtdie assertion (4) immediately.
The derivation of(t, z) with respect ta is:

n

0t 2 = D (z2-a) ...(2— WY-1)(Z— Wsa) ... (Z— ).

j=1

The assumption of Theorem 1 can thus be also fatetilasF(t, «)) shall have at least
the same order adyf(t, &) 9(t, @) forj=1, ....r.

Now, letf(u, 2 be a polynomial iru andz that is regular irze and free of multiple
factors. From 8 14(u, ) will divide into linear factors:

flu2=2z2-w)... (Z-w),

in which a, ..., ax are power series in fractional powersuof In each cases might
define a power serieq), together with a branch wwill then be a power series in the

position uniformizatiory that is defined by:

u

u=r;.
If his the smallest common multiplicity of adl then we can set:
u=t"

and write all of thew, ..., ax as power series in

Let F(u, 2 andg(u, 2) be further polynomials i andz Let the orders of(u, w),
0:f(t, &g), andF(u, &) as power series if be g, v, andg, resp. Corresponding to the
assumptions of the double-point divisor theoremn, le

Aza+rg=u-(K-1)+g
or
A-(K-1=zy+g.
F(u, @) Drf"‘l will then have a larger order thasf(t, «j) g(u, &j). That will first be true

when ijj s replaced with"*, when one will have:
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h
h-—<h-1
K

Thus, F(t", a) t" will have at least the same order as a power siriessd.f(t", )
g(th, aj). It will then follow from Theorem 1 that:

(7) F(t", ) " = L(t, 2 f(t", 2 + M(t, 2) g(t", 2).

If we order both sides of (7) in powers tothen only powers whose exponents are
congruent to — 1 (mok)) will appear on the left-hand side. One can then diidpranst’
whose exponents are not= — 1 (modh) from L(t, z2) andM(t, 2), without perturbing the
validity of (7). One can then drap® from both sides of (7) and replafewith u. One
will then get:

(8) F(u, 2 =P(u, 2 f(u, 2 + Q(u, 2) g(u, 2,

in which P andQ are polynomials iz and power series in

In the original formulation of the double-point divistheorem, we were not dealing
with polynomialsf(u, 2), but with formsf(xo, X1, X2). However, for the examination of the
NOETHER conditions at a well-defined poi@ = (1, 0, 0), we can sety = 1.
Correspondingly, we now writgl, u, 2), instead of(u, z), and combine what was proved
up to now:

Under the assumptions of the double-point diviseotem, one will have an identity:
(9) F(1,u,2 =P(u, 2 f(1,u, 2 + Q(u, 2 g(1, u, 2),
in which P and Q are polynomials in s whose coeffits are power series in u

If one truncates all of these power series at acseiffily high power oti then it will
follow immediately from Theorem 4 (8 48) that the NOHEHIR conditions will be
fulfilled at the pointO. However, we would like to avoid the application diedrem 4,
in order to come to a shortest-possible proof of the @epbint divisor theorem, and will
then employ Theorem 1 of the same paragraph directly.

As was shown in 8§ 48, one can always assume thaetiree ofQ(u, 2) inzis <nin
any identity of the form (9). The representation whiert be single-valued. If one
multiplies this single-valued representation on botlesidy the resultariR of f andg
with respect t@, and then compares it with (4), 8§ 48 then, due to théesirajuedness of
the representation, it will follow that:

S=RP, T=RQ
R will then be a polynomial in justi that contains the factou’ (where o is the

intersection multiplicity ofO as the intersection point bf 0 andg = 0), whileQ will be
a power series in whose coefficients are polynomialsan If one now arranges both
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sides of the last equatidh= R Qin increasing powers af then one will see thak is
divisible byu’. However, those are precisely the NOETHER conukitiat the poin®©.

Since the same thing is true for any arbitrary inteiseciff = 0 andg = 0, it will
then follow from Theorem 1 (8§ 48) that there exist&damtity:

F=Af+Bg
in the domain of the forms. The double-point divisootken is proved with that.

Problem. Present the proof that was given here in such athatyno power series appear in it
anymore by truncating all of the power series that apgtes sufficiently high power af(u, resp.).

8 51. The RIEMANN-ROCH theorem.

The question that is answered by the RIEMANN-ROCH tmeoreads: How large is
the dimension of a complete family — or, what amotmthe same thing, the dimension
of a divisor class of given degreeon an algebraic curve?

Since the concept of a complete family is biratipnalvariant, we can replacg
with any birational image of. We can thus assume tHats a plane curve with only
normal singularities (which are multiple points witlparate tangents). Let the degree of
this curve bem, the “number of double pointsg, and the genug, One will then have:

_ (m-H(m-2) _

da
2

p
and

d= Z r(r2—1) |

which is summed over all multiple (viz-fold) points of the curve.
A special role is played by one divisor class, naméhe differential class or
canonical class.The zero locus and poles of a differential, in these of § 26:

f(u, @ du,

will define a divisor when one computes the zeroes wakitive multiplicities and the
poles with negative ones. Since all differentials ailse from the differentiadu upon
multiplying by a functionf(u, w), all associated divisors will be equivalent. Theyl wil
therefore define a class, namely, thierential class

The degree of the differential class — i.e., the remad zeroes minus the number of
poles of a differential — is, from § 26, equal to:

2p - 2.

We now ask what the dimension of the differentialifans — i.e., the dimension of the
complete family that consists of effective divisors tbe differential class. These
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effective divisors belong to differentials without @sl(i.e., differentials of the first kind).
From § 49, these differentials have a close relatipnghthe adjoint curves of degree

— 3, which one also callsanonical curves. Namely, if such a canonical curve cuts a
divisor C out of I', outside of the double-point divis@, thenC will be an effective
divisor of the differential class, and since the cat@inturves always cut out a complete
family, outside oD, one will also obtain all effective divisors ofktldifferential class in
this way.

In the sequel, when we say that an adjoint cufvauts out the divisoC, we will
always mean that the curve cuts out the divisor, deitsif the double-point divisor.
Likewise, we will say thatp goes through the divisd€’ when ¢ cuts out at least the
divisor D + C’, so wherC is contained as a subset of the previously-considevesbdC.

In the caseg = 0, P — 2 is negative, so there can be no effective digisorthe
differential class. From the convention that was uise@ 46, the dimension of the
differential class is to be set to — 1 in this case.

Thus, letp = 1, and thereforen > 3. The number of linearly-independent curves of
degreem— 3 in the plane is:

(m-1)(m-2)
2

Should such a curve be adjoint, its coefficients woldsh have to fulfill:

r(r -1)

2

at everyr-fold point. The number of linearly-independent adjautves of degree — 3
would then be equal to at least:

(m-H(m-2) < r(r-1)_ (m-H(m-2)  _
2 ) 2 2 a=p

Therefore, there will always be canonical curves far p (), and the dimension of the
complete family that they cut out will be at least p.

If we determine the dimension of the complete farthigt is cut out by the adjoint
curves of degrem — 1 in the same way then we will find at least theea

(m=-1)(m-2)

-d-1=p+2m-2.
5 p

The degree of the complete family will be equal to:

() Except that in the case = 3, one cannot actually speak of adjoint “curves” of degre- 3; of
course, there are adjoint forms of degree O for a doubig-fvee cubic curve, namely, the constants. The
complete family (of dimension 0) that is cut out by theith @onsist of only the zero divisor, as is always
true in the casp = 1, moreover.
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mm-1)—-21=2p+ 2m- 2.
These calculations are also true fior O.

Corollary. If the divisor C consists of $ 1 points then the complete famjl¢ | will
have dimension at least

Proof. One can draw an adjoint curve of degnee 1 through the + 1 points; the
dimension that is achieved above will thenzbe + 1, if the trivial case om = 1 is
excluded. Outside @, this curve cuts out a remaind@fthat consists of:

(Zp+2m-2)-p+1)=p+2m-3

points. The remainder @’ relative to the adjoint curves of ordar— 1 is, moreover, a
complete family that contains the divisérand has dimension at least:

2p+2m-2)-p+2m-3) = 1.
The assertion is then proved.

In particular, ifp = 0 then it will follow that any isolated point belongsa complete
family of dimension 1. The complete family will mapetrcurver onto a line
birationally. Any curve of genu8 will then be equivalent to a lineSuch curves are
calledrational or unicursal curves.

In order to prove the RIEMANN-ROCH theorem, BRILL aN@ETHER presented
the followingReduction theorem:

Let C be an effective divisor, and let P be a simple poiht df there is a canonical
curve ¢ that goes through C, but not through C + P, then P will be a fixed poitieof t
complete familyC + P |.

Proof. One draws a ling throughP that cutsP in m different pointsP, Py, ..., Pn .

g and ¢ collectively define an adjoint curve of degree- 2 that goes through + P, and
in addition, cuts out a remaindérfrom[” to which the point®,, ..., Pmcertainly belong,
but not the poinP. Now, in order to obtain the complete famify |+ P |, from § 49, one
must draw all possible adjoint curves of order 2 throughe. All of them will have the
m — 1 pointsP,, ..., Pn in common with the lineg; they will therefore contain the line,
and therefore also the poiat HenceP will be a fixed point of the complete family.

One understands tispecialty index bf an effective divisor to mean the number of
linearly-independent canonical curves that go thrddghf there are no such curves then
one will seti = 0. Ifi > 0 thenC will be called aspecial divisoy and the complete family
| C | will be called aspecial family.

A special family |C | can always be obtained as the remainder of a desyetial
divisor C’relative to the canonical familwy |. Namely, if one draws a canonical curve
throughC then it will cut out a diviso€C + C'=W, and, from § 49, the complete family
|C] will be the remainder d@’relative to the canonical complete family/||.
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A divisor whose degree is 2 2 will certainly not be special wh&v has degree®
— 2. On the other hand, a divisor whose degreepswll certainly be special; one can
then always draw a divisor of the complete famW | throughp — 1 points, since it will
have a dimension of at legst 1.

TheRIEMANN-ROCH theorem (in the BRILL-NOETHER formulation) now says:

If n is the degree and i is the specialty index of an effediiwsor C, and if r is the
dimension of the complete fam(il§¢ | then one will have:

(1) r=m-p+i.

Proof. Case 1:i = 0. Ifr > 0 then we will fixa pointP that is not a fixed point for
all divisors of the complete family from the outsatd define the remaindec} | of P
relative to |C |. The specialty index &@; will then be once more zero. Hence, if there
were adjoint curves that went throuGhthen, from the reduction theoremwould be a
fixed point of [C; + P | = |C |, which is not the case. Upon going fr@o C;, one will
reduce both the dimensionand the degree by 1, whilep andi (= 0) do not change;
thus, (1) will be true fo€C, as long as (1) is true f@;.

One proceeds in this way, while always holding a poindfixmtil the dimension of
the complete family becomes zero. One will thenehavprove that formula (1) is true
for this caser(=1i = 0); i.e., thah = p in this case. In any casecannot be 9, since,
from a previously-made remark, the divisor would thengeigl, and thus one would
havei > 0. Now, if one haah > p then one could chooge+ 1 points ofC, and embed
this divisor in a linear family of dimension > 0 (ahe “corollary” above). If one thenw
added the remaining points Gfas fixed points then one would obtain a linear family tha
containedC and had a dimension > 0, which would contradict therapsion thatr = O.
Therefore, only the possibility that= p would remain, with which (1) is proved for this
case.

Case 2i > 0. (Complete induction or) Let formula (1) be true for divisors of
specialty index = 1. Draw a canonical curve throuGh- which is possible, sinae> 0—
and choose a simple poiBtof I' outside of that curve. From the reduction theorém,
will then be a fixed point of the complete famil§g i P |. This complete family will thus
have the same dimensioras the original complete familyg |, so it will again have
degreen + 1 and specialty index— 1; the condition of obtaining outside ofC will
come down to a linear condition equation for the coieffits of a canonical curve. From
the induction assumption, one will then have:

r=nN+1)—-p+(@—-21)=n—-p+i.
With that, the proof is concluded. It consisted in sinthe fact that one define€|— P|

in the first case and@ + P | in the second case, and applies the reduction theorm bo
times, by which andi were reduced until they both became zero.

1. Consequence.One will always have = n — p, with the equality sign for non-
special divisors.
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2. Consequence.The dimension of the canonical family is equal tecgelyp — 1.
Its degree is then= 2p — 2, and its specialty indexiis 1.

The RIEMANN-ROCH theorem can also be formulated iother way. If £}
means the dimension of the complete family] then one will obviously have:

{(W-G=i-1,
so formula (1) will assume the form:

2) {C=n-p+t1+{W-G.

If one introduces the order oW\ — C|:

n'=(2p-2)-n
then one can bring (2) into the symmetric form:

U

n
2

3) CG--={W-G-

n
2

Formula (3) was proved for the case in whichs an effective divisor, or at least
equivalent to one. However, since one can switchrakes ofC andW — C (3), and
therefore (2), will also be true wheWw — Cis equivalent to an effective divisor.
However, it is easy to show that (2) is even truenditgherC or W — Cis equivalent to a
complete divisor, so wherGt = {W -G = - 1.

Let C be the difference between two complete divis@rs:A — B Let the degree of

B be b, so that ofA will be n + b. If one hadn = p then, from Consequence 1, the
dimension of the complete family would be:

>(n+b)—p=bh,

so one could find an effective divisAf that would be equivalent # and would contain
B as a component, ardl = A — B~ A" — B would be equivalent to an effective divisor,
contrary to the assumption. Therefanes p— 1. However, one will likewise also have:

nN=(2p-2)-n<p-1, son=p-—1.
It follows thatn = p — 1; thus, both sides of (2) will have the value — 1.
Therefore, formulg2) is true for any divisor C of degree nlhis statement is the
generalized RIEMANN-ROCH theorem.

Problems. 1. IfC = A — Bis the difference between two complete divisors therspecialty index:

i={W-g+1
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will be equal to the number of linearly-independent déiféials that have zeroes at the pointé ofhose
orders are at least equal to the multiplicities ofgthiats, and only poles at the pointsBofvhose orders are
at most equal to the multiplicity.

2. On the basis of Problem 1, show: There are expdilyearly-independent differentials without
poles. There is no differential with precisely onéepaf first order. The number of linearly-independent
differentials with two poles of first order or one polesafcond order is one greater than the number of
differentials without poles. If one adds another polef one raises the order of a pole by 1 then one will
raise the number of linearly-independent differentigid in each case.

3. Acurve of genus 1 (viz., an “elliptic curve”) iswalys birationally equivalent to a third-order
plane curve with no double point. (The rational map bélimediated by a complete family of dimension 2
and order 3.)

4. A curve of genus 3 is either birationally equivalerd fourth-order curve with no double point or
a fifth-order curve with a triple point, according to whestlits canonical family is simple or composite,
resp.

§ 52. NOETHER'’s theorem for space.

Letf andg be two relatively prime forms iy, X1, X2, X3 . We ask what the conditions
would be for a third fornk to be represented in the form:

1) F=Af+Bg
The answer is given by the following theorem:

If a general plane cuts the surfaces D, g = 0,and F= 0in curves such that the
third curve fulfills the first two of the NOETHER conditions, (8f48) then (1) will be
true.

Proof. Let the general plane be determined by three genemadspm q, r: its
parameter representation reads:

(2) Yk = A1 P+ A2 O + A3 k.

The equations for the intersection curves are obtamedubstituting (2) into the
equationd = 0,9 =0,F = 0. From the NOETHER theorem for the plane, oiiehave,
since the NOETHER conditions are fulfilled:
3) { F(Ap+A,q+A;r)

= A(A) F(A ptA,q+ A0+ B(A) A4, ptA,at A,

identically inA1, A2, A3. From the corollary to Theorem 1 (8 48), the cofits of the
formsA(A) andB(A) will be rational functions op, g, r.

The pointsp, g, r can be specialized so these rational functions weihain
meaningful. We choose fixed points fprandq, in particular, and choogeto be the
general point of a fixed line:

r=s+ut.

If we substitute this into (3) then we will obtain:
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@) { F(Ap+A4,0+A,0)
=A(A) F(A p+A,q+A;stAud+ BA) dA, prAd, gk A, s AUt

We briefly denote the left-hand side W(A, 1) and correspondingly employ the
notationsf; andg; . The formsA(A) andB(A) depend upom rationally. We multiply
both sides of (4) with a polynomial mnsuch that the right-hand side becomes completely
rational insz.

(5) h(1) Fu(A, 1) = Au(A, 1) T1(A, 1) + Ba(A, 1) 91(A, 4).

We decomposh(y) into linear factors:

h(t) = w—-a)(u—-a) ... (-0,

and seek to convert (5) step-wise in such a way that thesar factors can be
sequentially dropped. If we sgt= a1 in (5) then the left-hand side will vanish, and one
will come to:

(6) A]_(A, 0'1) fl(ﬂ, 0'1) + B]_(A, 0'1) g]_(ﬂ, 0'1) =0.

In case the intersection curve of the surfdce® andg = 0 contains the plane curfig
as a component, we can always chgos@dq such that they do not both lie in a plane,
together with a curvEe . This means that the formsAn A, A3 :

fl(ﬂ, 0’) :f(ﬂlp‘Fﬂzq +A3S+A30't),
014, @) =g(A1p + A2q + A3+ Az at)

will be relatively prime for any value af. If will then follow from (6) thatA;(A, &) is
divisible bygi(A, a1), andBi(A, &) is divisible byfi(A, ai):

Al(A, 0'1) = C]_(A) g]_(ﬂ, 0'1),

Bl(ﬂ, 0'1) =- C]_(A) fl(ﬂ, 0'1).
The differences:

Al(A, 0'1) - C]_(A) g]_(ﬂ, 0'1),

Bl(ﬂ, 0'1) + C]_(A) fl(ﬂ, 0'1)

will both be zero fow/ = a1, and will thus be divisible by — o :

Ai(A, o) = Ci(A) du(A, 1) + (U — 1) Ao(A, 1),
Bi(A, a1) == Ci(A) f1(A, 1) + (u— 1) B(A, ).

If one substitutes this into (5) then the term<Cigd) will drop out, and it will follow
that:

h(1) Fu(A, 1) = (u— 1) Ax(A, 1) f1(A, p) + (1 — a1) Ba(A, 1) u(A, 4).
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One can now cancel — a;1 from both sides, and repeat the process until all fagto—
m)... (u— as) have been canceled. It will then follow that:

Fi(A, 1) = Ao(A, 1) F(A, 1) +Bo(A, 1) au(A, ).
Here, we substitute:
_A
H A
on the left and right, wherd, is a new indeterminate, multiply the left and right-hand
sides by a factor of3 such that everything becomes completely rational agashagain
cancel the factors, by the process that was just described. We then obtain:

(7)

F(Ap+A,q+A,5+ A0
= KA F(Ap+ 4,0+ A5+ 4,0+ B(A) A, prA, o A, 84,0t

Finally, one solves the equations:
AL e+ A2 O + A3 S+ Aa e = X

for A1, A2, A3, A4, which is always possible wheng, r, s are linearly-independent points,
and substitute thd-values thus found into (7). (7) will then become diesired identity
Q).

It follows from the proof that instead of posing thgquieement that the NOETHER
conditions should be fulfilled on generalplane, one can also demand that they should
be fulfilled on a general plane of a certain bundle,r@le must assume only that no
plane of the bundle contains a component of thesatgion curve of the surfacés 0
andg = 0.

The conditions of NOETHER’s theorem for space aiélled, in particular, when
any component of the intersection curvef ef 0 andg = 0 has the multiplicity one, and
whenF = 0 contains the entire intersection curve, or alsormthe intersection points of
a general plane with the intersection curvd af0 andg = 0 are simple points df= 0,
and every irreducible component of this intersection ewwth at least the same
multiplicity also enters into the intersection cunfeF = 0 andf = 0 (cf., § 48, Theorem
2).

NOETHER’s theorem can be carried over from the s@ice® the space&.: in
precisely the same way that it was carried over frovd plane to space here.
NOETHER'’s theorem for spacgt&en follows by complete induction on

If a general plane Sn S, cuts the hypersurfacesf0,g = 0,and F= 0 (where f and
g are relatively prime forms) in curves such that the third ctwfdls the NOETHER
conditions at any intersection point with the first two then therebsik identity:
F = Af + Bg.

As an application, we prove the following theorem:
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An algebraic manifold M of dimension-n2 on a double-point-free quadric Q in the
space swill always be the intersection of A with another hypersurface foB.

Proof. We projectM onto a pointO of the quadridQ that lies outside oM. The
projecting cone is a hypersurface of the sp&ge The intersection @ andK consists
of the pointsA of Q whose connecting line with enters the manifol¥. If such a point
A does not lie in the tangential hyperplaneQodt O thenOA will not lie onQ, and will
therefore meeQ only atO andA, now, sinceO does not belong tM, so A must belong
to M. The complete intersection ¢f andK will then consist of all points a1, and
possibly certain points of the tangential hyperpl&neto Q atO.

Now, S,-; intersects the quadr@ in a quadratic conk,—, whose intersection with an
arbitraryS,—, in S-1 is, from § 9, a double-point-free quad@g-; in S->. Such a thing
will always be irreducible fon > 3; thus, the conk,_, will also be irreducible (and of
dimensiom — 2).

From § 41, all irreducible components of the interseatio@ andK have dimension
n —2. The irreducible components dif belong to these componengspriori. In case
there are more irreducible components, as we know, ti#ybe contained in the
irreducible cone&K,—2, so since it is irreducible and has the same dimemsiog, it will
be identical with it. The intersection Q@fandK will then consist oM and the con&,—
with a certain multiplicityi that can also be zero.

If £ =0 then we will be finished. Thus, lgt> 0. Theg-times counted plang,;
might have the equatidd’ = 0. Furthermorek andQ might have the equatiohé= 0
andQ = 0. The intersection df andQ will then be contained iK. The NOETHER
conditions will be fulfilled if one cut$”, Q, andK with a general plane, ® had no
multiple points anK cutsQ in K-, with the same multiplicitys asL”. There will thus
exist an identity:

K=AQ+B L~

The intersection ok = 0 andQ = 0 is the same as the intersectioi@of 0 andB L* = 0.

It decomposes into the-times counted conk,-, and the manifoldM. Thus,M is the
complete intersection of the hypersurfa@s 0 andB = 0. With that, the theorem is
proved.

In the special case = 5, if we map the points of the quadfcto the lines in the
spaceSs, according to § 7, then we will get the following theor@FELIX KLEIN:

Any line complex insSs given by two equations in PLUCKER coordinates, of which,
the first one is the identity:

761 753 + 762 781 + 763 72 = O.
8 53. Space curves up to fourth order.

In this paragraph, we would like to enumerate the irretiusipace curves of lowest
orders 1, 2, 3, and 4, and examine them.
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A space curve of orderi a line.

Namely, if one draws two planes through its points thath of them will have more
than one intersection point with the curve, and allis contain it.

An irreducible space curve of order 2 is a conic section.

Namely, if one draws a plane through three of itsfgdimen it must contain the space
curve. However, a plane curve of order 2 is a conigasect

An irreducible space curve of order 3 is either a plane curve abéccspace curve,
in the sense of § 11.

One can, in fact, always draw two quadratic surfacesitfir 7 points of the curve.
Both of them must contain the curve, since it has rtimaa 6 intersection points with it.
If one of these surface decomposes into two planesthieecurve will lie in one of these
planes, and will be a plane, cubic curve. Howevergthlsurfaces are irreducible then
they will have no common component, and their integise will be a curve of order 4
that contains the given third-order curve, and will ¢fi@re decompose into it and a line.
From 8§ 11, the intersection of two quadratic surfaceshhae a line in common will
consist of that line and a cubic, space curve (or witlodgose into lines and conic
sections).

An irreducible space curve of order 4 is either a plane curve agstih at least one
irreducible quadratic surface.

In fact, one can always draw a quadric through 9 pointiseofurve. It must contain
the curve, since it has more than 8 intersection paiith it. If it decomposes into two
planes then the curve will lie in one of these ptane the other case, it will lie on an
irreducible quadric.

We can ignore plane curves of order 4; we then turndbsmace curves. If two
different (irreducible) quadrics go through such a curve tthen space curve will
obviously be the complete intersection of these twdases. It will then be called a
fourth-order space curve of the first kinghd will be denoted b'. By contrast, if it
goes through only one quadric then it will be calletbarth-order space curve of the
second kindand denoted b, .

We thus have the following theorem:

If a fourth-order space curve lies on a quadratic cone K then it witiflibe first kind
— i.e., it will be the complete intersection of the cone wibhand quadric.

Proof. At least=® cubic surfaces will go through 13 points of the curvefrsmn §
10, the cubic surfaces can be mapped to the points of a BpaaeS;y, in which 13
linear equations will determine an at least 6-dimensiomagsace. The® decomposed
surfaces that contain the coleas a component will belong to thes& surfaces. There
will thus be at least one cubic surface that contaiestinve that does not contain cdfe
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as a component. This surfa€ewill intersectK in a sixth-order curve that contains the
given curveC* as a component, so it will consist@fand a conic section @* and two
lines. A conic section or line-pair dawill, however, always be a plane section of the
coneK (*) — perhaps, the intersectiontofvith a planeE.

We now apply the spatial NOETHER theorenFtK, andE. F contains the entire
intersection oK andE. If it consists of two coincident lines then theéensection ofF
andK will likewise contain these lines doubled; the NOETHE&dhditions will then be
fulfilled in any event. Iff = 0,K = 0, E = 0 are the equations &f K, E, resp., then it
will follow that:

F=AK+BE

The curveC® will lie on the surface§ = 0 andK = 0, but not in the plarié = 0, so it will
lie on the quadri® = 0. With that, the theorem is proved.

It follows from the theorem that a fourth-order spauaeve of the second kind does
not lie on a cone, but on a double-point-free qua@riclf one further brings & that
does not contain the cubic surfaeehrough the curv€’ then the complete intersection
of F andQ will consist of the curve€® and two (possibly coincident) lines thfe same
family. Then, when the remainder intersection isrgducible conic section or consists
of two lines, one can conclude, on the basis of theareing that was applied in the last
proof, with the help of NOETHER's theorem, th@tlies on yet a second quadratic
surface, which would make it of the first kind.

These two ruled surfaces on the qua@imight be denoted blyandll, and the two
skew or coincident lines that meetand Q outside ofC*, by g andg’, resp. We can
assume thag andg' belong to the family. A general line of the famillycuts the surface
F at three points, so it will also cut the cueat three points. (The fact that all three of
them are different would follow, e.g., from BERTINIfisst theorem, § 47.) A general
line of the familyll likewise cutsF in three points, of which, however, two of them are
assigned t@ andg’, such that only one of them will remain #6f. The curveC* will
thus be met by any general line of the fanhiat three points, but at one point by any line
of the familyll.

With this property, one can essentially distinguishwvieein the curves of the first kind

C! that lie onQ, which one obtains when cu@swith another quadratic surface. These

will then be obviously be cut by all generatorsfn two points. It follows from this
that the remainder intersection@fwith a cubic surfac& that has two generators of the

family 1 in common withQ can never be a curve of the first kif; it then cuts each

generator of the family at three points and each generator of the faihdy one point.
We now summarize:

There are two types of bi-quadratic space curves. A cG{vés, by definition, the

complete intersection of two quadrics. A cu@g is the remainder intersection of a
quadratic ruled surface Q with a cubic surface F that contains two generafa ruled

() The conclusion is true only for the cone, but notdiher quadrics; a line-pair on a quadratic ruled
surface can then consist of two skew lines.
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surface on Q. Conversely, any such remainder sectiorCi§,as long it is irreducible.
A Ci cuts any generator of the one ruled family of Q at three points, andyeaemator

of the other family at one point. By contrastCa will cut every generator of a quadric
that contains each of them at two points.

The curveC; isrational. Namely, if we draw all possible planes tiyio a generator
of the familyl then they will cut the surfad@ in the generators of the family, so it will
cut the curveC;! at one point (except for the three fixed intersectiomts of the curve
with the generators of the familythat we started with). There is thus a linear farafly
point-groups of order 1 06, . From § 43, it will map th&€ onto a line birationally.

For a closer study of fourth-order curves in a quadrated surfaceQ, we put the
equation forQ into the form:

YoYo—Y2Y3 =0,

and we introduce two homogeneous parameter paidy:

Yo = Ay,
Yy = A,
Y, = A,
Ys = Aoty

(1)

The parameter lined = const. anqu = const. are the generators of the familiendll.

If one intersectX) with a second quadratic surfage= 0 by substituting (1) into the
equationg = 0 then one will obtain an equation of degree 2 intthend likewise in the
Y7

(2 QAL + AAT UL+ ad 5 =0,

which will therefore represent a cur@’ when its left-hand side is not decomposable. If
one intersect®) with a cubic surfacé& = 0 in the same way then one will obtain an
equation that has degree 3 in theas well as in the. If the cubic surfac& contains
two linesA = const. then the aforementioned equation with the deguenbers 3, 3 must

contain two linear factors in just the after dropping them, what remains will be an
equation with the degree numbers 1, 3:

(3) ao/]lﬂ12+a1/11fliﬂ2+"'+aﬂ2u?’::0'

Equation (3) will then represent the cur@g.

On the basis of the map (1), the surf§eappears to be the image of a double-
projective space (cf., 8 4). The plane section® d&fine the projectivities that transform
the points of al-line projectively into arg-line. The cubic space curves @will be
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represented by equations Arand ¢ with the degree numbers 2, 1 or 1, 2. This brief
glimpse into the geometry of curves on a quadratic surfaght suffice.

The genus of the curv€! is equal to 0, since the curve is rational. In order to

ascertain the genus of the cur@€, one projects it onto a plane from a generally-chosen
point O of Q. What comes about is an irreducible, fourth-order ptamee. Two points

of C! lie on each of the two lines 6f throughO that go to a point in the plane under
projection; the projection has two nodes, in any casee projection will have further
double points if and only if the original cur@' has them. If one now computes the

genus of the projected curve by means of the formula of e that will yield the
value 1 or 0, according to whether the original curveritadouble point or one of them,
respectively; for more than one double point, it must dpos® On the basis of the
invariance of the genus under birational maps, it followmfthis that:

The genus of a space cur@ is 1 when the curve has no double points &nshen
it has one of them

Problems. 1. If one intersects a quadratic ruled surfacsith three planes and constructs generators
on each of them for a family of the fourth harmonicnp® to their intersection points with these three

planes then the poitt will describe a curve(:l‘l‘ . (Compute the equation of the curve in the paramgters
LL).

2. Afourth-order, rational, space curve is eithe awith double points or £; . In both cases, the
coordinates of a general point of the curve will be pribpmal to four fourth-order forms in two
homogeneous parameteksu.

3. Projecting a curvé:l4 or CI‘I‘ onto a simple point of the curve will yield a third-ardglane curve
with or without double points, according to the genus.

4. By computing the equation of the curve, show thatwlwedouble points that correspond to the
projection of C.4 onto a general point @& are, in fact, ordinary junctions. (Choose the eguatf the
surface as above, and cho@s® be a vertex of the coordinate system.)

5. The genus of a curve @hthat is given by an equation of degreeendm in the parameterd and
M, resp., is equal to:

p=n-1)m-1)-d-s

whered is the number of double points, asi$ the number of cusps, in the sense of § 26.



CHAPTER NINE
The analysis of singularities of plane curves.

The situation that is treated in this chapter is afdamental significance for the
theory of algebraic surfaces. In the main theoreng sndealing with the precise
definition of the concept of “infinitely-close pointspr, as we will say here, the
neighboring points that M. NOETHER first coined in cortimt with his resolution of
singularities (cf., § 25), and which F. ENRIQUE%$then developed further.

In order to not expand the scope of this book excessiwtelyas, unfortunately,
necessary to treat this situation in a more crampaoher than was used in the previous
chapters; in particular, | have been forced to dispemsie explaining the concepts
presented with simple examples. The reader will theerencouraged to carefully work
through the problems, which contain such examples. Ghénd a thorough, didactic,
and generally excellent presentation with worked exasnplehe book by ENRIQUES
that was already cited in)( One can further refer to an interesting paper.actARISKI
(%), in which the theory of infinitely-close points islated to evaluation theory and ideal
theory.

8 54. The intersection multiplicity of two branches of a curve

In this chapter, we employ inhomogeneous coordingtgsthe coordinate origin (O,
0) will be denoted b.

A branch of an algebraic curve at the pdntvhose tangent is not tlyeaxis will be
given by a cycle of conjugate power series that arts®a & power series:

vy VA " VA (S
(1) y=ax+ aix7+azx 4 +-"+§X 4 +...
by the substitution:
XV o with JV=1.

Let a second branch be given in the same way)by (

v VA " VA (S

(2) y:ax+ai)(7+azxv +~~-+@X v +...

If the initial coefficientsa, ay, ..., as coincide with the initial coefficients of one ofeth
power seriesy,, Y,, ..., ¥, that are conjugate to (2)so one has:

() F.ENRIQUES, O. CHISINITeoria geometrica delle equazioni e delle funzione algebraiciell,
Libro Quarto, Bologna, ed. Zanichelli.

() ZARISKI, O., “Polynomial ideals defined by infiniteljnany base points,” Amer. J. MatB0
(1938), 151-204.

() In both power series, only the non-zero terms weiten down; however, the initial terax (bx,
resp.) can also be zero.
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a =0Dn,
as = b
S )

then we will write this briefly as:
(a, a, ,as) = (b, bl, . bs)

The intersection multiplicity of the two brancheattlare given by (1), (2) is defined
to be the order of the power series:

(Y=%)(y=%)(y=Y)

under the position uniformization = x*V of the first series, where the roles of the two
branches have also been switched. The followingrémegives the precise value of this
multiplicity:

Theorem 1. The branch that is given kL), (2) might coincide in the first $ 1
terms of the series developments. Therefore, let:

\ ' ' .

Y=E-P (0.0)=1

vV ou p

\/" I U ”

=t L (©.p)=1,
3) Vouo o,

VO 9 o3

- 5-1 (p(S) ' ps—]_) = 11
Vo4 pop

(a, a, ,as) = (b, bl, ...,bs).

Now, if:
(s+1) (s+1)

v
¢ ﬂ

v H

then the intersection multiplicity of the two braes will be equal to the smaller of the
two numbers:

n m (s+1)
)|:,uv+,u\/+’uv +’UV +...+ HY :
P PP PPy Psq
" n (s+1)
A=vmevm + H W,

) PO Py
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By contrast, if:

s+1) s+1)

_uEY o pt

v Hopo P,

V¢

thenA = A’ will represent the intersection multiplicity, amly as one does not have:

(a, &, ...,as1) = (b, by, ..., bs1).

Preliminary remark. One concludes from formulas (3) that:

wv)=Z, w ) =2,
P P
W, V, V) :é, o, ity =2,
wv,. W) =—Yr W iy o = —H
PPy Psa PPy Psy

Proof. Let — say- y, be the power series that is conjugateyjtowhose initial
coefficients agree precisely withay, ..., as

ury urp " '+

yl:ax+aixl‘ +azx H +~~-+QX H +...
In the difference/ -y, , the terms i, ay, ..., as drop out. If we assume, say:
LD <y o) so A<,

then the first term that does not drop out, namely:

v+ 4y (S)
v+ (S)

X Y = Gl '

will have orderv + v + ... +V*in 7. If one now goes frony, to a conjugate power
seriesy, by means of the substitution:

Xl/'u—> lel,u, Zy:l

then some of the initial terms of will remain unchanged, although they will change
past a certain point in the coefficients. Let, say:
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u u u

ZP — 1’ prl — 1’ . prr“/’x-l — 1’

while {”*# # 1. y, -y will then have an initial term with:

L+ )

x #  =x v =T

v+t
vyt

being of ordew +V + ... +V**Y,
If one now forms the produgly —,)(y-"%)---(y-"Y,) then its order will be a sum

of expressions +V + ... +V&Y andv + v + ... +V™Y, and indeed the term™™ will
appear in this sum as often as there are solutiong @&uphation:

u

prl"'pt—l =1;
ie., Ltimes. Therefore, the intersection multiplicitylivine:
PPy Py
A=puv+uv + Hpy v H  pyevy 4 H e
Y PPy P PPy Psy

One argues in a completely analogous way in the cade>of, and also in the cask=
A

We would now like to analyze the expression that waaioed for the intersection
multiplicity more closely. In order to have a definii@se in mind, we assume tisat 2;
the series (1) and (2) will then already truncate athird term. Factorize/(V') and {,
M) by the Euclidian algorithm:

V' =hvty, M =hu+
V= +\, H=NnU + [,
(4) hl\{ h 1 2
Va—l = ha VU" lua—l = htr/'la
Since! = ﬁ, the two developments will run exactly parallel &xle other. We now
v H

proceed in precisely the way that would determine thetegeaommon divisor ofvg,
v') and {,, i'). The two developments run perhaps somewhat paitadiein the case

!

vV
—% ﬁ, they must eventually separate:
Y7,

\'
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V' =ky +V,, H =Kty + g,
Vg = k1Vg+1 + \{7+1’ lua = k11u0+1 +/'lg'+ 2!
(5) _k+, _k ........ +,
Vg+j—1 - Vg+j \éﬂ' +1 :ug+j—1 - j:ug+j :ug+j +1
Vg+j = kj +1Vg+j+1 + I§ \{7+j +27 :ug+j = Ij+1:ug+j +1 +:ug+j +2?

with ki« 1 #lj+1. It can also happen thit. ; = ;. 1, but the division with the quotients
k.1 can take place on the left-hand side, but not on ttg (or conversely). In the

V' " . .
second case—= i, the developments will run entirely parallel, up to shep:
v U
Voro-1=Kg Vor o, Horo-1=Ko Uo+ o .

In order to once more have something definite in mind¢cevesider the first case and
assume thaf. 1 <kj+1. That means:

I 4

a) when is even,’%> i sov ' > uv',
v

I 4

b) whenj is odd,7< i sov ' <uv'.
v

Since ¢, V') =v,, from the preliminary remark, one will haves p v, ; likewise, one
will have i/ = p 1,. From Theorem 1 in case a), the intersection pilidity will be:

A=uv+uv +ﬂ=,uv+,u\/ + Ug V',
P

and in the case b):

I

A=vu+vy +£:v,u+v,d +vo .
P

We leave the first ternw v unchanged. The second term will be developed on the
basis of (4):
uv  =uthv+vy)  =huv+puv,
v =+ )i =hoavi+ o v,
ovi = (Ve +Va) =hofo Vo + (b V3,

That will yield:

V/l :/,l\/ :h/,lV+h1/,llV1+h2,UzV2+ +hg/,lng.
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The third termu, V' (Vo (', resp.) in case a) [b), resp.] can be developed lgesy
means of (5); the details of this will be left to theder. If one now combines the
various terms then in both cases a) and b) one will ge

AN=vu +hvu+hvu+---+hv i
(6) +kVU:uU + k1VU+1luU+l+”.+ kj VU+i’1’l¢7+j

+ Ii+1 Va+j +1lua+j +1 + I/¢7+j +1lua+j +2

for the intersection multiplicity.

In order to do the divisiof+s : t+o+1, the last term in (6) must be replaced with zero.
If Ki+1 <1 j+1 Orki+1 =141, @and one is to do the divisiaf., : V+s1 then the roles df and
[, as well as those @f and v, must be switched. Inthe cage” =v 1/, the final term:

Kg' DVU+0‘ /«10'+0‘
will enter in place of the last two terms.
Problems. 1. From a certain numbearonward, one will have:

=\, V, ..., V™) =1,
PP Pn =V

z7+a’+m+z7(m)

2. A branch of order 2:

1
yoaX+aX+ ... +as X +au X 2+ ... tam X+ ..
will have, with a linear branch:
yzle+b2X2+ vy
the intersection multiplicity:
2,4,...,30%5+1,
when its developments agree up to the terms in:

1,% ... or &,

respectively. A higher multiplicity will be excluded.

8 55. Neighboring points.

One computes the intersection multiplicity of tli@nches at a poi@ using formula
(6) in precisely the same way as if one had tweesikvith several intersection poirids

O1, ..y On, Onety ooty Oh+h+_‘_+rb+k+,i+_‘_+wﬂﬂ, instead of the two branches, where the
curves take on the following multiplicities at thethose points:

the multiplicitiesv andy atO, Oy, ..., Oy,
the multiplicitiesv, andza atOnsy, ..., O,y
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etc., according to formula (6).
In order to justify this situation, one introduces tbowing terminology: First, let
the initial piece of a power series be given, say:

v+

(7) y=ax+a x" ,

and second, let a sequence of natural numbeys ..., p;, pj+1 be given (or possibly just
a single natural numbegs). The neighboring pointto O that belongs to this defining
piece is then defined to bime totality of all curve branches whose power series

! n

developmentl) begins with the term&), while the exponenw of the next term
Vv

is so arranged that the quotientsKs, ..., ki+1 in the successive divisiol(S) satisfy the
conditions:

k=p-1,
ki=py, ... =p,
kj+1 > Pj+1 Or kj+1 = Pi+1, kj+2 >0,

while in the case of a single number p, one will have the condition:
k=p-1.
Which neighboring point d® belongs to a branch according to this definition, mvhe

its series development is given by (1)? At first, itl we the neighboring point that
belongs ta x, and indeed:

O will go with the number sequence 1,

Oz with the number sequence 2,

On+1 with the number sequenbet 1,

On+2 with the number sequenbet 1, 1,

Onina with the number sequenbet 1, h;

Oy with the number sequenbet 1,hy, 1,
Onins, with the number sequenbet 1,hy, ..., hy— 1.

One then comes to neighboring points that belong tértakpiece:

v+V

(7) ax+a XV,

and indeed when one séts- h; + ... +h,=H:
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Oni+1 will go with the number sequence 1,
Oni+2 with the number sequence 2,

On+k+1 with the number sequenker 1,
On+k+2 with the number sequenker 1, 1,
Okt with the number sequenker 1,k;

Osksigssx,  With the number sequenker 1,ky, ..., ko .
One then comes to the neighboring point to the initedqa

v+V VV+V

ax+ax' +ax ¥ ,

etc.
We further define that the branch that is defined Byshould have the following
multiplicities at the neighboring point3y, ..., Oy, O+, ...:

the multiplicityv atOq, ..., On,
the multiplicity v, atOns1, -y Oy s

the multiplicityve  at Q... .y s -+ On,

likewisev, atOn+1, +..5, Onak
likewise Vg1 atOn+ict1, -5 Opyper »

etc.
Formula (6) of the previous paragraph now yields:

Theorem 2. The intersection multiplicity of two branches atgGequal to the sum of
the products of the multiplicities of the two brhas at O and at the neighboring points
to O that are common to them.

The first neighboring point consists of two branciw®se power series begins with
ax, i.e., the branches with well-defined tangents Gat It will depend upon a
continuously-varying parametar

Neighboring points lik&s, ..., On1, whose number sequengg [, ...) consists of
only one natural numbgy, are calledree neighboring pointsbecause any of them can
be varied continuously while fixing the neighboring points threcede them. In order to
make that clear with an example, we consider the nerigi point O, (under the
assumption that > 1). It will consist of all branches whose develemts begin with:

ax+ 0x".
Here, the coefficient of® (which only occasionally has the value zero) is camtisly-
varying. Corresponding statements are true for all pd@is..., On, as well as for
On+1, .-+, Onske1 , €tC. By contrash.o, ..., Oy are not free, since wheb, ..., Onsq are
fixed they will be determined exclusively by arithmetic datéhey depend upon the



§ 55. Neighboring points. 239

i : . +
existence of the second term in the development (1jfendalue of its exponen\f—\/,
v

but not, however, on the value of the coefficieaisof this term. Such non-free
neighboring points are callesétellite pointof the last preceding free neighboring points.

Problems. 1. Nothing but free, simple neighboring poi®s O,, ... to O belong to a linear branch.
2. On a quadratic branch:

+1
Yo X+@XC+ ... tag X +au X 2 tag X+ .,

the double poinDO is first followed bys — 1 free two-fold, neighboring point3,, ..., Os , then a free,
simple pointO,, a simple, satellite poirds.;, and finally, nothing but free, simple neighboring poidts,
Os:3, --. For an ordinary cusp, one will hase 1.
3. From a certain number onward, all neighboring pao@® and a branch will be free and simple.
4. W, V, ..,V > v, v, ...,Vv), sop > 1, then the terms in the series (1) that havexherent

VD - - .
VRV will be calledcharacteristic terms. There are finitely many of them. The associateé fr

neighboring points are the ones that follow satellite gsammediately.

If one considers more closely the multiplicitiesvy, ..., vs, ... of a branch at the
neighboring point®y, ..., On+1, ..., On+1, ... that were defined above then one will see
that there are two possibilities for a neighboring p@inwith the multiplicityvi:

Either: The next neighboring poif..; has the same multiplicitys; one then calls
On+1 thefollowerto O, .

Or: On+1 has a smaller multiplicityi+1 ; due to (4) or (5), one of the two equations:

(8a) Vi =g M+1 Vi,
(8b) Vi = V+1

will then be true. In these casé&s, will next be followed byg neighboring point©n.1,
.., Oniq With the multiplicity vi+1 , and then in the case (8a), another one with the
multiplicity vi:2 . All of these points will be called ttiellowers(*) of O, .

If the first follower On.1 belongs to the number sequenge i, ..., p;) then the
followers ofO, will be given, in any case, by the number sequences:

(p’ Py ... pl)a
(p’ pla rey pJ’ 1)1
P, P1, -+, P 2),_

the sequence will then be established, until it leaves kranch under scrutiny.
Therefore, ifO,:« belongs to the followers @, on a branch then the same thing will be
true on any other branch that goes throGghOn.1, ..., Onsk .

The relations (8) now vyield the following theorem, whis also trivially true in the
case of a single follower of the same multiplicity:

() ENRIQUES: “Punti prossimi.” ZARISKI: “proximate pdis”
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Theorem 3. The multiplicity of @ on a branchj is equal to the sum of the
multiplicities of the followers to (onj.

Theorem 3 is also true when one takes the @aimstead o0, .
If one considers only those followers that simultarsiypbelong to a second brangh

then the equality sign must be replaced &ith
Problems. 5. If one represent, Oy, O,, ... graphically by a succession of points along a piece-wis

linear path, where one makes a kink at the pOjjat any time wherO;;; has a smaller multiplicity tha®,
(see Figure) then the followers @f will be the pointO,.;, and

O @) in the event that the latter is a kink-point, the pointd follow
°3_2' it up to the next kink-point (inclusive) or up to the nepdef
> O; Ou.s =0 point (exclusive). If the characteristic point (cf.oPr3) — that

1 Hel =4 is, the free point that immediately follows the satelpoints —

Os is specially marked (in the figure, by a circle) then caa

1 immediately realize the graphical representation tbé

following points, and with the help of Theorem 3, graphy
1 ascertain the multiplicities, v, ..., v, by starting with the last

onev,= 1. The number sequengg f., ..., Pj+1) that belongs
to a neighboring point will give how many steps tha¢ onust take in order to arrive at this neighboring
point from a point likeD or Oy .

6. Complete graphical representations, in the senpeobfem 5, for the branchgs= x*? andy =
x"® and indicate the multiplicity of each point.

Theorem 4. If the sequence of neighboring pointg, @,, ... on a branch were
truncated arbitrarily at @, then there would always be a curve that possesses only a
single branch at O, goes through,O.., On, but not through @:1, and has multiplicity
one at @,, while the follower of @on this branch would be free.

Proof. One first computes the sequence of multiplicities,, ..., v; so the branch
can be defined backwards while startingrat 1, on the basis of the relations (8). The
exponents of the series development of the brandhwiéstablished by these numbers.
One determines the coefficients such that the requiiedl ipiece of the sequence agrees
with the given branch. The coefficient of the nexim (that belongs to the free followers
of Om) can be chosen freely, but must not be chosen tegbal to the corresponding
coefficients of the given branch (or a conjugate onehe $equence will then be
truncated with that term. This truncated power seatigsogether with its conjugatey,

.., a, will determine an algebraic curve:

Y-a)y-a)...(y—w) =0
that will satisfy all of the demands.
We now go on to the consideration of curves that pessegeral branches at the

point O. If we define the multiplicity of such a curve ateaghboring pointO, to O to be
the sum of the multiplicities dD, on the different branches of the curve, as long @g th
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containOp, then it will be clear that Theorem 2 is true foe thtersection multiplicity of
two arbitrary curves at a poifit
We now consider a fixed branghat O with the neighboring point®;, O,, ..., and

pose the question of whether there are cuB/dsat have given multiplicities, r1, ..., s
ato, Oy, ..., Os, resp. The followindollower relationswill be necessary in any case:

(9) rn 2 rn+1 + +rn+q y

in which the sum extends over all followéds.1, ..., Onq 0f On ONn3'. From Theorem 3,
inequality (9) will then be valid for each individual branchf C, and thus also fo€

itself.
However, the conditions (9) are also sufficient:

Theorem 5. If the follower relationg9) are fulfilled then there will be a curve C that
has the multiplicitiesg rq, ..., rsat O, Oy, ..., Os, resp.

Proof, by complete induction oy +r; + ...+ 1. If the sum is zero then everything
will be clear. Now, ifry, is the last non-zero numberr ..., rs then we will subtract the
multiplicities o, o1, ..., osfrom the given onesy, r, ..., rs, resp., for the curv€, that
exists according to Theorem 4, and for which one will have 1, g1 = ...= os = 0.
(Form = 0, one chooseS,, to be an arbitrary line through that does not contagt.)

The follower relations will, in fact, be true withd equality sign for this cun@n:

(10) P = Prmss + .. + O o <m).

It will follow from (9) and (10) by subtraction that:

(rh—oh) 2 (Frnsr —Pher) + ..o+ [(neg — Oheg) (n<m).

However, this inequality is also true o= m, since the right-hand side will be zero
then. Therefore, from the induction assumption, theile be a curveC' with the
multiplicitiesro — o, ..., rs—0s. The curveC,, = C + C' will then fulfill the conditions
that were posed.

The multiplicities of the curveS,, that were used in the proof at the pol@<,, ...,
Om might now be computed rigorously with:

o S o X R,

From Theorem 2, a curve with the prescribed multipliettier, ..., rswill then have the
intersection multiplicity withCp, :

(11) On=roLOmo +r10m+ ...+ 'm Onm m=0,1,..9,
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in the event that it does not have another neighboring poicommon withC, other

than Oy, ..., O . However,C, depends upon one free parameter, and for a general
choice of that parameter, the expression (11) will g€ the precise intersection
multiplicity.

Conversely:If the intersection multiplicity of C with £(m = 0, 1, ..., 9 IS
represented byl1l) for a general choice of the parameters that enter infah@n C will
have the multiplicitiesot ry, ...,rsat O, Q, ..., Os, resp.

One gets the proof with nothing further by complete indumctins. The assertion is
clear fors= 0, and ifrg, ry, ..., 's-1 agree with the multiplicities o then the same thing
will be true from the last of equations (11).

For everym, the curves of a fixed degree that have an interseatigtiplicity with
Cn that is> gy, for a general choice of the parameters that enterG,, , wheread, is
given by (11), will define dinear family. Substituting the series development of the
single branch ofC, into the equations fo€ and setting the coefficients of the terms
whose order are ¢, equal to zero will then yield linear conditions foe ttoefficients of
C. Now, if a curveC belongs to this linear family for each= 0, 1, ...,sthen all of the
linear conditions that were mentioned will be satisferat] one will say that the cure
has thevirtual multiplicities 6, r1, ..., rsat O, O, ..., Os. The true — oeffective—
multiplicities T, ..., T, can be in part larger and in part smaller than the Vidoes;

however, they must still satisfy the inequalities:

Ao+ Lot ... T Onm = Om.

Problems. 7. Show that the follower relations are fulfilledewhone prescribes that téold pointO

has the multiplicity — 1 and that each-fold neighboring point has the multiplicity — 1.

8. Explicitly exhibit the linear conditions for theeafticients of the curve€ with given virtual
multiplicities for the case in which the given brarfehs an ordinary cusp (say= x*? and the virtual
multiplicities are given by:

r=3, ri=2, rp=1

8 56. The behavior of neighboring points under Cremona transfonations.

We would like to investigate how the sequence of neighggointsO, Oy, Oy, ... to
a pointO on a branch behave under the quadratic, Cremona transformation:

) { $o:4ii =N, 4101414

Mo ,=¢€,:{£:¢&

that was defined in 8§ 25, @ is the vertex (1, 0, 0), and the tangent to the branobt a
side of the coordinate triangle.

As in 8§ 25, any curvd(s7) = 0 will correspond to a curvg({) = 0 under the
transformation, where the forgwill be defined by:
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) (22220 202)=232d3% % 2

Any branchz with the starting poin© will also correspond to a branghwhose starting

point lies on the opposite side gf= 0. If {(7), {1(7), {(7) are the power series for the
branch;’ then:

3) (1) = (1) &(7), (1) = (1) Qo). 72(7) = Go(D) Sa(7)

will be the power series for the brangch
We now consider the intersection multiplicity oetbranch; with the curvef = 0

under the assumption that the branch does not lie ormuhe. This multiplicity is
defined to be the order of the power sef{es(17),/71(7),772(7)). If one substitutes (3) here
and employs (2) then one will obtain the power series:

()" Q1) &) (<ol D, 4u(1), ().

Since (i(71) and &(7) do not vanish forr = 0, the order of this power series will be
equal to the order of:

(1) Qu(1)° 9(4o(1).41(1), &2 D) = 172(D)" 9(4o(7), 42(D), (D)),

so it will be equal to the intersection multiplicity g = 0 with 3, plusr times the
intersection multiplicity of the ling, = 0 with3. The latter multiplicity will be precisely
the order of the branch(or the multiplicity of the poin© on the branch), while r will
be the multiplicity ofO on the curvé = 0. We then have:

Theorem 6. The intersection multiplicity of the branghwith a curve C is equal to
the intersection multiplicity of the transformed brantiwith the transformed curve’'C
plus the product of the multiplicities of C apdt O.

Let the successive neighboring pointsQ@n 3 be Oy, O, ... The multiplicities of
at O, Oy, Oy, ... might be denoted bw, r1, ro, ..., resp., and the multiplicities & at
these points by, o1, 0, ..., resp. Let the intersection multiplicity 6fandj; beA, and

let that ofC' and;' be/\’. Theorem 6 then yields the formula:

(4) A=N+pmro.
With the help of Theorem 6, we now prove:

Theorem 7. Under the transformatiofil), the successive neighboring pointg O,
.<s Om, ... to O on the branch will go to O, O, ..., O, resp., where Ois the

m-11

starting point of the transformed brangh, and O], ..., O

m-1

are the successive
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neighboring points to Oonj'. If 3 has the multiplicitiess ro, ..., rmat O, Q, Oy, ...,
Onm, resp., thery’ will have the multiplicities« ro, ...,rmat 0, O, ..., O, resp.

We prove the theorem f@, under the assumption that it is true @, ..., Om1 .
One will see that the proof is also true for 1.

We chooseC to be the curves, that exists according to Theorem 4, which has the
multiplicities o, o1, ..., pmat O, Q, ..., On, resp., witha, = 1. From the induction
assumptionC' will have the multiplicitiesoy, o, ..., a1 atO’, O/, ..., O _,, resp. Let

m-2 1
the neighboring point that follow®;,_, on the curveC’ be O, _,, and let the multiplicities
of 3> andC at O, ber and p,. From Theorem 2 (8 55), the intersection multiplicity

of 3 andC will be equal to:
5) N=mro+ori+...+0nrm,

while, on the other hand, from Theorem 6, it will be edqoal

N=pr,+/N\,
(6) { 0°0

=Pt O N O

where the terms + ... refer to possible further neighmgopoints afteiO; , that;' andC

can still have in common.
A comparison of (5) and (6) yields:

() P = Tl + ..

Sincepm and p;, are positive, it will then follow from (7)r,, > 0 if and only ifry, >
0. That meansg' goes through the neighboring poi@f_, if and only ify goes through

Om . The neighboring poir®,, — i.e., the totality of all branches throu@h — then goes
to, in fact, the totality of branches throu@l), under the transformation.

As we know, there exists a certain freedom in thecehof curvesC,, , since the
follower of Oy, onCyy, is free. The curve€,, have just one branch. We now choGs®
be a curveC,, and choosg to be the single branch on another cuygethat indeed has

O, O, ..., Onin common with the first curve, not the follower ©f, ! One will then
haverm = gn =1 in (7). It will then follow that only one termmcanter into the right-
hand side and that it will have the value one. Theeefdhe differentC,, contain O,

only simply and have no further neighboring point in cammwith each other pasf, .

We now again consider an arbitrary bragcthroughO, O, ..., On. A suitably-
chosen curv€,, will have onlyO, O, ..., Om in common withy, and the transforme@;,
will also have onlyO', Q[, ..., O;_, in common withy'. Therefore, the terms + ... on the
right-hand side of (7) must be dropped; furthermore, one saigt, = o, = 1. It will
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then follow thatr, = r,; i.e., the multiplicity ofy" at O,,_, will be equal to that of atOp,.
With that, the induction is complete.

Since the numbers of all neighboring pointstavill be reduced by one under the
singly-quadratic Cremona transformation (1), one camvex every arbitrary
neighboring point Ox into an ordinary point byk-times repeated quadratic
transformations. One can even define the neighboringgyas NOETHER originally
did, by these repeated transformations.

The same method of investigation can also be appliedrititramy Cremona
transformations (i.e., birational transformations oé ghlane into itself). Especially
simple are the results for the case in which thesfommation is one-to-one at the
locationO, or more precisely, in which the rational forms foe thansformation, as well
as for its inverse, remain meaningful at the loca@ofat the corresponding locati@i,
resp.). For this case, in place of Theorem 6, onehaile the simple statement that the
intersection multiplicity o andC does not change under the transformation; in place of

(3), one will then have:
N=N.

The method of proof that was applied to Theorem 7 wahtiield the simple result
that the sequence of neighboring poi@is O,, ... to O onj will be transformed into the

sequence of neighboring poin®, O,, ... toO" onj', while the multiplicities of onO,

O1, Oy, ...will remain unchanged.

In place of algebraic curves and curve branches, anebdng into consideration
general, analytic curves(x, y) = 0 in the vicinity of a fixed poin© and analytic curve
branches in these investigations. The methods of pndfresults will not change
essentially. One will obtain — e.g: the theorem that the concepts of a neighboring point
and the multiplicities of branch at the neighboringnp®ito O will remain unchanged
under analytic transformations that are single-valm@tiuniquely, analytically invertible
in the neighborhood d®.

Problem. 1. Carry out the proof that was suggested.



