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FOREWORD 
 

 From the lectures in the worthwhile Ergebnisse textbook “Algebraic Surfaces” by O. 
ZARISKI, the thought of writing an introduction to algebraic geometry took on a definite 
form for me.  Such an introduction should contain the “elements” of algebraic geometry 
in the classical sense of the word; i.e., it should provide the necessary foundations for 
going further into the deeper theory.  Also, Herr GEPPERT, who intended to write a book 
on algebraic surfaces in this collection, emphasized the necessity of such an introduction, 
to which he could then refer, and encouraged me to write this book. 
 What I learned in the course of my own very substantial lectures on algebraic curves 
and surfaces proved useful to me in the process of writing; I can therefore employ a 
lecture preparation that was prepared by Dr. M. DEURING and Dr. V. GARTEN.  Thus, 
much material was borrowed from my series of articles in the Mathematischen Annalen 
“Zur algebraischen Geometrie.” 
 In the choice of material, it was not the aesthetic viewpoint, but ultimately the 
distinction between being necessary and being dispensable that was definitive.  
Everything that is derived from the “elements” without qualification will have to be, I 
hope, assumed. The theory of ideals, which led me to my earlier investigations, seems to 
be dispensable for laying the groundwork; the far-reaching methods of the Italian school 
will take its place.  For the explanation of the methods and extension of the problem 
statement substantial individual geometric problems would have to be addressed; for that 
reason, I have also sought to restrict that extension to a certain degree here, since 
otherwise the scope would easily grow without bound. 
 I was assisted in the correction process by Herren Prof. H. GEPPERT, Dr. O.-H. 
KELLER, Dr. H. REICHARDT, and Prof. G. SCHAAKE, who also pointed out many 
improvements, and for this they have my deepest gratitude.  Herr Dr. REICHARDT made 
the sketches of the figures.  The publisher has given the book their well-known 
impeccable attention, which is the culmination of my most special wish. 
 
 Leipzig, February 1939. 
  B. L. VAN DER WAERDEN  
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Introduction  
 

 Algebraic geometry came about through the organic blending of the highly developed 
theory of algebraic curves and surfaces in Germany with the higher-dimensional 
geometry of the Italian school; function theory and algebra both share its cradle.  The 
creator of algebraic geometry in the strict sense of the term was MAX NOETHER; its 
final unfolding into a mature flower was the work of the Italian geometers SEGRE, 
SEVERI, ENRIQUES, and CASTELNUOVO.  A second blossom was the algebraic 
geometry of our own time, since topology has placed itself at our service, while algebra 
was simultaneously developing from the examination of its foundations. 
 This little book will not go any further into these foundations.  The algebraic basis for 
algebraic geometry is now flourishing to such an extent that it would not be possible to 
present the theory “from the top down.”  Starting from an arbitrary ground field, one can 
develop the theory of algebraic manifolds in n-dimensional space just like the theory of 
fields of algebraic functions in one variable.  By specialization, one would then obtain 
plane algebraic curves, space curves, and surfaces.  The connection with function theory 
and topology will subsequently present itself when one chooses the ground field to be the 
field of complex numbers. 
 This type of presentation will not be chosen here.   Rather, the historical development 
will be followed consistently, although one also considers the examples in a somewhat 
abbreviated and distorted form.  We will therefore always strive to first make the 
necessary intuitive material available before we develop the general notions.  First, we 
treat the elementary structures in projective spaces (linear subspaces, quadrics, rational 
normal curves, collineations, and correlations), then the plane algebraic curves (with 
occasional glimpses of surfaces and hypersurfaces), and then manifolds in n-dimensional 
space.  At first, the ground field will be the field of complex numbers; later, the use of 
more general fields will be introduced, but always ones that include the field of all 
algebraic numbers.  We will seek to do this in each case, while drawing upon the most 
elementary lemmas possible, even when the theorems in question themselves prove to be 
special cases of more general theorems.  As an example, I cite the elementary theory of 
point groups for curves of third order, in which use is made of neither elliptic functions 
nor the fundamental theorem of NOETHER. 
 This manner of presentation has the advantage that the beautiful methods and results 
of the classical geometers such as PLÜCKER, HESSE, CAYLEY, and CREMONA, up 
until the school of CLEBSCH, once again take their rightful place.  Moreover, the 
connection with the function-theoretic way of looking at things is likewise present from 
the onset in the theory of curves, in which the notion of the branch of a plane algebraic 
curve will be clarified with the help of PUISEUX’s series development.  The oft-heard 
reproach that this method is not purely algebraic is easily refuted.  I know full well that 
the theory of valuations makes possible a beautiful and general algebraic foundation, but 
it seems to me that for a correct understanding it is important that the reader be first 
familiar with PUISEUX’s series and have an intuition for the singularities of algebraic 
curves. 
 In chapter 4, we first encounter the general theory of algebraic manifolds.  At the 
center of this, we have their decomposition into irreducible manifolds, along with the 
notions of general points and dimension. 



2 Introduction 

 An important special case of an algebraic manifold is given by the algebraic 
correspondences between two manifolds, to which chapter 5 is dedicated.  The simplest 
theorem concerning irreducible correspondences − in particular, the principle of constant 
count − generates numerous applications.  Chapter 6 introduces the essential feature of 
the Italian way of treating things: viz., the linear families that lie at the basis of the theory 
of birational invariants of algebraic manifolds.  In chapter 7, the fundamental theorem of 
NOETHER will be presented, along with its n-dimensional generalizations and various 
corollaries, among which is the BRILL-NOETHER remainder theorem.  Finally, chapter 
8 will give a brief outline of theory of points that are “infinitely close” to plane curves. 
 Whoever is somewhat familiar with n-dimensional projective geometry (chap. 1) and 
the basic notions of algebra (chap. 2) can just as well begin the lectures in this book with 
either chapter 3 or chapter 4; both of them are independent of each other.  Chapters 5 and 
6 refer to only chapter 4 in an essential way.  The first time that we will use everything 
that preceded our discussion will be in chapter 7. 



CHAPTER ONE. 
 

Projective geometry of n-dimensional spaces. 
 

Only the first seven sections and §10 in this chapter will be required throughout this 
book.  The remaining sections have only the goal of introducing intuitive material and 
simple examples that can be treated without the aid of higher algebraic concepts, and can 
therefore prepare one for the general theory of algebraic manifolds later on. 

 
 

§  1.  The projective space Sn and its linear subspaces. 
 
For quite some time, it has been found to be convenient to extend the domain of real 

points to that of complex points in the projective geometry of planes and spaces.  
Whereas a real point of the projective plane will be given by three real homogeneous 
coordinates (y0, y1, y2) that are not all zero and can be multiplied by a factor λ ≠ 0, a 
“complex point” will be given by three complex numbers (y0, y1, y2) that are also not all 
zero and can be multiplied by a factor λ ≠ 0 . 

One can define the notion of a complex point in a purely geometric way, as in VON 
STAUDT (1).  It is, however, much simpler to define the notion algebraically and to 
understand a complex point of the plane to be simply the totality of all triples of numbers 
(y0 λ, y1λ, y2 λ) that can be obtained from a fixed triple of complex numbers (y0, y1, y2) by 
multiplying with an arbitrary factor λ.  Analogously, a complex point of space will be 
defined to be the totality of all proportional quadruples of numbers.  These algebraic 
definitions will be established in the sequel. 

Once one has been so far removed from geometric intuition in this way, by regarding 
points as purely algebraic structures, nothing else stands in the way of making an n-
dimensional generalization.  One understands a complex point of n-dimensional space to 
mean the totality of all (n+1)-tuples of numbers(y0 λ, y1λ, …, yn λ) that can be obtained 
from a fixed (n+1)-tuple of complex numbers (y0, y1, …, yn) that are not all zero by 
multiplying with an arbitrary factor λ.  The totality of all points that are defined in this 
way is called the n-dimensional complex projective space Sn. 

One can pursue this generalization even further.  Namely, one can consider an 

arbitrary commutative field K, in the sense of algebra, in place of the field of complex 

numbers, a field that we shall only assume is, like the field of complex numbers, 

algebraically closed; i.e., that any non-constant polynomial f(x) over the field K can be 

completely decomposed into linear factors.  Examples of algebraically closed fields are: 
the field of algebraic numbers, the field of complex numbers, and the field of algebraic 
functions of k indeterminates.  All of these fields lead to projective spaces that agree in 
their properties so closely that we can treat all of them the same way. 

                                                
 (1) Cf., the thorough presentation of G. JUEL, Vorlesungen über projective Geometrie, Berlin 1934, 
which appears in this collection. 
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It is now convenient to relate the notion of projective space to that of vector space.  

An n-tuple (y1, …, yn) of elements of K is called a vector.  The totality of all vectors is 

called the n-dimensional vector space En.  Vectors can be added, subtracted, and 

multiplied by field elements in a well-known way.  Any m vectors
1

v , …,
m

vare called 

linearly independent when 
1

vγ1 + …+ 
m

vγm = 0 always implies that γ1 = … = γm = 0 .  Any 

n linearly independent vectors 
1

v , …,
m

v  span the entire vector space; i.e., any vector v may 

be written as a linear combination 
1

vγ1 + …+ 
n

vγn = v .  The totality of all linear 

combinations of m linearly independent vectors
1

v , …,
m

v  (m ≤ n) is called an m-
dimensional linear subspace Em of the vector space En .  The dimension m is the number 

of linearly independent basis vectors
1

v , …,
m

v  (2). 

In particular, a one-dimensional subspace consists of all vectors 
1

vλ, where 
1

v  = (y0, 
y1, …, yn) is fixed vector that is different from zero.  A point of the projective space Sn, 
with the definition above, is nothing but a one-dimensional subspace, or ray, in En+1.  Sn 
is then the totality of all rays in the vector space En+1. 

A subspace Sm of Sn can now be defined as the totality of all rays in a subspace Em+1 
of En+1.  Therefore, Sm is comprised of all points y whose coordinates depend linearly 

upon the coordinates (y0, y1, …, ym) of m + 1 linearly independent points
0

y , …,
m

y  : 
 

(1)   yk = 
0

ky γ0 + 
1

ky γ1 + …+
m

ky γm   (k = 0, 1, …, n) . 

 
The field elements γ0, …,γm can be referred to as homogeneous coordinates (or 

parameters) in the subspace Sm .  The points
0

y , …,
m

y are the basis points of this 
coordinate system.  Thus, since every point of the subspace is determined by m + 1 
homogeneous coordinates γ0, …,γm the notation Sm for the subspace will be naturally 
justified.  The one-dimensional subspaces are called lines, the two-dimensional 
subspaces, planes, and the (n – 1)-dimensional subspaces are called hyperplanes in Sn.  
An S0 is a point. 

Formula (1) will thus still be valid when m = n, when Sm agrees with all of the space 
Sn.  The parameters γ0, …,γm will then be new coordinates for the point y that are 
connected with the old coordinates by the linear transformation (1).  We now write it as 
follows (3): 

yk =
i

k iy γ∑ . 

 

                                                
 (2) For the proof of this, see perhaps B. L. VAN DER WAERDEN: Moderne Algebra I, § 28 or II, § 
105. 
 (3) Here and in the sequel, a Σ-sign with no other givens means that one sums over any two identical 
indices (preferably one above and one below). 
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Since the points
0

y , …,
m

y were assumed to be linearly independent, one can solve these 

equations for the γi : 
γi =

k
i kyϑ∑ . 

 
The γi are called general projective coordinates (in the plane: triad coordinates, in space: 

tetrad coordinates).  In particular, if
i

ky 
 
 

is the identity matrix then the γk will be the 

original yk . 
d independent homogeneous linear equations in the coordinates y0, y1, …, yn define a 

Sn− d in Sn; as is well known, their solutions can then be linearly obtained from n – d + 1 
linearly independent solutions.  In particular, a single linear equation: 

 
(2)    u0 y0 + u1 y1 + … + un yn = 0 
 
defines a hyperplane.  The coefficients u0, u1, …, un are called the coordinates of the 
hyperplane u.  They are determined only up to a common factor λ ≠ 0, since equation (2) 
may be multiplied by precisely such a factor. 

We denote the left-hand side of equation (2), once and for all, by uy, or (u y).  We 
then set: 

(u y) = uy =
i

iu y∑ = = u0 y0 + u1 y1 + … + un yn . 

 
Any linear space Sd in Sn be defined by n – d linearly independent linear equations.  If 

Sd is determined by the points
0

y , …,
d

y then the d + 1 linear equations: 
 

0

( )u y = 0 , 
1

( )u y = 0 , …,( )
d

u y = 0 
 

in the unknowns u0, u1, …, ud will have precisely n – d linearly independent solutions.  
Any of these solutions defines a hyperplane, and the intersection of these n – d 

hyperplanes is an Sd that includes the points 
0

y ,
1

y , …,
d

y , and therefore must be identical 
with the given Sd . 
 

Problems.  1.  n linearly independent points
1

y , …,
n

y determine a hyperplane u.  Show that the 

coordinates uν of this hyperplane are proportional to the n-rowed sub-determinants of the matrix 
i

ky 
 
 

. 

2.  n linearly independent hyperplanes u1, …, un determine a point y.  Show that the coordinates yν of 
this point are proportional to the r-rowed sub-determinants of the matrix( )k

iu . 

3.  Being given the basis points
0

y , …,
m

y in a space Sm does not uniquely determine the coordinates γ0, 

…, γm of a point y, since one can multiply the coordinates of the basis points by arbitrary non-zero factors 
λ0, …, λm .  Show that the coordinates for each point y are uniquely determined up to a common factor λ ≠0 
as long as one is given the “unity point” e, which has the coordinates γ0 = 1, …, γm = 1.  Can the unity point 
in Sm be chosen arbitrarily? 
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4.  Show that an Sm−1 in Sm is given by a linear equation in the coordinates γ0, …, γm . 
5.  Show that the transition from one system of parameters γ0, …, γm in an Sm to another parameter 

system (defined by other basis points) for the points of the same Sm can be mediated by a linear parameter 
transformation: 

iγ ′ = k
i kα γ∑ . 

 
 

§ 2.  The projective combination theorems. 
 
From the definitions in §1, there immediately follow the mutually dual combination 

theorems: 
 
I. m + 1 points in Sn that do not line in an Sq with q < m determine an Sm . 
 
II. d hyperplanes in Sn that have no Sq with q > n – d in common determine an Sn−d . 
 
We now prove, in addition that: 
 
III. When p + q ≥ n, an Sp and an Sq in Sn will have a linear space Sd of dimension d ≥ 

p + q – n for their intersection. 
 
Proof:  Sp is defined by n – p independent linear equations, and Sq is defined by n – q 

linear equations.  Collectively, that is 2n – p – q linear equations.  If they are independent 
then they will define a space of dimension n – (2n – p – q) = p + q – n .  If they are 
dependent then one can omit some of them, and the dimension of the intersection space 
will go up. 

 
IV. An Sp and an Sq that have an Sd in common lie in an Sm with m ≤ p + q – d . 
 
Proof.  The intersection space Sd is determined by d + 1 linearly independent points.  

In order to determine Sp, one must add p – d more points to these d + 1 points in order to 
obtain p + 1 linearly independent points.  In order to determine Sq one must likewise add 
q – d more points.  All of these: 

 
(d + 1) + (p – d) + (q – d) = p + q – d + 1 

 
points will determine an Sp+q−d, in the event that they are linearly independent.  The Sm 
that is thus determined with m ≤ p + q – d will contain all of the points that determine Sp, 
as well as the ones that determine Sq; hence, it will contain Sp and Sq themselves. 

If there is no intersection space Sd then the same argument will teach us that: 
 
V. An Sp and an Sq always lie in an Sm with m ≤ p + q + 1 . 
 
With the help of III, one can sharpen IV and V to: 
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VI.  An Sp and an Sq whose intersection is an Sp (is empty, resp.) lie in a uniquely 
determined Sp+q−d (Sp+q+1, resp.). 

 
Proof.  First, let the intersection be Sd .  From IV, Sp and Sq lie in an Sm with m ≤ p + q 

– d .  On the other hand, from III: 
 

d ≥ p + q – m, hence,  m ≥ p + q – d . 
 

From this, it follows that m = p + q – d.  If Sp and Sq were contained in yet another Sm 
then the intersection of these two Sm would have a smaller dimension, which, from what 
we just proved, would not be possible. 

Now, let the intersection be empty.  From V, Sp and Sq lie in an Sm with m ≤ p + q + 
1.  If m ≤  p + q then, from III, Sp and Sq would have a non-empty intersection.  Hence, 
one must have m = p + q + 1.  Just as in the first case, one further gets that Sm is unique. 

The space Sp+q−d (Sp+q+1, resp.) that is defined by VI is called the join of Sp and Sq. 
 
Problems.  1.  Derive the combination axioms for the plane S2, the space S3, and the space S4 by 

specializing I, II, III, VI. 
2.  If one projects all of the points of a space Sm in Sn onto another space

mS′  in Sn, in which both are 

linked by a given Sn−m−1 and the coupling space Sn−m always intersects
mS′ , then there will be a one-to-one 

map of the points of Sm onto the points of
mS′ , assuming that Sn−m−1 has points in common with either Sm 

or mS′ . 

 
§ 3.  The duality principle.  Further concepts.  Double ratio. 

 
A space Sp is called incident with an Sq when either Sp is contained in Sq or Sq is 

contained in Sp.  In particular, a point y will be incident with a hyperplane u when the 
relation (u y) = 0 is valid. 

Since a hyperplane, like a point of Sn, is given by n + 1 homogeneous coordinates u0, 
…, un (y0, …, yn, resp.), which can be multiplied by a factor λ ≠ 0, and since the 
incidence relation (u y) = 0 involves both u and y in the same way, one will then have the 
n-dimensional duality principle, which says that in any correct statement about the 
incidence of points and hyperplanes, these two notions may be interchanged without 
influencing the validity of the statement.  For example, in the plane, the notions of points 
and lines, and in space, the notions of points and planes can be interchanged in any 
theorem that treats only the incidence of points and lines (planes, resp.). 

One can also formulate the duality principle as: Any figure that consists of points and 
hyperplanes may be associated with a figure that consists of hyperplanes and points and 
exhibits the same incidence relations as the original one.  Namely, one can associate any 
point y with a hyperplane u with the same coordinates y0, …, yn , and any hyperplane u 
may be associated with a point with the same coordinates u0, …, un .  The relation (u y) = 
0 will thus remain true.  The association itself is a particular correlation or duality.  The 
space of points (u0, …, un ) is also called the dual space to the original Sn . 

We would now like to investigate what a linear space Sm corresponds to under duality.  
Sm will be given by n – m independent linear equations in the point coordinates y.  If one 
now regards the y as the coordinates of a hyperplane then one has n – m independent 
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linear equations that express that the hyperplane y shall go through n – m linearly 
independent points.  These n – m points determine an Sn – m – 1, and the linear equations 
state that the hyperplane y shall be contained in the space Sn – m – 1 .Thus, any Sm 
corresponds to an Sn – m – 1 under duality, and the points of Sm correspond to the 
hyperplanes through Sn – m – 1 . 

Now let Sp be contained in an Sq, i.e., let all of the points of Sp be likewise points of 
Sq.  Dually, Sp corresponds to an Sn – p – 1 and Sq to an Sn – q – 1, such that all hyperplanes 
through Sn – p – 1 likewise go through Sn – q – 1 .  However, that means that Sn – q – 1 is 
obviously contained in an Sn – p – 1 .  The relation of inclusion of linear spaces is thus 
inverted under duality. 

On the basis of this consideration, one can apply the principle of duality to not only 
figures that consist of points and hyperplanes, but also figures that consists of arbitrary 
linear spaces Sp, Sq, …, as well as theorems concerned with such figures.  Duality 
associates any Sp with an Sn – p – 1 , and all incidence relations for Sp remain true: When Sq 
is contained in Sp, the Sn – p – 1 that corresponds to Sp will be contained in the Sn – q – 1 that 
corresponds to Sq. 

 
A series of derived notions arise from the basic notions of projective geometry that 

were defined in § 1, and we shall summarize the most important ones here. 
The totality of points on a line is called a (linear) family of points.  The line is called 

the carrier of the family of points.  Dual to this is the totality of all hyperplanes in Sn that 
contain an Sn−2 .  One calls this totality a pencil of hyperplanes (n = 2: pencil of rays, n = 
3: pencil of planes) and the Sn−2 , the carrier of the pencil.  For the pencil, just as for the 
family of points, one will have a parametric representation: 

 
(1)    uk = λ0 s

k + λ1 t
k . 

 
The totality of points in a plane S2 is called a planar point field with the carrier S2.  Dual 
to this is the notion of a net or a bundle of hyperplanes in Sn that contain an Sn−3 as a 
carrier of the bundle.  The parametric representation of a net is: 
 

uk = λ0 r
k + λ1 s

k + λ2 t
k . 

 
The totality of all linear spaces through a point y in Sn is called a star with carrier y. 

If u, v, x, y are four different points on a line, and one sets: 
 

(2)    0 1

0 1

,k k k

k k k

x u v

y u v

λ λ
µ µ

= +
 = +

 

then one calls the quantities: 

(3)    
x y

u v

 
 
 

= 1 0

0 1

λ µ
λ µ

 

 
the double ratios of the four points u, v, x, y.  The double ratio obviously does not change 
when the coordinates of u or v, or x or y are multiplied by a factor λ ≠ 0 ; thus, it depends 
only upon the four points, not their coordinates. 
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One also defines the double ratio of four hyperplanes in a pencil (or perhaps four 
lines in a planar pencil of rays) by precisely the same formulas (2), (3). 

 
Problems.  1.  Under duality, the intersection of two linear spaces corresponds to the join, and 

conversely. 
2.  Prove the following transformation principle by projecting onto an Sn in Sn + 1 from a point of Sn + 1: 

Any valid theorem concerning the incidence of points, lines, …, hyperplanes in an Sn corresponds to an 
equally valid theorem concerning the incidence of lines, planes, …, hyperplanes of a star in Sn + 1. 

3.  Prove the formulas: 
 

   u v

x y

 
 
 

 = x y

u v

 
 
 

 = v u

y x

 
 
 

 = y x

v u

 
 
 

, 

 

   x y

u v

 
 
 

y x

u v

 
 
 

 = 1 , 

 

   x y

u v

 
 
 

 + x u

y v

 
 
 

 = 1 . 

 
4.  If a, b, c, d are four points in a plane, no three of which lie in a line, then their coordinates can be 

normalized so that one has: 
ak + bk + ck + dk = 0 . 

 
The “diagonal point” p, q, r of the “complete rectangle” abcd, i.e., the intersection point of ab with cd, of 
ac with bd, and ad with bc, can then be represented by: 
 
     pk = ak + bk  = − ck – dk  
     qk = ak + ck  = − bk – dk  
     rk = ak + dk  = − bk – ck . 
 

5.  With the help of the formulas, and with the notation of Problem 4, prove the Complete Rectangle 
Theorem, which says that the diagonal points p and q lie harmonically with the intersection points s and t of 
pq with ab and bc, i.e., the double ratio is: 

p q

s t

 
 
 

 = 1 . 

 
6.  How does the theorem in the projective geometry of the plane that is dual to the Complete 

Rectangle Theorem read? 
 
 

§ 4.  Multiply-projective spaces.  Affine space. 
 
The totality of pairs of points (x, y), where x is a point of an Sm and y is a point of an 

Sn, is the doubly-projective space Sm,n.  A point of Sm,n is thus a pair of points (x, y).  
Analogously, one defines triply and multiply-projective spaces.  One considers the 
number m + n to be the dimension of the space Sm,n. 

The goal of the introduction of multiply-projective spaces is to treat all problems in 
manifolds of point pairs, point triples, etc., or equations in which more homogeneous 
families of variables appear in a manner that is analogous to the corresponding problems 
in manifolds of points and homogeneous equations in one family of variables. 
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One understands an algebraic manifold in a multiply-projective space Sm,n to mean 
the totality of points (x, y, ….) in the space that satisfy a system of equations F(x, y, …) = 
0 that is homogeneous in each family of variables.  The solution of a single equation F(x, 
y, …) = 0 of degree numbers g, h, … will define an algebraic hypersurface in Sm,n of 
degree numbers g, h, … 

A hypersurface in an ordinary projective space Sn has only one degree number: viz., 
the degree or order of the hypersurface.  A hypersurface of degree 2, 3, or 4 is also called 
a quadratic, cubic, or bi-quadratic hypersurface.  A hypersurface in S2 or S1,1 is called a 
curve, and a hypersurface in S3, a surface.  A curve of degree 2 in S2 is called a cone, and 
a hypersurface of degree 2 is generally called a quadric. 

One can map the points of a doubly-homogeneous space Sm,n to the points of an 
algebraic manifold Sm,n in an ordinary projective space Smn+m+n in a one-to-one manner.  
To this end, one sets: 
(1)   zik = xi yk  (i = 0, 1, …, m; k = 0, 1, …, n) 
 
and regards the (m + 1)(n + 1) elements zik, which are not all zero, as the coordinates of a 
point in Smn+m+n .  Conversely, one can determine the x and y uniquely from the zik , up to 
a common factor λ .  Hence, when perhaps y0 ≠ 0, from (1), the x0, …, xm will be 

proportional to z00, z10, …, zm0 .  The zik will be coupled by the 
1 1

2 2

m n+ +  
  
  

 equations: 

 
(2)    zik zjl = zil zjk   (i ≠ j, k ≠ l). 
 

The manifold Sm,n will thus be defined by a system of 
1 1

2 2

m n+ +  
  
  

 quadratic 

equations.  They are called rational, since their points admit the rational parametric 
representation (1). 

The simplest case of the map (1) is the case m = 1, n = 1.  Equations (2) will then 
define a quadratic surface in three-dimensional space: 

 
(3)     z00 z11 = z01 z10  , 
 
and any non-singular quadratic equation (viz., an equation of a quadric with no double 
points) can be brought into the form (3) by a projective transformation.  We thus have a 
map of point pairs of second degree to the points of an arbitrary double-point-free quadric 
before us.  This map will be used in the sequel, in order to study the properties of points, 
lines, and curves on the quadric. 
 

Problems.  1.  Two systems of linear spaces Sm (Sn, resp.) lie on the manifold Sm,n, which can be 
obtained when one holds the x or the y constant [special case: two families of lines on the surface (3)].  Any 
two spaces in different families have a point in common, and any two spaces in the same family have no 
point in common. 

2.  An equation f(x, y) = 0 that is homogeneous of degree l in x0, x1 and homogeneous of degree m in y0, 
y1 defines a curve Cl,m of degree (l, m) on the quadratic surface (3).  Show that a line on the surface has 
degree (1, 0) or (0, 1), a planar section of the surface has degree (1,1), and an intersection with a quadratic 
surface has degree (2, 2). 
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3.  A curve of degree (k, l) on the quadratic surface (3) will intersect a plane at k + l points, in general.  
Prove this assertion, and then make the expression “in general” more precise by enumerating all of the 
possible cases.  (Write down the equation of the curve and that of a planar section, and then eliminate x or y 
from these equations.) 

 
If one omits all points of the hyperplane y0 = 0 from the projective space Sn then what 

remains will be the affine space An .  One has y0 ≠ 0 for the points of affine space, but one 
can multiply the coordinates by a factor such that y0 = 1.  The remaining coordinates y1, 
…, yn – viz., the inhomogeneous coordinates of the point y – will then be determined 
uniquely.  Any point of the affine space An is thus in one-to-one correspondence with a 
system of n coordinates y1, …, yn . 

If one distinguishes a point (0, …, 0) in affine space then it will become a vector 
space.  There is then a one-to-one correspondence between points (y1, …, yn) and vectors 
(y1, …, yn).  (Conversely, one can likewise regard any vector space as an affine space.) 

Vector spaces and affine spaces are simpler from an algebraic standpoint than 
projective spaces, since one can recognize their points to be in one-to-one 

correspondence with n elements y1, …, yn of the field K.  Geometrically, however, the 

projective space Sn is simpler and more interesting. 
For the algebraic treatment of the projective space Sn it is frequently convenient to 

refer it back to an affine space or a vector space.  From the above, there exist two 
possibilities: Either one regards the points of Sn as rays in a vector space En+1, or one 
omits the hyperplane y0 = 0 from Sn , and thus obtains an affine space of dimension n.  
One also calls the hyperplane y0 = 0 the imaginary hyperplane, and the points with y0 ≠ 0, 
the real points of Sn.  By an appropriate renumbering of the coordinates y0, y1, …, yn, one 
can make any point y into a real point, as long as one yi is  ≠ 0. 

One may also go from the points of a multiply projective space to the points of a 
space whose points can be represented by a one-to-one correspondence with 
inhomogeneous coordinates x1, …, xm, y1, …, yn by omitting the points with x0 = 0, the 
points with y0 = 0, etc., and therefore we will again recognize this space to be an affine 
space.  A doubly projective space Sm,n yields an affine space Am+n in this way.  This is the 
basis by which we can consider Sm,n to be an (m+n)-dimensional space. 

Under the substitution x0 = 1, y0 = 1, a homogeneous equation in the homogeneous 
coordinates x, y goes to a not-necessarily-homogeneous equation in the remaining x and 
y.  One then defines an algebraic manifold (hypersurface, resp.) in an affine space to be 
the totality of all solutions of an arbitrary system of algebraic equations (one such 
equation, resp.) in the inhomogeneous coordinates. 

Conversely, one can change any inhomogeneous equation in x1, …, xm, y1, …, yn into 
a homogeneous one by the introduction of x0, y0, ….  Any algebraic manifold in an affine 
space An (Am+n+…, resp.) thus belongs to at least one algebraic manifold in the projective 
space Sn (in the multiply projective space Sm+n+…, resp.). 
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§ 5.  Projective transformations. 
 
A non-singular linear transformation of the vector space En+1: 
 

(1)    iy′=
0

n
k
i kyα∑  

 
takes any linear subspace Em to another linear subspacemE′ ; in particular, any ray E1 goes 

to a ray 1E′ .  It thus induces a one-to-one transformation of the points of the projective 

spaces Sn that can be given by the formulas: 
 

(2)    ρ iy′=
0

n
k
i kyα∑      (ρ ≠ 0). 

 
Such a transformation (2) is called a projective transformation, or also a linear 
correlation. 

A projective transformation takes lines to lines, planes to planes, and Sm to mS′ , and 

leaves the incidence relations (e.g., Sm lies in Sq or Sq contains Sm) unchanged.  The 
converse of this theorem is not true: Not every one-to-one point transformation that takes 
lines to lines (and therefore also planes to planes, etc) is a projective transformation.  A 
counterexample is the anti-linear transformation ky′ = ky  that takes any point to its 

complex conjugate point.  The most general one-to-one point transformation that takes 
lines to lines is given by the formula: 

ρ iy′=
0

n
k
i kSyα∑ , 

 

in which S is an automorphism of the ground field K. 

From (2), a projective transformation is given by a non-singular quadratic matrix A 
= ( )k

iα .  Proportional matrices A and ρA (ρ ≠ 0) define the same projective 

transformation.  The product of two projective transformations is again a projective 
transformation, and its matrix is the product matrix.  The inverse of a projective 
transformation is again a projective transformation, and its matrix is the inverse matrix  
A−1.  The projective transformations of Sn thus define a group, namely, the projective 

group PGL(n, K) (1). 

Projective geometry in Sn is the study of the properties of constructions in Sn that 
remain invariant under projective transformations. 

If one introduces general projective coordinates z andz′  for the points y andy′ , as in 
§ 1, by a coordinate transformation: 

                                                
 (1) PGL = projective general linear.  For the properties of this group, see, B. L. VAN DER WAERDEN, 
Gruppen von linearen Transformationen.  Berlin 1935. 



 § 5.  Projective transformations. 13 

(3)     
,l

k k l
j

i i j

y z

y z

β
γ

 =
 ′ ′=

∑
∑

 

 
then, on the basis of (2) and (3), the iz′  will be again linear functions of the zl: 

 

(4)     jzρ ′ =
0

n
l
j ld z∑ , 

with the matrix: 

D = ( )l
id = C−1AB . 

 
In particular, if the same coordinate system is chosen for both y andy′ then C = D and: 
 

D = B−1AB . 
We now prove the following: 

 
Main theorem about projective transformations:  A projective transformation T of 

the space Sn is uniquely determined when one is given n + 2 points 
0

y ,
1

y , …, 
n

y ,
*

y ,  and 

their image points 
0

T y ,
1

T y , …, 
n

T y ,
*

T y, assuming that no n + 1 of the points y or their 
image points lie in a hyperplane. 

 

Proof.  We choose the points 
0

y ,
1

y , …, 
n

y ,
*

y  to be the basis points of a new 

coordinate system for the point y of Sn, and likewise choose the points 
0

T y ,
1

T y , …, 
n

T y ,
*

T y to be the basis points for a coordinate system for the image point Ty.  The 
matrix D of the transformation T will then be necessarily a diagonal matrix: 

 

D =

0

1

n

δ
δ

δ

 
 
 
 
 
 

⋱
. 

 

The condition that the transformation T shall take the given point 
*

y  with the coordinates 

zk to the given point 
*

T y with the coordinatesz′ now says that, from (4): 
 
(5)    jzρ ′ = δj zj    (j = 0, 1, …, n). 
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Since the z, like the z′ , are different from zero, from (5), the δj are established uniquely, 
up to a common factor r.  However, since a factor ρ does not enter into (4), the 
transformation T will be determined uniquely. 
 

One will derive the following corollary from this proof: Two projective 
transformations are identical only when their matrices ( )k

iα  and ( )k
iα′  differ from each 

other by only a numerical factor λ: ( )k
iα = λ ( )k

iα′ . 

 
The definition of a projective transformation and resulting proof will remain the same 

when one considers, not a projective transformation of Sn into itself, but a projective 
transformation from a space Sn onto another nS′ .  In particular, we would like to consider 

projective transformations from Sm onto mS′  when both spaces are contained in the same 

larger space.  Whereas we used the term “the coordinates yk” in our definition, we must 
now replace these coordinates with parameters γ0, …, γm .  In that case, the formula for a 
projective transformation will then read: 

 

iργ ′= k
i kα γ∑ . 

We now have the: 
 

Projection theorem.  Let Sm and mS′  be two subspaces of the same dimension in Sn.  

A third subspace Sn− m− 1 has points in common with either Sm or mS′ .  If the point y of Sm 

is projected onto mS′  in such a way that it is linked with an Sn− m− 1, as well as an Sn− m , 

which always intersect mS′ , then that projection will be a projective transformation. 

 
Proof.  Sn− m− 1 has the equations: 
 

(6)    
0

( )u z = 0 , 
1

( )u z = 0, …, ( )
m

u z = 0 . 
 

All points of the join Sn− m are linear combinations of y and n – m points 
1

z ,
2

z , …,
n m

z
−

 of     
Sn− m− 1 for which (6) is true.  This is true, in particular, for the intersection point y′  of   

Sn− m  with mS′ .  One then has: 

(7)    ky′ = λ yk +
1

1 kzλ +
2

2 kzλ + … +
n m

kn m zλ
−

− . 

 
Since λ ≠ 0, one can choose λ = 1.  It now follows from (6) and (7) that: 
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(8)    

0 0

0

1 1

1

( ) ( )

( ) ( )

( ) ( ) .
m m

m

u y u y

u y u y

u y u y

β

β

β

 ′ = =

 ′ = =



 ′ = =

⋯⋯⋯⋯⋯

 

 
By means of the parametric representation of Sm , the yk, and therefore also the βi, will be 
linear combinations of the parameters γ0, …, γm of the point y: 
 
(9)     βi =

k
i kδ γ∑ . 

 
Likewise, the ky′ , and therefore also the βi, will be linear combinations of the 

parameters0γ ′ , …, mγ ′ of the pointy′ : 
(10)     βi =

k
i kε γ ′∑ . 

 
Since Sm and mS′ have no point in common with Sn− m− 1, the linear transformations (9) and 

(10) will be invertible if the linear forms on the right-hand side never assume the value 
zero at the same time.  Hence, the kγ ′  will be linear functions of the βi and the βi are 

linear functions of the γl, so they will be linear functions of the γl (and conversely), and 
the projection theorem is proved. 
 

A projective transformation of Sm to mS′  that one constructs by way of the projection 

theorem is called a perspectivity. 
The most important theorems of projective geometry follow from the projection 

theorem and the main theorem above, viz., DESARGUE’s theorem and the theorem of 
PAPPUS (cf., the problems below). 

 
Problems.  1.  A projective transformation of a line to itself that leaves three distinct points fixed is the 

identity. 
2.  A projective relation between two intersecting lines that takes the point of intersection to itself is a 

perspectivity. 
3.  DESARGUE’s Theorem.  If the six distinct points A1, A2, A3, B1, B2, B3 in space or in the plane lie 

in such a way that the lines A1B1, A2B2, A3B3 are distinct and go through a point P then A2A3 and B2B3, A3A1 
and B3B1, A1A2 and B1B2 will intersect in three points C1, C2, C3 that lie on a line. 

 (Project the sequence of points PA2A2 onto PA3A3 from C1, then onto PA1A1 from C2, and finally back 
to PA2A2 from C3, and then apply Problem 1.) 

4.  Theorem of PAPPUS.  If one has six distinct points of a plane, A1, A2, A3, A4, A5, A6, such that the 
points with the odd and even indices lie on distinct lines then the three intersection points, P, of A1A2 and 
A4A5, Q, of A2A3 and A5A6 , R, of A3A4 and A6A1 , will all lie in a line. 

(Project the sequence of points A4A5 onto A4A6 from A1, then onto A4A6 from A3, and finally back to 
A4A5 from R, then apply Problem 1.) 

5.  A projective relationship between two skew lines g, h in a space S3 is always a perspectivity.  
(Connect the three points A1, A2, A3 of g with their image points B1, B2, B3 on h and construct a line s 
through a third point of A1B1 that intersects A2B2 and A3B3.  Project g onto h from s.) 
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6.  Give a construction for a projective transformation that takes three given points of line to three 
given points of another line on the basis of the projection theorem. 

7.  Construct the projective transformation that is uniquely determined by the main theorem that would 
take five given points A, B, C, D, E in the space S3 to the same five points geometrically.  (Project the space 
onto CD from AC and apply Problem 6 to the resulting sequence of points.  Likewise, project onto BD from 
AC, etc.) 

 
 

§ 6.  Degenerate projectivities.  Classification of projective transformations. 
 
In addition to one-to-one projective transformations, it is occasionally useful to 

consider degenerate projective transformations.  These will be defined by the same 
formula (2) (§5), in which, however, the matrix A =( )k

iα has rank r ≤ n .  The point y may 

therefore belong to a space Sn and the image pointy′ , to a space Sm .  For certain points y 

all of the coordinatesky′ will be zero; these points y, which define an Sn− m, will therefore 

have no well-defined image pointy′ .  From (2) (§5), all of the image pointsy′  will be 

linear combinations of n points αk with coordinates k
iα , of which, r of them will be 

linearly independent.  The image pointsy′  thus define a space Sr−1 in Sm .  Hence: 
 
A degenerate projective transformation of rank r ≤ n maps the space Sn to an image 

space Sr – 1 , except for a subspace Sn – r , for whose points, the transformation will be 
undefined. 

One obtains an example of a degenerate projective transformation of rank r when one 
projects all of the points of Sn from an Sn – r in Sn onto an Sr – 1 that does not meet Sn – r ; 
the projection is undefined for the points of Sn – r .  For the remaining points y and their 
projectionsy′ , one has formulas of the form (8) and (10), as in §5, with m = r – 1, which 

one can once more solve forkγ ′ .  The parameterskγ ′ of y thus depend linearly upon the β1, 

…, βm, and these, in turn, depend linearly upon y0, …, yn .  Thus, one has, in fact: 

(1)     iγ ′ = k
i kyα∑ , 

in which the matrix( )k
iα  has rank r = m + 1. 

One can simplify the formulas somewhat more, by considering the βi to be 
coordinates in Sm, instead of thekγ ′ .  This is allowed, because, from (10) § 5, the βi are 

coupled to thekγ ′  by an invertible linear transformation.  The formula for the projection 

then reads simply: 

βi = 
i

u y 
 
 

=
i
k

ku y∑ . 
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In this expression, the 
i

u  are completely arbitrary hyperplanes that are subject to only the 

condition that they determine an Sn – m – 1; i.e., 
i
ku

 
 
 

 is an arbitrary matrix (with m + 1 

rows and n + 1 columns) of rank m + 1.  From this, it follows that: Any degenerate 
projective transformation of rank r = m + 1 implies a projection of the space Sn, except 
for a subspace Sn – m – 1, onto a subspace Sm of Sn that is distinct from that subspace. 

A projective transformation T of Sn into itself that has the matrix A has, as we saw, 
the matrix D = B−1AB relative to another coordinate system.  By a suitable choice of B, 
one can, as is well known (1), now bring this matrix into “Jordan normal form,” whose 
diagonal sequence of box matrices has the form: 

(2)     

1 0 0

0 1

0

1

0 0

λ
λ

λ

 
 
 
 
 
 
  

⋯

⋱ ⋮

⋮ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱

⋯ ⋯

, 

in which there is a “characteristic root” λ in the main diagonal, whereas in the slanted 
row above the main diagonal there is an arbitrary non-zero number, which can be chosen 
to be 1.  If the box matrices in (2) have degree (= number of rows) 1 then there are no 
ones above the diagonal, and the boxes will contain nothing but the element λ.  From 
SEGRE, the JORDAN normal form can be characterized by a schema involving whole 
numbers that give the degrees (= number of rows) in the boxes.  If more boxes appear 
with the same root λ then their degrees will be enclosed in a round bracket.  The total 
SEGRE symbol will ultimately be enclosed in a square bracket.  Thus, there are − e.g., in 
the case of the plane (n = 2) − the following possible normal forms: 

1

2

3

0 0

0 0

0 0

λ
λ

λ

 
 
 
 
 

,
1

1

2

0 0

0 0

0 0

λ
λ

λ

 
 
 
 
 

,
1

1

1

0 0

0 0

0 0

λ
λ

λ

 
 
 
 
 

,
1

1

2

1 0

0 0

0 0

λ
λ

λ

 
 
 
 
 

,
1

1

1

1 0

0 0

0 0

λ
λ

λ

 
 
 
 
 

,
1

1

1

1 0

0 1

0 0

λ
λ

λ

 
 
 
 
 

. 

Their SEGRE symbols are: [111], [(11)1], [(111)], [21], [(21)], [3]. 

If one allows the root λ to have the value 0, as well, then classification above will 
also include the degenerate projective transformations.  We thus restrict ourselves to one-
to-one transformations in the following discussion. 

                                                
 (1) See, perhaps, B. L. VAN DER WAERDEN: Moderne Algebra II, § 109.  For a purely geometric 
derivation, see ST. COHN-VOSSEN: Math. Ann. Bd. 115 (1937), 80-86. 
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The JORDAN normal form is very closely connected with the question of points, 
lines, etc., that are invariant under T.  Namely, each box (2) with e lines is associated with 
the following basis vectors in the vector space: 

  An “eigenvector” v1 with Av1 = λv1 

  a vector v2 with Av2 = λv2 + v1 

  …………………………………………. 

etc.,  up to ve with Ave = λve + ve − 1  . 

The ray (v1) is therefore invariant under the transformation T, just as the spaces (v1, v2), 
(v1, v2, v3), etc., are.  In projective space, this therefore yields an invariant point, an 
invariant line through this point, an invariant plane through this line, etc., up to an 
invariant space Se – 1.  Linear combinations of eigenvectors with the same eigenvalue are 
again eigenvectors.  If we thus assume that for an eigenvalue λ there are, perhaps, g 
boxes Ar then there will also be g linearly independent eigenvectors of eigenvalue λ, 
which will span a subspace Eg.  The rays E1 of Eg are each invariant under the 
transformation T, and together they define a pointwise invariant linear subspace Sg – 1 in 
Sn.  The same thing will again be true for every characteristic root λ.  This transformation 
does not possess any other invariant points, since the matrix A has no other eigenvectors. 

There are some special cases of interest: 
 
1.  The “general case” [111…1], in which D is a diagonal matrix with roots λ1, …, λn 

in the diagonal that are all different.  The invariant points are the vertices of the 
fundamental simplex of the new coordinate system and the invariant linear spaces are the 
edges of this simplex. 

 
2.  The “central collineations,” which are characterized by the property that all of the 

points of a hyperplane transform to themselves.  Their SEGRE symbols are [(111…1)1] 
or [(211…1)].  Besides the points of the invariant hyperplane, there is also an invariant 
point − the “center” – with the property that all of the linear spaces through the center are 
invariant.  The center does not exist in the case [(11…1)1], and in the other cases it will 
always be in the invariant hyperplane. 

 
3.  The projective transformations with period 2 − or “involutions” − whose squares 

are the identity.  Since the characteristic roots of the matrix A2 are the squares of the 
characteristic roots of A, and since, on the other hand, A2 = µE, A can only have two 

characteristic roots λ = µ± .  Since one can multiply A by a factor, one can assume that 

λ = 1.  If one now squares the boxes (2) then that will yield that only one-rowed boxes 
appear.  D will then be a diagonal matrix with the elements + 1 and – 1.  There will be 
two spaces Sr and Sn – r – 1, whose points will each remain invariant.  The line that 
connects a non-invariant point y to its image point y′  will meet Sr and Sn – r – 1 at two 
points that lie harmonically with y andy′ .  Thus, we will assume that the characteristic of 
the basic field is not equal to 2. 
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Problems.  1.  Give the invariant points and invariant lines for each type of projective transformations 
of the plane. 

2.  A central collineation is given completely by the data of an invariant hyperplane Sn – 1 and the image 
points x′ andy′  of two points x and y, such that xy andx y′ ′ must intersect Sn – 1.  Give a projective-
geometric construction of a collineation from these data. 

3.  Under a central collineation, the connecting line from a non-invariant point y with its image point 
y′  will always go through the center. 

4.  An involution in the line always possesses two different fixed points, and there exist point pairs (y, 
y′ ) that lie harmonically with these fixed points. 

 
 

§ 7.  PLÜCKERian Sm -coordinates. 
 
Let an Sm in Sn be given by m + 1 points.  As an example, we take m = 2 and m + 1 

points x, y, z.  We now define: 

πikl = ±∑ xi yk zl =
i k l

i k l

i k l

x x x

y y y

z z z

. 

 
The quantities πikl are not all = 0, since the points x, y, z are linearly dependent.  
Switching any two indices will change the sign of πikl .  If two indices are equal then πikl = 
0.  Thus, there are just as many essentially different, not necessarily vanishing, πikl as 
there are combinations of n + 1 indices taken 3 at a time.  For an arbitrary m the number 

of πikl will be equal to 
1

1

n

m

+ 
 + 

. 

We now show that the πikl depend upon only the plane S2, not upon the choice of 
points x, y, z in it, up to a proportionality factor.  Namely, ifx′ , y′ , z′ are three other 
points that determine the plane then, sincex′ , y′ , z′ belong to the linear space that is 
determined by x, y, z, one will have: 

 
   kx′ = xk α11 + yk α12 + zk α13 , 

   ky′ = xk α21 + yk α22 + zk α23 , 

   kz′ = xk α31 + yk α32 + zk α33 , 

 
and therefore, from the multiplication theorem for determinants: 
 

i k l

i k l

i k l

x x x

y y y

z z z

′ ′ ′
′ ′ ′
′ ′ ′

=
i k l

i k l

i k l

x x x

y y y

z z z

11 12 13

21 22 23

31 32 33

α α α
α α α
α α α

, 

or: 

iklπ ′ = πikl α . 
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Secondly, we show that the plane S2 is determined by the quantities πikl .  To that end, 
we state necessary and sufficient conditions for a point ω of the plane S2.  They are based 
in the fact that all four-rowed sub-determinants of the matrix: 

 

0 1

0 1

0 1

0 1

n

n

n

n

x x x

y y y

z z z

ω ω ω 
 
 
 
 
 

⋯

⋯

⋯

⋯

. 

 
vanish.  If one develops such a sub-determinant along the first row then one will obtain 
the condition: 
(1)    ωi πjkl − ωj πikl + ωk πijl  − ωl πijk = 0 . 
 
We can regard condition (1) as the equations for the plane S2 in the point coordinates ωi .  
However, a linear space is determined uniquely by its equations. 

Precisely the same equations are valid for arbitrary m (0 ≤ m < n).  Since the πik…l of 
the space Sm are determined uniquely, we can regard them as the coordinates of Sm .  
They are called PLÜCKERian Sm-coordinates.  They are homogeneous coordinates, 
since they are determined only up to a factor λ and not all of them can be equal to zero. 

If we hold all of the indices up to the last one fixed, but let λ range through all values, 
then we can regard these πghl as the coordinates of a point πgh .  This point will belong to 
the space S2, since it is: 

πghl =
g h g h g h

l l l
g h g h g h

y y z z x x
x y z

z z x x y y
+ + . 

 
The vector πgh is then a linear combination of the vectors x, y, and z .  Furthermore, one 
has πghg = 0 and πghh = 0 .  The point πgh thus belongs to the space Sn – 2 with the equations 
ωg  = ωh  = 0 . Sn – 2 is one side of the basic coordinate simplex.  The point πgh is therefore 
the intersection point of the space S2 with the side Sn – 2 of the coordinate simplex. 

Naturally, all of this will be valid only when not all of the πghl (g and h fixed, l = 0, 1, 
…, n) are equal to zero.  If this is the case then one can show that S2 and Sn – 2 will have at 
least one S1 in common, and conversely.  We shall not go into this any further. 

Relations exist between the πikl .  We obtain them when we express the idea that the 
point belongs to the space S2 in any case; hence, the equations (1) must be satisfied.  This 
yields: 
(2)   πghi πjkl − πghj πikl + πghk πijl  − πghl πijk = 0 . 
 

Now, if we let πikl be any quantities whatsoever that are not all zero then the sign will 
change when we switch two indices and relations (2) are satisfied.  We would like to 
prove that the πikl will then be the PLÜCKERian coordinates of a plane. 

In order to prove this, we assume, perhaps, that π012 ≠ 0 .  Three points are defined by 
way of: 

     xi = π12i , 



 § 7.  PLÜCKERian Sm-coordinates . 21 

     yi = − π02i , 
     zi = π01i , 

 
and they span a plane with the PLÜCKERian coordinates: 
 

pikl =
2

012

i k l

i k l

i k l

x x x

y y y

z z z

π − ⋅ . 

 
(We will likewise see that p012 ≠0, which means the three points are linearly 
independent.)  For this plane, one likewise has relations (2) in the form: 
 
(3)    pghi pjkl − pghj pikl + pghk pijl  − pghl pijk = 0 . 
 

We now compute the p01i : 
 

  p01i =
0 1

2
012 0 1

0 1

i

i

i

x x x

y y y

z z z

π − ⋅ =
120 12

2
012 021 02

01

0

0

0 0

i

i

i

π π
π π π

π

− ⋅ − −  

 

   = 012 012 01
2
012

iπ π π
π

= π01i . 

 
One likewise finds that: 

p02i  = π02i    and p12i = π12i . 
 
We thus see that all of the pghi for which the two indices g and h have the values 0, 1, 

or 2 agree with the corresponding πghi .  In particular, p012 = π012 ≠  0 .  We would now 
like to prove that, in general, one has: 
(4)     pghi = πghi . 
It follows from (2) and (3) that: 
 
(5)    πghi = 1

012π − (πgh0 πi12 − πgh1 πi02 + πgh2 πi01 ), 

(6)   pghi = 1
012p − (pgh0 pi12 − pgh1 pi02 + pgh2 pi01 ). 

 
Now, when one of the indices g or h equals 0, 1, or 2 then the right-hand side of (5) 

will agree with that of (6).  Hence, πghi  = pghi , as long as one of the indices g, h has the 
value 0, 1, or 2.  Moreover, it then follows that when none of the indices g, h has the 
value 0, 1, or 2 the right-hand sides of (5) and (6) will also agree.  Hence, (4) will be true 
in general. 

We summarize:  Necessary and sufficient conditions for the quantities πikl to 
represent PLÜCKERian coordinates of a plane in Sn are that they do not collectively 
vanish, they change sign under the exchange of any two indices, and they satisfy relations 
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(2).  If − say − π012 ≠ 0 then all of the πikl will be rationally expressible in terms of π12i , 
π02i , π01i . 

All of the considerations up to now will be valid with no essential changes for the 
PLÜCKERian coordinates of Sm in Sn .  In the general case, relations (3) read as follows: 

 

(7)   
0 1 0 1 0 1 0 1 1

0
d d m m

m

g g g a a a g g a g g g a aλ λ λ
π π π π

− +
−∑⋯ ⋯ ⋯ ⋯ ⋯

= 0, 

 
and in the case of a line (m = 1): 
 
(8)    πgi πkl − πgk πil + πgl πik = 0. 
 

For further details on Sm-coordinates, in particular, for the introduction of dual Sm-
coordinates πij…l with n – m indices and their reduction to the πikl , I refer the reader to the 
textbook of R. WEITZENBÖCK (1) 

If one regards the 
1

1

n

m

+ 
 + 

 quantities πij…l as the coordinates of a point in a space SN : 

 

N =
1

1

n

m

+ 
 + 

− 1  

 
then the quadratic relations (7) will define an algebraic manifold M in this space.  
Conversely, any point of this manifold M will correspond to a unique subspace Sm in Sn . 

The simplest interesting case of this map is the case of the lines S1 in the space S3 .  In 
this case, there is only one relation (7), namely: 

 
(9)    π01 π23 + π02 π31 + π03 π12 = 0 . 
 
It defines a hypersurface M of degree 2 in S5 .  The lines of the space S3 may thus be 
mapped in a one-to-one manner to the points of a quadratic hypersurface in S5 . 

A pencil of lines will correspond to a line in M under this map.  If x is the center of 
the pencil and y = 1 2y yλ λ′ ′′+  is the parametric representation of one of the lines in the 

plane of the pencil that does not go through x then one will obtain the PLÜCKERian 
coordinates of all lines of the pencil in the form: 

 
   πkl  = 1 2 1 2( ) ( )k l l l k kx y y x y yλ λ λ λ′ ′′ ′ ′′+ − +  

    = 1 2( ) ( )k l l k k l l kx y x y x y x yλ λ′ ′ ′′ ′′− + −  

    = 1 2 1kl klλ π λ π′ ′′+ . 

 
Conversely: If a line πkl = 1 2 1kl klλ π λ π′ ′′+  lies completely in M, hence, the πkl satisfy the 

condition (9) identically in λ1, λ2, then it will follow with no further assumptions that: 

                                                
 (1) WEITZENBÖCK, R.:  Invariantentheorie, pp. 117-120.  Groningen, 1923. 
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01 23 02 31 03 12 23 01 31 02 12 03π π π π π π π π π π π π′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′+ + + + + = 0 , 

 
or, in determinant form, when one sets: 
 

klπ ′ = k l l kx y x y′ ′ ′ ′− , and klπ ′′ = k l l kx y x y′′ ′′ ′′ ′′− , 

one will have: 

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

x x x x

y y y y

x x x x

y y y y

′ ′ ′ ′
′ ′ ′ ′
′′ ′′ ′′ ′′
′′ ′′ ′′ ′′

= 0 . 

 
The points , , ,x y x y′ ′ ′′ ′′  will thus lie in a plane, so the two lines π ′  and π ′′  will intersect 
and will thus determine a pencil.  One of the lines that lie in M will thus always 
correspond to a pencil of lines. 

A plane in the space S3 will be obtained when one couples a fixed point P with all of 
the points of a line RS by means of lines.  If this plane is to lie in M completely then, at 
the very least, the lines PR, PS, and RS must lie in M.  The points P, R, S must therefore 
correspond to three mutually intersecting lines π, ρ, σ in S3 that do not belong to a pencil.  
However, three such lines will either lie in a plane or go through a point.  If one now 
connects the line π with all of the lines of the pencil ρ σ by means of some pencil then 
the totality of lines so obtained will either be a line field or a star of lines.  Conversely, 
any line field or star of lines can be obtained in that manner.  Hence, there are precisely 
two types of planes that lie in M: One type corresponds to a field of lines and the other, to 
a star of lines in S3.  Furthermore, FELIX KLEIN has proved the theorem: Any 
projective transformation of the space S3 into itself corresponds to a projective 
transformation of the space S5 that leaves the hypersurface M invariant, and in this way, 
one also obtains all projective transformations of M into itself that do not exchange the 
two families of planes (1). 

 
Problems.  1.  The connecting space of an Sm with a point ω that lies outside of Sm has the 

PLÜCKERian coordinates: 
ρijk…l = ωi πjk…l − ωj πik…l + ωk πij…l + … + (−1)m + 1 ωl πijk…l. 

 
2.  The intersection of an Sm with a hyperplane u that is not contained in it has the PLÜCKERian 

coordinates: 
σk…l = o ui πik…l . 

 
3.  The condition for two lines π, ρ in the space Sn to intersect or coincide reads: 
 

πgi ρkl − πgk ρil  + πgl ρik + πkl ρgi − πil ρgk + πik ρgl = 0 . 
 
4.  A ruled surface in S3 (consisting of all lines that intersect three skew lines) corresponds to a conic 

section on M, namely, the section of M that contains a plane S2 in the space S5 . 

                                                
 (1) For the proof, cf., B. L. VAN DER WAERDEN: Gruppen von linearen Transformationen.  Ergebn. 
Math., Bd. IV, 2 (1935), § 7. 
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§ 8.  Correlations, null systems, and linear complexes. 

 
A (projective) correlation is an association of each point y in Sn with a corresponding 

hyperspace v in Sn, and its coordinates are given by: 
 

(1)    ρ vi = ik
k

k

yα∑ , 

in which the αik shall define a non-singular matrix.  The association is therefore one-to-
one; its inverse is given by: 

(2)    σ yk = ∑ βkl v
l , 

 
in which (βkl) is the inverse of the matrix (αik).  If the point y lies on a hyperplane u then 
one will have ∑ uk yk = 0, and it will follow from (2) that: 
 

∑∑ ukβkl v
l = 0, 

 
i.e., the hyperplane v will contain the star with the midpoint: 
 

(3)     xl = ∑ βkl u
k . 

 
Conversely, If the hyperplane v contains the star with the midpoint x then o vi xi = 0 , and 
it will follow from (1) that: 

(4)     ∑∑ αik xi
 yk = 0, 

 
and therefore the point y will lie in a hyperplane u with the coordinates: 
 

(5)     uk = ∑ αik xi . 
 

The product of two correlations is obviously a projective collineation.  The product of 
a collineation with a correlation is a correlation.  The projective collineations and 
correlations together thus define a group. 

Formulas (3), (5) define a second one-to-one transformation that takes hyperplanes u 
to points x, and which is connected with the original transformation (1), (2) by the 
following properties: If y lies in u then v will go through x, and conversely. 

We regard the associated transformations y ↔ v and  u ↔ x as an association that we 
also call a complete correlation, or a duality.  A complete correlation thus associates 
each point y in Sn with a hyperplane v and each hyperplane u with a point x in a one-to-
one way such that the incidence relations between points and hyperplanes thus remain 
valid. 

As in § 3, in which we considered a special correlation vi = yi, one proves that a 
correlation associates each subspace Sm of Sn with a subspace Sn – m − 1 and that the relation 
of inclusion is thus inverted. 
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A correlation, just like a projective transformation, is determined uniquely as long as 
the images of n + 2 given points, no n + 1 of which lie in a hyperplane, are known.  The 
proof is the same as the main theorem in § 5.  The construction of a correlation from this 
data can happen in the way that was suggested for projective transformations in Problem 
7 (§ 5). 

Two correlations, just like two projective transformations, are identical when and 
only when their matrices differ from each other by only a numerical factor λ: 

 

ikα ′ = λ αik . 

 
We now seek to determine the involutory correlations, in particular, i.e., the ones that 

are identical with their inverse correlations.  Since the inverse correlation to (1) will be 
given by formula (5), for an involutory correlation it is necessary and sufficient that: 

 
(6)     αki = λ αik

 ,               (λ ≠ 0). 
 
It will immediately follow from (6) that: 
 

αik = λ αki
 = λ2 αik, 

 
and since at least one αik ≠ 0, one will have: 
 

λ2 = 1. 
 
There are therefore two cases: the case λ = 1, for which the matrix (αik) is symmetric: 
 

αki = αik , 
 
and the case λ = − 1, for which the matrix is anti-symmetric: 
 
(7)          αki = − αik . 
 

In the first (symmetric) case one calls the correlation a polar system, or a polarity.  In 
this case, the symmetric matrix (αik) defines a quadratic form: 

 

∑∑ αik xi
 xk , 

 
and the hyperplane that is given by (1) is the polar of the point y relative to this form. 

By contrast, in the anti-symmetric case the correlation is called a null system, or a null 
correlation.  As is well known, a non-singular anti-symmetric matrix is possible only 
when the number of rows n + 1 in the matrix is even, hence, when the dimension n is 
odd.  It follows from (7), in particular, that αii = 0, and furthermore, that: 

 

ρ ∑ vi yi = ∑∑ αik yi
 yk = 0 ; 
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hence, the hyperplane v – viz., the null hyperplane of y – goes through the point y – viz., 
the null point of v. 

This latter property is also characteristic of the null correlation.  If a correlation 
associates each point y with a hyperplane that goes through y then that will be true for the 
point (1, 0. …, 0), from which it will follow that α00 = 0 .  Likewise, one shows that αii = 
0 for each i.  If one now makes the same argument starting with the point (1, 1, 0, …, 0) 
then it will follow that: 

α01 + α10 = 0 , hence,  α01 = − α10; 
 

similarly, one will again have αik = − αki . 
Along with the previously considered non-singular null correlations, we now also 

discuss the degenerate ones, for which the anti-symmetric matrix (αik) is singular, and 
correspondingly, the null hyperplanes of a point can be undetermined.  Two points x, y 
are called conjugate for a null system or polar system when one of them lies in the null 
(polar, resp.) hyperplane of the other one.  Equation (4) is definitive of this, and its 
meaning does not change when one exchanges x and y .  The conjugacy relation is 
therefore symmetric in the points x and y: When x lies in the null hyperplane of y then y 
will lie in the null hyperplane of x . 

We now consider the totality of all lines g that go through a point y and that lie in the 
(one, resp.) null hyperplane of this point.  If x is second point on such a line then (4) will 
be valid, from which (7) will also allow one to write: 

 
(8)     ik

i k

α
<
∑ (xi yk – xk yi ) = 0 . 

 
The bracketed quantities are the PLÜCKERian coordinates πik of the line g; (8) is 

then equivalent to: 
(9)     ik

i k

α
<
∑ πik = 0 . 

 
In this form, one sees that the character of the line g is completely independent of the 

choice of point y on the line.  One calls the totality of all lines g whose PLÜCKERian 
coordinates satisfy a linear equation (9) a linear line complex. 

Conversely, if one starts with a linear line complex (9) then all of the line complexes 
through a point y will lie in a hyperplane whose equation (8) will be given as long as (8) 
is not satisfied identically in x .  If one writes (8) in the form (4) with αik = − αki then one 
will again obtain equations (1) for the coordinates vk of the plane.  Hence: 

 
To each linear complex of lines (9) there belongs one (possibly degenerate) null 

system (1), and conversely, in such a way that the line complex through a point y will 
satisfy the null hyperplane of y precisely.  If the null hyperplane of y is indeterminate then 
all of the lines through y will be ray complexes, and conversely. 

 
The projective classification of the null system − and thus the linear complex, as well 

− is a very simple concern.  If P0 is a point whose null hyperplane is not indeterminate 
and P1 is a point that is not conjugate to P0 − i.e., does not lie in the null hyperplane of P0 
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− then the null hyperplane of P1 will likewise not be indeterminate, and since it does not 
go through P0, it will be different from P0.  Both null hyperplanes will therefore intersect 
in a space Sn – 2 .  The connecting line of P0P1 will touch the null hyperplane of P0 only at 
P0, and that of P1, only at P1, so it will have no point in common with Sn – 2 whatsoever. 

We now choose P0 and P1 to be the basic points of a new coordinate system, while 
the remaining points will be chosen from Sn – 2 .  If any two points in Sn – 2 are conjugate 
then we will choose P2, …, Pn arbitrarily: these points will therefore all be conjugate to 
each other, as well as to P0 and P1 .  If this is not the case then we will choose P2 and P3 
in Sn – 2 in such a way that they are conjugate to each other.  The null hyperplanes of P2 
and P3 do not include Sn – 2 ; hence, they will each intersect Sn – 2 in a Sn – 3 .  These two Sn – 

3 in Sn – 2 will be different, and they will thus intersect in an Sn – 4 , which (as before) will 
have no point in common with the connecting line P2 P3 . 

We then proceed.  The basic points P4, …, Pn are chosen in Sn – 4 .  If all of the points 
of Sn – 4 are mutually conjugate then we will choose P4, …, Pn arbitrarily in Sn – 4 , 
otherwise, we will choose P4 and P5 in such a way that they are not conjugate, and we 
construct the intersection of their polar hyperplane with Sn – 4, etc. 

We finally obtain a system of linearly independent basic points P0, P1, …, P2r – 1, …, 
Pn, in such a way that: 

P0 and P1, 
P2 and P3, 
…………. 

P2r − 2 and P2r − 1 , 
 

are not conjugate, and, by contrast, all of the remaining pairs of basic points are 
conjugate.  Therefore, α01, α23, …, α2r – 2, 2r – 1 are non- zero, and all of the other are zero.  
For a suitable choice of unit points, one will have α01 = α23 = … = α2r – 2, 2r – 1 = 1.  
Moreover, equation (2) for the line complex that is associated with the null system will 
read like: 

π01 + π23 + … + π2r – 2, 2r – 1 = 0 . 
 
The matrix (αik) has rank 2r (0 < 2r ≤ n + 1); hence, the number r is a projective invariant 
of the null system.  We thus conclude the projective classification of linear complexes 
with: 
 

The rank of the anti-symmetric matrix (αik) of a null system is always an even number 
2r.  When one is given the rank, the null system, and therefore also the associated linear 
complex, will be determined uniquely,  up to a projective transformation. 

 
In the case n = 1, there is only one null system: viz., the identity, which associates any 

point of the line with itself.  In the case n = 2, there are only singular null systems of rank 
2 that associate any point with its connecting line with a fixed point O.  The associated 
linear complex is a pencil of lines with center O. 

In the case of ordinary space (n = 3), there are singular (or special) linear complexes 
of rank 2 and regular (or non-special) linear complexes of rank 4.  A singular linear 
complex has the equation π01 = 0, and thus consists of all lines that intersect a fixed line, 
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namely, the axis of the singular complex.  A regular linear complex has the equation π01 
+ π23 = 0 and belongs to a non-singular null system. 

One obtains a non-singular null system in S3 by the following projective construction: 
Any vertex of a spatial pentahedron will be associated with the plane through it and two 
neighboring vertices.  These five planes might all be different from each other.  A 
correlation K is then determined by these five points and five associated planes.  It is a 
null correlation for which all pairs of consecutive vertices represent conjugate point pairs.  
Proof: There is at least one linear complex o αik πik = 0 that includes the 5 sides of the 
pentagon; these 5 sides then give only 5 conditions for the six quantities αik .  If Γ is such 
a complex then Γ will be non-singular when there is no axis that meets all 5 sides.  Thus 
Γ defines a null correlation.  The null plane of a vertex must include both of the faces that 
go through this vertex, since it is a line complex.  Hence, the null correlation in the 5 
points and 5 associated planes agrees with the correlation K, and is therefore identical 
with it. 

One obtains an intuitive picture of a null system when one subjects a chosen point to 
a uniform screwing motion (a translation along an axis a, coupled with a rotation about a, 
both with constant speed), and then associates each point y with the plane that is 
perpendicular to the velocity vector at this point.  When the axis a is assumed to be the z-
axis, and when ρ is the ratio of the translational to rotational velocity, one will find the 
equation for this plane to be: 

(x1 y2 – x2 y1) – ρ (x3 y0 – x0 y3) = 0 . 
 
In fact, this equation has the form of (8). 
 

Problems.  1.  Show that the equation for a non-singular null system can always be brought into the 
form (8) through an orthogonal coordinate transformation, and that any such null system is thus associated 
with a screw motion. 

2.  Extend Problem 1 to dimension 2n + 1 . 
3.  A null system o αik πik = 0 in S3 is special when and only when one has: 
 

α01 α23 + α02 α31 + α03 α12 = 0 ; 
 

 (9) will represent the condition for the line π  to intersect a given line in precisely this case. 
4.  A linear complex of rank 2 in Sn always consists of the lines that intersect a given Sn−2 . 
5. A null correlation determines not only a line complex of lines, but also (dual to that) a linear 

complex of spaces Sn – 2 that are the intersections of any two conjugate hyperplanes. 
 
 

§ 9.  Quadrics in Sr and the linear spaces that lie in them. 
 
In the sequel, we shall understand a quadric Qr-1 to be a quadratic hypersurface in a 

space Sr .  Thus, a quadric Q0 is a point pair, a quadric Q1 is a conic section, and a 

quadric Q2 is a quadratic surface.  We assume that the equation of a quadric takes the 

form: 

(1)     
, 0

r
jk

j k

a
=
∑ xj xk = 0   (ajk = akj ). 
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If we intersect the quadric (1) with a line: 
(2)     xk = λ1 yk + λ2 zk , 
 
in which we substitute (2) in (1), then we will obtain a quadratic equation for λ1, λ2 : 
 

(3)   2 2
1 1 2 2

, , ,

2jk jk jk
j k j k l k

j k j k j k

a y y a y z a z zλ λ λ λ+ +∑ ∑ ∑ = 0 . 

 
Thus, when the line does not lie completely within the quadric, there will be two 

(different or coincident) intersection points. 
If the middle coefficient in (3) is equal to zero: 

 

(4)     
,

jk

j k

a∑ yj zk = 0, 

 
then both of the roots λ1: λ2 in equation (3) will be equal and opposite, i.e., both 
intersection points will either lie harmonically with the two points y, z or they will agree 
with the point y or the point z .  When y is held fixed and z is varied, equation (4) will 
define a hyperplane with the coordinates: 
 

(5)     uk = kj

j

a∑ yj , 

 
which is the polar to y in the polar system that is defined by the quadric.  When the point 
y is uniquely determined by u, it will be called the pole of u .  The point z, which satisfies 
equation (4), and therefore lies in the polar to y, will be called conjugate to y relative to 
the quadric.  If z is conjugate to y then y will also be conjugate to z . 

If the polar of y is indeterminate: 

(6)     kj

j

a∑ yj = 0   (k = 0, 1, …, r) 

 
then the first two terms in (3) will vanish identically; hence, each line through y will 
either have two intersection points with the quadric that agree with y or it will lie 
completely within the quadric.  In this case, the point y will be called a double point of 
the quadric.  The quadric is then a cone with the vertex y ; i.e., it has what are called 
generators through the point y . 

If the determinant | aik | of the system of equations (6) is non-zero then the quadric 
will be free of double points.  In that case, the polar system (5) will be a non-singular 
correlation.  This not only associates each point y with a unique polar u, but also, 
conversely, each hyperplane u with a unique pole y , and generally, each space Sp with a 
polar space Sr–p–1 .  This association is involutory, i.e., the polar space to Sr−p−1 is again Sp.  
Hence, if all of the points of Sr–p–1 are conjugate to all points of Sp then all of the points of 
Sp will be conjugate to all of the points of Sr–p–1 . 
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If y is not a double point, but a point of the quadric, then one will call the lines 
through y that intersect the quadric doubly or lie within it the tangents to the surface at y .  
The condition for this is that not only the first term in (3), but also the second one, must 
vanish, hence, that z will lie in the polar hyperplane to y.  Thus, all of the tangents lie 
within the polar hyperplane of y, which is therefore also called the tangent hyperplane, or 
the tangential hyperplane, to the quadric at the point y.  In particular, the tangential 
hyperplane includes all of the lines that lie in the quadric and go through y, hence, all of 
the linear subspaces that lie in the quadric and go through y. 

If the point y lies outside the quadric then all of the points z that are harmonically 
separated from two points of the surface will lie in the polar of y, just like all of the 
contact points z of the tangents that go through y.  The latter will generate a cone with 
vertex y whose equation is found by setting the discriminant of the quadratic equation (3) 
equal to zero: 

(∑ ajk yj yk )( ∑ ajk zj zk) − (∑ ajk yj zk)
2 = 0 . 

 
If ( )jka′  is the inverse matrix to the non-singular matrix (aik) then one can solve 

equation (5) for y with its help: 
(7)     yj = jka′∑ uk . 

 
The hyperplane u will be a tangent hyperplane when and only when it goes through 

its pole y, hence, when: 
(8)     

,
jk

j k

a′∑ uj uk = 0 . 

 
The tangential hyperplane of a double-point-free quadric thus defines a quadric in the 
dual space, or, as one says, a hyperplane of the second class. 

As is well-known, equation (1) can always be brought into the form: 
 

2 2 2
0 1 1x x xρ −+ + +⋯ = 0 

 
by a coordinate transformation; thus, ρ is the rank of the matrix (ajk ).  Thus, two quadrics 
of equal rank are always projectively equivalent.  A quadric of rank 2 decomposes into 
two hyperplanes, whereas a quadric of rank 1 is a hyperplane that is counted twice. 

One can find the intersection of the quadric Qr−1 with a subspace Sp of Sn: 

 

(9)     xk =
0 1

0 1

p

k k p ky y yλ λ λ+ + +⋯ , 

 
which will be found when one substitutes (9) in (1); this will yield a homogeneous 
quadratic equation in λ0, …, λp.  Thus, the intersection will be a quadric Qp−1 in the space 

Sp, as long as the space Sp is not completely included in the given quadric Qr−1 . 
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Problems.  1.  An involutory projective transformation of the line S1 into itself (i.e., an involution) 
consists of all point pairs that are harmonic with a given point.   A degenerate involution consists of point 
pairs that include a fixed point. 

2.  The point pairs that are conjugate, relative to the quadric Qr−1, to a given line of the space Sr and do 

not lie in Qr−1 define a point pair. 

3.  If one connects all of the points of a quadric Qr−1 with a fixed point B that lies outside of the space 

Sr then one will obtain a quadric Qr with a double point at B. 

4.  Give an affine classification of the quadrics Qr−1 . 

 
The foregoing was only, on the one hand, a multi-dimensional generalization of well-

known facts from the analytic geometry of conic sections and quadratic surfaces.  We 
now come to the discussion of linear spaces that lie in quadrics.  We thus consider 
quadrics without double points exclusively. 

As is well-known, there are two families of lines that lie in a quadratic surface Q2 in 

S3.  As we will show in § 7 with the help of line geometry, there are two families of 
planes that lie in a quadric Q4 in S5.  We would now like to show that, in general, two 

families of Sn lie in a quadric Q2n, but, by contrast, only one family of Sn lies on a quadric 

Q2n+1 , and that the quadrics in both cases cannot include any linear spaces of higher 

dimension. 
What are we to understand a family to be then?  If we already have the concept of an 

irreducible algebraic manifold then we can clarify the notion of a family by saying that it 
is such an irreducible algebraic manifold.  However, we would like our family to exhibit 
something more than just irreducibility and continuous connectedness: we will assume 
that any family in Sn has a rational parametric representation such that precisely one 
element Sn of the family belongs to each system of values, and that the entire family can 
be exhausted by the parametric representation.  In this sense, we will prove the existence 
of a rational family of Sn on Q2n+1 (two disjoint rational families of Sn on Q2n , resp.).  In 

addition, we will show that two spaces Sn on Q2n that have an Sn−1 as their intersection 

will always belong to different families. 
In order to prove all of these statements, we use complete induction on n.  For n = 0, a 

quadric consists of two separated points, whereas a quadric Q1 − hence, a conic section − 

contains a single rational family of points.  Namely, if one brings the equations of the 
conic section into the form: 

2
1x − x0 x2 = 0 

 
then all of the points of the conic section will be given by the parametric representation: 
 

     

2
0 1

1 1 2
2

2 2.

x t

x t t

x t

 =
 =
 =
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Now, we may assume that our statements are true for the quadrics Q2n-2 and Q2n-1.  

We consider a quadric Q2n .  (The case of Q2n+1 can be handled in an analogous fashion, 

so the reader can omit it.) 
We would next like to prove that the spaces Sn that lie in Q2n and go through a fixed 

point A of Q2n define two disjoint rational families.  These spaces all lie in the tangent 

hyperplane α.  Now, if ω is a fixed space S2n−1 that is contained in α and does not go 
through A (such a space exists, since α is an S2n) then the intersection of Q2n with ω will 

be a double-point-free quadric Q2n−1 .  Namely, if Q2n−2 had a double point D then it 

would be conjugate to all of the points of ω and to A, hence, the polar to D would 
coincide with α, which is not true, since α has only the pole A.  The lines that connect A 
with the points of Q2n-2 lie completely within Q2n since they contact this quadric at A and 

contain every other point of it elsewhere.  Thus, if one connects a space Sn−1 that lies in 
Q2n−2 with A then the connecting space Sn will lie completely in Q2n .  Conversely: If an 

Sn lies in Q2n and goes through A then it will also lie in the tangent hyperplane α, and will 

therefore have an Sn−1 in common with α that lies in Q2n−2 . – From the induction 

hypothesis, two rational families of Sn−1 lie in Q2n−2 and no space of higher dimension; 

hence, two rational families of spaces Sn will also go through A in Q2n, namely, the 

connecting space of A with each Sn−1, and 
no space of dimension higher than n.  
Furthermore, from the induction 
hypothesis, two spaces Sn−1 in Q2n−2 that 

have an Sn−2 in common always belong to 
two different families.  From this, it 
follows that two spaces Sn that go through 
A and have an Sn−1 in common will also 
belong to two different families.  We call 
these families Σ1(A) and Σ2(A). 

It should be remarked that each space Sn that is in A and lies in Q2n also goes through 

A and thus belongs to Σ1(A) or to Σ2(A) .  Namely, if Sn does not go through A then the 
connecting space Sn+1 of Sn with A would lie completely in Q2n, which is impossible. 

Now, in order to free the two families of Sn from the point A and to make them span 
the entire quadric, we proceed as follows: We choose one of the spaces Sn that goes 
through A and lies in the quadric and consider all possible spaces Sn+1 that go through it.  
They do not lie in Q2n , and they thus intersect Q2n, as well as a quadric Q2n that contains 

an Sn as a component, and thus decomposes into two Sn.  It is impossible that they 
coincide, since every point of Sn would then be a double point of Q2n and would thus be 

conjugate to all points of Sn+1, which is not true, since this polar space is only an Sn−1.  
We denote the two spaces Sn that the quadric decomposes into by Sn and nS′ .  If Sn and 

Sn+1 are given then nS′  may be computed rationally when one draws (n + 1) arbitrary lines 

 

α 

A 

Sn 

Sn 
 

Sn−1 
 

Sn−1 

ω 
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through a point B of Sn that do not lie in nS′  and together span Sn+1, makes them intersect 

the quadric Q2n, and determines the linear space nS′  by the intersection points B1, …, Bn+1 

that differ from B.  All of these steps are rational.  Now, if we let Sn range through the 
entire family Σ2(A), and also let Sn+1 range through all spaces through Sn then we will 
obtain a rational family of spacesnS′ ; we denote it by1′Σ .  Likewise, if we let Sn range 

through the entire family Σ1(A) then we will obtain a second rational family of spaces Sn, 
which we denote by2′Σ . 

It was not an abuse of notation, but our explicit intent, that made us derive 1′Σ  from 

Σ2(A) and 2′Σ  from Σ1(A).  Namely, if we choose the space Sn+1 to be in α, in particular, 

then Sn and nS′  will both lie in α and will thus go through A.  (Namely, if nS′  did not go 

through A then A would not be a double point of the quadric Q2n that is determined by Sn 

and nS′ , and an arbitrary line g through A in Sn+1 would meet Qn, and thus also Q2n, at 

two different points, which cannot happen, since g lies in α, and is therefore tangent to 
Q2n at A.)  Sn and nS′  will have an intersection Sn−1 since they lie in Sn+1, and will thus 

belong to different families; thus, if Sn belongs to Σ2(A) then nS′  will belong to Σ1(A), and 

conversely.  The spaces of the family 1′Σ  that go through A thus belong to the family 

Σ1(A), and the spaces of the family that go through 2′Σ  belong to Σ2(A). 

We now show that each of the spaces nS′  that lie in Q2n belong to one and only one of 

the families 1′Σ , 2′Σ .  For the spaces that go through A, this is already clear from the 

preceding:  They belong to Σ1(A) when they belong to1′Σ , and they belong to2′Σ  when 

they belong to Σ2(A).  Now, if a space nS′  in Q2n does not go through A then the 

connecting space of A with nS′  will be an 1nS −′  whose intersection with Q2n will be a 

quadric Qn that decomposes into nS′  and another Sn through A.  nS′  will belong to 2′Σ  or 

to 1′Σ , depending upon whether Sn belongs to Σ1(A) or to Σ2(A), respectively. 

The families 1′Σ and 2′Σ , which we denote by Σ1 and Σ2 from now on, are thus disjoint 

and exhaust the totality of all Sn in the quadric Q2n .  A continuous transition from one 

family to the other is impossible since the families would have to have an element in 
common.  Were we to start with another pointA′ , instead of A, we would obtain the same 
families as a result, but with a different parametric representation. 

If two spaces nS′ , nS′′ that lie in Q2n have an intersection Sn−1 then one can always 

choose the point A to be in this intersection and then conclude from the foregoing 
considerations thatnS′ and nS′′ belong to different families Σ1(A) and Σ2(A), hence, to 

different families Σ1, Σ2, as well.  Thus, all of our assertions about Q2n are proved − 
assuming that they are valid for Q2n−1.  The induction is thus complete. 

 
Last of all, we prove that two spacesnS′ , nS′′ of the same family always have an 

intersection of dimension n – 2k, and, by contrast, two spaces of different families always 
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have an intersection of dimension n − 2k – 1, in which k is a whole number.  Thus, an 
empty intersection will be considered to be one of dimension – 1. 

 
Once more, we employ complete induction on n.  The assertion is trivial for n = 0 

since each family will then consist of a single S0, and the intersection of an S0 with itself 
will be of dimension 0, although its intersection with another S0 will have dimension – 1.  
We thus assume that the assertion is true for the Sn−1 in Q2n−2 . 

If one projects both of the families of Sn−1 in Q2n−2 from A, as above, then one will 

obtain both families Σ1(A) and Σ2(A) of spaces Sn through A.  Under projection, one raises 
the dimension of the intersection space, like the space Sn−1 itself, by one; an intersection 
of dimension (n – 1) – 2k will become one of dimension n – 2k.  Hence, our assertion is 
valid for the spaces of the families Σ1(A) and Σ2(A), and since the point A can be chosen 
arbitrarily the assertion will be valid for any two spaces Sn that have a point in common. 

Now, let nS′ and nS′′  be two spaces that have no point in common.  We choose A to be 

in nS′′ .  The connecting space Sn+1 of A with nS′  has only the point A in common with nS′′ .  
It intersects Q2n in a quadric Qn that decomposes into nS′  and another Sn, which goes 

through A.  Our assertion is already proved for both Sn and nS′′ , since both of them go 

through A; i.e., only outside of the intersection that consists of A does it have dimension n 
2k when Sn and nS′′  belong to the same families and dimension n – 2k – 1 when Sn 

and nS′′ belong to different families.  In the first case, however, Sn and nS′′  will belong to 

different families, and their intersection will, in fact, have dimension – 1 = 0 – 1 = (n – 2k 
– 1) – 1 = n – 2(k + 1).  In either case, the assertion is therefore proved to be true. 

 
 

§ 10.  Maps of hypersurfaces to points.  Linear families. 
 
The higher-dimensional spaces are not only interesting in themselves, but they also 

define an indispensable aid in the study of systems of algebraic curves in planes and 
surfaces in ordinary space.  This rests upon the following: 

One can map the planar algebraic curves and the algebraic surfaces in S3, and 
generally the hypersurfaces of degree g of a given space Sn to the points of a projective 
space SN in a one-to-one manner, in which we have set: 

 

N = 
g n

n

+ 
 
 

 − 1 . 

 
Such a hypersurface will, in fact, be given by an equation: 
 

1 2
0 0 1 0 1

g g
N Na x a x x a x−+ + +⋯ = 0 , 
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whose left-hand side may be multiplied by a non-zero factor λ, and whose coefficients 
may all be zero.  The number of coefficients is well-known (1) to be equal to: 
 

g n

n

+ 
 
 

 = 
g n

g

+ 
 
 

 = N + 1. 

One can thus regard the coefficients a0, …, aN as the coordinates of a point a in a space 
SN, from which the stated map is obtained.  If one is dealing with curves of degree g in 
the plane then: 

N = 
2

2

g + 
 
 

− 1 = 1
2 g(g + 3). 

 
The curves of degree g in S0 may thus be mapped to points in a space of dimension 1

2 g(g 

+ 3) in a one-to-one manner. 
Under the map, a linear subspace Sr of SN corresponds to a family of hypersurfaces 

that one calls a linear family of dimension r.  Special cases are: one-dimensional linear 
families, or pencils, whose elements are given by: 

 
ak = λ1 bk + λ2 ck , 

 
and two-dimensional linear families, or nets, whose elements are given by: 
 

ak = λ1 bk + λ2 ck + λ3 dk . 
 

One can write this equation in another way:  If B = 0 and C = 0 are two hypersurfaces 
that determine a pencil then the equations of the hypersurfaces in the pencil will 
obviously be given by: 

λ1 Bk + λ2 Ck = 0 . 
Analogously, the formula: 
(1)          λ1 Bk + λ2 Ck + … + λr Dr = 0 
 
defines an r-dimensional linear family when the forms B0, …, Br are linearly 
independent. 

By means of the map of the points of SN to hypersurfaces and linear subspaces to 
linear families of dimension r, one can carry over all theorems that pertain to linear 
spaces in SN to linear families of hypersurfaces with no further assumptions.  In this way, 
one will obtain, among other things, the theorem: N – r linearly independent linear 
equations in the coordinates a0, …, aN define a linear family of hypersurfaces of 
dimension r. 

As an example, the hypersurfaces that go through N − r given points define a linear 
family of dimension r, assuming that these points impose independent linear constraints 

                                                

 (1) The proof is obtained quite easily by complete induction on n + g, when one converts the form fg(x0, 
…, xn) of degree g into the form fg(x0, …, xn−1) + xn fg−1(x0, …, xn) . 
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on the hypersurfaces.  In order to apply this to any particular case, if that is the case, one 
arranges the given points into a particular sequence: P1, …, PN −  r , and establishes 
whether there is a hypersurface of degree g that goes through P1, …, Pk −  1, but not 
through Pk .  If that is the case for any value of k with 1 < k ≤ N – r then the linear 
conditions that the points impose on the hypersurfaces will be independent.  By skillfully 
choosing the sequence of points, one can very frequently choose the hypersurfaces 
through P1, …, Pk − 1 to be decomposable. 

By this method, one effortlessly proves, e.g., that there are at most five points in the 
plane, no four of which lie in a line, that always impose independent conditions on the 
conic sections in the plane.  If one can always draw a pair of lines through k – 1 (≤ 4) 
points, and does not go through a given kth point, then one must have that this kth point 
lies on a line with three others.  From this, it follows that: 

 
Three given points always determine a conic section.  Four points that do not lie in a 

line always determine a pencil of conic sections.  Five given points, no four of which lie 
in a line, determine a single conic section. 

 
Problems.  1.  One proves by the same method that eight points in a plane, no five of which lie in a 

plane and no eight of which lie on a conic section, always determine a pencil of curves of third order.  

[Hint: For curves through k − 1 given points, use those third-order curves that decompose into a conic 
section and a line or into three lines.] 

2.  If a, b, c, d are four given non-collinear points in the plane and if (xyz) always denotes the 
determinant of the coordinates of three points x, y, z then the pencil of conic sections that go through a, b, c, 
d will be given by the equation: 

λ1 (abx) (cdx) + λ2 (acx) (bdx) = 0 . 
 
3.  In the notation of problem 2, the conic section through five given points will be given by the 

equation: 
(abx) (cdx) (ace) (bde) − (acx) (bdx) (abe) (cde) = 0 . 

 
4.  Seven points in the space S3, no four of which lie in a line, no six of which lie in a conic section, 

and no seven of which lie in a plane, always determine a net of second order surfaces. 
[Hint: For the surfaces through k – 1 points, again use decomposable surfaces or, if that does not work, 

cones.] 
 

A single curve of order g goes through12 ( 3)g g+ points of the plane “in general,” i.e., 

when these points represent independent constraints for the curves of order g.  The 
exceptional case is the one for which the point Pk belongs to all of the curves of order g 
through P1, …, Pk−1, which obviously can come about only for particular positions of the 
point Pk relative to P1, …, Pk−1 . 

If the hypersurfaces B0, …, Br that determine a linear family (1) have one or more 
points − or even an entire manifold − in common then these points, or that manifold, will 
obviously belong to all hypersurfaces of the family.  These points will be then be called 
the base points of the family, while the manifold will be called the base manifold of the 
family.  In particular, it can happen that all of the forms B0, …, Bm have a common factor 
A; in this case, all of the hypersurfaces (1) of the family will include A = 0 as a fixed 
component.  For example, the conic sections in the plane that have a given triangle for 
polar triangle define a net with no base point, while the conic sections through three 
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given points define a net with three base points, or also (when the three points lie in a 
line) a net with one fixed component. 

A pencil of quadrics is given by: 
(2)     ajk = λ1 b

jk + λ2 c
jk , 

 
in which the equation of a quadric is assumed to take the form: 
 

jk
j k

j k

a x x∑∑ = 0 . 

 
If D is the determinant of the matrix (ajk ) then the condition for a double point will read: 
 
(3)      D = 0 . 
 
By means of (2), D is a form of degree n + 1 in λ1 and λ2 .  Equation (3) is either satisfied 
identically by λ1, λ2, or it has n + 1 (not necessarily distinct) roots.  There is therefore at 
least one and at most n + 1 cones in the pencil (2), or else all of the hypersurfaces of the 
pencil are cones. 

In the case of a pencil of conics, it will thus follow that a pencil of conics includes at 
least one decomposable conic.  If one looks at all possible positions that a pair of lines 
can have relative to another conic then one will effortlessly obtain a complete 
classification of all pencils of conics (and their base points).  Since a pair of lines has four 
(not necessarily distinct) points of intersection with another conic or a component in 
common with it, a pencil of conics will have either a fixed component or four (not 
necessarily distinct) base points.  If the four base points are actually distinct then, from 
the above, the pencil will be determined by these four points: It will consist of all conics 
through these four points.  The three decomposable conics of the pencil will then be the 
three pairs of opposing sides of a complete rectangle. 

For more on the theory of pencils of conics, one may confer the classical work of 
CORRADO SEGRE (1). 

We will later see that a pencil of nth-order curves in the plane has n2 (not necessarily 
distinct) base points or a fixed component.  Likewise, a net of nth-order surfaces in the 
space S3 possesses either n3 base points or a base curve or a fixed component. 

For example, a pencil of 3rd-order plane curves has nine base points in general, of 
which, from Problem 1, for certain assumptions, any eight of them will already determine 
the pencil.  Likewise, a net of quadratic surfaces in space has eight base points, in 
general, of which, under certain assumptions, any seven of them will determine the net, 
and therefore also the eight points. 

 
Problems.  5.  There are the following types of pencils of conics: 
I.  Pencils with four distinct base points and one common tangent whose double point defines a 

common polar triangle for all curves of the pencil. 
II.  Pencils with three distinct base points and one common tangent at one of these points.  Two 

decomposable examples. 

                                                
 (1) SEGRE, C.: “Studio sulle quadriche in uno spazio lineare ad un numero qualunque di dimension. “ 
Torino Mem., 2nd Series, 36. 
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III.  Pencils with two distinct points and fixed tangents at these points.  Two decomposable examples, 
and a double line. 

IV.  Pencils with two distinct base points with given tangents and given curvature at each of these 
points.  One decomposable curve. 

V.  Pencils with one four-fold base point and a decomposable curve (namely, a double line). 
VI.  Pencils of decomposable conics with a fixed component. 
VIII. Pencils of decomposable conics with fixed double points (Involutions of line pairs). 
 

 
§ 11.  Cubic space curves. 

 
1.  The rational normal curve.  If one applies the map that was discussed in § 10 to 

hypersurfaces in S1, in particular − i.e., to groups of n points in a line − then one will 
obtain a map of this group of points to the points of a space Sn.  In order to have 
something definite in mind, we consider the case n = 3, although most of the following 
remarks will be valid for an arbitrary n . 

Let the triple of points to be examined be given by equations of the form: 
 

(1)   f(x) = 3 2 2 3
0 1 1 1 2 2 1 2 3 23 3a x a x x a x x a x− + − = 0 ; 

 
it will therefore be mapped to points (a0, a1, a2, a3) in S3.  One must pay particular 
attention to the triple that consists of three coincident points; for them, one will have: 
 

f(x) = (x1 t2 – x2 t1)
2 = 3 3 2 2 2 3 3

1 2 1 2 1 2 1 2 1 2 2 13 3x t x x t t x x t t x t− + − ; 

 
hence, the image point will have the coordinates: 
 

(2)     

3
0 2

2
1 1 2

2
2 1 2

3
3 1 .

y t

y t t

y t t

y t

 =
 =
 =
 =

 

 
By means of (2), the t-line S1 is mapped to a curve in the space S3 (Sn, resp.) that one 

generally (for arbitrary n) calls a rational normal curve, and in the special case of n = 3, 
one calls it a cubic space curve (1).  The projective transformations of such a curve will 
again be called cubic space curves. 

The word “cubic” thus means that an arbitrary plane u intersects the curve in three 
(not necessarily distinct) points.  Namely, if one substitutes (2) in the equation for the 
plane u then one will obtain a third degree equation: 

 
(3)    3 2 2 3

0 2 1 1 2 2 1 2 3 1u t u t t u t t u t+ + + = 0 

 
that defines three points on the t-axis. 

                                                
 (1) In the case n = 2, the normal curve will be a conic. 
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If these three points are q, r, s then for a certain choice of the arbitrary factors one 
will have: 

3 2 2 3
0 2 1 1 2 2 1 2 3 1u t u t t u t t u t+ + + = (q1 t2 – q2 t2) (r1 t2 – r2 t2) (s1 t2 – s2 t2) 

 
identically in t1, t2; hence, by equating coefficients, one will have: 
 

(4)    

0 1 1 1

1 1 1 2 1 2 1 2 1 1

2 1 2 2 2 1 2 2 2 1

3 2 2 2.

u q r s

u q r s q r s q r s

u q r s q r s q r s

u q r s

=
 = + +
 = + +
 =

 

 
By means of (4), each triple of points p, q, r on the t-axis will correspond to a uniquely- 
determined plane u that intersects the curve at the points P, Q, R with the parameter 
values p, q, r, resp.  It is therefore not only the points of S3, but also, at the same time, the 
planes of S3 that are mapped to triples of points on the parameter line S1 in a one-to-one 
manner. 

In particular, if the points P and Q coincide then u will be called a tangential plane at 
the point Q.  Since the u depend upon the parameters s for a fixed Q = R, the tangential 
plane will define a pencil whose carrier goes through Q and will be called the tangent at 
the point Q.  If all three P, Q, R coincide then u will be called the osculating plane to the 
point Q. 

 
Theorem.  Any curve that permits a rational parametric representation by way of 

functions of degree three: 
(5)    yk = 3 2 2 3

2 1 2 1 2 2k k k ka t b t t c t t d t+ + +  

 
is projectively equivalent to a cubic space curve or a projection of a cubic space curve 
onto the space S2 or S1. 
 

Proof: The projective transformation: 
 

ky′ = ak y0 + bk y1 + ck y2 + dk y3 

 
obviously takes the curve (2) to the curve (5).  If this transformation is degenerate then, 
from § 6, it will amount to a projection onto a subspace Sr – 1. 

If one projects the cubic space curves from a point of the curve onto a plane S2, then, 
as we shall see, one will obtain a conic section.  If one projects from a point that lies 
outside of the curve then one will obtain a plane curve that will obviously intersect any 
line in three points, hence, (cf. below, § 17), a plane curve of degree three.  Finally, if one 
projects onto a line then one will obtain this line itself, covering itself several times.  
Other projections will not be considered. 

 
2.  The null system linked with the curve.  Since each point of S3 corresponds to a 

point-triple in S1 in a one-to-one fashion, and since each such point-triple again 
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corresponds to a plane there will also be a one-to-one map of the points of S3 onto the 
plane u.  One obtains its equations when one writes the same form f(x), once in the form 
(1) and once in the form (3) (with x1, x2 instead of t1, t2), and equates the coefficients.  If 
one writes z0, z1, z2, z3, instead of a0, a1, a2, a3, then one will obtain the equations: 

 

(6)    

0 3

1 2

2 1

3 0

3

3

.

u z

u z

u z

u z

= −
 =
 = −
 =

 

 
Since the matrix of this linear transformation is skew-symmetric it will represent a null 
system (1). 

If one takes z in (6) to be, in particular, a point y of the curve in the parametric 
representation (2) then one will immediately see that the plane u is the osculating plane at 
this point.  Hence: The null system associates each point of the curve with its osculating 
plane.  From this, one obtains a simple construction of the null points of a plane that is 
not a tangential plane: One attaches the osculating plane to the three intersection points of 
the plane with the curve.  They intersect it at null points of the plane.  Since each point 
can be regarded as the null point of its null plane, it follows that: Three (not necessarily 
distinct) osculating planes go through each point of a cubic space curve.  The connecting 
plane of their osculating points is the null plane of the points. 

 
3.  The chords of the curve.  In addition to the chords that connect two points of a 

curve, in the sequel we will also tacitly compute the tangents to the curve.  We now 
prove: 

 
Precisely one chord goes through each point outside of the curve. 
 
Proof:  We intersect the point A with all possible planes u.  One then has: 
 

a0 u0 + a1 u1 + a2 u2 + a3 u3 = 0; 
 

hence, from (4), if P, Q, R are the intersection points of the plane with the curve then: 
 

(7)  0 1 1 1 1 1 1 2 1 2 1 2 1 1

1 1 1 2 1 2 1 2 1 1 3 2 2 2

( )

( ) 0.

a q r s a q r s q r s q r s

a q r s q r s q r s a q r s

+ + +
 + + + + =

 

 
For a given Q and R, the linear equation (7) will generally determine a unique ratio s1 : s2, 
and therefore, the plane u.  However, if AQR is a chord then each arbitrary point S of the 
curve will come about as the third intersection point with a plane through the APQ in 
question; hence, (7) will then be satisfied identically in s1 and s2.  That will yield: 
 
                                                
 (1) If, as we did at the start of this section, one chooses an arbitrary number n to be the dimension of the 
space then for even n one will obtain a polar system and for odd n, a null system. 
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(8)  0 1 1 1 1 2 2 1 2 2 2

0 1 1 2 1 2 2 1 3 2 2

( ) 0

( ) 0.

a q r a q r q r a q r

a q r a q r q r a q r

+ + + =
 + + + =

 

 
From these two equations, one can uniquely determine the ratios: 
 

q1 r1 :  (q1 r2 + q2 r1) : q2 r2 , 
 
hence, the ratios of the coefficients of the quadratic equation whose values q1 : q2 and r1 : 
r2  are determined uniquely.  The assertion follows from this. 

On the other hand, in each plane there are obviously three (not necessarily distinct) 
chords.  For this reason, one says that the chords of a cubic space curve define a 
“congruence of field degree 3 and bundle degree 1” (cf. below, § 34). 

 
4.  Projective generation of cubic space curves.  Let QR andQ R′ ′ be two chords of the 

curve.  The pencil of planes that one obtains when one projects all of the points S of the 
curve onto QR is represented by (4).  As one sees, s1 and s2 are the projective parameters 
of the pencil.  However, the same is true for every other chordQ R′ ′ .  Hence: If one 
connects any two chords (or tangents) with all points of the curve by planes then one will 
obtain two projective pencils of planes that each cover each other. 

As is well-known, two projective pencils of planes generate a quadratic surface that 
goes through the lines that carry them.  Hence, one can pass a second-order surface of 
that includes a cubic space curve through any two chords of the curve.  If we next take 
both chords to be skew then the surface will include two distinct families of lines, and 
since they are skew, both chords will belong to the same family.  In the exceptional case, 
each plane through one of the chords will intersect the curve at the endpoints only once; 
hence, each line in the other family will have only one point of intersection with the 
curve.  Exceptionally, any plane through such a secant with the curve will intersect the 
space curve at the points of intersection of the secant with the curve only twice; hence, 
any line of the first family will again be a chord. 

Secondly, if we let both chords pass through the same points of the curve then the 
quadric that they contain will be a cone.  Hence, the cubic space curve will be projected 
through a quadratic cone from each of its points. 

If we now consider three chords, the third of which not shall belong to the ruled 
family that is determined by the first two, then we will obtain three projective pencils of 
planes that cover each other, in such a way that each three corresponding planes will 
always intersect in a point of the curve.  Hence, a cubic space curve will be generated by 
the intersection of three mutually projective pencils of planes. 

 
Conversely: Three projective pencils of planes generally generate a cubic space 

curve.  Exceptions are: 
1. When corresponding planes of the three pencils always have a line in common. 
2. When the intersection points of corresponding triples of planes lie in a fixed plane. 
 
Proof:  Let: 
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(9)    
1 1 2 2

1 1 2 2

1 1 2 2

0,

0,

0

l l

m m

n n

λ λ
λ λ
λ λ

+ =
 + =
 + =

 

 
be the equations of three projective pencils of planes.  If one uses these equations to 
compute the coordinates of the intersection point of the three associated planes then it 
will be represented by three-rowed determinants, hence, by forms of degree 3 in λ1 and 
λ2: 
(10)   y0 : y1 : y2 : y3 = ϕ0(l) : ϕ1(l) : ϕ2(l) : ϕ3(l) . 
 
If the four forms ϕ0, ϕ1, ϕ2, ϕ3 are linearly independent then, from the theorem in no. 1 of 
this section, the curve that is represented by (10) will be a cubic space curve.  However, if 
there exists a linear dependency: 
 

c0ϕ0 + c1ϕ1 + c2ϕ2 + c3ϕ3 = 0, 
 
then this says that all of the points y will lie in a fixed plane.  This plane will intersect the 
three projective pencils of planes in three projective pencils of lines that generate a conic 
or a line in it.  However, if the three-rowed sub-determinants of which we spoke are 
identically zero then each of the three associated planes will go through a line; in general, 
this line will define a quadratic surface. 

Suppose we assume that equations (9) actually define a cubic space curve.  The 
equations of these curves will then be found by setting the two-rowed sub-determinants 
of the matrix: 

1 1 1

2 2 2

l m n

l m n

 
 
 

 

 
equal to zero.  The cubic space curve will therefore be the complete intersection of three 
quadratic surfaces.  Any two of these three surfaces, e.g.: 
 

l1 m2 – l2 m1 = 0 , l1 n2 – l2 n1 = 0 , 
 
will have, besides the space curve, also the line l1 = l2  = 0, in common with each other. 
 

Problems.  1.  The residual intersection (Restschnitt) of two indecomposable quadratic surfaces with 
different vertices that have a common generator, but do not lie along it, is always a cubic space curve. 

2.  The quadratic surfaces that contain a given cubic space curve define a net. 
3.  A cubic space curve is uniquely determined by six of its points. 
4. A cubic space curve always goes through six points, no four of which lie in a plane.  (From 

Problems 3 and 4, one uses two cones, each of which have one of the six points for vertex and go through 
the remaining five.) 

 



CHAPTER TWO 
 

Algebraic functions 
 

 As its name implies, algebraic geometry deals with both geometric and algebraic 
concepts and methods.  Whereas in the previous chapter the basic concepts of projective 
geometry were summarized, in this chapter the essential algebraic concepts and theorems 
will be discussed.  The reader can find the proofs of the theorems presented, e.g., in my 
book that appears in this collection and is entitled “Moderne Algebra” (1). 
 
 

§ 12.  Concept and simplest properties of algebraic functions. 
 

 Let K be an arbitrary commutative field, say, the field of complex numbers.  The 

elements of K are called constants.  Let u1, …, un be indeterminates, or, more generally, 

arbitrary quantities in an extension field of K, between which there are no algebraic 

relations with constant coefficients.  The field of rational functions of u1, …, un is 

denoted by K(u) or P. 

 We denote any element of an extension field of K(n) by ω and regard it as an 

algebraic function of u1, …, un when it satisfies an algebraic equation f(ω) = 0 with (not 

identically vanishing) coefficients in K(n).  Among the polynomials f(z) with the property 

f(ω) = 0 there is a polynomial of least degree ϕ(z), and one can prove algebraically that it 
has the following properties (cf., Moderne Algebra I, chap. 4): 
 

 1. ϕ(z) is uniquely determined up to a factor in K(n). 

 2. ϕ(z) is irreducible. 

 3. Any polynomial f(z) in P[z] with the property f(ω) = 0 is divisible by ϕ(z). 

 4. For a given non-constant irreducible polynomial ϕ(z) there is an extension field 

P(ω) in which ϕ(z) possesses a zero ω. 

 5. The field P(ω) is uniquely determined by ϕ(z) up to isomorphism, i.e., if ω1 and 

ω2 are two zeroes of the same polynomial ϕ(z), which is irreducible over P(ω), then one 

will have P(ω1) ≅ P(ω2), and this isomorphism will leave all elements of P fixed and take 

ω1 to ω2 . 

                                                
 (1) WAERDEN, B.L. VAN DER: Moderne Algebra I, 2nd ed., 1931; II, 1st ed., 1931; in particular, 
chaps. 4, 5, and 11. 
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 Two such zeroes of a polynomial that is irreducible over P are called conjugate 

relative to P.  In general, two systems of algebraic quantities ω1, …, ωn and 1ω′ , …, nω′  are 

called conjugate to each other when there is an isomorphism P(ω1, …, ωn) ≅ P( 1ω′ , 

…, nω′ ) that leaves all elements of P fixed and takes each ωr to rω′ . 

 The divisibility property 3 may be further sharpened in our case of P = K(n).  f(z) and 

ϕ(z) only need to depend rationally upon u1, …, un alone.  However, if one makes them 
completely rational in u1, …, un by multiplying them by a rational function of u1, …, un 
alone and then assumes that ϕ(z) is primitive in u1, …, un  − i.e., it includes no polynomial 
that depends upon u1, …, un alone as a factor (which one can obviously always arrange) – 
then ϕ(z) will be an irreducible polynomial in u1, …, un, z, and  f(z) will be divisible by 

ϕ(z) in the polynomial ring K[u1, …, un, z].  All of this follows from a well-known 

lemma by GAUSS (cf., Moderne Algebra I, § 23.) 
 If ω1, …, ωn are algebraic functions then all rational functions of ω1, …, ωn and u1, 

…, un will define a field P(ω1, …, ωn) = K(u1, …, un, ω1, …, ωn) whose elements will be 

all of the algebraic functions of u1, …, un ; it will be an algebraic function field.  
Furthermore, one has the transitivity theorem: An algebraic extension of an algebraic 
function field is again an algebraic function field.  If the extension is produced by the 
adjunction of finitely many algebraic functions then one will call it a finite algebraic 
extension. 

 Any polynomial f(z) with coefficients in P possesses a splitting field, i.e., an algebraic 

extension field of P in which f(z) is completely decomposed into linear factors.  This 

splitting field is again uniquely determined up to isomorphism.  If one decomposes f(z) 
into nothing but linear factors then one will call f(z), along with the zeroes of f(z), 

separable.  An algebraic extension field of P whose elements are all separable over P is 

called separable over P.  In this book, we will be concerned only with separable 

extension fields.  When the field P includes the field of rational numbers (a field of 

characteristic zero), all algebraic extension fields of P will be separable. 

 For separable extension fields, one has the primitive element theorem:  The 
adjunction of finitely many algebraic quantities ω1, …, ωr may be replaced by the 
adjunction of a single quantity: 
 

θ = ω1+ α2ω2 + …, αrωr    (α2, …, αr  in P); 

 
i.e., ω1, …, ωr may be expressed rationally in terms of θ. 
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 When a separable algebraic function ω is identical with all of its conjugates relative 

to P, it will be rational; i.e., it will belong to P.  The irreducible equation whose root is ω 

then has only one simple root, and can therefore only be linear. 
 
 The degree of transcendence.  If ω1, …, ωm are elements of an algebraic function 

field, or at least an extension field of K, then one will call them algebraically 

independent when any polynomial f with coefficients in K that has the property f(ω1, …, 

ωm) = 0 will necessarily vanish identically.  One can treat algebraically independent 
elements as indeterminates since their algebraic properties are the same.  If ω1, …, ωm are 

not algebraically independent, but also not all algebraic over K, then one can always find 

an algebraically independent subsystem
1i

ω , …, 
di

ω such that all of the ωk will be 

algebraic functions of 
1i

ω , …, 
di

ω .  The number d of these algebraically independent 

elements is called the degree of transcendence (or the dimension) of the system {ω1, …, 

ωm} relative to K.  If the ω1, …, ωm are all algebraic relative to K then the system {ω1, 

…, ωm } will have degree of transcendence zero. 
 In algebra, it is proved that the degree of transcendence d is independent of the choice 
of algebraically independent elements 

1i
ω , …, 

di
ω (cf., Moderne Algebra I, § 64).  If ω1, 

…, ωm are algebraic functions of θ1, …, θn, while, conversely, θ1, …, θn also depend 
algebraically on ω1, …, ωm, then the systems {ω1, …, ωm} and {θ1, …, θn} will have the 
same degree of transcendence. 

 A polynomial f(z1, …, zn) in P[z1, …, zn] is called absolutely irreducible when it 

remains irreducible under any extension of the ground field P.  The following theorem is 

true:  A finite algebraic extension of P is sufficient to decompose a given polynomial f 

into absolutely irreducible factors. 
 

 Proof.  Let the degree of f be less than c.  We replace each zr in f(z1, …, zn) with 
1ct

ν −

, 
and thus define: 

F(t) = f(t, tc, 
2ct , …, 

1nct
−

). 
 
Each term 1 2

1 2
nbb b

nz z z⋯  of f(z1, …, zn) then corresponds to a term: 

 
1

1 2
n

nb b c b ct
−+ + +⋯  

 
in F(t).  Different terms of f yield different terms of F, since a whole number can be 
described in only one way as b1 + b2c + … + bnc

n−1 with br < c.  The coefficients of the 

terms of f are thus also coefficients in F(t).  If f decomposes in some extension field of P 

then F(t) will also decompose in the same field if the fact that: 
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f(z) = g(z)h(z) 
implies that: 

f(t, tc, 
2ct , …) = g(t, tc, 

2ct , …) h(t, tc, 
2ct , …) 

or that: 
F(t) = G(t)H(t), 

 
and the coefficients of g(z) and h(z) will also be coefficients of G(t) and H(t), resp..  Now, 

a finite extension of P will suffice to completely decompose F(t) into linear factors.  The 

coefficients of the factors G(t) and H(t) will also belong to this extension field, hence, 
those of f(z) and g(z), as well.  The assertion is thus proved. 
 
 

§ 13.  The values of algebraic functions.  Continuity and differentiability. 
 

 Let ω be an algebraic function of u1, …, un that is defined by an irreducible rational 
equation: 
(1)    ϕ(u, ω) = a0(u) ωg + a1(u) ωg−1 + … + ag(u) = 0 . 
 
Thus, the a0 , …, ag are assumed to be polynomials in the u with no common terms. 
 We understand a value ω′ of the function ω for particular values u′ of the 
indeterminates u to mean any solution ω of the equation ϕ(u, ω) = 0.  When a0(u′) ≠ 0, 
there will be g values ω associated with any system of values u′ for u, which we denote 
by ω(1), …, ω(g), and which will be defined by: 
 

(2)     ϕ(u′, ω) = ( )
0

1

( ) ( )
g

ra u z ω′ −∏ . 

 
 Some of the roots ω(r) will be equal to each other if and only if D(u′) = 0, where D(u) 
is the discriminant of equation (1).  D(u) is not identically zero in the u.  The values u′ for 
which a0(u′) D(u′) = 0 are called critical values of the function ω.  In general, they are 
associated with less than g different values ω′, and in some situations, even none at all. 
 
 Theorem.  Any correct algebraic relation f(u, ω) = 0 will remain correct under the 
replacement of u with any value u′ and ω with one of the associated values ω′. 
 
 Proof.  It follows from § 12 that if f(u, ω) = 0 then there will be a factorization: 
 

f(u, ω) = ϕ(u, ω) g(u, ω) 
 

and therefore upon replacing u′ and ω′, one will be able to assert that: 
 

f(u′, ω′) = 0 . 
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 We now assume that the ground field K from which the values u′ and ω′ will be 

chosen is the field of complex numbers.  We investigate the continuous dependency of 
the values of the function ω′ on the values of the argument u′.  We thus restrict ourselves 
to the values u′ in a neighborhood U(a) of a non-critical locus a (here, a locus will mean 
simply a system of values a1, …, an of the independent values u1, …, un); thus we assume 
that i iu a′ −  < δ, in which δ is a positive number that is yet to be determined. 

 Since a is not critical, the locus a will be associated with g different values b(1), …, 
b(g) of the function ω, which can be understood to be points of the complex number plane.  
We draw circles K1, …, Kg around these points that have an arbitrarily small radius ε and 
have no interior points in common. 
 Any locus u′ in a sufficiently small neighborhood U(a) is associated with g values 
ω(1), …, ω(g) of the function ω.  One can now express the theorem of the continuity of 
algebraic functions in the following way: 
 

 For a suitable choice of the 
neighborhood U(a) (hence, of the number 
δ), in any circle Kr there lies precisely one 
value ω(µ)  such that one can enumerate the 
ω(r) in such a fashion that ω(r) lies in Kr.  
With this enumeration, any ω(r) is a single-
valued function of u′ that is continuous in 
the entire neighborhood U(a). 

 
 Proof.  If one sets z = b(1) and takes the absolute value then it will follow from (2)  
that: 

(1)

0

( , )

( )

u b

a u

ϕ ′
′

 = (1) ( )

1

g
rb ω−∏ . 

 

Now,
(1)

0

( , )

( )

u b

a u

ϕ ′
′

is a continuous function of u′ that takes the value zero for u′ = a.  In a 

sufficiently small neighborhood U(a), one therefore has: 
 

(1)

0

( , )

( )

u b

a u

ϕ ′
′

< εn ; 

hence, also: 

(1) ( )

1

g
rb ω−∏  < εn. 

 
If all of the factors on the left were ≥ ε then this inequality would be false.  Hence, at 
least one factor must be < ε, i.e., at least one ω(r) lies in the circle K1 of radius ε around 
b(1).  The same is also true for the circles K2, …, Kg .  Since there are just as many points 
ω(ν) as circles Kν and the circles are distinct from each other, any circle K(ν) must contain 

 
K1 Kg 

. . . 
ω(1) 

b(1) 

ω(g) 

b(g) 
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precisely one point ω(ν), and we can choose the normalization of ω(ν) in such a way that  
ω(ν) lies in Kν .  Any ω(ν) is then determined uniquely.  Furthermore, on the basis of the 
proof that we just carried out | ω(ν) − b(ν) | < ε for an arbitrarily small ε, as long as |iu′ − ai | 

< δ.  Thus, the function ω(ν) is continuous at the locus u′ = a.  Since one can ultimately 
replace the locus a with any other non-critical locus, hence, in particular, with any locus 
inside of U(a), the function ω(ν) will be continuous everywhere in U(a).  Since the loci 
inside of U(a) are not critical, it will follow that the associated values ω(1), …, ω(n) will all 
be different. 
 The differentiability of the algebraic functions follows very easily from their 
continuity.  Thus, since we are only concerned with the partial differentiability with 
respect to one of the variables u1, …, un, we can restrict ourselves to the case of a single 
indeterminate u.  One may associate the functional value b to a value a of u, and the value 
ω′ = b + k to u′ = a + h.  One will then have: 
 
(3)     ϕ(a, b) = 0, ϕ(a + h, b + k) = 0. 
 
 We now have to prove that lim k/h exists when h → 0.  The partial derivatives of the 
polynomial ϕ(u, z) may be denoted by ϕu and ϕz .  They refer to the coefficients of the 
first powers in h in the development of ϕ(a + h, z) [ϕ(u, b + k), resp.].  If one now 
develops ϕ(a + h, b + k) in powers of h and then in powers of k then one will get: 
 

(4)  1

1 2

( , ) ( , ) ( , , )

( , ) ( , , ) ( , , ),

u h z k u z k h u h z k

u z h u h z k k u z k

ϕ ϕ ϕ
ϕ ϕ ϕ

+ + = + + +
 = + + +

 

with: 
ϕ1(u, 0, z) = ϕu , 
ϕ2(u, 0, z) = ϕz . 

 
 If one replaces u = a, z = b in (4) then, due to (3), it will follow that: 
 

0 = hϕ1(a, h, b + k) + hϕ2(a, b, k). 
 
Since a was not a critical value, one will have ϕz(a, b) ≠ 0, and therefore one will also 
have ϕ2(a, b, k) ≠ 0 for sufficiently small k.  One can therefore divide the functions and 
get: 

k

h
= − 1

1

( , , )

( , , )

a h b k

a b k

ϕ
ϕ

+
. 

 
If one now lets h tend to zero then, due to the continuity of the function ω′, k will also 
tend to zero.  Thus, ϕ2(a, b, k) will tend to ϕ2(a, b) and ϕ2(a, h, b + k) will tend to ϕ2(a, 
b).  It will then follow that: 

     
d

du

ω′
′

= lim 
k

h
= − ( , )

( , )
u

z

a b

a b

ϕ
ϕ

. 
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Therefore, the differentiability is proved at any non-critical locus.  One likewise shows 
that the differential quotient at any such locus will have the value: 
 

(5)      
d

du

ω′
′

= − ( , )

( , )
u

z

u

u

ϕ ω
ϕ ω

′ ′
′ ′

. 

 
 In my book Moderne Algebra, § 65, I showed that one can also define the differential 
quotients of a separable algebraic function ω, independently of any continuity properties 
and for an arbitrary ground field, by means of: 
 

d

du

ω
= − 

( , )

( , )
u

z

u

u

ϕ ω
ϕ ω

, 

 
and all of the rules of differentiation can be derived from this definition immediately. 
 The analyticity of a complex-valued function of complex variables follows from its 
differentiability.  Therefore, the values ω(1), …, ω(g) of an algebraic function in the 
neighborhood of a non-critical locus a are regular analytic functions of the complex 
variables u′.  Incidentally, the same thing is true for the values of an algebraic function of 
more than one variable at a non-critical locus. 
 

 
§ 14.  Series development for algebraic functions of one variable. 

 
 A regular analytic function of one variable u′ may always be developed into a power 
series.  In particular, the regular function elements ω(1), …, ω(g) that were examined in § 2 
have series developments at any non-critical locus a: 
 

ω(r) = ( ) ( ) ( ) 2
0 1 2
r r rc c cτ τ+ + + … (τ = u′ – a). 

 
They converge in any circle around a that 
contains no critical loci. 
 For a critical locus, the situation is somewhat 
more complex.  Let a be such a critical locus in 
the u′-plane.  We next assume that the initial 
coefficient a0(u) in equation (1), § 13, does not 
vanish at the locus u = a.  One now draws a 
sequence of circles K1, K2, K3 in the u′-plane that 
go through a, such that any two of them have a 
common neighborhood, which, however, contains 
no other critical values, so there are regular 
function elements ω(1), …, ω(g) in any of these 
circles g.  In the common neighborhood of two 
circles, the ω(1), …, ω(g) of one circle must agree 
with the ω(1), …, ω(g) of the other circle for any 

 

K1 

K2 

K3 
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series.  If one now starts, say, from ω(1) in the first circle K1, and then seeks the element 
in K2 that agrees with ω(1) in the common neighborhood, and then goes to K3, until one 
again returns to K1, then it can happen that one will either obtain the same functional 
element ω(1) or that one will obtain the “analytic continuation” of another element − say 
ω(2) − by the process just described.  However, in either case, one must again return to 
ω(1) after a finite number of orbits.  If this is true after k orbits then one will have k 
functional elements ω(1), …, ω(k) that are analytically connected in a neighborhood of the 
point a, and which will define a cycle.  The n functional elements ω(1), …, ω(g) will break 
up into a certain number of cycles [ω(1), …, ω(k)], [ω(k+1), …, ω(k+l)], …, [ω(m+1), …, ω(g)] 
in this manner. 
 In order for us to exhaustively describe the sort of multi-valuedness in our analytic 
function ω at the locus u = a, we would like to convert the multi-valued function ω into a 
single-valued one in a neighborhood of u = a by the introduction of the “position 

uniformization” τ = k u a′ − .  This comes about as a consequence of the following 
argument: 
 u′ = a + τk is an analytic function of τ, and each ω(r) is an analytic function of u′ in 
one of the circles that we just described.  One will get ω(r) as an analytic function of τ by 
combining these analytic functions.  If one now rotates the point τ around the zero point 
once then u′ – a will rotate around the zero point k times; u′ will therefore encircle the 
point a k times.  Since ω(1), …, ω(k) can be cyclically permuted by a single orbit around 
the locus a, they will go back to themselves precisely after k such orbits.  In a 
neighborhood of the locus τ = 0 (that does not include this locus itself) the ω(1), …, ω(k) 
are therefore single-valued analytic functions of τ.  However, these functions will be 
restricted under a reduction of the neighborhood about the locus τ = 0, since it is a well-
known elementary fact that one can estimate the behavior of the roots of an algebraic 
function by the behavior of its coefficients.  There, the locus τ = 0 will either be an 
essential singularity or a pole, i.e., the locus will not be a singularity, at all.  One can thus 
specify the values of ω(1), …, ω(k) at the locus τ = 0 in such a way that these functions will 
be analytic in the entire neighborhood of τ = 0, and can therefore be developed into a 
power series in τ: 

(1)    

(1) (1) (1) (1) 2
0 1 2

(2) (2) (2) (2) 2
0 1 2

( ) ( ) ( ) ( ) 2
0 1 2

k k k k

ω α α τ α τ
ω α α τ α τ

ω α α τ α τ

 = + + +
 = + + +


 = + + +

⋯

⋯

⋯

⋯

 

 
But there is more!  If one describes a complete circle around the point 0, or only the kth 
part of it: 

τ = r eiθ,  0 ≤ θ ≤ 
2

k

π
, 

 
then u′ will describe a complete circle, and ω(1) will therefore go to ω(2),  ω(2) will go to 
ω(3), …, and ω(k) will go to ω(1).  Hence, any power series ω(1), …, ω(k) will originate in 
the previous one when one makes the replacement: 
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τ  →τ ζ ,  ζ =
2

ke
π

. 
 
This becomes immediately remarkable in the form of the power series (1), since they 
define a cycle. 
 In all of the previous considerations, nothing essential would change if a0(a) = 0.  
One could then introduce − e.g. − a0(a)ω instead of ω as a new function; the values of 
this function would remain restricted for u = a.  One would also obtain a cycle of power 
series in this particular case for which one would now have that only a finitely many 
negative powers of τ could appear. 
 If one substitutes τ = (u′ – a)1/k in the development (1) then these fractional powers of 
u – a will become power series that one calls PUISEAUX series; we will denote these 
power series by Pν .  If one substitutes them everywhere in equation (2), § 13 then it will 
follow that: 

ϕ(u′, z) = 0
1

( ) ( )
g

a u z Pν′ −∏ . 

 
Since this equation is valid for all of the u′ in a neighborhood of the locus a, one can 
replace u′ – a in it with an indeterminate x and obtain the factor decomposition: 
 

(2)     
0

( , )

( )

x z

a x

ϕ
=

1

( )
g

z Pν−∏ , 

 
in which the Pν are power series in the fractional powers of x with finitely many negative 
exponents. 
 The derivation of the power series developments Pν that was used here, which 
originated with PUISEAUX, is indeed the simplest and most natural, but it leaves 
everything unknown, since, in reality, it treats a purely algebraic situation in the series 
development, and it also gives no means of effectively computing the power series.  We 
thus present a second purely algebraic derivation of the power series development of 
algebraic functions that originates in the simpler form of OSTROWSKI, and is valid for 
arbitrary ground fields of zero characteristic.  The convergence of the series will thus 
generally remain outside of consideration; it is uninteresting from an algebraic standpoint 
and is, moreover, already proved by the foregoing function-theoretic considerations.  
From now on, we will simply deal with formal power series P1, …, Pn , which involve 
fractional powers of u – a and satisfy equation (2) in a purely formal way. 
 The denominator a0(x) in (2) can be decomposed into linear factors, and its inverse 
can be developed into a geometric series in x: 
 

(αx − β)−1 = 
2 2

1
21

x xα αβ
β β

−  
− + − 

 
⋯ , 
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as long as it has the form (αx − β)−1 with β ≠ 0.  The left-hand side of (2) will then take 
on the form of a polynomial in x whose coefficients are power series in x divided by a 
power of x, hence, power series with finitely many negative exponents. 
 
 HENSEL’s lemma.  If F(x, z) is a polynomial in x of the form: 
 

F(x, z) = zn + A1z
n−1 + … + An 

 
whose coefficients are complete power series in x: 
 

Aν = aν0 + aν1 x + aν2 x
2 + … 

 
and F(0, z) decomposes into two relatively prime factors of degree p and q with p + q = 
n: 

F(0, z) = g0(z) ⋅ h0(z):  (g0(z), h0(z)) = 1 
 
then F(x, z) will decompose into two factors of the same degrees in z: 
 

F(x, z) = G(x, z) ⋅ H(x, z) 
 
whose coefficients are, in any case, complete power series in x.  One thus has: 
 

G(x, z) = g0(z),  H(x, z) = h0(z). 
 
 Proof.  We order F(x, z) in powers of x: 
 

F(x, z) = F(0, z) + x f1(z) + x2 f2(z) + …, 
f1(z) = a1k z

n–1 + … + ank , 
 
and make the Ansatz for G(x, z) and H(x, z) that: 
 
    G(x, z) = g0(z) + x g1(z) +  + x2 g2(z)…, 
    H(x, z) = h0(z) + x h1(z) +  + x2 h2(z)… 
 
With this Ansatz, the polynomials g1(z), g2(z), … will have degree at most p − 1, and the 
polynomials h1(z), h2(z), … will have degree at most q – 1.  If we now form the product 
G(x, z) ⋅ H(x, z) and equate it with F(x, z) then we will obtain a sequence of equations of 
the form: 
(1)   g0(z) h0(z) + g1(z) hk−1(z) + … + gk(z) h0(z) = fk(z)  (k = 1, 2, …). 
 
If we now assume that have already determined g1, …, gk−1 and h1, …, hk−1  from the first 
k – 1 equations in (1) then, from (1), we will have an equation for the determination of gk 
and hk : 
(2)     g0(z) hk(z) + h0(z) gk(z) = Bk(z), 
 
in which Bk(z) will be a given polynomial of degree at most n – 1. 
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 This equation is, however, well known to always be soluble, and indeed, in such a 
way that gk and hk have degrees at most p – 1 and q – 1, resp. (cf., Moderne Algebra I, § 
29).  Therefore, one can determine all of the gk and hk as series from (1).  The power 
series that they define for G(x, z) [H(x, z), resp.] will be polynomials in z of degree p (q, 
resp.) that go to g0(z) [h0 (z), resp.] for x = 0.  The lemma is thus proved. 
 
 Theorem.  Any polynomial: 
 

F(x, z) = zn + A1z
n−1 + … + An 

 
whose coefficients are power series in x with only finitely many negative exponents will 
decompose completely into linear factors: 
 

F(x, z) = (z – P1) (z – P2) … (z – Pn), 
 
in which P1, …, Pn are power series, each of which lead to powers of a suitable 
fractional power of x. 
 
 Proof.  We may assume that A1 = 0, since otherwise we would need only to introduce 

z − 1

1
A

n
 in place of z as a new variable.  If Aν is not identically zero then the development 

of Aν will begin with a x νσ
ν , where aν ≠ 0.  If all of the Aν = 0 then there will be nothing 

to prove.  Otherwise, let σ be the smallest of the numbers σν /ν such that Aν ≠ 0.  It is then 
obvious that: 

σν  − νσ  ≥ 0    (ν = 1, 2, …, n), 
 
in which the equality is valid for at least one ν.  If we now introduce a new variable ζ by: 
 

z = ζ xσ 
 
then our polynomial will be converted into: 
 
(4)    F(x, z) = F1(x, ζ) xnσ (ζn + A2 x

−2σζn−2 + … + An x
−nσ). 

 
If one now has σ = p / q with q > 0, and one sets: 
 

ξ = x1/q, x = ξ q, 
 
then the brackets on the right-hand side of (4) can also be written: 
 

Φ(ξ, ζ) = ζ n + B2(ξ)ζ n−2 + … + Bn(ξ), 
with: 

Bν(ξ) = Aν(ξ) x−νp. 
 
As long as it is not identically zero, the power series Bν(ξ) will begin with: 
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pa νσ ν
νξ − = ( )qa νσ νσ

νξ − , 

 
which will then be a complete power series x whose constant term Bv(0) will be non-zero 
for at least one ν.  The polynomial: 
 

ϕ(ζ) = Φ(0, ζ) = ζ n + … + aν ζ n−ν + … 
 
will therefore not be equal to ζ n.  On the other hand, since the coefficient of ζn−1 is null, 
ϕ(ζ) cannot be the nth power of a linear factor ζ − α .  ϕ(ζ) thus possesses at least two 
different roots and may thus be decomposed into two relatively prime factors: 
 

ϕ(ζ) = g0(ζ) ⋅ h0(ζ) . 
 
From HENSEL’s lemma, Φ(x, z), and therefore, also F(x, z), will now decompose into 
two factors of the same degree as g0(ζ) and h0(ζ) whose coefficients will be power series 
in ξ. 
 If we apply the same reasoning to the two factors of F(x, z) then we can also further 
decompose these factors and proceed in this way until the decomposition of F(x, z) into 
linear factors is complete. 
 It is self-explanatory that one can examine the behavior of the function ω in the 
neighborhood of u = ∞ in precisely the same way as in the neighborhood of u = a, if one 
now sets u−1 = x instead of u – a = x.  The roots ω(1), …, ω(n) will then be power series in 
increasing powers of x = u−1. 
 
 Problem.  1.  Determine the initial terms in the power series development of the roots of the 
polynomial: 

F(u, z) = z3 – uz + u3 
 
for the neighborhood of the locus u = 0. 
 

§ 15.  Elimination. 
 
 In what follows, we will need some theorems from elimination theory that we now 
summarize briefly. 
 
 The resultant.  Two polynomials with undetermined coefficients: 
 
     f(z) = a0 x

n + a1 x
n−1 + … + an , 

     g(z) = b0 x
m + b1 x

m−1 + … + bm 
possess a resultant: 
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R =

0 1 0

0 1

0 1

0 1

0 1

0 1

n

n

m

m

m

a a a

a a a

a a a

b b b

b b b

b b b

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯

 

 
with the following properties: 
 
 1.  For special values of the aj and bk one will have R = 0 if and only if either a0 = b0 
= 0 or f(x) and g(x) have a common factor ϕ(x). 
 2.  Any term of R has degree m in the coefficients aj , degree n in the bk , and weight 
(viz., the sum of the indices of the factors aj and bk together) m⋅ n . 
 3.  One has an identity of the form: 
 

R = A f(x) + B g(x), 
 
in which A and B are aj , bk , and x, and A has degree at most m – 1 and B has degree at 
most n – 1. 
 4.  If ξ1, …, ξn is the zero locus of f(x) and η1, …, ηm , that of g(x) then one will also 
have the following expression for the resultant R: 
 

     R = 0
1

( )
n

ma g νξ∏ = 0
1

( 1) ( )
m

mn nb f µη− ∏  

        = 0 0
1 1

( )
n m

m na b ν νξ η−∏∏ . 

 
 One understands the resultant of two homogeneous forms in x1 and x2: 
 
     F(x) = 1

0 1 0 1 2 2
n n n

na x a x x a x−+ + +⋯ , 

     G(x) = 1
0 1 0 1 2 2

m m m
mb x b x x b x−+ + +⋯  

 
to mean the above determinant R, in any case.  It will be zero if and only if F(x) and G(x) 
have a common factor.  By switching the roles of x1 and x2, the resultant will be 
multiplied by ε = (−1)mn, which follows easily from the form of the determinant. 
 
 The resultant system of a sequence of polynomials.  Let f1(x), …, fr(x) be polynomials 
of degree ≤ n with undetermined coefficients a1, …, eω .  There is then one system of 
forms R1, …, Rs in the coefficients a1, …, eω  with the following properties: 
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 1.  The expressions R1, …, Rs vanish for special values of the a1, …, eω if and only if 
f1, …, fr have a common factor, or the initial coefficient vanishes in all of these 
polynomials. 
 2.  All of the terms of R1, …, Rs have the same degree in the coefficients of any 
individual polynomial and the same weight as all of the coefficients together. 
 3.  One has identities of the form: 
 

Rj = ∑ Ajk fk(x), 
 
in which the Ajk are polynomials in the a1, …, eω , and x. 
 
 The resultant system of a sequence of homogeneous forms.  Let f1, …, fr be forms in 
x0, x1, …, xn with undetermined coefficients a1, …, eω .  There is then a system of forms 
R1, …, Rs with the following properties: 
 
 1.  The forms R1, …, Rs vanish for special values of a1, …, eω  if and only if f1, …, fr 
possess a non-trivial common zero locus − i.e., one that is different from (0, 0, …, 0) − in 
a suitable extension field. 
 2.  R1, …, Rs are homogenous in the coefficients of any individual form f1, …, fr . 
 3.  One has identities of the form: 

jx Rσ
ν = ∑ Aνjk fk , 

 
in which the Aνjk are forms in the a1, …, eω , x0, …, xn . 
 
 One also calls the construction and the setting to zero of the resultant system of the 
polynomials (resp., forms) f1, …, fr  the elimination of x (resp., of x0, …, xn) from the 
equations f1 = 0, …, fr = 0. 
 If the equations f1, …, fr are homogeneous in further sequences of variables then the 
elimination of such a sequence will yield a system of resultants that is again 
homogeneous in the other sequences, such that one can continue the elimination.   There 
is therefore also a resultant system for forms that are homogeneous in further sequences 
of variables, a resultant system with properties that are completely analogous to 
properties 1, 2, 3. 
 (For the proof, see Moderne Algebra II, chap. 11.) 
 



CHAPTER THREE 
 

Plane algebraic curves 
 

 In this chapter, x, y, z, u will mean indeterminates, while η, ζ, … will mean complex 
numbers.  The ξ and ω that will be introduced later on will be algebraic functions of one 
indeterminate u. 
 

§ 16.  Algebraic manifolds in the plane 
 

 Let there be given a system of homogeneous equations: 
 
(1)     fν(η0, η1, η2) = 0   (ν = 1, 2, …, r). 
 
One calls the totality of points η in the plane that satisfy equations (1) an algebraic 
manifold.  However, the totality of points that satisfy a single homogeneous equation is 
called an algebraic curve. 
 We would like to show that every algebraic manifold in the plane is composed of an 
algebraic curve and finitely many isolated points.  To that end, we define the greatest 
common factor g(y) of the polynomial fν(η0, η1, η2) and set: 
 

fν(y) = g(y) hν(y). 
 
The solutions of (1) will then reside on the points of the curve: 
 
(2)      g(η) = 0 
 
and the solutions of the system: 
 
(3)      hν(η) = 0   (v = 1, 2, …, r). 
 
Therefore, the polynomial hν(y) has the greatest common factor unity.  If one regards it as 
a polynomial in y2 with coefficients that are rational in y0 and y1 then it is known that the 
greatest common factor can itself be represented as a linear combination of polynomials: 
 

1 = a1(y2) h1(y) + … + ar(y2) hr(y). 
 

The aν(y2) are completely rational in y2 and rational in y0 and y1 .  If one makes them 
completely rational in y0 and y1 by multiplying them by the least common denominator 
b(y0, y1) then one will obtain: 
(4)     b(y0, y1) = b1(y) h1(y) + … + br(y) hr(y). 
 
Should b(y0, y1) not be homogeneous, one would look for the terms of a fixed degree in 
b(y0, y1) that will define a homogeneous, non-vanishing polynomial c(y0, y1), and likewise 
look for the terms of the same degree in the right-hand side of (4); one would thus obtain: 
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(5)    c(y0, y1) = c1(y) h1(y) + … + cr(y) hr(y). 
 
 It follows from (5) that all solutions of the system of equations (3) will 
simultaneously be solutions of: 

c(y0, y1) = 0. 
 
However, this homogeneous equation determines only finitely many values of the ratios 
η0 : η1; one likewise finds finitely many values for η1 : η2 and η2 : η0 .  Therefore, the 
system of equations (3) has only finitely many solutions η0 : η1 : η2 .  These, together 
with the points of the curve (2) will constitute all solutions of the original system of 
equations (1). 
 If one decomposes the polynomial g(y) into irreducible factors: 
 

g(y) = g1(y) … gs(y) 
 
then the curve (2) will obviously decompose into irreducible curves: 
 

g1(y) = 0, …, gs(y) = 0; 
 
i.e., ones that are defined by irreducible forms.  Thus, any algebraic manifold (1) 
decomposes into finitely many irreducible curves and finitely many isolated points.  
Naturally, one can also treat only curves or only isolated points; one can also encounter 
the case in which the system of equations (1) has no solutions at all.  Finally, if the 
system of equations (1) is empty, or if all of the fν are identically zero then the manifold 
that it defines will be the entire plane. 
 A curve g(η) contains infinitely many points.  If – say – η2 actually enters into the 
polynomial g(η) then the equation: 
 

g(η) = 1
0 0 1 2 0 0 1 2 0 1( , ) ( , ) ( , )m m

ma a aη η η η η η η η−+ + +⋯ = 0 

 
will define at least one value (and at most m values) η2 for each value ratio η0 : η1 for 
which a0(η0, η1) ≠ 0. 
 If an equation f(η) = 0 is true for all or almost all (i.e., all except for finitely many) 
points of an irreducible curve g(η) = 0 then the form f(y) will be divisible by g(y).  
Otherwise, f(y) and g(y) would be relatively prime, and from that it would follow, as 
before, that the equations f(η) = 0 and g(η) = 0 would have only finitely many common 
solutions. 
 The last theorem is also true for hypersurfaces in the space Sn (as well as in affine and 
multiply-projective spaces): 
 
 The STUDY Lemma (1).  Let f and g be polynomials in y1, …, yn .  If all (or almost 
all) solutions of the irreducible equation g(η) = 0 also satisfy the equation f(h) = 0 then 
the polynomial f(y) will be divisible by g(y). 
                                                
 (1 ) The STUDY Lemma is a special case of the HILBERT Nullstellensatz (Moderne Algebra II, Chap. 
11). 
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 Proof.  If f(y) and g(y) were relatively prime then, assuming that yn actually enters 
into g(y), the resultant R(y1 , …, yn−1) of f(y) and g(y) would not vanish identically, and it 
would be: 
(6)     R(y) = a(y) f(y) + b(y) g(y). 
 
If one now chooses η1, …, ηn−1 such that R(η1 , …, ηn−1) ≠ 0 and such that the coefficient 
of the highest power of yn in g(y) is likewise non-vanishing for y1 = η1, …, yn−1 = ηn−1 
then one can determine ηn from the equation g(η1 , …, ηn−1) = 0.  For all (or almost all) 
such η1, …, ηn−1 one will then also have f(η) = 0; thus, the right-hand side of (6) will 
vanish, but not the left-hand side, which is a contradiction. 
 
 Corollary.   If the equations f(η) = 0 and g(η) = 0 represent the same hypersurface 
then the forms f(y) and g(y) will be composed of the same factors, possibly with differing 
exponents. 
 
 Therefore, from the STUDY Lemma, every irreducible factor of f(y) must appear in 
g(y), and conversely. 
 
 



 

§ 17.  The degree of a curve.  BEZOUT’s theorem. 
 

 If g1 , …, gs are various irreducible forms in y0 , y1 , y2 then the equation: 
 

1 2
1 2( ) ( ) ( ) sqq q

sg g gη η η⋯ = 0 

 
will define the same curve as the equation: 
 

g1(η) …, gs(η) = 0. 
 

On the basis of this, we can always assume that the equation of a plane curve is free of 
multiple factors.  If this is the case then one will call the degree n of the form g1(η) …, 
gs(η) the degree or the order of the curve g = 0 (1). 
 The degree also has a geometric meaning.  Namely, if we intersect a line with the 
curve, after we have introduced the parametric representation: 
 

η = λ1 p + λ2 q 
 
into the equation of the curve g(η) = 0, then we will obviously obtain an nth-degree 
equation for the determination of the ratio λ1 : λ2 .  Therefore, there will be at most n 
points of intersection, in the event that the equation does not vanish identically, in which 
case, all of the points of the line will lie on the curve.  From the STUDY Lemma, it will 
follow that in the latter case the equation of the line will be contained in the equation of 
the curve as a factor. 
 In the next paragraph, we will see that there are always lines that actually have n 
different points of intersection with the curve.  The degree n of the curve is then the 
maximum number of its intersection points with a line that is not contained in it. 
 An extremely important question is that of the number of intersection points of two 
plane curves f(η) = 0 and g(η) = 0.  Let the forms f(y) and g(y) be relatively prime; then, 
from § 1, only finitely many intersection points η(0), …, η(h) will be present in any case.  
Now, Bezout’s Theorem states that one can provide these intersection points with such 
(positive whole number) multiplicities that the sum of these multiplicities will be equal to 
the product m · n of the degree of the forms f and g. 
 In order to grasp the intersection points algebraically and define their multiplicities 
we first consider two undetermined points p and q and their connecting line in the 
parametric representation: 
(1)      η = λ0 p + λ1 q.  
 
If we substitute (1) into the curve equation then we will obtain two forms of degrees m 
and n in λ0 and λ1 whose resultant R(p, q) will depends upon only p and q.  R(p, q) will 

vanish if and only if the connecting line pq  includes an intersection point of the two 
curves, thus, when one of the determinants: 

                                                
 (1 ) Occasionally, the degree of a polynomial f with multiple factors is also called the degree or order of 
the curve f = 0.  The irreducible components of the curve will then be multiply counted. 
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(p q η(ν)) = 
0 1 2

0 1 2
( ) ( ) ( )
0 1 2

p p p

q q q
ν ν νη η η

 

 
vanishes.  From the corollary to the STUDY Lemma (§ 16), it will then follow that R(p, 
q) is composed of the same irreducible factors as the product: 
 

( )

1

( )
h

p q ν

ν
η

=
∏ . 

One will then have: 

(2)     R(p, q) = ( )

1

( )
h

c p q νσν

ν
η

=
∏ , 

 
in which c does not depend upon p and q and is ≠ 0.  We now define σν to be the 
multiplicity of the intersection point η(ν) of f = 0 and g = 0. 
 
 BEZOUT’s Theorem now states that the sum of the multiplicities of all intersection 
points is equal to m · n: 
 
(3)      νσ∑ = m · n. 

 
 In order to prove it, we now need to determine the degree of R(p, q) in the p.  If we 
set: 
 
    f(η) = f(λ0 p + λ1 q) = 1

0 1 1 1 0 0
m m m

ma a aλ λ λ λ−+ + +⋯ , 

    g(η) = g(λ0 p + λ1 q) = 1
0 1 1 1 0 0

n n n
nb b bλ λ λ λ−+ + +⋯  

 
then each ak and each bk will be homogeneous of degree k in the p.  Since, from § 15, the 
resultant R(p, q) has the weight m · n it will be homogeneous of degree m · n in the p.  
The assertion (3) will follow immediately from this, on account of (2). 
 The multiplicities σν are invariant under projective transformations.  Namely, under 
a projective transformation that acts on the points η, p, q, η(1), …, η(k) in the same way 
the determinants (p q η(ν)) will remain invariant, up to a constant factor, while the 
resultant R(p, q) was already defined in an invariant way. 
 There exists a series of methods for the effective evaluation of the multiplicities σν  
that can be derived from formula (2) by specialization.  If we first set λ0 = 1, λ1 = λ, p = 
(1, u, 0), q = (0, v, 1), so, from (1): 
 
      η0 = 1, 
      η1 = u + λ v, 
      η2  = λ, 
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then R(p, q) = N(u, v) will be the resultant of f(1, u + vλ, λ) and g(1, u + vλ, λ) in λ, and, 
from (2), one will have: 

(4)     N(u, v) = ( ) ( ) ( )
0 1 2

1

( )
h

c u v νσν ν ν

ν
η η η

=

− −∏ . 

 
One calls N(u, v) the NETTO resolvent.  Its factorization allows a direct computation of 
the multiplicities σν .  If one carries out the specialization even further, when one sets v = 
0, then one will obtain the resultants of f(1, u, z) and g(1, u, z) in z: 
 

(5)     R(u) = ( ) ( )
0 1

1

( )
h

c u νσν ν

ν
η η

=

−∏ . 

 
It allows the determination of the σν only under the assumption that no two intersection 
points η(µ), η(ν) have the same ratio η0 : η1 . 
 Formulas (4) and (5) indeed appear to be truly simple, although the practical 
computation of the multiplicities on the basis of these formulas seems truly tedious, 
firstly because the resultants are large determinants, and above all, because the entire 
extent of the curves f = 0 and g = 0 enters into it, whereas, in truth, the intersection 
multiplicity depends upon only the behavior of the curves in the immediate neighborhood 
of an intersection point.  Expressing this is, however, possible only when one carries out 
the PUISEAUX series development of the algebraic functions.  We will come back to 
this in § 20. 
 
 Problems.  1.  The multiplicities of the intersection of a line with a curve are the same as the 
multiplicities of the roots of the equation that one obtains when one solves the equation of the line for one 
coordinate and substitutes it into the equation of the curve. 
 2. If the equations f = 0 and g = 0 are ordered into increasing powers of η0 that begin with: 
 

1 1
1 0 1 2 0 2

m ma aη η η η− −+ +⋯= 0, 
1 1

1 0 1 2 0 2
n nb bη η η η− −+ +⋯  = 0 

 
then the multiplicity of the intersection point (1, 0, 0) will be equal to 1 or greater than it, depending upon 
whether a1 b2 – a2 b1 is ≠ 0 or = 0, resp. 

 
 

§ 18.  Intersection points of lines and hypersurfaces.  Polars. 
 

 The intersection point of a line with an mth-degree plane curve − or, more generally, 
with a hypersurface in the space Sn − is calculated most conveniently by substituting a 
parametric representation: 

η = λ1 r + λ2 s 
 
for the line into the equation of the hypersurface f(η) = 0.  One gets: 
 
(1)    f(λ1 r + λ2 s) = 1

1 0 1 2 1 2
m m m

mf f fλ λ λ λ−+ + +⋯ = 0. 
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Therefore, f0 = f(r) is of degree m in r, and likewise fm = f(s) is of degree m in s, while fk(0 
≤ k ≤ m) is homogeneous of degree m − k in r and of degree k in s.  The expressions f0, f1, 
…, fm are called polars of the form f.  Their defining rule comes to light when one 
develops the left-hand side of (1) in a TAYLOR series in powers of λ2 ; one finds, when 
∂k means the partial derivative of f(x) with respect to xk , that: 
 
     f0 = f(r), 
     f1 = ( )k k

k

s f r∂∑ , 

     f2 = 
1

( )
2! k l k l

k l

s s f r∂ ∂∑∑ , 

  …………………………. 
 

One also calls the hypersurfaces polars whose equations are given by f1 = 0, f2 = 0 for 
fixed s and variable r, and indeed one calls f1 = 0 the first polar of the point s, f2 = 0 the 
second one, etc.  By contrast, for fixed r and variable s, f1 = 0 is the (m – 1)th polar of r, f2 
= 0 is the (m – 2)th polar, etc. 
 
 In the case of a plane curve, the multiplicities of the roots of (1) will agree with the 
multiplicities of the intersection points of the curve with the line, as defined in § 17.   
 
 Proof: The resultant R(p, q) of § 17 is, in this case, the resultant of a linear form in λ0 

, λ1 and a form of degree m; it can be calculated when one substitutes a root of the linear 
form into the form of degree m.  The root of the linear form belongs to the intersection 

point of the line p q with the line r s ; this intersection point is, from the computations of 
§ 10, problem 2: 

t = (p q r) s – (p q s) r. 
 

If we substitute this into f(t) then we will obtain the desired resultant: 
 

R(p, q) = f((p q r) s – (p q s ) r). 
 

It will therefore be equal to the form f(λ1 r + λ2 s) for λ1 = − (p q s) and λ2 = (p q r).  If 
the form f(λ1 r + λ2 s) then decomposes into linear factors with multiplicities σk then R(p, 
q)will  correspondingly decompose into linear factors with the same multiplicities, which 
was to be proved. 
 
 We now come to the practical determination of these multiplicities.  The root λ2 = 0 
of equation (1) is k-fold when the left-hand side of the equation is divisible by 2

kλ ; thus, 
when one has: 
(2)     f0 = 0, f1 = 0, …, fk – 1 = 0. 
 
 It follows from this that: The point r is a k-fold intersection point of the line g with the 
hypersurface f = 0 when equations (2) are valid for any second point s of this line.  The 
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first of these equations says only that r lies on the hypersurface f = 0.  The others are the 
terms of the series that are linear, quadratic, …, up to degree k − 1 in s. 
 If equations (2) are satisfied identically in s − so each line through r intersects the 
curve at the point r at least k times (hence, not necessarily precisely k times) − then one 
will call r a k-fold point of the hypersurface.  For example, in this nomenclature any 
multiple point will also be called a double point. 
 A line through the k-fold point r that intersects the hypersurface at r more than k 
times is called a tangent to the hypersurface at r.  If g is such a tangent then every point s 
of g will satisfy the equation: 
(3)      fk = 0, 
 
in addition to equations (2).  The tangents to r will thus define a conic hypersurface 
whose equation is given by (3).  The equation is of degree k, so the cone will be of degree 
at most k.  In the case of a plane curve, the cone will decompose into at most k lines 
through r.  There are thus at most k tangents to a k-fold point of a plane curve. 
 In the case of a simple point, (3) will represent a plane with the equation: 
 

∑ sk ∂k f(r) = 0. 
 

All tangents to a simple point r of a hypersurface will thus lie in a hyperplane whose 
coefficients are given by: 
(4)      uk = ∂k f(r); 
  
it is called the tangent hyperplane.  In the case of a given curve, there is a single tangent 
u to a simple point that is given by (4). 
 We now ask which tangents one can draw from a point s outside of the hypersurface 
to the hypersurface f = 0.  If r is the contact point of such a tangent then the equations: 
 
(5)      f0 = 0,  f1 = 0 
 
must be true.  They are of degree m (m − 1, resp.) in r.  They are, however, satisfied not 
only when r is the contact point of a tangent, but also when r is a multiple point of the 
hypersurface f = 0.  In order to study them more closely, we think of a given point s as 
being located at the point (0, 0, …, 1).  Equations (5) will then read: 
 
(6)      f(r) = 0, ∂n f(r) = 0. 
 
If the form f(x) is free of multiple factors then, as is well-known, f(x) and its derivative 
with respect to xn will have no common factor.  In the case of a plane curve, the two 
curves (6) will have finitely many – namely, at most m(m – 1) – intersection points.  One 
can therefore draw at most m (m – 1) tangents from a point s to a plane curve of degree 
m.  Its contact points, as well as the double points of the curve, will be the intersection 
points of the curve with the first polar of the point s.  In particular, it follows that a plane 
algebraic curve can have only finitely-many double points. 
 One will find the equations of the tangents at the point (0, 0, …, 1) to the 
hypersurface f = 0 when one constructs the resultant for rn from the two equations (6).  
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One will obtain a conic hypersurface R(r0, …, rn – 1) of degree m (m – 1) with its vertex at 
s = (0, 0, …, 1).  The generating lines of the cone will be the tangent or go through the 
multiple points of the hypersurface.  All remaining lines through the point s will intersect 
the hypersurface to m different points. 
 
 Problems.  1.  The kth polar of a point r relative to the lth polar of the same point is the (k + l) th polar of 
r. 
 2. The kth polar of r relative to the l th polar of q is equal to the lth polar of q relative to the kth polar of 
r. 
 3. If f(s) = ∑∑ … ∑ aij…l  si…sl then the successive polars of a point r will be given by: 
 
     f1 = ∑∑ … ∑ aij…l  ri sj…sl , 
 
     f2 = m (m – 1) ∑ … ∑ aijk…l  ri rj sk…sl ,  
 
etc.  On this, cf., the theory of quadric polars! 
 4. The coordinate origin (1, 0, 0) is a k-fold point of the curve f = 0 if and only if the terms in the 
polynomial f whose degree in y1 and y2 is less k are absent 

 
 

§ 19.  Rational transformations of curves.  The dual curve. 
 

 We speak of a rational transformation of an irreducible curve f = 0 when each point η 
of the curve (possibly with finitely many exceptions) is uniquely associated with a point ζ 
of the plane whose coordinate ratios are rational functions of the coordinate ratios of the 
point η: 

(1)     

1 1 2

0 0 0

2 1 2

0 0 0

, ,

, .

ζ η ηϕ
ζ η η

ζ η ηψ
ζ η η

  
=  

  


  =  
 

 

 
If one writes the functions ϕ and ψ as quotients of complete rational functions, puts them 
over the same common denominator, and then multiplies the numerator and denominator 
by a suitable power of η0 then, from (1), one will have: 
 

     1

0

ζ
ζ

= 1 0 1 2

0 0 1 2

( , , )

( , , )

g

g

η η η
η η η

, 

     2

0

ζ
ζ

= 2 0 1 2

0 0 1 2

( , , )

( , , )

g

g

η η η
η η η

, 

or also: 
(2)    ζ0 : ζ1 : ζ2 = g0(h) : g1(h) : g2(h). 
 
The gi will be forms of the same degree that are not all three divisible by the form f, since 
otherwise the ratios (2) would be undetermined.  However, there can be finitely many 
points η on f = 0 for which it happens that g0(η) = g1(η) = g2(η) = 0; the image point ζ of 
these points η will then be undetermined. 
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 Theorem 1.  Under the rational transformations (2) of an irreducible curve f = 0, the 
image points ζ will all lie on an irreducible curve h = 0.  It will be determined uniquely 
unless the point ζ is a constant point. 
 
 In order to prove this, we first introduce the notion of a general point of an 
irreducible curve f = 0.  Let u be an indeterminate and let ω be an algebraic function of u 
that is defined by the equation f(1, u, ω) = 0.  We then call (ξ0, ξ1, ξ2) = (1, u, ω) a 
general point of the curve.  ξ is indeed not a point in the sense of Chap. 1, since the 
coordinates of ξ are not complex numbers, but algebraic functions, although we can still 
treat ξ as a point insofar as its coordinates are elements of a field, so the algebraic rules of 
calculation will still apply. 
 A general point has the following property: If a homogeneous equation g(ξ0, ξ1, ξ2) = 
0 with constant coefficients is true for a general point x then the form g(x0, x1, x2) will be 
divisible by f(x0, x1, x2), and therefore the equation g(η0, η1, η2) = 0 will be true for all 
points η of the curve.  From g(1, u, ω) = 0, it will then follow, from § 12, that g(1, u, z) is 
divisible by f(1, u, z): 

g(1, u, z) = f(1, u, z) q(1, u, z). 
 

If one makes this equation homogeneous then the asserted divisibility of g(x0, x1, x2) by 
f(x0, x1, x2) will follow. 
 The rational transformation (2) associates the general point ξ with a point ζ * whose 
coordinates are: 
     0ζ ∗  = 1, 

     1ζ ∗  = 1

0

( )

( )

g

g

ξ
ξ

= 1

0

(1, , )

(1, , )

g u

g u

ω
ω

, 

      2ζ ∗ = 2

0

( )

( )

g

g

ξ
ξ

= 2

0

(1, , )

(1, , )

g u

g u

ω
ω

. 

 

1ζ ∗  and 2ζ ∗  are algebraic functions of u, so the system (1ζ ∗ , 2ζ ∗ ) has a degree of 

transcendence of at most 1.  There are therefore two possibilities: Either1ζ ∗ , 2ζ ∗  are both 

algebraic over the constant field K − hence, since it is algebraically closed, they will be 
constants in K − or one of the two quantities – say, 1ζ ∗  − is transcendental and the other 

one 2ζ ∗  is an algebraic function of 1ζ ∗ .  In the latter case, there will exist a single 

irreducible equation h( 1ζ ∗ , 2ζ ∗ ) = 0, or, when it is made homogeneous: 

 
h( 1ζ ∗ , 2ζ ∗ , 3ζ ∗ ) = 0. 

 
From the meaning of ζ *, this says that: 
 
(3)     h(g0(ξ), g1(ξ), g2(ξ)) = 0. 
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Equation (3) is valid for the general point ξ, and thus, for every point of the curve f = 0.  
Hence, when ζ is determined using (2) one will always have the equation: 
 

h(ζ0, ζ1, ζ2) = 0. 
With this, Theorem 1 is proved. 
 
 Theorem 1 is also true − with a small alteration − for rational maps of hypersurfaces 
in Sn .  Here, there is also a general point (1, u1, …, un−1, ω) whose image point 

1(1, , , )nζ ζ∗ ∗
⋯  has a degree of transcendence of at least n – 1.  There is thus at least one 

irreducible equation 1( , , )nh ζ ζ∗ ∗
⋯ = 0, and therefore at least one irreducible hypersurface 

h(ζ0, ..., ζn) = 0 on which the image points lie.  In the case of degree of transcendence n – 
1, there will indeed be precisely one irreducible hypersurface, but all values of the degree 
of transcendence from 0 to n – 1 will be possible. 
 One will obtain an important example of a rational map of a curve when one 
associates each point η of the curve with the tangent v to the curve and regards v0, v1, v2 
as point coordinates in a second plane: viz., the dual plane.  From § 17, the equations of 
the map will read: 

v0 : v1: v2 = ∂0 f(η) : ∂1 f(η) : ∂2 f(η) . 
 

The map will be undetermined at only finitely many double points.  The ratios of the v 
will be constant only when the constant line v contains all curve points η; hence, when 
the curve is a line.   In all other cases, the image point v will lie in the dual plane, so from 
Theorem 1, on a single irreducible curve: viz., the dual curve h(v) = 0. 
 The tangents to the simple points of the original curve will correspond to points of the 
dual curve.  However, we will see that, conversely, the tangents to the dual curve will 
also correspond to points of the original curve.  Namely, one will have: 
 
 Theorem 2.  The dual curve of the dual curve is the original one.  If the tangent at 
η corresponds to the point v of the dual curve then the tangent at v will correspond to the 
point η. 
 
 Proof.  Let ξ = (1, u, ω) again be a general point of the curve f = 0.  One then has: 

f(ξ0, ξ1, ξ2) = 0, 
 

and from this, after differentiating by u: 
 

∂0 f(η) · dξ0 + ∂1 f(η) · dξ1 + ∂2 f(η) · dξ2 = 0, 
 
or, if v* is the tangent at a general point: 
 
(3)     0 0 1 1 2 2v d v d v dξ ξ ξ∗ ∗ ∗+ + = 0. 

 
Furthermore, since the tangent contains the point itself, one will have: 
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(4)     0 0 1 1 2 2v v vξ ξ ξ∗ ∗ ∗+ + = 0. 

 
If one differentiates (4) by u and subtracts it from (3) then it will follow that: 
 
(5)     0 0 1 1 2 2dv dv dvξ ξ ξ∗ ∗ ∗+ + = 0. 

 
(5) is dual to (3), while (4) is dual to itself.  For v*, one has the equation: 
 

h(v0, v1, v2) = 0. 
 

If one now denotes the tangent to this curve at the point v* by ξ* then one will get 
equations that are analogous to (3), (4): 
 
(6)     0 0 1 1 2 2v v vξ ξ ξ∗ ∗ ∗ ∗ ∗ ∗+ + = 0, 

(7)     0 0 1 1 2 2dv dv dvξ ξ ξ∗ ∗ ∗ ∗ ∗ ∗+ + = 0. 

 
These determine the point ξ* uniquely; otherwise, all two-columned sub-determinants of 
the matrix: 

0 1 2

0 1 2

v v v

dv dv dv

∗ ∗ ∗

∗ ∗ ∗

 
 
 

 

 
would vanish, and that would mean that: 
 

1

0

vd

du v

∗

∗ = 0 and 2

0

vd

du v

∗

∗ = 0; 

 
hence, the ratios 0 1 2: :v v v∗ ∗ ∗  would be constant.  However, we saw before that this is the 

case only for curves of degree 1.  Hence, the point ξ* that is determined from (6) and (7) 
will coincide with the point ξ that is determined from (5) and (4), which one can express 
through the equations: 

j k k jξ ξ ξ ξ∗ ∗− = 0. 

 
However, since these equations are valid for the general curve point they will also be 
valid for every particular curve point η.  Thus, if the tangent at η corresponds to the point 
v of the dual curve then the tangent to this curve at the point v will correspond to the 
point η.  With this, Theorem 2 is proved. 
 
 We will give a second proof of Theorem 2 later on that is based upon PUISEAUX’s 
series development, and which is valid for the tangents at multiple points.  The proof 
above is, however, more elementary, and can be easily carried over to hypersurfaces, as 
long as they possess a uniquely determined dual hypersurface, which is not always the 
case.  E.g., if f = 0 represents a developable ruled surface or a cone in the space S3 then 
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the image points v of the tangent plane will not define a surface in the dual space, but 
only a curve.  The developable ruled surfaces are then defined by saying that all of their 
points possess a generator of the same tangent plane, such that the tangent plane at a 
general point ξ will depend algebraically upon not two parameters, but only one. 
 The degree of the dual curve is equal to the maximum number of its intersection 
points with a line, or, what amounts to the same thing, the maximum number of tangents 
that one can draw from a point r of the plane to the original curve.  This number is called 
the class of the curve f = 0.  From § 18, the class of a curve of degree m amounts to at 
most m(m – 1), and it will then be smaller when the curve possesses multiple points.  In 
order to compute the class more precisely, one must know how many intersection points 
of the curve will be absorbed into the polar of an arbitrary point of the multiple points.  
The means to do this is given by the power series expansion of the curve branches, which 
we will discuss more thoroughly in the next paragraph. 
 
 Problems.  1.  Every double point is an at least two-fold intersection point of the curve and its polar, 
and will thus reduce the class by at least 2 (cf., § 17, prob. 2). 
 2. An irreducible curve of order 2 (conic section) has class 2.  An irreducible curve of order 3 can 
have only one of the classes 6, 4, or 3 

 
 

§ 20.  The branches of a curve. 
 

 Let f(η) = 0 be an irreducible curve, and let ξ = (1, u, ω) be a general point of this 
curve; ω will then be any solution of the equation f(1, u, ω) = 0.  However, from § 14, 
these solutions will be power series in fractional powers of u – a or u−1.  In the former 
case, one has: 

u − a = τk or u = a + τk   (k > 0), 
ω = chτh + ch+1τh+1 + …  (h > 0, h = 0, or h < 0); 

hence: 

(1)      
0

1
1

2 1

1,

,k

h h
h h

a

c c

ξ
ξ τ
ξ τ τ +

+

=
 = +
 = + + ⋯

 

In the latter case, one has: 
u−1 = τk  or u = τ−k 

ω = chτh + ch+1τh+1 + …; 
hence: 

(2)      
0

1
1

2 1

1,

,k

h h
h hc c

ξ
ξ τ
ξ τ τ

−

+
+

=
 =
 = + + ⋯

 

 In both cases, ξ0, ξ1, ξ2 are therefore power series in the position uniformization τ.  
Any k power series that go into each other under the substitution τ → ζτ, ζk = 1 will 
define a cycle.  Such a cycle is called a branch of the curve f = 0. 
 We now consider, more generally, any non-constant point of the curve whose 
coordinates are each a power series in one variable σ: 
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(3)      

1
0 1

1
1 1

1
2 1

,

,

p k
p p

p k
p p

p k
p p

a a

b b

c c

ρξ σ σ
ρξ σ σ
ρξ σ σ

+
+

+
+

+
+

 = + +
 = + +
 = + +

⋯

⋯

⋯

 

 
Since the quotient of two power series will again be a power series, we can divide all 
three ρξν by ρξ0, and obtain the normalized coordinates: 
 

(4)      
0

1
1 1

1
2 1

1,

,g g
g g

h h
h h

d d

e e

ξ
ξ σ σ
ξ σ σ

+
+

+
+

=
 = + +
 = + +

⋯

⋯

 

 
 The power series for ξ1 cannot exist as just a constant term, since if ξ0 and ξ1 were 
constant then, on the grounds of the equation f(ξ) = 0, ξ2 would also be constant; hence, ξ 
would be a constant point, contrary to the assumption. 
 We will now show that any power series triple (4) can be brought into one of the 
forms (1) or (2) by the introduction of a new variable τ, instead of σ. 
 In order to prove this, we distinguish between the cases g ≥ 0 and g < 0.  In the case 
of g ≥ 0, we write the power series for ξ1 as follows: 
 

ξ1 = a + dkσk + dk+1σk+1 + …   (dk ≠ 0). 
 

Using the development theorem of § 14, we now solve the equation: 
 

τk = dkσk + dk+1σk+1 + …   (dk ≠ 0) 
by a power series: 

τ = b1σ + b2σ2 + …    (b1 ≠ 0) 
It will follow that: 

ξ1 = a + τk. 
 

It is not difficult to transform the powers series: 
 
(5)      ξ1 = ehσh + eh+1σh+1 + … 
 
into a power series in τ.   If the powers τh, τh+1, … are power series in s that begin with 
terms in σh, σh+1, … then one can obtain the power series (5) by a suitable linear 
combination of these power series.  We will thus obtain: 
 

(6)      
0

1
1

2 1

1,

,k

h h
h h

a

c c

ξ
ξ τ
ξ τ τ +

+

=
 = +
 = + + ⋯
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In the event that the exponents that enter into the power series ξ1, ξ2 have a common 
factor d, one can introduce τ d as a new variable, and thus force the exponents to be 
relatively prime.  The power series representation thus obtained will have the form (1) 
and must also agree with one of the developments (1).  Namely, if one introduces: 
 

τ  = 
1

( ) ku a−  
 
into (6), where u is an indeterminate, then this will make ξ0 = 1, ξ1 = u, and ξ2 will 
become a power series in fractional powers of u − a that satisfies the equation f(1, u, ξ2) = 
0.  On the basis of the factor decomposition: 
 

f(1, u, z) = ( )( )
0

1

m

a z νω−∏  

 
that is valid in the domain of this power series, ξ2 must then agree with one of the power 
series ω(ν), which was to be proved. 
 The second case g < 0 is then treated in a completely analogous way.  We then set g = 
− k and have, from (4): 

ξ1 = d−k σ−k + d−k+1 σ−k+1 + …    (d−k ≠ 0) 
 

We now solve the equation: 
τ k (d−k σ−k + d−k+1 σ−k+1 + …) = 1 

by a power series: 
τ = b1σ + b2σ2 + …    (b1 ≠ 0) 

and then have τ kξ1 = 1; hence: 
ξ1 = τ--k. 

The power series: 
ξ2 = eh σh + eh+1 σh+1 + … 

 
can be further transformed into a power series in τ: 
 

ξ2 = ch τ h + ch+1 τ h+1 + … 
 
We thus come to a power series development of the form (2), which, on the basis of the 
argument followed above (possibly with the introduction of τ d in place of τ), must agree 
with the development (2). 
 
 We thus see: Any power series development (3) belongs to a certain branch of the 
curve, and may be reduced, to one of the power series developments (1) or (2) of that 
branch by the introduction of new variables. 
 
 From this theorem, it will now follow easily that the concept of branch is invariant 
under projective transformations, and in fact, more generally, under arbitrary rational 
transformations.  Namely, if such a rational map is given by: 
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(7)     ζ1 : ζ2 : ζ3 = g0(ξ) : g1(ξ) : g2(ξ) 
 
and one substitutes the power series (3) for ξ0 : ξ1 : ξ2 , then one will again obtain power 
series in τ for ζ1 : ζ2 : ζ3 , which, from the theorem above, will belong to a certain branch 
of the image curve.  Thus, any branch of the curve f = 0 will correspond to a certain 
branch of the image curve under the rational map (7). 
 The proportionality factor ρ in (3) is arbitrary.  If one chooses ρ to be a power of σ 
whose exponent is equal to the smallest of the numbers p, q, r then will one find 
developments for ξ0 : ξ1 : ξ2  in which no negative powers appear, while the constant 
terms are not all three equal to zero.  In the sequel, we shall always assume this 
normalization of the proportionality factor ρ.  If one now sets σ = 0 then one will retain 
only the constant terms of the power series, and one will get a certain point of the plane: 
viz., the starting point of the branch in question.  In (1), e.g., for h ≥ 0, the starting point 
will be the point (1, a, c0), although, in the case h < 0 the point will be (0, 0, ch).  In (2), 
for h > − k it will be the point (0, 1, 0), for h = − k it will be the point (0, 0, 1), and for h < 
− k it will be the point (0, 0, ch).  If the point (0, 0, 1) does not lie on the curve, which one 
can always insure for some choice of coordinate system, then one must always have h ≥ 0 
in (1) and h ≥ − k in (2). 
 The starting point of a branch is always a point of the curve, since the equation f(ξ0 , 
ξ1, ξ2) = 0 is valid identically in σ; hence, also for σ = 0.  However, one also has 
conversely: Any curve point h is the starting point of at least one branch.  In order to 
prove this, we further assume that the point (0, 0, 1) does not lie on the curve.  In the 
equation: 

f(1, u, z) = a0 z
m + a1(u) zm−1 + … + am(u) 

 
one will then have a0 ≠ 0.  Now, if at first η0 ≠ 0 – say, η0 = 1, η1 = a, η2 = b – then we 
will assume the factor decomposition: 
 

(8)     f(1, u, z) = 0
1

( )
m

a z νω−∏  

 
at the locus u = a.  For u = a, z = b the left-hand side will become zero, hence, a factor on 
the right-hand side will be zero, as well, which will make one of the power series ων  

assume the value b for u = a, τ = 0. 
 Secondly, if η0 = 0, η1 ≠ 0 – say, η1 = 1, η2 = b – then we will form the factor 
decomposition (8) at the locus u = ∞, and thus assume that the power series ων  is in u−1.  
We multiply both sides by u−m and obtain: 
 

f(u−1, 1, z u−1) = 1 1
0

1

( )
m

a zu u νω− −−∏ . 

 
If we set u−1 = x and z u−1 = y then it will follow that: 
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(9)     f(x, 1, y) = 0
1

( )
m

a y x νω−∏ . 

 
Therefore, xων will be a power series in non-negative fractional powers of x = u−1 = τk, 
namely: 
(10)  xων = τk (chτh + ch+1τh+1 + …) = chτh+h + ch+1τh+h+1 + … 
 
If we now substitute x = 0, y = 0 in (9) then the left-hand side will become zero, hence, 
one of the factors on the right-hand side, as well.  With that, one of the power series (10) 
will assume the value b for t = 0, and everything will also be proved in this case.  What 
remains is the second case, which can also revert to the first one by a projective 
transformation. 
 One understands the order of a non-zero power series in τ  to mean the exponent of 
the lowest power of τ that appears in it.  The order will remain unchanged when a new 
variable σ is introduced in place of τ by way of τ = b1σ + b2σ2 + …, with b1 ≠ 0; it can be 
positive, zero, or negative.  When one substitutes the power series ξ0, ξ1, ξ2 for a branch z 

into a form g(ξ0, ξ1, ξ2), that will yield a power series that likewise possesses a certain 
order that is positive or zero, depending upon whether the curve g = 0 does or does not 
include the starting point η of the branch z, resp.  We will call this order the order of the 

form g on the branch z, or also the intersection multiplicity of the curve g = 0 with the 

branch z.  It is obviously invariant under projective transformations. 

 We now prove the extremely important theorem: 
 
 The multiplicity of an intersection point η of the curves f = 0 and g = 0 is equal to the 
sum of the orders of the form g on the branches of the curve f = 0 that have their starting 
point at η. 
 
 Proof.  We choose the coordinate system such that η0 ≠ 0, the point (0, 0, 1) does not 
lie on the curve f = 0, and no two intersection points of the curves f = 0 and g = 0 have the 
same ratio η0 :η1 .  For an intersection point, let η0 = 1, η1 = a, η2  = b.  From §17, the 
multiplicity of η as the intersection point of f = 0 and g = 0 will then be equal to the 
multiplicity of u − a in the factor decomposition of the resultant R(u) of f(1, u, z) and g(1, 
u, z).  One now has the formulas: 

     f(1, u, z) = 0
1

( )
m

a z µω−∏  

(8)     R(u) = 0
1

(1, , )
m

na g u µω∏ . 

 
In them, a0 is the coefficient of zm in f(1, u, z), and ω1, …, ωm are power series in 
fractional powers of u – a. 
 The factor g(1, u, ω(1)) has the order s1 as a power series in the position 
uniformization τ = (u – a)1/h.  The order s1 is the same for all power series g(1, u, ω(1)), 



74 III.  Plane algebraic curves 

…, g(1, u, ω(h)) that belong to the same cycle.  The product of the power series of this 
cycle: 

(9)      
1

(1, , )
m

g u µω∏  

 
has the order k s1 as a power series in τ, and thus the order s1 as a power series in u − a = 
τk.  Correspondingly, the remaining branches of the point (1, a, b) yield products like (9) 
of order s2 , …, sr .  However, the branches that belong to the other points give rise to 
only factors g(1, u, ωµ) of order zero, since one has g(1, a, b′) ≠ 0 for all points (1, a, b′) 
with b′ ≠ b that lie on f = 0.  The total order of the product (8) as a power series in u – a is 
therefore equal to s1 + s2 + … + sr .  With that, the theorem is proved. 
 
 A quotient of two forms of equal degree: 
 

ϕ(ξ) = 0 1 2

0 1 2

( , , )

( , , )

g

h

ξ ξ ξ
ξ ξ ξ

 

 
is a function that depends upon the ratios u = ξ1 : ξ0  and ω = ξ2 : ξ0 .  One calls ϕ(ξ) = 
ϕ(u, ω) a rational function of the general curve point ξ − or, briefly − a rational function 
of the curve.  Such a function has a certain order at each branch z of the curve, namely, 

the difference between the orders of the numerator and the denominator.  If the order is 
positive then one will speak of a zero of the function ϕ(ξ); if it is negative then ϕ(ξ) will 
have a pole.  The sum of the orders of the function ϕ(ξ) on all branches is equal to the 
sum of the orders of the numerator minus that of the denominator.  Hence, from 
BEZOUT’s theorem, it will be zero, since the numerator and denominator have the same 
degree.  It the follows that: 
 
 The sum of the orders of the zero loci and poles of a rational function on an 
irreducible curve is zero. 
 
 ZEUTHEN’s rule.  If one assumes that g = 0 also includes the point (0, 0, 1) then one 
can decompose f(1, u, z), as well as g(1, u, z), in the domain of the power series into 
linear factors: 

g(1, u, z) = 0
1

( )
n

c z νζ−∏ . 

One will then have the expression: 
 

(10)    R(u) = 0 0
1 1

( )
m n

n ma c µ ν
µ ν

ω ζ
= =

−∏∏  

 
for the resultant R(u).  The differences ωµ − ζν are power series in fractional powers of u 
– a.  Each of them has a certain order χ, i.e., it begins with a certain power (u – a)χ.  
From (10), the order of R(u) is equal to the sum of the orders of the differences ωµ − ζν .  
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If ωµ , ζν , or both of them belong to branches that do not include the point (1, a, b), then 
the difference ωµ − ζν will have order zero.  One will then get ZEUTHEN’s rule:  
 
 The multiplicity of an intersection point (1, a, b) of the curves f = 0 and g = 0 is equal 
to the sum of the orders of the power series ωµ − ζν  as functions of u − a, where (1, u, ωµ) 
and (1, u, ζν) are the power series developments of those branches of the curves f = 0 and 
g = 0 that have the point (1, a, b) as starting point. 
 
 ZEUTHEN’s rule shows that the intersection multiplicity is composed of 
contributions that originate in the individual branch pairs of f and g.  The computation of 
this contribution takes on an especially simple form when the branches are linear; i.e., 
when they exist as power series in integer powers of u – a.  If the power series ωµ and ζν  
then agree in the terms c0 + c1(u – a) + … + cs−1(u – a)s−1, but differ in the terms with (u – 
a)s, then s will be the contribution of the branch pair to the total multiplicity of the 
intersection point (1, a, b). 
 
 Problem.  1.  Compute the multiplicities of the three intersection points of the circle 2 2

1 2 0 1η η η η+ − = 0 

with the cardioid 2 2 2 2 2 2 2
1 2 0 1 1 2 0 2( ) 2 ( )η η η η η η η η+ − + − = 0. 

 
 

§ 21.  The classification of singularities. 
 

 For a closer examination of the branch of a curve f = 0, we assume that the point O = 
(1, 0, 0) is the starting point of a branch.  We thus have the development: 
 

(1)    
0

1
1

2 1

1,

,k

h h
h hc c

ξ
ξ τ
ξ τ τ +

+

=
 =
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The ratio ξ2 : ξ1 is a power series that begins with τh−k.  For τ = 0, this ratio will assume a 
definite value when h ≥ k; however, if h < k then we will say that the ratio ξ2 : ξ1 
“becomes infinite” for τ = 0.  In each case, however, the value of ξ2 : ξ1 for τ = 0 will 
define a certain direction at the starting point whose direction constant is exactly this 
value.  The line that is defined by this direction is called the tangent to the curve branch.  
The tangent is, by definition, the limit point of a chord, one end of which is the starting 
point O.  We will likewise see that the notion of tangent defined here agrees with the 
previously defined (§18) notion of curve tangent. 
 If we define the coordinate system such that the tangent falls on the axis η2 = 0 then h 
> k; say, h = k + l.  One calls (k, l) the characteristic numbers of the branch z.  One can 

characterize them geometrically as follows: Any tangent that differs from the lines 
through the point O will intersect the branch z at O with the multiplicity k, but the tangent 

will intersect it with multiplicity k + l.  Namely, if one substitutes the power series (11) 
for η1 : η2 in the equation g(η) = a1 η1 + a2 η2 = 0 of such a line then, in the case of a1 ≠ 
0, g(ξ) will be divisible by τk, but in the case a1 = 0 it will be divisible by τh+k, and that 
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means that the intersection multiplicity of z and g = 0 will equals k in the former case and 

k + l in the latter.  The number k is sensibly called the multiplicity of the point O for the 
branch z.  For k = 1, one will have a linear branch. 

 If r branches with the multiplicities k1, …, kr come together at a point O, then the 
multiplicity of the point O on the curve will be k1+ …+ kr ; each line through O that 
contacts no branch will then intersect the individual branches at O with multliplicities k1, 
…, kr , and the total curve thus intersects it with multiplicity k1+ …+ kr .  However, if the 
line is tangent to a branch then the multiplicity will be increased.  The tangents to the 
curve at the point O are thus precisely the tangents to the individual curve branch at O. 
 
 Theorem.  If the curve f = 0 has a p-fold point and g = 0 has a q-fold point then the 
intersection multiplicity of O will always be ≥ pq.  The equality sign will be valid if and 
only if the tangents to one curve at O are different from those of the other curves. 
 
 Proof.  We apply ZEUTHEN’s rule and assume that no tangent goes through the 
point (0, 0, 1).  There are p power series ωµ and q power series ζν .  The difference ωµ 
− ζν  will have order one at u when the branch tangents are different; otherwise, one order 
would be > 1.  The assertion follows from this. 
 
 The dual curve.  We would like to compute the branch of the dual curve that 
corresponds to the branch (1).  For the computation of the tangents v* at the general point 
x, we use formulas (3) and (4) of § 4.  In our case (1), this yields: 
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or finally, if one chooses 2v∗  = 1 then: 
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The starting point of this branch z* is the point v = (0, 0, 1), which is the image point of 

the tangent to the branch z.  The tangent to the branch z* is the line 0v∗ = 0 with the 
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coordinates (1, 0, 0), which is the image line of the point O = (1, 0, 0) of the original 
plane.  The characteristic numbers of the branch z* are (l, k), which are equal and 

opposite by comparison to those of the branch z.  Hence: 

 
 There exists a one-to-one correspondence between the branches z of a curve and the 

branches z* of the dual curve.  Thus, the starting point of z corresponds to the tangent of 

z* and the tangent to z, to the starting point of z*.  The characteristic numbers of z* are 

those of z in the opposite sequence. 

 
 Classification of the branch.  Almost all points of a curve are simple points (i.e., there 
are only finitely many multiple points).  Only one linear branch can have its starting point 
at a simple point.  For almost all branches, one will thus have k = 1.  Since the same is 
true for the dual curve, one will also almost always have l = 1.  Almost all branches will 
thus have the characteristic (1, 1).  One calls such a branch an ordinary branch, and its 
starting point, in the event that it carries only one branch, an ordinary point of the curve. 
 If a linear branch has the characteristic (1, 2) then the tangent will intersect the branch 
at the point O three times.  Such a point is called an inflection point and its tangent, an 
inflection tangent.  A point that carries a branch with the characteristic (1, l) with l > 2, is 
called a higher inflection point; for l = 3 in particular, it is called a flat point.  The tangent 
intersects the branch at a flat point four times. 
 The inflection point corresponds, dually, to the cusp, whose characteristic is (2, 1).  If 
the point O is a double point of the branch then the tangent will intersect it precisely three 
times.  For the characteristic (2, 2), the tangents will intersect a branch four times, and 
one will speak of a beak.  Therefore, the most frequently-occurring singularities are 
described by the individual branches.  The figures show how the curves appear over the 
reals in the neighborhood of the point O. 
 
 

Inflection point Ordinary point Flat point Cusp Beak 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 
 

 
 One obtains another type of singularity when several branches come together at a 
point.  If two linear branches with different tangents have precisely the same starting 
point then one calls this a junction; if there are r linear branches then one will speak of an 
r-fold point with separate tangents.  However, when two linear branches contact each 
other at the point O then one will call this a contact junction. 
 One will obtain singularities of the dual curve when several branches have the same 
tangent.  The corresponding duals to the junction point and the r-fold point with separate 
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tangents are the double tangent and the r-fold tangent with r different contact points.  The 
contact junction is clearly dual to itself. 
 
 

Junction Triple point with 
separate tangents 

Contact junction Double tangent 

 
 
 The class.  We would now like to examine the influence that the various types of 
singularities have on the class of a curve.  The class is the number of intersection points 
of the dual curve with a line q, or, what amounts to the same thing, the number of 
tangents to the original curve at a point Q, where the multiplicities with which these 
tangents are to be counted are to be computed on the dual curve according to a rule that is 
well-known to us.  Therefore, Q is completely arbitrary; we can thus choose Q to be 
external to the curve and external to the tangents to the multiple points O′. 
 We will thus obtain the tangents to Q when we eliminate the multiple point O′, with 
its respective intersection multiplicities, from the m(m – 1) intersection points of the 
curve f = 0 with the first polar f1 = 0 of the point Q, and connect the remaining 
intersection point O with Q.  If one can still establish that the multiplicities of the 
remaining intersection point O (when calculated in the plane of the curve f = 0) agree 
with the multiplicities of the tangents that correspond to them (when calculated in the 
dual plane) then it will follow that the desired number of tangents is equal to m(m – 1), 
minus the sum of the multiplicities of the O′ as intersection points of f = 0 and f1 = 0. 
 Let Q = (0, 0, 1) and O′ = (1, 0, 0).  The decomposition of f(1, u, z) into linear factors 
reads: 
(2)    f(1, u, z) = (z – ω1) (z – ω2) … (z – ωm). 
 
By differentiating with respect to z, it will follow that: 
 

(3)   f1(1, u, z) = 1
1

( )
m

i

z ω
=

−∑ …(z – ωi − 1) (z – ωi + 1) … (z – ωm). 

 
The multiplicity of the intersection of the polar f1 = 0 with the branch z, which belongs to 

the power series ω1, will be found when one substitutes z = ω1 in (3) and then examines 
the order of the corresponding product: 
 
(4)     (ω1 – ω2) (ω1 – ω3) … (ω1 – ωm) 
 
as a power series in τ.  Summing over all branches at the point O′ will yield those 
multiplicities as intersection points of f and f1. 
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 First, if O′ is an h-fold point with separate tangents then all of the differences (ωj – 
ωk) will have the order 1; the product (4) will thus have order n – 1, and the point O′ will 
have the multiplicity h(h – 1).  In particular, one will obtain the value 2 for an ordinary 
junction. 
 
 If O′ is a cusp then τ = u1/2 will be the position uniformization, and: 
 
      ω1 = c3 τ3 + …, 
      ω2 = − c3 τ3 + …, 
 
from which, (ω2 – ω1) will have the order 3.  A cusp will thus have multiplicity 3 as an 
intersection point of f and f1 .  All types of singular points will be treated analogously. 
 
 We now still have to calculate the multiplicities of the simple point O whose tangents 
go through Q as an intersection point of f and f1 .  The point O has the characteristic (1, l); 
the power series development of the branch of the curve f = 0 is then given by: 
 
       u = τl + 1, 
     ω1 = c1τ + c2τ2 + …               (c1 ≠ 0), 
     ω2 = c1ζτ + c2 ζ2τ2 + …          (ζl + 1 = 1), 
     ...……………………… 
     ωl + 1 = c1ζ l + 1 + … 
 
The differences (ω1 – ωk) all have order 1 in τ, so the product (4) will have order l.  The 
multiplicity of the tangent OQ to the corresponding point in the dual plane as an 
intersection point of the dual curve with the line q that does not contact it will be, 
however, likewise equal to l if we assume that only one branch of the dual curve has this 
point as its starting point.  The two multiplicities will thus agree, in fact. 
 It follows that: The class m′ of a curve of mth order that has no other singularities 
than only d junctions and s cusps will be given by the “PLÜCKER formula:” 
 
(5)     m′ = m(m – 1) – 2d – 3s. 
 
If other singularities are present then one must subtract further terms that can be 
calculated as intersection multiplicities of f and f1, as above. 
 
 Problems.  1.  Examine the singular points of the “CARTESIAN leaf:” 
 

x3 + y3 = 3xy, 
the “heart line” (cardioid): 

(x2 + y2) (x – 1)2 = x2, 
the four-leafed rosette: 

(x2 + y2)2 = 4 x2 y2. 
 

 2. A contact junction has multiplicity 4 as an intersection point of f and f1 (or higher, if the two 
branches exhibit a higher contact, but in any case, an even number). 
 3. A beak has multiplicity 5 as an intersection point of f and f1 (or higher, when the power series of 
the branch lacks the τ5 term). 
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 4. If the branch tangent does not go through Q, then the part of the product (4) that relates to the k 
power series of a single cycle will have order at least (k + 1) (k – 1); hence, in the case of a nonlinear 
branch, its order will be at least 3 (k – 1). 
 

§ 22.  Inflection points.  The HESSian curve. 
 

 If η is an inflection point (the higher inflection points are excluded) of the curve f = 0 
then one will have the followingequations for all points ζ of the tangent g: 
 

(1)     
0

1

2

( ) 0,

( , ) 0,

( , ) 0.

f

f

f

η
η ζ
η ζ
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 =
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For variable ζ, the third equation will represent a conic section K: viz., the quadratic 
polar of the point η.  In our case, the tangent g will be included as a component in K; K 
will then decompose into two lines. 
 Conversely, if η is a simple point of the curve whose quadratic polar divides K then η 
will be an inflection point.  One proves this as follows: The polar of η relative to K is the 
linear polar f1(η, ζ) = 0; hence, the tangent g.  Since η lies on K, it will follow that g is 
included in K as a component.  Now, when K decomposes, as well, g will be included as 
a component in K.  Equations (1) will then be valid for all points ζ of g, so the line g will 
cut the curve at least three times at η.  One then has: 
 
 Theorem 1.  The simple points of the curve f = 0 whose quadratic polar decomposes 
are its inflection points (and higher inflection points). 
 
 One must further remark that the quadratic polar of a double point likewise 
decomposes − namely, into two double point tangents.  Moreover, one must remark that 
in the case of an inflection point, the second component h of K cannot go through the 
point h, since otherwise the polar h relative to K – hence, the linear polar f1(η, ζ) = 0 
− would vanish identically, whereas, by contrast, it represents the tangent. 
 The necessary and sufficient condition for the decomposability of the quadratic polar: 
 

∑ ∑ ζi ζk ∂i ∂k f(η) = 0 
 

is the vanishing of the HESSian determinant: 
 

H(η) = 
0 0 0 1 0 2

1 0 1 1 1 1

2 0 2 1 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

f f f

f f f

f f f

η η η
η η η
η η η

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

. 

 
The equation H = 0 defines a curve of degree 3(m − 2) − viz., the HESSian curve.  From 
Theorem 1, it now follows: 
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 Theorem 2.  The intersection points of the curve f = 0 with its HESSian curve are its 
inflection points and its multiple points. 
 
 The following theorem is important for the calculation of the number of inflection 
points: 
 
 Theorem 3.  The ordinary (not higher) inflection points have multiplicity one as 
intersection points of the curves f = 0 and H = 0. 
 
 Proof.  Let η2 = 0 be the tangent to the inflection point (1, 0, 0).  The development of 
the form f(x) in increasing powers of x0 reads, since the terms0

mx , 1
0 1
mx x− , 2 2

0 1
mx x−  are 

absent: 
f(x) = 1 1 2 3 3

0 2 0 1 2 2 0 1( ) ( )m m mx ax x bx x cx x dx− − −+ + + + +⋯ ⋯  

 
We now develop the determinant H(x), but only look at the terms that are divisible by 
either x2 or 2

1x .  It becomes: 

 

     H(x)  = 

2
0

3 2
0 1 0

2 2 2
0 0 0

0 0 ( 1)

0 6

( 1) 2

m

m m

m m m

m a x

d x x b x

m a x b x c x

−

− −

− − −

+ + − +
+ + +

− + + +

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

 

 
   = − 6(m − 1)2 d a2 3 7

0
mx − x1 + … 

 
 If r = (1, 0, 0) is a simple point of f = 0 then a ≠ 0.  If r is an ordinary inflection point 
then d ≠ 0.  With these assumptions, the curve H = 0 will also have just one simple point 
at (1, 0, 0) and its tangent will be different from the tangent to the curve f = 0.  It will 
follow from this that the point r is a simple intersection point of the two curves. 
 From BEZOUT’s theorem, the curves f = 0 and H = 0 will have 3m(m – 2) 
intersection points.  These will then decompose into the inflection points and multiple 
points of the curve.  It thus follows that: 
 
 Theorem 4.  A double-point-free curve of order m has 3m(m − 2) inflection points.  
Therefore, ordinary inflection points are to be counted simply, while higher inflection 
points are to be counted multiply (corresponding to their multiplicity as intersection 
points of the curves f = 0 and H = 0).  The presence of double points or multiple points 
will decrease the number of inflection points. 
 
 In particular, a double-point-free curve of order 3 has nine inflection points.  There 
will be no higher inflection points in this case, since the inflection tangent cannot 
intersect more than three times. 
 In conclusion, we would like to derive a remarkable property of the HESSian curve of 
a curve of order 3.  The points q of the HESSian curve are defined in such a way that 
their polar conic section: 
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(2)      ∑ qk ∂k f(ζ) = 0 
 
possesses a double point p; i.e., one has: 
 

j
j

p∑ ∂j (∑ qk ∂k f(z)) = 0   identically in z 

or: 
(3)     ∑ ∑ pj qk ∂j ∂k f(z) = 0              identically in z. 
 
Equation (3) is symmetric in p and q.  The point p thus also belongs to the HESSian 
curve, and its polar conic section has a double point at q.  It follows that: 
 
 Theorem 5.  The HESSian curve of a plane cubic curve is also the locus of the double 
points of all decomposable polar conic sections (2).  Its points define pairs (p, q) such 
that the polars of p will always have their double points at q, and conversely. 
 
 Problems.  1.  Show that a flat point − in the sense of theorem 4 − must be counted as two inflection 
points, and, in general, a point with the characteristic (1, l), as l − 1 inflection points. 
 2. One can characterize the pair (p, q) of theorem 5 by the fact that it is conjugate to all of the conic 
sections of the net (2). 
 
 

§ 23.  Third-order curves. 
 

 Projective generation.  A pencil of conic sections: 
 

λ1 Q1(η) + λ2 Q2 (η) = 0 
and a pencil of lines: 

λ1 l1(η) + λ2 l2 (η) = 0 
 
that is projective to it will generate a curve of order three: 
 

Q1(η) l1(η) + Q2 (η) l2 (η) = 0 
 
when corresponding elements of the two pencils intersect each other. 
 Any curve of order three can be obtained in this way.  Therefore, if an arbitrary point 
of a curve can be chosen to be the vertex (1, 0, 0) of a coordinate triangle then only terms 
that are divisible by η1 or η2 can appear in the equation of the curve; the equation of the 
curve will then read: 

Q1(η)η1 + Q2 (η)η 2 = 0. 
 

 Subdivision.  We would like to ascertain the possible forms that an irreducible curve 
of order three can have.  Such a curve cannot have two double points, since the 
connecting line between two double points would cut the curve at each double point 
twice, and thus, in total, four times, which is impossible.  On the same basis, no triple 
points can be present if the connecting line of the triple point with a simple point also 
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cuts the curve four times.  If a double point with two different (linear) branches is 
present, then they cannot contact each other, since otherwise the common tangent to both 
branches would double each branch, and thus cut the curve four times.  Finally, if a 
double point with a branch is present then it will have the characteristic (2, 1), and will 
therefore be an ordinary cusp, since otherwise the tangent to the branch would cut it more 
than three times.  There are thus three types: 
 
 I. Cubic curve with no double point. 
 II. Cubic curve with a junction. 
 III. Cubic curve with a cusp. 
 
 Normal forms.  In case I, we choose the coordinate system in such a way that the 
point (0, 0, 1) is an inflection point and η0 = 0 is the inflection tangent.  (If the 
coefficients of the curve equation are real then, because the number of inflection points is 
odd, there will be a real inflection point.)  The equation is then: 
 

3 2 2 2 2 3
1 0 1 0 1 2 0 2 0 1 0 2 0a b c d e f gη η η η η η η η η η η η η+ + + + + + = 0  (a ≠ 0). 

 
One must have d ≠ 0, since otherwise the point (0, 0, 1) would be a double point.  By the 
substitution: 

2η ′ = η2 + 1 02 2

c f

d d
η η+ , 

 
one can arrive at the result that c = f = 0.  By the substitution: 
 

1η ′  = η1 + 03

b

a
η , 

 
one can further arrive at the fact that b = 0.  The equation will then assume the form: 
 

3 2 2 3
1 0 2 0 1 0a d e gη η η η η η+ + +  = 0, 

 
or, when written inhomogeneously (η0 = 1): 
 

3 2
1 2 1a d e gη η η+ + +  = 0. 

 
By a suitable choice of unit point, one can ultimately demand that d = −1 and a = 4 (1).  
What will then remain is the equation: 
(1)      2

2η = 3
1 2 1 34 g gη η− − . 

 

                                                
 (1 ) The factor 4 was chosen in order to arrive at the connection with the well-known equation from the 
theory of elliptic function: 

ρ′ (u)2 = 4 ρ(u)2 – g2 ρ(u) – g3. 



84 III.  Plane algebraic curves 

The first polar of the inflection point (0, 0, 1) exists, moreover, on the sides η0 = 0 and η2 
= 0 of the coordinate triangle.  The second polar of their intersection point (0, 1, 0) is the 
third side η1 = 0.  Thus, if one of the nine inflection points is chosen to be the vertex (0, 
0, 1) then the coordinate triangle will be determined invariantly, and the individual 
coordinate transformations that do not disturb the form (1) will have the form: 
 

3
0 0

1 1

2 2

,

,

.

η λ µη
η λµη
η µη

′ =
 ′ =
 ′ =

 

The quantity: 

I = 
3
2
2
3

g

g
 

 
will remain invariant under this transformation.  It is therefore a projective invariant of 
the curve that depends upon at most the choice of inflection point used. 
 In order for the curve (1) to have, in fact, no double point, the discriminant of the 
polynomial 4x3 – g2 x – g3 would have to be non-zero. 
 In case II, we choose the two tangents of the double point to be the sides η1 = 0 and 
η2 = 0 of the coordinate triangle.  The equation of the curve will then read: 
 

3 2 2 3
0 1 2 1 1 2 1 2 2a b c d eη η η η η η η η η+ + + +  = 0  (a ≠ 0). 

By the substitution: 
      0η ′  = a η0 + c η1 + d η2 , 

      1η ′  = − β η1              (β3 = b), 

      2η ′ = − γ η2               (γ3 = b), 

 
one immediately brings the equation into to the form: 
 
(2)      η0 η1 η2 = 3 3

1 2η η+ . 

 
 All third order curves with a double point are thus projectively equivalent. 
 
 In case III, we choose the cusp to be the vertex (1, 0, 0) and the cusp tangent to be the 
side η2 = 0 of the coordinate system.  The equation of the curve will take on the form: 
 

2 3 2 2 3
0 2 1 1 2 1 2 2a b c d eη η η η η η η η+ + + + = 0  (a ≠ 0, b ≠ 0). 

By the substitution: 

1η ′ = η1 + 33

c

b
η , 

 
one will make c = 0. Thus, by the substitution: 
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− 0η ′ = aη0 + dη1 + eη2, 

one will arrive at the ultimate form: 
(3)      2

0 2η η = 3
1η . 

 
It then follows: All curves of order three with a cusp are projectively equivalent to each 
other. 
 The curves (2) and (3) possess rational parameter representations, namely: 
 

(4)    

3 3
0 1 2

2
1 1 2

2
2 1 2

,

,

,

t t

t t

t t

ξ
ξ
ξ

 = +
 =
 =

  (5) 

3
0 1

2
1 1 2

3
2 2

,

,

,

t

t t

t

ξ
ξ
ξ

 =
 =
 =

,  resp. 

 
On the basis of things that we will explain later, the curve (1) possesses no rational 
parameter representation, expect for a multi-valued one by means of algebraic functions, 
or a single-valued one by means of elliptic functions: 
 
(5)    ξ0 = 1,  ξ1 = P(u), ξ2 = P′(u). 

 
 Remark.  The form of equation (1) can also be employed for third order curves with 
double points (cusps, resp.).  Namely, for I = 27 the equation (1) represents a curve with a 
double point, and for g2 = g3 = 0 it represents a curve with a cusp. 
 
 Tangents.  From formula (5), § 21, the curve (1) will have class 6, the curve (2) will 
have class 4, and the curve (3) will have class 3.  At a point Q outside of the curve (1) 
one can therefore draw six tangents to the curve.  Their contact points will lie on a conic 
section, namely, on the polar of the point Q.  Of the six tangents, two of them will 
coincide if the tangent in question is an inflection tangent.  If Q lies on the curve then two 
of the six tangents will coincide with the tangent to the point Q; if Q is an inflection point 
then three of the six will coincide with the inflection point.  In all other cases, the six 
tangents will be different from each other, as one will immediately recognize upon 
considering the dual curve.  For the curves (2) and (3), the number of tangents will reduce 
to two and three, resp.  One can then draw four, two, and one tangent, resp., at a point Q 
of the curve (1), (2), or (3), resp., to the curve (besides the tangent at Q).  These numbers 
will be reduced by one when Q is an inflection point. 
 
 Transformations of the curve into itself.  The curve (3) possesses ∞1 projective 
transformations into itself: 

3
0 0

1 1

2 2

,

,

.

η λ η
η λη
η η

′ =
 ′ =
 ′ =

 

 
The curve (2) has six projective transformations into itself: 
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0 0

1 1
2

2 2

,

,

,

η η
η ρη
η ρ η

′ =
 ′ =
 ′ =

   
0 0

1 2
2

2 1

,

,

,

η η
η ρη
η ρ η

′ =
 ′ =
 ′ =

    (ρ3 = 1). 

 
As we will see the curve (1) admits, a group of at least 18 projective transformations that 
permute the nine inflection points transitively.  Namely, one has: 
 
 Theorem 1.  Each inflection point w is associated with one projective reflection of 
the curve into itself that permutes the remaining inflection points pair-wise. 
 
 One can read off the theorem from (1) directly: The reflection is given by 2η ′ = − η2 .  

One can also prove the theorem without coordinate transformations, if one starts with the 
fact that the polar of the inflection point w will decompose into two lines, namely, into 
the inflection tangent and a line g that goes through w.  Now, if s is a point of g then the 

intersection point of the line ws with the curve will be found from the equation: 
 

3 2 2 3
0 1 1 1 2 2 1 2 3 2( ) ( , ) ( , ) ( )f w f w s f w s f sλ λ λ λ λ λ+ + +  = 0. 

 
Now, one has f0(w) = 0 and f2(w, s) = 0 in this, because w lies on the curve and s on the 
first polar of w.  Thus, − λ1 : λ2 is also a solution of the equation, along with λ1 : λ2 .  The 
projective reflection that takes the point λ1w + λ2 s to – λ1w + λ2 s will then take the 
curve into itself. 
 Any two points that are permuted by the reflection will lie on a line through w.  The 
connecting line of w with another inflection point will then always include a third 
inflection point, and since w was an arbitrary inflection point, it will follow that: 
 
 Theorem 2.  The connecting line between two inflection points always includes a 
third inflection point. 

 This theorem is also valid, as its proof shows, for curves with a double point.  In fact, 
as one immediately recognizes by constructing the HESSian curve, the curve (2) has 
precisely three inflection points, which lie on the line η = 0.  The theorem will find no 
application to the curve (3), since it possesses only one inflection point (0, 0, 1). 
 
 Theorem 3.  Any two inflection points will be permuted by one of the reflections that 
were mentioned in Theorem 1. 
 
From theorem 2, their connecting line will then include yet a third inflection point w, 
which belongs to a reflection that, from theorem 1, will permute any two inflection points 
that lie in a line with w. 
 It will first follow from theorem 3 that the projective invariant I of the curve (1) does 
not depend upon the choice of the inflection point that was chosen to be the vertex (0, 0, 
1).  It will follow further that the group G of projective transformations of the curve into 

itself will permute the inflection points transitively.  From theorem 2, the subgroup of G 
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that leaves the point w fixed will have order at least two.  Its cosets (Nebenklassen) will 
take w to all nine inflection points of the curve.  Therefore, the group G will be of order 

at least 18. 
 
 The inflection point configuration.  We would now like to examine a configuration 
that is defined by the nine inflection points of a double-point-free cubic curve.  The 
examination proceeds in a purely combinatorial manner. 
 Four lines emanate from an inflection point w that will include any other two 
inflection points.  If one chooses w to be the sequence of all nine inflection points then 
one will obtain 9 · 4/3 = 12 connecting lines that, along with the nine inflection points, 
will define a “configuration 94 123” (nine points, through each point of which there are 
four lines, and 12 lines, on each of which there are three points). 
 If a1, a2, a3 are three inflection points on a line g then three more lines will go through 
a1, a2, a3 that are all different.  We will then get (together with g) 1 + 9 = 10 lines through 
a1, a2, or a3 .  Two lines will remain, which will go through either a1, a2, or a3 .  If h is one 
of these and b1, b2, b3 are the inflection points that lie on h then, along with g, h, and the 
nine lines ai bk will exhaust the set of all lines that go through a1, a2, a3, b1, b2, or b3 .  
One line will remain from the 12 lines that will go through either a1, a2, a3 or b1, b2, b3 .  
It is called l and goes through c1, c2, c3 . 
 Any line like g will thus belong to one single triple of lines (g, h, l) that includes 
precisely all nine of the inflection points.  Since each of the 12 lines belongs to one and 
only one such triple, there will be four such triples.  We thus have: 
 
 Theorem 4.  The nine inflection points can be decomposed into three triples in four 
ways, such that each triple lies on a line. 
 
 If we denote a decomposition into triples by: 
 

a1, a2, a3 | b1, b2, b3 | c1, c2, c3 
 

then we can choose the numbering of bk and ck in such a way that a second decomposition 
will be given by: 
     a1, b1, c1 | a2, b2, c2 | a3, b3, c3 . 
 
The third and fourth decomposition can then only read as follows: 
 
     a1, b2, c3 | a2, b3, c1 | a3, b1, c2 , 
     a1, b3, c2 | a2, b1, c3 | a3, b2, c1 . 
 
If one chooses the coordinate system in such a way that the four points a1, a3, c1, c3 take 
on the following inhomogeneous coordinates: 
 

a1(1, 1);   a3(1, −1); c1(−1, 1); a3(−1, −1) 
 

then, on the basis of the position relations between the nine points, which are given by 
our 12 lines, the remaining points will inevitably have the following coordinates: 
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a2(1, w);   b1(− w, 1); b3(w, −1); c2(−1, − w); b3(0, 0) [w2 = − 3]. 
 
The positions of the nine inflection points will then be determined uniquely, up to a 
projective transformation, and independently of the invariant I of the curve.  The 
inflection point configuration cannot be realized by real points, since the equation w2 = − 
3 is not soluble by real numbers. 
 If one regards the previous four triples of lines as decomposable curves of order three 
then two of them will determine a pencil whose basis points are our nine inflection 
points.  This pencil will also belong to the other two triples of lines, as well as the 
original curve C, since they all go through the nine basis points of the pencil.  On the 
same grounds, the HESSian curve will also belong to the pencil.  The pencil is therefore 
also given by: 

λ1 C + λ2 H = 0. 
 
One calls it the syzygetic pencil (σ ύζνγος = yoked together) of the curve C. 
 
 Theorem 5.  If nine different points of the plane have the position that was described 
in theorem 4, and one determines a pencil of third-order curves by two of the four triples 
of lines, which naturally also belongs to the two other triples of lines, then all curves of 
this pencil will have their inflection points at the nine given points. 
 
 Proof.  If w is one of the nine points then the first polar of w relative to the curves of 
the pencil will define a pencil of conic sections.  The point w will be the inflection point 
of a curve C that goes through w if and only if the first polar of w relative to C 
decomposes.  Now, there are four exemplars of the pencil that have an inflection point at 
w, namely, the four triples of lines that were mentioned in theorem 4.  There are then four 
decomposable conic sections in the pencil of conic sections.  However, when not all 
elements of the pencil decompose, a pencil of conic sections will contain at most three 
decomposable conic sections.  Hence, all of the conic sections of the pencil will 
decompose; i.e., w will be an inflection point for all curves of the pencil. 
 It follows from theorem 5 that all curves λ1 C + λ2 H of the syzygetic pencil have the 
same inflection points as the curve C. 
 
 Problems.  1.  There is a group of 216 projective transformations that transforms the inflection point 
configuration and the syzygetic pencil into themselves.  It includes, as normal a subgroup, the group of 18 
collineations that, from theorem 1, is generated by the reflections that transform each curve of the pencil 
into itself. 
 2. The parameter values s, t, u of the three points on the curve (4) ((5), resp.) that is cut out of a line 
satisfy the equation: 

s1 t1 u1 + s2 t2 u2 = 0, 
resp.: 

s1 t2 u2 + s2 t1 u2 + s2 t2 u1 = 0, 
 
or, after introducing the inhomogeneous parameters s = s1 : s1 , etc.: 
 

s t u = −1, 
resp.: 

s + t + u = 0. 
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 3. The well-known addition theorem for elliptic functions may be expressed as follows: The 
parameter values u, v, w of three intersection points of a line with the third-order curve that is represented 
by the parametric representation (6) satisfy the relation: 
 

u + v + w = 0 (mod periods). 
 
 

§ 24.  Point groups on a third-order curve. 
 

 We would like to examine the point groups (1) on a third-order curve K3 that will be 
intersected by other curves Km .  Thus, the multiple intersection points will be counted 
with the correct multiplicity.  It will be generally assumed that multiple points of K3 do 
not appear in the point group considered; the curves Km that intersect the curve K3 shall 
therefore avoid the possible multiple points of K3 . 
 
 Theorem 1.  If, among the 3m intersection points of a curve Km of order m with a 
curve K3 of order three, three of them intersect a line G outside of K3 then the remaining 
3(m – 1) of them will intersect a curve Km−1 of order m – 1 that is outside of K3 . 
 
 Proof.  The line G has the equation η0 = 0, the curve K3 is f = 0, and the curve Km is 
likewise F = 0.  Thus, we first have to show that a µ-fold intersection point of K3 and G is 
also at least a µ-fold intersection point of Km and G.  We show this as follows: The 
branch development of the linear branch z of K3 at the point S agrees with the branch 

development of the line G in its terms in 1, τ, …, τµ−1.  Thus, if the form F has order ≥ µ 
at the branch z then it will also have order at least µ at the corresponding branch of the 

line G.  The point S will therefore be at least a µ-fold intersection point of Km with G. 
 If one now sets x0 = 0 in both F(x0, x1, x2) and f(x0, x1, x2) then the three zero loci of 
the form f(0, x1, x2) will appear in the zero locus of the form F(0, x1, x2) with the correct 
multiplicity, and therefore F(0, x1, x2) will be divisible by f(0, x1, x2): 
 

F(0, x1, x2) = f(0, x1, x2) · g(x1, x2). 
 

If one now adds the terms containing the factor x0 back into F and f then it will follow 
that: 
(1)   F(x0, x1, x2) = f(x0, x1, x2) · g(x1, x2) + x0 · h(x0, x1, x2). 
 
It follows from (1) that the order of the form F(x) on each branch of the curve f = 0 will 
equal to the order of the form x0 · h.  The 3m intersection points of F = 0 and f = 0 thus 
divide the three intersection points of x0 = 0 with f = 0 and the 3(m – 1) intersection 
points of h = 0 and f = 0. 
 
 Theorem 2.  If one connects the six intersection points of a conic section K2 and a 
curve K3 pairwise with three lines g1 , g2 , g3 that cut the curve K3 three times at P1, P2 , 
P3 then P1, P2 , P3 will be the intersection points of K3 with a line.  (Arbitrarily many of 
                                                
 (1 ) The phrase “point group” has nothing to do with the concept of “group.”  Rather, it denotes a finite 
number of points in which the same point might appear many times. 
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the 6 + 3 points can coincide, but the conic section can contain no double point of the 
curve K3.) 
 

 Proof.  K2 and 1 2PP  may, together with the curve Km and g1, define the line G of 

theorem 1.  1 2PP  cuts K3 for the third time at Q and gi cuts K2 at Ai , Bi .  It then follows 

that A2A3B2B3P2Q will lie on a conic section 2K ′ . 
 3 of these 6 intersection points will lie on a line, namely, A2, B2, P2.  Thus (again, 
from theorem 1), A3 , B3 , Q will be the intersection points of K3 with a line K1 .  This is, 
however, g3 ; hence, Q = P3 . 
 
 When K3 decomposes into a conic section and a line and K2 decomposes into two 
lines, theorem 2 will include the special case of PASCAL’s theorem, with all of its 
asymptotic cases. (One needs to draw a figure!) 
 One can also prove theorem 2 directly when one chooses an exemplar from the pencil 
of curves that is determined by the curves K3 and g1g2g3, such that it includes any seven 
points Q of the conic section K2 .  This exemplar, since it has seven points in common 
with the conic section, must then include the conic section as one component.  The other 
component will be a line that includes the points P1, P2 , P3 . 
 If one lets the conic section of theorem 2 degenerate into two coincident lines then 
one will get: 
 
 Theorem 3.  The three tangents to the three intersection points of a line g with a 
third-order curve K3 cut the curve again at three points P1, P2 , P3 that lie on a line. 
 
 If one chooses g to be the connecting line of two inflection points then one will obtain 
theorem 2 of the previous paragraph all over again: On the connecting line between two 
inflection points, there will always lie a third inflection point. 
 From now on, the curve K3 will be assumed to be irreducible.  We choose a fixed 
point P0 of the curve (naturally, not a double point) and now define a sum of two arbitrary 
points P, Q in the following way: The connecting line PQ cuts the curve again at R′, and 
the connecting line P0R′ further cuts the curve at R.  We then write P + Q = R. (1) 
 The addition thus described is obviously commutative and uniquely invertible.  The 
point P0 is the zero element of addition: 
 

P + P0 = P. 
 
We will prove that the addition is also associative: 

                                                
 (1 ) One is led to this definition − which seems remarkably strange, at first − when one starts with either 
the theory of divisor classes in algebraic function fields or the theory of elliptic functions.  Namely, if one 
represents the coordinates of the point of the curve as elliptic functions of u, such that P0 belongs to the 
parameter value 1, P to the value uP , Q to the value uQ , and R to the value uR then one will have uP + uQ ≡ 
uR (mod periods).  Proof: If l1 = 0 and l2 = 0 are the equations of the lines PQR′ and P0RR′ then the quotient 
l1 : l2 will be a rational function of the coordinates of a variable curve point, hence, an elliptic function of u 
with the zeroes uP and uQ and the poles uR and 0.  Now, the sum of the zeroes of an elliptic function, minus 
the sum of the poles, is always a period.  It follows that uP + uQ − uR ≡ 0. 
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(P + Q) + R = P + (Q + R). 
 

We set P + Q = S, S + R = T, Q + R = U, and have to prove that P + U = T.  By the 
definition of the addition: 
     P Q S′ may be cut out of a line g1 
     P0 S S′     “ “ “   h1 
     S R T′     “ “ “   g2 
     P0 T T′     “ “ “   l 
     Q R U′     “ “ “   h2 
     P0 U U′   “ “ “   g3 . 
 
We would like to prove that P U T′ can also be cut out of a line h3 ; we apply theorem 1.  
The points P Q S′ S R T′ P0 U U′ will be cut out of a third-order curve g1g2g3, but P0 S S′ 
will be cut out of h1; hence, the remaining points P Q R T′ U U′ will be cut out of a conic 
section.  However, Q R U′ will be cut out of h2 ; thus (again, from theorem 1), P T U′ will 
be cut out of a line h3 .  From this, it immediately follows that P + U = T if P0 T T′ will be 
cut out from a line h3 .  Thus, all of the rules of ordinary addition are valid. 
 Now, we prove the decisive: 
 
 Theorem 4.  The 3m intersection points S1 , …, S3m of K3 with a curve Km of order m 
satisfy the equation: 
(2)     S1 + S2 + …+ S3m = m P1 . 
 
Therefore, P1 is a fixed point, namely, the third intersection point of the tangent at P0 
with K3 . 
 
 Proof, by complete induction on m.  For m = 1, the assertion will follow immediately 
from the definition of the sum S1 + S2 + S3 = (S1 + S2) + S3 .  Namely, if R is the third 
intersection point of S3 P0 with the curve then, since the S1 S2 S3 will lie on a line, S1 + S2 
= R and R + S3 = P1 .  We now assume that the assertion is true for curves of degree (m – 
1).  S1S2 will cut the curve for a third time at P, and likewise, S3 S4 at Q, and PQ at R.  
The points S1, …, S3m , P, Q, R of a curve K3 of degree (m + 1) that exists on Km and the 
line P Q R will then be cut out of K3 .  Of these points, S1, S2, P will be cut out of a line; 
hence, from theorem 1, the group S3, …, S3m Q R will come from a curve of order m, but 
then again, S3 S4 Q will come from a line, hence, S5,… S3m, R comes from a curve Km−1 of 
order (m – 1).  From the induction assumption, one will then have: 
 

S5 + …+ S3m + R = (m – 1) P1 . 
One adds to this: 

S1 + S2 + P = P1 , 
S3 + S4 + Q = P1 , 

and obtains: 
S1 + S2 + …+ S3m + P + R = (m + 1) P1 . 

 
If one subtracts P + Q + R = P1 from this then the assertion (2) will follows. 
 



92 III.  Plane algebraic curves 

 It follows from theorem 4 that:  Each of the 3m intersection points of a fixed curve K3 
with a curve Km that does not go through a double point of K3 is determined uniquely by 
the 3m – 1 remaining ones. 
 
 We now show that one can choose the 3m – 1 intersection points S1, …, S3m arbitrarily 
on K3 , except for the double point; in other words, at least one curve of order m that does 
not contain K3 will go through any 3m – 1 points of K3 .  The assertion will be clear for m 
= 1 and m = 2; we thus assume that m ≥ 3.  The linear family of all Km that go through the 
3m – 1 given points has a dimension of at least: 
 

( 3)
(3 1)

2

m m
m

+ − − = 
( 3)

1
2

m m− + . 

 
 The linear family of all Km that include K3 as a component Km = K3 Km−3 , however, 
has the dimension: 

( 3)

2

m m−
. 

 
The former dimension is greater; hence, there are actual curves Km through S1, …, S3m 
that do not contain K3 as a component.  The 3mth intersection point of Km with K3 is the 
point S3m that is determined by (2).  We thus have: 
 
 Theorem 5.  The necessary and sufficient condition for 3m points of K3 to be cut out 
of a second curve Km is condition (2). 
 
 A generalization of theorems 1 and 2 follows immediately from theorem 5: 
 
 Theorem 6.  If, of the 3(m + n) intersection points of a K3 with a Km+n , any 3m of 
them on K3 are cut out of a Km then the remaining 3n will be cut out of a Kn . 
 
 Then, from: 

S1 + S2 + …+ S3m+3n = (m + n) P1 
and: 

S1 + S2 + …+ S3m = m P1 
 
it will follow by subtraction that: 
 

S3m+1 + …+ S3m+3n  = n P1 . 
 Finally, we prove: 
 
 Theorem 7.  If Km and mK ′  cut out the same group of 3m points from K3 then a 

decomposable curve K3 Km−3 will be present in the pencil of curves Km and mK ′ , and the 

rest of the m2 – 3m = m(m – 3) intersection points of Km and mK ′  will lie on Km−3 . 
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 Proof.  Let Q be any point of K3 that does appear in the group of 3m points.  There is 
a curve through the point Q in the pencil that is spanned by Km and mK ′ .  It has 3m + 1 

points in common with K3 ; hence, it will contain K3 as a component, and we can denote 
it by K3 Km−3 .  The intersection points of Km and mK ′ are the basis points for the pencil.  

Hence, so are the intersection points of Km and K3 Km−3 ; i.e., they are the intersection 
points of Km and K3, augmented by those of Km and Km−3 . 
 Theorems 5, 6, 7 admit very many applications, only a few of which will be selected.  
First, we once more come back to the inflection point configuration.  There is always an 
inflection point, so we can assume that P0 is the inflection point.  One will then have P1 = 
P0 ; we will denote this point by O (i.e., the origin).  The determination of the inflection 
point W comes from the solution of the equation: 
 

3W = O. 
 
If there is yet another solution U, in addition to the solution W = O, then 2U = U + U will 
also be a solution, and one will have: 
 

O + U + 2U = O; 
 
i.e., the three inflection points O, U, 2U will lie in a line.  If there is another inflection 
point V, along with O, U, 2U, then there will be nine different inflection points: 
 

(3)     

, , 2 ,

, , 2 ,

2 , 2 , 2 2 .

O U U

V U V U V

V U V U V


 + +
 + +

 

 
That is also the maximum number.  In fact, we saw that the three curve types III, II, I of 
the series possess one, three, and nine inflection points, resp..  The configuration of nine 
inflection points should be removed immediately from the schema (3); it is only when 
three of the nine points yield the sum O that they will lie on a line.  That is the case for 
the points of the rows and columns in schema (3), as well as for the triple that (like 
determinant terms) includes precisely one point from each row and column. 
 It now follows that: A real curve of order three has one or three real inflection points. 
 One gets the fact that there is one real inflection point from the fact that the imaginary 
inflection points can occur only in complex conjugate pairs.  Thus, we can choose a real 
inflection point for P0 .  If U is then a second real inflection point then 2U will also be 
real, and there will be three real inflection points O, U, 2U.  There cannot be a fourth real 
inflection point, since then the entire inflection point configuration (3) would be real, 
which, from § 23, is impossible. 
 We understand the tangential point of a point P on the curve K3 to mean the third 
intersection point of the tangent at P with the curve.  The tangential point Q will be 
defined by: 

2P + Q = P1 . 
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For a given tangential point Q, there will be four points P on a curve of type I, two points 
P on a curve of type II, and one point P on a curve of type III, resp.  Therefore, the 
equation: 
(4)      2X = P1 – Q 
 
will always have four solutions (two solutions, one solution, resp.). 
 
 We now consider a curve of type I; hence, a K3 without double points.  If X and Y are 
two solutions of (4) then the difference X – Y will be a solution of: 
 

2(X – Y) = P1 – P1; 
 

hence, it will be one of the four points whose tangential point is P1 .  Let P0 , D1 , D2 , D3 
be these four points.  Thus, all solutions X of the equation (4) will arise from a solution Y 
by adding P0, D1, D2, or D3.  For each i, the association: 
 

X = Y + Di    (i = 1, 2, 3) 
 
will be a one-to-one correspondence of period 2: If X = Y + Di then one will also have Y = 
X + Di .  There are thus three involutions of the point pairs (X, Y) on the curve such that 
one always has X ≠ Y, while X and Y always have the same tangential point.  Any point X 
will be in one-to-one correspondence with a point Y under any involution, and the point 
Y, on the other hand, will be associated with X in the same way. 
 The tangents to a varying curve point A have the remarkable property that their 
double ratio is constant.  This follows from: 
 
 Theorem 8.  If one draws all possible lines a through a fixed curve point Q that may 
cut the curve at two further points A1 and A2, and then one further links both A1 and A2 
with a fixed curve point S, and seeks the third curve points B1, B2 of these lines with the 
curve, then the connecting lines b = B1B2 will all go through a fixed curve point R.  If the 
line a runs through the pencil Q then b will run through the pencil R, and this association 
a → b will be a projectivity. 
 
 Proof.   We have: 
 
 Q + A1 + A2 = P1 , 
 A1 + S + A2  = P1 , 
 A2 + S + A2  = P1 , 
 B1 + B2 + R  = P1 . 
 
From this, by addition and subtraction,  
one will get: 
 
(5)  Q + R – 2S = 0, 
 

 Q 
S 

R 

a 

a′ 

A1 

B1 
1B′  A2 2A′  

C 

2B′  

b′ 
b 

B2 

C ′ 

1A′ 



 § 24.  Point-groups on a third-order curves. 95 

from which, R will, in fact, be constant (independent of the line a).  The association a → 
b is obviously one-to-one.  In order to show that it is a projectivity, we choose a fixed 
position a′ of the line a, properly construct the points1A′ , 2A′ , 1B′ , 2B′ , and the line b′ from 

it, denote the intersection point of a and b′ by C, that of a′ and b by C′, and then prove 
that S, C, C′ will all lie on one line.  To that end, we apply theorem 7 with m = 4.  Km 
exists on the four lines a, b, 1A′S 1B′ , 2A′ S 2B′  , just as mK ′  lies on the four lines a′, b′, 
A1SB1, A2SB2 .  Km and mK ′  cut out the same point groups 1 2 1 2 1 2 1 2QA A A A SSB B B B R′ ′ ′ ′  from 

the curve K3 .  Hence, from theorem 7, the rest of the four intersection points S, S, C, C′ 
will lie on a line.  The association a → b may be arranged in the following way: One cuts 
a with b′ , projects from S onto a′, and connects with R.  The association will thus be a 
projectivity. 
 
 For a given Q and R one can always find a suitable S on the basis of equation (5). 
 If one chooses a tangent for a, in particular, then A1 = A2, B1 = B2, and therefore also 
b, will be a tangent.  Hence, the four tangents at Q to the four tangents at R will be 
projective and will have the same double ratio.  Since Q and R are arbitrary curve points, 
it follows that: 
 
 Theorem 9.  The double ratio of the four tangents that one can draw from a point Q 
of the curve K3 to the curve is independent of the choice of point Q. 
 
 If one chooses an inflection point for Q then one of the four tangents will be the 
inflection point.  If we put Q at (1, 0, 0) and the tangent to the line at x0 = 0 then it will 
follow that the double ratio that was mentioned in theorem 9 is equal to the partial ratio 
(e1 – e2)/(e1 – e3) of the three roots e1, e2, e3, of the polynomial 4x3 – g2 x – g3 that 
appeared in the normal form (1), § 23. 
 
 Problems.  1.  A cubic curve with no double point possesses three systems of triply-contacting conic 
sections.  In each system, one can choose two of the three contact points arbitrarily; the third one will then 
be determined uniquely. 
 
 2.  There are 27 non-decomposable conic sections that contact a double-point-free curve of order three 
at each point with the multiplicity 6.  Its contact points will found when one draws the three tangents to the 
curve from each of the nine inflection points. 
 
 

§ 25.  The resolution of singularities. 
 

 Let f(η0, η1, η2) = 0 be a non-decomposable plane algebraic curve of degree n > 1.  
We would like to transform this curve into another one that possesses no other 
singularities besides r-fold points with r distinct tangents.  The Lemma for this defines a 
very simple transformation of the plane (viz., Cremona transformation) that is rational in 
both directions, and is given by the formulas: 
 
(1)     ζ0 : ζ1 : ζ2 = η1η2 : η2η0 : η0η1 , 
(2)     η0 : η1 : η2 = ζ1ζ2 : ζ2ζ0 : ζ0ζ1 . 
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It is clear that (2) is the solution of (1) in the case η0η1η2 ≠ 0.  The transformation (1) is 
therefore its own inverse.  It is one-to-one, except for the sides of the fundamental 
triangle, but all points of the side η0 = 0 will go to the opposite corner ζ1 = ζ2 = 0; 
corresponding statements are true for the remaining sides.  The transformation (1) will be 
undetermined for the vertices of the fundamental triangle. 
 If one substitutes the value (2) of the ratio in the equation f(η0, η1, η2) of the present 
curve then one will obtain a transformed equation: 
 
(3)      f(ζ1ζ2, ζ2ζ0, ζ0ζ1) = 0. 
 
If the original curve f = 0 does not go through a corner of the fundamental triangle then 
each point of this curve will originate uniquely from a point of the curve (3), and (from § 
19) the latter will be irreducible.  However, if f = 0 goes through a vertex − say, through 
(1, 0, 0) – then all of the terms in f(y0, y1, y2) = 0 will be divisible by y1 or y2 , and 
therefore the factor z0 will split off from f(z1 z2, z2 z0, z0 z1).  If f = 0 has an r-fold point at 
(1, 0, 0) then it will be the factor 0

rz  precisely that indeed splits off from f(z1 z2, z2 z0, z0 

z1).  We thus set: 
(4)     f(z1 z2, z2 z0, z0 z1) = 0 1 2 0 1 2( , , )r s tz z z g z z z , 

 
and call g(z) = 0 the transformed curve of f = 0. 
 By the substitution: 

z0 = y1 y2 , z1 = y2 y0 , z2 = y0 y1 , 
 
one will obtain, from (4): 
 
    (y0, y1 , y2)

n f(y) = 0 1 2 1 2 2 0 0 1( , , )s t t r r sy y y g y y y y y y+ + +  

(5)    g(y1 y2, y2 y0, y0 y1) = 0 1 2 0 1 2( , , )n s t n t r n r sy y y g y y y− − − − − − . 

 
Hence, one will also have, conversely, that f = 0 is the transformed curve of g = 0.  If 
g(y0, y1 , y2) were decomposable then, from (5), f(y0, y1 , y2) would also be decomposable, 
contrary to the assumption.  Hence, g(z) = 0 is a non-decomposable curve. 
 By differentiation with respect to z2 , it will follow from (4) that if 0f ′ , 1f ′ , 2f ′  are the 

derivatives of f and 0g′ , 1g′ , 2g′  are those of g then: 

 
 1 0 1 2 2 0 0 1 0 1 1 2 2 0 0 1( , , ) ( , , )z f z z z z z z z f z z z z z z′ ′+  

= 1
0 1 2 0 1 2 0 1 2 2 0 1 2( , , ) ( , , )r s t r s tt z z z g z z z z z z g z z z− ′+ . 

 
If one multiplies this equation on both sides by z2 and applies the EULER identity: 
 

0 0 1 1 2 2( ) ( ) ( )y f y y f y y f y′ ′ ′+ + = n f(y) 

then it will follow that: 
 
(6)  n f(z1 z2, z2 z0, z0 z1) − 0 1 2 1 2 2 0 0 1( , , )z z f z z z z z z′  = 1

0 1 2 0 1 2 2( ) ( )r s t r s tt z z z g z z z z g z+ ′+ . 
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Analogous equations are naturally valid for the other two derivatives 0f ′ , 1f ′ . 

 As for any rational map, each branch of the curve f = 0 corresponds to a unique 
branch of the curve g = 0, and conversely.  If η0(τ), η1(τ), η2(τ) are the power series 
developments of a branch z of the curve f = 0 then one will obtain the corresponding 

branch z′ of the curve g = 0, in which one first forms the product η1(τ)η2(τ), η1(τ)η0(τ), 

η0(τ)η1(τ) and then removes a possible common factor τλ, from the three power series: 
 

0 1 2

1 2 0

2 0 1

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).

λ

λ

λ

ζ τ τ η τ η τ
ζ τ τ η τ η τ
ζ τ τ η τ η τ

 =
 =
 =

 

 
The factor τλ appears only when the starting point of the branch z is a vertex of the 

coordinate triangle.  If we assume, perhaps, that this is the vertex (1, 0, 0) and the tangent 
to the branch is not a side of the coordinate triangle then the power series development of 
the branch will read thusly: 
 

(7)    
0

1
1 1

1
2 1

( ) 1,

( ) ( 0),

( ) ( 0).

k k
k k k

k k
k k k

b b b

c c c

η τ
η τ τ τ
η τ τ τ

+
+

+
+

=
 = + + ≠
 = + + ≠

⋯

⋯

 

 
One will then find that λ = k and: 
 

(8)    

1
0 1 1

1 1

2 1

( ) ( ) ,

( ) ,

( )

k k
k k k k k k

k k

k k

b c b c b c

c c

b b

ζ τ τ τ
ζ τ τ
ζ τ τ

+
+ +

+

+

 = + + +
 = + +
 = + +

⋯

⋯

⋯

 

 
In this case, the starting point z′ will thus lie on the opposite side of the coordinate 

triangle.  Conversely, if one forms: 
      η0(τ) = ζ1(τ)ζ2(τ), 
      η1(τ) = ζ2(τ)ζ0(τ), 
      η2(τ) = ζ0(τ)ζ1(τ), 
 
while starting from the branch z′, then one will get back the original branch z, except for 

an inessential factor of ζ1(τ)ζ2(τ). 
 We now go on to the “resolution of singularities.”  We select a certain singularity − 
i.e., a multiple point O – on the curve f = 0 that we would like to resolve – i.e., convert 
into simple singularities.  We place the vertex (1, 0, 0) of the coordinate triangle at O, and 
choose the three other corners outside the curve such that the sides of the coordinate 
triangle are not curve tangents and include no more points of the curve beyond O.  In 
equation (4), one will then have s = t = 0, while r will give the multiplicity of the point O.  
We now have three things to examine: 
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 1. The effect of the transformation on the branch of the point O, 
 2. Its effect on the branches at the intersection points of the triangle with the curve, 
 3. Its effect on the remaining curve points and its branches. 
 
 We introduce a measure for the complexity of a singularity, namely, the multiplicity 
of the intersection point of O as an intersection point of the curve f = 0 with the polar of a 
point P, which is chosen such that this multiplicity will be as small as possible.  If O is a 
simple point then this measure will have the value zero, while it will always be > 0 at 
multiple points. 
 The intersection multiplicity of the curve with the polar combines contributions that 
originate in the different branches of the point O.  We will now show that for each such 
branch z of the point O, the contribution will always be reduced under the Cremona 

transformation above in the event that O is actually a multiple point; hence, when r > 1. 
 We understand ζ0, ζ1, ζ2 to mean the power series (8), and η0, η1, η2 to mean the 
power series: 

η0 = ζ1ζ2, η1 = ζ2ζ0, η2 = ζ0ζ1 
 
that are proportional to (7) and represent the branch z.  The polar of a point P(π0, π1, π2) 

will have the equation: 

0 0 1 1 2 2( ) ( ) ( )f f fπ η π η π η′ ′ ′+ + = 0 

 
and will cut the branch z with a multiplicity that will be ≥ the minimum of the orders of 

the power series 0( )f η′ , 1( )f η′ , 2( )f η′  and which will be equal to this minimum, in 

general (except for special locations of the point P).  We can assume that the vertex (0, 0, 
1) of the coordinate triangle has no such special location, and thus, that the order µ of the 
power series2( )f η′  is already equal to the minimum in question. 

 If one now substitutes the power series ζ0, ζ1, ζ2 for z0, z1, z2 in (6) then, since s = t = 
0, f(η) = 0, g(η) = 0, it will follow that: 
 
    − 0 1 2 0 1 2( , , )fζ ζ η η η′  = 0 2 2 0 1 2( , , )r gζ ζ ζ ζ ζ′ , 

or, after canceling ζ0: 
 
(9)    − 1 2 0 1 2( , , )fζ η η η′  = 1

0 2 2 0 1 2( , , )r gζ ζ ζ ζ ζ− ′ . 

 
The left-hand side will have order µ precisely, since, from (8), ζ1 has order zero.  The 
factor 1

0
rζ −  on the right will have order (r – 1) k and ζ2 will have order 0.  Hence, the 

factor 2 0 1 2( , , )g ζ ζ ζ′ will have the order: 

 
µ – (r – 1) k < µ. 
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The minimum of the orders of 0( )g ζ′ , 1( )g ζ′ , 2( )g ζ′  will be < µ, moreover.  Thus, the 

minimal intersection multiplicity of the branch with the polar has, in fact, diminished 
under the Cremona transformation. 
 We now turn to the second issue of the intersection points of the triangle with the 
curve.  If such a point lies – say – on the triangle side η2 = 0 then, since the intersection 
point shall be a simple one, η2 will have order 1, while η2 and η1 have order zero: 
 

η0 = a0 + a1τ + …       (a0 ≠ 0), 
η1 = b0 + b1τ + …      (b0 ≠ 0) , 
η2 = c1τ + …        (c1 ≠ 0). 

 
The transformed branch will read: 
 
     ζ0 = η1η2 = b0 c1 τ + …, 
     ζ1 = η2η0 = a0 c1 τ + …, 
     ζ2 = η0η1 = a0 b0 + … 
 
One is thus dealing with a linear branch at the point (0, 0, 1) whose tangent direction is 
given by the ratio b0 : a0 ; thus, it will depend upon the location of the point (a0, b0, 0) on 
the opposing side of the triangle, which is where we started from.  Since the intersection 
point of the curve f = 0 with the triangle sides outside of O were all assumed to be 
different, we will obtain nothing but distinct tangents for the transformed linear branches 
at the vertices of the triangle.  Thus, new singularities will appear under the Cremona 
transformation, namely, multiple points with nothing but linear branches with separate 
tangents. 
 In the third case, we must consider points that lie either at a vertex or on a side of the 
fundamental triangle.  The Cremona transformation will be one-to-one for these points.  
It will transform linear branches into linear branches (as one easily verifies), and it will 
also transform the tangent directions of the branch at such a point in a one-to-one manner.  
Simple points will thus go to simple points, and q-fold points with q separate tangents 
will again go to others of that sort.  If one is dealing with a singular point then it will 
follow from formula (9), which will also be true for this case, that the intersection 
multiplicity of the branches with the polars will remain unchanged in this case; thus, the 
measure of the singularity will not be raised. 
 If one now defines a whole number µ(f) for each curve f = 0 to be the sum of the 
singularity measures over all of the singular points that are not merely multiple points 
with separate tangents then it will follow from the foregoing that the number µ(f) can 
always be diminished by a suitable Cremona transformation when it is non-zero.  After 
finitely many such transformations one will have µ(f) = 0, and we will get the theorem: 
 
 Any irreducible curve f = 0 may be converted into one that possesses only “normal” 
singularities ( i.e., multiple points with separate tangents) by a birational transformation. 
 
 Problem.  Show that the theorem proved above is also true for decomposable curves. 
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§ 26.  The invariance of the genus.  The PLÜCKER formulas. 
 

 Let m be the degree of a plane irreducible curve K and let m′ be its class. We compute 
the characteristics (k, l) for all non-ordinary points of K and form the sums: 
 
      s = ∑ (k – 1) 
      s′ = ∑ (l – 1). 
 
s is called the “number of cusps” and s′ is the “number of inflection points.”  In fact, 
when there are no other extraordinary branches than the cusp (2, 1) and the inflection 
point (1, 2), s will actually mean the number of vertices, and s′ will mean the number of 
inflection points. 
 We now set: 
(1)      m′ + s – 2m = 2p – 2 
 
and call the rational number p that is defined by (1) the genus of the curve.  We will later 
see that p is a whole number ≥ 0, and that p will remain invariant under all birational 
transformations of the curve. 
 We first give the definition of the genus a somewhat different form.  We again 
assume, for the sake of simplicity, that the point (0, 0, 1) does not lie on the curve.  We 
consider a general point (1, u, ω) of the curve K, in which ω is thus an algebraic function 
of u, and consider the branching points of this function ω – i.e., the values u = a or ∞ at 
which several power series developments ω1, …, ωh come together (zusammentreten) 
into a cycle.  The number h – viz., the order of the branching – is the order of the function 
u – a (u−1, resp.) on the branch in question.  If one now addresses the classification of the 
branch (§ 21) then one will see that: 
 
  h = k  when the branch tangent does not go through (0, 0, 1), 
  h = k + l  when the branch tangent goes through (0, 0, 1). 
 
When one sums over all h > 1, it will then follow that: 
 

∑ (h – 1) = ∑ (k – 1) + ∑′ l, 
 
in which the last sum is taken over only the branches whose tangents go through the point 
(0, 0, 1).  ∑′ l will then be the sum of the multiplicities of the tangents to (0, 0, 1), or the 
class m′.  The sum ∑ (h – 1) is called the branching number w of ω as an algebraic 
function of u.  Finally, one has ∑ (k – 1) = s, so: 
 

w = s + m′. 
 
If one substitutes this into (1) then it will follow that: 
 
(2)      w – 2m = 2p – 2. 
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In words: The branching number of an algebraic function ω, minus twice its degree, is 
equal to 2p – 2, when p is the genus of the associated algebraic curve. 
 
 It is not difficult to also prove this theorem for the case in which the point (0, 0, 1) − 
which, up till now, has been assumed to lie outside the curve − is a q-fold point of the 
curve with nothing but ordinary branches.  In this case, the degree n of the function ω 
will not be equal to m, but m − q, and also ∑′ l will not be equal to m′, but m′ − 2q, and it 
will follow that: 

w – 2n = 2p − 2. 
 

The genus is closely connected with the differentials of the function field K(u, ω).  By 
this, we mean the following: The differential of the independent variables du shall be 
merely a symbol, or, if one wishes, an indeterminate.  Moreover, if η is any function of 
the field then we set: 

dη = 
d

du
du

η
. 

 
We understand the order of the differential du on any branch of the curve to mean the 
order of the differential quotients dη / dτ with respect to the position uniformization τ.  
The order of dη is, correspondingly, the order of: 
 

d

d

η
τ

= 
d du

du d

η
τ

. 

 If u − a has order h on a branch: 
 

u − a = ch τh + … 
 

then du will have the order h – 1, and then it will follow by differentiation that: 
 

du

dτ
= h ch τh−1 + … 

 
h is different from 1 only at the branching points; there are thus also only finitely many 
branches for the differential du on which its order is different from zero.  If u = ∞ on a 
branch then one will have: 
      u−1 = ch τh + …, 
         u = 1 h

hc τ− − + …, 

      
du

dτ
= − 1 1h

hhc τ− − − + …; 

 
hence, the order of du will become – h – 1 there.  Now, one has: 
 

− h – 1 = (h – 1) – 2h. 
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The sum of the orders of the differential du on all of the branches will equal: 
 

∑ (h – 1) = 2h = ∑∞ w – 2m = 2p – 2, 
 

in which ∑∞ means the sum over all branches with m = ∞, hence, over all intersection 
points of the curve with the line η0 = 0.  Since this intersection point has, at the same 
time, the multiplicity h on any branch ∑∞ h will be equal to the degree of the curve m.  
Thus: 
 
 The sum of the orders of the differential du over all curve branches is equal to 2p – 2. 
 
 Now, if dη / dτ  is a function of the field then this will be true for not only du, but 
also for any differential: 

dη = d
du

du

η
, 

 
and the sum of the orders of such a function over all branches will be equal to zero (§ 20). 
 What now follows immediately from this remark is the Theorem of the invariance 
of the genus: 
 
 If two curves f = 0 and g = 0 can be mapped to each other birationally then they will 
have the same genus. 
 
 Thus, if (u, ω) is a general point of the one curve and (v, θ) is a point of the other then 
any function h(u, ω) will correspond to a function h′(v, θ) by means of birational map, 
and each branch will correspond to a branch.  The position uniformization τ of the branch 
will again correspond to the position uniformization, the differential quotients will again 
correspond to the differential quotients, and it will follow that the orders of the 
differential dη will be preserved, and therefore the sum 2p − 2, as well. 
 As a first application of the theorem of the invariance of the genus, we prove that the 
genus is always a whole number ≥ 0.  From § 25, we can convert any curve birationally 
into a curve K with nothing but “normal” singularities, namely, r-fold points with distinct 
tangents.  If the curve has degree m then, from § 21, its class m′ will equal: 
 

m′ = m(m – 1) − ∑ r(r – 1), 
 

in which the sum is taken over all multiple points.  It will follow that: 
 

2p – 2 = m′ + s – 2m = m (m – 1) − ∑ r (r – 1) – 2m 
2p = (m – 1) (m − 2) − ∑ r (r – 1). 

 
 The right-hand side is an even number, so p will be a whole number.  We can set: 
 

∑ r (r – 1) = 2d, 
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and then call d the “number of the double point,” if we count an r-fold point as 
2

r 
 
 

 

double points.  One will then have: 

(3)      p = 
( 1)( 2)

2

m m− − − d.  

 
 A curve that has at least an (r – 1)-fold point at each r-fold point of the curve K (with 
normal singularities!) is called an adjoint curve to K.  In order for a given point to be an 
r-fold point of a curve h = 0, its coefficients must fulfill r (r – 1) / 2 linear equations, so if 
− say − (1, 0, 0) is the point then the development of h(x0, x1, x2) in increasing powers of 
x1 and x2 must lack the terms of order 0, 1, …, r – 1.   An adjoint curve thus has ∑ r (r – 
1) / 2 = d (dependent or independent) linear conditions to fulfill.  It cuts the curve in the 
multiple points r (r – 1)-fold, hence, 2d-fold, in all. 
 There exist adjoint curves of order m – 1; e.g., the first polar of an arbitrary point.  
Since the total number of intersections of a curve and a polar amounts to m (m − 1), it 
will follow that: 
(4)      2d ≤ m (m – 1). 
 
 There are indeed adjoint curves of the order m – 1 that include, other than the 
multiple points, also: 

( 1)( 2)

2

m m− + − d 

 
arbitrarily given points.  A curve of order m – 1 will then have m (m + 1) / 2 coefficients, 
so that one can impose: 

( 1)( 2)

2

m m
d d

− ++ − = 
( 2)

1
2

m m+ −  

 
conditions, which, when false, would imply that they all vanish.  Since the number of 
intersection points again amounts to m (m – 1), it will follow that: 
 

( 1)( 2)
2

2

m m
d d

− ++ − ≤ m (m – 1) 

or: 

(5)      d ≤ 
( 1)( 2)

2

m m− +
, 

or, from (3): 
p ≥ 0. 

 
 As the proof shows, the inequality (4) is valid, not only for irreducible curves, but 
also for arbitrary curves with no multiple components, while the inequality (5) is valid 
only for irreducible curves, but with arbitrary singularities.  Both inequalities are the 
sharpest of their kind. 
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 The notion of genus can be carried over to reducible curves; the definition (1) will 
remain the same.  Since the class, cusp count, and degree of a decomposable curve are 
equal to the sums of the classes, cusp counts, and degree of the components, one will then 
have: 

2p – 2 = (2p1 – 2) + … + (2pr – 2) 
or: 
(6)     p = p1 + … + pr − r + 1 
 
for a curve that decomposes into r components of genera p1, …, pr . 
 
 The PLÜCKERian formula.  From the theorem on the invariance of genus, the dual 
curve of an (irreducible) curve will have the same genus as the original curve.  One will 
then have: 
(7)     m + s – 2m′ = 2p – 2 
dual to (1). 
 To the formulas (1), (3), one now adds formula (5) of § 21, which expresses the class 
m′ in terms of the degree m and the type and number of singular points.  If these exist as d 
junctions and s cusps then, from § 21, one will have: 
(8)     m′ = m (m – 1) – 2d – 3s. 
 
By a suitable definition of the number d, this formula will also be valid when the curve 
possesses higher singularities.  For example, one must count an r-fold point with separate 
tangents as r (r – 1) / 2 junctions, and likewise, a contact junction as two junctions, etc.  
In each individual case, the methods of § 21 will give the possibility of computing the 
quantities that one must add to m (m – 1) in order to obtain the class m′, and one can 
always put this quantity into the form 2d + 3s; then, from § 21, problem 4, it will always 
be ≥ 3s, and it will always differ from 3s by an even number, since, from (1), m′ + s is an 
even number. 
 Dual to (8), one has the formula: 
 
(9)     m = m′ (m′ − 1) – 2d′ − 3s′, 
 
in which d′ means a suitably-defined number of double tangents. 
 We then summarize the formulas that we have found: 
 
(1), (7)    m + s – 2m = m + s′ – 2m′ = 2p – 2, 
(8)     m′ = m (m – 1) – 2d – 3s, 
(9)     m = m′ (m′ − 1) – 2d′ − 3s′. 
 
In these, m means the degree of the curve, m′, the class, s and s′, the number of cusps and 
inflection points, resp., d and d′, the number of double points and double tangents, resp., 
and finally, p is the genus. 
 It follows by subtracting (1) and (7) that: 
 
(10)     s′ − s = 3(m′ − m), 
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or, if the value of m′ from (8) is substituted in this: 
 
(11)    s′ = 3m (m − 2) – 6d – 8s . 
 
Dual to this, one will have: 
(12)    s = 3m′ (m′ − 2) – 6d′ − 8s′. 
 
 (8), (9), (11), (12) are called the PLÜCKERian formulas.  One can calculate m′, s′, d′ 
from them when m, s, d are given. 
 If one substitutes m′ from (8) into (1) then what will follow, after a conversion, is the 
convenient genus formula: 

(13)     p = 
( 1)( 2)

2

m m− − − d – s. 

 
 As examples of its application, we compute the number of inflection points and 
double tangents of a double-point-free curve of order m. 
 From (8), it will first follow that the class is: 
 

m′ = m (m – 1). 
 

Thus, it will follow from (10) or (11) that the number of inflection points is: 
 

s′ = 3m (m – 2), 
 
and finally, from (9), that the number of double tangents is: 
 

(14)   
2

2

21
2

2 ( 1) 3

( 1)( 1) 9 ( 2)

( 2)( 9)

( 2)( 9).

d m m m s

m m m m m m m

m m m

d m m m

′ ′ ′ ′= − − −
 = − − − − − −
 = − −
 ′ = − −

 

 
 In particular, a double-point-free curve of order 4 has 28 double tangents (1). 
 

                                                
 (1 ) These curves have very interesting geometric properties.  See STEINER (J. reine angew. Math. 
Bd. 49), HESSE (J. reine angew. Math. Bd. 49 and 55), ARONHOLD (Mber. Akad. Berlin 1864), and M. 
NOETHER (Math. Ann. Bd. 15 and Abh. Akad. München Bd. 17).  One finds a good introduction to the 
subject in H. WEBER’s Lehrbuch der Algebra II. 



  

CHAPTER FOUR 
 

Algebraic manifolds 
 

§ 27.  Points in the broader sense.  Relation-preserving specializations 
 

 Up till now, we have only considered points with constant coordinates in a fixed field 
K.  Now, we extend the notion of a point by also allowing points whose indeterminates, 
or algebraic functions of indeterminates, or still more general elements, are in any 
extension field of K.  A “point in the broader sense” of the vector space En is thus a 
system of n elements y1, …, yn of an arbitrary extension field of K, and a point in the 
broader sense of the projective space Sn will be defined accordingly.  Furthermore, the 
notion of a linear space, hypersurface, etc., will be extended by regarding the particular 
points of the linear space in the broader sense (regarding the coefficients of the equation 
for the hypersurface as arbitrary elements of an extension field of K, resp.). 
 The extension field from which the elements y1, …, yn are taken is not to be thought 
of as a fixed field, but rather as an enlarged field that can be extended as often as 
necessary in the course of a geometric consideration, e.g., by the addition of new 
indeterminates and algebraic functions of the indeterminates.  At the moment of the 
introduction of a sequence of new indeterminates all of the previously introduced 
indeterminates will be regarded as constant, and the ground field will be thought of as 
having been augmented.  That means: By the introduction of new indeterminates u1, …, 
um, the ground field will become the field K′ that comes about by adjoining all previously 
considered indeterminates x1, …, xn, … to the ground field K. 
 The algebraic extension of a given field will always be tacitly carried out, when 
required.  If, e.g., a hypersurface with coefficients in an extension field K′ of K is 
intersected by a line then the intersection point will be obtained by solving an algebraic 
equation.  We then always think of the field K′ as being extended by the adjunction of all 
of the roots of this algebraic equation.  In this sense, we can regard any algebraic 
equation as soluble in this enlarged field K′ (1). 
 We understand the term a general point of the projective space Sn to mean a point 
whose coordinate ratios x1/x0, …, xn/x0 are algebraically independent relative to the 
ground field K.  Thus, there shall exist no algebraic equation f(x1/x0, …, xn/x0) = 0, or, 
what amounts to the same thing, no homogeneous algebraic relation F(x0, …, xn) = 0 with 
coefficients in K, unless the polynomial f (the form F, resp.) vanishes identically.  One 
obtains a general point, e.g., when one chooses all of the coordinates x0, …, xn to be 
indeterminates, or also when one sets x0 = 1 and chooses x1, …, xn to be indeterminates. 
 A general hyperplane in Sn is hyperplane u whose coefficient ratios u1/u0, …, un/u0 
are algebraically independent relative to K.  It is most convenient for one to simply 

                                                
 (1 ) Through this sort of consideration, we avoid “transfinite induction,” which is necessary in order to 
extend the field K′ to one that is actually algebraically closed (cf., E. STEINITZ: Algebraische Theorie der 
Körper, Leipzig 1930).  Transfinite induction is then necessary when one wishes to solve an infinite set of 
equations.  However, only finitely-many equations will appear in geometric problems, and they can be 
solved among themselves in the order of their appearance without having to introduce transfinite induction. 
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choose u0, u1, …, un to be indeterminates.  Analogously, a general hypersurface of degree 
m will be one whose equation coefficients are nothing but independent indeterminates. 
 A general subspace Sm is one whose Plücker coordinates satisfy no homogeneous 
algebraic relation with coefficients in K, except for relations that are valid for any 
subspace Sm .  One can obtain a general Sm , for example, as the intersection of n – m 
general (mutually-independent) hyperplanes or as the join of m + 1 independent general 
points. 
 
 Relation-preserving specializations.  A point (in the broader sense) η is called a 
relation-preserving specialization of the same point ξ when all homogeneous algebraic 
equations F(ξ0, …, ξn) = 0 with coefficients in the ground field K that are valid for the 
point ξ are also valid for the point η, and thus it always follows from F(ξ) = 0 that F(η) = 
0 for any form F.  For example, any point of a space is a relation-preserving 
specialization of the general point in the same space.  Another example: Let ξ0, …, ξn be 
rational functions of the indeterminate parameter t and let η0, …, ηn be the values of 
these rational functions for a particular value of t. 
 One defines a relation-preserving specialization of a point-pair (ξ, η), a point-triple 
(ξ, η, ζ), etc., analogously.  If (ξ, η) → (ξ′, η′) is to be a relation-preserving 
specialization then all equations F(ξ, η) = 0 that are individually homogeneous in the ξ 
and η must remain true under the replacement of ξ with ξ′ and η with η′. 
 The most important theorem on relation-preserving specializations, which will come 
before everything else in chap. 6, reads like: 
 
 Any relation-preserving specialization ξ→ ξ′ may be continued to a relation-
preserving specialization (ξ, η) → (ξ′, η′) when (ξ, η) is any point-pair in the broader 
sense. 
 
 Proof.  From the totality of all homogeneous equations F(ξ, η) = 0 one can, from the 
HILBERT basis theorem (1), select a finite number of them from which all of the other 
ones follow.  One eliminates the η from these finitely-many forms − i.e., one constructs 
the resultant system G1, …, Gk .  One will then have G1(ξ) = 0, …, Gk(ξ) = 0.  Due to the 
relation-preserving specialization, it will follow from this that G1(ξ′) = 0, …, Gk(ξ′) = 0.  
From the meaning of the resultant system, the system of equations F1(ξ′,η′) = 0, …, 
Fk(ξ′,η′) = 0 will then be soluble for η′.  That is, there will be a point η′ such that all 
equations F(ξ, η) = 0 will also be valid for ξ′,η′. 
 Essential use was made in the proof of the fact that one is dealing with homogeneous 
equations, and therefore homogeneous coordinates − at least, relative to the η.  The 
theorem will no longer be true in affine spaces, in which the specialization ξ→ ξ′ can 
take the point η to infinity.  On the contrary, it is essential that one deals with only one 
point ξ and one point η, or else the theorem would be true for a whole sequence of 

further points 
1

ξ , …, 
r

ξ ,
1

η , …,
s

η . 
 

                                                
 1 ) Cf., Moderne Algebra II, § 80. 
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 Problems.  1.  A system of homogeneous linear equations always possesses a general solution, from 
which any solution will arise by relation-preserving specialization. 
 2.  If η depends rationally upon ξ and some further parameter t, and these rational functions still make 
sense when ξ′ is substituted for ξ and t′, for t, and ξ → ξ′ is a relation-preserving specialization then (ξ, η) 
→ (ξ′, η′) will also be a relation-preserving specialization. 
 3.  If η is the general solution to a system of linear equations whose coefficients are homogeneous 
rational functions of ξ, and if ξ is specialized to ξ′ in a relation-preserving way, where the rank of the 
system is not reduced, and if η′ is a solution of the specialized system of equations then (ξ, η) → (ξ′, η′) 
will be a relation-preserving specialization.  (One represents the solution η′ with the help of determinants, 
and likewise, the general solution η, and applies problem 2.) 
 
 

§ 28.  Algebraic manifolds.  Decomposition into irreducible ones 
 
 An algebraic manifold in the projective space Sn is the totality of all points (in the 
broader sense) whose coordinates η0, …, ηn satisfy a system of finitely or infinitely many 
algebraic equations: 
(1)      f1(η0, …, ηn) = 0 
 

with coefficients in the constant field K.  If there is no such point then one calls the 

manifold empty.  We will always exclude this case from consideration. 
 Due to the HILBERT basis theorem, one can replace an infinite system of equations 
by an equivalent finite system. 
 Similarly, one defines an algebraic manifold in double projective space Sm, n by a 
system of homogeneous equations in two sequences of homogeneous variables: 
 
(2)     fi(ξ0, …, ξm, η0, …, ηn) = 0 . 
 
If equation (1) ((2), resp.) is made inhomogeneous by the substitution η0 = 1, (ξ0 = 1, 
resp.) then one will obtain the equations of an algebraic manifold in an affine space An 
(Am+n, resp.).  From now on, we always write f(x), f(η), f(ξ, η), etc., instead of f(x0, …, 
xn), f(η0, …, ηn), f(ξ0, …, ξm, η0, …, ηn), etc. 
 The notion of algebraic manifold can be generalized still further by considering, in 
place of the point η and the point-pair ξ, η, other geometric objects that are given in 
terms of homogeneous coordinates; e.g., hypersurfaces, linear subspaces Sm in Sn, etc.  
For example one can, speak of the manifold of all planes in Sn; its equations are given by 
(2), § 7. 
 The intersection M1 ∩ M2 of two algebraic manifolds M1 and M2 is obviously again 
an algebraic manifold.  However, the union (1) or sum of two algebraic manifolds is also 
one.  Namely, if fi(η) = 0 and gj(η) = 0 are the equations of the two manifolds being 
united then the equations of the union will be: 
 

fi(η) gj(η) = 0 . 

                                                
 (1 ) The word “union” (or sum) is used with its set-theoretic meaning.  Components, such as M1 and 
M2 in the sum are to be counted only once, and no more.  Multiply-counted manifolds will first be 
introduced much later (§ 36 and § 37). 
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 An algebraic M in Sn is called decomposable or reducible when it is the sum of 
distinct − i.e., disjoint from each other − submanifolds.  An indecomposable manifold is 
called irreducible. 
  
 Lemma.  If an irreducible manifold M is contained in the union of two algebraic 
manifolds M1 and M2 then M will be contained in either M1 or M2 . 
 
 Proof.  Any point of M belongs to either M1 or M2, hence, to the intersection M ∩ M1 
or the intersection M ∩ M2 .  Hence, M is the union of M ∩ M1 and M ∩ M2 .  However, 
since M is irreducible, one of these manifolds M ∩ M1 or M ∩ M2 must coincide with M 
itself; i.e., M will be contained in either M1 or M2 . 
 
 This lemma may be immediately carried over to several manifolds M1, …, Mr by 
complete induction. 
 
 A special case: 
 
 If a product f1f2 of two forms is zero at all points of an irreducible manifold then f1 or 
f2 will have the property of being zero at all points of M. 
 
 On the other hand, if M is decomposable − perhaps into M1 and M2 − then there will 
be, firstly, a form f1 among the defining equations of M1 that is zero at all points of M1, 
but not all points of M2 , and likewise there will be a form f2 that is zero at all points of 
M2, but not all points of M1 .  The product f1 f2 will then be zero at all of the points of M, 
but neither of the factors f1, f2 has this property.  Thus, we have: 
 
 First irreducibility criterion.   A necessary and sufficient condition for the 
decomposability of a manifold M is the existence of a product f1 f2 that is zero at all 
points of M, without either of the forms f1, f2 being zero on M. 
 
 Moreover, for algebraic manifolds, we have the: 
 
 Chain theorem.  A sequence of manifolds: 
 
(3)     M1 ⊃ M2 ⊃ … 
 
in An or Sn in which Mr+1 is a proper submanifold of Mr must terminate after finitely many 
terms. 
 
 Proof.  The equations of the manifolds M1, M2, … allow us to write down the 
sequence as: 

f1 = 0,  f2 = 0, … fh = 0; fh+1 = 0, …, fh + h = 0; … 
 
From the HILBERT basis theorem, all of these equations follow from finitely many of 
them.  However, that means that the equations of M1, …, Ml collectively comprise the 
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equations of all further manifolds, hence, after Ml , no further proper submanifolds can be 
given in the sequence. 
 
 We now come to the fundamental: 
 
 Decomposition theorem.  Any algebraic manifold is (either irreducible or) the sum 
of finitely many irreducible manifolds: 
 
(4)     M = M1 + M2 + … + Mr . 
 
 Proof.  Assume that there is a manifold M that is not the sum (1) of irreducible 
manifolds.  M is then decomposable, perhaps into M′ and M″ .  If M′ and M″  were the 
sums of irreducible manifolds then M would also be.  Hence, M would possess a proper 
submanifold M′ or M″ that would not be the sum of irreducible manifolds.  The latter 
likewise would possess a proper submanifold, etc.  One would thus obtain an infinite 
chain (3), which is impossible.  Hence, any manifold is the sum of irreducible ones. 
 
 Uniqueness theorem.  The representation of a manifold M as an unshortenable sum 
(a sum is called “shortenable” when one summand in the sum contains the remaining 
ones; hence, one can omit them) of irreducible ones is unique, up to the order of the 
summands. 
 
 Proof.  Let M = M1 + … + Mr = 1 sM M′ ′+ +⋯  be two unshortenable representations.  

It follows from the lemma that M1 is contained in one of the manifoldsrM ′ .  By altering 

the sequence of rM ′ , we can assume that M1 is contained in 1M ′ .  Likewise, 1M ′  is 

contained in some Mµ .  If one had µ ≠ 1 then one would have1 1M M M µ′⊆ ⊆ ; hence, the 

sum M1 + … + Mµ + … could be shortened, and therefore one could have µ = 1 and M1 
= 1M ′ .  Further summands r iM +′  can therefore no longer appear in the second sum, since it 

was unshortenable. 
 
 The irreducible manifolds that appear as an unshortenable sum in the representation 
of M are called the irreducible components of M. 
 The proof above still gives no means of effectively carrying out the decomposition of 
M into irreducible components when the equations of M are given.  This means is first 
provided by the elimination theory that will be presented in § 31. 

 
 

 §29.  The general point and dimension of an irreducible manifold 
 
 A point ξ is called a general point of a manifold M when ξ belongs to M and all 
homogeneous algebraic equations with coefficients in K that are valid for the point ξ are 

                                                
 (1 ) We always understand “sum” to mean a finite sum, here.  A sum can also consist of just one term. 
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valid for all points of M.  In other words, ξ shall belong to M and all of the points of M 
shall emerge as relation-preserving specializations of the point. 
 
 Second irreducibility criterion.   If a manifold M possesses a general point then it 
will be irreducible. 
 
 Proof.  If M were decomposable then there would be a product fg of two forms that 
vanishes everywhere on M without one of the factors doing so.  It would follow that: 
 

f(ξ) ⋅ g(ξ) = 0. 
 
Hence, since f(ξ) and g(ξ) belong to a field: 
 

f(ξ) = 0 or  g(ξ) = 0, 
 
and consequently one would have that either f = 0 at all points of M or g = 0 at all points 
of M, which would contradict the assumption. 
 
 Existence theorem.  Any non-empty irreducible manifold M possesses a general 
point ξ (for a suitable extension field of K). 
 
 Proof.  Any quotient of two forms of the same degree: 
 

0 1

0 1

( , , , )

( , , , )
n

n

f x x x

g x x x

⋯

⋯
 

 
defines a rational function on the manifold M, as long as one assumes that the 
denominator is not zero at all points of M.  Two such functions are said to be equal: 
 

f

g
=

f

g

′
′
 when  fg′ = f′g on M. 

 
Addition, subtraction, multiplication, and division of rational functions on M yields other 
rational functions on M.  The rational functions on M then define a field that includes the 
constant field K. 
 We can assume that x0 is not equal to zero at all points of M.  We denote the rational 
functions: 

1

0

x

x
, 2

0

x

x
, …, 

0

nx

x
 

 
by ξ1, ξ2, …, ξn .  Furthermore, we set ξ0 = 1.  (ξ0, ξ1, …, ξn) is then a general point of M.  
Then, from the fact that: 

f(ξ0, ξ1, …, ξn)  = 0 
 
or, what amounts to the same thing: 
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1

0 0

1, , , nxx
f

x x

 
 
 

⋯ = 0 on M, 

 
it will follow, since f is homogeneous, that: 
 

f(x0, x1, …, xn) = 0 on M, 
 
and conversely.  Hence, all homogeneous equations that are valid for the point ξ will be 
valid for all points of M, and conversely. 
 
 A point is called normalized when the first non-zero coordinate is equal to one; any 
point can be normalized in that way.  By renumbering the coordinates, one can indeed 
assume that ξ0 ≠ 0, hence, that ξ0 = 1.  The ξ1, …, ξn are then called the inhomogeneous 
coordinates of ξ. 
 
 Uniqueness theorem.  Any two normalized points ξ, η of a manifold M can be 
mapped to each other by a field isomorphism K(ξ) ≅ K(η) that fixes the elements of K.  
The algebraic properties of ξ and η thus agree precisely. 
 
 Proof.  From the definition of a general point, all homogeneous algebraic equations 
that are valid for ξ will also be valid for η, and conversely.  Thus, if ξ0 = 0 then one will 
also have η0 = 0, and conversely.  If ξi is the first non-zero coordinate of ξ then the same 
will be true for ηi .  By a renumbering of the coordinates we can, by means of 
normalization, deduce that ξ0 = η0 = 1.  Any polynomial in ξ1, …, ξn can be made 
homogeneous by the introduction of ξ0 factors to the individual terms.  We now associate 
each such polynomial f(ξ1, …, ξn) with the same polynomial in η1, …, ηn .  If f(ξ1, …, ξn) 
= g(ξ1, …, ξn)  then one will have f(ξ) – g(ξ) = 0 and this relation, when made 
homogeneous, will also be true for η, from the original remarks: 
 

f(η) – g(η) = 0, hence f(η) = g(η) . 
 
 Our association f(ξ) → f(η) is therefore unique.  On the same grounds, it is also valid 
in the opposite direction.  It takes sums to sums and products to products, and is therefore 
an isomorphism.  Moreover, it takes ξr to ηr .  The isomorphism of the rings K[ξ1, …, ξn] 
and K[η1, …, ηn] thus obtained may be extended to an isomorphism of the quotient fields 
K(ξ1, …, ξn) and K(η1, …, ηn) with no further assumptions.  With that, everything is 
proved. 
 
 Converse theorem.  Any point ξ (whose coordinates belong to any extension field of 
K, e.g., algebraic functions of undetermined parameters) is associated with an 
(irreducible) algebraic manifold M whose general point is ξ. 
 
 Proof.  One can choose a finite basis (f1, …, fr) with constant coefficients that has the 
property that f(ξ) = 0 for the totality of all forms f(x0, x1, …, xn) by means of the 
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HILBERT basis theorem.  The equations f1 = 0, …, fr = 0 define an algebraic manifold M.  
The given point x is a general point of M. ξ will then belong to M, and all homogeneous 
equations that are valid for ξ will be consequences of the equations f1 = 0, …, fr = 0, and 
will thus be true for all points of M. 
 
 On the grounds of the existence and uniqueness theorems, we can define the 
dimension of an irreducible manifold to be the number of algebraically independent 
coordinates of a normalized, general point ξ of M.  One can also call this number the 
dimension of a general point ξ.  The dimension of a decomposable manifold M is the 
highest dimension of the irreducible components, or − what amounts to the same thing − 
the highest dimension of a point of M.  When all of the irreducible components of M have 
the dimension d, one calls M purely d-dimensional. 
 
 Dimension theorem.  If M and M′ are irreducible and one has M′ ⊂ M then the 
dimension of M′ is less than the dimension of M. 
 
 Proof.  We can assume that M′, and therefore also M, do not lie in the ideal 
hyperplane η0 = 0; thus, we can normalize a general point ξ of M and a general point ξ′  
of M′  in such a way that ξ0 = 0ξ ′  = 1.  Any relation f(ξ) = 0 that is valid for the general 

point ξ of M can be made homogeneous by the introduction of ξ0 , and will thus be valid 
for ξ′.  
 Now, let, say, 1ξ ′ , …, dξ ′′  be algebraically independent.  Then ξ1, …, ξd′ will be, as 

well; hence, one will have d ≥ d′.  If one had d = d′ then all ξi would be algebraically 
dependent on ξ1, …, ξd .  Since M′ is a proper submanifold of M there will be a form g 
that is everywhere zero on M′, but not on M.  Thus, one has: 
 

g(ξ) ≠ 0, g(ξ′) = 0. 
 
g(ξ) is algebraically dependent on ξ1, …, ξd ; hence, it is a root of an algebraic equation: 
 

a0(ξ) g(ξ)n + a1(ξ) g(ξ)n − 1 + … + an(ξ) = 0, 
 
where the aν are polynomials in ξ1, …, ξd and an(ξ) ≠ 0.  If one replaces all of the ξ in this 
equation with ξ′ then one will have g(ξ′) = 0, hence, an(ξ′) = 0, in contradiction to the 
assumption of the algebraic independence of ξ1, …, ξd′  . 
 
 Corollary.   Any point ξ′ of M (in the broader sense) has a dimension d′ ≤ d, where d 
is the dimension of the irreducible manifold M.  If d′ = d then ξ′ will be a general point of 
M. 
 
 Proof.  From the converse theorem, any point ξ′ of M is a general point of a 
submanifold M′ of M of dimension d′.  From the dimension theorem, one has d′ < d for 
M′ ⊂ M, and d′ = d for M′ = M. 
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 Therefore, any point of a zero-dimensional irreducible manifold M is algebraic over K 
and a general point of M.  From the uniqueness theorem, all of these points are equivalent 
over K.  With that, we have: 
 
 A zero-dimensional irreducible manifold in Sn is a system of conjugate points relative 
to the ground field K. 
 
 The only n-dimensional manifold in Sn is the entire space Sn .  Thus, if ξ is a 
normalized n-dimensional point of space then one will have ξ0 = 1 and ξ1, …, ξn will be 
algebraically independent over K.  There is no relation f(ξ1, …, ξn) = 0, and therefore also 
no homogeneous relation f(ξ0, ξ1, …, ξn) = 0 with coefficients in K that is identically 
valid in the ξ, hence, for any point of the entire space Sn . 
 
 A pure (n – 1)-dimensional manifold M in Sn will be given through a single 
homogeneous equation h(η) = 0, and any form that has all points of M for its zero locus 
will be factorizable through h(x). 
 
 Proof.  It suffices to carry out the proof for irreducible manifolds, since by 
multiplying the equations of the irreducible components, one will obtain the equations for 
a general manifold. 
 Let M be irreducible and let ξ be a general point.  Let – say − ξ0 = 1 and let ξ1, …, 
ξn−1 be algebraically independent, and let ξn be linked to them by the irreducible equation 
h(ξ1, …, ξn) = 0.  Then, from field theory, any polynomial f(ξ1, …, ξn − 1, z) with the zero 
locus ξn will be factorizable through h(ξ1, …, ξn − 1, z), or − what amounts to the same 
thing − since one can also replace the algebraically-independent ξ1, …, ξn − 1, z with other 
indeterminates x1, …, xn − 1, xn , any polynomial f(x1, …, xn) with the zero locus ξ will be 
factorizable through h(x1, …, xn).  The factorizability remains true when one makes f and 
h homogeneous by the introduction of x0 .  From the definition of a general point, this 
means that h(x) = h(x0, …, xn) will have all points of M for its zero locus, and that any 
form f(x) with this property is factorizable through h(x).  Thus, everything is proved. 
 
 One also easily proves that, conversely, any non-trivial homogeneous equation f(η) = 
0 defines a purely (n – 1)-dimensional manifold.  For the proof of this, we decompose the 
form f into irreducible factors f1 f2 … fr .  From § 19, any irreducible hypersurface fν = 0 
will possess a general point (1, u1, …, un – 1, ω) of dimension n − 1.  Thus, the 
hypersurface f = 0 will decompose into nothing but irreducible components fν = 0 of 
dimension n − 1.  We thus obtain the theorem: 
 
 Any hypersurface f(η) = 0 is a purely (n – 1)-dimensional manifold, and conversely. 
 
 The manifolds of dimension less than n − 1 may not be defined by equations so 
simply.  In the next section, we will therefore see that any irreducible d-dimensional 
manifold may be represented in a certain way as the partial intersection of n – d 
hypersurfaces. 
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§ 30.  Representation of manifolds as partial intersections of cones and monoids 
 
 If ξ is a general point of a d-dimensional irreducible manifold M in Sn then one can 
assume, with no loss of generality, that that ξ0 = 1 and that ξ1 , …, ξd are algebraically 
independent quantities upon which ξd + 1, …, ξn depend.  We assume, moreover, that ξd+1, 

…, ξn are separable algebraic quantities relative to P = K(ξ1 , …, ξd), which is always the 

case when the ground field has characteristic zero. 

 From the theorem on primitive elements, one can generate the field P(ξd + 1, …, ξn) by 

the adjunction of the single quantity: 
 

1dξ +′ = ξd + 1 + αd + 2 ξd + 2  …+ αn ξn . 

 
 We perform a coordinate transformation by which we introduce 1dξ +′  instead of ξd + 1 

as new coordinates, and we omit the prime, from now on.  One will thus have P(ξd + 1, …, 

ξn) = P(ξd + 1).  The quantities ξd + 1, which are algebraic over P, satisfy an irreducible 

equation: 
 
     ϕ(ξ1 , …, ξd, ξd + 1) = 0, 
 
which one can make homogeneous by the introduction of ξ0 : 
 
(1)     ϕ(ξ0 , …, ξd, ξd + 1) = 0 . 
 
 The ξd + 2, …, ξn are rational functions of ξ1, …, ξd + 1 : 
 

(2)     ξi = 1 1

1 1

( , , )

( , , )
i d

i d

ψ ξ ξ
χ ξ ξ

+

+

⋯

⋯
, (i = d + 2, …, n). 

 
 If one multiplies the denominator χi and makes the equation homogeneous through 
the introduction of ξ0 then it will follow that: 
 
(3)    ξi χi(ξ0, …, ξd + 1) − ψi(ξ0, …, ξd + 1) = 0 . 
 
 The n − d equations (1), (3) are valid for the general point ξ of M, and thus for any 
particular point η of M: 
 

(4)  0 1

0 1 0 1

( , , ) 0,

( , , ) ( , , ) 0, ( 2, , ).
d

i i d i d i d n

ϕ η η
η χ η η ψ η η

+

+ +

=
 − = = +

⋯

⋯ ⋯ ⋯
 

 
Henceforth, equations (4) will define an algebraic manifold D that, as we shall show, will 
contain M as an irreducible component. 
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 Let χ be the least common multiple of the forms χi .  We will show that all of the 
points of D for which χ ≠ 0 belong to M.  Let η be a point with χ(η) ≠ 0 for which (4) is 
true.  We have to show that η is a relation-preserving specialization of the general point 
ξ; hence, that f(η0, …, ηn) = 0 will always follow from f(ξ0, …, ξn) = 0 when f is a form. 
 If one substitutes the values that (3) yields for ξd+2, …, ξn into the equation f(ξ0, …, 
ξn) = 0 then one will obtain: 
 

(5)    2
0 1

2

( ) ( )
, , , , ,

( ) ( )
d n

d
d n

f
ψ ξ ψ ξξ ξ
χ ξ χ ξ

+
+

+

 
 
 
⋯ ⋯  = 0. 

 
 It follows from this that the polynomial g(1, x1, …, xd+1) is factorizable through the 
defining polynomial ϕ(1, x1, …, xd+1) of the algebraic function ξd+1 .  The factorizability 
remains true when this polynomial is made homogeneous by the introduction of x0 : 
 

g(x0, …, xd+1) = ϕ(x0, …, xd+1) ⋅ g(x0, …, xd+1) . 
 
If one now replaces the indeterminates ξ0 , …, ξd+1 with η0 , …, ηd+1 then, due to (4), the 
right-hand side will become zero; hence: 
 

g(η0 , …, ηd+1) = 0 . 
 
 From the manner by which g was defined, this means that: 
 

2
0 1

2

( ) ( )
, , , , ,

( ) ( )
d n

d
d n

f
ψ η ψ ηη η
χ η χ η

+
+

+

 
 
 
⋯ ⋯  = 0; 

however, due to (4): 
f(η0 , …, ηd+1, ηd+2, …, ηn) = 0 , 

which we wished to prove. 
 The points η of D thus decompose into two classes: The ones with χ(η) ≠ 0, which 
belong to M, and the ones with χ(η) = 0, which define a proper algebraic submanifold N 
of D.  As a result, D will decompose into the two submanifolds M and N. 
 Since the ηd+2, …, ηn do not enter into the first equation in (4), it will represent a cone 
whose vertex can be taken to be an arbitrary point O of the space η1 = … = ηd+1 = 0.  We 
choose O in such a way that ηd+2 ≠ 0, …, ηn  ≠ 0.  Any further equation (4) will then 
represent a hypersurface that has a single intersection point besides O with a general line 
through O.  Such a hypersurface is called a monoid. 
 In the case of a curve in S3 , equations (4) assume the form: 
 
(6)      ϕ(η0 , η1, η2) = 0, 
(7)     η3 χ(η0 , η1, η2) = ψ(η0 , η1, η2) . 
 
 From the foregoing, the intersection of the cone (6) with the monoid (7) will consist 
of the curve M and a manifold N whose equations are given by (6), (7), and: 
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(8)      χ(η0 , η1, η2) = 0 . 
 
 Tt follows from (7) and (8) that: 
(9)      ψ(η0 , η1, η2) = 0 . 
 
 The pair-wise distinct equations (8), (9) define finitely many ratios η0 : η1: η2 , thus, 
finitely many lines through the point O(0, 0, 0, 1).  If one eliminates from these lines the 
one that does not lie on the cone (6) then the remaining ones will define the manifold N.   
 
 The complete intersection of the cone (6) with the monoid (7) thus consists of the 
curve M and finitely many lines through the point O. 
 
 The representation by cones and monoids is most meaningful for the theory of space 
curves.  HALPHEN (1) and NOETHER (2) have made it the foundation of their 
classification of algebraic space curves.  SEVERI (3) has recently examined the monoidal 
representation of higher algebraic manifolds and utilized it for the theory of equivalence 
families on algebraic manifolds. 
 
 

§ 31.  The effective decomposition of a manifold into irreducible ones 
by means of elimination theory 

 
 Let a manifold M be given by a homogenous or inhomogeneous system of equations: 
 
(1)      fi(η1, …, ηn) = 0 . 
 
We are free to interpret the η as either inhomogeneous coordinates in affine space An or, 
in the case of homogeneous fi , as homogeneous coordinates in a projective space Sn – 1 .  
Thus, we temporarily call any system of values η1, …, ηn simply a “point,” which is 
therefore based in the affine meaning.  We can assume that the polynomial f1 does not 
vanish identically. 
 In order to find all of the solutions of (1), one can – and this is the basic principle of 
elimination theory – successively eliminate ηn, …, η1 in (1) by constructing resultants.  If 
the system of resultants Ri(η1, …, ηn − k) is identically zero after k steps then the η1, …, 
ηn − k can be chosen arbitrarily, and (1) will have an (n – k)-dimensional solution 
manifold. 
 These simple basic principles will now be complicated by three kinds of 
circumstances: First, one will obtain not only the irreducible components of the highest 
dimension n – k of the manifold M, but also all of the components of lower dimension.  
Thus, one may not go so far as to say that a system of resultants is identically zero, but 
rather, before any elimination step can be carried out, one must remove the greatest 
common divisor; the remaining polynomials will then remain relatively prime, and their 

                                                
 (1 ) HALPHEN, G.:  J. Ec. Poly., v. 52 (1882), pp. 1-200. 
 (2 ) NOETHER, M.: J. reine angew. Math., v. 93 (1882), pp. 271-318. 
 (3 ) SEVERI, F:  Mem. Acad. Ital., v. 8 (1937), pp. 387-410. 
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system of resultants cannot be zero.  Second, before any elimination step can be 
performed one must insure, by a linear coordinate transformation, that the highest power 
of the variable to be eliminated in one of the forms appears with a non-zero constant 
coefficient; only under these assumptions will the resultant theory be valid (cf., Chap. 2, 
§ 15).  Third, in order to put the equations of the manifolds obtained into a useful and 
formally beautiful form, following LIOUVILLE, one appropriately introduces one more 
unknown into the unknowns η1, …, ηn , namely: 
 
(2)      ζ = u1η1 + … + unηn , 
 
in which the η1, …, ηn are indeterminates.  One thus considers not only the equations (1), 
but also the system of equations (1), (2).  When the η and ζ have been replaced with the 
indeterminates y and z, the left-hand sides of these equations will have no common 
divisors, since the linear polynomial z – u1y1 − … − un yn will enter into none of the 
polynomials f(y1, …, yn).  This relative primeness thus guarantees that the following first 
step does not yield an identically vanishing resultant system. 
 The stepwise elimination of η1, …, ηn will now be carried out in the following way: 
 
 Step 1.  By an appropriate linear transformation: 
 
     kη ′ = ηk + vk ηn  (k = 1, …, n – 1), 

     nη ′ =  vn ηn , 

 
in which the vk are suitably chosen constants, one can insure that the term n

ρη ′ , where ρ is 

the degree of f1 in η, appears with one of the non-zero coefficients (1).  The u1, …, un in 
(2) will then be transformed accordingly, in such a way that u1η1 + … + unηn will remain 
unchanged.  After performing the transformation, the primes on η′, u′ may again be 
omitted. 
 Therefore, the resultant system of the system of equations (1), (2) for ηn will be 
defined by: 
(3)     gj(u1, …, un, η1, …, ηn − 1, ζ) = 0 . 
 
Since equation (2) is homogeneous in ζ, u1, …, un, the same will be true for the gj . 
 One now replaces u1, …, un − 1, ζ with the indeterminates y1, …, yn − 1, z, and the 
greatest common divisor h(u, y, z) of the forms gj(u, y, z) defines the first sub-resultant of 
the system (1).  As we already stipulated, the factor h(u, y, z) must be removed from the 
gj , and thus the second elimination step does not give a result that is identically zero.  We 
therefore set: 
(4)     gj(u, y, z) = h(u, y, z) ⋅ l j(u, y, z), 
 

                                                
 (1) The coefficient of  n

ρη ′  in the transformed polynomial f1 will be equal to f1 (v1, …, vn), hence, for a 

suitable choice of v ≠ 0 (in the ground field or an algebraic extension field). 
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in which the l j are relatively prime polynomials.  Any solution (η, ζ) of (1), (2) is 
simultaneously a solution of (3); hence, one will have either: 
 
(5)     h(u, y, z) = 0 
or: 
(6)     l j(u, y, z) = 0. 
 
 We will later see that the solutions of (5) yield precisely the purely (n − 1)-
dimensional components of M, whereas those of (6) yield the components of lower 
dimension. 
 From (6), we would like to define a further system of equations that is independent of 
the ζ and u.  To that end, we construct the resultant system rk(u, y) of the l j(u, y, z) for z, 
order the rk(u, y) in powers of u, and define the coefficients ej(y1, …, yn − 1) of these 
products of powers.  They do not all vanish identically, since the l j(u, y, z) are relatively 
prime.  Any solution of (6) will then be simultaneously a solution of: 
 

rk(u, y) = 0, 
 
and thus when η1, …, ηn are independent of u (1) it will also be a solution of: 
 
(7)      ej(η1, …, ηn − 1) = 0. 
 
 Hence: Any solution (h, z) of (1), (2) in which the η1, …, ηn are independent of u will 
also be a solution of either (5) or (6) and (7). 
 Conversely: Any solution (η1, …, ηn − 1, ζ) of (5) or of (6) and (7) is also a solution of 
(3), and one can determine the ηn in it in such a way that one will obtain a solution of (1) 
and (2).  Thus, if η1, …, ηn − 1 are independent of u then so will ηn be, since ηn must 
satisfy an algebraic equation f1(η) = 0 in which the term 0

nη  does not actually appear.  

Hence, for given η1, …, ηn − 1 , it can be only one of the finitely-many roots of this 
equation. 
 
 Step 2.  One proceeds with equations (6), (7) exactly as one did for (1), (2).  After an 
appropriate transformation of η1, …, ηn − 1 [which is possible, because the ej(η1, …, ηn − 1) 
do not all vanish identically], one eliminates ηn − 1 from (6), (7), by which, one will 
obtain: 
(8)     jg′ (u, η1, …, ηn − 1, ζ) = 0, 

 
splits off the greatest common divisor from the polynomials jg′  − the second sub-

resultant h′(u, y, z): 
(9)     jg′ (u, y, z) = h′(u, y, z) ⋅ jl ′ (u, y, z), 

 

                                                
 (1) I.e., algebraic over the original constant field K, or also algebraic functions of other 
indeterminates, but not of u1, …, un .  



120 IV.  Algebraic manifolds 

further defines the resultant system of thejl ′  for z, and obtains a system of equations: 

 
(10)    jl ′ (u1, …, un, η1, …, ηn − 2, ζ) = 0, 

(11)    je′ (η1, …, ηn − 2) = 0 

 
by setting the u1, …, un to zero identically. 
 Then again, this means that h′ is a homogeneous form in z, u1, …, un, that the je′  do 

not vanish identically, that any solution of (6) and (7) for which the η1, …, ηn − 1 are 
independent of u will either be a solution of (10), (11) or a solution of: 
 
(12)     h′ (u, h, z) = 0, 
 
and that conversely any such solution of (10), (11) or of (12) will give rise to a solution 
of (6) and (7), in which the ηn − 1 will also be independent of u. 
 One proceeds in this way until all of the η are eliminated.  Since the process is 
arranged in such a way that the ej, je′ , … do not vanish identically, the final ( 1)n

je −  will be 

non-zero constants, and the final system of equations ( 1)n
je −  = 0 will therefore be 

contradictory.  The final sub-resultant h(n – 1)(u, z) will contain only the ui and z .  If the 
original equations (1) are homogeneous in η1, …, ηn then the resultants h, h′, …, h(n – 1) 
will also be homogeneous in y1, …, yn, z. 
 Any solution of (1), (2) for which the η do not depend on the u will be a solution of 
(5) or of (6) and (7); any such solution of (6), (7), will, however, again be a solution of 
(12) or of (10) and (11), etc., up until the repetition of the latter alternative ultimately 
leads to a contradictory system of equations.  One must therefore choose the former 
alternative; i.e., there must be a vanishing sub-resultant.  We thus have: 
 
 Theorem 1.  Any solution (η, ζ) of the system (1), (2) in which the η do not depend 
upon the u will simultaneously be a solution of one of the equations: 
 
(13)   h(u, η, ζ) = 0, h′(u, η, ζ) = 0, …, h(n – 1)(u, ζ) = 0 . 
 
Conversely, any solution (η1, …, ηn − r, ζ) of the rth equation (13) can be completed to a 
solution of equations (1), (2), and if η1, …, ηn − r are either constants or new 
indeterminates that are independent of the u then the remaining ηn − r + 1, …, ηn will 
likewise not depend on the u .  Hence, one has: 
 
 Theorem 2.  Any solution ζ of the rth equation (13) for given (constant or 
indeterminate) η1, …, ηn − r has the form: 
 
(14)    ζ = u1 η1 + … + un ηn , 
 
in which the ηk are independent of the ui and define a solution of (1). 
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 Any individual sub-resultant h(u, y, z) or h′(u, y, z) … can be further decomposed into 
irreducible factors.  In order to have something specific in mind, we consider, e.g., the 
second sub-resultant: 

h(u, y1, .., yn – 2, z) = ( , ) ( , , )y u h u y z µσ
µ

µ

′Θ ∏ . 

 
 Should factors of Θ(y, u) that do not depend upon z appear during the decomposition, 
these factors can remain out of consideration, since they can never be zero for constant 
η1, …, ηn − 2 .  If they were zero then they would be zero for arbitrary ζ, not just for ones 
of the form (14), which contradicts theorem 2. 
 On formal grounds, we replace the yk , …, yn – 2 in each factor hµ′  with new 

indeterminates ξ1 , …, ξn – 2 .  In a suitable algebraic extension field of K(u, ξ), hµ′ (u, ξ, z) 

will decompose completely into linear factors z − ζ, by which, from theorem 2, the zero 
loci ζ will all have the form (14) with η1 = ξ1, …, ηn – 2 = ξ n – 2 : 
 
(15)  hµ′ (u, ξ, z) = ( ) ( )

1 1 2 2 1 1( )n n n n n n nz u u u uν ν

ν
γ ξ ξ ξ ξ− − − −− − − − −∏ ⋯ . 

 

 Thus, the various ξ(r) will be conjugate to each other relative to P(u, ξ), i.e., all 

systems of values ξ(r) will go over to one of them ξ = ξ(1) by field isomorphisms (i.e., they 
will be equivalent to ξ).  If ξ1, …, ξn – 2 are indeterminates and ξn – 1, ξn are algebraic 
functions of them then this ξ will be an (n – 2)-fold indeterminate point of the manifold 
M.  The factor γµ will depend upon only ξ1, …, ξn – 2 , and we will no longer need to 
concern ourselves with it. 
 If we substitute the value (14) for ζ in hµ′ (u, ξ, z), develop in powers of products of 

the ui, and set all of the individual coefficients to zero then we will obtain a system of 
equations: 
(16)     1( )hµ η′ = 0, …, ( )mhµ η′ = 0 

 
that define an algebraic manifold M µ′ .  Theorems 1 and 2 now imply that the manifold M 

that is defined by (1) will be the union of all manifolds Mµ ,M µ′ , … that are defined by 

the irreducible factors of the successive sub-resultants h, h′, …, by (16).  We will see that 
all of these manifolds Mµ ,M µ′ , … are irreducible, and that the point ξ that was defined 

above represents a general point ofM µ′ , in the sharpened sense that all (not just 

homogeneous) equations that are valid for the point ξ will be valid for all points ofM µ′ . 

 It is next clear that ξ is a point ofM µ′ .  Furthermore, it follows from the derivation of 

theorem 2 that the point η ofM µ′ , or − what amounts to the same thing − the solutions (η, 

ζ) to the equation ( , , )h uµ η ζ′ = 0 with ζ = u1 η1 + … + un ηn , will simultaneously be 

solutions of (7) and (1), that therefore ηn – 1 and ηn will be coupled with η1, …, ηn – 2 by 
algebraic equations in which terms in ηn – 1 (ηn , resp.) actually appear.  Thus,M µ′  will 
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indeed contain the (n – 2)-dimensional point ξ, but nothing more than (n − 2)-
dimensional points (1). 
 
 Lemma.  When a manifold M* contains the point ξ of transcendence degree (n – 2), 
but no points of higher transcendence degree, then when the aforementioned elimination 
process is applied to M* it will yield a constant for the first sub-resultant, while the 
second sub-resultant will contain the factor hµ′ .  M* will thus include the manifold M µ′  

that is defined by (16). 
 
 Proof.  If it would give a non-constant first sub0resultant then M* would also contain 
a point ξ of transcendence degree n − 1, contradicting the assumption.  The point ξ, 
however, lies on M* and thus ζ = u1 η1 + … + un ηn will either be a zero locus of the 
second one or a higher sub-resultant.  Since the higher sub-resultants only yield points of 
transcendence degree < n – 2 , ζ = u1 η1 + … + un ηn must be a zero locus of the second 
sub-resultant h′* (u, ξ1, …, ξn − 2, z).  However, h′* (u, ξ1, …, ξn − 2, z) must include the 
entire irreducible factor hµ′ (u, ξ1, …, ξn − 2, z), whose zero locus is ζ. 

 
 Now, we can finally prove: 
 
 Theorem 3.  The submanifoldM µ′  that is defined by (16) is irreducible and has the 

point ξ for its general point. 
 
 Proof.  The point ξ obviously belongs to M µ′ .  We thus have only to prove that any 

equation f(ξ) = 0 with coefficients in K that is valid for the point ξ will also be valid for 
all of the points η of M µ′ . 

 The equations of M µ′ , together with the equation f(η) = 0, define a manifold M* that 

is contained in M µ′  and contains ξ ; hence, the assumptions of the lemma are satisfied.  It 

follows that M* contains the manifoldM µ′ , and therefore that all of the points of M µ′  will, 

in fact, satisfy the equation f(η) = 0. 
 
 In the formulation and proof of theorem 3 we considered the case of a manifold M µ′  

that arises from the second sub-resultant h′ as only an example.   It is self-explanatory 
that the consequences will persist precisely for any other sub-resultant, as long as the 
dimension of M µ′  is not n – 2, but any other number n – 1, n – 3, …, 1, 0. 

 The elimination process that was just described thus provides − in the form of (16) − 
the equations of the irreducible manifolds Mµ , M µ′ , … of dimensions n − 1, n – 2, …, 0, 

from which M is comprised; however, it will likewise provide a general point ξ for each 
of these manifolds.  In order to obtain the minimal decomposition of M into irreducible 

                                                
 (1 ) Since we are looking at things from the standpoint of affine spaces An , we understand the 
dimension of a point to mean the number of algebraically independent coordinates (not coordinate ratios) 
for the point. 



§ 31.  The effective decomposition of a manifold into irreducible ones. 123 

manifolds, one needs only to discard the manifolds M µ′ ,M µ′′ , …that are already included 

in another manifold of higher dimension Mλ or M λ′ .  A criterion for − e.g. − a M µ′′  to be 

contained in M λ′  is that the general point of M µ′′  must satisfy the equations of M λ′ .  

Another criterion is that the elimination process, when applied to the equations of M λ′  

and M µ′′  together, must yield a power of hµ′′  for the second resultant, and not a constant. 

 Likewise, our investigation teaches us how one obtains the equations of the 
irreducible manifold Mξ for a given general point (ξ1, …, ξn).  We formulate this result 
as: 
 
 Theorem 4.  If ξd+1, …, ξn are complete algebraic functions (1) of the algebraically 
independent ξ1, …, ξd ,  and furthermore u1, …, un are indeterminates, and ζ = u1 ξ1 + … 
+ un ξn , as an algebraic function of ξ1, …, ξn , u1, …, un , is the zero locus of a 
polynomial h(u, ξ, z) = h(u1, …, un, ξ1, …, ξn , z), then one will obtain the equations of an 
irreducible manifold Mξ  when one develops: 
 

h(u, h, u1 ξ1 + … + un ξn) 
 
in powers of ui and sets all of the coefficients of these products of powers to zero.  One 
will obtain the finitely many values ηd+1, …, ηn that belong to the given η1, …, ηd from 
the zero locus ζ = u1 ξ1 + … + un ξn of the polynomial h(u, η, z). 
 
 This h(u, η, z) is, in fact, then hµ′  of the results above. 

 
 If the equations (1) are homogeneous then they will represent a cone manifold that 
includes, not only any point (η1, …, ηn) that is different from the origin O, but also all of 
the points (λη1, …, ληd) of a line through O.  The irreducible components of the 
manifold (1) will also be cone manifolds.  If one now interprets the lines through the 
origin as points of the projective space Sn – 1 then each d-dimensional cone manifold with 
d > 0 will yield a (d – 1)-dimensional manifold in Sn – 1 .  Nothing will change in the 
formulas of this section, only their interpretation, and the dimension numbers will be 
lowered by 1. 
 The developments of this section obviously yield new proofs for the possibility of 
decomposing manifolds into irreducible ones, the existence of general points of 
irreducible manifolds, and the unique determination of manifolds by one of their general 
points.  We ultimately prove: 
 
 Theorem 5.  An irreducible d-dimensional manifold M will remain purely d-
dimensional under an arbitrary extension of the ground field K.  A finite algebraic 
extension of K will suffice for the decomposition of M into absolutely irreducible 
manifolds, i.e., into ones that remain irreducible under further extensions of the ground 
field. 

                                                
 (1 ) This means that any of the quantities ξd+1, …, ξn satisfy an equation with constant coefficients in 
K[ξ1, …, ξd] whose highest coefficient is equal to one. 
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 Proof.  From theorem 4, the equations of the manifold read: 
 
(18)   h(u, h, u1 ξ1 + … + un ξn) = 0   identically in u. 
 
The polynomial h(u, ξ, z) is irreducible over K.  Under an extension of K, h(u, ξ, z) 
decomposes into conjugate factors: 
 

h(u, ξ, z) = ( , , )h u zν
ν

ξ∏ . 

 
 The manifold (18) will thus decompose into manifolds Mν with the equations: 
 
(19)   hν(u, η, u1 ξ1 + … + un ξn) = 0  identically in u. 
 
Any Mν will belong to a polynomial hν(u, ξ1, …, ξd, z) in the same way that the original 
M belonged to h.  Any Mν will thus be an irreducible d-dimensional manifold. 
 From § 12, a finite algebraic extension of K will suffice in order to decompose the 
polynomial h(u, ξ, z) completely into absolutely irreducible factors that do not 
decompose any more under further field extensions.  The associated manifolds Mν will 
then be also absolutely irreducible, from what was said above. 
 The absolutely irreducible factors hν(u, ξ, z) of h(u, ξ, z) will be conjugate relative to 
K.  Hence, the associated absolutely irreducible manifolds Mν will be conjugate over K. 
 
 

Appendix to Chapter Four 
 

Algebraic manifolds as topological structures 
 

 From the standpoint of topology, the complex projective space Sn is not an n-
dimensional manifold, but a 2n-dimensional one, since its points in the neighborhood of a 
fixed point will depend upon n complex, hence, 2n real parameters.  Likewise, as we will 
see, any d-dimensional algebraic manifold will be 2d-dimensional in the eyes of 
topology. 
 The topology of algebraic manifolds is being thoroughly examined in the present era, 
especially by LEFSCHETZ.  In this introduction, we can treat only the most general 
principles (1).  We confine ourselves to the essentials of the proof that d-dimensional 
algebraic manifolds are 2d-dimensional complexes, in the sense of topology, i.e., that 
they can be decomposed into finitely many curvilinear 2d-dimensional simplexes. 
 Before we go on to the multi-dimensional case, we would like to treat the case of an 
algebraic curve in the complex projective plane.  We would like to show that such a 
curve can be decomposed into finitely-many curvilinear triangles (viz., topological 
images of real rectilinear triangles), any two of which will have either one side or one 

                                                
 (1) For far-reaching inverstigations, see S. LEFSCHETZ: l’Analysis situs et la géométrie algébrique, 
and B. L. VAN DER WAERDEN: “Topologische Begründung der abzählenden Geometrie,” Math. Ann. 
102 (1929), pp. 337, and O. ZARISKI: Algebraic Surfaces.  Ergebn. Math. v. 3, 1935, issue 5. 
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vertex in common.  Thus, we must assume that the elements of function theory are 
known. 
 Let the equation for the curve be regular in η2 : 
 
(1)    f(η0 , η1 , η2) = 1

2 0 1 2 0 1( , ) ( , )n n
na aη η η η η η−+ + +⋯ . 

 
Any ratio η0 : η1 is associated with infinitely many values of η2 .  The ratios η0 : η1 can be 
interpreted as points on a GAUSSIAN number sphere.  As we know, there are then 
finitely many critical points on the number sphere, which are found by setting the 
discriminant of equation (1).  We now subdivide the number sphere into curvilinear 
triangles, and indeed in such a way that the critical points thus appear as vertices and the 
points η0 = 0 and η1 = 0 do not lie in the same triangle.  If, in such a triangle, one has, 
say, η0  ≠ 0 – i.e., the point η0 = 0 lies outside the triangle – then one will normalize the 
coordinates so that η0 = 1.  The n roots ( )

2
νη of equation (1) are regular analytical 

functions of η1 in the neighborhood of each point of the triangle.  Since the triangle is 
simply connected, one can assume that these n functional elements will be single-valued 
over the entire triangle: there will thus be n single-valued analytic functions (1)

1η ,…, ( )
2
nη  

in the entire triangle.  (1)
1η ,…, ( )

2
nη  will be then regular and analytic on the sides of the 

triangle.  The regular character can break down only at the critical vertices: thus, the 
functions will remain continuous there. 
 If one now selects any of these analytic functions( )

2
νη on a triangle ∆ then one can 

map the points (η0, η1, 
( )
2
νη ) of the complex curve to the points (η0, η1) of the triangle ∆ 

in a one-to-one and continuous way.  They will thus define a curvilinear triangle ∆(ν) out 
of complex curves.  Any triangle ∆ will be associated with n such triangles ∆(ν), and all of 
these triangles will collectively cover the entire curve, since equation (1) can have no 
other solutions than the ( )

2
νη .  If two triangles ∆ and ∆′ abut on the sphere then any 

function ( )
2
νη  on one of the triangles will agree with one of the functions ( )

2
νη  on the other 

triangle on the common side; i.e., the triangles ∆(ν) and ∆′(ν) will have a common side.  In 
all of the other cases, two triangles on the complex curve will have at most common 
vertices, and by a further subdivision of the triangle, one can arrange that any two of 
them will have at most one common vertex.  With that, we have found the desired 
triangulation of the complex curve. 
 It is clear from the construction that any side will lie on precisely two triangles.  If we 
now consider all triangles that have one vertex common E, along with all of their sides 
that go through E, then one can go from any such triangle to a neighboring triangle over 
such a side, etc., until one comes back to the initial triangle.  In this way, the triangles 
that border on E will define one or more “wreaths.”  If ( )

1
ν∆ , ( )

2
ν ′∆ , …, ( )

h
ν ′′∆  is one such 

wreath then it can clearly be the case that the series of associated triangles ∆1, ∆2, … on 
the sphere will already be closed.  Thus, whereas the wreath ( )

1
ν∆ , ( )

2
ν ′∆ , … will be 

completed once, the corresponding wreath ∆1, ∆2, … on the sphere will be completed 
perhaps k times on many occasions. 
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 One sees that this k-fold completion of the wreath ∆1, ∆2, … on the sphere tallies 
completely with the k-fold circumscribing of a critical point, through which, we defined 
the cycles or branches of the curve in § 14.  Thus, each branch of a critical locus will 
correspond to a wreath of triangles around a point E on the complex curve. 
 The triangles ∆(ν) will define a topological “surface” that possesses singular points 
wherever one vertex carries several wreaths.  If one resolves each such point into several 
points that each carry one wreath of triangles then one will obtain a non-singular 
topological surface that one calls the Riemann surface of the curve.  It now follows from 
the previous statements that the points of the RIEMANN surface will be in one-to-one 
correspondence with the branches of the curve. 
 Here, we shall go no further into the theory of RIEMANN surfaces, but only refer to 
the booklet of H. WEYL, Die Idee der RIEMANNschen Fläche, Berlin, 1923. 
 In order to go on to the n-dimensional case, we next prove an algebraic: 
 
 Lemma.  If M (≠ Sn) is an irreducible algebraic manifold in complex Sn , and one 
insures, by a linear coordinate transformation, that one of the equations F(η) = 0 on M is 
regular in ηn then M will possess a projection M′ onto the subspace Sn – 1 with the 
equation ηn = 0, in such a way that each point η′ (η0, …, ηn − 1, 0) of M′  will correspond 
to at least one point η(η0, …, ηn − 1, ηn) of M.  M′ is again an algebraic manifold.  If one 
selects a particular proper submanifold that belongs to N′ or M′ then for a given η′  the 
coordinates ηn of the associated point η of M will be found by a solving an algebraic 
equation e(η′,ηn) = 0 that is rational in η′ and integral in ηn , and which will have 
nothing but distinct roots for all η′  on M′  – N′. 
 
 Proof.  The equations of the projection M′  are obtained by eliminating ηn from the 
equations of M.  The irreducibility of M′ follows from the first irreducibility criterion (§ 
28); if it is true that when a product f((η0, …, ηn − 1) g(η0, …, ηn − 1) is zero for all points 
of M′  then it will also be zero for all points of M, then it will be true that if a factor is 
zero on M then it will also be zero on M′.  (In the case of d = n – 1, M′  fills all of Sn – 1.) 
 A general point ξ′ of M′ corresponds to a finite number of points ξ of M.  The 
coordinates ξn of this point are solutions of an algebraic equation that one finds in the 
following way: One substitutes the coordinates ξ0, …, ξn − 1 for the η0, …, ηn − 1, resp., 
and an indeterminate z for ηn in the equations fν = 0 for M, and finds the greatest common 
divisor of d(ξ, z) of the polynomial fν(ξ, z) thus obtained.  One will then have: 
 

(1)     
( , ) ( , ) ( , ),

( , ) ( , ) ( , ),

f z g z e z

d z h z f z
ν ν

ν ν

ξ ξ ξ
ξ ξ ξ

=
 = ∑

 

 
in which d, g, and hν are rational in ξ0, …, ξn − 1 and integral in z.  It follows from (1) that 
the intersection of the zero loci ξν of the polynomials fν(ξ, z) will be precisely the zero 
locus of d(ξ, z). 
 We now rid d(ξ, z) of multiple factors by taking the greatest common divisor of d(ξ, 
z) and the derivative d′(ξ, z) and dividing d(ξ, z) by this greatest common divisor.  The 
resulting polynomial, which can be assumed to be integral in ξ0, …, ξn − 1, will be called 
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e(ξ, z); its degree will be h.  e(ξ, z) will be then a divisor of d(ξ, z), or a power of e(ξ, z) 
will be divisible by d(ξ, z).  Thus, it will follow from (1) that: 
 

(2)     
( , ) ( , ) ( , ),

( , ) ( , ) ( , ).

f z a z e z

e z b z f z
ν ν

ρ
ν ν

ξ ξ ξ
ξ ξ ξ

=
 = ∑

 

 
 One infers from (2) that the intersection of the zero loci ξν of fν(ξ, z) is precisely the 
zero locus of e(ξ, z).  This will remain true for any specialization of ξ, as long as the 
denominators in gν(ξ, z) and hν(ξ, z) are not zero. 
 Now, let p(ξ) be the product of these denominators, multiplied by the discriminant of 
e(ξ, z) and the coefficient of the highest power of z in e(ξ, z).  Then, by a specialization ξ0 
→ η0, …, ξn − 1 → ηn − 1 the polynomial e(x, z) will always have h distinct roots, and 
indeed precisely the same roots as all of the fν(ξ, z), as long as p(η) remains ≠ 0.  Instead 
of e(ξ, z) and p(η) we can also write e(η′, z) and p(η′), since neither of them depend upon 
ηn . 
 The equation p(η′) = 0, together with the equations of M′, will define a proper 
submanifold N′ of M′.  Thus, if η′ is a point of M′ − N′  then one will have p(η′) ≠ 0, and 
the associated points η on M will be exactly the solutions of the equation e(η′,ηn) = 0.  
With that, the lemma is proved. 
 
 If a system of several manifolds M of the highest dimension r is given then one can 
apply the lemma to all of the r-dimensional irreducible components Mi of this manifold.  
The associated projections iM ′  will all have dimension r, and therefore the iN′  will have 

dimensions < r.  The intersections Dih of any two irreducible manifolds Mi and Mh will 
likewise all have projections ihD′  of dimensions < r.  If one now selects from the points of 

iN′ , the point η′, which belongs to one of the ihD′ , then the roots of the equation ei(η′,ηn) 

= 0 will not only be distinct from each other, but also from the roots of the remaining 
equations eh(η′,ηn) = 0; usually, a point η must belong to Mi as well as Mh , hence, to Dih, 
and therefore η′ must belong to ihD′ . 

 The union of all the ihD′  and iN′  will be called V′ .  It then follows that: 

 
 If one selects from the manifold M those points whose projections η′ belong to a 
manifold V′ of dimension < r then all of the remaining points will be found to be 
solutions of equations ei(η′,ηn) = 0 with nothing but distinct roots, while η′(η0, …, ηn − 1, 
0) will range over a manifold iM ′  in Sn – 1 . 

 
 Meanwhile, the points η of the manifold M whose projections η′ belong to V′  define 
a submanifold Q of dimension < r.  If one applies the same theorem to the manifold Q 
once again and repeats the process until one arrives at a manifold of dimension zero then 
one will ultimately obtain a complete decomposition of M into pieces of varying 
dimensions such that any piece is determined by an equation e(η′,ηn) = 0 in the 
aforementioned way, where η′ meanwhile ranges over a piece of the projection M′.  The 
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pieces of the projection are, at the same time, differences U′ − V′, where U′ and V′ are 
algebraic manifolds. 
 We now go from complex projective to real Euclidian spaces. 
 A simplex Xr in An will be defined thus: An X0 is a point, an X1 is a line segment, an 
X2 is a triangle.  An Xr + 1 consists of all of the points of an Xr that are connected by line 
segments to a fixed point outside of the linear space that Xr belongs to.  An Xr has r + 1 
vertices, and any s + 1 of them define a side Xs of Xr when s ≤ r.  A topological image of 
a simplex is called a curvilinear simplex, and will likewise be denoted by Xr .  A union of 
finitely many (rectilinear or curvilinear) simplexes Xr, any two of which have either 
nothing in common or an entire side (along with its sides), is called a (rectilinear or 
curvilinear) r-dimensional polyhedron.  A triangulation of a region of space is a 
subdivision of this region into curvilinear simplexes, any two of which have either 
nothing in common or exactly one side in common. 
 
 Theorem 1.  Let there be given finitely many algebraic manifolds M and a ball K: 
 

2 2 2
1 2 nη η η+ + +⋯ ≤ a2 

 
in real An .  There is then a triangulation of the ball by which the manifolds M, as long as 
they lie in the ball, consist entirely of sides of the triangulation. 
 
 Proof.  1.  For n = 1, the ball is a line segment, and any manifold M (≠ A1) consists of 
finitely many points.  These points decompose the line segment into sub-segments.  Thus, 
the desired triangulation has already been found. 
 
 2.  The theorem may thus be assumed to be true for the space An – 1 .  We begin with 
the sphere for the manifolds M.  By an orthogonal transformation, one can arrange that 
each manifold M possesses an equation F(η1, …, ηn) = 0 that is regular in ηn .On the 
basis of the lemma, we then define the projections M′ of the M onto the subspace An – 1 
and decompose them, as above, into pieces U′  – V′ .  We apply the induction hypothesis 
to the algebraic manifolds U′  and V′  and to the ball 2 2 2

1 2 nη η η+ + +⋯  ≤  a2.  There is a 

triangulation of this ball by which each of the U′  and V′  (as long as they lie in the ball) 
will consist of simplexes of the triangulation.  Any point set U′  – V′  will thus be 
obtained when one discards the simplexes that comprise V′  from the simplexes that 
comprise U′.  What remain will be the interior points of certain simplexes (of varying 
dimensions) of the triangulation. 
 The logic of the following proof can be sketched out in the following way: The points 
η of the ball whose projections η′  belong to a simplex rX ′  of the triangulation define a 

cylindrical point set.  They will be subdivided into “blocks” by means of the various 
manifolds M that they consist of, which prove to be curvilinear polyhedra.  If one 
decomposes them into curvilinear simplexes then one will obtain the desired triangulation 
of the entire ball. 
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 3.  In order to carry out this manner of proof, we consider the interior points η′ of a 
simplex rX ′  that belongs completely to U′  – V′ .  Certain points η of the manifold M lie 

over η′, whose coordinates ηn will be found by solving the equation e(η′, ηn) = 0.  This 
equation will have the same degree h for any η′ in rX ′ , as well as the same number of 

distinct (complex) roots.  However, the number of real roots of the equation must also be 
constant.  Thus, by a continuous change of the points η′ one can go from a pair of real 
roots only to a complex conjugate pair if the pair coincides from time to time. 
 Therefore, let the real roots of the equation e(η′, ηn) = 0 be ordered by increasing 
magnitude: 
(3)      (1) (2) ( )l

n n nη η η< < <⋯ . 

 
 From the theorem of the continuity of the roots of algebraic equations, the (1)

nη , 

…, ( )l
nη  are continuous functions of η′  inside of rX ′ . 

 We now examine the behavior of the functions (1)
nη , …, ( )l

nη  in the vicinity of the 

boundary of the simplex.  If η′  is close to a boundary point ζ′  of rX ′  then the (1)
nη , 

…, ( )l
nη  will be, in any case, restricted as roots of the equation F(η1, …, ηn) = 0.  Now, if 

( )k
nη  were not close to a boundary value ζn then one could choose two convergent 

sequences with different limiting values: 
 
     η′ (ν) → ζ′,  ( ) ( )k

nη ν → ζn , 

     ( )η ν′ɶ → ζ′,  ( ) ( )k
nη νɶ → nζɶ ≠ ζn . 

 
 Now, one can connect η′ (ν) to ( )η ν′ɶ  by a line segment in the neighborhood of the 

limit point ζ′.  If one then moves η′ on this line segment S(ν) then the associated ( )k
nη  

will vary continuously from ( ) ( )k
nη ν  to ( ) ( )k

nη νɶ .  By a suitable choice of points ( )η ν
∗
′  on 

this line segment S(ν), one can obtain a third sequence ( )nη ν
∗

 that converges to an 

intermediate value between ζn and nζɶ .  Hence, there will be finitely-many points ζ
∗

 with 

the same projection ζ′  that all lie on the manifold M.  However, this does not agree with 
the equation F(ζ1, …, ζn) = 0, which is regular in ζn , and which all points of M must 
satisfy. 
 
 Therefore, the points η(1), …, η(l) are continuous functions of η′  in the interior and 
on the boundary of rX ′ . 

 
 Remark.  When the functions (1)

nη , …, ( )l
nη  take on the boundary values (1)

nζɶ , …, ( )l
nζɶ  

on one side sX ′  of rX ′  (s < r), the points (1)ζɶ , …, ( )lζɶ  thus defined will again belong to 

the manifold M.  The point ζ of the manifold M that lies over the point ζ′ of sX ′  will, 
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however, be given by continuous functions (1)
nζɶ , …, ( )m

nζɶ  on sX ′  (exactly as was the case 

for rX ′ ).  Thus, the boundary values (1)
nζɶ , …, ( )l

nζɶ  are found among the continuous 

functions (1)
nζ , …, ( )m

nζ , and will share their properties.  It follows from this, e.g., that any 

two functions ( )
n

µζɶ  and ( )
n
νζ  will either agree in all of sX ′  or will be different in the entire 

interior of sX ′ . 

 
 4.  Since the hypersurface of the sphere K appears among the manifolds M, both of 
the points of the spherical hypersurface that lie over η′ must appear among the points η(1), 
…, η(l), and indeed, due to the ordering (3), the first and last points must be η(1) and η(l). 
 We now subdivide the ball into “blocks.”  A block consists of all points x that satisfy 
one of the following conditions: 
 a) η′  is in rX ′ , ηn = ( )

n
νη ; 

 b) η′  is in rX ′ , ( )
n
νη  < ηn < ( 1)

n
νη + . 

Naturally, the blocks b) no longer appear on the boundary of the projection of the ball, 
where η(l) = η(1). 
 It is clear that any point x of the ball will belong to one and only one block.  
Furthermore, it is clear that the closed hull of a block will again consists of similarly-
defined blocks.  In Fig. 1, the subdivision of the plane is indicated in the case where the 
only manifold M is a conic section.  In Fig. 2, (left) the form of a block of type b) is 
indicated in the case of three-dimensional space.  The upper and lower surfaces of this 
block (the upper one is shaded) are blocks of type a). 

 

M 

 
 

 
  Fig. 1.            Fig. 2   
 
 5.  We now have to show that any block, along with its boundary, can be mapped 
topologically to a rectilinear polyhedron; hence, it is itself a curvilinear polyhedron. 
 This is very easy for the blocks of type a): The projection η → η′ maps the block a), 
along with its boundary, topologically onto the curved simplex rX ′ , along with its 

boundary; hence, the block is itself a curved simplex. 
 We map a block of type b) in two steps: In the first step, the coordinates ηn of the 
point η of the block will be left unchanged, while η1, …, ηn – 1 will be transformed such 
that the simplex rX ′  over which the block lies will be mapped onto a rectilinear simplex 

Xr .  After the map, we will thus have a block whose points will be defined by: 
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η′ in Xr , 
( )
n
νη < ηr < ( 1)

n
νη + , 

 
where Xr will be a rectilinear simplex, while ( )

n
νη  and ( 1)

n
νη +  will be continuous functions 

of η′ in the closed simplex Xr .  As we have seen, we will have ( )
n
νη  < ( 1)

n
νη +  in the interior 

of Xr, while we will have ( )
n
νη ≤ ( 1)

n
νη +  on the boundary, and indeed, in each boundary 

simplex Xs of Xr, one will have either ( )
n
νη = ( 1)

n
νη +  without exception or ( )

n
νη < 

( 1)
n
νη + everywhere in the interior of Xs . 

 The simplex Xr will now be subdivided “barycentrically.”  The barycentric 
subdivision of a simplex is defined recursively: An X1 is subdivided into two line 
segments by a division point J1, and when all of the Xr – 1 on the boundary of Xr have 
already been barycentrically subdivided then each simplex of this subdivision that has an 
interior point Jr of Xr will be linked to new simplexes, which will then define the 
subdivision of Xr .  The vertices of such a simplex will thus be J0, J1, …, Jr , where Jk is 
an interior point of Xr , while Xk− 1 is always a side of Xk (k = 1, 2, …, r). 
 We would now like to approximate the continuous functions ( )

n
νη  and ( 1)

n
νη +  by 

piecewise-linear functions.  We remark that a linear function of the coordinates in a 
rectilinear simplex is established completely whenever the values of the function are 
known at the vertices of the simplex.  We accordingly define two linear functions ( )

n
νη  

and ( 1)
n

νη +   on the simplex (J0 J1 …, Jr), whose values at the vertices Jk (k = 0, …, r) agree 

with the given values ( )
n
νη (Jk) and ( 1)

n
νη + (Jk). 

 If two different simplexes (J0 J1 …, Jr) have a common side then the functions ( )
n
νη  

that are defined on them will agree on the common side.  Hence, the functions ( )
n

νη  that 

are defined on the sub-simplexes will merge together into a continuous, piecewise-linear 
function ( )

n
νη  that is defined on all of Xr, together with its boundary, and the same will be 

true for ( 1)
n
νη + . 

 If a linear function is greater than another one at all or some of the vertices of a 
simplex, but equal at the remaining vertices, then it will also be greater in the interior.  
Thus, one will have: 

( )
n

νη < ( 1)
n
νη +  

in the interior of Xr . 
 However, one will correspondingly also have on each side Xs of Xr: If one has ( )

n
νη  < 

( 1)
n
νη +  for the interior points of one such side then the same will be true for ( )

n
νη  and 

( 1)
n

νη + ; however, if ( )
n
νη  = ( 1)

n
νη +  on Xs then one will also have ( )

n
νη  =  ( 1)

n
νη +  there. 

 Now, one can map the block that is defined by: 
 

η′ in Xr, 
( )
n
νη  < ηn < ( 1)

n
νη + , 

 
along with its boundary, topologically onto the block that is bounded by linear spaces: 
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η′ in Xs, 
( )
n

νη  < nη  < ( 1)
n

νη + , 

 
along with its boundary, in such a way that one leaves the coordinates η1, …, ηn – 1 of a 
point η unchanged, but replaces the coordinates ηn with nη , where ηn and nη  are coupled 

to each other by the formulas: 
     ηn  = ( ) ( 1) ( )( )n n n

ν ν νη λ η η++ −    (0 ≤ λ < 1), 

     nη  = ( ) ( 1) ( )( )n n n
ν ν νη λ η η++ − . 

 
 One easily proves that the map thus defined is one-to-one and continuous in both 
directions.  However, the image block may be decomposed into rectilinear simplexes 
with no further constructions (e.g., barycentric subdivision).  Hence, any block b) can be 
topologically mapped onto a rectilinear polyhedron.  This ends the proof. 
 
 Remark.  If one goes through the proof of part 5 again then one will see that the map 
of the curvilinear simplexes of the triangulation onto rectilinear ones can be arranged in 
such a way that the coordinates of the point of a curvilinear simplex are continuous, 
differentiable functions of the coordinates in the interior of the rectilinear image simplex.  
One must naturally include the continuous differentiability of the mapping functions in 
the induction hypothesis, and assume that the map of the block b) in the first step is 
differentiable.  Since the algebraic functions ( )

n
νη  are also differentiable outside of their 

critical loci the second step of the map will also lead to only differentiable functions. 
 The next question that we have to examine is the transition from complex algebraic 
manifolds to real ones.  Here, we employ a map of the complex projective space onto a 
real algebraic manifold that is given by the following formulas: 
 

(4)    

,

( ),

( ).

j j jj

j k jk jk

k j jk jk

i j k

i j k

ζ ζ σ
ζ ζ σ τ
ζ ζ σ τ

 =
 = + <
 = − <

 

 
Thus, ζ0, …, ζn are the homogeneous coordinates in complex Sn, while the σjk (0 ≤  j ≤ k 
≤ n) and τjk (0 ≤  j < k ≤ n) are homogeneous coordinates in a real SN .  The jζ  are 

complex conjugates of the ζj .  One immediately sees from equations (4) that the σjk and 
τjk have to be real.  If one sets σkj = σjk , τkj = − τjk , τjj = 0 then one can write (4) more 
concisely as: 
(5)     ζj ζk = σjk + τjk  (j, k = 0, 1, …, n). 
 
Similarly, as in § 4, the σjk and τjk will be coupled to each other by the relations: 
 
(6)    (σjk + iτjk) (σhl + iτhl) − (σjl + iτjl) (σhk + iτhk) = 0 . 
 
The relations (6) are necessary and sufficient for a real point of Sn to be the image point 
of a point ζ in complex Sn .  Equations (6) define an algebraic manifold in real SN, viz., 
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the SEGRE manifold S.  As in § 4, one sees that the map of the space Sn onto the 

manifold S is one-to-one.  Naturally, it is also continuous, and therefore topological. 

 The SEGRE manifold S has no point in common with the hyperplane: 

 
(7)     ∑ σjj = σ00 + σ11 + … + σnn = 0 , 
 
so j jζ ζ∑  is nowhere zero when not all ζj = 0.  Moreover, one has: 

 

| σjk + iτjk | = | j kζ ζ  | = j j k kζ ζ ζ ζ⋅ = jj kkσ σ⋅  ≤ σjj + σkk ≤ ∑σjj  

 
everywhere  on S. 

 If one thus regards the hyperplane (7) as an ideal hyperplane and introduces 
inhomogeneous coordinates by the normalization ∑σjj = 1 then all of the coordinates σjk 
and τjk under consideration will be ≤ 1.  Thus, the manifold S lies in a restricted subset of 

Euclidian space (e.g., in the ball 2 2
jk jkσ τ+∑ ∑  ≤  n + 1). 

 An algebraic manifold in Sn with the equations: 
 
(8)      fν(ζ) = 0 
 
will correspond to an image manifold in S whose equations will be found when one 

multiplies equations (8) by their complex conjugates: 
 

( ) ( )f fν νζ ζ = 0 

 
and then substitutes σjk + iτjk for the products j kζ ζ . 

 Now, if finitely-many algebraic manifolds M in Sn are given then they will likewise 
correspond to finitely-many real submanifolds of S.  From theorem 1, there will be a 

triangulation of S for which all of these submanifolds consist of simplexes of the 

triangulation.  We have proved: 
 
 Theorem 2.  There is a triangulation of complex Sn for which finitely many given 
manifolds M in Sn consist of nothing but simplexes of the triangulation. 
 
 Up to now, we have not worried about the dimensions of the simplexes of the 
triangulation.  It is, however, clear from the proof of theorem 1 that only simplexes of 
dimension at most d will be appear in the triangulation of a d-dimensional manifold M in 
real Sn .  The example of a plane, cubic curve with one isolated point shows that 
simplexes of dimension < d can also enter into the triangulation, and indeed not only as 
sides of simplexes Xd . 
 One will double the dimension of an irreducible manifold M by going from complex 
Sn to the SEGRE manifold S, since the real and imaginary coordinates of the points of M 



134 IV.  Algebraic manifolds 

will then take the form of independent variables.  Hence, the simplexes of the 
triangulation of M will have dimension at most 2d.  However, one can prove even more, 
namely: 
 
 Theorem 3.  Only 2d-dimensional simplexes X2d and their sides will appear in the 
triangulation of a d-dimensional algebraic manifold M in complex Sn . 
 
 Proof.  As in § 31, we choose the coordinate system in such a way that the 
coordinates ξd + 1, …, ξn of a general point of M are complete algebraic functions of ξ0 , 
…, ξd .  Then, from theorem 4 (§ 31), each system of values of the coordinates ξ0 , …, ξd 

will be associated with certain points 
µ
ζ  of M (m = 1, …, k), whose coordinates 0

µ
ζ , 

…, n

µ
ζ will be found by factoring the polynomials: 

 

(9)     h(u0, …, un, ζ0, …, ζd, z) =
1

( )
k

z µζ−∏ , 

ζµ = 0 0 1 1 n nu u u
µ µ µ

ζ ζ ζ+ + +⋯ . 

 
 We have seen that the coordinates of a point of a curvilinear simplex Xr in the 
triangulation of M are continuous, differentiable functions of r real parameters.  If we 
now project Xr onto a subspace of Sd by replacing the coordinates ζd + 1, …, ζn with zero 
then the projection of Xr will be a point set whose points will again depend continuously 
and differentiably upon r real parameters.  Such a point set is, however, nowhere dense in 
Sd when r < 2d.  If one carries out the projection for all simplexes Xr (r = 0, 1, …, 2d + 1) 
of the triangulation then one will obtain a nowhere-dense point set W in Sd for the union 
of all of the projections.  Any point ζ′ of W will thus be the limit of a sequence of points 
ζ′(ν) that do not belong to W. 
 As we remarked above, the projection of ζ′  is associated with a system of k points 
1

ζ , …,
k

ζ  of M, and likewise any ζ′ (ν) is associated with a system of k points 
1

( )ζ ν , …, 

( )
k

ζ ν  of M that will each be determined by the factorization (9).  If one normalizes the 

coordinates by way of ζ0 = ζ0(ν) = 1 then all of the coordinates ζi(ν) will be restricted 
simultaneously.  Thus, one can select a convergent subsequence from the sequence of the 
system of k points.  One will then have: 
 

1

( )ζ ν →
1

η , 
2

( )ζ ν →
2

η , …, ( )
k

ζ ν →
k

η   (n → ∞) 
 
for this subsequence.  Since equation (9) will remain true under passing to the limit, but, 

on the other hand, the factorization of a polynomial is unique, the limit points 
1

η , …,
k

η  of 

any sequence must coincide with 
1

ζ , …,
k

ζ .  However, any of the points 
1

ζ , …,
k

ζ  will be 
limit points of points of M whose projections do not belong to only the point set W. 
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 However, this means: Any point of a simplex Xr (r < 2d) of the triangulation of M is 
the limit point of points of M that do not belong to any Xr with r < 2d, and which can 
therefore only be interior points of simplexes X2d .  It will follow from this that any such 
Xr (r < 2d) will be a side of an X2d of M. 
 One can also obtain the triangulation of the complex manifold M in a manner that will 
be similar to the triangulation of a plane curve that was given at the start of this section 
from a triangulation of the space Sd , when one assumes that any point ζ′ of Sd is the 
projection of k points ζ of M.  One thus has to triangulate Sd in such a way that the 
branched manifold that originates in the zero locus of the discriminant of the polynomial 
(9) will be triangulated along with it.  WIRTINGER and BRAUER (1) have examined 
algebraic functions of two variables in this way. 
 
  
 

                                                
 (1 ) BRAUER, K.: Abh. Math. Inst. Hamburg, v. 5. 



 

CHAPTER FIVE 
 

Algebraic correspondences and their applications 
 

 Algebraic correspondences are almost as old as algebraic geometry itself is 
nowadays.  A theorem of CHASLES on the number of fixed points of a correspondence 
between points of a straight line (cf., § 32) was generalized by BRILL (1) to 
correspondences between the points of algebraic curves, carried over by SCHUBERT (2), 
with great success, to systems of ∞1 point-pairs in space, and further refined and applied 
to many things by ZEUTHEN (3). 
 However, it was the Italian geometers, namely, SEVERI and ENRIQUES, who first 
recognized the general significance of the notion of a correspondence as one of the 
foundations of algebraic geometry.  In any case where geometric structures were related 
to each other in such a way that this relation could be expressed by algebraic equations, 
the notion of a correspondence found an application.  Here, we shall mainly discuss this 
general and fundamental interpretation of the notion of correspondence.  For the 
aforementioned investigations of numbers of fixed points of correspondences, the reader 
must refer to the literature cited (4). 
 From now on, x, y, … will no longer mean indeterminates exclusively, but also 
complex numbers or algebraic function, as the situation dictates. 
 
 

§ 32.  Algebraic correspondences.  CHASLES’s correspondence principle 
 

 Let Sm and Sn be two projective spaces, which may also be the same one.  An 
algebraic manifold of point-pairs (x, y), in which x belongs to Sm and y belongs to Sn, is 
called an algebraic correspondence K.  The correspondence will be given by a system of 

homogeneous equations (homogeneous in x, as well as in y): 
 
(1)     fx(x0 , …, xm, y0 , …, yn) = 0. 
 
 We will say that the points x in the correspondence correspond to or are associated 
with the points y; an associated point y will also be called an image point of x under the 
correspondence, while conversely x will be called a source point of y. 
 Examples of correspondences are correlations (especially polar systems and null 
systems), which will be given by a bilinear equation: 
 

∑ ajk xj yk = 0, 
 
and finally, the projections are further given by the projective transformations: 

                                                
 (1 ) BRILL, A. v.; Math. Ann. Bd. 6 (1873), pp. 33-65 and Bd. 7 (1874), pp. 607-622. 
 (2 ) SCHUBERT, H.; Kalkül der abzählenden Geometrie.  Leipzig, 1879. 
 (3 ) ZEUTHEN, H. G.; Lehrbuch der abzählenden Methoden der Geometrie.  Leipzig, 1914. 
 (4 ) On this, confer S. LEFSCHETZ; Trans. Amer. Math. Soc., 28 (1928), 1-49, and various notes of F. 
Severi in Rendiconti Accad., Lincei 1936 and 1937. 
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yj = ∑ ajk xk  or yi(∑ ajk xk) − yj(∑ aik xk) = 0 
 
(y is the projection of x onto a subspace Sn of the space Sm, while x belongs to an arbitrary 
manifold M). 
 The notion of correspondence can thus be generalized by saying that other 
geometrical structures can be chosen – e.g., point-pairs, linear spaces, hypersurfaces – in 
place of the points x and y, as long as these structures are given by one or more sequences 
of homogeneous coordinates.  Equations (1) must then be homogeneous in each 
individual sequence of coordinates.  All of the following considerations will be valid with 
no further restrictions for this general case, which is extremely important for the 
applications.  For the formulation of the theorems themselves, we will, however, restrict 
ourselves to the case where x and y are points; we thus do not speak of the “structure” x 
and the “structure” y, but simply of the points x and y. 
 If one eliminates y from equations (1) then one will obtain a homogeneous resultant 
system: 
(2)     gµ(x0 , …, xm) = 0 
 
with the property that for any solution x of (2) at least one point pair (x, y) will belong to 
the correspondence.  Likewise, the elimination of x will yield a homogeneous system of 
equations: 
(3)     hν(y0 , …, yn) = 0. 
 
Equations (2) define an algebraic manifold M in Sm : viz., the source manifold of the 
correspondence K; likewise, (3) defines a manifold N in Sn: viz., the image manifold of 

the correspondence.  One also speaks of a correspondence K between M and N.  If (x, y) 

is a point-pair of the correspondence then x will belong to M, and y will belong to N, and 
each point x of M (or y of N) will correspond to at least one point y of N (x of M, resp.). 
 If one fixes the point x then equations (1) will define an algebraic manifold in the 
space Sn, and indeed a submanifold Nx of N.  Nx is totality of all points x that correspond 
to the point y.  Conversely, each point y of N will correspond to an algebraic manifold My 
of points x of M. 
 If M and N are irreducible (the correspondence K can be reducible or irreducible) and 

each general point of M corresponds to β points of N, while conversely every general 
point y of N corresponds to α points of M then one will speak of an (α, β) correspondence 
between M and N.  A particular point of M can therefore correspond to finitely or 
infinitely many points of N; later, we shall have to deal with the transition from general 
points to particular points more extensively. 
 If the manifold K is irreducible then one will call it an irreducible correspondence.  In 

that case, M and N will also be irreducible, so when a product of two forms F(x) ⋅ G(x) 
becomes zero at all points of M then it will be zero for all point-pairs (x, y) of the 
correspondence K ; hence, the factor F or G will become zero for all point-pairs (x, y) of 

K, and thus, for all points x of M. 

 As the simplest, but most important, case we first consider an (α, β)-correspondence 
between the points x and y of a line S1 .  The correspondence is purely one-dimensional; it 
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is then a hypersurface in the doubly projective space S1,1 and (like any hypersurface) will 
be given by a single equation: 
(4)      f(x, y) = 0, 
 
which we will assume is free of multiple factors.  The equation is homogeneous in both 
of the coordinates x0 , x1 of the point x, and likewise in those y0 , y1 of the point y.  If α is 
its degree in the x and β is its degree in the y then each general point x will obviously 
correspond to β different points y, and a general point y will likewise correspond to α 
different points x. 
 The fixed points of the correspondence will be found when one sets x = y in (4).  That 
will yield an equation of degree α + β in y that will either be fulfilled identically or will 
possess precisely α + β roots (each counted with its multiplicity).  The correspondence 
(4) will thus either include the identity as a component or have precisely α + β fixed 
points that one obtains from the equation f(x, x) = 0, when one counts the fixed points 
with their multiplicities.  This is CHASLES’s correspondence principle. 
 In order to give a simple application of CHASLES’s correspondence principle, we 
consider two conic sections K, K′ that do not touch.  From a point P0 of K, we draw a 
tangent to K that intersects K′ a second time at P1 .  
A second tangent to K′ goes through P1 that 
intersects K a second time at P2 .  One thus 
proceeds to construct the chain P0, P1, P2, …, Pn .  
We now assert: If the chain once concludes with 
Pn = P0 in a non-trivial way then it will always 
conclude this way, no matter how one chooses P0 
on K.  We then say that the sequence P0, P1, …, Pn 
concludes in a trivial way when either (for even n) 
the middle term 1

2n
P  is an intersection point of K 

and K′, or when (for odd n) both of the middle 
terms 1

2
nP− , 1

2
nP+  coincide, and their connecting line is a common tangent to both conic 

sections (cf., the second and third figures).  In both cases, the second half of the chain 
will be equal to the first one in the opposite sequence; hence, Pn = P0 .  This trivial case 
arises (whether n is even or odd) many times, since there are four intersection points and 
four common tangents.  The correspondence between P0 and Pn will therefore be a (2, 2)-

 

P3 

P2 

P1 

P0 = P4 

 

P1 = P3 

P2 

P0 = P4 

P1 = P2 

P0 = P3 
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correspondence that always has four trivial fixed points.  If it had one more fixed point, 
moreover, then, from CHASLES’s correspondence principle, it would contain the 
identity as a component.  One can thus produce a closed chain with Pn = P0 that begins 
with any point P0 .  The same chain, when traversed in the opposite direction, will yield a 
second closed chain with the same starting point P0 . Hence, both chains that begin at P0 
will terminate, no matter how P0 was chosen. 
 
 

§ 33.  Irreducible correspondences.  The principle of constant count. 
 

 An irreducible correspondence (like any irreducible manifold) is determined by its 
general point-pair (ξ, η).  The characteristic property of this general point-pair is that all 
homogeneous algebraic relations F(ξ, η) = 0 that are valid for the general point-pair will 
be valid for all point-pairs (x, y) of the correspondence.  In other words: All point-pairs of 
the correspondence will arise from relation-preserving specializations of the general 
point-pair (ξ, η).  If one wishes to define an irreducible correspondence then one will 
start with a suitable (arbitrarily-defined) general point-pair.  The totality of pairs (x, y) 
that arise from this general point-pair by a relation-preserving specialization will then 
always be an irreducible correspondence. 
 For example, let M be a given irreducible manifold, and let ξ be its general point.  
Now, if ϕ0 , ϕ1 , …, ϕn are forms of equal degree that are not all zero then a second point 
η will be given by means of: 
 
(1)    η0 : η1 : … : ηn = ϕ1(ξ) : ϕ1(ξ) : … : ϕn(ξ) 
 
that will depend upon ξ rationally.  The point-pair (ξ, η) will be the general point-pair of 
an irreducible correspondence whose point-pairs originate from relation-preserving 
specializations of it.  Such a correspondence is called a rational map of M.  – On the 
grounds of the relation-preserving specialization, the relations: 
 

ηi ϕj(ξ) – ηj ϕi(ξ) = 0, 
 
which are equivalent to (1), must also be valid for each particular point-pair of K: 

 
(2)  yi ϕj(x) – yj ϕi(x) = 0. 
 
If not all ϕi(x) = 0 then the behavior of y will be determined uniquely by (2).  However, if 
all ϕi(x) = 0 for a point x of M then formula (2) says nothing more than which point y that 
the point x is associated with.  One must then resort to other methods; e.g., by passing to 
the limit while one approaches the point x of M from both sides and thus watching which 
limit point the image point y will go to.  Due to the continuity of the forms that define the 
correspondence, each pair (x, y) thus obtained will belong to the correspondence; on the 
other hand, it follows from Theorem 3 of the Appendix to Chapter 4 that all pairs (x, y) of 
the correspondence can be obtained in this way. 
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 The dimension q of an irreducible correspondence K is the number of algebraically- 

independent coordinate ratios of the general point-pair (ξ, η).  If – say – ξ0 ≠ 0 and η0 ≠ 0  
then we can assume that ξ0 = η0 = 1; q will then be the number of algebraically 
independent quantities amongst ξ1 , …, ξm , η1, …, ηn .  Now, if a is the number of 

algebraic independents amongst the ξ, relative to the ground field K and b is the number 

of algebraic independents amongst the η, relative to the field K(ξ1 , …, ξm), then one will 

obviously have: 
(3)      q = a + b. 
 
 Likewise, when c is the number of algebraic independents amongst the η and d is the 
number of algebraic independents amongst the ξ by the adjunction of η, one will have: 
 
(4)      q = c + d. 
 
 Geometrically, the numbers a, b, c, d mean the dimensions of the manifolds.  The x 
define a general point of M when each homogeneous relation F(ξ) = 0 that is true for the 
point ξ is also true for all points x of M, and conversely.  Therefore, a is the dimension of 
M, and likewise c is that of N.  It will now be further asserted that the submanifold Nξ of 

N that corresponds to the general point ξ of M is irreducible relative to the field K(ξ1 , 

…, ξm) and has dimension b. 

 Nξ exists for all points y such that the point-pair (ξ, y) belongs to the correspondence; 
i.e., such that any homogeneous algebraic relation that is true for (ξ, η) will also be true 
for (ξ, y).  Under the substitution ξ = 1, these relations will lose their homogeneity in the 
ξ, but will retain it in the η.  One can then regard them as homogeneous relations in the ξ 

with coefficients in the field K(ξ) = K(ξ1 , …, ξm).  Therefore, all homogeneous algebraic 

relations with coefficients in K(ξ) that are true for the point η will also be true for all 

points y of Nξ, and conversely; however, that says that η will be a general point of Nξ .  It 

follows that Nξ will be irreducible with respect to the field K(ξ) and will have dimension 

b.  The manifold Nξ can be decomposed completely by an extension of the field K(ξ), but 

its absolutely irreducible components will all have the same dimension b (cf., § 31, 
Theorem 5). 
 Moreover, the principle of constant count follows from (3) and (4): 
 
 If a general point ξ of an a-dimensional source manifold M corresponds to a b-
dimensional manifold of points in N under a q-dimensional irreducible correspondence 
between M and N, and conversely, a general point η of the c-dimensional image manifold 
N corresponds to a d-dimensional manifold of points in M then one will have: 
 
(5)     q = a + b = c + d. 
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 Thus, one must remark that all general point-pairs (ξ, η) of the correspondence will 
be equivalent to each other; the same will usually be true of the general points of M and 
N.  It is therefore irrelevant whether one starts with a general point x of M and then seeks 
a general associated point of N, or conversely starts with a general point of N; one will 
always find the same numbers a, b, c, d and the same properties of the general point-pairs 
(ξ, η) of the correspondence. 
 In most applications, one employs formula (5) in order to determine the dimension c 
of the image manifold N when a, b, and c are given.  If one thus finds that c = n then one 
can conclude that the image manifold is the entire space Sn . 
 
 Examples and applications.  1.  Let the question be posed of how many parameters a 
third-order plane curve with a cusp will depend upon; in other words, what is the 
dimension of the manifold of cubic curves with cusps? 
 We define a correspondence K between points x and cubic curves y in which we 

associate a point x with all curves y that have a cusp at x.  One can provide a general 
element pair (ξ, η) of this correspondence in the following way: One takes a general 
point ξ and draws the most general line u in the plane through it.  Thus, a cubic curve y 
that has a cusp at ξ with a tangent u must have coefficients that satisfy a system of five 
linearly independent equations (1).  Since ten coefficients appear in the equation of the 
general cubic curve, one of which can be equal to one, the general solution of the system 
of equations will depend upon 9 – 5 = 4 arbitrary parameters.  If one then counts the one 
arbitrary constant upon which the tangent u depends (for a given point ξ) then one will 
obtain five parameters.  If one lets all of these parameters be indeterminates then one will 
obtain a general point-pair (ξ, η), from which, all pairs (x, y) will  arise by parameter 
specialization (hence, by the simplest relation-preserving specialization).  The 
correspondence will therefore be irreducible.  The principle of constant count will yield: 
 

2 + 5 = c + 0; c = 7. 
 
With this, the desired dimension is equal to 7. 
 One may also express the result thus found as: There are ∞7 plane cubic curves with 
cusps.  One can carry out the most diverse determinations of dimension in a precisely 
analogous way (cf., example 3 below, as well as problem 1). 
 

                                                
 (1 ) If one puts the coordinate origin at the point ξ, chooses the line u to be the x1-axis, and poses the 
equation of the cubic curve in inhomogeneous coordinates in the following way: 
 

a0 + a1 x1 + a2 x2 + 2

3 1
a x + a2 x1 x2 + 2

5 2
a x + … = 0 

 
then the conditions for a cusp at ξ with tangent u will read: 
 

a0 = a1 = a2 = a3 = a4 = 0. 
 

If one subsequently transforms the equation of the curve to any other coordinate system then naturally these 
linear equations will also be transformed; however, five linearly-independent equations will remain. 
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 Example 2.  Given a cubic space curve C, prove that a chord or a tangent of the curve 
goes through each point of space.  (In § 11, the proof was carried out by calculation.) 
 A chord goes through two general point of the curve.  One will obtain all chords and 
tangents from this chord (the latter come about when the two points coincide) by a 
relation-preserving specialization.  Thus, the chords, together with the tangents, will 
define an irreducible two-dimensional manifold.  Furthermore, we define a 
correspondence between the chords x and their points y, under which we will associate 
each chord with all of the points y that lie on it; the correspondence will again be 
irreducible.  One sets a = 2 and b = 1 in formula (5).  In order to determine d, we remark 
that at most one chord goes through each point y outside the curve.  Two intersecting 
chords would then determine a plane that had four points in common with the curve, 
which is impossible; therefore, d = 0.  Moreover, it follows from (5) that c = 3; i.e., the 
manifold of points y is the entire space, which was to be proved. 
 
 Example 3.  The subspace Sm of a space Sn will be mapped onto points y of an image 
space by means of its PLÜCKER coordinates.  We would like to show that the image 
points define an irreducible manifold of dimension (m+1)(n−m).  In other words, there 
are ∞(m+1)(n−m) subspaces Sm in Sn . 
 
 Proof.  (m + 1) generally-chosen points in Sn determine a subspace Sm .  One obtains 
any arbitrary system of (m + 1) linearly independent points from these points by a 
relation-preserving specialization, and therefore, one will obtain an arbitrary Sm from the 
points of Sn .  It was already proved that the subspace Sm defines an irreducible manifold.  
If we call the general system of (m + 1) points ξ and the subspace that is determined by 
them η then the pair (ξ, η) will determine an irreducible correspondence whose general 
element will be just this pair.  Since a system of (m + 1) general points in Sn depends 
upon (m + 1) n parameters, but a system of (m + 1) general points in a given Sm depends 
upon (m + 1) m parameters, one will then have: 
 

a = (m + 1) n;  b = 0;  d = (m + 1) m. 
 
Moreover, it follows from (5) that c = (m + 1)(n – m). 
 
 Problem.  1.  There are ∞13 plane curves of order four with one double point, ∞12 with two of them, 
and ∞11 with three double points.  The totality of fourth-order curves with one or two double points is 
irreducible; that of the curves with three double points decomposes into two irreducible submanifolds of 
equal dimension 11. 
 
 In conclusion, this allows us to mention about a very specialized − but still often-used 
− criterion for the irreducibility of a correspondence: 
 
 Lemma.  The equations of a correspondence K may be decomposed into equations in 

the x alone that define an irreducible source manifold M and equations in x and y that 
are linear in y and always have the same rank, which therefore associate each point x of 
M with a linear space Nx that always has the same dimension b.  Such a correspondence 
is irreducible. 
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 Proof.  A general point-pair (ξ, η) of the correspondence will be obtained in the 
following way:  Let ξ be a general point of M, and let η be an intersection point of the 

linear space Nξ with b general hyperplanes 
1

u , …, 
b

u .  We now have to show that each 
pair (x, y) of the correspondence is a relation-preserving specialization of (ξ, η).  Thus, let 
F(ξ, η) = 0 be any homogeneous relation; we have to show that F(x, y) = 0 is also true. 

 We likewise pass b hyperplanes 
1

v , …, 
b

v  through the point y that intersect Nx at 
precisely the point y.  One can compute coordinate ratios in determinant form: 
 
(6)    y0 : y1 : … : yn = D0(x, v) : D1(x, v) : … : Dn(x, v) 
 

from the y equations of the correspondence and the equations of the hyperplanes 
1

v , …, 
b

v .  Since the determinants D0 , …, Dn are not all zero for the for the particular point x and 
the particular hyperplanes v, they will also be non-zero for the general point x of M and 

the general hyperplanes 
1

u , …, 
b

u .  Thus, the solution of the linear system of equations by 
determinants will also be true when x and v are replaced by ξ and u: 
 
(7)   η0 : η1 : … : ηn = D0(ξ, u) : D1(ξ, u) : … : Dn(ξ, u). 
 
 Due to F(ξ, η) = 0, it now follows from (7) that: 
 

F(ξ, Dν(ξ, η)) = 0; 
 
hence, since x is a general point of M: 
 

F(x, Dν(x, u)) = 0, 
 
and further, by replacing the indeterminates u with v: 
 

F(x, Dν(x, v)) = 0, 
or, due to (6): 

F(x, y) = 0. 
 
 Thus, (ξ, η) is a general pair of the correspondence, which is irreducible. 
 
 

§ 34.  Intersection of manifolds with general linear spaces 
and general hypersurfaces 

 
 Theorem 1:  The intersection of an irreducible a-dimensional manifold M (a > 0) 
with a general hyperplane (u x) = 0 is an irreducible manifold of dimension a – 1 relative 
to the field K(u0, …, un). 
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 Proof.  If one associates the points x of the manifold M with the hyperplane y that 
goes through x then one will obtain an algebraic correspondence K.  The equations of the 

correspondence will be the equations of M and the equation (x y) = 0, which expresses the 
idea that x lies in the hyperplane y.  From the Lemma of § 33, K will be irreducible and 

will contain a general point-pair (ξ, η) of K when one passes the most general hyperplane 

η through the general point ξ of M.  When c and d have the usual meaning for the 
correspondence, the principle of constant sum will yield: 
 
(1)     a + (n – 1) = c + d. 
 
Since the general hyperplane u that passes through a general point x will not contain a 
second arbitrary, but fixed, point x′ of the manifold M, its intersection with the manifold 
M will be at most (a – 1)-dimensional; thus, d ≤ a – 1.  It now follows from (1) that c ≥ n; 
hence, the image manifold N will be the entire dual space (i.e., the totality of all 
hyperplanes in the space Sn).  Furthermore, one finds that in the inequality d ≤ a – 1 only 
the equality sign can be true, since otherwise it would follow that c > n, which is 
impossible.  Therefore, under the correspondence, a general hyperplane u will correspond 
to a manifold of points x of dimension a – 1 that is irreducible relative to the field K(u0, 
…, un). 
 In precisely the same way, one proves that in general: 
 
 Theorem 2.  The intersection of an irreducible a-dimensional manifold M (a > 0) 
with a general hypersurface of degree g is a hypersurface of dimension a − 1 that is 
irreducible relative to the field of coefficients. 
 
 If one applies this theorem a times then it will follow that: 
 
 Theorem 3.  The intersection of an irreducible a-dimensional manifold with a 
general hypersurface of arbitrary degree is a system of finitely many conjugate points. 
 
 In particular: 
 
 Theorem 4.  A general linear subspace Sn–a of Sn intersects an irreducible a-
dimensional manifold M in finitely-many conjugate points. – The number of these 
intersection points is called the degree of M. 
 
 One can prove this latter theorem directly when one considers the correspondence 
that associates each point of M with all of the spaces Sn–a that go through this point.  One 
obtains a general pair of this correspondence when one passes the most general space of 
dimension n – a through a general point ξ of M, perhaps when one links ξ with n – a 
general points of the space Sn .  As in the proof of the Lemma in § 33, one shows that all 
pairs (x, y) of the correspondence are relation-preserving specializations of (ξ, η).  (One 
can, in fact, apply the Lemma directly by using the PLÜCKERian coordinates of η.)  The 
irreducibility of the correspondence follows from this.  Applying the principle of constant 
count then easily yields Theorem 4. 
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 Theorem 5.  An a-dimensional manifold M in Sn has no points in common with a 
general linear subspace Sm as long as a + m ≤ n. 
 
 Proof.  A general linear space Sm will be given by n – m = a + k general linear 
equations.  From the previous Theorem, a of these equations will define finitely-many 
conjugate points.  However, they do not satisfy the resulting k equations, whose new 
coefficients will be indeterminates that are independent of the previous ones. 
 
 An important Theorem on correspondences then follows from Theorem 5: 
 
 Theorem 6.  If a general point of the irreducible manifold M corresponds to a b-
dimensional manifold of image points under a correspondence K then each individual 

point of M will correspond to a manifold of image points that is at least b-dimensional. 
 
 Proof.  The image manifold of M may belong to a projective space Sn .  If one adds b 
general linear equations for the image point to the equations of the correspondence then a 
new correspondence will come about, in which a general point of M will always be 
associated with at least one image point.  A general point of M will thus belong to the 
source manifold of this new correspondence.  Thus, all points of M will belong to this 
source manifold; i.e., each point of M will also be associated with at least one image 
point under this correspondence.  That means, in turn, that the image point of each point 
of M will have at least one point in common with a general linear subspace Sn−b under this 
correspondence.  The dimension of this image space must therefore amount to b.  (Here, 
one must understand the word “dimension” to mean the highest dimension of the 
manifolds in its decomposition.) 
 
 When the image manifold does not belong to a projective space but to a multiply- 
projective space (e.g., a manifold of point-pairs, point-triples, …), one needs only to 
embed this multiply-projective space in a projective one (§ 4) in order to return from the 
general case to the already-dealt-with projective case. 
 One might also seek to carry over Theorems 1-4 of this section to multiply-projective 
spaces, but one will then encounter occasional exceptions.  E.g., in the multiply-
projective case, Theorem 1 will read: The intersection of an irreducible a-dimensional 
manifold of point-pairs (x, y) with a general hyperplane (u x) = 0 of the x-space is an 
irreducible manifold of dimension a − 1 relative to the field K(u0 , …, um), excluding the 
case in which the ratios of all of the x-coordinates of the general point-pairs of M are 
constant, in which case the intersection is empty. 
 Theorem 2 will then be true in the doubly-projective case without exceptions only 
when the equation of the hypersurface considered has a positive degree in the x, as well 
as in the y.  The argument in the singly-projective case will be left to the reader. 
 
 Problem.  With the help of Theorem 6, one shows: If a correspondence K associates each point x of an 
irreducible source manifold M with an irreducible image manifold Mx that always has the same dimension b 
then K will be irreducible. 
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 Analogues to Theorems 1-4 are also true in line geometry.  From § 33 (example 3), 
there are ∞4 lines in the space S3 .  One calls a purely three-dimensional line manifold a 
line complex, a purely two-dimensional one a line congruence, and a purely one-
dimensional one, a ruled family.  By the same method with which we proved Theorem 1 
above, one can now show: 
 
 An irreducible line complex has ∞1 lines in common with a general (i.e., determined 
by a general point) star of lines, which define a (relatively) irreducible cone: viz., the 
cone complex of this point.  Likewise, the complex has ∞1 lines in common with a general 
(i.e., determined by a general plane) field of lines, which define an irreducible dual curve 
in the plane: viz., the curve complex of the plane.  The degree of the cone complex and 
the class of the curve complex are both equal to the number of lines that the complex has 
in common with general pencil of lines.  This number is called the degree of the complex. 
 
 Something more complicated is true for a congruence: 
 
 An irreducible line congruence has finitely many points in common with a general 
star of lines, excluding the case where the congruence exists only as some (algebraically 
conjugate) field of lines, in which case, it will naturally have nothing in common with a 
general star of lines.  Dually, the congruence thus has finitely-many lines in common with 
a general star of lines, excluding the case in which it exists only as some (conjugate) star 
of lines.  The number of lines that the congruence has in common with a general star of 
lines (field of lines, resp.) is called the bundle degree (field degree, resp.) of the 
congruence. 
 
 Proof.  We define an algebraic correspondence by associating each line of the given 
irreducible congruence with all of its points.  From the Lemma of § 33, the 
correspondence will be irreducible.  Furthermore, a = 2, b = 1, and thus a + b = c + d = 
3.  Since the image manifold (viz., the totality of all points of all lines of the congruence) 
must be at least two-dimensional, only two cases are possible: 
 
 1. c = 2, d = 1; 
 2. c = 3, d = 0. 
 
 We now still have to show that in the first case the congruence only exists as finitely 
many (conjugate) fields of lines.  In case 1, one has d = 1, i.e., if one chooses a general 
point of a general line congruence then ∞1 rays of the congruence go through this point.  
We think of the congruence as being decomposed into absolutely irreducible 
congruences; we then have to prove that such an absolutely irreducible congruence is a 
plane field. 
 If g is a general line congruence then the lines of the congruence that intersect g will 
define an algebraic submanifold of the congruence.  The dimension of this submanifold 
will be, however, equal to that of the entire congruence, namely, two; ∞1 lines of the 
submanifold will then go through each point of the line.  Now, since the congruence was 
absolutely irreducible, it will be identical with the submanifold.  We thus see that a 
general line of the congruence will be intersected by all of the lines of the congruence. 
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 Now, let g and h be two general lines of the congruence.  Since they intersect, they 
will determine a plane.  A third general line l of the congruence that is chosen 
independently of g and h, will intersect g, as well as h, but will not, however, go through 
the intersection point of g and h (only ∞1 lines of the congruence will go through this 
intersection point then).  Therefore, l will lie in the plane that is determined by g and h.  
All lines of the congruence will come about by a relation-preserving specialization of l; 
thus, they will all lie in the one plane.  The total congruence will therefore be contained 
in a plane field, so, due to the dimensional equality, it will be identical with it. 
 

 
§ 35.  The 27 lines on a third-degree surface 

 
 As an application of the methods of this chapter, we examine the question of how 
many straight lines lie on a general surface of nth degree in the space S3 . 
 Let pij be the PLÜCKERian coordinates of line, and let f(x) = 0 be the equation of a 
surface of nth degree.  The line lies on the surface if and only if the intersection point of 
the line with an arbitrary plane always lies on the surface.  The coordinates of this 
intersection point are: 

x = k
jk

k

p u∑ , 

 
and the desired condition will thus be given by: 
 

(1)      ( )k
jkf p u∑ = 0 

 
identically in the uk.  Thus emerges the PLÜCKERian relation: 
 
(2)     p01 p23 + p02 p31 + p03 p12 = 0.  
 
 Equations (1) and (2) define an algebraic correspondence between the line g, on the 
one hand, and the surface f that contains them, on the other hand.  The irreducibility of 
this correspondence follows from the Lemma of § 33 if the equations (1) are linear in the 
coefficients of f, and always have the same rank n + 1.  (They indeed express the fact that 
the surface f shall contain a prescribed line, and for this to be true it will be sufficient that 
it contains n + 1 different points of the line.) 
 The lines g define a four-dimensional manifold.  The surfaces f define a space SN of 
dimension N, when N + 1 is the number of coefficients in the equations of a general 
surface of nth degree.  The surfaces that contain a given line define a linear subspace of 
dimension N − (n + 1).  If we thus apply the principle of constant count to our irreducible 
correspondence then it will follow that: 
 
(3)     4 + N – (n + 1) = N – n + 3 = c + d. 
 
In this, c means the dimension of the image manifold, i.e., the manifold of those surfaces 
f that generally contain lines, and each such surface contains at least ∞4 lines (cf., § 34, 
Theorem 6). 
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 Now, if n > 3 then it will follow that c + d < N, hence, c < N; i.e., a general surface of 
nth degree (n > 3) will contain no lines.  The cases n = 1, 2, 3 then remain.  It is well-
known that a plane contains ∞2 lines and a quadratic surface ∞1, in accordance with 
formula (3).  In the case n = 3, from (3), one will have: 
 

c + d = N. 
 
If we could now show that d = 0 then it would follow that c = N; i.e., the image manifold 
would be the entire manifold.  Each third-degree surface would thus contain at least one 
line, and, in general, only finitely many of them. 
 Were d > 0 then this would say that each surface of third degree, which generally 
contains lines, likewise contains infinitely many of them, namely, ∞d.  Thus, if we can 
give a single example of a cubic surface that indeed contains lines, but only finitely many 
of them, then we must have d = 0. 
 That example is easy to give now: We consider a cubic surface with a double point at 
the coordinate origin.  The equation of this surface reads: 
 

x0 f2(x1, x2, x3) + f3(x1, x2, x3) = 0, 
 

in which f2 and f3 shall be relatively prime forms of degree 2 (3, resp.).  We first examine 
whether a line through the origin lies on the surface.  If one introduces the parameter 
representation of the line: 
 

x0 = λ0,  x1 = λ1 y1, x2 = λ1 y2, x3 = λ1 y3, 
 
into the equation of the surface then one will find the conditions: 
 

f2(x1, x2, x3) = 0 and f3(y1, y2, y3) = 0. 
 
These two equations represent a quadratic cone and a cubic cone with a common vertex.  
We assume that they have precisely six different generators in common, which is indeed 
the case, in general.  There will thus be six lines on the surface through the origin. 
 We then examine which lines that lie on the surface do not go through the origin O.  
If h is such a line then the connecting plane of h with the origin will intersect the given 
surface in a third-order curve whose one component will be the line h, while the other 
component will be a conic section that must have a double point at O, and will thus 
decompose into two lines through O.  These lines g1 and g2 must be among the six 
previously-found lines through O (1).  There are 15 such pairs, and each pair determines a 
plane that intersects the given surface in a line outside of this pair.  There are thus (at 
most) 15 lines h on the surface that do not go through O.  In all, the surface contains (at 
most) 6 + 15 = 21 lines. 
 
 It is thus proved: There are finitely-many lines on a general surface of degree three, 
and each particular surface contains at least one. 

                                                
 (1 ) One easily concludes that g1 and g2 cannot coincide. 
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 We would now like to determine the number of these lines and their mutual positions, 
and indeed not only for the general third-degree surface, but also for any cubic surface 
with no double points. 
 The equation of the surface might read: 
 
(4)    f(x0, x1, x2, x3) =

3 2 3
000 0 001 0 1 333 3c x c x x c x+ + +⋯  = 0. 

 
 In any case, there will be a line l on the surface; we choose the coordinate system in 
such a way that this line obeys the equations x0 = x1 = 0.  We would now like to first look 
for those lines on the surface that intersect the line l.  To that end, we pass an arbitrary 
plane λ1 x0 = λ0 x1 through the line l; for the points of this plane, we can then set: 
 
(5)     x0 = λ0 t, x1 = λ1 t. 
 
Any point in the plane will then be determined by the homogeneous coordinates t, x2, x3.  
The intersection point of a surface with the plane will be found when one substitutes (5) 
in (4): 
(6)     f(λ0 t, λ1 t, x2 , x3) = 0. 
 
This homogeneous equation in t, x2, x3 represents a curve of degree three.  Since the line t 
= 0 (or x0 = x1 = 0) lies on the surface, this third-degree curve will decompose into the 
line t = 0 and a conic section whose equation might read: 
 
(7)   a11 t

2 + 2a12 t x2 + 2a13 t x3 + 2
22 2a x  + 2a23 x2 x3 +

2
33 3a x  = 0. 

 
Equation (7) will be found from (6) by splitting the factor t.  The aik are thus forms in λ1 , 
λ2 , and indeed one has: 
 

(8)    

3 2 2 3
11 000 0 001 0 1 011 0 1 111 1

2 2
11 002 0 012 0 1 112 1

2 2
13 003 0 013 0 1 113 1

22 022 0 122 1

23 023 0 123 1

23 033 0 133 1

,

2 ,

2 ,

,

2 ,

.

a c c c c

a c c c

a c c c

a c c

a c c

a c c

λ λ λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ
λ λ
λ λ

 = + + +
 = + +
 = + +
 = +
 = +


= +

 

 
 Now, in order for the plane to contain a line in addition to the line l, the conic section 
(7) must decompose; the condition for this is: 
 

(9)    ∆ =
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 = 0. 
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 On the basis of (8), the determinant ∆ will be a form of fifth degree in λ0 and λ1.  If it 
does not vanish identically then (9) will be an equation of fifth degree in the ratio λ0 : λ1, 
which will then possess five roots.  One will thus find five planes, each of which has two 
lines in common with the surface f = 0 besides the line l.  Under the assumption that the 
surface is free of double points, ee now show: 
 
 1. In each plane, the three lines are actually different from each other. 
 2. The determinant ∆ is not identically zero, and its five roots are all different from 
each other. 
 
 Proof of 1.  We assume that the surface has two overlapping lines g and a further line 
h in common with a plane e. 
 At each point of g, e is then the tangent plane of the surface; all lines in e through 
such a point P will then have two overlapping intersection points with the surface.  We 
now pass any other plane e′ through the g.  e′ intersects the surface in not only g, but also 
in any conic section, which must have at least one point in common with g.  We again 
call such a point P.  Each line through P in e′ has two overlapping intersection points 
with the surface at P; hence, e′ will be the tangent plane of the surface at P.  However, 
this property is already attached to the plane e.  Since there is only one tangent plane to 
each point of a surface that is free of double points, we have arrived at a contradiction. 
 
 Proof of 2.  Assuming that λ0 : λ1 are double roots of the fifth-degree equation, we 
then choose an associated plane through l: 
 

λ1 x0 = λ0 x1 

to be the coordinate plane x0 = 0.  The parameter ratio that is associated with the plane is 
then 0 : 1 (λ0 = 0), and ∆ is divisible by 2

0λ .  We will thus derive a contradiction, and one 

will see, with no further assumptions, that the same contradiction will also appear when ∆ 
is identically zero. 
 As we have already proved, the plane x0 has three different lines in common with the 
surface f = 0.  We thus have two cases to distinguish: 
 
 a) The three lines define a triangle. 
 b) They go through one point. 

 In case a), we choose the triangle of the lines to be the coordinate triangle in the plane 
x0 = 0, and in the case b), let the intersection point of the three lines be a corner point of 
the coordinate triangle.  The intersection point of the two lines that are different from l is 
called D in both cases; in case a), D = (0, 1, 0, 0), and in case b), D = (0, 0, 1, 0).  In any 
case, D is a double point of the conic section (7) whose coefficient matrix, from (8), is 
given by: 

1 1
111 112 1132 2

1 1
112 122 1232 2

1 1
113 123 1332 2

c c c

c c c

c c c

 
 
 
 
 
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for λ0 = 0.  In this matrix, since D is a double point, one must have in case a) that the first 
row and column vanish, while in case b), the second row and column must vanish: 
 
 a) c111 = c112 = c113 = 0. 
 b) c112 = c122 = c123 = 0. 
 
 In order to now express the condition that ∆ is divisible by 2

0λ , we develop ∆ 

[equation 9] in the first row in case a), and in the second row in case b).  In case a), the 
elements of the first row and column are divisible by λ0 , so the terms in a12 and a13 will 
be divisible by 2

0λ .  Thus, the term: 

a11 ⋅ 22 23

23 33

a a

a a
 

will be divisible by 2
0λ .  The second factor is ≠ 0 for λ0 = 0, since otherwise the two lines 

into which the conic section (7) decomposes would have to coincide, which, from 1, 
would be impossible.  Thus, a11 must be divisible by 2

0λ ; i.e., one must have: 

 
c011 = 0. 

 
Likewise, in case b), a22 must be divisible by 2

0λ , from which, one will obtain: 

 
c022 = 0. 

 
Furthermore, in each case, one will have c222 = c223 = 0, since the line x0 = x1 = 0 lies 
completely on the surface.  Thus, in case a) the equation of the surface will lack terms in: 
 

2
1 0x x , 3

1x , 2
1 2x x , 2

1 3x x , 

and, in case b), terms in: 
2
2 0x x , 2

2 1x x , 3
2x , 2

2 3x x . 

 
However, this means that the point D will be a double point of the surface in both cases.  
Now, since the surface was assumed to be free of double points, the assumption that ∆ 
was divisible by 2

0λ  will lead to a contradiction.  With that, the assertion is proved. 

 
 We thus see that there are precisely five planes through each line of the surface that 
contain two other lines of the surface.  Consequently, any line of the surface will intersect 
ten other lines of the surface.  Let π be a plane that intersects the surface in three lines l, 
m, n.  Any further line g of the surface will intersect the plane π in a point S that lies on 
the surface, as well as on the plane π; hence, its intersection curve, and therefore, one of 
the three lines l, m, n belongs to that plane.  Now, S cannot lie on – say – l and m 
simultaneously, since three tangents l, m, g that do not lie in a plane would then go 
through S, and S would be a double point of the surface.  All lines of the surface that are 
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different from l, m, n will thus intersect precisely one of the lines l, m, n.  In addition to m 
and n, there will be eight more lines that intersect l, and likewise eight that intersect m 
and eight that intersect n.  If one adds these l, m, and n to these 24 lines then one will 
obtain 27 lines.  Hence: 
 
 A double-point-free surface of third order in S3 contains precisely 27 different lines. 
 
 These 27 lines, each of which will intersect ten others, define a very interesting 
configuration, about which an extensive body of literature exists (1) 

 
 

§ 36.  The associated form of a manifold M 
 
 In § 7, we learned how to determine the linear subspaces of a space Sn by their 
PLÜCKERian coordinates.  We will now learn how to also represent arbitrary purely r-
dimensional manifolds M in Sn by coordinates in the same way. 
 It is best for us to start with the zero-dimensional manifolds.  An irreducible zero-
dimensional manifold is a system of finitely many conjugate points: 
 

i

p = 0 1( , , , )
i i i

np p p⋯ . 

Thus, it can be assumed that perhaps 0

i

p = 1.  Now, if u0, u1, …, un are indeterminates 

then the quantity: 

1ϑ  = − 
1 1 1

1 21 2 nnp u p u p u− − −⋯  

 
will be algebraic over K(u1 , …, un), hence, it will be a zero locus of an irreducible 
polynomial f(u0) with coefficients in K(u1 , …, un).  The remaining zero loci of this 
polynomial will be the iϑ conjugate quantities: 

 

iϑ = − 1 21 2

i i i

nnp u p u p u− − −⋯ ; 

 
hence, one will have the factoring: 
 
  f(u0) = 0( )i

i

uρ ϑ−∏  

     = 0 10 1

i i i

nn
i

p u p u p uρ  + + + 
 

∏ ⋯ . 

 
Thus, f(u0) will be completely rational in u1 , …, un ; we can thus write: 

 

                                                
 (1 ) See A. HENDERSON: “The twenty-seven lines upon the cubic surface.”  Cambridge Tracts, v. 13 
(1911). 
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 f(u0) = F(u0, u1, …, un). 
 
Since f(u0) is irreducible in u0, and since F(u0, u1, …, un) contains no factors that depend 
upon only u1, …, un , F(u0, u1, …, un) will be an irreducible form in u0, …, un with 
coefficients in K.  It is called the associated form of the point system.  With the well-
known abbreviation: 

(u p) = (p u) = j j
j

p u∑ , 

we can therefore write: 

(1)      F(u) =
i

i

u pρ  
 
 

∏ . 

 
 A reducible zero-dimensional manifold exists as various systems of conjugate points.  
We now understand the phrase “associated form” of a reducible manifold to mean the 
product of the associated forms of the conjugate points of the individual systems: 
 

F = F1 F2 … Fh . 
 
 One can also visualize the conjugate points of the individual systems as having arbitrary 
multiplicities ρk and refer to the product: 
 

F(u) = 1 2
1 2

h
hF F F ρρ ρ

⋯  

 
as the associated form of the system of points, including multiplicities.  The form F(u) 
always has the form (1) and determines the irreducible system of points, counting their 
multiplicities, uniquely. 
 Now, let F(u0, u1, …, un) be any form of degree g.  We would now like to exhibit the 
condition for this form to be the associated form of a zero-dimensional manifold.  For this 
to be true, it is necessary and sufficient that the form be completely decomposable into 
linear factors: 

(2)    F(u0, u1, …, un) = 0 10 1
1

g i i i

nn
i

p u p u p uρ
=

 + + + 
 

∏ ⋯ . 

 
If one compares both sides of (2) with the coefficients of the corresponding products of 
powers of u1, …, un then one will obtain the conditions: 
 

(3)      aν =
1

,
g

p pνρ  Ψ  
 
⋯ , 

where Ψν is a homogeneous form in each individual sequence of coordinates
i

p .  

Eliminating ρ from (3) will yield the homogeneous equations in the
i

p : 
 
(4)      aµΨν  − aνΨµ  = 0. 
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 From § 15, the conditions for solubility of this system of equations are found by 

setting the resultant systems in 
1

p , …, 
g

p  equal to zero.  One thus obtains a homogeneous 
system of equations: 
(5)      R(aµ) = 0 
 
whose satisfaction is necessary and sufficient for the form F with the coefficients aµ to be 
an associated form. 
 Now, let an irreducible r-dimensional manifold M be given.  We intersect M with a 

general linear subspace Sn−r , which is the intersection of r general hyperplanes 
0

u , …,
r

u .  

Each symbol 
i

u  thus stands for a sequence of n + 1 indeterminates 0
i

u , 1

i

u , …,
i

nu .  The 

intersection points 
1

p , …,
g

p are conjugate to each other over 
1

, ,
r

K u u 
 
 
⋯ .  The associated 

form of this point system is the product: 
 

0

1

g

i
i

u p
=

 
 
 

∏ , 

 

in which 
0

u  means a new sequence of indeterminates 
0

0u , 
0

1u , …, 
0

nu .  It is completely 

irrational in 
0

u  and rational in the 
1

u , …, 
r

u .  If one makes it completely rational and 

primitive relative to the 
1

u , …, 
r

u  by multiplying with a polynomial in the
1

u , …, 
r

u then 
one will obtain an irreducible polynomial that is completely rational in all indeterminates 
1

u , …, 
r

u : 

(6)     
0

, ,
r

F u u 
 
 
⋯  = 

0

1

g i

i

u pρ
=

 
 
 

∏ , 

 

namely, the associated form of the manifold M.  Its degree in 
0

u  will be equal to the 
degree g of the manifold M. 
 It is clear that two different irreducible manifolds cannot have the same associated 

form.  One could then obtain a general point 
0

u  of the manifold M from the associated 
form by factorizing (6), and these general points would thus establish the manifold M.  
The associated form F thus determines the manifold M uniquely, and the coefficients of F 
can be taken to be the coordinates of the manifold. 
 
 Example.  Let M be a line that is determined by the points y and z.  We write u and v, 

instead of 
0

u  and 
1

u .  The intersection point of the line with the hyperplane 
1

u = v will be 
found from: 

(v, λ1y + λ2z) = λ1(v y) + λ2(v z) = 0. 
 
One solution of this equation is: 
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λ1 = (v z), λ2 = − (v y). 
The intersection point is then: 

p = (v z) y – (v y) z, 
and the associated linear form is: 
 
    F(u, v) = (p u) = (v z)(y u) – (v y)(z u) 
     = ( )i k k j j k

j k

y z y z u v−∑∑ . 

 
The coefficients of this form are the PLÜCKERian coordinates: 
 

πjk = yj zk – yk zj . 
 
 Problems.  1.  If M is a linear subspace Sr then the coefficients of the associated form will be the 
PLÜCKERian coordinates of M. 
 2.  If M is a hypersurface f = 0 then the associated form of M will arise from the form f when one 

replaces the variables x0 , …, xn in f with the n-rowed determinant of the matrix 
i

ku  (j = 0, …, n − 1; k = 0, 
…, n), with the usual alternating signs. 
 
 One can also define the associated form in another way:  We define a correspondence 

between the points y of M, on the one hand, and the sequences of r + 1 hyperplanes 
0

v ,
1

v , 

…,
r

v  that go through them, on the other.  The equations of the correspondence express 

the ideas that y belongs to M, and that 
0

v ,
1

v , …,
r

v  goes through y.  One obtains a general 

pair of the correspondence when one replaces y with a general point ξ on M and 
0

v ,
1

v , 

…,
r

v  with r + 1 general hyperplanes 
0

w , 
1

w , …, 
r

w  that contain ξ.  The correspondence is 
therefore irreducible. 
 In the formula: 

a + b = c + d, 
 

which expresses the principle of constant count, one has: 
 
      a = r, 
      b = (r – 1)(n – 1), 
      c = 0; 
hence: 

d = (r + 1) n – 1. 
 
Thus, the image manifold of the correspondence will be a hypersurface in the (r + 1)-fold 

projective space of hyperplanes 
0

v ,
1

v , …,
r

v .  There is thus a single irreducible equation: 
 

(7)      
0 1

0 , , ,
r

F v v v 
 
 

⋯ = 0 
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whose existence is necessary and sufficient for the hyperplanes 
0

v ,
1

v , …,
r

v  to have a point 
in common with M. 

 If one takes the 
1

v , …,
r

v  in (7) to be general hyperplanes 
1

u , …,
r

u  that intersect M at g 

points 
1

p , …,
r

p  then 
0 1

0 , , ,
r

F v u u 
 
 

⋯ will be zero if and only if one of the linear factors 

satisfies 
0i

pv 
 
 

= 0; hence,
0 1

0 , , ,
r

F u u u 
 
 

⋯  will be divisible by the product of the forms 

0i

pu 
 
 

, i.e., by the previously-defined associated form
0 1

, , ,
r

F u u u 
 
 

⋯ .  However, since F0 

is irreducible, it will then follow that: 
F0(u) = F(u); 

 
i.e., the form F0(u) will be the associated form of the manifold M exactly. 
 An important property will follow from this new definition of the associated form, 

since 
0

v ,
1

v , …,
r

v  are on an equal footing in it: 
 

 The associated form F(u) is homogeneous of degree g, not only in 
0

u , but also in 
1

u , 

…,
r

u , and it will go to itself, up to a factor, under the exchange of any two 
i

u . 
 
 We now go on to the irreducible, purely r-dimensional manifolds.  The associated 
form of one such will be defined as the product of the associated forms of its irreducible 
components, when equipped with arbitrarily-chosen positive exponents ρi: 
 
(8)      F = 1 2

1 2
s

sF F F ρρ ρ
⋯ . 

 
If g1, …, gs are the degrees of the irreducible components then the degree of the total 
form F in each of its individual sequences of variables u0 , u1 , …, ur will equal: 
 

g = i i
i

gρ∑ . 

 
The associated form F will determine the manifold M uniquely, just as its multiplicities ρi 
will determine its irreducible components uniquely.  Furthermore, one will have: 
 

 The condition 
0 1

, , ,
r

F u u u 
 
 

⋯ = 0 is necessary and sufficient for any r 

hyperplanes
0

v ,
1

v , …,
r

v  to have a point in common with M. 
 
 We already saw above that this theorem is true for irreducible manifolds.  By means 
of the factorization (8), it carries over to decomposed manifolds with no further 
assumptions. 
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 Problems.  3.  If fµ = 0 are the equations of an irreducible manifold M and one further adjoins the r + 1 

linear forms 0

u x 
 
 

, 1

u x 
 
 

,…, r

u x 
 
 

 to the forms fµ(x), and then constructs the resultant system of all of 

these forms then the greatest common factor of the resultant system will be a power of the associated form 
F(u). 
 4.  How does the corresponding theorem for decomposable manifolds read? 
 

§ 37.  The totality of all associated forms for all manifolds M. 
 

 We first ask: How does one find the equations of a manifold M when its associated 
form F(u) is given? 

 If a point y lies on M then r + 1 arbitrary hyperplanes 
0

v , …,
r

v  through y will always 
have a point in common with M.  However, if y does not belong to M then one can 

always pass suitable hyperplanes 
0

v , …,
r

v  through y that have no point in common with 

M.  Namely, one chooses 
r

v  such that they intersect M on only a manifold of dimension r 
– 1, and apply complete induction on r, since the assertion is clear for r = 0.  With this, y 
belongs to M when and only when r + 1 arbitrary hyperplanes that go through y always 

satisfy the condition 
0 1

, , ,
r

F v v v 
 
 

⋯ = 0. 

 One obtains an arbitrary hyperplane that goes through y most conveniently as the zero 
locus of y relative to an arbitrary null system (which may also be singular): 
 

vj = jl ls y∑      (sjl = − slj). 

We write this briefly as: 
v = Sy . 

 

Thus, if 
0

jls , 
1

jls , …, 
r

jls  are simple indeterminates with 
i

jls = −
i

ljs and S0, S1, …, Sr are the 
associated null system then the condition for y to lie on M will read: 
 
(1)     F(S0y, S1y, …, Sry) = 0 
 

(identically in 
i

jls ).  If one sets the coefficients of all powers of products of the
i

jls  equal 

to zero in (1), in which one has replaced the
i

jls  with j > l by −
i

ljs , then one will obtain the 
equations of M. 

 The main question of this section reads: What conditions must a form 
0 1

, , ,
r

F u u u 
 
 

⋯  

that has the same degree in all sequences of variables 
1

u , …,
r

u  satisfy in order for it to be 
the associated form of a manifold? 
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 Obviously, there are three necessary conditions: 

 1. F(u), when considered as a form in 
0

u , must decompose completely into linear 
factors: 

(2)     F(u) = 
0

1

g i

p uρ  
 
 

∏  

 

in an extension field of
1

, ,
r

K u u 
 
 
⋯ . 

 2. The points
i

p  that are defined by (2) must lie in all of the planes 
1

u , …,
r

u : 
 

(3)     
i k

pu 
 
 

 = 0   (i = 1, …, g; k = 1, …, r). 

 
 3. They must further satisfy the equations of M: 
 

(4)     0 1, , ,
i i i

rF S p S p S p 
 
 

⋯ = 0. 

 

 Condition 3 can also be formulated: If the hyperplanes 
0

v , …,
r

v  go through one of the 

points
i

p then 
0 1

, , ,
r

F v v v 
 
 

⋯ = 0. 

 We now prove that these three conditions are also sufficient. 
 
 There is (relative to the ground field K) an irreducible algebraic manifold M1 that 

possesses the point 
1

p  as general points.  M2, …, Mg will be defined correspondingly; 
naturally, they do not all need to be different.  The union of all of the irreducible 
manifolds M1, M2, …, Mg is called M. 

 From 2, the points 
1

p , …,
g

p  lie in the linear space Sn−r that is defined by the 

hyperplanes 
1

u , …,
r

u .  Condition 3 now states that, outside of 
1

p , …,
g

p , Sn−r has no 
further general points in either M1, M2, …, or Mg .  Namely, if this were the case, then 
Sn−r would contain a further general point q of M1.  Then, on the basis of the uniqueness 

theorem (§ 29), there would be an isomorphism K(q) ≅
1

K p 
 
 

 that would take q to
1

p .  

That would give rise to an isomorphism 
1

, , ,
r

K q u u 
 
 

⋯ ≅
1 1

, , ,
r

K p w w 
 
 

⋯ .  The relations: 

 
k

qu 
 
 

= 0     (k = 1, …, r), 
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which say that q lies in Sn−r ,  are preserved under isomorphisms; thus, it would follow 
that: 

1 k

pu 
 
 

= 0     (k = 1, …, r), 

 

Now, if 
0

w  were another arbitrary plane through 
1

p  − hence, 
1 0

p w 
 
 

= 0 − then it would 

follow from condition 3 that: 
0 1

, , ,
r

F w w w 
 
 

⋯ = 0. 

From the STUDY lemma (§ 16), when one replaces the 
0

w  with indeterminates 
0

u , 
0 1

, , ,
r

F u w w 
 
 

⋯  would be divisible by 
1 0

pu 
 
 

.  Applying the isomorphism in the opposite 

direction would give that 
0 1

, , ,
r

F u u u 
 
 

⋯ is divisible by 
1 0

qu 
 
 

; i.e., due to (2), q would 

coincides with one of the points 
i

p . 

 Now, since a general linear space Sn−r intersects only finitely many general points of 

the irreducible manifold M1 (and indeed at least one point, namely, 
i

p ), M1 will be 
precisely r-dimensional; the same will be true for M2 , …, Mg .  The associated form of 
M1 will be the product: 

F1 = 
0i

pu 
 
 

∏ , 

 

which is extended over those 
i

p  that are conjugate to 
1

p . 

 When the 
i

p  are combined into the groups of conjugate points, the product (2) can, 
moreover, be written: 

  F  = 
111 0 0 1 0 0 ee fe e

pu pu p u p u
ρρ

ρ
+++         

          
          

⋯ ⋯  

     = 11
1 1

e
eF F ρρρ +
+ … 

 
This factorization shows that F is equal to the associated form of a manifold M that is 
comprised of the components M1 , Me+1 , … with the multiplicities ρ1 , ρe+1 , … 
 Conditions 1, 2, 3 are thus sufficient. 
 We will now show that conditions 1, 2, 3 can be expressed by homogeneous algebraic 

relations between the coefficients aλ of the form 
0 1

, , ,
r

F u u u 
 
 

⋯ . 
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 In order to express condition 1 by homogeneous algebraic equations, we proceed 
precisely as we did at the start of this section, when we first equated the coefficients of 

the products of powers of 
0

u  in: 
 

0 1

, , ,
r

F u u u 
 
 

⋯ = 
0

1

g i

p uρ  
 
 

∏ , 

thus: 
1

, ,
r

u uνϕ  
 
 
⋯ =

1

, ,
g

p pνρψ  
 
 
⋯ , 

and then eliminated ρ: 
(5)      ϕµ ψν – ϕν ψµ = 0. 
 
 Condition 2 reads: 

(6)      
i k

pu 
 
 

 = 0  (i = 1, …, g; k = 1, …, r). 

 
 Condition 3 will be evaluated when one sets the coefficients of the products of the 

powers of the indeterminates 
i

jls  in (4) equal to zero: 
 

(7)      ,
i

a pµ λχ  
 
 

= 0    (i = 1, …, g). 

 

 One eliminates the 
i

p  from the homogeneous conditions (5), (6), (7), by constructing 
the resultant system: 

1

, , ,
r

R a u uχ λ
 
 
 

⋯ = 0. 

 

These equations must be satisfied identically in 
1

u , …,
r

u .  If one then sets the coefficients 

of the products of powers of these
k

u equal to zero then one will obtain the desired system 
of equations: 
(8)      Tω(aλ) = 0. 
 

 The fulfillment of (8) is necessary and sufficient for a form 
0 1

, , ,
r

F u u u 
 
 

⋯  of degree g 

with the coefficients aλ to be the associated form of an r-dimensional manifold M of 
degree g. 
 
 By a small amendment to the above proof, one can also exhibit the conditions for the 
manifold M to lie on another manifold N. 
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 The equations of N might read gν = 0.  If M lies on N then the general points 
1

p , …,
g

p  
of the irreducible components of M must lie on N.  This gives the conditions: 
 

(9)      
i

g pν
 
 
 

= 0    (i = 1, …, g). 

 

We add these equations to (5), (6), (7), and again eliminate the 
i

p .  This yields a system 
of equations that is completely analogous to (8) and is necessary and sufficient for M to 
lie on N.  If N is given by its coordinates bµ , or − what amounts to the same thing − by its 
associated form, then one can derive the equations gν = 0 by the method that was given at 
the beginning of this section and then obtain the conditions for M to lie on N in the form 
of a doubly-homogeneous system of equations: 
 
(10)     Tω(aλ , bµ) = 0. 
 
 Example.  We would like to actually present the conditions (8) in the simplest case r 

= 1, g = 1.  If we write u and v, instead of 
0

u  and 
1

u , then any form of degree 1 in the u 
and v will have the form: 

F = jk j ka u v∑∑ . 

 

In this case, when we write p instead of 
1

p , condition 1: 
 
(11)     pj = jk ka v∑ . 

 
We can do without making these equations homogeneous, since the elimination of the pj 
can come about simply by the substitution (11).  Condition 2 yields: 

j jp v∑ = 0, 

 
or, when (11) is substituted and the coefficient of vj vk is set equal to zero: 
 
(12)     ajk + akj = 0. 
 

When one sets 
0

ijs  = sij and 
1

ijs = tij condition 3 will yield: 
 

( )( )ik ij j kl la s p t p∑∑ ∑ ∑ = 0 

 
or, when (11) is substituted and the summation sign is simply omitted, one will have: 
 

aik sij ajr vr tkl als vs = 0 
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identically in the sij , tkl , and vr .  Equating the product powers yields: 
 
(13)    (1 – Pij)(1 – Pkl) (1 + Prs) aik ajr als = 0, 
 
if Pij means the permutation of the indices i and j.  Equations (12) and (13) are thus 
necessary and sufficient for the form F with the coefficients ajk to be the associated form 
of a line, or for the aik to be the PLÜCKERian coordinates of a line.  The cubic equations 
(13) must be equivalent to the previously derived quadratic relations (cf., § 7): 
 

aij akl + aik alj + ail ajk = 0 
 

 The meaning of the results obtained up to now lies not in the concrete form of the 
equations of condition obtained, since the example above shows that they are already 
very complicated in even the simplest case.  Rather, it lies in the fact we can now 
consider the totality of the purely r-dimensional algebraic manifolds of given degree as 
an algebraic manifold in which the points represent individual manifolds. 
 The associated form of a manifold will then be given by its coefficients aλ .  If one 
regards them as the coordinates of a point a in a projective space B then each manifold 

M of a given degree and dimension will correspond to a structure point A, and 
conversely, M will be determined uniquely by A.  B is called the structure space of the 

manifolds M of degree g and dimension r.  We have already presented the totality of all 
structure points A as an algebraic manifold in B whose equations are: 

 
Tω(a) = 0. 

 
 One understands the term algebraic system of manifolds M to mean a set of manifolds 
M whose structure set in B is an algebraic manifold.  For example, the totality of all 

manifolds M (of given degree and dimension) is an algebraic manifold, and likewise for 
the totality of all M that lie on a given manifold N or contain a given manifold L.  These 
relations will then be expressed by the algebraic equations (10). 
 One can carry over the ideas and theorems that pertain to algebraic manifolds in this 
structure space to algebraic systems of manifolds with no further assumptions by means 
of the one-to-one map of the manifolds M to the points of a structure space B.  One can, 

e.g., decompose any algebraic system into irreducible systems, one can speak of the 
dimension and general element of an algebraic system; one has the theorem that an 
irreducible system of manifolds is determined uniquely by its general element, etc.  One 
can also consider correspondences between algebraic manifolds and other geometric 
objects and apply the principle of constant count.  For a closer treatment of these ideas, 
we refer to a paper of CHOW and VAN DER WAERDEN (1), and for applications, to 
other paper of the author (2). 

                                                
 (1 ) CHOW, W.-L and B. L. v. d. WAERDEN: “Zur algebraischen Geometrie IX,” Math. Ann.,, Bd. 113 
(1937). 
 (2 ) WAERDEN, B. L. v. d.: “Zur algebraischen Geometrie XI and XIV,”  Math. Ann.,, Bd. 114 and 
115. 



 

CHAPTER SIX 
 

The concept of multiplicity 
 
 

§ 38.  The concept of multiplicity and the principle of the conservation of count 
 

 We would like to examine the question: What happens to the solutions to a geometric 
problem under a specialization of the data of the problem? 
 Let the data of the problem be given by (homogeneous or inhomogeneous) 
coordinates xµ .  Let the desired geometric structure be given by one or more sequences 
of homogeneous coordinates yµ .  In order to have something specific in mind, we 
imagine that there is one sequence of homogeneous coordinates for the x, as well as the y, 
and correspondingly speak of the “point” x and “point” y.  These assumptions are not 
essential.  However, what is essential is another one that we shall now make: Let the 
geometric problem be given by a system of equations: 
 
(1)      fµ(x, y) = 0 
 
that are homogeneous (at least, in the y-coordinates).  We shall call such problems 
normal problems. 
 Equations (1) define an algebraic correspondence between the points x and y.  One 
can thus also define the normal problem by means of an algebraic correspondence; that 
definition will be equivalent to the previous one. 
 The point x may run through an irreducible manifold M.  For a general point ξ of this 
manifold, the problem may have at least one solution η with fµ(x, y) = 0.  The problem 
will then also have at least one solution y for each point x of M; if the resultant system 
that comes about from (1) by eliminating y is fulfilled for a general point of M then it will 
be fulfilled for each point of M.  Secondly, we assume that the problem has only finitely-
many solutions for a special point x of M.  Then, from Theorem 6 (§ 34), the problem 
will also have only finitely-many solutions for the general point ξ of M.  Let these 
finitely-many different solutions be η(1), …, η(h). 
 From a general theorem on relation-preserving specializations (§ 27), one can 
establish the relation-preserving specialization ξ → x by means of a relation-preserving 
specialization of the total system: 
 
(2)     ξ → x, η(1) → y(1), …, η(h) → y(h). 
 
We also express this as: “ η(1), …, η(h) will go to y(1), …, y(h) under the specialization ξ → 
x, ”  All y(k) will be solutions of the equations (1); the relations f(ξ,η(k)) = 0 must then 
remain preserved under any relation-preserving specialization.  However, it is not clear at 
this point whether one will obtain all solutions of the system of equations (1) in this way. 
 The points y(1), …, y(h) do not need to be all different; i.e., there can very well be some 
“overlapping” solutions under the specialization ξ → x, η(k), …, y(k).  The number that 
gives how often a particular solution y of the problem (1) will occur among the solutions 
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y(1), …, y(h) is called the multiplicity of this solution y under the relation-preserving 
specialization (2).  The sum of the multiplicities of all the solutions of the problem (1) is 
obviously equal to h; i.e., it is equal to the number of solutions of the problem for a 
general point ξ of M.  We thus obtain the principle of the conservation of count: The 
number of solutions of a normal problem is preserved under the specialization ξ → x, 
assuming that under this specialization one counts each solution as many times as its 
multiplicity. 
 In order for this principle to actually bear fruit, two conditions must generally be 
satisfied: First, the multiplicities must be determined uniquely through the specialization 
ξ → x alone (i.e., independently of how one specializes the solutions η(h)), and second, 
one must be certain that one obtains all solutions of the problem by the specialization (2); 
in other words, that no solution will take on multiplicity zero.  Now, the requirements are 
in no way fulfilled by themselves: One can very well give examples of normal problems 
in which the multiplicity is not unique or in which the solutions come about with 
multiplicity zero.  However, the following theorem gives a sufficient condition under 
which these untoward circumstances cannot happen. 
 
 Main theorem on multiplicities: 
 
 1.  If the (normalized) coordinates of the point ξ are rational functions of some 
algebraic independents under it, and these rational functions remain meaningful under 
the specialization ξ → x, then the specialized solutions y(1), …, y(h) will be determined 
uniquely by the specialization ξ → x, up to the sequence. 
 
 2. If, in addition, the correspondence defined by (1) is irreducible then each solution 
y of the problem (1) will appear among the solutions y(1), …, y(h) at least once. 
 
 Proof of 1:  The solutions y(1), …, y(h) that belong to a general x subdivide into a 
system of algebraically conjugate points.  It suffices to consider such a system η(1), 
…, η(h) and to prove that the relation-preserving specialization of this system is 
determined uniquely for ξ → x.  For the point η(1), there will be at least one coordinate – 
say (1)

0η  – that is non-zero; this coordinate is then non-zero for all conjugate points and 

can be set equal to one: ( )
0
νη = 1.  The coordinates ( )

0
νη  will then be algebraic quantities 

over the field K(ξ).  Let the coordinates ξ1, …, ξm be indeterminates, while the remaining 
ones are algebraic functions of them. 
 Furthermore, let u, u1, …, un be more indeterminates.  The quantity − (1)

1 1uη  − … 

− (1)
n nu η  will be algebraic over the field K(ξ, u) and will therefore be a zero locus of an 

irreducible polynomial G(u0) with coefficients in K(ξ1, …, ξm, u1, …, un).  In a suitable 
extension field, this polynomial will decompose completely into linear factors that are all 
conjugate to u0 + (1)

1 1uη + … + (1)
n nu η , and will thus have the form u0 + ( )

1 1u νη + … + 
( )

n nu νη : 
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(3)   G(u0) = h(ξ) ⋅ ( ) ( )
0 1 1( )n nu u uν ν

ν
η η+ + +∏ ⋯  = ( )( ) ( )h u ν

ν
ξ η∏ . 

 
 We think of the arbitrary factor h(ξ) as being determined in such a way that the 
polynomial G(u0) is not just rational, but integer rational in ξ1, …, ξm, and none of the ξ 
include factors that depend upon it alone; we then call it G(ξ, u).  G(ξ, u) is an 
indecomposable polynomial in ξ1, …, ξm , u1, …, un , and, from § 36, it is called the 
associated form of the point system η(1), …, η(k).  This associated form will now give the 
means of establishing the relation-preserving specialization of the point systems 
uniquely. 
 If we develop both sides of the identity (3) in products of powers of the u and equate 
the coefficients of this product of powers then one will obtain a system of relations: 
 
(4)      aλ(ξ) = h(ξ) bλ(η), 
 
from which, we will derive the homogeneous relations: 
 
(5)     aλ(ξ) bµ(η) − aµ(ξ) bλ(η) = 0. 
 
These homogeneous relations must remain valid under any relation-preserving 
specialization ξ → x, η(ν) → y(ν).  It will then follow that: 
 
(6)     aλ(x) bµ(y) − aµ(x) bλ(y) = 0. 
 
However, these relations state that the aλ(x) will be proportional to the bλ(y).  The bλ(y) 
are the coefficients of the form ( )( )u y ν

ν
∏ ; therefore, they do not all vanish.  Thus, it 

follows from (6) that: 
(7)      aλ(x) = ρ bλ(y). 
 
 However, this says that the aλ(x) will be coefficients of the form G(x, u): 
 
(8)      G(x, u) = ( )( )u y ν

ν
ρ∏ . 

 
 If we can still confirm that the form G(x, u) does not vanish identically then one must 
have ρ ≠ 0 in (8).  On the basis of the theorem of unique factorization, the linear factors 
on the right-hand side, and thus also the points y(1), …, y(h), are then determined uniquely, 
up to their sequence. 
 In order to confirm the non-vanishing of the form G(x, u), we replace the unknowns 
y0 , …, yn with indeterminates Y0, …, Yn and construct the resultant system of the forms 
fµ(ξ, Y) and the linear form (u Y) in the Y.  For special values of u, the forms R(ξ, u) of 
this resultant system will be zero if and only if the plane u goes through one of the points 
η(ν).  Therefore, the forms Rλ(ξ, u) will then be divisible by the linear forms (η(ν) u), and 
therefore their product, as well, and thus the form (3).  One sets ξ0 = 1 in R(ξ, u) and, on 
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the grounds of assumption 1, replaces the ξm+1 , …, ξn with rational functions of ξ1, …, 
ξm .  One then multiplies with a principal denominator (Hauptnenner) Nλ(ξ1, …, ξm) such 
that the product Nλ(ξ) Rλ(ξ, u) becomes integer rational in ξ1, …, ξn .  Since Nλ Rλ(ξ, u) is 
divisible by G(ξ, u), and since G(ξ, u) possesses no factor that depends upon just the ξ, 
the stated divisibility will also be valid in the domain of the polynomial in the ξ and u: 
 

Nλ(ξ) Rλ(ξ, u) = Aλ(ξ, u) G(x, u). 
 
This identity will remain valid under the replacement of ξ with x.  Now, if G(x, u) = 0 
were the case then, since Nλ(x) ≠ 0, it would follow that Rλ(x, u) = 0.  However, that is 
not the case, so the Rλ(x, u) will define the resultant system of the forms fµ(x, Y) and a 
linear form (u Y), and this will vanish for special values of u only when the plane u goes 
through one of the infinitely-many points y that satisfy the equations (1).  In fact, one will 
thus have G(x, u) ≠ 0, from which, the proof will be concluded. 
 
 Proof of 2: When the correspondence (1) is irreducible, any point-pair (x, y) will be a 
relation-preserving specialization of the general point-pair (ξ, η).  ξ will then be an 
arbitrary general point of M and η will be any of the associated points η(ν) − say, η = η(1).  
From § 27, the relation-preserving specialization (ξ, η) → (x, y) can be extended to a 
relation-preserving specialization (ξ, η(1), η(2), …, η(h)) → (x, y, y′, …, y″).  From the 
previously-proved uniqueness theorem (Part I of this proof), y, y′, …, y″ must agree with 
y(1), …, y(h) in some sequence.  Therefore, y must be one of the points y(1), …, y(h), which 
was to be proved. 
 
 It will follow from the theorem that was proved that the multiplicities of the 
individual solutions y of the problem (1) will be determined uniquely and positive, under 
the given assumptions. 
 Assumption 1 is fulfilled – e.g. – when M is the entire projective or multiply-
projective space; ξ1, …, ξm will then be simply the inhomogeneous coordinates of points 
ξ.  However, it will also be fulfilled when M is the totality of all subspaces Sd in Sn .  
Then, from § 7, all of the PLÜCKERIAN coordinates of such an Sd will then be rational 
functions of d(n − d – 1) of them. 
 The given assumptions may indeed be weakened, but not omitted completely.  In 
place of assumption 1, one might satisfy – e.g. – the weaker assumption that point x is a 
simple point of M (1).  Likewise, as the proof shows, one might satisfy, in place of 
assumption 2, the weaker assumption that the point-pair (x, y) is a relation-preserving 
specialization of any of the point-pairs (ξ, η(ν)).  However, if one makes absolutely no 
assumptions then both of assertions 1 and 2 will become false, as the following examples 
show: 
 
 Example 1.  The equations that arise from setting all two-rowed sub-determinants of 
the matrix: 

                                                
 (1) For the proof, cf., B. L. v. d. WAERDEN, “Zur algebraischen Geometrie VI,” Math. Ann. 110 
(1935), pp. 144, § 3. 
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0 1 2
2 2 3 3
0 1 0 1 0 1

x x x

y y y y y y+
 

 
equal to zero will define an irreducible (1, 1)-correspondence between the plane cubic 
curve: 

x0 x1 x2 = 3 3
0 1x x+  

 
and the y-lines.  A general point ξ of the curve will correspond to a single point η: 
 

η0 : η1 = ξ0 : ξ1 . 
 

The double point (0, 0, 1) of the curve, however, will correspond to two different y-points 
(0, 1) and (1, 0), which will both be relation-preserving specializations of the general 
point-pair (ξ, η).  The relation-preserving specialization will not be determined uniquely 
then, and the multiplicity of one of the solutions (0, 1) or (1, 0) can, from preservation, be 
set equal to zero or one. 
 
 Example 2.  Let there be given a binary bi-quadratic form: 
 
(9)     4 3 2 2 3 4

0 0 1 0 1 2 0 1 3 0 1 1 0a t a t t a t t a t t a t+ + + +  

 
(or, geometrically: a system of four points on a line).  We ask about all projective 
transformations: 

it′  = ∑ eik tk  

 
that transform the form (or the point-quadruple) into itself.  The problem may be 
paraphrased, with no further assumptions, in terms of homogeneous equations for the 
unknown coefficients e00, e01, e10, e11 ; one then needs only to define the coefficients of 
the transformed form and (by setting the two-rowed determinants equal to zero) express 
the idea that these should be proportional to the original coefficients a0, a1, a2, a3, a4 .  It 
is known that the problem has four solutions for a general form (9): There are four 
projective transformations that transform a general point-quadruple on the line to itself.  
(They define the KLEIN Vierergruppe.)  However, if the point-quadruple is a harmonic 
one, in particular (i.e., one with double ratio – 1), then there will be eight such 
transformations.  There will then be an involutory transformation that has two of the four 
points as fixed points, and one can then multiply it with the transformations of the 
Vierergruppe.  In the case of an equiharmonic quadruple (i.e., one with double ratio 
1 1
2 2 3± − ), there will indeed be twelve transformations of the quadruple into itself that 

permute them according to the alternating group.  The four (eight, resp.) new solutions to 
the problem that come about will obviously have multiplicity zero, now; they do not then 
go to one of the four solutions by a relation-preserving specialization in the general case.  
The assumption of irreducibility of the correspondence will not actually be fulfilled, here. 
 After these two unfavorable examples, we now give two other ones for which all of 
the assumptions for the application of the principle of the conservation of count are valid. 
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 Example 3.  Let an irreducible manifold M of dimension d in Sn be intersected with a 
subspace Sn−d .  From § 34, a general Sn−d will intersect the manifold M in infinitely-many 
points.  Now, when a special Sn−d likewise intersects the manifold M in only finitely-
many points x, each of them take will take on a well-defined multiplicity (viz., the 
multiplicity of the intersection point).  From the principle of conservation of the count, 
the sum of the multiplicities of all intersection points will be equal to the number of 
intersection points of M with the general Sn−d , and will thus be equal to the degree of the 
manifold. 
 We already saw the irreducibility of the correspondence between x and Sn−d in § 34 
when we gave a general pair (x, n dS∗

− ), from which, all of the pairs (x, Sn−d) with x on M 

and x in Sn−d would came about by a relation-preserving specialization.  The “method of 
problem inversion” that was used for this will also lead to very many other normal 
problems as its goal.  This is due to the fact that we did not start from a general Sn−d, but 
from a general point x of M, and we then draw the most general space n dS∗

−  through this 

point.  We thus do not start with the data of the normal problems, but with the solution, 
and then seek suitable − but as general as possible − data. 
 
 Moreover, since all of the assumptions of the main theorem are given, it will then 
follow that the multiplicities of the intersection points of M with any Sn−d are determined 
uniquely and positive. 
 
 The concept of the intersection point multiplicity can be carried over, with no further 
assumptions, to a decomposable, purely d-dimensional manifold M. 
 
 Example 4.  Let the problem be that of determining the lines on a third-degree 
surface.  We already saw in § 35 that the problem will lead to homogeneous equations in 
the PLÜCKERIAN coordinates of the lines.  We likewise saw that the correspondence 
that is defined by these equations will be irreducible.  A cubic surface is given by 20 
unrestricted, variable coefficients.  As we saw in § 35, there will be 27 different lines on a 
general cubic surface.  Naturally, under a relation-preserving specialization, intersecting 
lines will go to intersecting lines; in that sense, the configuration of the lines will remain 
conserved.  When only finitely-many lines lie on a special surface (i.e., when the surface 
is not a ruled surface), it then follows from the main theorem on multiplicities that each 
of these lines will preserve a certain positive multiplicity under this specialization and 
that the sum of these multiplicities will be equal to 27. 
 In connection with the most important example 3, we present the following 
definition: A point y of M is called a k-fold point of the manifold M when a general linear 
space Sn−d that goes through y intersects the manifold M at y with multiplicity k.  If k = 1 
then y will be called a simple point of M. 
 
 

§ 39.  A criterion for multiplicity one.  
 

 The main theorem on multiplicities that was proved in the previous paragraphs gave a 
criterion by which one could decide whether the solutions of a normal problem had 
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positive multiplicities in most of the important cases.  By an application of the principle 
of the conservation of count – in particular, “enumerative geometry” – it is, however, 
likewise important to have the means in hand to evaluate multiplicities as above.  The 
most important of these means is a theorem that says that under certain conditions the 
multiplicity of a solution will be ≤ 1.  With the help of this criterion and the main 
theorem on multiplicities, one can conclude that the multiplicity of a solution to a normal 
problem will be equal to exactly one.  From this, it will then follow from the principle of 
the conservation of count that the number of different solutions to the problem in the 
general case will be precisely equal to the number of solutions in the desired special case.  
The latter number is often easier to determine than the former one. 
 The criterion for multiplicity ≤ 1 rests upon the concept of the polar − or tangential − 
hyperplane to a hypersurface.  If y is a point of a hypersurface H = 0 and ∂k means the 
partial derivative with respect to yk then the polar or tangential hyperplane of H at the 
point y will be given by: 
(1)     z0 ∂0H(y) + z1 ∂1H(y) + … + zn ∂nH(y) = 0. 
 
From EULER’s theorem, the point y itself will lie in this hyperplane: 
 
(2)    m ⋅ H(y) = z0 ∂0H(y) + z1 ∂1H(y) + … + zn ∂nH(y) = 0. 
 
If one introduces inhomogeneous coordinates by means of y0 = z0 = 1 and one subtracts 
(2) from (1) then one will obtain the equation of the polar hyperplane in the form: 
 
(3)    (z1 – y1) ∂1H(y) + … + (zn – yn) ∂nH(y) = 0. 
 
The lines through y in the tangential hyperplane (1) will be the tangents to the hyperplane 
H at the point y.  In contrast to Chap. 3, we would like to also preserve this expression 
when y is a double point of H and therefore equation (1) is fulfilled in z identically: In 
this case, all of the lines through y should be called tangents to H at the point y. 
 The desired criterion then yields the following: 
 
 Theorem.  If a normal problem is given by the equations: 
 
      Hν(ξ, η) = 0, 

 
and two different solutions η′, η″ go to a single solution y under the relation-preserving 
specialization ξ → x then the specialized hypersurfaces: 
 
(4)      Hν(x, y) = 0 
 
will have a common tangent at the point z = y. 
 
 The proof rests upon the fact that the connecting line of η′ and η″ will go to a tangent 
under the specialization. 



170 VI.  The concept of multiplicity 

 We can assume that y0 ≠ 0: One will then also have 0η ′  ≠ 0 and 0η ′′ ≠ 0.  Thus, one can 

assume y0 = 0η ′  = 0η ′′ = 1.  We set: 

k kη η′′ ′−  = τk ; 

 
one will then have τ0 = 0, so τ is the ideal point of the connecting line η′, η″.  The 
relation-preserving specialization (ξ, η′, η″) → (x, y′, y″) can be extended to (ξ, η′, η″, τ) 
→ (x, y′, y″, t).  This yields the equations: 
 
     Hν(ξ, η′) = 0, 
     Hν(ξ, η″) = Hν(ξ, η′ + τ) = 0. 
 
The latter equation can be developed in powers of τ1, …, τn .  That will then yield: 
 

(5)    
1

( , )
n

k k
k

Hντ ξ η
=

′∂∑  + terms of higher degree = 0. 

 
In the terms of higher order, we can, in any event, keep a factor τk and further replace the 
τk in the remaining factors with k kη η′′ ′− .  With that, (5) will become homogeneous in τ1, 

…, τn .  If we also make (5) homogeneous in the η′ and η″ by the introduction of 0η ′  and 

0η ′′  then we will obtain an equation that is preserved under a relation-preserving 

specialization (ξ, η′, η″, τ) → (x, y, y, t).  The differences k kη η′′ ′−  (or, homogeneously, 

0kη η′′ ′ − 0kη η′ ′′ ), however, will vanish under the specialization since η′ and η″ will both go 

to y.  Therefore, all that remains of the entire equation (5) will be the first term: 
 

1

( , )
n

k k
k

t H x yν
=

∂∑ = 0. 

 
The tangential hyperplanes of the specialized hypersurface will then have a common 
(ideal) point t.  Since they will also have all of the (ideal) points y in common, they will 
have a common tangent, as we asserted. 
 The criterion for multiplicity one will then follow immediately from the theorem that 
we just proved: 
 
 If a normal problem fulfills the conditions for the main theorem on multiplicities and 
if the specialized hypersurfaces (4) have no common tangent at y then the solution y will 
have a multiplicity of precisely one. 
 
 Namely, two different solutions of the general problem cannot go to the same one 
under specialization. 
 The beauty of this criterion is that in order to apply it one needs only to focus one’s 
attention on the specialized problem (which is usually simpler than the general one); as 
for the general problem, all that one needs to know is that the assumptions for the 
application of the concept of multiplicity are valid. 
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 § 40.  Tangential spaces. 
 

 The concept of tangential space that was explained in § 9 for curves and in § 39 for 
hypersurfaces shall now be explained for arbitrary purely r-dimensional manifolds M in 
Sn . 
 Let y be a point of M.  We consider all of the tangential hyperplanes to all of the 
hypersurfaces through the point y that contain M.  In the event that this space has 
precisely the same dimension r as the manifold M itself, it shall be called a tangential 
space to M at the point y. 
 We now show that an irreducible manifold M will possess a tangential space at any 
general point ξ.  We normalize the point x to have ξ0 = 1 and assume that ξ1, …, ξr are 
algebraically independent quantities, so the remaining ones ξr+1, …, ξn will represent 
algebraic functions.  These algebraic functions can be differentiated; the derivative of ξk 
with respect to ξj will be denoted ξk,j .  We now consider the linear space Sr whose 
equations read (in inhomogeneous coordinates): 
 

(1)     

1 1 1,
1

,
1

( )

( ).

r

r r r j j j
j

r

n n n j r r
j

z z

z z

ξ ξ ξ

ξ ξ ξ

+ + +
=

=

 − = −



 − = −


∑

∑

⋯  

 
We would now like to show that this space Sr is precisely the tangential space, and thus, 
the intersection of the polar hyperplanes: 
 
(2)    (z1 – ξ1) ∂1 f (x) + … + (zn – ξn) ∂n f(x) = 0, 
 
where f = 0 are the equations of all M that include hypersurfaces.  We must then show, 
first, that Sr is included in this intersection, and second, that this intersection is included 
in Sr . 
 The fact that the space Sr is included in all hyperplanes (2) will emerge immediately 
when one substitutes (1) in (2).  The left-hand side of (2) will then be: 
 

   ,
1 1 1

( ) ( ) ( ) ( )
r n r

j j j k j j j k
j k r j

z f z fξ ξ ξ ξ ξ
= = + =

− ∂ + − ∂∑ ∑ ∑   

= ,
1 1

( ) ( ) ( )
r n

j j j k k j
j k r

z f fξ ξ ξ ξ
= = +

 − ∂ + ∂ 
 

∑ ∑ . 

 
 By differentiating the equation f(ξ) = 0 with respect to ξj, one will see, however, that 
the last bracketed expressions has the value zero. 
 We will show that the intersection of the hyperplanes (2) is included in Sr when we 
give n – r particular hyperplanes (2) whose intersection is precisely Sr .  To that end, we 
consider an irreducible equation that links ξr + i to ξ1, …, ξr : 
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(3)      fi(ξ1, …, ξr, ξr + i) = 0. 
 
The equation can be made homogeneous by the introduction of x0.  Since it is true for the 
general point of M, it will be true for all points of M; thus, fi = 0 will belong to the 
hypersurfaces that contain M.  Its polar hyperplane (2) reads: 
 

(4)    
1

( ) ( )
r

j j j i
j

z fξ ξ
=

− ∂∑  + (zr+i – ξr+i ) ∂r+i  fi(x) = 0. 

 
If one divides this by ∂r+i  fi then one will get: 
 

− ,
1

( )
r

j j r i j
j

z ξ ξ +
=

−∑ + (zr+i – ξr+i ) = 0, 

from the definition of ξr+i , j . 
 However, that is exactly what equations (1) amount to.  Therefore, the intersection of 
the polar hyperplanes (4) will be precisely the space Sr, from which the proof is 
concluded. 
 There then exists a tangential space Sr at a general point of M.  That is, the linear 
system of equations: 

z0 ∂0 f(x) + z1 ∂1 f(x) + … + zn ∂n f(x) = 0 
 

will have the rank n – r.  The rank cannot get smaller under specialization of ξ (since a 
sub-determinant that is zero cannot become non-zero).  If the rank becomes larger then 
the intersection of the polar hyperplanes will become a space Sq with q > r.  However, if 
the rank remains the same under specialization then the space M will have a tangent 
space Sr at the point y that will represent a relation-preserving specialization of the 
tangential space at the general point ξ. 
 The tangential space can be used for the application of the criterion of § 39 to 
advantage.  With the help of this criterion, we prove, e.g., the theorem: 
 
 If M possesses a tangential space Sr at the point y then y will be a simple point of M. 
 
 Proof:  If one draws a general linear space Sn−r through y then it will have only the 
point y in common with Sr .  Sn−r will be the intersection of r hyperplanes, and the 
tangential spaces to these hyperplanes at y will be the hyperplanes themselves; its 
intersection will then once more be Sn−r.  The intersection of the tangential hyperplanes of 
the hypersurfaces that contain M will be the tangential space Sr .  If one now regards the 
determination of the intersection points of Sr and M as a normal problem then the 
equations of this normal problem will be the equations of Sr and those of M, taken 
together.  The intersection of the polar hyperplanes of y relative to all of these equations 
will be the intersection of the Sr and Sn−r, and therefore only the point y itself.  Therefore, 
the solution y will have multiplicity one; i.e., y will be a simple intersection point of M 
and Sn−r .  The assertion will follow from this. 
 
 One also has the converse of this theorem: 
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 If y is a simple point of M then M will possess a tangential space at y. 
 
 Proof:  First, the theorem is true for hypersurfaces.  Namely, if y is a simple point of 
the hypersurface H = 0 then the equation H(y + λz) = 0 will have a simple root λ = 0 for a 
suitable z, so the derivative: 

( )
d

H y z
d

λ
λ

+ = 
0

( )
n

k k
k

z H y zλ
=

∂ +∑  

 
will be non-zero for λ = 0; i.e., the equation of the polar hyperplane of y: 
 

0

( )
n

k k
k

z H y
=

∂∑ = 0 

will not be fulfilled identically in z. 
 Now, let M be a purely r-dimensional manifold, and let y be a simple point of M.  We 
draw a space Sn−1 through y that intersects M at y only once.  Let its other intersection 
points with M be y2, …, yg .  We draw a Sn−r−1 in Sn−r that does not contain y2, …, yg .  One 
will ultimately choose an Sn−r−2 in Sn−r−1 that does not go through y.  If one now links all 
of the points of M with all of the points of Sn−r−2 then one obtains a projected cone K 
whose dimension equals n – 1, from the principle of constant count (1). 
 K is therefore a hypersurface.  If a general line S1 intersects K in just as many points 

as the connecting space of S1 and Sn−r−2 
has intersection points with M then the 
degree of K is equal to the degree of M.  If 
one chooses these lines especially so that 
the go through y and lie in Sn−r, but not in 
S n−r−1 , then one will see that y is a simple 
point of K.  The tangential space of K at y 
will be a hyperplane through Sn−r−1 whose 
intersection with Sn−r is precisely Sn−r−1 . 
 If one now rotates Sn−r-1 around y 
without leaving the space Sn−r then the 

intersection of all of these spaces Sn−r-1 will be just the point y.  Therefore, the tangential 
hyperplanes of all of the cones K will have only the point y in common with Sn−r .  
Therefore, the intersection of these tangential hyperplanes will be a linear space whose 
dimension does not amount to more than r, which was to be proved. 
 
 

                                                
 (1) More precisely: One associates every point x of M with all points z of the connecting space of z with 
Sn−r−2 .  With this, a correspondence will be defined that decomposes into just as many irreducible pieces as 
the manifold M.  From the principle of constant count, the dimension of the image manifold, and thus, the 
totality of all points z, will be equal to: 

r + (n – r – 1) = n − 1. 
 

 By the way, for a suitable choice of coordinates, the cone K will benothing but the one that was used in § 
32 (viz., the representation of manifolds as partial intersections of cones and monoids). 

 

Sn−r 

Sn−r−1 
Sn−r−2 

y 

M 

y2 



174 VI.  The concept of multiplicity 

§ 41.  Intersection of manifolds with special hypersurfaces.  BEZOUT’s theorem. 
 

 Let C be an irreducible curve, H, a general hypersurface of degree g, and H′, a special 
one, where we assume that H′ does not contain the curve, so it has only finitely many 
points in common with it.  Let η(1), …, η(h) be the intersection points of C and H.  Under 
the specialization H → H′, η(1), …, η(h) will go to y(1), …, y(h) in a relation-preserving 
manner, and any intersection point y of C and H′ will obtain a uniquely determined 
multiplicity under the specialization that we shall call the intersection point multiplicity 
of y as the intersection point of C and H′. 
 
 The intersection point multiplicity is always positive. 
 
 Proof.  From the criterion of § 38, it will suffice for us to show that the 
correspondence between the hypersurfaces H′and their intersection points y with C is 
irreducible.  That is, however, clear (and was already pointed out in § 34); one then 
obtains a general pair of this correspondence when one draws the most general 
hypersurface H through a general point ξ of C. 
 
 In precisely the same way, one proves, more generally, that only points with positive 
multiplicity will appear in the intersection of a d-dimensional manifold M with d 
hypersurfaces that intersect M in only finitely many points and are thought of as arising 
from the specialization of general hypersurfaces.  One also calls these multiplicities 
intersection point multiplicities. 
 
 From this fact, follows a: 
 
 Dimension theorem.  The intersection of an irreducible d-dimensional manifold M 
with a hypersurface H′ that does not contain M will contain only components of 
dimension d – 1. 
 
 Proof.  Suppose that the intersection D has an irreducible component D1 of dimension 
< d – 1.  Let y be a point of D1 that does not belong to one of the other irreducible 
components D2 …, Dr of D (e.g., a general point of D1).  One draws d − 1 hyperplanes 

1U ′ , …, 1dU −′  through the point y that intersect D in only finitely-many points, moreover.  

Of these intersection points, now, the point y has multiplicity zero.  Then, if H is a 
general hypersurface, and U1, …, Ud−1 are general hyperplanes then one can perform the 
relation-preserving specialization H → H′, Ui → iU ′  in two steps: First, one specializes H 

→ H′ such that (U1, …, Ud−1) → ( 1U ′ , …, 1dU −′ ).  Under the first specialization, the 

intersection points η(1), …, η(h) of M, H, U1, …, Ud−1 go to intersection points ζ(1), …, ζ(h) 
of M, H′, U1, …, Ud−1, and thus, of D, U1, …, Ud−1 .  On dimensional grounds, when D1 
has no points in common with the general hypersurfaces U1, …, Ud−1, none of these 
points will lie on D1.  Thus, ζ(1), …, ζ(h) will all lie in the union D2 + … + Dr .  That will 
remain true, however, when one specializes U1, …, Ud−1 to 1U ′ , …, 1dU −′ , moreover. ζ(1), 

…, ζ(h) will then go to points y(1), …, y(h) that lie on D2 + … + Dr, and therefore y will not 



§ 41.  Intersections of manifolds with special hypersurfaces.  BEZOUT’s theorem.              175 

appear among them.   On the other hand, as we have seen, any intersection y will have a 
positive multiplicity.  The contradiction will prove that our assumption was false. 
 
 The dimension theorem that was just proved is a special case of a general theorem on 
the intersection of two manifolds of dimensions r and s with r + s > n, which is, however, 
essentially more difficult to prove (1). 
 We now turn to the case of a curve that intersects a hypersurface and prove 
“BEZOUT’s theorem,” as it relates to this case: 
 
 The number of intersection points of an irreducible curve C with a general 
hypersurface H is equal to the product g γ of the degrees of C and H. 
 
 Proof.  Consider the irreducible correspondence that associates each point y of C with 
all hyperplanes v that go through y.  One will obtain a general pair (η, u) of the 
correspondence when one either draws the most general hyperplane through a general 
point η of C or when one starts with a general hyperplane u and chooses any of the 
intersection points of u with C for η.  From the first way of picturing the general point-
pair (η, u), one will learn that the hyperplane u does not contain the tangent to the curve 
C at the point η, but has only the point y in common with it.  It will follow that the same 
will also be true for the second way of generating a general point-pair, so the algebraic 
properties of the general pair will always be the same.  It then follows that: A general 
hyperplane has only one point in common with the curve tangent to its intersection point 
with the curve C. 
 Furthermore, by a relation-preserving specialization, we go from the general 
hypersurface H to a hypersurface H′ that decomposes into mutually independent general 
hyperplanes L1, …, Lγ at γ.  The number of intersection points η of C with H′ is obviously 
equal to g γ.  The multiplicities of these intersection points η are, on the one hand, 
positive, but on the other hand, from the criterion of § 39, also not greater than one, since 
otherwise the tangential space of the curve at the point η (cf., § 40) would have at least 
one line in common with the polar hyperplane of η relative to H′.  If η is, perhaps, a point 
of L1, then the polar hyperplane of η relative to H′ will also be L1, and L1 will have only 
one point η in common with the tangent of the curve.  The multiplicities of the 
intersection points η will all be equal to one.  From the principle of the conservation of 
count, the number of intersection points of H and C will now be also equal to g γ now, 
which was to be proved. 
 
 Generalization.  The intersection of an irreducible manifold M of degree γ with a 
general hypersurface of degree g has degree g γ. 
 
 Proof.  M has the dimension d, so the intersection with H will have dimension d – 1.  
If one intersects M with d – 1 general hyperplanes then, from § 33, one will obtain an 
irreducible curve of degree γ.  From BEZOUT’s theorem, this will intersect H in g γ 

                                                
 (1) See B. L. v.d. WAERDEN: “Zur algebraischen Geometrie XII,” Math. Ann., Bd. 115, pp. 330. 
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points.  The intersection of M and H will cut the general space Sn−d+1 in gγ points, which 
was to be proved. 
 Repeated application yields: 
 
 The intersection of an irreducible d-dimensional manifold of reduced degree γ with k 
≤ d general hypersurfaces of degrees e1, …, ek will have degree γ e1, …, ek .  In the case 
where k = d, it will then consist of γ e1, …, ek  points. 
 
 If one goes from the hypersurfaces H1, …, Hk to the special hypersurfaces 1H ′ , …, 

kH ′  then the intersection M ⋅ 1H ′  … kH ′  might decompose into the irreducible 

components I1, …, Ir .  None of them will have a dimension that is < d – k.  We will 
assume that they all have precisely the dimension d – k. 
 We would now like to define the multiplicity or intersection multiplicity of an 
irreducible component Iν that has dimension d − k.  To that end, we add d − k general 
hyperplanes L1, …, Ld−k that cut Iν in gν conjugate points.  Any of these intersection might 
have the multiplicity µν , since they are the intersection points of M, H1, …, Hk, L1, …, 
Ld−k .  We call them the intersection multiplicities of Iν . 
 The number gν is the number of intersection points of Iν with L1, …, Ld−k, so it is the 
degree of Iν .  The sums of the multiplicities of all conjugate intersections of Iν , L1, …, 
Ld−k is gν µν so the sum of the multiplicities of M, H1, …, Hk, L1, …, Ld−k will be equal ∑ 
gν µν .  On the other hand, this sum is equal to γ e1 e2 … ek .  It will then follow that: 
 
 The sum of the degree of the irreducible components of the intersections M 1H ′  
… kH ′ , multiplied by their multiplicities, is equal to the product of the degrees of M and 

1H ′  … kH ′ : 

∑ gν µν  = γ e1 e2 … ek . 
 

 One can generalize from this theorem in two directions.  First, one can carry it over to multiply 
projective spaces, as was done in “Zur algebraischen Geometrie I,” Math. Ann., Bd. 108, pp. 121.  Second, 
one can also apply it to manifolds of arbitrary dimensions in projective Sn (cf., Zur algebraischen Geometrie 
XIV, Math. Ann., Bd. 155, pp. 619). 
 
 Problem.  Show that the multiplicities of the irreducible intersection components that one obtains 

when one first intersects M with 
1

H ′  and then the individual intersection components with 
2

H ′  will be the 

same as their multiplicities as components of the intersection M
1

H ′
2

H ′ .  [The method of proof will be the 

same as for the dimension theorem: The specialization (H1, H2) → (
1

H ′ ,
2

H ′ ) can also be performed in two 

steps.] 
 
 The connection of these paragraphs with the previous one in § 17 can be exhibited by 
the following theorem: 
 
 In the case of two plane curves, the multiplicities for the intersection points that were 
defined in § 17 will coincide with the ones that were defined here. 
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 Proof.  First, let one of the two curves be a general curve H of the degree in question.  
From “BEZOUT’s theorem” that we proved in these paragraphs the number of 
intersection points will then be equal to the product of the degree numbers.  The sum of 
the intersection point multiplicities that was defined in § 17 will be, however, equal to the 
product of the degrees: These multiplicities must then be equal to one.  The resultant R(p, 
q) that was defined in § 17 will thus have the following factor decomposition with the 
exponents one: 
(1)      R(p, q) = ( )( )c p q sν

ν
∏ . 

 
If one now goes from the general curve H to a special curve H′ by a relation-preserving 
specialization then the factor decomposition (1) will remain preserved [cf., the 
corresponding consideration in § 38, formulas (3) to (8)].  The multiplicities that are 
defined by the relation-preserving specialization will then agree with the ones that 
emerge from the factor decomposition of R(p, q), which was to be proved. 
 
 In conclusion, we prove the theorem: 
 
 If f and g are forms of equal degree, the second of which (but not the first) is zero on 
the irreducible manifold M, then the intersection of M with the hypersurface f = 0 will 
agrees precisely with the intersection of M with f + g = 0, and also as far as the 
multiplicities of the irreducible components are concerned. 
 
 Proof.  M again has the dimension d.  If g is zero on M then one will also have f + g = 
0 an the points of M where f = 0, and conversely.  By the definition of multiplicities of 
the irreducible components of the intersection of M with f = 0, we must next add d – 1 
general hyperplanes L1, …, Ld−1 and then produce the hypersurface f = 0 by specializing a 
general hypersurface F = 0; the relation-preserving specialization of the intersection 
points will then provide the desired multiplicities.  We now perform the specialization in 
two steps: First, we let F go to f + λg, where λ is an indeterminate, and then we specialize 
λ → 0, or λ → 1, if we would like to have f + g instead of f.  As a point set, the 
intersection of M with f + λg = 0 will again be the same as that of M with f = 0.  The 
intersection points of M with L1, …, Ld−1, f + λg = 0 (which will be independent of λ) will 
have certain multiplicities for undetermined λ, which can be determined as exponents in a 
certain factor decomposition, and there will then be no other functions of λ besides whole 
numbers.  These multiplicities cannot change under the specializations λ → 0 or λ → 1, 
since they do not depend upon λ at all.  The assertion follows from this. 
 
 



 

CHAPTER SEVEN 
 

Linear families 
 

§ 42.  Linear families on an algebraic manifold. 
 

 Let M be an irreducible (1) algebraic manifold of dimension d in a space Sn .  Let a 
linear family of hypersurfaces: 
 
(1)     λ0 F0 + λ1 F1 + … + λr Fr = 0    (r ≥ 0) 
 

be so arranged that no hypersurface of the family contains the entire manifold M.  The 
hypersurfaces (1) will then cut certain submanifolds Nλ of dimension d – 1 out of M.  
From § 41, the irreducible components of Nλ will be endowed with certain multiplicities 
(viz., intersection multiplicities).  If one varies λ0, …, λr then Nλ will run through a 
collection of manifolds that one calls a linear family of dimension r. 
 The definition above will now be extended to something more convenient by adding 
an arbitrary fixed (i.e., independent of λ) manifold that lies on M and has the same 
dimension as it, with arbitrary (positive or negative) multiplicities to the manifolds Nλ , or 
also by dropping a fixed component of Nλ that is perhaps present. 
 In order to make that more precise, we define: A sum of irreducible manifolds of the 
same dimension that are endowed with positive or negative multiplicities is called a 
virtual manifold.  If the multiplicities are all positive then one will have an effective 
manifold.  Any set of effective manifolds will possess a (possibly empty) greatest 
common submanifold of the same dimension that will consist of the irreducible 
components that are common to all of the manifolds in the set, each of which will have 
the lowest multiplicity with which it enters into any manifold of the set. 
 Let A be the largest common submanifold to all of the intersection manifolds Nλ that 
are cut out of the M by the hypersurfaces (1).  If one then sets Nλ = A + Cλ then the Cλ 
will define a linear family with no fixed component.  Furthermore, if B is an arbitrary, 
virtual manifold of dimension d − 1 in M then the sums B + Cλ will define the most 
general linear family with the fixed component B.  With this definition, the components 
with negative multiplicities can therefore only be included in the fixed component B, but 
not in the varying part Cλ . 
 
 Example 1.  Let M be a plane, cubic curve with a double point.  Let the hypersurfaces 
(1) be the lines through the double point.  The manifolds Nλ consist of the doubly-
counted double point and the moving point Cλ .  After dropping the doubly-counted 
double point, we will obtain a linear family with no fixed component whose elements are 
the single points of the curve.  The double point appears twice as an element of the family 
(corresponding to the double tangents). 

                                                
 (1) One can also drop the irreducibility condition when explains the concept in a somewhat different 
way.  Cf., on that, F. Severi, “Un nuovo campo di ricerche,” Mem. Reale Accad. d’Italia, v. 3 (1932). 
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 Such a linear family of single points is not possible on a double-point-free, plane, 
cubic curve.  If the hypersurface (1) has degree m then and carries 3m – 1 intersection 
points with the curve then, from § 24, the 3mth intersection point will then be determined 
uniquely.  In this case, the moving part Cλ of a linear family will then consist of at least 
two points. 
 
 Example 2.  Let M be a quadratic surface in Sn .  Let the hypersurfaces (1) be planes 
through a line A that lies on the surface.  The manifolds Nλ consist of that line A and 
some varying lines Cλ .  If M is a cone then all generators of the cone will run through 
Cλ ; if M is not a cone then one of the two families of lines of the quadric M will run 
through Cλ .  These two families of lines will then be linear families. 
 
 We now drop the assumption that no hypersurface of the family (1) contains the 
manifold M.  Perhaps t linearly-independent forms of the family (1) might contain M;  we 
can assume that they are Fr−t+1, …, Fr .  Any hypersurface (1) will then have precisely the 
same intersection with M as the hypersurface: 
 
(2)     λ0 F0 + λ1 F1 + … + λr−1 Fr−1 = 0, 
 

so the rest of the sum on the left-hand side of (1) will indeed become zero on M (1).  
However, the hypersurfaces (2) cut a linear family of dimension r – 1 out of M.  It 
follows from this that: 
 
 Theorem 1.  A linear family of forms (1) of dimension r in which t linearly-
independent forms contain M will cut a linear family of dimension r – 1 out of M. 
 
 The dimension r of a linear family can be characterized by intrinsic properties of the 
family; it thus does not depend upon which hypersurfaces cut out the family. 

 Namely, let P1 be a point of M that is not a basis point for the family of hypersurfaces 
(1).  If one then wishes to look for those manifolds Cλ in the family that include the 
points P1 then one must substitute the point P1 in equation (1).  That will yield a linear 
equation for the parameters λ0, …, λr, and thus, a linear sub-family of dimension r – 1.  If 
one now chooses a second point P2 that is not a basis point for this sub-family and 
proceeds in that way up to Pr then one will ultimately obtain a sub-family of dimension 0, 
and thus, a fixed element Cλ of the original family that includes the points P1, …, Pr .  It 
then follows that: 
 
 Theorem 2.  The dimension r of a linear family is equal to the number of arbitrary 
points through which an element of the family is determined. 
 
 Corollary.   The dimension of a linear family of point-groups on a curve is at most 
equal to the number of variable points in a point-group of the family. 

                                                
 (1) Cf., the last theorem in § 41. 
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 In the sequel, Λ will denote a sequence of undetermined quantities Λ0, …, Λr .  The 
associated element CΛ (B + CΛ, resp., when the family contains a fixed component B) will 
be called the general element of the linear family. 
 
 Theorem 3.  A linear family is determined by its general elements B + CΛ, 
independently of the family of forms (1). 
 
 Proof.  By intersecting M with a general, linear space Sn−d+1, the dimension of M can 
be reduced to one, the dimension of B + CΛ, to zero, and the dimension of any special 
element B + Cλ of the family to zero, in any case.  However, if the intersection of B + Cλ 
with a general, linear Sn−d+1 is known then the manifold B + Cλ itself will also be known.  
We can then restrict ourselves completely to the case of a curve (d = 1).  With that, 
Theorem 3 then comes down to the following one: 
 
 Theorem 4.  Let a linear family be given on a curve M.  Its general element B + CΛ, 
just like any special element B + Cλ , will then be a point-group (i.e., a zero-dimensional 
manifold) on M.  The points of B + Cλ will then emerge from the points of B + CΛ through 
the relation-preserving specialization Λ → λ. 
 
 Proof.  We set: 
     FΛ = Λ0 F0 + Λ1 F1 + … + Λr Fr , 
     Fλ = λ0 F0  + λ1 F1  + … + λr Fr , 
 
and understand F to be a general form of the same degree as Fλ and FΛ .  The 
multiplicities of the points of NΛ (viz., the intersection of M with FΛ) will be defined by 
the relation-preserving specialization F → FΛ ; likewise, the multiplicities of the points of 
Nλ will be defined by the specialization F → Fλ .  The last specialization can be 
performed in two steps: F → FΛ and F → Fλ .  Thus, NΛ will go to Nλ precisely under the 
relation-preserving specialization Λ → λ.  That will remain valid when the fixed points A 
are dropped, and if new fixed points B are added then these fixed points will remain 
simply unchanged under the relation-preserving specialization.  Thus, B + CΛ will go to B 
+ Cλ under the relation-preserving specialization Λ → λ. 
 The linear family whose general element is CΛ will be denoted by | CΛ |. 
 
 Problems.  1.  A linear family of point-groups on a curve is an irreducible system of zero-dimensional 
manifolds, in the sense of § 37.  (One employs Theorem 4 and the method of § 38.) 
 2. A linear family of (d − 1)-dimensional manifolds on Md is an irreducible system, in the sense of § 
37.  (One uses problem 1.) 
 

 Any effective, linear family | B + CΛ | is connected with an algebraic correspondence 
between the parameter values λ and the points η of B + Cλ .  This is seen most easily with 
the linear family of the complete intersections Nλ of (1) with M; the associated 
correspondence is, in fact, defined by the equations of M: 
 
(3)      gr(η) = 0, 
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and through the equation of the hypersurface Fλ : 
 
(4)    λ0 F0(η) + λ1 F1(η) + … + λr Fr(η) = 0. 
 
 We now first cease to consider all of the basis points of the hypersurfaces (1), and 
then seek to get all of the remaining pairs of the correspondence from a general pair (λ*, 
ξ).  To that end, let ξ be a general point of M, and let λ* be the general solution of the 
linear equation: 
(5)     0 0 1 1( ) ( ) ( )r rF F Fλ ξ λ ξ λ ξ∗ ∗ ∗+ + +⋯  = 0. 

 
 We now assert: All pairs (λ, η) of the correspondence that is defined by (3), (4) for 
which not all Fν(η) = 0 are relation-preserving specializations of the general pair (λ*, ξ). 
 
 Proof.  Let F0(η) ≠ 0.  If a relation H(λ*, ξ) = 0 is true then we set: 
 

(6)     0λ∗  = 1 1

0

( ) ( )

( )
r rF F

F

λ ξ λ ξ
ξ

∗ ∗+ +
−
⋯

 

 
in it; it will then be fulfilled by 1λ∗ , …, rλ∗  identically.  From now on, we replace the 

general point ξ of M with a special point η.  Finally, we replace 1λ∗ , …, rλ∗  with λ1, …, λr 

.  Due to (4), one will have: 

1 1

0

( ) ( )

( )
r rF F

F

λ η λ η
η

+ +
−
⋯

 = λ0, 

 
so one can once more subsequently cancel the substitution (6).  It will then follow that 
H(λ, η) = 0.  Thus, (λ, η) will be a relation-preserving specialization of (λ*, ξ). 
 The general pair (λ*, ξ) defines an irreducible correspondence K.  Under this 

correspondence, a general point Λ will correspond to a relatively irreducible manifold of 
points η of dimension d – 1, which, from what was just proved, will include at least all 
points of N = A + CΛ that are not basis points of the family (1).  The irreducible 
components of NΛ that consist of nothing but such basis points will be fixed, and will thus 
be components of A.  From what was just said, the remaining irreducible components of 
NΛ will all be contained in a single, irreducible manifold of dimension d – 1, and will thus 
be identical with it.  Therefore, CΛ will consist of only a single irreducible component.  
Furthermore, if Ξ is a general point of CΛ then (Λ, Ξ) will be a general pair of the 
correspondence K that must agree with the pair (λ*, ξ) in all of its algebraic properties.  

With that, we have proved: 
 
 Theorem 5.  The general element CΛ of a linear family with no fixed component is 
irreducible over the field K(Λ).  If Ξ is a general point of CΛ then the point pair (Λ, Ξ) 
will agree with the pair (λ*, ξ) in all of its algebraic properties.  It is then completely 
irrelevant whether one first chooses a general point ξ of M and draws the most general 
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element C
λ∗  of the linear family | CΛ | through it, or starts with the general element CΛ of 

the linear family and chooses a general point Ξ on it. 
 We now go from the general element CΛ of the linear family to any special element 
Cλ and prove: 
 
 Theorem 6.  The irreducible correspondence K that is defined by the general element 

(λ*, ξ) or (Λ, Ξ) associates any value λ with the point Cλ precisely.  That then means: A 
pair (λ, η) is a relation-preserving specialization of (Λ, Ξ) if and only if η is a point of Cλ. 
 
 Proof. 
 
 1.  Let η be a point of Cλ , and thus, a point of an irreducible component 1Cλ  of Cλ .  

Let η* be a general point of 1Cλ .  η will then be a relation-preserving specialization of η*.  

It will then suffice to prove that (λ, η*) is a relation-preserving specialization of (Λ, Ξ). 
 One can obtain η* as the intersection point of 1Cλ  and a general linear space Sn−d+1 .  

The dimension of M will be reduced by 1 by intersecting it with Sn−d+1 .  M will then go to 
a curve M, from which a linear family of point-groups will be cut by the hypersurfaces 
(1).  From Theorem 4, any special point-group of this family will emerge from the 
general point-group of the family by a relation-preserving specialization.  Thus, (λ, η*), 
and therefore also (λ, η), will be a relation-preserving specialization of (Λ, Ξ). 
 
 2. Let (λ, η) be a relation-preserving specialization of (Λ, Ξ).  Thus, Ξ can again be 
described as one of the intersection points of CΛ with a general linear space Sn−d+1 .  We 
now also draw a linear space 1n dS − +′  through η that intersects Nλ only at finitely many 

points; e.g., when we connect η with n – d + 1 general points of the space Sn .  As one 
easily sees, one will then have a relation-preserving specialization: 
 

(Λ, Ξ, Sn−d+1) → (λ, η, 1n dS − +′ ). 

 
If Ξ(1), …, Ξ(g) are all intersection points of CΛ with Sn−d+1 then one can extend this 
relation-preserving specialization to a similar specialization of all intersection points: 
 

(Λ, Sn−d+1, Ξ(1), …, Ξ(g)) → (λ, 1n dS − +′ , η(1), …, η(g)). 

 
Thus, Ξ(1), …, Ξ(g) will be solutions to a normal problem into which Λ and Sn−d+1 enter as 
data, and which will also possess only finitely-many solutions under the specialization 
(Λ, Sn−d+1) → (λ, 1n dS − +′ ), since, in fact, Nλ has only finitely-many intersection points with 

1n dS − +′ .  The relation-preserving specialization will be determined from the main theorem 

of § 38. 
 We can do this in steps, if we first let Λ go to λ and then Sn−d+1 to 1n dS − +′ .  From 

Theorem 4 (when applied to the intersection curve of M with Sn−d+1), under the first step, 
the intersection point of CΛ and Sn−d+1 will go to that of Cλ and Sn−d+1 .  Under the second 
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step, the points of Cλ must remain on Cλ, since λ will no longer vary.  Thus, η(1), …, η(g) 
will all be points of Cλ ; in particular, η will be a point of Cλ . 
 
 

§ 43. Linear families and rational maps. 
 

 The preeminent importance that linear families possess in algebraic geometry is, 
above all, based upon the fact that they mediate rational maps. 
 We first consider a one-dimensional family | CΛ | with no fixed component that might 
be defined by the family of forms: 
(1)      λ0 F0 + λ1 F1 = 0. 
 
If η is a point of Cλ that does not belong to the basis manifold F0 = F1 = 0 then it will 
follow from (1) that: 

(2)      − 1

0

λ
λ

 = 0
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A rational function on M: 

(3)      ϕ(η) = 0
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( )

F

F

η
η

 

 
will then belong to a linear family, which is naturally defined only where its numerator 
and denominator do no both vanish.  In particular, that will be the case for any general 
point of M.  This rational function will bring about a map of M onto a straight line.  If the 
denominator is zero, but not the numerator, then the image point will be the imaginary 
point of the straight line. 
 The locus of points η of M at which the function ϕ(η) assumes a well-defined value: 
 

λ = − 1

0

λ
λ

 

 
(which can also be ∞) will be precisely the manifold Cλ .  This locus will then be given 
by equation (1), in which the points with F0(η) = F1(η) = 0 will once more be omitted 
from consideration. 
 For example, if M is a curve then ϕ(η) will be a rational function on the curve that 
assumes a well-defined value at every point, with finitely-many exceptions.  (Indeed, one 
can ignore these exceptions by invoking the concept of a branch; the function will assume 
a well-defined value on any branch).  For a fixed λ, the function will have finitely-many 
λ-points, at which it takes on the value λ, namely, the points of the point-group Cλ .  
When λ varies, this point-group will run through the linear family | CΛ |. 
 We now go on to the general case of a linear family | CΛ | that is defined by the family 
of forms: 
(4)     λ0 F0 + λ1 F1 + … + λr Fr = 0. 
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We next once more omit all points of M at which all Fr become zero; in particular, the 
fixed components of the linear family that is defined by (4) will drop out of the analysis. 
 If one now poses the condition for a point η of M that the element Cλ should contain 
the point η then one will obtain a linear equation for λ0, …, λr : 
 
(5)     λ0 F0(η) + λ1 F1(η) + … + λr Fr(η) = 0. 
 
The coefficients of this linear equation can be regarded as coordinates of a point η′ in the 
space Sr , which will be: 
(6)      jη ′  = Fj(η)   (j = 0, 1, …, r). 

 
 Since (6) is especially meaningful when η is a general point of M, and since a 
rational map is determined by the map of a general point of M, to begin with, (6) will 
define a rational map of M into Sr . 

 In order to determine the map numerically, one must know the forms F0, …, Fr .  For 
the geometric determination of the map, however, it will suffice for one to know the 
manifold Cλ for each value of λ.  One can then pose the linear condition in λ for Cλ to 
contain the point η for any general point η.  However, from § 42, Theorem 3, in order to 
establish the Cλ, it will suffice to know the general element CΛ of the linear family.  It 
will then follow that: 
 
 Two linear families will define the same map if their general elements CΛ agree with 
each other when one omits their fixed components. 
 
 The converse of this theorem is also true: If two linear families define the same map 
of M into Sr then they will agree with each other, except on their fixed components. 
 
 Proof.  Let the two families be given by: 
 
(7)     λ0 F0 + λ1 F1 + … + λr Fr = 0, 
(8)     λ0 G0 + λ1 G1 + … + λr Gr = 0. 
The corresponding maps: 
      jξ ′  = Fj(ξ), 

      jξ ′  = Gj(ξ), 

 
resp., of a general point ξ of M must then coincide; i.e., one must have: 
 

F0(ξ) : F1(ξ) : …: Fr(ξ) = G0(ξ) : G1(ξ) : …: Gr(ξ), 
 
or, what amounts to the same thing: 
 

F0(ξ) Gj(ξ) − G0(ξ) Fj(ξ) = 0   (j = 1, …, r). 
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This equation, which is valid for the general point ξ, must be true for any point of M: 
 
(9)     F0 Gj − G0 Fj = 0 on M. 
 
If one now multiplies equation (7) by G0, and similarly multiplies (8) by F0, then only the 
fixed components of the two linear families will change, and one will get: 
 
(10)    λ0 G0 F0 + λ1 G0 F1 + … + λr G0 Fr = 0, 
(11)    λ0 F0 G0 + λ1 F0 G1 + … + λr F0 Gr = 0. 
 
On the basis of (9), (10) and (11) will define precisely the same intersection with M.  
Thus, the two linear families will coincide, up to fixed components. 
 The forms of equal degree F0, …, Fr in (4) were entirely arbitrary, up to the condition 
that no linear combination λ0 F0 + λ1 F1 + … + λr Fr should be equal to zero on all of M.  
For the map (6), that would means that no linear equation with constant coefficients 
should exist between the jη ′ ; in other words, that the image manifold should not be 

contained in a proper linear subspace of Sr .  We can then summarize what we have 
proved up to now in the theorem: 
 
 Any rational map of M into Sr for which the image manifold M′ does not lie in a 
proper linear subspace of Sr will correspond to a unique linear family on M, and 
conversely. 
 
 This map (6) does not need to be birational; indeed, M can get mapped to a lower- 
dimensional image manifold M′.  If r = 0 then the map will become trivial: It will map M 
to a single point P0 . 
 If two manifolds M1 and M2 are mapped to each other birationally then each rational 
map of M1 will correspond to a rational map of M2, and conversely.  Now, since rational 
maps are facilitated by linear families, it will follow that: 
 
 Any linear family with no fixed components on M1 will be in one-to-one 
correspondence with a similar linear family on M2 . 
 
 The one-to-one correspondence does not extend to the fixed components.  For 
example, if M1 is a cubic curve with a double point, and M2 is a line onto which M2 can 
be mapped birationally by projecting its points from the double point then the double 
point itself will correspond to two points on M2 . If the double point then enters into a 
linear family as a fixed point then one will not know which point of M2 one should make 
it correspond to.  In order to make the one-to-one transformation of individual points 
possible, one must next decompose the multiple points into their individual branches, and 
then consequently speak, not of the points of M1, but of the branches.  For d-dimensional 
manifolds, one can also correspondingly decompose the singular (d – 1)-dimensional 
submanifolds into several “sheets.”  Therefore, we will first consider this modification of 
the concept of linear family later.  For the time being, we take the manifold M to be such 
as it is, and we can, as a result, define a birational transformation only for linear families 
without fixed components. 
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  Problem.  1.  If M1 is mapped to M2 birationally then every linear family without fixed components on 
M2 will correspond to a unique family of that kind on M1 . 
 2. If the linear family on M2 in prob. 1 is cut out by the family of forms ∑ λk Fk , and the map of M1 

to M2 is defined by 
j

ξ ′  = ϕj(ξ) then one will obtain the corresponding linear family on M1 by replacing the 

variables in the form ∑ λk Fk with the forms ϕj . 
 3. What linear family mediates the projection of M from a subspace Sk−1 to a subspace Sn−k of Sn? 
 4. What map of the plane will be mediated by a net of conic sections with three basis points?  (One 
chooses the basis points to be the corners of the coordinate triangle.) 
 

 An element Cλ of the linear family (4) will correspond to the intersection of M′ with a 
hyperplane whose coordinates are λ0, …, λr under the map (6); it will then follow from 
(5) and (6) that: 
(12)    0 0 1 1 r rλ η λη λ η′ ′ ′+ + +⋯  = 0. 

 
 We would now like to examine the extent to which the correspondence between the 
points of Cλ and the points of the hyperplane λ still remains valid when one adds points 
for which F0(η) = F1(η) = … = Fr(η)  = 0.  Such a point η can correspond to several 
image points η′ under the map.  We now assert: 
 
 If η lies on Cλ then at least one of the corresponding points η′ will lie on the 
hyperplane (12).  Conversely, if η′ lies on the hypersurface (12) then η will always lie on 
Cλ . 
 
 In order to prove this, we consider the irreducible correspondence between the point 
pairs (η, η′) of the map, on the one hand, and the hyperplanes λ that go through η′, on the 
other.  The equations of the correspondence express the idea that (η, η′) is a point-pair of 
the map, and that λ goes through η′, which is equation (12).  One obtains a general pair 
of elements – or even better, a triple (ξ, ξ′, λ*) – of the correspondence when one starts 
with the general pair (ξ, ξ′) of the rational map and draws the most general hyperplane λ* 
through ξ′ ;  λ* will be defined precisely as in § 42.  If (η, η′) is a point-pair of the map, 
and λ is a hyperplane through η′ then (η, η′, λ) will be a relation-preserving 
specialization of (ξ, ξ′, λ*), so (η, λ) will be a relation-preserving specialization of (ξ, λ*).  
From Theorem 6 (§ 42), it will follow that η will be a point of Cλ .  Conversely, if η is a 
point of Cλ then (η, λ) will be a relation-preserving specialization of (ξ, λ*) that can be 
extended to a relation-preserving specialization (η, η′, λ) of (ξ, ξ′, λ*).  There will then 
be a point η′ that is associated with η by the map and lies in the hyperplane λ.  
Everything is proved with that. 
 
 The theorem that was just proved yields a remarkable corollary.  The points η of M 
that correspond to a manifold of points η′  that is at least one-dimensional by a rational 
map are called fundamental points of the map.  If η is a fundamental point then any 
hyperplane in the image space will contain at least one associated point η′, so η will lie 
on all of the manifolds Cλ .  Conversely, if η lies on all Cλ then any hyperplane in the 
image space will contain at least one associated point η′, so the points η will define a 
manifold in image space of dimension at least one.  Thus: The fundamental points of a 
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rational map are precisely those points of M that are common to all manifolds of the 
linear family that mediates the map. 
 If M is a curve then it can have no fundamental points when the point-groups Cλ have 
no common component.  In the case of a surface, however, there can be finitely-many 
fundamental points.  For example, the quadratic Cremona transformations that were 
treated in § 25 have three fundamental points. 
 The principle of constant count is true for rational maps (as it is for all irreducible 
correspondences), which reads: 

d = d′ + e 
 
in this case, where d and d′ are the dimensions of M and M′, resp., and e is the dimension 
of that submanifold of M that is mapped to a general point ξ′ of M′.  One obtains this 
submanifold in the following way: One takes a general point ξ of M and looks for those 
manifolds of the linear family | CΛ | that go through ξ.  Let the intersection of these 
manifolds be E.  E will then consist of a fixed – i.e., independent of ξ – subset E0 whose 
points are the fundamental points of the map, and a subset Eξ that includes ξ and is 
irreducible over the field K(ξ′), whose points possess the common image point ξ′.  The 
subset E0 can also possibly be absent or be completely or partially contained in Eξ .  By 
contrast, if Eξ contains ξ then Eξ cannot be absent. 
 
 Proof.  If η belongs to E then all Cλ that go through ξ will also go through η.  These 
Cλ will correspond to the hyperplanes through ξ′.  Thus, all of the hyperplanes that go 
through ξ′ will contain at least one image point η′ of η.  However, that is possible only 
when either the image point of η′ defines at least one curve (i.e., when η is a fundamental 
point), or when one of the finitely-many image points of η coincides with ξ′.  The 
conclusion can be inverted word-for-word; thus, E will consist of precisely the 
fundamental points of the map and the points that have ξ′ as their image point.  However, 
the fundamental points define a fixed, algebraic manifold E0, and, from § 33, the points 
whose image point is ξ′ will define a manifold Eξ that is irreducible over the field K(ξ′). 
 The dimension of Eξ is the number that was denoted by e above.  If it is zero then d = 
d′, and Eξ will consist of infinitely many points.  If its number is β then we will have a (β, 
1)-map of M onto M′.  Finally, if β = 1 then the map will be (1, 1), and thus birational. 
 If Eξ consists of only one point – thus, if the elements Cλ of the linear family that 
contain the given general point ξ have only the basis points of the family in common with 
each other, besides ξ – then the family | CΛ | will be called simple.  In the opposite case − 
and thus, the Cλ that contain the point ξ have points in addition to themselves (not basis 
points) in common that define a manifold Eξ − the linear family | CΛ | will be called 
composite, and indeed composed of the system of irreducible manifolds | Eξ | whose most 
general element is Eξ . 
 
 It then follows that: A rational map that is mediated by a linear family will be 
birational if and only if the family is simple. 
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 Let it be mentioned that in the case e = 0 − so the manifolds Eξ will be point-groups − 
the irreducible system | Eξ | will be called an involution. 
 
 Problems.  5.  An involution can also be defined as an algebraic system of zero-dimensional manifolds 
(non-associated point-groups) on M such that a general point of M belongs to precisely one element of the 
system. 
 
 

§ 44.  The behavior of linear families at the simple points of M. 
 

 This paragraph is based entirely upon the following: 
 
 Theorem 1.  A k-fold point of M that is not a fundamental point will correspond to at 
most k image points under a rational map of M. 
 
 Proof.  One draws a general linear space Sn−d through the k-fold point P.  Since the 
manifold of fundamental points has a dimension < d, and since P cannot also be a 
fundamental point, this manifold will not enter Sn−d .  The intersection points of Sn−d with 
M will thus not be fundamental points. 
 Let the intersection points of a general n dS∗

−  with M be Q1, …, Qg .  They are general 

points of M, so they will correspond to uniquely-determined image points 1Q′ , …, gQ′  

under the map.  The points Q1, …, Qg , 1Q′ , …, gQ′  might go to P1, …, Pg , 1P′ , …, gP′  in a 

relation-preserving manner under the specialization n dS∗
−  → Sn−d .  Since (Qν, Qν′ ) is a 

pair of the map, (Pv, Pν′ ) will be one, as well (v = 1, …, g).  P1, …, Pg will be the 

intersection points of Sn−d with M, when counted as often as their multiplicities would 
suggest.  Since P is a k-fold point, we can assume that P1 = P2 = … = Pk = P, while all of 
the other Pk+1 , …, Pg ≠ P.  If we can still show that all image points of P appear amongst 
the points 1P′ , …, kP′  then it will follow that there are at most k such image points. 

 The point-pairs (Pv, Pν′ ) are solutions of a normal problem, in the sense of § 38.  The 

equations of this normal problem express the ideas that the pair (Pv, Pν′ ) belongs to the 

map and that Pv lies in Sn−d .  When the Sn−d is replaced with the general n dS∗
− , the 

problem will have precisely the same solutions (Qν, Qν′ ) (v = 1, …, g), but the problem 

will also have only finitely-many solutions under the specialization n dS∗
−  → Sn−d .  The 

intersection points Pv of Sn−d with M will then have only finitely-many image points Pν′ .  
Therefore, from the main theorem of § 38, the specialized solutions (Pv, Pν′ ) will be 

determined uniquely, up to their sequence.  Furthermore, the correspondence between the 
Sn−d and the (P, P′) will be irreducible.  One will then obtain a general pair of the 
correspondence when one starts with a general (R, R′) of the map and draws the most 
general Sn−d through R.  Once more, from the main theorem on multiplicities, it will then 
happen that any pair (P, P′) that fulfills the equations of the normal problem will appear 
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at least once in the sequence (Pv, Pν′ ).  That will be true, in particular, when P is already 

the k-fold point that is denoted by P and P′ is its image point.  Thus, a Pν′  will equal P′. 
 We still have to show that v is one of the numbers 1, 2, …, h, and not one of the 
numbers k + 1, …, g.  If the latter were the case then P′ would be the image point of one 
of the points Pk+1, …, Pg  at which Sn−d cuts then manifold M, outside of P.  However, that 
would not be possible when those points of M whose image point is P′ define a 
submanifold of dimension < d, and such a submanifold would no longer enter into a 
general space Sn−d that goes through P outside of P. 
 A special case of Theorem 1 is: A simple point of M that is not a fundamental point of 
the map will have precisely one image point. 
 This special case rests upon: 
 
 Theorem 2.  Those manifolds of an effective linear family of dimension r on M that 
include a given simple point P of M will define a linear sub-family of dimension r − 1 as 
long as P does not belong to all manifolds of the family. 
 
 Proof.  The linear family, whose fixed component we can omit, mediates a rational 
map of M into Sv .  From Theorem 1, the point P will correspond to a single image point 
P′ as long as P is not a fundamental point.  From § 43, the elements of the linear family 
will correspond to hyperplanes in Sv.  In particular, the elements that contain the point P 
will correspond to hyperplanes through P′.  However, the phrase “goes through P′” 
implies a linear condition on the parameters λ0, …, λr of the family.  With that, the 
assertion is already proved. 
 
 Remark.  The assumption that P is a simple point is essential, as the following 
example shows: If P is a k-fold point then one can likewise prove that the elements of the 
family that go through P will define at most k linear 
sub-families of dimension r – 1. 

 
 Example.  Let M be a fourth-order plane curve 
with a cusp D.  The lines that go through D will cut 
out a linear family of point pairs outside of the 
doubly-counted pint D.  If one fixes a point P that is 
different from D then one will obtain a single element 
of the family, which will contain P.  However, if one 
fixes D itself then one will obtain two different point-
pairs that correspond to the two tangents at the point 
D. 
 
 It follows from a k-fold application of Theorem 2 that: 
 
 If one fixes any simple points P1, …, Pk of M then those elements of an effective linear 
family on M that contains these points will define a linear sub-family of dimension r′ 
with: 

r – k ≤ r′ ≤ r. 

 P 

D 
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(In the case k > r, the sub-family can also be empty.) 
 
 It follows further from this that: 
 
 Theorem 3.  If one fixes any irreducible (d − 1)-dimensional manifolds F1, …, Fk on 
M that do not consist of only multiple points of M then the elements of a linear family on 
M that contain these F1, …, Fk with arbitrarily-given multiplicities s1, …, sk  will define a 
linear sub-family (which can also be empty). 
 
  Proof, by complete induction on r + s1 + … + sk .  The case s1 = … = sk = 0 is trivial; 
let s1 > 0.  If F1 is contained in all elements of the family as a component then we will 
omit the fixed component, and will obtain a family of the same dimension r and look for 
the elements in it that contain F1, F2, …, Fk with the multiplicities sk – 1, sg, …, sk .  From 
the induction assumption, they will define a linear sub-family.  We can now once more 
add the fixed component F1 to them. 
 If F1 is not a fixed component of the family then we will choose a point P of F1 that is 
either the basis point of the family or a multiple point of M.  Those elements of the family 
that contain the point P will define a sub-family of dimension r – 1.  From the induction 
assumption, the elements of this sub-family that contain s1 F1 + … + sk Fk as a component 
will again define a linear sub-family.  With that, the assertion is also proved in this case. 
 
 Theorem 3 is also valid for linear families of virtual manifolds when they can be 
made effective by the addition of fixed components, where the given multiplicities s1, …, 
sk  are correspondingly raised.  In particular, it follows that: 
 
 Theorem 4.  The effective manifolds in a linear family of virtual manifolds, when they 
are present, will define a linear sub-family, assuming that none of the fixed components 
of negative multiplicity consist of nothing but multiple points. 
 
 Under the same assumption, it also follows that: 
 
 If r + 1 linearly-independent elements of an r-dimensional linear family are effective 
then all of the elements of the family will be effective. 
 
 From all of these theorems, one sees that linear families exhibit a much more sensible 
behavior at the simple points of an algebraic manifold than they do at the multiple points.  
It is therefore of great advantage in the study of linear families to convert algebraic 
manifolds into ones without multiple points by a birational transformation, when that is 
possible.  In the next paragraphs, we would like to do this, at least in the case of curves. 

 
 

§ 45.  Transformation of curves into ones without multiple points.   
Places and divisors. 

 
 One understands the degree of a linear family of point-groups on a curve to mean the 
number of points that each point-group of the family consists of.  If m is the degree, and r 
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is the dimension of the family then, from § 42, Theorem 3 (corollary), one will have the 
inequality: 
(1)      r ≤ m. 
 
 The composite families (in the sense of § 43) obey an even sharper inequality.  
Namely, if one fixes a general point of the composite family then, by the definition of the 
composite family, k points will simultaneously remain fixed, where k ≥ 2.  If one then 
fixes a second, … rth general point (cf., § 42, Theorem 2) then k points will remain fixed 
in each case.  One will then have the inequality: 
 

r k ≤ m, 
 
from which, since k ≥ 2, it will follow that: 
 

2r ≤ m. 
 
 Although we shall not need it in what follows, we can insert the remark here that the 
equality sign in (1) can be true only when the curve can be mapped birationally onto a 
line.  Namely, if r = m, and one lowers the dimension of the family by m – 1, when one 
fixes m – 1 general points in sequence, using the process that was applied in § 42 in the 
proof of Theorem 2, then one will obtain a linear family of dimension 1 with precisely 
one variable point.  This linear family will map the curve onto a line birationally. 
 Any algebraic curve can be converted into a plane curve by a birational 
transformation − namely, by projection (cf., say, § 30).  If we pose the problem of 
transforming all algebraic curves into ones without multiple points birationally then we 
can restrict ourselves to plane curves. 
 Let Γ be a plane curve of degree n.  The curves of degree n – 2 cut out a linear family 
of dimension: 

r = 
( 2)( 1)

2

n n− +
 

and degree: 
m = (n – 2) n 

 

from Γ.  There are then 
2

n 
 
 

 = r + 1 linearly-independent curves of this degree, and, from 

BEZOUT, each of them will intersect Γ in (n – 2) n points.  For this linear family, one 
then has: 
(2)      2r > m. 
 
 It will then follow from this that the family cannot be composite.  It will then map Γ 
birationally onto an image curve Γ1 in the space Sr .  The point-groups of the family will 
be cut out of the hyperplanes of Sr along this curve. 
 Now, if the curve Γ1 has a multiple point P then we will consider the sub-family of 
dimension r – 1 that is cut out of the hyperplanes that contain P.  We then omit the fixed 
point P from the point-groups of the sub-family as often as it appears in these point-
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groups.  Since P should be a multiple point of Γ1, it will appear at least twice in the all of 
the point-groups that contain it.  The degree of the family will then diminish by at least 
two by the omission of the fixed points.  The inequality (2) will be preserved under the 
transition to the sub-family, as long as the left-hand side is reduced by two and the right-
hand side by at least two. 
 We now repeat the same process that always reduces r by 1, as long as it is possible; 
i.e., as long as the image curve that is each time mediated by linear family still has 
multiple points.  That process must terminate, since m will always become smaller, and 
the value m = 0 cannot be attained; for m = 0, it would follow from (2) that r > 0, in 
contradiction to generally-valid inequality (1).  Now, when the process terminates, we 
will have a linear family that maps Γ birationally into an image curve in a projective 
space that has no multiple points. 
 With that, it is proved that: 
 
 Any algebraic curve can be converted into a curve with no multiple points by a 
birational transformation. 
 
 One calls a curve Γ′ with no multiple points onto which Γ is mapped birationally a 
singularity-free model for the curve Γ.  Naturally, two such models Γ′, Γ″ are also 
mapped birationally to each other.  The latter map is (from § 44, Theorem 1) even one-to-
one, without exception: Any point of Γ′ corresponds to a single point of Γ″, and 
conversely.  The map of Γ to Γ′ is, by contrast, single-valued without exception only in 
the inverse direction.  Any point of Γ′ will correspond to a single point of Γ, but a 
multiple point of Γ can correspond to several points of Γ′.  One understands the phrase a 
place (Stelle) on the line Γ to mean a point P of Γ, together with an image point P′ of P 
on a fixed singularity-free model Γ′.  Which model (i.e., Γ′ or Γ″) one then bases things 
upon will be irrelevant, since the points of Γ′ will be in one-to-one correspondence with 
those of Γ″.  For a simple point of Γ, the given of the point P by itself will suffice to 
determine the place, since a simple point P of Γ will have only one image point P′ on Γ′.  
By contrast, a k-fold point of Γ can correspond to several (and indeed, from § 44, 
Theorem 1, at most k) places. 
 The concept of place is (in contrast to that of point) birationally invariant.  If Γ and 
Γ1 are birationally mapped to each other then every place of Γ will be in one-to-one 
correspondence with a place of Γ1 .  One and the same singularity-free model Γ′ can then 
be employed for both Γ and Γ1 .  Any place on Γ will correspond to a point of Γ′, and any 
point of Γ′ will again correspond to a place on Γ1 . 
 From now on, in the theory of linear families on an algebraic curve, we will no longer 
base things upon the points of Γ, but only upon its places.  In that way, the theory will 
take on an invariant character under birational transformations (1).  From now on, an 
element of a linear family will not be a group of points with multiplicities, as before, but 
a group of places with multiplicities.  One also calls such groups of places with arbitrary 

                                                
 (1) One will obtain an equivalent, likewise invariant, theory when one considers only linear families on 
the singularity-free model Γ′; therefore, for many purposes, it will be more advantageous to be able to deal 
with an arbitrary curve Γ.  Instead of points, one must then consider just places. 
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(positive or negative) multiplicities divisors.  If all multiplicities are positive or zero then 
one will have an effective (or complete) divisor (1). 
 In order to ascertain the multiplicities of a divisor that enters into a linear family, one 
proceeds as follows: One goes from the general point-group CΛ, in the sense that we have 
been using up to now (thus, with the omission of all fixed points).  The points of CΛ are 
all general points of Γ, so they are not multiple points; they will therefore correspond to 
uniquely-determined places.  From § 42, any point-group Cλ of the family will arise from 
the general point-group CΛ by a relation-preserving specialization.  If one carries out this 
relation-preserving specialization, not just for the points of Γ, but simultaneously for the 
points of Γ′ that they correspond to, as well, then one will obtain a uniquely-determined 
group of points on Γ with images on Γ′, hence, a uniquely-defined divisor that 
corresponds to the point-group Cλ that we have been considering.  One now adds an 
arbitrary fixed divisor to the divisors thus obtained, and thus obtains the most general 
linear family of divisors on Γ. 
 The concept of place that was defined here has precisely the same scope as the 
concept of the branches of a plane curve that was introduced in § 20 in a completely 
different way.  In fact, one has the theorem: 
 
 The branches of a plane, algebraic curve Γ are in one-to-one correspondence with 
the places on Γ. 
 
 Proof.  Let Γ′ be a singularity-free model of Γ, and let z be a branch of Γ.  The branch 

was defined by series development of a general point ξ of Γ: 
 

     

2
0 0 1 2

2
1 0 1 2

2
2 0 1 2

a a a

b b b

c c c

ξ τ τ
ξ τ τ
ξ τ τ

 = + + +
 = + + +
 = + + +

⋯

⋯

⋯

 

 

The general point ξ corresponds to a point ξ′ of Γ′ whose homogeneous coordinates are 
entire, rational functions of ξ0, ξ1, ξ2, so they are once more power series in τ.  After 
bringing out a common power of τ as a factor, they will read like: 

νξ ′  = 2
0 1 2( )h a a aν ν ντ τ τ′ ′ ′+ + +⋯  (v = 0, 1, …, n). 

 
The coordinatesνξ ′ , when one also drops the factor τh, will fulfill the equations of the 

curve Γ′.  However, this will remain correct when one sets τ = 0, and thus specializes the 

                                                
 (1) The word “divisor” is taken from the DEDEKIND-WEBER arithmetic theory of algebraic functions.  
In that theory, which agrees completely with the geometric theory in its results, one calls the entities that 
were always called the sum (difference, resp.) of point-groups or divisors here the product (quotient, resp.).  
One thus also explains the word “divisor.”  See the textbook of BLISS, Algebraic Functions or the work of 
M. DEURING on algebraic functions that will appear soon in this collection.  The original paper of 
DEDEKIND and WEBER is also found in J. reine angew. Math., 92 (1882), 181-290. 
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point ξ′ to the point P′ with the coordinates 0aν′  (v = 0, 1, …, n).  Likewise, for t = 0, ξ 

will go to a well-defined point P, which is the starting point of the branch z.  Under the 

birational map of Γ onto Γ′, P′ will be an image point of P; the equations of map that are 
true for (ξ, ξ′ ) will also remain true for τ = 0 then.  The pair (P, P′) will thus define a 
place on Γ.  Therefore, any branch z of Γ will correspond to a uniquely-determined place. 

 We still have to prove that one will obtain all places on Γ in this way, and indeed, 
each of them precisely once.  Therefore, let (P, P′) be a well-defined place on Γ.  We 
would now like to take Γ′ to a plane curve Γ1 by projection, and indeed in such a way that 
the simple point P′ will again correspond to a simple point P1 of Γ1 under the projection.  
To that end, we draw a subspace Sn−1 through P′ that intersects the curve Γ′ only simply 
at P′.  In Sn−1, we draw an Sn−2 through P′ that contains none of the intersection points of 
Sn−1 with the curve, except for P′.  Finally, in Sn−2 , we choose an Sn−3 that does not go 
through P′, and project the curve Γ′ from Sn−3 onto an S2, with which, a curve Γ1 will 
arise.  One now sees very easily that the projection will mediate a birational map of Γ′ 
onto Γ1, and that the point P′  will therefore go to a simple point P1 of Γ1 .  This simple 
point P1 will carry a single branch z1 of Γ1 .  Just as every branch z of Γ corresponds to a 

point of Γ′, the branch z1 of Γ1 will also correspond to a point of Γ′.  It can only be the 

point P′, if P′ is the single point of Γ′ that goes to P1 under projection. 
 Now, the plane curves Γ and Γ1 are, however, also mapped to each other birationally 
by means of Γ′ ; therefore, any branch z1 of Γ1 will correspond to precisely one branch z 

of Γ (cf., § 20).  Thus, the point P′ of Γ′ will correspond to a single branch z of Γ, which 

we wished to prove. 
 
 The geometrically-defined concept of place is then suitable for taking over the role 
that was played by the concept of branch (which is based on series developments), up to 
now.  The advantage is obvious.  In place of an infinite series, a rational map appears that 
is representable by closed formulas.  Places are also completely defined by themselves 
for curves in n-dimensional space.  Finally, the restrictions on the characteristic of the 
ground field that are necessary for the PUISEUX series are completely unneeded here, 
although we shall not go further into that topic. 
 
 The “intersection multiplicity of a branch with a curve” that was explained previously (§ 20) can also 
be redefined with the help of the concept of a place, and carried over to n dimensions.  Let Γ be a curve in 
Sn , and let H be a hypersurface that cuts the curve at P.  The point P can correspond to several places; we 
choose one of them that is defined by an image point P′ on a singularity-free model Γ′.  We now embed H 
in the linear family of all hypersurfaces of equal degree whose general element is, say, H*.  This linear 

family cuts a linear family | CΛ | out of Γ whose image on Γ′ will again be a linear family |CΛ
′ | .  A certain 

number of points of CΛ will go to the point P under the specialization H* → H; (by definition) this number 
will be the intersection multiplicity of H and Γ at the point P.  However, it will also take a certain number 

of points of CΛ
′  to P′; this number shall be called the intersection multiplicity of H with Γ at the place (P, 

P′).  Obviously, the total intersection multiplicity of H and Γ at the point P will be equal to the sum of the 
intersection multiplicities of H and Γ at the various places of Γ that belong to P. 
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 The concepts of place and divisor cannot be carried over to a d-dimensional manifold 
M with no further restrictions.  Namely, first of all, it is still questionable whether every 
manifold possesses a singularity-free image for d > 2 (1).  However, secondly, two 
different singularity-free models are in no way mappable to each other in a one-to-one 
manner, so the meaning of the concepts of place and divisor would depend upon which 
model one employed. 
 From now on, we will therefore employ the concepts of place and divisor for d > 1 
only in the case of a singularity-free manifold M, and we will then understand a place to 
be a point of M, while a divisor will be a virtual (d − 1)-dimensional submanifold of M.  
For d = 1, so M is then a singularity-free curve, these concepts go over to the previously-
defined ones, while M itself can be chosen to be a singularity-free model of M. 

 
 

§ 46. Equivalence of divisors.  Divisor classes.  Complete families. 
 

 Theorem 1.  If two linear families on M have an element D0 in common then both of 
them will be contained in an enveloping linear family. 
 
 Proof.  One family might be given by: 
 
(1)     λ0 F0 + λ1 F1 + … + λr Fr = 0, 
and the other, by: 
(2)     µ0 G0 + µ1 G1 + … + µr Gr = 0. 
 
The fixed virtual manifolds A and B will be added to the complete intersections Lλ and 
Mλ of (1) [(2), resp.] with M, and will thus contain the elements: 
 
  Dλ = A + Lλ , 
  Eµ = B + Nµ  
of the two linear families. 
 The two families of common manifolds D0 might be determined by, say, F0 and G0 .  
We then define the family of forms: 
 
(3)   λ0 F0 G0 + G0 (λ1 F1 + … + λr Fr) + F0 (λr+1 G1 + … + λr+s Gs), 
 
intersect it with M, and add the fixed manifold A + B – D0 to the intersection manifolds.  
The family of forms (3) includes a sub-family: 
 

G0 (λ0 F0 + λ1 F1 + … + λr Fr) 
 
that will cut out precisely the linear family | DΛ | = | A + LΛ | by the addition of A + B – 
D0, and likewise includes a sub-family: 

                                                
 (1) For a proof in the case d = 2, see R. J. WALKER: Ann. of Math. 36 (1935), 336-365. 
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F0 (λ0 F0 + λr+1 G1 + … + λr+s Gs) 

 
that will yield the linear family | EΛ | = | B + NΛ | by the addition of A + B – D0 .  Theorem 
1 is proved with that. 
 
 The theorem is certainly true for manifolds M with arbitrary singularities; however, 
one first learns its true meaning in its application to singularity-free manifolds.  Namely, 
it can happen with manifolds with multiple points that the linear families | DΛ | and | EΛ | 
consist of nothing but effective manifolds, while they include enveloping linear families 
of fixed components with multiplicities (1). 
 However, if M is free of multiple points then, from § 44, Theorem 4, the effective 
manifolds that are contained in the enveloping family will define a linear sub-family that 
envelops the two given linear families.  What follows from this is the: 
 
 Corollary to Theorem 1.  If two effective linear families on a singularity-free 
manifold have an element D0 in common then both of them will be contained in an 
effective, linear family. 
 
 Two divisors C and D on a singularity-free d-dimensional manifold M are called 
equivalent when there is a linear family that contains C and D as elements.  One then 
writes: 

C~ D. 
 
 Likewise, two divisors on an algebraic curve are called equivalent when there is a 
linear family of divisors that contains both of them.  By going to a singularity-free model 
of the curve, this equivalence will reduce to the former one.  If one recalls the 
interpretation of the one-dimensional linear families that we gave in § 43 then one can 
also say: Two divisors on an algebraic curve are equivalent when their difference 
consists of the zero loci and poles of a rational function on the curve, where the zero loci 
are understood to have positive multiplicities and the poles, negative multiplicities. 
 The concept of equivalence is obviously reflexive and symmetric.  However, from 
Theorem 1, it is also transitive: From C~ D and D ~ E, it will follow that C ~ E.  One can 
then combine all of the divisors that are equivalent divisors into a class of divisors. 
 From C ~ D, it will obviously follow that C + E ~ D + E.  One can thus define the 
sum of two divisor classes by choosing a divisor from each class and adding them.  The 
class of the sum C + E is independent of the choice of divisors C and E.  The divisor 
classes define an Abelian group under addition. 
 We now consider the effective or complete divisors that are obtained in a class.  One 
can easily show that the dimension of a linear family of effective divisors that contains a 

                                                
 (1) Example.  Let M be a fourth-order cone with a double line D that has separate tangent planes that 
intersect the curve in the lines A and B, outside of D.  The planes through A cut out a linear family of line-
triples outside of A, and similarly, for the planes through B.  These two linear families have the triple 3D 
(viz., the triply-counted line D) in common.  (3) is the family of quadratic cones through A, B, D; its 
intersection with M, when augmented by – A – B – 3D, will define a linear family of virtual curves from 
four lines of positive multiplicity and a line D with multiplicity – 1. 



§ 45.  Transformations of curves into ones without multiple points.  Places and divisors. 197 

given divisor D is restricted (1).  We will need this theorem as a tool only for the case of a 
curve; however, in that case it will follow immediately from the inequality (1), § 45.  If 
one now considers a linear family of maximal dimension that contains a given effective 
divisor D then, on the basis of Theorem 1, this family will envelop all of the effective 
divisors that are equivalent to D; otherwise, in fact, from Theorem 1, one would be able 
to define a more-enveloping linear family.  Such a maximal linear family is called a 
complete family.  It then consists of all effective divisors of a given divisor class.  Its 
dimension is called the dimension of the class (2).  However, it can also happen that a 
class contains no effective divisors at all; in that case, one will set the dimension of the 
class equal to – 1. 
 The complete family that is determined by the effective divisor D will also be denoted 
by | D |. 
 One understands the remainder of a divisor E relative to a complete family | D | to 
mean the complete family of all complete divisors that are equivalent to D – E, if there 
are any.  If F is such a divisor then: 

D ~ E + F. 
 

One can therefore also define the remainder of E relative to | D | to be the totality of those 
complete divisors F that, together with E, make up a divisor of the complete family. 
 From the first definition, it will follow that equivalent divisors will possess the same 
remainder relative to a complete family | D |. 
 
 Problems.  1.  Carry out the induction proof that was suggested in footnote (1) on the previous page. 
 2. Two point-groups P1, …, Pg and Q1, …, Qh on a cubic curve with no double points will be 
equivalent if and only if g = h and the sum of the points P, in the sense of § 24, is equal to the sum of the 
points Q. 
 3. Two divisors of the same degree are always equivalent on a line, and therefore also on any 
birational image of a line.  The dimension of a complete family is therefore equal to the degree of a divisor 
of the complete family, assuming that it is ≥ 0. 

 
 

 § 47. BERTINI’s theorems. 
 

 BERTINI’s first theorem relates to linear families of point-groups on an algebraic 
curve and states: 
 
 Theorem 1.  The general point-group | CΛ | of a linear family with no fixed points 
consists of nothing but simply-counted points. 
 
 Proof.  The point-groups CΛ + A will be cut out by the hypersurface: 

                                                
 (1) The theorem will follow, e.g., from that fact that the totality of all d-dimensional manifolds of given 
degree on M is an algebraic system of finite dimension, in the sense of § 37.  However, it can also be 
proved by complete induction on d when one cuts M with a general hyperplane.  
 (2) In the arithmetic theory, one prefers to understand the dimension of a family to mean the number of 
linearly-independent elements of the family; thus, one uses the number r + 1.  All dimension numbers will 
thus be increased by 1 when one goes to the arithmetic theory. 
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(1)     Λ0 F0 + Λ1 F1 + … + Λr Fr = 0, 
 
where Λ1, …, Λr are indeterminates.  The points of CΛ are algebraic functions of these 
indeterminates.  If ξ is such a point then ξ will be a general point of M, and one will have: 
 
(2)     Λ0 F0(ξ) + Λ1 F1(ξ) + … + Λr Fr(ξ) = 0. 
 
If an algebraic function is equal to the constant zero then its derivatives will also be zero; 
one can thus differentiate (2) with respect to Λj : 
 

(3)   Fj(ξ) + { }0 0 1 1( ) ( ) ( ) k
k k r k r

k j

F F F
ξξ ξ ξ ∂Λ ∂ + Λ ∂ + + Λ ∂

∂Λ∑ ⋯ = 0. 

 
If one now assumes that ξ is a multiple intersection point of the curve M with the 
hypersurface (1) then, from § 40, tangents to the curve at the point ξ must lie in the polar 
hyperplane to the hypersurface (1).  However, the point: 
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will always lie on a curve tangent (1).  One will then have: 
 

(4)   { }0 0 1 1( ) ( ) ( ) k
k k r k r

k j

F F F
ξξ ξ ξ ∂Λ ∂ + Λ ∂ + + Λ ∂

∂Λ∑ ⋯  = 0. 

 
It follows from (3) and (4) that: 

Fj(ξ) = 0    (j = 0, 1, …, r); 
 
thus, ξ will be a basis point of the family (1), in contradiction to the assumption that ξ 
should be a point of the point-group CΛ, which consists of nothing but variable points. 
 It follows almost immediately from Theorem 1 that: 
 
 Theorem 1a.  The general element CΛ of a linear family of effective (d – 1)-
dimensional manifolds with no fixed components possesses no multiply-counted 
component. 
 
 One then comes back to Theorem 1 by intersecting with a general linear space Sn−d+1.  

                                                
 (1) If the hypersurface f = 0 contains the curve then it will follow from f(ξ) = 0 by differentiation that:  
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 However, BERTINI’s second theorem says a little more, namely, that the general 
element CΛ will possess no multiple points at all, besides the basis points of the family 
and the multiple points of the carrier manifold M.  I can prove the theorem here only in 
the following, somewhat specialized, form: 
 
 Theorem 2.  The general hypersurface of a linear family: 
 
(5)     Λ0 F0 + Λ1 F1 + … + Λr Fr = 0 
 
cuts a manifold CΛ out of M that possesses no multiple points outside of the basis points 
of the family (5) and the multiple points of M. 
 
 Proof.  We first return to the case of an arbitrary, linear family in the case of a 
bundle: 
(6)     Λ F0 + F = 0         (F = Λ1 F1 + … + Λr Fr), 
 
when we append the quantities Λ1, …, Λr of the basis field in (5), which are then treated 
as constants.  Once the assertion has been proved for the bundle (6), it will then follow 
that any multiple point P of CΛ that is not a multiple point of M will necessarily be a basis 
point of the bundle (6), and will thus satisfy the equation F0(P) = 0.  In precisely the same 
way, it will follow that F1(P) = 0, …, Fr(P) = 0, so P will also be a basis point of the 
family (5). 
 It will then suffice to consider the case of a bundle.  Call the general hypersurface of 
the bundle FΛ; its intersection with M will be CΛ .  Now, let P be a multiple point of CΛ 
that is not the basis point of the bundle.  The pair (Λ, P) is defined to be the general pair 
of an irreducible correspondence.  Under this correspondence, the general point Λ of the 
parameter lines of the bundle will correspond to a b-dimensional manifold of points P′ 
that are relation-preserving specializations of P, and thus multiple points of CΛ .  When 
one cuts this manifold with a linear space Sn−b, one can reduce its dimension b to 0, 
without the property of the points P′ that they are double points of CΛ being thereby lost.  
In the principle of constant count: 

a + b = c + d 
 

one must now set a = 1, b = 0.  If one had c = 0, d = 1 
then a point P′ of the image manifold would correspond 
to all of the ∞1 points λ of the parameter line, contrary to 
assumption.  All that remains is the possibility that c = 1, 
d = 0.  The image manifold of the correspondence will 
then be a curve Γ. 
 The hypersurfaces of the bundle cut out a linear 
family of points groups from Γ, and indeed the general 
hypersurface FΛ will cut out the point P¸ among others.  
From Theorem 1, P will be a simple intersection point of 
FΛ and Γ.  The proof of Theorem 1 teaches us that, in 

addition, the tangential space Sn−1 of FΛ does not contain the tangents of Γ at P. 
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 If P is now a simple point of M then M will possess a tangential space Sd at P (cf., § 
40).  The tangent to Γ will lie in Sd .  Since Sn−1 does not contain this tangent, Sn−1 cannot 
contain Sd , either; the intersection of Sn−1 and Sd will then be an Sd−1 .  However, that 
means that the intersection manifold CΛ of FΛ and M will possess a tangential space Sd−1 
at P, so P will be a simple point of CΛ, which contradicts the assumption.  Therefore, P 
cannot be a simple point of M. 
 The following two theorems might be proved here for linear families of curves on an 
algebraic surface M, although they can be extended to linear families of Md−1 on Md with 
no trouble (1).  The proofs go back to ENRIQUES. 
 One understands the degree of a linear family of curves to mean the number of 
intersection points of two general curves of the family besides the basis points. 
 One understands a bundle of curves on M to mean an irreducible one-dimensional 
system of curves on M that sends precisely one curve through any general point of M.  
The concept of an irreducible system of curves is thus explained as in § 37.  If one is 
dealing with a one-dimensional linear family, in particular, then one will speak of a linear 
bundle (2). 
 
 Theorem 3.  A linear family | CΛ | of degree zero with no fixed components is 
composed of a bundle whose general curves are absolutely irreducible. 
 
 Proof.  The curves of the r-dimensional linear family | CΛ | that go through a general 
point P of M will define a linear sub-family of dimension r − 1.  If one now associates the 
general point P with a general element-pair C, C′ of this sub-family then an irreducible 
correspondence between the points P and the curve-pairs C, C′ will be defined by the 
general triple P, C, C′.  In the principle of constant count: 
 

a + b = c + d, 
 
one must set a = 2 and b = 2(r – 1).  Now, if one had d = 0 then one would have c = 2r; 
i.e., the pair (C, C′) would be a general element-pair of the family.  That is, any two 
general curves C, C′ of | CΛ | would have a (general) point P of the surface in common, in 
contradiction to the assumption of degree zero.  Thus, d ≥ 1; i.e., if two curves C, C′ are 
drawn through a general point of M then they will have, not just one, but at least ∞1 
points in common.  (Naturally, more than ∞1 is not possible; thus, d = 1.) 
 This will remain true when one chooses C to be a general curve through P, but 
chooses C′ to be a particular one.  The common component of C and C′ might define a 
curve K.  It will be composed of irreducible components of the fixed curve C′, so it 
cannot depend on the (undetermined) parameters of C at all.  We then see that all curves 
C of the family | CΛ | that go through P will have a fixed curve K in common that depends 
upon only P. 
 Now, if P′ is another point of K (but not a basis point of the family | CΛ |) then the 
curves of | CΛ | that go through P′ will once more define a linear family of dimension r – 
                                                
 (1) See B. L. v. d. WAERDEN, “Zur algebraischen Geometrie X,” Math. Ann. 113 (1937), pp. 711.  
 (2) There are also nonlinear bundles; e.g., the system of all generators of a cubic cone with no double 
points.   However, on many surfaces – e.g., planes – all bundles will be linear. 
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1 that will envelop the previous one, so it will be identical to it.  The curves of the family 
|CΛ| that go through any point of K will thus again have the curve K in common. 
 The curve K might decompose into absolutely irreducible components K1, K2, …  
None of the components Kv will stay fixed when P is varied, since otherwise all curves of 
the family | CΛ | would have these fixed components in common.  The irreducible system 
|Kv|, whose general element is Kv, will then have a dimension of at least 1.  We would like 
to show that | Kv | is a bundle. 
 We exhibit an irreducible correspondence between the elements of the system | Kv | 
and the points of M.  One will obtain the general pair (Kv, Pv) of this correspondence 
when one chooses a general point Pv on the curve Kv .  In the principle of constant count: 
 

a + b = c + d 
 
one will have:   a ≥ 1, b = 1, so: a + b ≥ 2, 
but one will also have: c ≤ 2, d = 0, so: c + d ≤ 2, 
and therefore:   a + b = c + d = 2, a = 1, c = 2. 
 
The system | Kv | is therefore one-dimensional, and the image manifold of the 
correspondence is the entire surface M.  It follows that at least one curve 1K ′  of | K1 | will 

go through a general point P of M, at least one curve 2K ′  of | K2 |, etc., and in all, h 

different curves vK ′ .  All of these curves will be general elements of their systems | Kv |. 

 From what was said in the third paragraph of the proof, all of the curves C of the 
family | CΛ | that go through P must contain all h curves vK ′ .  That is, at least h different 

components of any curve C will go through the point P. 
 However, we saw in § 42 that one will arrive at the same thing whether one draws the 
most general curve C through a general point P of M or one first chooses a general curve 
C of | CΛ | and then a general point P of a component of C.  If one does the former then, 
from the foregoing, P will be at least an h-fold point of C; however, if one does the latter 
then P will obviously be a simple point of C.  Therefore, h = 1.  That is, there will only be 
a single system | Kv |, and only one curve in it will go through the general point P.  
Therefore, | Kv | will be a bundle.  Furthermore: If one chooses a general point P on any 
irreducible component of the general curve CΛ then it will always lie on a curve vK ′  that 

is contained in CΛ ; therefore, any irreducible component of CΛ will be one of the curves 
 vK ′  of the system | Kv |.  That is, | CΛ | will be composed of the bundle | Kv |. 

 
 Theorem 4.  A linear family | CΛ | with no fixed components whose general curve CΛ 
is absolutely irreducible will have degree zero (and, as a result of Theorem 3, it will be 
composed of a bundle). 
 
 Proof.  Let C1 and C2 be two general curves of the family | CΛ |.  If C1 and C2 have an 
intersection point P′ besides the basis points of the family then this point P′  will never be 
a double point of the surface or a double point of C1 .  C1 will then contain only finitely 
many such double points, and the generally-chosen curve C2 that is independent of C1 
will go through none of these finitely-many points, as long as they are not basis points. 
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  C1 and C2 define a bundle in the family | Cλ |, and since C1 and C2 go through P′, all 
curves of the bundle will go through P′.  Like any linear bundle, | Cλ | will have degree 
zero, and from Theorem 1 it will therefore be composed of a bundle | K | whose general 
curve K is absolutely irreducible.  The general curve Cλ goes through P′, so at least one 
irreducible component K of C1 must go through P′.  However, if a general curve of the 
system | K | goes through point P′  then all curves of the system | K | will go through P′.  
In particular, all irreducible components of Cλ will go through P′.  By assumption, at least 
two such components exist; P′ will therefore be a multiple point of Cλ .  The property of a 
point that that it is a multiple point will be preserved under the specialization λ → 0.  
Therefore, P′ will be a multiple point of C1, as well, in contradiction to the initial 
statements.  Therefore, the point P′ cannot exist. 
 When taken together, Theorems 3 and 4 will give an exhaustive answer to the 
question: What is the nature of a linear family whose general element is irreducible?  
Namely, such a family will either have a fixed component or it will be composed of a 
(linear or nonlinear) bundle. 
 An immediate consequence of Theorem 4 is the following theorem: The intersection 
of an absolutely irreducible surface with a general hyperplane is an absolutely 
irreducible curve.  The hyperplanes will then cut a linear family out of the surface whose 
degree is positive (namely, equal to the degree of the surface); therefore, a general curve 
of the family cannot be reducible. 
 
 We will return to linear families of algebraic curves in the next chapter (§ 49-51).  For the detailed 
theory of linear families of curves on algebraic surfaces, we refer to the report of ZARISKI: Algebraic 
Surfaces, Ergebn. Math., Bd. 3, Heft 5, as well as the literature that is cited there. 
 
 



  

CHAPTER EIGHT 
 

NOETHER’s fundamental theorem and its consequences. 
 
 

§ 48.  NOETHER’s fundamental theorem. 

 Let f(x) and g(x) be two relatively prime forms in the indeterminates x0, x1, x2 .  In 
order for there to exist an identity of the form: 

(1)      F = Af + Bg 

for another form F(x), where A and B are again forms, it is, in any case, necessary that all 
intersection points of the curves f = 0 and g = 0 must also lie on the curve F = 0.  
However, as we will see, that condition will be sufficient only in the case where all 
intersections of f = 0 and g = 0 have multiplicity one.  Further conditions must be added 
for multiple intersection points. 
 The celebrated “Fundamental theorem of NOETHER,” which was first published by 
MAX NOETHER in Math. Annalen, Bd. 6, gives necessary and sufficient conditions for 
the identity (1) to exist. 
 We will call all theorems that give necessary and sufficient conditions for (1) 
“NOETHER theorems,” in the broader sense. 
 According to P. DUBREIL, all of these theorems can be derived from the following 
lemma: 
 
 VAN DER WOUDE’s lemma.  Suppose that the form F contains the term 2

nx , and 

let: 
(2)      R = Uf + Vg 
 
be the resultant of f and g by x2 (cf., § 16).  (1) will be true if and only if the remainder T 
of VF under division by f (both of which are considered to be polynomials in x2) is 
divisible by R. 
 
 Proof.  Dividing VF by f yields: 
 
(3)      VF = Qf + T. 
It follows from (2) and (3) that: 
 
 RF = UFf + VFg 
  = UFf + (Qf + T) g 
  = (UF + Qg) f + Tg 
or 
(4) RF = Sf + Tg. 
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 Now, if T is divisible by R then Sf will also be divisible by R, so, since f contains no 
factor that depends upon just x0 and x1, S will be divisible by R.  One can then cancel R in 
(4) and obtain (1). 
 Conversely, if (1) is true then one can always replace A and B in (1) with: 
 

A1 = A + Wg,  B1 = B – Wf. 
 

If one chooses W especially such that B1 has a degree < n in x0 (division with remainder 
of B by f) then the representation: 
 

F = A1 f + B1 g 
 
will be single-valued (1).  If one multiples this single-valued representation by R and 
compares with (4), in which T1 will have degree < n in x2, in any case, then it will follow 
from the single-valuedness of the representation that: 
 

S = RA1 , T = RB1 , 
 
so T will, in fact, be divisible by R. 

 Now, let 
1

s , 
2

s , …, 
h

s  be the intersection points of f = 0 and g = 0, and let σ1, …, σh be 
their multiplicities.  From § 17, one will then have: 
 

(5)     R = 0 1 1 0

vv v

v

s x s x
σ

 − 
 

∏ . 

 
We can arrange the coordinates so that no two intersection points have the same ratio s0 : 

s1 .  The factors 0 1 1 0

v v

s x s x−  in (5) will be all different then.  VF will be divisible by R if 

and only if all of the individual factors: 
 

0 1 1 0

vv v

v

s x s x
σ

 − 
 

∏  

 
are divisible.  We then already have a first “NOETHER theorem.” 
 
 Theorem 1.  (1) is true if and only if for every intersection s of the curves f = 0 and g 
= 0 with multiplicity s, the remainder T that was defined in the lemma above is divisible 
by: 

(s0 x1 – s1 x0)
σ. 

 
 The proof yields the following: 
 

                                                
 (1) It would then follow from F = A1f + B1g = A2f + B2g that (A1 – A2) f = (B2 – B1) g, so B2 – B1 would 
be divisible by f, which would be not possible when B1 and B2 both have degree < n. 
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 Corollary.   The coefficients of A and B can be calculated rationally from the 
coefficients of the given forms f, g, F. 
 
 On the basis of Theorem 1, any individual intersection point s will be associated with 
certain conditions that express the divisibility of T by (s0 x1 – s1 x0)

σ, and which will be 
collectively (i.e., for all intersection points together) necessary and sufficient for (1).  We 
call them the NOETHER conditions for the intersection point s in question.  The 
NOETHER conditions are obviously linear conditions on the form F: i.e., when F1 and 
F2 fulfill them, F = F1 + F2 will also fulfill them. 
 In order to give an application of Theorem 1, we consider the case σ = 1. 
 Let, perhaps, Q = (1, 0, 0) be a simple intersection point of the curves f = 0 and g = 0.  
We choose the coordinates once and for all such that the line x1 = 0 and the curve f = 0 
contact nowhere, and intersect only at finite points.  It follows from (2) that V must be 
zero at the n – 1 intersections points of f = 0 and x1 = 0 that are different from Q; R will 
then contain the factor x1, and g will be ≠ 0 at these points.  Now, it follows from (3) that 
T will also be zero at these points.  F and f will vanish at the point Q itself, so from (3), T 
will, too.  Now, if one sets x0 = 1 and x1 = 0 in T then one will obtain a polynomial in x2 
of degree ≤ n – 1 that will have n different zeroes, so it must vanish identically.  That is, 
T will be divisible by x1 .  One will then have the result: 
 
 The NOETHER conditions are already fulfilled at a simple intersection point of f = 0 
and g = 0 when F = 0 goes through that point. 
 
 We next consider the case in which the point Q = (1, 0, 0) is a simple point of the 
curve f = 0.  That curve will then have a single branch z at the point Q.  For the existence 

of the identity (1), it is, in any case, necessary that the form F have the same order (1) as 
the form g on the branch z.  We will now show that this condition is also sufficient in the 

sense of the NOETHER conditions. 
 Let T be precisely divisible by 1x

λ : 

T = 1x
λ T1 . 

 
If λ ≥ σ then the NOETHER condition (viz., the divisibility of T by 1x

σ ) will be fulfilled.  

Therefore, let σ < λ.  If will follow from (4) that the form RF will have the same order as 
Tg on the branch z.  If one had T1 ≠ 0 at the point Q then T would have order λ and R, 

order σ, so R would have a higher order than T, and furthermore, by assumption, F would 
have at least the same order as g, which would give RF a higher order than Tg, which is 
not true.  Therefore, T1 must be zero at the point Q.  However, precisely the same 
conclusion will also be true for the all branches at the remaining n – 1 intersection points 
of f = 0 with the lines x1 = 0; g indeed has order zero at these points.  Therefore, the 
polynomial T1 will have n different zeroes for x0 = 1 and x1 = 1.  It will follow from this, 
as in the previous proof, that T1 is divisible by x1 and therefore T is divisible by 1

1x
λ + , 

                                                
 (1) The order of F on z is the intersection multiplicity of F = 0 with the branch z (cf., § 20 and § 45) − 

or, what amounts to the same thing in this case − the intersection multiplicity of F = 0 and f = 0 at Q. 
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which is contrary to the assumption that T is precisely divisible by 1x
λ .  With that, a 

theorem of KAPFERER is proved: 
 
 Theorem 2.  If all intersection points of the curves f = 0 and g = 0 are simple points 
of f = 0, and if they are also intersection points of f = 0 and g = 0 with at least the same 
multiplicity then the identity (1) will be true. 
 
 The NOETHER conditions cannot be expressed as merely multiplicity conditions at 
the multiple points of the curves f = 0 and g = 0.  Later (viz., Theorem 4), we will bring 
the precise necessary and sufficient conditions into a form that is independent of the 
coordinate system.  However, in any case, there will be multiplicity conditions that are 
sufficient for the identity (1).  In that regard, we next treat the case in which the curve f = 
0 has an r-fold point with r separate tangents at Q.  Let the associated branches be z1, …, 

zr ; the curve g = 0 will intersect these branches with the multiplicities σ1, …, σr .  The 

total intersection multiplicity of the points Q will then be σ = σ1 + …+ σr .  We now 
prove: 
 
 Theorem 3.  If the curve F = 0 cuts each of the r branches zj (j = 1, 2, …, r) of the 

curve f = 0, which does not contact it, at Q with a multiplicity of at least σj + r – 1 then 
the NOETHER conditions for Q will be fulfilled. 
 
 Proof.  As in the proof of Theorem 3, let: 
 
      T = 1x

λ T1 

 
and λ < 0.  RF will have the same order as Tg on any branch zj .  That is, when δj is the 

order of T1 on zj : 

σ + (σr + r – 1) ≤ λ + δj + σj . 
 

Since λ ≤ σ – 1, it will then follow that: 
 
(6)      r ≤ δj . 
 
 We would now like to show that the curve T1 has an at least r-fold point at Q.  If that 
were not the case, so it would have an at most (r − 1)-fold point at Q, then it would also 
have at most r – 1 tangents at Q, and since the branches z1, …, zr collectively have r 

different tangents there would be a branch zj that contacts no branch of the curve T1 = 0.  

From the rules of § 20, the intersection multiplicity of T1 = 0 with this branch zj would 

then seem to be at most r – 1.  However, that would contradict the inequality (6).  
Therefore, T1 = 0 will have an at least r-fold point at Q. 
 In addition, the curve T1 = 0 will contain the remaining n – r intersection points of f = 
0 and x1 = 0, as before.  In total, the polynomial T1 will have an n-fold zero for x0 = 1, x1 
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= 0.  As above, it will follow from this that T1 is divisible by x1, so T is divisible by 1
1x
λ + , 

which is contrary to the assumption that T is divisible by 1x
λ , precisely. 

 
 Remark.  The last part of the proof can also be carried out in such a way that the 
assumption that the line x1 = 0 cuts the curve at n – r different points is not used in it, but 
only the assumption that x1 = 0 is not a tangent to the point Q, and does not go through 
any other intersection points of f = 0 and g = 0, and that its imaginary point (0, 0, 1) does 
not lie on the on the curve f = 0.  One then concludes: R and T are divisible by 1x

λ  in (4), 

so S must also be divisible by 1x
λ .  If one drops 1x

λ then it will follow that: 

 
R1 F = S1 f + T1 g. 

 

If one sets x1 = 0 here then S1, T1, f, g will go to 0
1S , 0

1T , f 0, g0, while R1 will be divisible 

by x1; it will then follow that: 
− 0

1S f 0 = 0
1T g0. 

 
f 0 contains the factor 2

rx , which also comes out of 01T ; f = 0 and T1 = 0 will both have an 

r-fold point at Q then.  The remaining factors of f 0 are relatively prime to g0, since the 
line x1 = 0 contains no other intersection points of f = 0 and g = 0 than Q.  Therefore, 
these factors must drop out of f 0 and 0

1T .  Therefore, 0
1T  will be divisible by f 0.  

However, 0
1T  has degree < n in x2, while f 0 has degree n.  Thus, 0

1T = 0; i.e., T1 will be 

divisible by x1, etc., as before. 

 Now that we have cast a glance over the most important special case, we go on to the 
general case.  NOETHER’s fundamental theorem gives the necessary and sufficient 
conditions for the existence of the identity (1) in such a form that we avoid the singling 
out of x2 that we have been doing.  We set x0 = 1 and then go over to inhomogeneous 
coordinates.  In order to be able to formulate the theorem and its proof simply, we 
introduce the concept of the order of a polynomial f(x1, x2) at a point Q: f has order r at Q 
when the curve f = 0 has an r-fold point at Q.  If one again has Q = (1, 0, 0), and one 
develops f in increasing powers of x1 and x2 then the development will begin with terms 
of degree r (in x1 and x2 collectively).  NOETHER’s theorem now reads, in a form that P. 
DUBREIL gave to it: 
 
 Theorem 4.  Let f and g be relatively prime polynomials in x1, x2 .  Let the orders of f 
and V be r and l, resp., at the point s.  Let the intersection multiplicity of f = 0 and g = 0 
be s.  If there are then two polynomials A′ and B′ such that the difference: 
 

∆ = F − A′ f − B′ g 
has an order of at least: 

σ + r – 1 – l 
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in s then the NOETHER conditions for F will fulfilled at the point s. 
 
 Proof.  If ∆ and A′ f + B′ g both fulfill the NOETHER conditions at the point s then 
their sum F will also fulfill them.  From Theorem 1, A′ f + B′ g will always fulfill the 
NOETHER conditions.  Hence, it will suffice to prove that ∆ fulfills them, as long as the 
order of ∆ in s is at least σ + r – 1 – l. 
 In order to be able to apply the previous conditions, we again call ∆, F.  We again 
assume that s = (1, 0, 0), and draw the line x1 = 0 through x in such a way that it does not 
contact the curve at s. 
 Again, let: 

T = 1x
λ T1  λ < σ. 

It will then follow from (3) that: 
(7)      V F = Q f + 1x

λ T1 . 

 
If we develop both sides of (7) in increasing powers of x1 and x2 then the left-hand side 
will be missing all terms whose degree (in x1 and x2 together) is less than σ + r – 1 – l.  
Since the last term in (7) is divisible by 1x

λ , any term in Qf whose degree is less than σ + 

r – 1 must be divisible by 1x
λ .  The developments of Q and f in components of increasing 

degree might read: 
 Q = Q0 + Q1 + Q2 + …, 
 f  = fr + fr+1 + fr+2 + … 
It will then follow that: 
 

Qf = Q0 fr + (Q1 fr + Q0 fr+1) + (Q2 fr + Q1 fr+1 + Q0 fr+2) + … 
+ (Qσ−2 fr + Qσ−3 fr+1 + …) + … 

 

On the left-hand side, all components of degree < r + σ – 1 are divisible by 1x
λ .  The 

same thing must also be true on the right.  However, fr is relatively prime to x1.  One then 
sees successively that Q0, Q1, …, Qσ−2 must be divisible by 1x

λ .  We can then write: 

 
(8)     Q = 1x

λ C + D, 

in which D has order ≥ σ − 1 in s. 
 If one substitutes (8) in (7) then that will give: 
 

VF − Df = 1x
λ (T1 – Cf). 

 
The left-hand side has order ≥ r + σ – 1 in s.  Thus the parenthesis on the right, namely: 
 

T1 – Cf, 
 

will have order ≥ r + σ – 1 – λ ≥ r.  Since Cf also has order ≥ r in s, T1 will have order ≥ 
r. 
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 From here on, the proof proceeds in exactly the same way that it did in the last part of 
the proof of Theorem 3. 
 
 The importance of NOETHER’s fundamental theorem rests upon the following: 
Assume that one finds that of the m n intersection points of the curves F = 0 and f = 0 
(where m is the degree of F and n is the degree of f), a certain number m′ n of them lie on 
a curve g = 0 of order m′ < m.  If the NOETHER conditions are fulfilled at these points, 
in addition, then one can conclude that the remaining (m – m′) ⋅⋅⋅⋅ n intersection points will 
lie on a curve B = 0 of degree m – m′.  Namely, it will follow immediately from the 
identity (1) that the m n intersection points of F = 0 and f = 0 will be the same as those of 
Bg = 0 with f = 0, and will thus consist of the m′ n intersection points of f with g and the 
(m – m′) ⋅⋅⋅⋅ n intersection points of f with B.  We saw in § 24 how important theorems of 
this kind can be: Theorems 1, 2, 6, 7 in that section can be derived immediately from 
NOETHER’s Theorem 2 in the given way. 
 
 Problems.  1.  If two conic sections intersect two other conic sections at 16 different points, and if 8 of 
these 16 intersection points lie on another conic section then the same will be true for the other 8. 
 2. One derives the so-called “simple case of NOETHER’s theorem” from Theorem 3 or Theorem 4: 
If, at an intersection point of the curves f = 0 and g = 0 that is an r-fold point of the first curve and a t-fold 
point of the second curve, the r tangents to the first curve are different from the t tangents of the second 
curve at the point s, and if F has order at least r + s – 1 at that point, then the NOETHER conditions will be 
fulfilled at that point. 
 3. Prove NOETHER’s fundamental theorem in the original NOETHER formulation: If an identity: 
 

F = P f + Q g 
 
is true at any real intersection point (with the inhomogeneous coordinates s1, s2) of the curves f = 0 and g = 
0, where f, g, F are polynomials in x1, x2, and P, Q are power series in x1 – s1, x2 – s2 , then an identity (1) 
will also be true with polynomials A and B.  [One truncates the power series after the terms of degree (r + σ 
– 1 – l) and makes the equation thus-obtained homogeneous.] 
 
 

§ 49. Adjoint curves.  The remainder theorem. 
 

 One can just as well base the considerations of this paragraph on the concept of 
branch that was defined in § 20 as on the concept of place that was defined in § 45 
independently of it.  We choose the former, because we need the conceptual machinery of 
Chap. 3, as well.  In connection with that, we understand a place on a plane curve Γ to 
mean a branch, together with the starting point of that branch.  A divisor on the curve Γ is 
a finite set of places with whole-number multiplicities.  The sum of two divisors will be 
defined by combining the places that appear in them and adding their multiplicities.  An 
arbitrary curve g = 0 that has no component in common with Γ will cut out a well-defined 
divisor from Γ.  A linear family of forms λ0 g0 + λ1 g1 + … + λr gr will cut out a linear 
family of divisors from Γ, to which one can add a fixed divisor (cf., § 42).  Two divisors 
of the same linear family will be called equivalent.  A complete family is a linear family 
of complete divisors that are all equivalent to a given divisor.  The goal of this paragraph 
is the construction of complete families from a given curve.  The adjoint curves will serve 
to facilitate this construction, which we shall now explain. 



210 VIII.  NOETHER’s fundamental theorem and its consequences. 

 Let s be a multiple point of an irreducible plane curve Γ with the equation f = 0, and 
let z be a well-defined branch at the point s.  The polars of the points y of the plane whose 

equations reads: 
y0 ∂0 f + y1 ∂1 f + y2 ∂2 f = 0 

 
will all go through s.  They will then cut out a linear family of divisors from Γ in which 
the place (z, s) appears as a fixed component with a certain multiplicity v.  Naturally, for 

special y, the intersection multiplicity of the polar with the branch z can be higher; v will 

then be defined to be the smallest value that this intersection multiplicity can assume. 
 The point s also has a well-defined multiplicity κ on the branch z (cf., § 21); κ is the 

smallest intersection multiplicity of z with a line through s. 

 We will later see that the difference: 
 

δ = v – (k – 1) 
 
is always positive.  We understand a curve adjoint to Γ to means a curve g = 0 whose 
intersection multiplicity with any branch z (at each multiple point of Γ) is always ≥ δ.  

The form g is then also called an adjoint form. 
 For a simple point of the curve, one will have v = 0, κ = 1, so δ = 0.  Therefore, there 
is no adjointness condition on it.  For an r-fold point with separate tangents, from § 25, 
one will have: 

v = r – 1, κ = 1, 
 
so δ = r – 1.  An adjoint curve will then have to cut all branches of this r-fold point with a 
multiplicity of at least r − 1.  In the case of an ordinary vertex, one will have v = 3, κ = 2, 
so δ = 2.  An adjoint curve shall then cut the vertex branch with a multiplicity of at least 
2; i.e., it shall go through the vertex at least simply. 
 
 Problems.  1.  Any adjoint curve must have an at least (r – 1)-fold point at an r-fold point with 
separate tangents. 
 2. Establish how the adjointness condition will read for a beak and a contact junction. 
 
 For the computational evaluation of the adjointness condition, it is convenient to 
know that is it not necessary to define the polars to all points y (as often happens in the 
definition) in order to succeed in calculating the difference δ, but only the polar to an 
arbitrary point outside of the curve.  Namely, let v′ be the intersection multiplicity of the 
polar to such a fixed point y with the branch z, and let κ′ be the intersection multiplicity 

of the connecting line ys with the branch z.  We will then show that the difference: 

 
δ′ = v′ − (κ′ − 1) 

 
is independent of the choice of y and equal to δ. 
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 If we compare two different points y′, y″ with each other then we can assume that 
they do not lie on a line with the point s; otherwise, we could interpolate a third point 
outside of the line as an intermediate term and compare it with both of them.  We can 
then assume that s, y′, y″ are the vertices of a coordinate triangle: 
 
 s = (1, 0, 0), 
 y′ = (0, 1, 0), 
 y″ = (0, 0, 1). 
 
The polar of y′ is ∂1f = 0, and that of y″ is ∂2f = 0.  Let the intersection multiplicity of 
these polars with the branch z be v′ (v″, resp.).  Let the intersection multiplicities of the 

lines s y′ (x2 = 0) and s y″ (x1 = 0) with the curve be κ′ and κ″, resp.  We will then have to 
prove that: 

v′ − (κ′ − 1) = v″ − (κ″ − 1). 
 

 Let a general point of the curve be ξ = (1, ξ1, ξ2).  We then know that: 
 

(2)      2

1

d

d

ξ
ξ

 = − 1

2

( )

( )

f

f

ξ
ξ

∂
∂

. 

 
When expressed in terms of the position uniformization of the branch z, ξ2 will have 

order κ′, so dξ2 will have order κ′ − 1, and likewise, dξ1 will have order κ″ − 1; 
furthermore, ∂1f(ξ) and ∂2f(ξ) have orders v′ and v″.  It will then follow from (2) that: 
 

(κ′ – 1) – (κ″ – 1) = v′ − v″ 
or 

v″ − (κ″ – 1) = v′ − (κ′ – 1). 
  
It is thus proved that δ′ is independent of the choice of y.  If one chooses v such that κ′ is 
minimal then, since: 

δ′ = v′ − (κ′ – 1), 
 
v′ will also be minimal, and δ′ will go to δ.  One will thus have: 
 

δ = v′ − (κ′ – 1), 
 
independently of the choice of the point y. 
 The fact that v′ ≥ κ′ – 1 (with the equality sign only in the case of a simple point) 
follows immediately from the developments in § 21 (cf., prob. 4 there).  It then follows 
that: 

δ ≥ 0, 
 
with the equality sign only in the case of a simple point. 
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 The adjoint forms of degree n – 3 (where n is the degree of the curve) have a special 
meaning due to their relationship to the differentials of the first kind of the associated 
algebraic function field.  Namely, if g is such a form of degree n – 3 then one will define 
the expression: 

dΩ = 0 1 1 0

2

( )( )

( )

g d d

f

ξ ξ ξ ξ ξ
ξ
−

∂
 

 
for an arbitrary point ξ of Γ.  Since one can also write this expression as: 
 

dΩ = 
2
0 1

2 2

( )

( )

g
d

f

ξ ξ ξ
ξ ξ
⋅

∂
, 

 
in which the numerator and denominator in the first fraction have the same degree, it will 
depend upon only the ratios of the ξ; i.e., dΩ will be a differential of the field K(ξ1 : ξ0, ξ2 
: ξ0), in the sense of § 26. 
 g(ξ) has order at least δ on a branch z of Γ.  Since ∂2f(ξ) has order v′ and ξ0 dξ1 – ξ1 

dξ0 has order κ′ − 1, moreover (1), dΩ will have order at least: 
 

δ – v′ + (κ′ – 1) = 0 
 
on the branch z.  That means that the differential dΩ has no pole then (i.e., it is 

“everywhere finite”).  One calls such a differential a differential of the first kind.  More 
precisely, the calculation that we just performed yields that: If g has order δ + ε on z then 

dΩ will have order ε. 
 The divisor that consists of places that belong to the multiple points of Γ, with the 
multiplicities δ for branch z that were defined above, is called the double-point divisor of 

the curve Γ.  Any multiple point will thus contribute to the double-point divisor.  An r-
fold point with separate tangents will contribute its r places (which correspond to the r 
branches of the r-fold points), each with the multiplicity r – 1.  An ordinary cusp will 
contribute the place of the cusp with multiplicity 2, etc.  The double-point divisor will be 
suggestively denoted by D. 
 The most important theorem on adjoint curves – viz., the BRILL-NOETHER 
remainder theorem – can be derived from the following double-point divisor theorem: 
 
 If a curve g = 0 cuts out the divisor D from Γ, and if an adjoint curve F = 0 cuts out at 
least the divisor D + G then there will exist an identity: 
 
(3)      F = A f + B g, 
with an adjoint B. 
 

                                                
 (1) If one further assumes ξ0 = 1 then ξ0 dξ1 – ξ1 dξ0 will go to dξ1, and we already saw before that dξ1  
has a real place of order κ′ – 1.  In the case of an imaginary point, one simply switches the roles of ξ0 and 
ξ1. 



§ 49.  Adjoint curves.  The remainder theorem. 213 

 Otherwise expressed: If the intersection multiplicity of F = 0 with any branch z of Γ 

contributes at least δ + σ, where δ is defined as above, and σ is the intersection 
multiplicity of g = 0 with Γ, then (3) will be true, and the curve B = 0 will be adjoint to Γ. 
 
 The last part of the statement – viz., the adjointness of B – is a consequence of (3).  
Then, from (3), F = 0 has the same intersection multiplicity with the branch z as Bg = 0, 

and since g = 0 has only the intersection multiplicity σ, but F = 0 has at least σ + δ, one 
must have B = 0 for the remaining δ. 
 In the case where all multiple points of Γ have separate tangents, the double-point 
divisor theorem will obviously be contained in Theorem 3 (§ 48).  Then, if the 
NOETHER conditions are fulfilled at every intersection point of f = 0 and g = 0 then (3) 
will indeed be true.  We will resolve the more difficult general case in the next paragraph. 
 We now come to the BRILL-NOETHER remainder theorem.  In its most succinct 
formulation, it states: 
 
 The adjoint curves of any degree m will cut out a complete family from Γ outside of 
the double-point divisor D. 
 
 If we recall the definition of a complete family then we can also express the same 
thing as: 
 
 If an adjoint curve ϕ cuts out the divisor D + E from Γ, and if E′ is a complete divisor 
that is equivalent to E then there will be a second adjoint curve that cuts the divisor D + 
E′ out of Γ. 
 
 Proof.  The equivalent divisors E and E′ will cut out a linear family of forms through 
two forms g and g′ , which might cut out a fixed divisor C, in addition.  The form: 
 

F = ϕ g′ 
 
cuts out the divisor D + E + C + E′ , but the form g will cut out the divisor C + E.  From 
the theorem of the double-point divisor, one will then have: 
 

F = Af + Bg. 
 

Thus, F and Bg will cut out the same divisor D + E + C + E′.  Therefore, B must cut out 
the divisor D + E′, with which the assertion is proved. 
 
 The remainder theorem gives one the means to construct any arbitrary complete 
family.  Namely, if G is any complete divisor then one will draw an adjoint curve through 
G + D.  It might cut out, in all, the divisor G + D + F from Γ.  One then draws all 
possible adjoint curves of the same degree m through D + F; one thus obtains only point-
groups G′ + D + F, where G′ is equivalent to G.  Conversely, if G′ is equivalent to G 
then G + F will be equivalent G′ + F, so G′ + F will belong to the complete family that is 
cut out by the adjoint curves of degree m; i.e., there will be an adjoint curve of degree m 
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that cuts out the divisor G′ + D + F.  The desired complete family | G | will then be cut 
out from the adjoint curves, which will cut out the fixed divisor D + F, in addition.  One 
can also express this as: The complete family | G | is the remainder of F relative to the 
complete family that is cut out by the adjoint curves of a sufficiently high degree m. 
 If one would like to decide whether two divisors C, C′ are equivalent then one can 
represent the difference C – C′ as the difference of two complete divisors: 
 

C – C′  = G – G′, 
 
and observe whether G′ belongs to the complete family | G |. 
 
 Problems.  3.  A complete family of degree n will have dimension n on a line. 
 4. A complete family of degree n will have dimension n – 1 on a cubic curve with a double point for 
n > 0. 
 5. An isolated point or a point-pair on a fourth-order curve with a junction or a cusp will determine a 
complete family of dimension 0, assuming that the point-pair lies on a line with the double point.  A point-
triple will determine a complete family of dimension 1, and a point-quadruple, a complete family of 
dimension 2. 
 
 

§ 50. The double-point divisor theorem. 
 

 In § 49, we proved the double-point divisor theorem for the special case in which the 
base curve f = 0 has no other singularities than multiple points with separate tangents.  
Here, the general case shall now be solved. 
 
 Lemma.  If two power series: 

A(t) = aµ tµ + aµ+1 t
µ+1 + …   (aµ ≠ 0), 

B(t) = bν t
ν + bν+1 t

ν+1 + …    (bν ≠ 0) 
 
are such that the first one has at least the same order as the second one −  i.e., if: 
 

µ ≥ ν, 
 
then the first one will be divisible by the second one: 
 
(1)      A(t) = B(t) Q(t). 
 
 Proof.  We assume: 

Q(t) = cµ−ν t
µ−ν + cµ−ν+1 t

µ−ν+1 + …, 
 
substitute that into (1), and compare the coefficients of tµ, tµ+1, … on both sides.  That 
will yield the condition equations: 
 
 bν cµ−ν = aµ , 
 bν cµ−ν+1 + bν+1 cµ−ν  = aµ+1 , 
 …………………………… 
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from which, one can determine cµ−ν , cµ−ν+1, … since bν ≠ 0. 
 In the following, f(t, z), g(t, z), etc., will mean polynomials in z whose coefficients are 
power series in t (with all non-negative exponents).  We assume that f(t, z) is double-root-
free and regular in z (i.e., that the coefficient of the highest power of z equals 1).  
Furthermore, f(t, z) might divide completely into linear factors: 
 
(2)     f(t, z) = (z – ω1)(z – ω2) … (z – ωn) 
 
in the domain of the power series. 
 Under these assumptions, one will have: 
 
 Theorem 1.  If F(t, z) and g(t, z) are so arranged that the order of the power series 
F(t, ωj), for j = 1, 2, …, n, is equal to at least the order of the product: 
 
(3)    (ωj – ω1) … (ωj – ωj−1) (ωj – ω j+1)… (ωj – ωn) g(t, ωj) 
 
then one will have an identity: 
 
(4)     F(t, z) = L(t, z) f(t, z) + M(t, z) g(t, z). 
 
 Proof.  From the lemma, F(t, ωj) will be divisible by the product (3); in particular, for 
j = 1, one will have: 

F(t, ω1) = (ω1 – ω2)… (ω1 – ωn) g(t, ω1) R(t), 
 
where R(t) is a power series in t.  The difference: 
 

F(t, z) − (z – ω2) …(z – ωn) g(t, z) R(t), 
 
will be zero for z = ω1, so it will be divisible by (z – ω1): 
 
(5)    F(t, z) = R(t) (z – ω2) …(z – ωn) g(t, z) + S(t, z) (z – ω1). 
 
 In the case n = 1, this equation reads simply: 
 

F(t, z) = R(t) g(t, z) + S(t, z) f(t, z); 
 

the assertion (4) is already proved for n = 1 with that.  It will then be assumed to be true 
for polynomials of degree n – 1. 
 If one sets z = ωj (j = 2, …, n) in (5) then the first term on the right will vanish, and 
one will see that S(t, ωj)(ωj – ω1) has the same order as F(t, ωj), so it has the same order 
as: 

(ωj – ω1)(ωj – ω2) … (ωj – ωj−1)(ωj – ωj+1)… (ωj – ωn) g(t, ωj). 
 
As a result, for j = 2, …, n, S(t, ωj) will have at least the same order as: 
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(ωj – ω1)… (ωj – ωj−1)(ωj – ωj+1)… (ωj – ωn) g(t, ωj). 
 
When the induction assumption is applied to f1 = (z – ω2)… (z – ωn), it will follow from 
this that: 
(6)   S(t, z) = C(t, z) (z – ω2)… (z – ωn) + D(t, z) g(t, z). 
 
If one substitutes (6) into (5) then one will obtain the assertion (4) immediately. 
 The derivation of f(t, z) with respect to z is: 
 

∂2f(t, z) = 1
1

( )
n

j

z ω
=

−∑ …(z – ωj−1)(z – ωj+1)… (z – ωn). 

 
The assumption of Theorem 1 can thus be also formulated as: F(t, ωj) shall have at least 
the same order as ∂2f(t, ωj) g(t, ωj) for j = 1, …, r. 
 Now, let f(u, z) be a polynomial in u and z that is regular in z and free of multiple 
factors.  From § 14, f(u, z) will divide into linear factors: 
 

f(u, z) = (z – ω1)… (z – ωn), 
 
in which ω1, …, ωn are power series in fractional powers of u.  In each case, κj might 
define a power series ωj, together with a branch z.  ω will then be a power series in the 

position uniformization τj that is defined by: 
 

u = ju

jτ . 

 
If h is the smallest common multiplicity of all κj then we can set: 
 

u = th, 
 
and write all of the ω1, …, ωn as power series in t. 
 Let F(u, z) and g(u, z) be further polynomials in u and z.  Let the orders of g(u, ωj), 
∂2f(t, ωj), and F(u, ωj) as power series in τj be σj, νj, and ρj, resp.  Corresponding to the 
assumptions of the double-point divisor theorem, let: 
 

ρj ≥ δj + σj = νj − (κj − 1) + σj, 
or 

ρj − (κj − 1) ≥ νj + σj . 
 

F(u, ωj) ⋅⋅⋅⋅ 
1j

j

κτ −
 will then have a larger order than ∂2f(t, ωj) g(u, ωj).  That will first be true 

when 
1j

j

κτ −
 is replaced with th−1, when one will have: 

 

1j

j

κτ −
 = 

( 1)j
j

h

jt
κ

κ
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h
h

jt κ
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h − 
j

h

κ
 ≤ h – 1. 

 
Thus, F(th, ωj) t

h−1 will have at least the same order as a power series in t as ∂2f(t
h, ωj) 

g(th, ωj).  It will then follow from Theorem 1 that: 
 
(7)    F(th, ωj) t

h−1 = L(t, z) f(th, z) + M(t, z) g(th, z). 
 
 If we order both sides of (7) in powers of t then only powers whose exponents are 
congruent to – 1 (mod h) will appear on the left-hand side.  One can then drop all terms tλ 
whose exponents λ are not ≡ − 1 (mod h) from L(t, z) and M(t, z), without perturbing the 
validity of (7).  One can then drop th−1 from both sides of (7) and replace th with u.  One 
will then get: 
(8)     F(u, z) = P(u, z) f(u, z) + Q(u, z) g(u, z), 
 
in which P and Q are polynomials in z and power series in u. 
 In the original formulation of the double-point divisor theorem, we were not dealing 
with polynomials f(u, z), but with forms f(x0, x1, x2).  However, for the examination of the 
NOETHER conditions at a well-defined point O = (1, 0, 0), we can set x0 = 1.  
Correspondingly, we now write f(1, u, z), instead of f(u, z), and combine what was proved 
up to now: 
 
 Under the assumptions of the double-point divisor theorem, one will have an identity: 
 
(9)    F(1, u, z) = P(u, z) f(1, u, z) + Q(u, z) g(1, u, z), 
 
in which P and Q are polynomials in s whose coefficients are power series in u. 
 
 If one truncates all of these power series at a sufficiently high power of u then it will 
follow immediately from Theorem 4 (§ 48) that the NOETHER conditions will be 
fulfilled at the point O.  However, we would like to avoid the application of Theorem 4, 
in order to come to a shortest-possible proof of the double-point divisor theorem, and will 
then employ Theorem 1 of the same paragraph directly. 
 As was shown in § 48, one can always assume that the degree of Q(u, z) in z is < n in 
any identity of the form (9).  The representation will then be single-valued.  If one 
multiplies this single-valued representation on both sides by the resultant R of f and g 
with respect to z, and then compares it with (4), § 48 then, due to the single-valuedness of 
the representation, it will follow that: 
 

S = R P, T = R Q. 
 

R will then be a polynomial in just u that contains the factor uσ (where σ is the 
intersection multiplicity of O as the intersection point of f = 0 and g = 0), while Q will be 
a power series in u whose coefficients are polynomials in z.  If one now arranges both 
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sides of the last equation T = R Q in increasing powers of u then one will see that T is 
divisible by uσ.  However, those are precisely the NOETHER conditions at the point O. 
 Since the same thing is true for any arbitrary intersection of f = 0 and g = 0, it will 
then follow from Theorem 1 (§ 48) that there exists an identity: 
 

F = A f + B g 
 
in the domain of the forms.  The double-point divisor theorem is proved with that. 
 
 Problem.  Present the proof that was given here in such a way that no power series appear in it 
anymore by truncating all of the power series that appear at a sufficiently high power of t (u, resp.). 
 
 

§ 51. The RIEMANN-ROCH theorem. 
 

 The question that is answered by the RIEMANN-ROCH theorem reads: How large is 
the dimension of a complete family – or, what amounts to the same thing, the dimension 
of a divisor class of given degree − on an algebraic curve? 
 Since the concept of a complete family is birationally invariant, we can replace Γ 
with any birational image of Γ.  We can thus assume that Γ is a plane curve with only 
normal singularities (which are multiple points with separate tangents).  Let the degree of 
this curve be m, the “number of double points,” d, and the genus, p.  One will then have: 
 

p = 
( 1)( 2)

2

m m− −
 − d, 

and 

d = 
( 1)

2

r r −
∑ , 

 
which is summed over all multiple (viz., r-fold) points of the curve. 
 A special role is played by one divisor class, namely, the differential class, or 
canonical class.  The zero locus and poles of a differential, in the sense of § 26: 
 

f(u, ω) du, 
 
will define a divisor when one computes the zeroes with positive multiplicities and the 
poles with negative ones.  Since all differentials will arise from the differential du upon 
multiplying by a function f(u, w), all associated divisors will be equivalent.  They will 
therefore define a class, namely, the differential class. 
 The degree of the differential class – i.e., the number of zeroes minus the number of 
poles of a differential – is, from § 26, equal to: 
 

2p − 2. 
 
We now ask what the dimension of the differential family is – i.e., the dimension of the 
complete family that consists of effective divisors of the differential class.  These 
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effective divisors belong to differentials without poles (i.e., differentials of the first kind).  
From § 49, these differentials have a close relationship to the adjoint curves of degree m 
– 3, which one also calls canonical curves.  Namely, if such a canonical curve cuts a 
divisor C out of Γ, outside of the double-point divisor D, then C will be an effective 
divisor of the differential class, and since the canonical curves always cut out a complete 
family, outside of D, one will also obtain all effective divisors of the differential class in 
this way. 
 In the sequel, when we say that an adjoint curve ϕ cuts out the divisor C, we will 
always mean that the curve cuts out the divisor, outside of the double-point divisor.  
Likewise, we will say that ϕ goes through the divisor C′ when ϕ cuts out at least the 
divisor D + C′, so when C is contained as a subset of the previously-considered divisor C. 
 In the case p = 0, 2p − 2 is negative, so there can be no effective divisors in the 
differential class.  From the convention that was used in § 46, the dimension of the 
differential class is to be set to – 1 in this case. 
 Thus, let p ≥ 1, and therefore m ≥ 3.  The number of linearly-independent curves of 
degree m – 3 in the plane is: 

( 1)( 2)

2

m m− −
. 

 
Should such a curve be adjoint, its coefficients would then have to fulfill: 
 

( 1)

2

r r −
 

 
at every r-fold point.  The number of linearly-independent adjoint curves of degree m – 3 
would then be equal to at least: 
 

( 1)( 2) ( 1)

2 2

m m r r− − −−∑ = 
( 1)( 2)

2

m m− − − d = p. 

 
Therefore, there will always be canonical curves for p ≥ 1 (1), and the dimension of the 
complete family that they cut out will be at least p – 1. 
 
 If we determine the dimension of the complete family that is cut out by the adjoint 
curves of degree m – 1 in the same way then we will find at least the value: 
 

( 1)( 2)

2

m m− −
 − d – 1 = p + 2m – 2. 

 
The degree of the complete family will be equal to: 
 
                                                
 (1) Except that in the case m = 3, one cannot actually speak of adjoint “curves” of degree m − 3; of 
course, there are adjoint forms of degree 0 for a double-point-free cubic curve, namely, the constants.  The 
complete family (of dimension 0) that is cut out by them will consist of only the zero divisor, as is always 
true in the case p = 1, moreover. 
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m(m – 1) – 2d = 2p + 2m – 2. 
 

These calculations are also true for p = 0. 
 
 Corollary.   If the divisor C consists of p + 1 points then the complete family | C | will 
have dimension at least 1. 
 
 Proof.  One can draw an adjoint curve of degree m – 1 through the p + 1 points; the 
dimension that is achieved above will then be ≥ p + 1, if the trivial case of m = 1 is 
excluded.  Outside of C, this curve cuts out a remainder C′ that consists of: 
 

(2p + 2m – 2) – (p + 1) = p + 2m – 3 
 
points.  The remainder of C′ relative to the adjoint curves of order m – 1 is, moreover, a 
complete family that contains the divisor C and has dimension at least: 
 

(2p + 2m – 2) – (p + 2m − 3) = 1. 
 

The assertion is then proved. 
 
 In particular, if p = 0 then it will follow that any isolated point belongs to a complete 
family of dimension 1.  The complete family will map the curve Γ onto a line 
birationally.  Any curve of genus 0 will then be equivalent to a line.  Such curves are 
called rational or unicursal curves. 
 In order to prove the RIEMANN-ROCH theorem, BRILL and NOETHER presented 
the following Reduction theorem: 
 
 Let C be an effective divisor, and let P be a simple point of Γ.  If there is a canonical 
curve ϕ that goes through C, but not through C + P, then P will be a fixed point of the 
complete family | C + P |. 
 
 Proof.  One draws a line g through P that cuts P in m different points P, P2, …, Pm .  
g and ϕ collectively define an adjoint curve of degree m – 2 that goes through C + P, and 
in addition, cuts out a remainder E from Γ to which the points P2, …, Pm certainly belong, 
but not the point P.  Now, in order to obtain the complete family | C + P |, from § 49, one 
must draw all possible adjoint curves of order m – 2 through E.  All of them will have the 
m – 1 points P2, …, Pm in common with the lines g; they will therefore contain the line, 
and therefore also the point P.  Hence, P will be a fixed point of the complete family. 
 One understands the specialty index i of an effective divisor to mean the number of 
linearly-independent canonical curves that go through C.  If there are no such curves then 
one will set i = 0.  If i > 0 then C will be called a special divisor, and the complete family 
| C | will be called a special family. 
 A special family | C | can always be obtained as the remainder of a second special 
divisor C′ relative to the canonical family | W |.  Namely, if one draws a canonical curve 
through C then it will cut out a divisor C + C′ = W, and, from § 49, the complete family 
|C| will be the remainder of C′ relative to the canonical complete family | W |. 
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 A divisor whose degree is > 2p – 2 will certainly not be special when W has degree 2p 
– 2.  On the other hand, a divisor whose degree is < p will certainly be special; one can 
then always draw a divisor of the complete family | W | through p – 1 points, since it will 
have a dimension of at least p – 1. 
 The RIEMANN-ROCH theorem  (in the BRILL-NOETHER formulation) now says: 
 
 If n is the degree and i is the specialty index of an effective divisor C, and if r is the 
dimension of the complete family | C | then one will have: 
 
(1)      r = m – p + i. 
 
 Proof.  Case 1:  i = 0.  If r > 0 then we will fix a point P that is not a fixed point for 
all divisors of the complete family from the outset, and define the remainder | C1 | of P 
relative to | C |.  The specialty index of C1 will then be once more zero.  Hence, if there 
were adjoint curves that went through C1 then, from the reduction theorem, P would be a 
fixed point of | C1 + P | = | C |, which is not the case.  Upon going from C to C1, one will 
reduce both the dimension r and the degree n by 1, while p and i (= 0) do not change; 
thus, (1) will be true for C, as long as (1) is true for C1. 
 One proceeds in this way, while always holding a point fixed, until the dimension of 
the complete family becomes zero.  One will then have to prove that formula (1) is true 
for this case (r = i = 0); i.e., that n = p in this case.  In any case, n cannot be < p, since, 
from a previously-made remark, the divisor would then be special, and thus one would 
have i > 0.  Now, if one had n > p then one could choose p + 1 points of C, and embed 
this divisor in a linear family of dimension > 0 (cf., the “corollary” above).  If one thenw 
added the remaining points of C as fixed points then one would obtain a linear family that 
contained C and had a dimension > 0, which would contradict the assumption that r = 0.  
Therefore, only the possibility that n = p would remain, with which (1) is proved for this 
case. 
 
 Case 2: i > 0.  (Complete induction on i)  Let formula (1) be true for divisors of 
specialty index i = 1.  Draw a canonical curve through C − which is possible, since i > 0 − 
and choose a simple point P of Γ outside of that curve.   From the reduction theorem, P 
will then be a fixed point of the complete family | C + P |.  This complete family will thus 
have the same dimension r as the original complete family | C |, so it will again have 
degree n + 1 and specialty index i − 1; the condition of obtaining P outside of C will 
come down to a linear condition equation for the coefficients of a canonical curve.  From 
the induction assumption, one will then have: 
 

r = (n + 1) – p + (i – 1) = n – p + i. 
 

With that, the proof is concluded.  It consisted in simply the fact that one defines | C – P | 
in the first case and | C + P | in the second case, and applies the reduction theorem both 
times, by which r and i were reduced until they both became zero. 
 
 1. Consequence.  One will always have r ≥ n – p, with the equality sign for non-
special divisors. 
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 2. Consequence.  The dimension of the canonical family is equal to precisely p – 1. 
Its degree is then n = 2p – 2, and its specialty index is i = 1. 
 
 The RIEMANN-ROCH theorem can also be formulated in another way.  If {C} 
means the dimension of the complete family | C | then one will obviously have: 
 

{ W – C} = i – 1, 
so formula (1) will assume the form: 
 
(2)     {C} = n – p + 1 + {W – C}. 
 
If one introduces the order of | W – C |: 
 

n′ = (2p – 2) – n 
 
then one can bring (2) into the symmetric form: 
 

(3)     {C} − 
2

n
 = {W – C} − 

2

n′
. 

 
 Formula (3) was proved for the case in which C is an effective divisor, or at least 
equivalent to one.  However, since one can switch the roles of C and W – C, (3), and 
therefore (2), will also be true when W – C is equivalent to an effective divisor.  
However, it is easy to show that (2) is even true when either C or W – C is equivalent to a 
complete divisor, so when {C} = { W – C} = − 1. 
 Let C be the difference between two complete divisors: C = A – B.  Let the degree of 
B be b, so that of A will be n + b.  If one had n ≥ p then, from Consequence 1, the 
dimension of the complete family would be: 
 

≥ (n + b) – p ≥ b, 
 
so one could find an effective divisor A′ that would be equivalent to A and would contain 
B as a component, and C = A – B ~ A′ − B would be equivalent to an effective divisor, 
contrary to the assumption.  Therefore, n ≤ p – 1.  However, one will likewise also have: 
 

n′ = (2p – 2) – n ≤ p – 1, so n ≥ p – 1. 
 
It follows that n = p – 1; thus, both sides of (2) will have the value – 1. 
 Therefore, formula (2) is true for any divisor C of degree n.  This statement is the 
generalized RIEMANN-ROCH theorem. 
 
 Problems.  1.  If C = A – B is the difference between two complete divisors then the specialty index: 
 

i = {W – C] + 1 
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will be equal to the number of linearly-independent differentials that have zeroes at the points of A whose 
orders are at least equal to the multiplicities of the points, and only poles at the points of B whose orders are 
at most equal to the multiplicity. 
 2. On the basis of Problem 1, show: There are exactly p linearly-independent differentials without 
poles.  There is no differential with precisely one pole of first order.  The number of linearly-independent 
differentials with two poles of first order or one pole of second order is one greater than the number of 
differentials without poles.  If one adds another pole, or if one raises the order of a pole by 1 then one will 
raise the number of linearly-independent differentials by 1 in each case. 
 3. A curve of genus 1 (viz., an “elliptic curve”) is always birationally equivalent to a third-order 
plane curve with no double point.  (The rational map will be mediated by a complete family of dimension 2 
and order 3.) 
 4. A curve of genus 3 is either birationally equivalent to a fourth-order curve with no double point or 
a fifth-order curve with a triple point, according to whether its canonical family is simple or composite, 
resp. 
 
 

§ 52. NOETHER’s theorem for space. 
 

 Let f and g be two relatively prime forms in x0, x1, x2, x3 .  We ask what the conditions 
would be for a third form F to be represented in the form: 
 
(1)      F = A f + B g. 
 
The answer is given by the following theorem: 
 
 If a general plane cuts the surfaces f = 0, g = 0, and F = 0 in curves such that the 
third curve fulfills the first two of the NOETHER conditions (cf., § 48) then (1) will be 
true. 
 
 Proof.  Let the general plane be determined by three general points p, q, r: its 
parameter representation reads: 
(2)      yk = λ1 pk + λ2 qk + λ3 rk . 
 
 The equations for the intersection curves are obtained by substituting (2) into the 
equations f = 0, g = 0, F = 0.  From the NOETHER theorem for the plane, one will have, 
since the NOETHER conditions are fulfilled: 
 

(3)   1 2 3

1 2 3 1 2 3

( )

( ) ( ) ( ) ( )

F p q r

A f p q r B g p q r

λ λ λ
λ λ λ λ λ λ λ λ

+ +
 = + + + + +

 

 
identically in λ1, λ2, λ3 .  From the corollary to Theorem 1 (§ 48), the coefficients of the 
forms A(λ) and B(λ) will be rational functions of p, q, r. 
 The points p, q, r can be specialized so these rational functions will remain 
meaningful.  We choose fixed points for p and q, in particular, and choose r to be the 
general point of a fixed line: 

r = s + µ t. 
 

If we substitute this into (3) then we will obtain: 



224 VIII.  NOETHER’s fundamental theorem and its consequences. 

(4)   1 2 3

1 2 3 3 1 2 3 3

( )

( ) ( ) ( ) ( ).

F p q r

A f p q s t B g p q s t

λ λ λ
λ λ λ λ λ µ λ λ λ λ λ µ

+ +
 = + + + + + + +

 

 
We briefly denote the left-hand side by F1(λ, µ) and correspondingly employ the 
notations f1 and g1 .  The forms A(λ) and B(λ) depend upon µ rationally.  We multiply 
both sides of (4) with a polynomial in µ such that the right-hand side becomes completely 
rational in µ: 
(5)    h(µ) F1(λ, µ) = A1(λ, µ) f1(λ, µ) + B1(λ, µ) g1(λ, µ). 
 
We decompose h(µ) into linear factors: 
 

h(µ) = (µ – α1)(µ – α2) … (µ – αs), 
 
and seek to convert (5) step-wise in such a way that these linear factors can be 
sequentially dropped.  If we set µ = α1 in (5) then the left-hand side will vanish, and one 
will come to: 
(6)    A1(λ, α1) f1(λ, α1) + B1(λ, α1) g1(λ, α1) = 0. 
 
In case the intersection curve of the surfaces f = 0 and g = 0 contains the plane curve Γe 
as a component, we can always choose p and q such that they do not both lie in a plane, 
together with a curve Γe .  This means that the forms in λ1, λ2, λ3 : 
 
 f1(λ, α) = f(λ1 p + λ2 q + λ3 s + λ3 α t), 
 g1(λ, α) = g(λ1 p + λ2 q + λ3 s + λ3 α t) 
 
will be relatively prime for any value of α.  If will then follow from (6) that A1(λ, α1) is 
divisible by g1(λ, α1), and B1(λ, α1) is divisible by f1(λ, α1): 
 
 A1(λ, α1) = C1(λ) g1(λ, α1), 
 B1(λ, α1) = − C1(λ) f1(λ, α1). 
The differences: 
 A1(λ, α1) − C1(λ) g1(λ, α1), 
 B1(λ, α1) + C1(λ) f1(λ, α1) 
 
will both be zero for µ = α1, and will thus be divisible by µ – α1 : 
 
 A1(λ, α1) =    C1(λ) g1(λ, µ) + (µ – α1) A2(λ, µ), 
 B1(λ, α1) = − C1(λ) f1(λ, µ)  + (µ – α1) B2(λ, µ). 
 
If one substitutes this into (5) then the terms in C1(λ) will drop out, and it will follow 
that: 

h(µ) F1(λ, µ) = (µ – α1) A2(λ, µ) f1(λ, µ) + (µ – α1) B2(λ, µ) g1(λ, µ). 
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One can now cancel µ – α1 from both sides, and repeat the process until all factors (µ – 
α1)… (µ – αs) have been canceled.  It will then follow that: 
 

F1(λ, µ) = A2(λ, µ) f1(λ, µ) + B2(λ, µ) g1(λ, µ). 
Here, we substitute: 

µ = 4

3

λ
λ

 

 
on the left and right, where λ4 is a new indeterminate, multiply the left and right-hand 
sides by a factor of λ3 such that everything becomes completely rational again, and again 
cancel the factors λ2 by the process that was just described.  We then obtain: 
 

(7) 1 2 3 3

1 2 3 4 1 2 3 4

( )

( ) ( ) ( ) ( ).

F p q s t

A f p q s t B g p q s t

λ λ λ λ
λ λ λ λ λ λ λ λ λ λ

+ + +
 ′ ′= + + + + + + +

 

 
Finally, one solves the equations: 
 

λ1 pk + λ2 qk + λ3 sk + λ4 tk = xk 
 
for λ1, λ2, λ3, λ4 , which is always possible when p, q, r, s are linearly-independent points, 
and substitute the λ-values thus found into (7).  (7) will then become the desired identity 
(1). 
 It follows from the proof that instead of posing the requirement that the NOETHER 
conditions should be fulfilled on a general plane, one can also demand that they should 
be fulfilled on a general plane of a certain bundle, where one must assume only that no 
plane of the bundle contains a component of the intersection curve of the surfaces f = 0 
and g = 0. 
 The conditions of NOETHER’s theorem for space are fulfilled, in particular, when 
any component of the intersection curve of f = 0 and g = 0 has the multiplicity one, and 
when F = 0 contains the entire intersection curve, or also when the intersection points of 
a general plane with the intersection curve of f = 0 and g = 0 are simple points of f = 0, 
and every irreducible component of this intersection curve with at least the same 
multiplicity also enters into the intersection curve of F = 0 and f = 0 (cf., § 48, Theorem 
2). 
 NOETHER’s theorem can be carried over from the space Sn to the space Sn+1 in 
precisely the same way that it was carried over from the plane to space here.  
NOETHER’s theorem for space Sn then follows by complete induction on n: 
 
 If a general plane S2 in Sn cuts the hypersurfaces f = 0, g = 0, and F = 0 (where f and 
g are relatively prime forms) in curves such that the third curve fulfills the NOETHER 
conditions at any intersection point with the first two then there will be a identity: 
 

F = Af + Bg. 
 

 As an application, we prove the following theorem: 
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 An algebraic manifold M of dimension n − 2 on a double-point-free quadric Q in the 
space Sn will always be the intersection of A with another hypersurface for n > 3. 
 
 Proof.  We project M onto a point O of the quadric Q that lies outside of M.  The 
projecting cone K is a hypersurface of the space Sn .  The intersection of Q and K consists 
of the points A of Q whose connecting line with O enters the manifold M.  If such a point 
A does not lie in the tangential hyperplane of Q at O then OA will not lie on Q, and will 
therefore meet Q only at O and Al now, since O does not belong to M, so A must belong 
to M.  The complete intersection of Q and K will then consist of all points of M, and 
possibly certain points of the tangential hyperplane Sn−1 to Q at O. 
 Now, Sn−1 intersects the quadric Q in a quadratic cone Kn−2 whose intersection with an 
arbitrary Sn−2 in Sn−1 is, from § 9, a double-point-free quadric Qn−2 in Sn−2 .  Such a thing 
will always be irreducible for n > 3; thus, the cone Kn−2 will also be irreducible (and of 
dimension n – 2). 
 From § 41, all irreducible components of the intersection of Q and K have dimension 
n – 2.  The irreducible components of M belong to these components, a priori.  In case 
there are more irreducible components, as we know, they will be contained in the 
irreducible cone Kn−2, so since it is irreducible and has the same dimension n – 2, it will 
be identical with it.  The intersection of Q and K will then consist of M and the cone Kn−2 
with a certain multiplicity µ that can also be zero. 
 If µ = 0 then we will be finished.  Thus, let µ > 0.  The µ-times counted plane Sn−1 
might have the equation Lµ = 0.  Furthermore, K and Q might have the equations K = 0 
and Q = 0.  The intersection of Lµ and Q will then be contained in K.  The NOETHER 
conditions will be fulfilled if one cuts Lµ, Q, and K with a general plane, if Q had no 
multiple points and K cuts Q in Kn−2 with the same multiplicity µ as Lµ.  There will thus 
exist an identity: 

K = A Q + B Lµ. 
 
The intersection of K = 0 and Q = 0 is the same as the intersection of Q = 0 and B Lµ = 0.  
It decomposes into the µ-times counted cone Kn−2 and the manifold M.  Thus, M is the 
complete intersection of the hypersurfaces Q = 0 and B = 0.  With that, the theorem is 
proved. 
 
 In the special case n = 5, if we map the points of the quadric Q to the lines in the 
space S3, according to § 7, then we will get the following theorem of FELIX KLEIN: 
 
 Any line complex in S3 is given by two equations in PLÜCKER coordinates, of which, 
the first one is the identity: 

π01 π23 + π02 π31 + π03 π12 = 0. 
 

 
§ 53. Space curves up to fourth order. 

 
 In this paragraph, we would like to enumerate the irreducible space curves of lowest 
orders 1, 2, 3, and 4, and examine them. 
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 A space curve of order 1 is a line. 
 
 Namely, if one draws two planes through its points then both of them will have more 
than one intersection point with the curve, and will thus contain it. 
 
 An irreducible space curve of order 2 is a conic section. 
 
 Namely, if one draws a plane through three of its points then it must contain the space 
curve.  However, a plane curve of order 2 is a conic section. 
 
 An irreducible space curve of order 3 is either a plane curve or a cubic, space curve, 
in the sense of § 11. 
 
 One can, in fact, always draw two quadratic surfaces through 7 points of the curve.  
Both of them must contain the curve, since it has more than 6 intersection points with it.  
If one of these surface decomposes into two planes then the curve will lie in one of these 
planes, and will be a plane, cubic curve.  However, if both surfaces are irreducible then 
they will have no common component, and their intersection will be a curve of order 4 
that contains the given third-order curve, and will therefore decompose into it and a line.  
From § 11, the intersection of two quadratic surfaces that have a line in common will 
consist of that line and a cubic, space curve (or will decompose into lines and conic 
sections). 
 
 An irreducible space curve of order 4 is either a plane curve or it lies in at least one 
irreducible quadratic surface. 
 
 In fact, one can always draw a quadric through 9 points of the curve.  It must contain 
the curve, since it has more than 8 intersection points with it.  If it decomposes into two 
planes then the curve will lie in one of these planes; in the other case, it will lie on an 
irreducible quadric. 
 We can ignore plane curves of order 4; we then turn to real space curves.  If two 
different (irreducible) quadrics go through such a curve then the space curve will 
obviously be the complete intersection of these two surfaces.  It will then be called a 
fourth-order space curve of the first kind, and will be denoted by 4

IC .  By contrast, if it 

goes through only one quadric then it will be called a fourth-order space curve of the 
second kind, and denoted by 4

IIC . 

 We thus have the following theorem: 
 
 If a fourth-order space curve lies on a quadratic cone K then it will be of the first kind 
– i.e., it will be the complete intersection of the cone with a second quadric. 
 
 Proof.  At least ∞6 cubic surfaces will go through 13 points of the curve, so, from § 
10, the cubic surfaces can be mapped to the points of a linear space S19, in which 13 
linear equations will determine an at least 6-dimensional subspace.  The ∞3 decomposed 
surfaces that contain the cone K as a component will belong to these ∞6 surfaces.  There 
will thus be at least one cubic surface that contains the curve that does not contain cone K 
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as a component.  This surface F will intersect K in a sixth-order curve that contains the 
given curve C4 as a component, so it will consist of C4 and a conic section or C4 and two 
lines.  A conic section or line-pair on K will, however, always be a plane section of the 
cone K (1) – perhaps, the intersection of K with a plane E. 
 We now apply the spatial NOETHER theorem to F, K, and E.  F contains the entire 
intersection of K and E.  If it consists of two coincident lines then the intersection of F 
and K will likewise contain these lines doubled; the NOETHER conditions will then be 
fulfilled in any event.  If F = 0, K = 0, E = 0 are the equations of F, K, E, resp., then it 
will follow that: 

F = A K + B E. 
 

The curve C4 will lie on the surfaces F = 0 and K = 0, but not in the plane E = 0, so it will 
lie on the quadric B = 0.  With that, the theorem is proved. 
 
 It follows from the theorem that a fourth-order space curve of the second kind does 
not lie on a cone, but on a double-point-free quadric Q.  If one further brings a Q that 
does not contain the cubic surface F through the curve C4 then the complete intersection 
of F and Q will consist of the curve C4 and two (possibly coincident) lines of the same 
family.  Then, when the remainder intersection is an irreducible conic section or consists 
of two lines, one can conclude, on the basis of the reasoning that was applied in the last 
proof, with the help of NOETHER’s theorem, that C lies on yet a second quadratic 
surface, which would make it of the first kind. 
 These two ruled surfaces on the quadric Q might be denoted by I and II , and the two 
skew or coincident lines that meet F and Q outside of C4, by g and g′, resp.  We can 
assume that g and g′ belong to the family I.  A general line of the family I cuts the surface 
F at three points, so it will also cut the curve C4 at three points.  (The fact that all three of 
them are different would follow, e.g., from BERTINI’s first theorem, § 47.)  A general 
line of the family II  likewise cuts F in three points, of which, however, two of them are 
assigned to g and g′, such that only one of them will remain for C4.  The curve C4 will 
thus be met by any general line of the family I at three points, but at one point by any line 
of the family II . 
 With this property, one can essentially distinguish between the curves of the first kind 

4
IC  that lie on Q, which one obtains when cuts Q with another quadratic surface.  These 

will then be obviously be cut by all generators of Q in two points.  It follows from this 
that the remainder intersection of Q with a cubic surface F that has two generators of the 
family I in common with Q can never be a curve of the first kind 4IC ; it then cuts each 

generator of the family I at three points and each generator of the family II  at one point. 
 We now summarize: 
 
 There are two types of bi-quadratic space curves.  A curve 4

IC  is, by definition, the 

complete intersection of two quadrics.  A curve 4
IIC  is the remainder intersection of a 

quadratic ruled surface Q with a cubic surface F that contains two generators of a ruled 

                                                
 (1) The conclusion is true only for the cone, but not for other quadrics; a line-pair on a quadratic ruled 
surface can then consist of two skew lines. 
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surface on Q.  Conversely, any such remainder section is a 4
IIC , as long it is irreducible.  

A 4
IIC  cuts any generator of the one ruled family of Q at three points, and each generator 

of the other family at one point.  By contrast, a 4
IC  will cut every generator of a quadric 

that contains each of them at two points. 
 
 The curve 4

IIC  is rational.  Namely, if we draw all possible planes through a generator 

of the family I then they will cut the surface Q in the generators of the family II , so it will 
cut the curve 4

IIC  at one point (except for the three fixed intersection points of the curve 

with the generators of the family I that we started with).  There is thus a linear family of 
point-groups of order 1 on 4IIC .  From § 43, it will map the 4

IIC  onto a line birationally. 

 For a closer study of fourth-order curves in a quadratic ruled surface Q, we put the 
equation for Q into the form: 

y0 y0 – y2 y3 = 0, 
 

and we introduce two homogeneous parameter pairs λ, µ by: 
 

(1)      

0 1 1

1 2 2

2 1 2

3 2 1

,

,

,

.

y

y

y

y

λ µ
λ µ
λ µ
λ µ

=
 =
 =
 =

 

 
The parameter lines λ = const. and µ = const. are the generators of the families I and II .  
If one intersects Q with a second quadratic surface g = 0 by substituting (1) into the 
equation g = 0 then one will obtain an equation of degree 2 in the λ, and likewise in the 
µ: 
(2)     2 2 2 2 2

0 1 1 1 1 1 2 8 2 2a a aλ µ λ µ µ λ µ+ + +⋯  = 0, 

 
which will therefore represent a curve 4IC  when its left-hand side is not decomposable.  If 

one intersects Q with a cubic surface F = 0 in the same way then one will obtain an 
equation that has degree 3 in the λ, as well as in the µ.  If the cubic surface F contains 
two lines λ = const. then the aforementioned equation with the degree numbers 3, 3 must 
contain two linear factors in just the λ; after dropping them, what remains will be an 
equation with the degree numbers 1, 3: 
 
(3)     2 2 3

0 1 1 1 1 1 2 7 2 2a a aλ µ λ µ µ λ µ+ + +⋯  = 0. 

 
Equation (3) will then represent the curve 4

IIC . 

 On the basis of the map (1), the surface Q appears to be the image of a double-
projective space (cf., § 4).  The plane sections of Q define the projectivities that transform 
the points of a λ-line projectively into an µ-line.  The cubic space curves on Q will be 
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represented by equations in λ and µ with the degree numbers 2, 1 or 1, 2.  This brief 
glimpse into the geometry of curves on a quadratic surface might suffice. 
 The genus of the curve 4IIC  is equal to 0, since the curve is rational.  In order to 

ascertain the genus of the curve 4
IC , one projects it onto a plane from a generally-chosen 

point O of Q.  What comes about is an irreducible, fourth-order plane curve.  Two points 
of 4

IC  lie on each of the two lines of Q through O that go to a point in the plane under 

projection; the projection has two nodes, in any case.  The projection will have further 
double points if and only if the original curve 4IC  has them.  If one now computes the 

genus of the projected curve by means of the formula of § 26 then that will yield the 
value 1 or 0, according to whether the original curve has no double point or one of them, 
respectively; for more than one double point, it must decompose.  On the basis of the 
invariance of the genus under birational maps, it follows from this that: 
 
 The genus of a space curve 4

IC  is 1 when the curve has no double points and 0 when 

it has one of them. 
 
 Problems.  1.  If one intersects a quadratic ruled surface Q with three planes and constructs generators 
on each of them for a family of the fourth harmonic point P to their intersection points with these three 

planes then the point P will describe a curve 4

II
C .  (Compute the equation of the curve in the parameters λ, 

µ.). 
 2. A fourth-order, rational, space curve is either a 4

I
C  with double points or a 4

II
C .  In both cases, the 

coordinates of a general point of the curve will be proportional to four fourth-order forms in two 
homogeneous parameters λ, µ. 

 3. Projecting a curve 4

I
C  or 4

II
C  onto a simple point of the curve will yield a third-order, plane curve 

with or without double points, according to the genus. 
 4. By computing the equation of the curve, show that the two double points that correspond to the 

projection of 4

I
C  onto a general point of Q are, in fact, ordinary junctions.  (Choose the equation of the 

surface as above, and choose O to be a vertex of the coordinate system.) 
 5. The genus of a curve on Q that is given by an equation of degrees n and m in the parameters λ and 
µ , resp., is equal to: 

p = (n – 1)(m – 1) – d – s, 
 
where d is the number of double points, and s is the number of cusps, in the sense of § 26. 



  

CHAPTER NINE 
 

The analysis of singularities of plane curves. 
 

 The situation that is treated in this chapter is of fundamental significance for the 
theory of algebraic surfaces.  In the main theorem, one is dealing with the precise 
definition of the concept of “infinitely-close points,” or, as we will say here, the 
neighboring points that M. NOETHER first coined in connection with his resolution of 
singularities (cf., § 25), and which F. ENRIQUES (1) then developed further. 
 In order to not expand the scope of this book excessively, it was, unfortunately, 
necessary to treat this situation in a more cramped manner than was used in the previous 
chapters; in particular, I have been forced to dispense with explaining the concepts 
presented with simple examples.  The reader will then be encouraged to carefully work 
through the problems, which contain such examples.  One will find a thorough, didactic, 
and generally excellent presentation with worked examples in the book by ENRIQUES 
that was already cited in (1).  One can further refer to an interesting paper of O. ZARISKI 
(2), in which the theory of infinitely-close points is related to evaluation theory and ideal 
theory. 
 
 

§ 54. The intersection multiplicity of two branches of a curve. 
 

 In this chapter, we employ inhomogeneous coordinates x, y; the coordinate origin (0, 
0) will be denoted by O. 
 A branch of an algebraic curve at the point O whose tangent is not the y-axis will be 
given by a cycle of conjugate power series that arise from a power series: 
 

(1)    y = a x + 
( )

1 2

s

sa x a x a x
ν ν ν ν ν ν ν ν

ν ν ν
′ ′ ′′ ′+ + + + + +

+ + + +
⋯

⋯ ⋯  

by the substitution: 
x1/v → ζ x1/v  with  ζ v = 1. 

 
Let a second branch be given in the same way by (3): 
 

(2)    y = a x + 
( )

1 2

s

sa x a x a x
ν ν ν ν ν ν ν ν

ν ν ν
′ ′ ′′ ′+ + + + + +

+ + + +
⋯

⋯ ⋯  

 
If the initial coefficients a, a1, …, as coincide with the initial coefficients of one of the 
power series 1y , 2y , …, yµ  that are conjugate to (2) − so one has: 

                                                
 (1) F. ENRIQUES, O. CHISINI, Teoria geometrica delle equazioni e delle funzione algebraiche, vol. II, 
Libro Quarto, Bologna, ed. Zanichelli.  
 (2) ZARISKI, O., “Polynomial ideals defined by infinitely many base points,” Amer. J. Math. 60 
(1938), 151-204.  
 (3) In both power series, only the non-zero terms were written down; however, the initial term ax (bx, 
resp.) can also be zero. 
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 a = b, 
 a1 = b1 ζµ′, 
 ………….., 

 as = 
( )s

sb µ µζ ′+ +⋯ , 

 
then we will write this briefly as: 
 

(a, a1, …, as) = (b, b1, …, bs). 
 
 The intersection multiplicity of the two branches that are given by (1), (2) is defined 
to be the order of the power series: 
 

1 2( )( ) ( )y y y y y yµ− − −⋯  

 
under the position uniformization τ = x1/v of the first series, where the roles of the two 
branches have also been switched.  The following theorem gives the precise value of this 
multiplicity: 
 
 Theorem 1.  The branch that is given by (1), (2) might coincide in the first s + 1 
terms of the series developments.  Therefore, let: 
 

(3)    
1

1

( ) ( ) ( )
( )

11
1

, ( , ) 1,

, ( , ) 1,

..................., ....,

( , ) 1,
s s s

s
ss

v

v

v

v

v

v

µ ρ ρ ρ
µ ρ
µ ρ ρ ρ
µ ρρ

µ ρ ρ ρ
µ ρρ ρ −−

′ ′ ′ ′= = =


′′ ′′ ′′ ′′= = =



 = = =
 ⋯

 

 
(a, a1, …, as) = (b, b1, …, bs). 

 Now, if: 
( 1)sv

v

+

 ≠ 
( 1)sµ
µ

+

 

 
then the intersection multiplicity of the two branches will be equal to the smaller of the 
two numbers: 

   λ = µ v + µ v′ + 
( 1)

1 1 1

s

s

µν µν µν
ρ ρρ ρρ ρ

+

−

′′ ′′′
+ + +⋯

⋯
, 

 

   λ′ = ν m + ν m′ + 
( 1)

1 1 1

s

s

νµ νµ νµ
ρ ρρ ρρ ρ

+

−

′′ ′′′
+ + +⋯

⋯
. 
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 By contrast, if: 
( 1)sv

v

+

 = 
( 1)sµ
µ

+

= 
( 1)

1

s

s

ρ
ρρ ρ

+

⋯
 

 
then λ = λ′ will represent the intersection multiplicity, as long as one does not have: 
 

(a, a1, …, as+1) = (b, b1, …, bs+1). 
 
 Preliminary remark.   One concludes from formulas (3) that: 
 

 (v, v′) = 
ν
ρ

, (µ, µ′) = 
µ
ρ

, 

 

 (v, v′, v″) = 
1

ν
ρρ

, (µ, µ′, µ″) = 
1

µ
ρρ

, 

 
 …………….…………………………………………………..…., 
 

 (v, v′, …, v(s)) = 
1 1s

ν
ρρ ρ −⋯

, (µ, µ′, …, µ(s)) = 
1 1s

µ
ρρ ρ −⋯

. 

 
 Proof.  Let − say − 1y  be the power series that is conjugate to y  whose initial 

coefficients agree precisely with a, a1, …, as: 
 

1y  = a x + 

( )

1 2

s

sa x a x a x
µ µ µ µ µ µ µ µ

µ µ µ
′ ′ ′′ ′+ + + + + +

+ + + +
⋯

⋯ ⋯  

 
 In the difference y − 1y , the terms in a, a1, …, as drop out.  If we assume, say: 

 
µ v(s+1) < v µ(s+1),  so λ < λ′, 

 
then the first term that does not drop out, namely: 
 

( )

1

s

sa x
ν ν ν

ν
′+ + +

+

⋯

 = 
( )

1

s

sa ν ν ντ ′+ + +
+

⋯ , 

 
will have order v + v′ + … + v(s+1) in τ.  If one now goes from 1y  to a conjugate power 

series iy  by means of the substitution: 

 
x1/µ → ζ x1/µ, ζµ = 1 

 
then some of the initial terms of y  will remain unchanged, although they will change 
past a certain point in the coefficients.  Let, say: 
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µ
ρζ  = 1, 1

µ
ρρζ  = 1, …, 1 1t

µ
ρρ ρζ −⋯  = 1, 

 

while 1 t

µ
ρρ ρζ ⋯  ≠ 1.  1y  − y will then have an initial term with: 

 
( )s

x
µ µ µ

µ
′+ + +⋯

= 
( 1)t

x
ν ν ν

ν

+′+ + +⋯

 = 
( 1)tν ν ντ

+′+ + +⋯  
 
being of order v + v′ + … + v(t+1). 
 If one now forms the product 1 2( )( ) ( )y y y y y yµ− − −⋯  then its order will be a sum 

of expressions v + v′ + … + v(s+1) and v + v′ + … + v(t+1), and indeed the term v(t+1) will 
appear in this sum as often as there are solutions of the equation: 
 

1 1t

µ
ρρ ρζ −⋯  = 1; 

i.e., 
1 1t

µ
ρρ ρ −⋯

times.  Therefore, the intersection multiplicity will be: 

 

λ = µ v + µ v′ + 
µν
ρ

′′ + … + ( 1)

1 1

t

t

µ ν
ρρ ρ

+

−⋯
+ … + ( 1)

1 1

s

s

µ ν
ρρ ρ

+

−⋯
. 

 
One argues in a completely analogous way in the case of λ > λ′, and also in the case λ = 
λ′. 
 
 We would now like to analyze the expression that was obtained for the intersection 
multiplicity more closely.  In order to have a definite case in mind, we assume that s = 2; 
the series (1) and (2) will then already truncate at the third term.  Factorize (v, v′) and (µ, 
µ′) by the Euclidian algorithm: 
 

(4)    

1

1 1 2

1

,

,

...............,

,

v hv v

v h v v

v h vσ σ σ−

′ = +
 = +


 =

  

1

1 1 2

1

,

,

...............,

.

h

h

hσ σ σ

µ µ µ
µ µ µ

µ µ−

′ = +
 = +


 =

 

 

 Since 
v

v

′
= 

µ
µ

′
, the two developments will run exactly parallel to each other.  We now 

proceed in precisely the way that would determine the greatest common divisor of (vσ , 
v″) and (µσ , µ″).  The two developments run perhaps somewhat parallel, but in the case 
v

v

′
≠ 

µ
µ

′
, they must eventually separate: 
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(5)   

1

1 1 1

1 1

1 1 2

,

,

...............,

,

,

..................................,

j j j j j

j j j j j

v kv v

v k v v

v k v k v

v k v k v

σ σ

σ σ σ

σ σ σ

σ σ σ

+

+ +

+ − + + +

+ + + + + +

′′ = +
 = +

 = +
 = +



 

1

1 1 2

1 1

1 1 2

,

,

...............,

,

,

...............................,

j j j j

j j j j

k

k

k

l

σ σ

σ σ σ

σ σ σ

σ σ σ

µ µ µ
µ µ µ

µ µ µ
µ µ µ

+

+ +

+ − + + +

+ + + + + +

′′ = +
 = +

 = +
 = +



 

 
with kj + 1 ≠ l j + 1 .  It can also happen that kj + 1 = l j + 1, but the division with the quotients 
kj+1 can take place on the left-hand side, but not on the right (or conversely).  In the 

second case 
v

v

′′
= 

µ
µ
′′

, the developments will run entirely parallel, up to the step: 

 
vσ + σ′ – 1 = kσ′ vσ + σ′ ,  µσ + σ′ – 1 = kσ′ µσ + σ′ . 

 
 In order to once more have something definite in mind, we consider the first case and 
assume that l j + 1 < kj + 1 .  That means: 
 

 a) when j is even, 
µ
µ
′′

> 
v

v

′′
, so v µ″ > µ v″, 

 

 b) when j is odd, 
µ
µ
′′

< 
v

v

′′
, so v µ″ < µ v″. 

 
 Since (v, v′) = vσ , from the preliminary remark, one will have v = ρ vσ ; likewise, one 
will have µ = ρ µσ .  From Theorem 1 in case a), the intersection multiplicity will be: 
 

λ = µ v + µ v′ + 
µν
ρ

′
= µ v + µ v′ + µσ v″, 

and in the case b): 

λ′ = v µ + v µ′ + 
νµ

ρ
′′

= v µ + v µ′ + vσ µ″. 

 
 We leave the first term µ v unchanged.  The second term will be developed on the 
basis of (4): 
 µ v′ = µ (hv + v1) = hµ v + µ v1 , 
 µ v1 = (h1 µ1 + µ1) v1  = h1 µ1 v1 + µ2 v1 , 
 µ2 v1 = µ2 (h2 v2 + v3) = h2 µ2 v2 + µ2 v3 , 
 ……………………………………………, 
 µσ vσ−1 = µσ−1 vσ = hσ µσ vσ . 
 That will yield: 
 

v µ′ = µ v′ = h µ v + h1 µ1 v1 + h2 µ2 v2 + … + hσ µσ vσ . 
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The third term µσ v″ (vσ µ″, resp.) in case a) [b), resp.] can be developed likewise by 
means of (5); the details of this will be left to the reader.  If one now combines the 
various terms then in both cases a) and b) one will get: 
 

(6)  
1 1 1

1 1 1

1 1 1 1 2.
j j j

i j j j j

h h h

k k k

l

σ σ σ

σ σ σ σ σ σ

σ σ σ σ

νµ νµ ν µ ν µ
ν µ ν µ ν µ

ν µ ν µ
+ + + +

+ + + + + + + + +

 Λ = + + + +
 + + + +
 + +

⋯

⋯  

 
for the intersection multiplicity Λ. 
 In order to do the division µj+σ : µj+σ+1, the last term in (6) must be replaced with zero.  
If kj+1 < l  j+1 or kj+1 = l  j+1, and one is to do the division νj+σ : νj+σ+1 then the roles of k and 
l, as well as those of µ and ν, must be switched.  In the case µ v″ = v µ″, the final term: 
 

 κσ ⋅⋅⋅⋅ νσ+σ′ µσ+σ′ 
 
will enter in place of the last two terms. 
 
 Problems.  1.  From a certain number m onward, one will have: 
 

 ( )mv
σ σ σ′+ + +⋯

 = (v, v′, …, v(m+1))  = 1,     

 ρ ρ1 … ρm  = v. 
 2. A branch of order 2: 
 

y = a1 x + a2 x
2 + … + as x

s + as+1 
1
2

s

x
+

+  … + as+1 x
s+1 + … 

 
will have, with a linear branch: 

y = b1 x + b2 x
2 + …, 

the intersection multiplicity: 
2, 4, …, 2s, or 2s + 1, 

 
when its developments agree up to the terms in: 
 

1, x, …, xs−1, or xs, 
 
respectively.  A higher multiplicity will be excluded. 
 
 

§ 55.  Neighboring points. 
 

 One computes the intersection multiplicity of two branches at a point O using formula 
(6) in precisely the same way as if one had two curves with several intersection points O, 
O1, …, Oh, Oh+1, … , 

1 1 1 1j jh h h k k k lO
σ ++ + + + + + + + +⋯ ⋯

, instead of the two branches, where the 

curves take on the following multiplicities at the at those points: 
 
  the multiplicities ν and µ at O, O1, …, Oh, 
  the multiplicities ν1 and µ1 at Oh+1, …, 

1h hO + , 
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etc., according to formula (6). 
 In order to justify this situation, one introduces the following terminology: First, let 
the initial piece of a power series be given, say: 
 

(7)      y = a x + a1 x
ν ν

ν
′+

, 
 
and second, let a sequence of natural numbers p, p1, …, pj, pj+1 be given (or possibly just 
a single natural number p).  The neighboring point to O that belongs to this defining 
piece is then defined to be the totality of all curve branches whose power series 

development (1) begins with the terms (7), while the exponent 
ν ν ν

ν
′ ′′+ +

 of the next term 

is so arranged that the quotients k, k1, …, kj+1 in the successive divisions (5) satisfy the 
conditions: 
 k = p – 1, 
 k1 = p1, …, kj = pj , 
 kj+1 > pj+1 or kj+1 = pj+1, kj+2 > 0, 
 
while in the case of a single number p, one will have the condition: 
 

k ≥ p – 1. 
 
 Which neighboring point of O belongs to a branch according to this definition, when 
its series development is given by (1)?  At first, it will be the neighboring point that 
belongs to a x, and indeed: 
 
 O1 will go with the number sequence 1, 
 O2 with the number sequence 2, 
 ……………………………………………. 
 Oh+1 with the number sequence h + 1, 
 Oh+2 with the number sequence h + 1, 1, 
 …………………………………………………… 
 

1 1h hO + +  with the number sequence h + 1, h1 

 
1 2h hO + +  with the number sequence h + 1, h1, 1, 

 ………………………………………………………. 
 

1h h hO
σ+ + +⋯  with the number sequence h + 1, h1, …, hσ − 1. 

 
 One then comes to neighboring points that belong to the final piece: 
 

(7)      a x + a1 
v v

vx
′+

, 
 
 
and indeed when one sets h + h1 + … + hσ = H: 
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 OH+1 will go with the number sequence 1, 
 OH+2 with the number sequence 2, 
 ……………………………………………. 
 OH+k+1 with the number sequence k + 1, 
 OH+k+2 with the number sequence k + 1, 1, 
 …………………………………………………… 
 

1 1H k kO + + +  with the number sequence k + 1, k1 

 ………………………………………………………. 
 

1H k k kO
σ ′+ + + +⋯  with the number sequence k + 1, k1, …, kσ′ . 

 
One then comes to the neighboring point to the initial piece: 
 

a x + 1 2

v v v v v

v va x a x
′ ′ ′′+ + +

+ , 

etc. 
 We further define that the branch that is defined by (1) should have the following 
multiplicities at the neighboring points O1, …, OH, OH+1, …: 
 
 the multiplicity v at O1, …, Oh , 
 the multiplicity v1 at Oh+1, …, 

1h hO + , 

 …………………………………………. 
 the multiplicity vσ at 

1 1 1h h hO
σ −+ + + +⋯

, …, OH, 

 likewise vσ  at OH+1, …:, OH+k, 
 likewise vσ+1  at OH+k+1, …:, 

1H k kO + + , 

etc. 
 Formula (6) of the previous paragraph now yields: 
 
 Theorem 2.  The intersection multiplicity of two branches at O is equal to the sum of 
the products of the multiplicities of the two branches at O and at the neighboring points 
to O that are common to them. 
 
 The first neighboring point consists of two branches whose power series begins with 
ax; i.e., the branches with well-defined tangents at O.  It will depend upon a 
continuously-varying parameter a. 
 Neighboring points like O1, …, Oh+1, whose number sequence (p, p1, …) consists of 
only one natural number p, are called free neighboring points, because any of them can 
be varied continuously while fixing the neighboring points that precede them.  In order to 
make that clear with an example, we consider the neighboring point Oh (under the 
assumption that h > 1).  It will consist of all branches whose developments begin with: 
 

a x + 0xh. 
Here, the coefficient of xh (which only occasionally has the value zero) is continuously-
varying.  Corresponding statements are true for all points O1, …, Oh+1, as well as for 
OH+1, …, OH+k+1 , etc.  By contrast, Oh+2, …, OH are not free, since when O1, …, Oh+1 are 
fixed they will be determined exclusively by arithmetic data.  They depend upon the 
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existence of the second term in the development (1) and the value of its exponent 
v v

v

′+
, 

but not, however, on the value of the coefficients a1 of this term.  Such non-free 
neighboring points are called satellite points of the last preceding free neighboring points. 
 
 Problems.  1.  Nothing but free, simple neighboring points O1, O2, … to O belong to a linear branch. 
 2. On a quadratic branch: 
 

y = a1 x + a2 x
2 + … + as x

s + as+1 
1
2

s

x
+

 + as+2 x
s+1 + …, 

 
the double point O is first followed by s – 1 free two-fold, neighboring points O1, …, Os−1 , then a free, 
simple point Os, a simple, satellite point Os+1, and finally, nothing but free, simple neighboring points Os+2, 
Os+3, … For an ordinary cusp, one will have s = 1. 
 3. From a certain number onward, all neighboring points to O and a branch z will be free and simple. 

 4. If (v, v′, …, v(s+1)) > (v, v′, …, v(s)), so ρs > 1, then the terms in the series (1) that have the exponent 
( 1)sv v v

v

+′+ + +⋯
 will be called characteristic terms.  There are finitely many of them.  The associated free 

neighboring points are the ones that follow satellite points immediately. 
 
 If one considers more closely the multiplicities v, v1, …, vs, … of a branch at the 
neighboring points O1, …, Oh+1, …, OH+1, … that were defined above then one will see 
that there are two possibilities for a neighboring point On with the multiplicity vi: 
 Either: The next neighboring point On+1 has the same multiplicity vs; one then calls 
On+1 the follower to On . 
 Or: On+1 has a smaller multiplicity vi+1 ; due to (4) or (5), one of the two equations: 
 
(8a)     vi = q vi+1 + v i+2 , 
(8b)     vi = q vi+1 
 
will then be true.  In these cases, On will next be followed by q neighboring points On+1, 
…, On+q with the multiplicity vi+1 , and then in the case (8a), another one with the 
multiplicity vi+2 .  All of these points will be called the followers (1) of On . 
 If the first follower On+1 belongs to the number sequence (p, p1, …, pj) then the 
followers of On will be given, in any case, by the number sequences: 
 
 (p, p1, …, pj), 
 (p, p1, …, pj, 1), 
 (p, p1, …, pj, 2), 
 …………….....; 
 
the sequence will then be established, until it leaves the branch under scrutiny.  
Therefore, if On+k belongs to the followers of On on a branch then the same thing will be 
true on any other branch that goes through On, On+1, …, On+k . 
 The relations (8) now yield the following theorem, which is also trivially true in the 
case of a single follower of the same multiplicity: 
 
                                                
 (1) ENRIQUES: “Punti prossimi.”  ZARISKI: “proximate points.” 
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 Theorem 3.  The multiplicity of On on a branch z is equal to the sum of the 

multiplicities of the followers to On on z. 

 
 Theorem 3 is also true when one takes the point O, instead of On . 
 If one considers only those followers that simultaneously belong to a second branch z′ 
then the equality sign must be replaced with ≥. 
 
 Problems.  5.  If one represents O, O1, O2, … graphically by a succession of points along a piece-wise 
linear path, where one makes a kink at the point On+1 any time when On+1 has a smaller multiplicity than On 

(see Figure) then the followers of On will be the point On+1 , and 
in the event that the latter is a kink-point, the points that follow 
it up to the next kink-point (inclusive) or up to the next free 
point (exclusive).  If the characteristic point (cf., Prob. 3) – that 
is, the free point that immediately follows the satellite points – 
is specially marked (in the figure, by a circle) then one can 
immediately realize the graphical representation of the 
following points, and with the help of Theorem 3, graphically 
ascertain the multiplicities v, v1, …, vω  by starting with the last 
one vω = 1.  The number sequence (p, p1, …, pj+1) that belongs 

to a neighboring point will give how many steps that one must take in order to arrive at this neighboring 
point from a point like O or OH . 
 
 6. Complete graphical representations, in the sense of problem 5, for the branches y = x3/2 and y = 
x7/5, and indicate the multiplicity of each point. 
 
 Theorem 4.  If the sequence of neighboring points O1, O2, … on a branch were 
truncated arbitrarily at Om then there would always be a curve that possesses only a 
single branch at O, goes through O1, …, Om, but not through Om+1 , and has multiplicity 
one at Om , while the follower of Om on this branch would be free. 
 
 Proof.  One first computes the sequence of multiplicities v, v1, …, vτ so the branch 
can be defined backwards while starting at vτ = 1, on the basis of the relations (8).  The 
exponents of the series development of the branch will be established by these numbers.  
One determines the coefficients such that the required initial piece of the sequence agrees 
with the given branch.  The coefficient of the next term (that belongs to the free followers 
of Om) can be chosen freely, but must not be chosen to be equal to the corresponding 
coefficients of the given branch (or a conjugate one).  The sequence will then be 
truncated with that term.  This truncated power series ω1, together with its conjugate ω2, 
…, ωv, will determine an algebraic curve: 
 

(y − ω1)(y – ω2)…(y – ωv) = 0 
 
that will satisfy all of the demands. 
 
 We now go on to the consideration of curves that possess several branches at the 
point O.  If we define the multiplicity of such a curve at a neighboring point On to O to be 
the sum of the multiplicities of On on the different branches of the curve, as long as they 

 O 

3 

O1 

2 

1 
O2 

1 
O3 OH+1 = O4 

O5 
1 

1 
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contain On, then it will be clear that Theorem 2 is true for the intersection multiplicity of 
two arbitrary curves at a point O. 
 We now consider a fixed branch z′ at O with the neighboring points O1, O2, …, and 

pose the question of whether there are curves C that have given multiplicities r0, r1, …, rs 
at O, O1, …, Os , resp.  The following follower relations will be necessary in any case: 
 
(9)      rn ≥ rn+1 + … + rn+q , 
 
in which the sum extends over all followers On+1, …, On+q of On on z′.  From Theorem 3, 

inequality (9) will then be valid for each individual branch z of C, and thus also for C 

itself. 
 However, the conditions (9) are also sufficient: 
 
 Theorem 5.  If the follower relations (9) are fulfilled then there will be a curve C that 
has the multiplicities r0, r1, …, rs at O, O1, …, Os , resp. 
 
 Proof, by complete induction on r0 + r1 + …+ rs .  If the sum is zero then everything 
will be clear.  Now, if rm is the last non-zero number in r0, …, rs then we will subtract the 
multiplicities ρ0, ρ1, …, ρs from the given ones r0, r1, …, rs , resp., for the curve Cm that 
exists according to Theorem 4, and for which one will have ρm = 1, ρm+1 = …= ρs = 0.  
(For m = 0, one chooses Cm to be an arbitrary line through O that does not contact z′.)  
The follower relations will, in fact, be true with the equality sign for this curve Cm : 
 
(10)     ρm = ρm+1 + … + ρm+q               (n < m). 
 
It will follow from (9) and (10) by subtraction that: 
 

(rn – ρn) ≥ (rn+1 – ρn+1) + … + (rn+q – ρn+q)   (n < m). 
 
 However, this inequality is also true for n ≥ m, since the right-hand side will be zero 
then.  Therefore, from the induction assumption, there will be a curve C′ with the 
multiplicities r0 – ρ0, …, rs – ρs .  The curve Cm = C + C′ will then fulfill the conditions 
that were posed. 
 
 The multiplicities of the curves Cm that were used in the proof at the points O, O1, …, 
Om might now be computed rigorously with: 
 

ρm0 , ρm1 , …, ρmm . 
 
From Theorem 2, a curve with the prescribed multiplicities r0, r1, …, rs will then have the 
intersection multiplicity with Cm : 
 
(11)    σm = r0 ρm0 + r1 ρm1 + …+ rm ρmm            (m = 0, 1, …, s), 
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in the event that it does not have another neighboring point in common with Cm, other 
than O1, …, Om .  However, Cm depends upon one free parameter, and for a general 
choice of that parameter, the expression (11) will represent the precise intersection 
multiplicity. 
 
 Conversely: If the intersection multiplicity of C with Cm (m = 0, 1, …, s) is 
represented by (11) for a general choice of the parameters that enter into Cm then C will 
have the multiplicities r0, r1, …, rs at O, O1, …, Os , resp. 
 
 One gets the proof with nothing further by complete induction on s.  The assertion is 
clear for s = 0, and if r0, r1, …, rs−1 agree with the multiplicities of C then the same thing 
will be true from the last of equations (11). 
 For every m, the curves of a fixed degree that have an intersection multiplicity with 
Cn that is ≥ σm for a general choice of the parameters that enter into Cm , where σm is 
given by (11), will define a linear family.  Substituting the series development of the 
single branch of Cm into the equations for C and setting the coefficients of the terms 
whose order are < σm equal to zero will then yield linear conditions for the coefficients of 
C.  Now, if a curve C belongs to this linear family for each m = 0, 1, …, s then all of the 
linear conditions that were mentioned will be satisfied, and one will say that the curve C 
has the virtual multiplicities r0, r1, …, rs at O, O1, …, Os .  The true – or effective – 
multiplicities 0r , …, sr  can be in part larger and in part smaller than the virtual ones; 

however, they must still satisfy the inequalities: 
 

0r ρm0 + 1r ρm1 + … + mr ρmm  ≥ σm . 

 
 Problems.  7.  Show that the follower relations are fulfilled when one prescribes that the v-fold point O 
has the multiplicity v – 1 and that each vs-fold neighboring point has the multiplicity vs – 1. 
 8. Explicitly exhibit the linear conditions for the coefficients of the curves C with given virtual 
multiplicities for the case in which the given branch has an ordinary cusp (say, y = x3/2) and the virtual 
multiplicities are given by: 

r0 = 3, r1 = 2, r2 = 1. 
 
 

§ 56.  The behavior of neighboring points under Cremona transformations. 
 

 We would like to investigate how the sequence of neighboring points O, O1, O2, … to 
a point O on a branch z behave under the quadratic, Cremona transformation: 

 

(1)    0 1 2 1 2 2 0 0 1

0 1 2 1 2 2 0 0 1

: : : : ,

: : : :

ζ ζ ζ η η η η η η
η η η ζ ζ ζ ζ ζ ζ

=
 =

 

 
that was defined in § 25, if O is the vertex (1, 0, 0), and the tangent to the branch is not a 
side of the coordinate triangle. 
 As in § 25, any curve f(η) = 0 will correspond to a curve g(ζ) = 0 under the 
transformation, where the form g will be defined by: 
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(2)     f(z1 z2, z2 z0, z0 z1) = 0 1 2 0 1 2( , , )r s tz z z g z z z . 

 
Any branch z with the starting point O will also correspond to a branch z′ whose starting 

point lies on the opposite side of ζ2 = 0.  If ζ0(τ), ζ1(τ), ζ2(τ) are the power series for the 
branch z′ then: 

(3)   η0(τ) = ζ1(τ) ζ2(τ), η1(τ) = ζ2(τ) ζ0(τ), η2(τ) = ζ0(τ) ζ1(τ) 
 
will be the power series for the branch z. 

 We now consider the intersection multiplicity of the branch z with the curve f = 0 

under the assumption that the branch does not lie on the curve.  This multiplicity is 
defined to be the order of the power series f(η0(τ),η1(τ),η2(τ)).  If one substitutes (3) here 
and employs (2) then one will obtain the power series: 
 

ζ0(τ)r ζ1(τ)s ζ2(τ)t g(ζ0(τ),ζ1(τ),ζ2(τ)). 
 

 Since ζ1(τ) and ζ2(τ) do not vanish for τ = 0, the order of this power series will be 
equal to the order of: 
 

ζ0(τ)r ζ1(τ)s g(ζ0(τ),ζ1(τ),ζ2(τ)) = η2(τ)r g(ζ0(τ),ζ1(τ),ζ2(τ)), 
 
so it will be equal to the intersection multiplicity of g = 0 with z′, plus r times the 

intersection multiplicity of the line η2 = 0 with z.  The latter multiplicity will be precisely 

the order of the branch z (or the multiplicity of the point O on the branch z), while r will 

be the multiplicity of O on the curve f = 0.  We then have: 
 
 Theorem 6.  The intersection multiplicity of the branch z with a curve C is equal to 

the intersection multiplicity of the transformed branch z′ with the transformed curve C′ 
plus the product of the multiplicities of C and z at O. 

 
 Let the successive neighboring points to O on z be O1, O2, … The multiplicities of z 

at O, O1, O2, … might be denoted by r0, r1, r2, …, resp., and the multiplicities of C at 
these points by ρ0, ρ1, ρ2, …, resp.  Let the intersection multiplicity of C and z be Λ, and 

let that of C′ and z′ be Λ′.  Theorem 6 then yields the formula: 

 
(4)      Λ = Λ′ + ρ0 r0 . 
 
 With the help of Theorem 6, we now prove: 
 
 Theorem 7.  Under the transformation (1), the successive neighboring points O1, O2, 
…, Om, … to O on the branch z will go to O′, 1O′ , …, 1mO −′ , resp., where O′ is the 

starting point of the transformed branch z′, and 1O′ , …, 1mO −′  are the successive 



244 IX.  The analysis of singularities of plane curves. 

neighboring points to O′ on z′.  If z has the multiplicities r1, r2, …, rm at O, O1, O2, …, 

Om, resp., then z′ will have the multiplicities r1, r2, …, rm at O′, 1O′ , …, 1mO −′ , resp. 

 
 We prove the theorem for Om under the assumption that it is true for O1, …, Om−1 .  
One will see that the proof is also true for m = 1. 
 We choose C to be the curve Cm that exists according to Theorem 4, which has the 
multiplicities ρ0, ρ1, …, ρm at O, O1, …, Om, resp., with ρm = 1.  From the induction 
assumption, C′ will have the multiplicities ρ1, ρ2, …, ρm−1 at O′, 1O′ , …, 2mO −′ , resp.  Let 

the neighboring point that follows 2mO −′  on the curve C′ be 1mO −′ , and let the multiplicities 

of z′ and C′ at 1mO −′  be mr ′  and mρ ′ .  From Theorem 2 (§ 55), the intersection multiplicity 

of z and C will be equal to: 

(5)     Λ = ρ0 r0 + ρ1 r1 + … + ρm rm , 
 
while, on the other hand, from Theorem 6, it will be equal to: 
 

(6)    0 0

0 0 1 1 1 1

,

,m m m m

r

r r r r

ρ
ρ ρ ρ ρ− −

′Λ = + Λ
 ′ ′= + + + + + ⋯ ⋯

 

 
where the terms + … refer to possible further neighboring points after 1mO −′  that z′ and C′  
can still have in common. 
 A comparison of (5) and (6) yields: 
 
(7)      ρm rm = m mrρ ′ ′  + … 

 
 Since ρm and mρ ′  are positive, it will then follow from (7): mr ′  > 0 if and only if rm > 

0.  That means: z′ goes through the neighboring point 1mO −′  if and only if z goes through 

Om .  The neighboring point Om – i.e., the totality of all branches through Om – then goes 
to, in fact, the totality of branches through 1mO −′  under the transformation. 

 As we know, there exists a certain freedom in the choice of curves Cm , since the 
follower of Om on Cm is free.  The curves Cm have just one branch.  We now choose C to 
be a curve Cm, and choose z to be the single branch on another curve Cm that indeed has 

O, O1, …, Om in common with the first curve, not the follower of Om !  One will then 
have rm = ρm = 1 in (7).  It will then follow that only one term can enter into the right-
hand side and that it will have the value one.  Therefore: The different Cm contain 1mO −′  

only simply and have no further neighboring point in common with each other past 1mO −′ . 

 We now again consider an arbitrary branch z through O, O1, …, Om .  A suitably-

chosen curve Cm will have only O, O1, …, Om in common with z, and the transformed mC′  

will also have only O′, 1O′ , …, 1mO −′  in common with z′.  Therefore, the terms + … on the 

right-hand side of (7) must be dropped; furthermore, one must set ρm = mρ ′  = 1.  It will 
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then follow that rm = mr ′ ; i.e., the multiplicity of z′ at 1mO −′  will be equal to that of z at Om .  

With that, the induction is complete. 
 
 Since the numbers of all neighboring points to O will be reduced by one under the 
singly-quadratic Cremona transformation (1), one can convert every arbitrary 
neighboring point Ok into an ordinary point by k-times repeated quadratic 
transformations.  One can even define the neighboring points, as NOETHER originally 
did, by these repeated transformations. 
 The same method of investigation can also be applied to arbitrary Cremona 
transformations (i.e., birational transformations of the plane into itself).  Especially 
simple are the results for the case in which the transformation is one-to-one at the 
location O, or more precisely, in which the rational forms for the transformation, as well 
as for its inverse, remain meaningful at the location O (at the corresponding location O′, 
resp.).  For this case, in place of Theorem 6, one will have the simple statement that the 
intersection multiplicity of z and C does not change under the transformation; in place of 

(3), one will then have: 
Λ = Λ′. 

 
 The method of proof that was applied to Theorem 7 will then yield the simple result 
that the sequence of neighboring points O1, O2, … to O on z will be transformed into the 

sequence of neighboring points 1O′ , 2O′ , … to O′ on z′, while the multiplicities of z on O, 

O1, O2, …will remain unchanged. 
 In place of algebraic curves and curve branches, one can bring into consideration 
general, analytic curves F(x, y) = 0 in the vicinity of a fixed point O and analytic curve 
branches in these investigations.  The methods of proof and results will not change 
essentially.  One will obtain – e.g., − the theorem that the concepts of a neighboring point 
and the multiplicities of branch at the neighboring points to O will remain unchanged 
under analytic transformations that are single-valued and uniquely, analytically invertible 
in the neighborhood of O. 
 
 Problem.  1.  Carry out the proof that was suggested. 
 
 


