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 If one is given a system of differential equations then knowing one or several integrals will 

not, in general, permit one to write down a new integral that is distinct from the former. 

Nonetheless, that is possible in certain cases: For example, if the equations are canonical then one 

knows that knowing two distinct integrals will permit one to write down a third one (viz., Poisson’s 

theorem). 

 Those properties, and some analogous ones, define the topic of this study. In the first section, 

I will especially study the canonical equations. In the second section, an arbitrary system of first-

order differential equations will be in question. Moreover, several of the results that are established 

directly for canonical systems are recovered as particular cases of the ones that are established for 

the general systems. 

 

 

I. – Canonical equations. Canonical changes of variables. 

 

 1. – Consider a function S (x1, x2, …, xn, 1, 2, …, n) that depends upon two sequences of n 

variables, and set: 

 

(a)    y1 = 
1

S

x




, y2 = 

2

S

x




, …, yn = 

n

S

x




, 

(b)    1 = 
1

S






,  2 = 

2

S






, …,  n = 

n

S






. 

 

 1. – Those 2n equations (a), (b) permit one to express x1, x2, …, xn, y1, y2, …, yn as functions 

of 1, 2, …, n, 1, 2, …, n . As a result, the partial derivatives, which are 
24n  in number, will 

take one of the following forms: 

(c)      i

k

x






, i

k

x






, i

k

y






, i

k

y






. 
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 2. – The same 2n equations (a), (b) permit one to express 1, 2, …, n, 1, 2, …, n as 

functions of x1, x2, …, xn, y1, y2, …, yn . That will result in a second group of 24n  partial derivatives 

that take of the following forms: 

(d)      k

ix




, k

iy




, k

ix




, k

iy




. 

 

 The following relations, which are due to Jacobi, permit one to express (1) any one of the 

derivatives (c) in terms of the derivatives (d): 

 

(e)  i

k

y






 =  k

ix




, 

 

(f)  i

k

y






 = − k

ix




, 

 

(g)  i

k

x






 =  k

iy




, 

 

(h)  i

k

x






 = − k

iy




 . 

We shall make use of those formulas. 

 Formulas (a), (b) express the idea that the following expressions: 

 

i i i i

i i

y dx d +  = dS , 

  i i i i

i i

d x dy  −   = 
i i

i

d S x y
 

− 
 

  

are exact differentials. 

 

 2. – I suppose that the xi and yi are required to satisfy a system of 2n canonical equations (in 

the Hamilton sense): 

(1)     idx

dt
 = 

i

F

y




, idy

dt
 = −

i

F

x




  (i = 1, 2, …, n) , 

 

in which F denotes a function of the xi and yi that can also depend upon t explicitly. 

 Make the change of variables that was indicated by the formulas (a), (b), which is a change of 

variables that I will denote by the notation: 

 

 
 (1) TISSERAND, Traité de Mécanique céleste, t. I, pp. 20.  
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(x, y) → (, ) . 

 

The Jacobi relations (e), (f), (g), (h) show immediately that the new variables k , k satisfy the 

equations: 

(2)     kd

dt


 = 

k

F






,  kd

dt


 = −

k

F






, 

 

i.e., that the change of variables (x, y) → (, ) has not altered the canonical form of the differential 

equations (1). 

 With Poincaré, we say that such a change of variables is canonical. 

 

 

 3. – An arbitrary function S (x1, x2, …, xn, 1, 2, …, n) then permits one to perform a 

canonical change of variables (x, y) → (, ) . In particular, take S to be the function: 

 

S = 1 q1 + 2 q2 + … + n qn , 

 

which is linear in the , while the q are distinct, but arbitrary, functions of the x. 

 Formulas (a), (b) become: 

 

(a1)   y1 = 1 2
1 2

n
n

i i i

qq q

x x x
  

 
+ + +

  
  (i = 1, 2, …, n), 

(b1)   i = qi , 

 

which define a canonical change of variables (x, y) → (, ) for which the  are arbitrary functions 

of the x and the  are given by the n linear equations (a1). In the case of dynamics, the xi represent 

the coordinates of n / 3 material points, the yi represent the components of their quantities of 

motion, F is the total energy, and equations (1) are the equations of motion. 

 Therefore, the change of variables that is defined by formulas (a1), (b1) is nothing but the 

classical Poisson-Hamilton change that defines the passage from Cartesian coordinates to 

curvilinear coordinates. 

 

 

 4. – Let us return to the canonical changes, in general, and first of all write the conditions for: 

 

(3)      i i k k

i k

y dx d +   

 

to be an exact differential dS : If we take the independent variables to be the  and  then we will 

have: 

 
 (1) H. POINCARÉ, Les Méthodes de la Mécanique céleste, t. I, Chap. I, Leçons de Mécanique céleste, t. I, pp. 3. 
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(4)      

,

.

i
k i

ik k

i
i

ik k

xS
y

xS
y


 

 


= +  


 =

  




 

 

We write that (3) is an exact differential dS by equating the two different values that (4) gives for 

the mixed second derivatives 
2

k k

S

 



 
, 

2

k h

S

 



 
, 

2

k h

S

 



 
, 

2

k h

S

 



 
 . We then get the conditions: 

 

(5)     

1 0,

0,

0,

0,

i i i i

i k k k k

i i i i

i h k k h

i i i i

i h k k h

i i i i

i h k k h

x y x y

x y x y

x y x y

x y x y

   

   

   

   

     
− − =  

    
      − = 
      


    
− =      

     
− =  

     









 

 

which are conditions that can be written: 

 

(5, cont.)    

[ , ] 1,

[ , ] 0,

[ , ] 0,

[ , ] 0

k k

h k

h k

h k

 

 

 

 

=


=


=
 =

 

 

upon employing the Lagrange brackets (1). 

 However, the fact that (3) is an exact differential implies the Jacobi relations (e), (f), (g), (h) 

between the partial derivatives of the (xi , yi) with respect to the (k , k) and those of the (k , k) 

with respect to (xi , yi) . When one replaces the derivatives 
( , )

( , )

x y

 




 with their values that one infers 

from those relations, the conditions (5) will take the new form: 

 

 
 (1) H. POINCARÉ, Leçons de Mécanique céleste, t. I, pp. 18: In POINCARÉ’s definition, the (, ) denote 

integration constants. However, one can also just as well suppose that they are new variables.  
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(6)     

1 0,

0,

0,

0.

k k k k

i i i i i

k h k h

i i i i i

k h k h

i i i i i

k h k h

i i i i i

x y y x

x y y x

x y y x

x y y x

   

   

   

   

     
− − =  

    
      − = 
      


    
− =      

     
− =  

     









 

 

Upon employing the well-known notation of the Poisson parentheses (also called the Jacobi 

brackets), those conditions can be written: 

 

(6, cont.)    

( , ) 1,

( , ) 0,

( , ) 0,

( , ) 0.

k k

h k

h k

h k

 

 

 

 

=


=


=
 =

 

 

[Of course, nothing distinguishes the roles of the (x, y) and the (, ) in all of that. One can make 

the (x, y) play the role of the (, ) and conversely, because the change (x, y) → (, ) is canonical, 

the change (, ) → (x, y) will also be so.] 

 

 5. – Recall the canonical equations (1), in which we now suppose that the function F does not 

depend upon t. Perform a canonical change of variables: 

 

(x, y) → (, ) 

 

and suppose that one of the new variables – 1, for example – is the function F itself (1): F = 1 . 

The new canonical equations (2) will then be: 

 

  1d

dt


 = 1 , 

  kd

dt


 = 0   (k  1), 

 
 (1) That is always possible. It suffices to first take the function S to be a complete integral of the Jacobi partial 

differential equation: 

,i

i

S
F x

x

 
 

 

 = 1 , 

which contains (n – 1) other constants 2 , 3 , …, n , none of which is additive, in addition to the constant 1 .    
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  kd

dt


 = 0 . 

 

The 2n integrals of equations (1) will then be: 

 

  1 = C1 , 2 = C2 , …, n = Cn , 

 1 – t = Cn+1 , 2 = Cn+2 , …, n = C2n , 

 

in which the C are integration constants (1). 

 In order for a function  (xi , yi , t) to be an integral of equations (1), it is necessary and sufficient 

that when it is expressed in terms of the variables (k , k , t), it will depend upon only the: 

 

1 ,  2 , …, n , 

 1 – t , 2 , …, n . 

 

 6. – Let 1 , 2 , … be integrals of equations (1). I consider an expression: 

 

(7)     1 1 2 2
1 2, , , , , , , ,

i i i ix y x y

   
 

    
 

    
 , 

 

which depends upon 1 , 2 , … and their partial derivatives (or arbitrary order). I suppose that this 

expression remains invariant under all canonical changes of variables, i.e., that the canonical 

change (x, y) → (, ) transforms that expression into: 

 

(8)     1 1 2 2
1 2, , , , , , , ,

i i i i

   
 

   

    
 

    
 , 

 

in which the 
i




, 

i




 simply replace the 

ix




, 

iy




 that enter into (7). I say that under those 

conditions, the expression (7) will be an integral of equations (1). 

 Indeed, suppose that the new variables (, ) are precisely the ones in the preceding section: 

1 , 2 , … will then depend upon only: 

 

1 ,  2 , …, n , 

 1 – t , 2 , …, n . 

 

 
 (1) That change of variables should be compared with the one that Poincaré made on page 7 of Tome III of Les 

Méthodes nouvelles de la Mécanique céleste. 
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That is likewise obvious from the derivatives 1

i








, 1

i








, …, 2

i








, 2

i








, …, and as a result, the 

expression (8):  Therefore, (8), i.e., (7) is an integral. We then state the following proposition: 

 

 Any expression that depends upon integrals of equations (1) and their partial derivatives, and 

which remains invariant under a canonical change of variables is itself an integral (1). 

 

 7. – It is now easy to recover (and generalize) Poisson’s theorem: If 1 and 2 are two integrals 

of equations (2) then the Poisson parenthesis (1, 2) will be a third. It will suffice to show that the 

expression (1, 2) is invariant under a canonical change of variables (x, y) → (, ). Now, one 

has: 

 

(1, 2) = 

 

1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
k k k h k h k k

k k k kk k k h k h k k

D D D D

D D D D

       
       

       
+ + +    , 

 

and by virtue of the conditions (6, cont.), that will reduce to: 

 

1 2( , )

( , )k k

D

D

 

 
 , 

 

i.e., the parenthesis (1, 2) when it is expressed in terms of the new variables (, ) (2). 

 

 8. – Poincaré gave the following generalization of Poisson’s theorem (3): Let 1, 2, 3, 4 be 

four integrals of equations (1). Let ik be their Jacobian with respect to xi , yi , xk , yk : 

 

ik = 1 2 3 4( , , , )

( , , , )i i k k

D

D x y x y

   
 . 

The expression: 

ik

ik

  

is once more an integral. 

 In our way of thinking, that theorem results from the fact that the expression is invariant under 

a canonical change of variables (x, y) → (, ). Indeed, the relations (6, cont.) show that such a 

change will transform the expression ik

ik

  into the following one: 

 
 (1) H. VERGNE, “Sur les changements canoniques de variables,” Comptes rendus, 25 April 1910. 

 (2) On the subject of the invariance of the Poisson parentheses and the generalized Poisson theorem, see two notes 

by De Donder (Comptes rendus, 8 March 1909 and 1 August 1910). 

 (3) H. POINCARÉ, Les Méthodes nouvelles de la Mécanique céleste, t. III, pp. 43. 
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1 2 3 4( , , , )

( , , , )lh l l h h

D

D

   

   
  . 

 

 Similarly, if 1, 2, 3, 4, 5, 6 are six integrals of equations (1) then the expression: 

 

1 2 3 4 5 6( , , , , , )

( , , , , , )ikl i i k k l l

D

D x y x y x y

     
  

 

will also be an integral, and so on. Indeed, such expressions will remain invariant under a canonical 

change of variables. 

 

 9. – Suppose that equations (1) have been integrated, and the xi and yi are found to have been 

expressed as functions of t and 2n integration constants a1, a2, …, a2n . Consider an expression: 

 

(9)  
1 2 1 2

, , , , ,
a a a a

i i i ix x y y    
 

    
 

 

that depends upon the partial derivatives (of arbitrary order) of the (xi , yi) with respect to the 

integration constants, and suppose that any canonical change (x, y) → (, ) that is performed on 

the (xi , yi) will transform that expression into: 

 

(10) 
1 2 1 2

, , , , ,
a a a a

i i i i       
 

    
 

 

identically, in which the i , i simply replace the xi , yi that enter into (9). I say that under those 

conditions, the expression (9) will be an integral of equations (1). 

 Indeed, suppose that the new variables (, ) are precisely the ones in no. 5. One will then 

have that: 

1 ,  2 , …, n , 

 1 – t , 2 , …, n  

 

are constants that depend upon only a1, a2, …, a2n , and not on t . Obviously, the same thing will 

be true of: 

1a

i


, 

2a

i


, …, 

1a

i


, 

2a

i


, …, 

 

and as a result, one will have the expression (10): Therefore (10), i.e., (9), is an integral 

 

 10. – Consider the Lagrange bracket: 
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[ah , al] = 
a a a a

i i i i

i h l l h

x y x y    
− 

    
  . 

 

That is an expression of the form (9). Furthermore, a canonical change (x, y) → (, ) will 

transform it into: 

a a a a

i i i i

i h l l h

       
− 

    
  , 

 

which would result from formulas (5, cont.). Therefore, [ah , al] is an integral of equations (1) (1). 

 One can give some generalizations of that theorem that are analogous to the ones that Poincaré 

gave to Poisson’s theorem, and that we recalled in no. 8. Let Dik denote the Jacobian of xi, yi, xk, yk 

with respect to four of our constants of integration – for example, with respect to a1 , a2 , a3 , a4 : 

 

Dik = 
1 2 3 4

( , , , )

(a ,a ,a ,a )

i i k kD x y x x

D
 . 

The expression: 

ik

ik

D  

 

is an integral of equations (1), and so on. Indeed, such expressions remain invariant under a 

canonical change of variables. That always results from formulas (5, cont.). 

 

 11. – One can also propose to form some expressions that depend upon both the derivatives: 

 

1

ix




, 1

iy




, …, 2

ix




, 2

iy




, … 

 

[which are derivatives of the integrals of the system (1) with respect to the variables] and the 

derivatives: 

1a

ix


, 

2a

ix


, …, 

1a

iy


, 

2a

iy


, … 

 

(which are derivatives of the variables with respect to the integration constants), which remain 

invariant under a canonical change. Such expressions will then be integrals of the system (1) again. 

For example: 

1 1

a a

i i

i i h i h

x y

x y

    
+ 

    
  

 

 
 (1) H. POINCARÉ, Leçons de Mécanique céleste, t. I, pp. 18.  
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is an integral. However, that obviously is nothing but the integral 1 / ah . We can likewise say 

that expressions such as the following ones are integrals: 

 

1 1 1 1

2 2 2 2

a a a a

a a a a

i i k k

i i k k

ik i i k k

h h h h

i i k k

l l l l

x y x y

x y x y

y x y x

y x y x

   

   

   

   

   

   

   
− −

   

   
− −

   

  , 

1 1 1 1

2 2 2 2

3 3 3 3

a a a a

i i k k

i i k k

ik

i l k k

i i k k

l l l l

x y x y

x y x y

x y x y

y x y x

   

   

   

   

   

   

   

   

   

   
− −

   

  , … 

 

 In order to establish the invariance of those expressions under a canonical change of variables, 

it is necessary to make use of the two groups of formulas (5, cont.) and (6, cont.), or one of those 

two groups, combined with the Jacobi relations (e), (f), (g), (h). 

 It should be pointed out that just as the various generalizations of Poisson’s theorem are not 

essentially distinct form that theorem, similarly, the integrals that I just indicated can be deduced 

with the combined use of Poisson’s theorem and the Lagrange brackets. 

 

 12. – The same consideration of invariance under canonical changes of variables will permit 

us to recover the various integral invariants that Poincaré gave (1) for the canonical equations (1). 

 The differential expression: 

 

i i

i i i

x y

x y

 

  
  = ( )i i i i

i

x y y x    −  

 

(in which  and   represent two different systems of differentials) is invariant under a canonical 

change [from formulas (5, cont.)]. It will then result, and always by the same reasoning, that it is 

an integral that depends upon three infinitely-close solutions to equations (1), in other words, that 

the double integral: 

i i

i

x y   

is an integral invariant of equations (1). 

 Similarly, the expression: 

i i k k

i i k k

ik i i k k

i i k k

x y x y

x y x y

x y x y

x y x y

   

   

   

   

   

   

   

  

 
 (1)  H. POINCARÉ, Les Méthodes nouvelles de la Mécanique céleste, t. III, Chap. II. 
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is invariant under a canonical change. We deduce the fourth-order integral invariant: 

 

i i k k

ik

x y x y      

from it, and so on, up to order 2n: 

 

1 1 2 2 n nx y x y x y       . 

 

 

II. – General systems of differential equations. Integral invariants. 

 

 13. – We shall now abandon the canonical equations in order to occupy ourselves with a 

general system of differential equations. First of all, we shall establish a preliminary lemma. 

 Consider n variables: 

x1 ,    x2 ,    …,    xn , 

and set: 

 

()     i = i (x1, x2, …, xn)   (i = 1, 2, …, n) , 

 

in which the  are n functions that are distinct from the x. We then define a change of variables to 

be perform on the x : 

 

 1. We can regard the  as functions of the x . That will then imply partial derivatives of the 

form: 

i

kx




, 

which are 2n  in number. 

 

 2. We can regard the x as functions of the  . A second group of 2n  partial derivatives of the 

form: 

k

i

x






 

will then result. 

 

 First of all, I will write down certain relations that exist between those two types of derivatives. 

I shall let  denote the Jacobian (which is not identically zero, by hypothesis) of the  with respect 

to x : 

 = 1 2

1 2

( , , , )

( , , , )

n

n

D

D x x x

  
 . 

 

 The relations between the two types of derivatives that I have in mind are the following ones: 
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()   

1 2 1 1

1 2 1 1

1 2 1 1 1 1

1 2 1 1 1 1

( , , , , , , )( 1)
,

( , , , , , , )

( , ) ( , , , , , , , , , )( 1)
,

( , ) ( , , , , , , , , , )

..............................

h i

h i i n

i h h n

h i k l

h l i i k k n

i k h h l l n

x D

D x x x x x

D x x D

D D x x x x x x x

    



      

 

+

− +

− +

+ + +

− + − +

− + − +

 −
=

 

−
=



1 1 1

1 2 1 1

.....................................................................

( , , , , , ) ( 1)
.

( , , , , , , )

r s

r r l s

s s n r

D x x x x

D x



    

+

− +

− +









 −

=
 

 

 

 The first of those relations is immediate: If one differentiates the n equations () with respect 

to i then one will get: 

1 = 1 2

1 2

i i i n

i i n i

xx x

x x x

  

  

    
+ + +

     
, 

 

0 = 1 2

1 2

k k k n

i i n i

xx x

x x x

  

  

    
+ + +

     
 

 

(k = 0, 1, 2, …, i – 1, i + 1, …, n) , 

 

and that system of n linear equations in the xh / i immediately gives: 

 

h

i

x






 = 

1

i

hx










 , 

 

which is nothing but the first of (). From that same formula, one will then have: 

 

()    h l h l

i k k i

x x x x

   

   
−

   
 = 

2

1

i k k i

h l l hx x x x

   

 
    
 −

        
     

 . 

 

Now, from a well-known formula that relates to determinants, the latter bracket is equal to: 

 
2

i k

h lx x

 

 


 
 

 

 , 

 

such that the formula () is nothing but the second of (). All of the formulas in () are then 

established, step-by-step, as consequences of the first one. 
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 14. – Now take the system of n first-order differential equations: 

 

(11)     1

1

dx

X
 = 2

2

dx

X
 = … = n

n

dx

X
 = dt , 

 

in which the X are given functions of x1, x2, …, xn, t . Furthermore, suppose that when those 

equations have been solved, one can write down the n integrals of that system: 

 

1 (x1, x2, …, xn, t) = 1 , 

2 (x1, x2, …, xn, t) = 2 , 

………………………… 

n (x1, x2, …, xn, t) = n , 

 

in which the  are integration constants. If we regard t as fixed then the last n equations will define 
2n  derivatives i / xk and 2n  derivatives  xk / i , between which the relations () exist. 

 I say that, first of all, the Jacobian: 

 = 1 2

1 2

( , , , )

( , , , )

n

n

D

D x x x

  
 

 

is a multiplier (in the Jacobi sense) for equations (11). From a theorem of Poincaré (1), it will 

suffice to see that the integral of order n : 

 

1 2

n

nx x x     

 

is an integral invariant. Now, that is obvious since the element that is placed under the  sign is 

nothing but: 

1 2 … n , 

and the  are constants. 

 

 15. – Now suppose that equations (11) admit an integral invariant of order n – 1: 

 
1

1 2 1 1

n

i i i n

i

M x x x x x    

−

− +   

 

(in which the Mi are functions of x1, x2, …, xn, t): That means that the expression: 

 

 
 (1)  H. POINCARÉ, Les Méthodes nouvelles de la Mécanique céleste, t. III, Chap. II; P. APPELL, Traité de 

Mécanique rationelle, t. II, pp. 462. 
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(12)   

1 1 1 2 1 1 1 1 1

2 1 2 1 2 1 2

1 1 1 1 1 1 1

i i n

i i n

i

i

n n i n i n n

x x x x x

x x x x
M

x x x x

    

   

   

− +

+ +

− − − − + −

  

 

in which 1, 2, …, n−1 are n – 1 different symbols for differentials, is an integral that depends 

upon n neighboring solutions. The differentials  must be taken without varying t, so we can take: 

 

 x = 
x











. 

The expression (12) will then become: 

 

1 2 1 1
1 2 1

1 2 1

( , , , , , , )

( , , , )

i i l
i n

i n

D x x x x x
M

D
  

  
− +

−

−

 . 

 

When one suppresses the constant factor 1 2 1n   −  and takes into account the relations (), 

one will see that: 

( 1)i

n
i

i i

M
x

−

 
  

 

[in which n = n (x1, x2, …, xn, t) represents an arbitrary integral of the system (11)] is a multiplier. 

That theorem is due to Koenigs (1), who established it upon supposing that the Mi and the Xi are 

independent of t. 

 If one sets: 

B () = ( 1)i

i

i i

M
x


−


  

 

then one can, with Koenigs, deduce that if  and  are two integrals of (11) that do not annul B () 

then the function: 

( )

( )

B

B




 

 

will once more be an integral. Indeed, it is the quotient of two multipliers. 

 

 16. – Now suppose that one knows an integral invariant of order n – 2 for equations (11): 

 

 
 (1) G. KOENIGS, “Sur les invariants intégraux,” Comptes rendus, 6 January 1896.  
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2

1 2 1 1 1 1

n

i i i k k n

i

M x x x x x x x      

−

− + − +   . 

 

An argument that is entirely similar to the foregoing one will show that the expression: 

 

(13)     1( , )
( 1)

( , )

i k n n
ik

ik i k

D
M

D x x

 + −−  

 

[in which n−1 and n are two arbitrary integrals of the system (11)] is a multiplier. If one possesses 

three integrals then one can form two distinct multipliers whose quotient will give a new integral. 

 The generalization of that theorem suggests itself immediately: If one possesses an integral 

invariant of order n – p and p integrals for equations (11) then one can form a multiplier. That 

theorem was proved in a different way by De Donder (Circolo di Palermo, t. XV, 1901). 

 

 17. – I now suppose that the X in equations (11) do not depend upon t and that the simple 

integral: 

1 1 2 2 n nx x x     + + +  

 

is a first-order integral invariant. That means that the sum: 

 

1 x1 + 2 x2 + … + n xn 

 

is an integral when the xi are a system of solutions to the equations of variation (1) of the system 

(11). Now, the X that do not depend upon t constitute one such system of solutions; therefore: 

 

1 X1 + 2 X2 + … + n Xn 

 

is an integral of equations (11) (2). 

 If  (x1 , x2 , …, xn , t) is an integral then we will have the first-order invariant: 

 

1 2

1 2

n

n

x x x
x x x

  
  

  
+ + +

   , 

and as a result, the integral: 

1 2

1 2

n

n

X X X
x x x

    
+ + +

  
 . 

 

However, since  is an integral, we will have: 

 

 
 (1)  H. POINCARÉ, Les Méthodes nouvelles de la Mécanique céleste, t. I, page 162. 

 (2) Ibid., t. III, Chap. I.  
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(13, cont.)   1 2

1 2

n

n

X X X
x x x

    
+ + +

  
 = 0 

 

identically, and as a result the preceding integral will be nothing but −  / t . 

 Therefore, when the X do not depend upon t, if  is an integral then  / t will be another one 

(1). Similarly, 
2

2t




, 

3

3t




, … are integrals. (Cf., P. APPELL, Traité de Mécanique rationelle, t. II, 

pp. 419.) 

 

 18. – We apply the preceding results to a canonical system of equations: 

 

(14)    i

i

dx

F

y





 = i

i

dy

F

x


−



 = dt (i = 1, 2, …, n) , 

 

in which the function F depends upon the x, the y, and t. One knows, a priori, an integral invariant 

I2k of each even order 2k for those equations. Those invariants are: 

 

  I2 = i i

i

x y  , 

  I4 = i i k k

ik

x y x y     , 

  ………………………………, 

  I2n = 1 1 2 2 n nx y x y x y        . 

 

 The invariant I2n tells us that 1 is a multiplier for equations (14), which is well-known. The 

invariant I2n−2 , to which one applies the theorem in no. 16, give us the integral (13), which is: 

 
 (1) That remark is entirely obvious, moreover. Indeed, upon differentiating the identity (13, cont.) with respect to 

t, one will get: 
2 2 2 2

1 22

1 2

n

n

X X X
t x t x t x t

      
+ + + +

      
 = 0 , 

 

which proves that  / t is an integral. 

 More generally, I suppose that the X depend upon the x and t, but that all of the X satisfy the same linear, 

homogeneous, first-order partial differential equation with constant coefficients: 

 

 (Xi) = 
1 2

1 2

i i i i
n

n

X X X X
a a a

t x x x

   
+ + + +

   
 = 0  (i = 1, 2, …, n) . 

 

Hence, if  = const. is one integral of the system (11) then  () = const. will be another one. 

 Similarly, if all of the X except X1 satisfy  (Xi) = 0, and if one has an integral  that does not depend upon x1 , then 

one will once more have the integral  () . 
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1 2( , )

( , )i i i

D

D x y

 
  

 

here, in which 1 and 2 denote two arbitrary integrals of the system (14): That is Poisson’s 

theorem. Similarly, the invariant I2n−4 will tell is that if 1 , 2 , 3 , 4 are four integrals then the 

expression: 

1 2 3 4( , , , )

( , , , )ik i i k k

D

D x y x y

   
  

 

is once more an integral, and so on. That is the generalization of Poisson’s theorem that Poincaré 

gave (Méthodes Nouvelles, t. III, pp. 43) and that we recalled above. 

 Now suppose that equations (14) have been integrated, so the xi and yi are found to have been 

expressed as functions of t and 2n integration constants a1, a2, a3, …, a2n . The invariant I2 tells us 

that the sum: 

( )i i i i

i

x y x y    −  

 

will be an integral when the xi , yi  and the ix  , iy   are two systems of solutions to the equations 

of variation of the system (14). If we take, for example: 

 

xi = 1

1

a
a

ix





,  yi = 1

1

a
a

iy





, 

  ix   = 2

2

a
a

ix





,  iy   = 2

2

a
a

iy





 

then we can say that the expression: 

[a1, a2] = 
1 2 2 1a a a a

i i i i

i

x y x y    
− 

    
  

 

is an integral: That is the theorem about Lagrange brackets. (Cf., no. 10.) 

 The invariant I4 likewise tells us that: 

 

1 2 3 4

( , , , )

(a ,a ,a ,a )

i i k k

ik

D x y x y

D
  

is an integral, and so on. 

 

 19. – I shall once more indicate a property of the canonical system (14): I suppose that this 

system admits the first-order integral invariant: 

 

(15)     i i i i

i

M x N y + . 
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One can prove that the (n – 1)-fold integral: 

 
1

i i

n

i x i y

i

N M 

−

+   

 

is also an integral invariant: 
ix  represents the product of the differentials: 

 

x1 y1 x2 y2 …xn yn , 

 

in which one has suppressed the factor xi , while
iy represents the product, but with the factor 

yi missing. 

 Apply Koenigs’s theorem (no. 15) to the last invariant of order n – 1 . If  is an integral then 

the expression: 

(16)     i i

i i i

N M
x y

  
− +

 
  

 

will be a multiplier, and as a result, it will be an integral (since its quotient with the multiplier 1 is 

an integral). Therefore, in the case of canonical equations, knowing a first-order invariant and an 

integral will permit one to write down a new integral. 

 Suppose that 1 is an integral other than , so the first-order integral (15) that we start with is: 

 

1 1
i i

i i i

x y
x y

 
 

 
+

 
  . 

The integral (16) will then become: 

1 1

i i i i ix y y x

    
−

   
 . 

We thus recover Poisson’s theorem. 

 

____________ 

 


