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On the mechanical inter pretation of
infinitesimal contact transfor mations

By E. Vessiot.

Translated by D. H. Delphenich

Lie has briefly pointed out, in various passages irGéiemetrie des transformations
de contactthat the propagation of a wave motion, conforming tdaheof Huyghens, is
the image of a one-parameter group of contact transfamsati.e., of an infinitesimal
contact transformation. It seemed to be of intet@sits to discuss this idea along with
the implications that it entails. We have dealt wittee-dimensional space and indicated
how the results thus obtained can be extendedatdmnensional spaces. Here are the
main results:

The mode of propagation is assumed to be defined by ensysfto® characteristic
wave surfaces that are associated withotfiepoints & y, 2) of space. Each of them
represents the limiting form that is approached by thiaseithat consists of all points
that are reached after a time interdll by a disturbance that is produced at the
corresponding pointx( y, 2. Suppose that the origin of the coordinates has been
transported to that point, and that the equation of a tarm@ne to that surface is taken
in the form:

(1) pX+qY-Z-w=0,

in such a way thatp( g, w) are the current tangential coordinates for that earfalThe
system of characteristic surfaces is then defined byaatien of the form:

(2 w=WX, Y, zp,0),

and one may say that this equation defines the mode ofgatiqa

If one imagines an arbitrary initial wave then thecsssive forms of the variable
wave that result from it are the transforms of theginal wave by the various
transformations of a group of contact transformatiarthé parametdr which represents
time. This group is defined by the classical equations:

A oW dy oW dz 9 W \
0

dt op  dt oq dt P
dp_ 0W dgq_ oW oW

3)

dt~ ox’ d dy ' az
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where W is the function that appears in the tangential equatiothe characteristic
surface.

Upon integrating the system (3) one completely detegsnthe mode of propagation
in question. However, one may also determine it by agekie families of waves, i.e.,
the family of successive waves that issue from aitrar initial wave. One such family
will be given by an equation:

(4) t=f(xy, 2,

in such a way that one must find a functtoof the independent variables §, 2). It is
defined by the partial differential equation:

(5) e

ot ( ’_at/ax’_at/ay}l:o’
dt/oz' Ydz

whose integration is therefore equivalent to thegration of the system (3).

From this, one obtains an extremely simple geaoadttheory of first-order partial
differential equations that comprises not only theory of complete integrals and the
theorem of Jacobi, but also the theory of charesties. The only peculiarity of equation
(5) is that it does not explicitly contain the uokm functiont.

One arrives at these results in a more symmaeirim by supposing that the equation
of the tangent plane of the characteristic surfat¢aken in the form:

(6) aX+pY+X-1=0.

The tangential equation is then of the form:

(7) nxyzapBy=1

where one may always assume tlas homogeneous of degrerein a, S, ). Equation
(7), when one sets:

ot _ ot ot

(8) a, — =5 ==V

is also the partial differential equation of thenfly of waves. The equations of the group
of contact transformations take the known homogesdarm, which is analogous to that
of the canonical Hamilton equations:

dx _arl

dx dy_on  dz_on
dt da’ dt 08" dt dy’
dg __on dg__on dy__on

dt ox' dt  ay dt az

(9)
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The intervention of the group of contact transfororaiin the wave theory leads to
the consideration of the trajectories of propagatmmch will be defined by the system
(3), for example, upon consideripgq to be the auxiliary unknowns. One defines these
trajectories directly by a differential system timtinalogous to the Lagrange equations
in mechanics by defining the characteristic wave surfacethéily general pointwise
equation:

(10) Qx, v,z X,Y,2) =1,

where one may suppose tlfats homogeneous of degreeein X, Y, Z. The differential
system of the trajectory is then:

E a_Q —a_Q:O
dtlox ) ox
(11) daroe) o _,
dt\ oy ) dy
— a_Q —a_Q:O
dt\ oz ) dz
with the condition equation:
(12) Qx,y,zX,y,Z) =1

It expresses the notion that the variation of thegral:

(13) [Q(x,y, z dx, dy, d2)

is null, and that the timeis precisely the corresponding value:
(14) t=[Q(x y, z dx dy, d2)

of that integral. One may, moreover, interpret titegral (13), when taken along an arc
of an arbitrary curve, as the time that a disturbaakes to propagate from one extremity
of that arc to the other when one follows the curve.

We thus have a geometric interpretation of a very gépenalem in the calculus of
variations. The classical condition for the minmmmay then be stated in the following
form: Let M be an arbitrary point of a trajectory. This point e torigin of an
infinitesimally small elementary wave:

(15) Q(x, Y, z dx dy, d2 =dt
The trajectory, when one startsMf must pierce that elementary wave at a point where

its two curvatures have the same sign and it is centawardsM. The arcs of the
corresponding trajectories therefore always have a mminfor the duration of the
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propagation when the characteristic wave surfaces allwaye the same sign for their
curvatures and are always concave towards their regpemtigins. Of course, this is
with the reservation that the arc considered does néaiogpairs of conjugate points (in
the sense of Weierstrass).

The preceding theory thus sheds light on a mostestiag new day, not only on the
diverse aspects of the theory of partial differerg@lations, but also its relationship with
the calculus of variations.

It also makes a useful contribution to all of thesiioms in which the integral (13) is
involved: brachistochrones, the equilibrium of strings, dgsic lines, the general
problem of dynamics, etc. In these diverse casestuttively restores the analogous
theorems of Thomson and Tait, because they expresshatlthe arcs of the trajectories
connect two waves of the same family that corresponéqual times and that at each
point of one wave the direction of the trajectorlinked with that of the tangent plane to
the wave by the geometric relation that results ftoenfirst three formulas (3) or (9).

Lie has pointed out') the fact that the integration of the partial diéhetial equation
of mechanics:

(16) (Ej ++[6_Sj -2U(X, ..., %) =2 =0,
0%, 0%,

comes down to the determination of the group of contacistormations that has the
characteristic function:

(17) Nl
J2UU +h)

We recover this result in a more general form, autt its true origin, which is in the

principle of least action.

2T (%, % [dx -, dx)
dt

system, and not on time, and the same is truéhfdrce functiorJ(xs, ..., x»), then the

trajectories are the same for the mode of wave ggafon in which the characteristic

wave surface has the general pointwise equation:

If the vis viva depends only upon the coordinates of the

(18) 2\/U(X1""1)$)T()i1”'1)$|X1f"’Xm): 1.

However, this corresponds to the timeof this mode of propagation, and it is not
generally the time of the dynamical motion, but the action:

(19) r=2[JU g, )T [y, dy),

in such a way that one has:

(*) Leipziger Berichtev. XLI, pp. 145.
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dr

(20) dt=————.
2 (%, %))

In this statement, one assumes that one has gifre@davalue to the constant ils vivg

and that one has entered it into the functibnn such a way that the equation for te

viva will be:

(21) T ooy X0 | OX, -.ny OX) = U(X, .., X)) AE.

This formal identity between the trajectories lué problems of dynamics and certain
problems of wave propagation is certainly curicaihough the difference between the
laws that govern the trajectories robs it of sorhétinterest. The classical parallel
between the theory of emission and the theory alulations may be regarded as a
special case if one supposes that in the theogmidsion the luminous corpuscles obey
laws that are analogous to the ones in our dynamics

In another work, we shall study the consequentesisuing this general parallelism
for the integration of the equations of mechani¢sere will likewise be good reason to
study the problem of refraction and the propagatiba disturbance in a medium whose
nature varies with time. In this note we wouldelito limit ourselves to the simplest
facts.

l. — WAVES AND CONTACT TRANSFROMATIONS.

1. Consider a well-defined elastic medium and suepitst a disturbance of a
specified nature propagates in this medium. Wa fissume that if this disturbance is
produced with its origin at an isolated pofnbf the medium then after each time interval
t it has reached all of the points of a surfagg whose form is well-defined for each
point A and each duration

We then assume that if the disturbance is produgdits origin at any point of a
curve C or surfaceS then after each time intervalit reaches all of the points of the
multiplicity M that envelops the surfacés ; that correspond to the various points®f
(S resp.).

If we saywavewhen we mean the set of points that are reachebebglisturbance at
the same instant thed or Sis the initial wave andl is what this initial wave becomes
after a time interval. The principle that we have assumed may be c#iledrinciple of
the enveloping wave.

This has an immediate interpretation in the thedrgontact transformations. Indeed,
for each value of the system of surfaceB, ; defines a contact transformatidp andM
is the transform of the initial wav€ (or §) by this transformation.

Thereforeto each elastic medium and each type of disturb#maiemay be produced
in this medium there corresponds a family of canteensformations {, in such a way
that after a time interval t any initial wave beoesna new wave that is the transform of
the initial wave by the transformation.T

Let xo, Yo, Zo be the coordinates of an arbitrary pofnhaind letx, y, z be the current
coordinates. The surfage ; has the equation:

1) d(x Y, 2| %, Yo, o |1) =0,
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and, as one knows, this equation defines the contadfdramtionT; upon adding the
equations:

od 0P _ 0P 09 _
—+p—=0, —+q——=0,
@ 0x 0z oy 0z
0P 0P _ 0P 0P _
—+p,—=0, —+q,—=0
0%, 0z, 2y, 07

2. Moreover, assume that the disturbances in questiopagate in conformity to
Huyghens'’s principlei.e., after an arbitrary time interviathe initial waveX, becomes a
certain wavex and continues to propagate as if this waweere the initial wave when
starting with this instant.

This amounts to saying tha@t.. is identical to the produdiTy, i.e., thatthe contact
transformations {form a one-parameter group that has t for its aainal parameter.

Moreover, under the hypotheses that were m&deeach elastic medium and each
type of disturbance that might propagate in thisdmen there corresponds one
infinitesimal contact transformatio, and any wave that exists at an arbitrary instasnt
successively modified according to the contactdfarmations Tof the one-parameter
group that7 generates.

According to the well-known results of Lie, (x, y, z p, Q) is the characteristic
function of T thenM; is obtained by integrating the following equatidream O tot with
the initial values<, Yo, Zo, po, Qo then:

dx_ow dy_ow dz o W

- dt ap’ dt - aq’ dt ar’
dp_ oW _ oW dg. oW oW
at oax Pz’ o ay Vaz

The function W is therefore characteristic for theedium and the nature of the
disturbances in question.

It is coupled with the following geometric congidBons: Recall the surfacea; and
construct its homothetic image with the resped¢h&ohomothety centek and homothety
ratio 1&. Whent goes to zero this homothety will go to a limitifaym Wa that we call
the characteristic surface of the medium with A foratiyin because the system of these
surfaces¥, defines, as we shall see, the mode of propagafidhe disturbances under
consideration.

Indeed, upon setting:

Wo = W(Xo, Yo, Zo, Po, Co),

and consideringo, qo to be parametera has the equations:

a\N0+ ey

X=Xo+t
9P,
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Y =Yo +tf;\A/() + ...,

(o]

oW, AU
Z=7+t 0+ +
4 [p op, quq) V\éj

the unwritten terms being of higher ordert.inThe homothety considered will have the
equations:

oW,
X=Xy + + ...,

9P,
oW,

y=yo+—2>+ ...,
0q,

oW, S W +

e W
2B P G
0

and the unwritten terms contain the factThe surfacéV, is therefore representeahon
transporting the axes to the point By the equations:

(4) :a\NO, Y:a\NO, Z= poa\N0+Ooa_V\6—WO_
ap, 09, 9P, 00,

If one differentiates with respect pa, go then one concludes:
pdX+qgdY-dzZ=0,

and, as resultpo, 0o, —1 are the direction coefficients of the tangent plan&'z at the
point X, Y, Z, which has the curvilinear coordina®sqo , and the equation of the tangent
plane is:

(5) PoX+QY-Z-Wo=0,

The characteristic function W thus corresponds e tangential equation of the
characteristic surfacél, of the mediumin the sense that if the equation of the tangent
plane to the surface at the oridiris, upon transporting the axesAp

(6) Wo = W(Xo, Yo, Zo, Po, Qo)

where Xo, Yo, Zo are the coordinates of the poiAt The surfacesl, thus define the
function W entirely, and, as a consequence, the mode of propagétibae disturbances
considered in the medium considered.

One may further substitute for the surféiég, its homothetic image whehis taken
to be the center of the homothety afids the homothety ratio; this is what we call the
elementary wavéhat hasA for its origin. These equations, which always hAver the
origin, are:
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=g y=Moy Z:[p0%+qoa—v%—wojdt.
ap, a4, ap, aq,

If A’ is the point of this elementary wave for which the tahgdane has the direction
coefficientspo, go, —1 then the components of the vectdX are the differentialdxy, dyo,
dz for the contact elemeB(Xo, Yo, Zo, Po, Co).

To obtain the differentiatlpy, dgy it suffices to find the contact element that is
common to all of the elementary waves that have thgins at the points of the contact
elementE that are infinitely close té\. Since the elementary wave of originhas the
equations:

LOWOh %2 R g
p
UL LMY

X=Xo

Y=Yo

q —

oW %% R, OWX ¥ & PN
W 1 ) k) 1
o 3 (% % % PY| C

z:zo{p

we may use the following equations to find thatrabteristic contact element:

0:%+56W()%’ yO’ %’ p th’
ap
o:@0+5aw(’%’3’°’ % Py

0:&0{paw(>sé~r~)-, pa, O W gaq P9 Wiy Q} .

0 =podXo + QYo — o,

from which one conclude®x,, oy being arbitrary:

po—p{aw()%’"" b9, p oW ¥, P q}dt =0,
0%, 0

Op_q{awm,---, RO, o I B P q}zlt: 0.
9y, 0

One thus sees thpt g tend topy, go whendt tends to zero and that the principal partp of
— b, g — @ are given precisely by the same equations thatelé¢fe differentialslp, dg
in equations (3).

The geometrical interpretation of equations (3)ntgans of the elementary wave is
therefore complete.
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From the principle of successive approximations, one foayer say thatthe
propagation of the disturbance comes about by successive elementary siveoaexs, is
then infinitely small.

3. One may replace equations (3) for the propagation eésvevith more symmetric
equations that are analogous to ¢heonical equations of Hamiltorit suffices to put the
tangential equation for the characteristic surfiigento a symmetric form.

In the sequel, we will writg, y, z for the coordinates @& andp, q in place ofpo, (o -
If the current tangent plane Wy is:

(8) pX+qY-Z-w=0,
then its tangential equation will be:
9) w=WX Y, zp,0q).

Take the tangent plane in the form:

(20) aX+ Y+ yZ—-w=0,
and its tangential equation may be written:

(11) oa=MNxyYy,za/pB)),

wherell will be homogeneous of first degreean S, 1 One will have, moreover, the
identities:

(12) p:_g’ q:—é’ W:—E’

y y y
(13) X Y, Z a,/iw=—V\N(x y,z—%,—éj,
(14) WX, Y,z p,q) =M(X Y,z p, g -1).

One immediately concludes, in view of the homogereify and its derivatives:

(15) %:a_n ﬂ:a_n dz—a_rl-
dt oa’ dt 98’ dt oy’

and, by a simple calculation:

da on df, oM dy on dw

+ 7
dt  9x _ dt dy _dt 9z _ dt
(16) = = = .
a £ y aw
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The last ratio is obtained by combining the other anem taking into account the
homogeneity of1, equation (11), and equations (15).
To obtain simple formulas, one imposes the condition

(17) w=1,
which will give the equations:

do__on —dp__on dy__on

(18) - N 3 1
dt [)4 dt oy dt 0z
with the condition:

(19 nxvyzapBy=1.

The latter equation remains the tangential equatid#gfbut, from now on, the equation
of the tangent plane is written:

(20) aX+pY +yZ—-1=0.

The stated equations are equations (15) and (18), whenmwusteobserve thdil is
homogeneous of degree 1ang, . It must be integrated while taking (19) into account.
However, one must remark that the first intediaf const. results from (15) and (18),
and that one may replace the hypothesis 1 by the more general hypothears= const.
without altering the preceding calculations. The only pagcty that actually remains
thus relates to the homogeneitylof

We finally remark that, due to this homogeneity, thedd@n (19) may be replaced
by:

(21) adx +dy + ydz —dt=0,

which also results from the geometric interpretatibrdx/dt dy/dt dz/dt because it is
then just the equation (20) of the tangent planéto

4. One may further rid oneself of the hypothesis thateslto the homogeneity Gt
Indeed, suppose that the equation of the current tangeet fplahe characteristic surface
Wa is always supposed to be written in the form:

(20) aX+pY +yZ—-1=0.
so the tangential equation of that surface will begivean arbitrary form:

(22) Wx, v,z a B ) =0.

This equation is equivalent to (19), which is deduced by solvingtiequ@2), made
homogeneous, faw, i.e.:
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<o

and upon makingo = 1 in equation (11) that one obtains.
From this, one concludes that by means of (23)haise

(23) lTJ:qJ(x, Y, Z, ﬁ
@

SERS
SEAS

o o 0w 1| oW 0w 0w
———dx-———dy-——dz=~—| <
ox ay 0z @ a(aj
w

dn =

1 oy oy

“"o(z) o) "o

n_gov o _gov o _god
X X y y 0z 0z
on_™M ov on_M o¥ on_M ov
oa ma(aj 03 ma(ﬁj oy ma(yj
@ w @
1_1 oW oy oy
—==|a
M @

o[22 o)

Moreover, under the hypothesis (17), i.e., (18), (22), one thus has:

n_yov oon_powon_ v
ox 0x oy oy 0z 0z
a_n:Ma_Lp, a_rl:Ma_LP, a_rl:Ma_qJ,
oa oa o83 s oy ay

Similarly, the system (15), (18), (19) may be ageld by the system:

11
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da _df _ dy _dx _dy dz _

&9 0P 0w oW 0P ov ow O
0x oy 0z 0da 0B oy
(22) Wx, v,z 0,8 ) =0,
W W oW
25 dt=|g—+—+y— |dr,
(2 ( oa P op yayj

whose integration amounts to that of the system (28) (h a form that is entirely
analogous to that of the system (15), (18), (19), andqoiaelrature. Furthermore, in
these equations the functidhis absolutely arbitrary.

However, if one replaces equation (22) by another étteedorm:

W(x, Y, z a, B, )) = const.

then one no longer obtains a representation of the ggoup of contact transformations.
By comparison, in the preceding section replacing (19) bye@umtionlT = const.
amounted to only replacirtgwith kt, wherek is a constant, which did not alter the group
of contact transformations considered.

From the geometric viewpoint, the surfaces of charatic surface$! =k (wherek
is constant) is essentially different from thatté surfaces (22), while the system of
surfaced1 =k has the same form as that of the surfatesl.

We further remark that equation (25) may be replacedtiwttequation:

(21) adx+ Gdy + ydz — dt= 0.

This also results from the geometric equation of thetjues dx/dt, dy/dt dz/dt as in
the preceding section.

One may suppose, in particular, that the equation (2&)}tiee form:

W=GXxVv,za/pF)y-1=0,

G being homogeneous of degmaen a, S, ). One then has the canonical system:

dx_0G  dy_9G  dz 06
(24 cont.) dr oJda dr dp8 dr oJdy
da__0G df__0G o _ 06
dr odx dr o9y o 9z

with the condition:

(22 cont.) Gxv,za B y=1,
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and to determine the time, one has the simple formula:
(25 cont.) dt=mdr.

One may thus replacewith t without altering the group of contact transformations,
and, for the reasons that were described above, onealsaysuppress condition (22
cont.). All of this amounts to changing just the unitife.

Il. - INTEGRATION PROBLEMS.

5. The problem of integration in the preceding theory sts1©f determining the
propagation of an arbitrary wave knowing the systemhafacteristic surfaces, i.e., the
system of elementary waves that corresponds to eachgidire medium.

This problem will be solved if one determines the firatpiations of the group of
contact transformations that correspond to the mddeapagation considered, i.e., if
one integrates the system (3). Indeed, let:

X=X, % % B Q19D
Y=Y(%: Yor % R G 9D,
(26) z=2(%, % % R, QI ),
P=P(%: Yor % R: @19,
a4=2(%: Yo % R, G| 9,

be the equations thus obtained, where0 corresponds to the identity transformation. If
the initial wave is given then one may suppose that ititaco elementsxg, Yo, 2o, Po, o)
are given as functions of two parameters, and upon gubgji these expressions in
formulas (26) one will have the wave that resultsradttime intervat.

However, one may approach the question in anotherwdyoking for thefamily of
wavesdirectly, i.e., the set of waves that successivgdye from the same initial wave.
The general equation of such a family may be assumesal ppoelsented in the form:

(27) f(x, y, 2 =t,

and everything comes down to finding the corresponding funttio
If we associate equation (27) with the system:

of  of o , o

28 Z +pZ=o, Z+9—=0,
(28) p oy 9%z

in such a manner as to obtain the system that deteset of contact elements of the
initial wave, then the necessary and sufficient @mmthat determineswill be obtained
by writing that this system (27), (28) is invariant underitii@itesimal transformation:
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OF OWOIF OWOF ( oW oW jaF
+ + + + -W

ot dp ax dqay | ap q  Jax
(aw awjaF OW O0W\0F
-|—+p—|—-| —+qQ— |—.
0x 0z Jop \ 0y 0z)0(Q

Since this transformation changes any multiplicitg iohe multiplicity, it will suffice
to operate on equation (27). One verifies, moreoverdibgct calculation that the
conditions that one obtains by operating on equationsg@8tonsequences of the ones
that we shall obtain.

We thus write that:

oW of owof oW oW of , _
— 4t ———+| p—+g—-W|—-1=0
op 0x 0qay aop Jq 0z

is a consequence of equations (27), (28), which redudhe eguation:

(29) ﬂW(x Y Z

of /0x _6f/6yj+ 1=
0z

aflay’ of/az

The desired necessary and sufficient condition isetbes thatf must be an integral of
that partial differential equation (29).

The preceding considerations then furnish us with athefessential facts relating to
the integration of that equation.

First, it admits one and only one solution such that temug27) reduces to the
equation of the given surface for 0, which characterizes the degree of generality of the
general integral of (29).

As a result, the integration of (29) results fromttbé system (3), since, if one
replacesx, Yo, 2, Po, Qo iN equations (26) with functions of the two parametens that
correspond to an arbitrary initial wave then one only tmasolve the first three of
equations (26) fot, upon eliminatings andv, to obtain the desired general solution (12).
One may, for example, take the initial wave to be:

:6_@ y :6_@ ZO: ua_@+\/a_®
(30) au’ ° oav’ ou ov’
P, = U, Qq =V

© being an arbitrary function of onlyandv.

6. One also sees that conversely the integratiothenfpartial differential equation
(29) implies that of the system (3) to which itaissociated. This is because in order to
obtain the motion of an arbitrary contact elementill suffice to take two initial waves
that have only that contact element in common. WMaees that result from it will
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constantly have a contact element in common thdt beilthe position of the initial
contact element considered for each value of

In order to apply this method it likewise suffices taowne® families of waves,
because among the® initial waves there will be one that passes througharaitrarily
given contact elemeri,, which one may consider to be common with the initialze
and two other conveniently chosen initial waves thatrdirgtely close.

To that effect, suppose that one knows an integré2®fthat dependsssentiallyon
two arbitrary non-additive constants. Lfé, y, z a, b) be this integral. The* initial
waves that one must consider will be defined by the equation

(31) f(x,y,z a,b)=c

The point of contact of one of them with two arbyrarfinitely close waves (of the same
system) is obtained by adjoining to equation (31) the twot®msa

a’, ﬂ:b',
ob

of _

(32) e

and the common contact element is defined by (31), (3a), an

(33) ﬂ+ pﬂ:O, ﬂ+q£:0
0x 0z

In order to pass to the position of that element atéime intervalt, one need only
replace equation (31) with the equation:

(34) f(x,y,z a, b)=c+t,

which gives what then become thé waves (31).
In summation, the general integral of system (3)vsrgby:

f(x,y,zaBh= crt
o o oA _y
(35) da ob '
ﬂ-{- pﬂzo’ ﬂ-{-qﬂzo,

ox 0z dy 0z

where the five constangs b, ¢, &, b’ must be determined by the initial conditions.
Finally, since an arbitrary initial wave may be regar@edthe envelope of®
conveniently chosen initial waves (31):

f(x, v, z & b) = x(a, b),

which becomes, after a time interval
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(36) f(x,y,z a,b)=x(a b) +t

The general solution of equation (29) will be obtained dedueirend b from the
equations:

(37) ﬂ—a_)(: 0, ﬂ—a_)(: 0,
da oa b ab

and substituting the values that one finds in (36); ftimetion y is then an arbitrary
function.

7. Upon recalling the notations of no3.and 4, one may replace the partial
differential equation (29) with an arbitrary equatioattdoes not contain the unknown
function.

The identity (14) gives:

wl sy g 0H10x _ofiay\_(  _ofiox _offoy
of 102" at/dz of 102" of/dz

and due to the homogeneityldfequation (29) reduces to:

of of of
38 nfxy 22 2 90 =y
(38) ( Y %5x "dy azj

To simplify the notations, we remark that finding aguation of the form (29)
amounts to calculatingas a function ox, y, z, i.e., one may replace the letfewith the
lettert in the preceding. Moreover, if one sets:

ot ot ot
39 a=—, =, =
(39) ox F=o ar
then equation (19):

(19 nxy,zapBy=1

is the partial differential equation (38) to which weeally arrived.

All of the theories in nosh, 6 (theory of characteristics and the theory of coteple
integrals) apply immediately to that equation upon repdasystem (3) with the system
that one deduces in nB by a change of variables; i.e.:

dx_dy_dz__da__d,[z’__dy_Olt
on on on  on  on  on
da 0J08 o0y ox oy 0z

(40)

to which one must adjoin the equation of condition (1&guation (33) must also be
replaced by the equivalent ones:
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o of of
x__oz
a B vy

8. Finally, as in no4, one may replace equation (19) with an equivalent equafion
the arbitrary form:
(22) Yx v,z alpf)y=0.

One only needs to replace the system (40) with theray&4), (25):

dx dy dz _ dt _ _da_ 08 _ oy
ov oW ¥ oW _o¥Y  o¥Y ¥ ¥ v
- - = a7+ﬁ +y— - - -
da 08 Oy oa s oy ox oy 0z

(41)

Finally, equation (21), which is implicitly containedtinis, may be written:
(21) dt=adx+ £dy+ ydz
and agrees completely with the notations (39) for thegbaerivatives.

9. One thus sees how the general equation of chastittesurfacesV, may be
interpreted as the partial differential equation ofraikaof waves. One may explain this
fact geometrically, without appealing to the theory ofug® of transformations that was

invoked in nob5.
Indeed, write that the surface:

(42) f(x,y, 3=t + &

is tangent to each of the elementary waves that Bsuethe various pointsxg, Yo, )
belonging to the wave at the instante., ones such that one has:

(43) f(%o, Yo, 20) =t.
Equation (42), when one transports the origin to suchrd, fieecomes:
fo+ X, Yo+ Y, 0+ 2Z) =t + &,
and the tangent plane to one of its points X=Y = dy, Z=zis:

of of
AL e Al -

On the other hand, the tangential equation of Ex@entary wave being:
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AN(%,Y0, 2,0 6 )—-1=0,

one has the condition:

of of of
J{XO, Yo }

3+ 3% (¥ +0Y (5+0
W BV S S
0(x, +9%) (y*+oy  0(z+07%

Neglecting the infinitely small quantities of ordgreater than the first, this relation
becomes:

of of of of of of
JtH[xo, Yor Z%» j

e = OX—+Oy—+T 72—
0x, 0y, 0% 0%, Y, 0z,

Furthermore, since one also has:
fo+ K Yo+, 20+ =t+ A,

which, upon again neglecting the terms of ordehdéighan the first and taking (43) into
account, reduces to:

i5x+i5y+idz: dt,

0% Y, 07,

what ultimately remains is:

o of of
I_I 1 1 ’_ 1_ ’_ : l
(XO Yo %o, oy, azoj

moreover, since the poinko( Yo, ) is arbitrary this is precisely the partial diéatial
equation that we were looking for.

lll. - TRAJECTORIES.

10. We use the worttajectory for the mode of propagation considered to mean the
set of successive positions of the point of contdcin arbitrary contact element under
the motion of that contact element. These trajezsare thus obtained by the integration
of the system (3) upon consideripg g to be the auxiliary unknowns; i.e., they are
defined by the first three of equations (26). tectakes into account, since this has
meaning in these equations, the manner in whick #ne described then they depend
upon five arbitrary constants; however, they fomlya system ofo* curves in space.

One may define them by a differential system tlatinalogous to théagrange
equationsn dynamics.
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To that effect, we introduce the pointwise equationtifier characteristic surface of
the medium; i.e., the surfalié, . Let:

(44) Qxy,z X, Y, Z2)=1

be the equation. We may assume tBds homogeneous and of first degree in X, Y, Z,
one arrives at it by starting with an arbitrary formr fbe equation of that surface,
rendering it homogeneous, and solving it for the homogeneoiabla as one did under
an analogous circumstance in #o. One is, moreover, naturally led to introduce that
particular form for the equation because it immedyatgives the equation of the
elementary wave, which will be:

(45) Q(x,y,z X, Y, Z) =dt

Write that this surface (44) is the same as the oat ithdefined in tangential
coordinates by equation (19):

(19 nxvyzapBy=1.

The tangent plane to (44) at an arbitrary point:

X=X, Y=y, Z=z,
has the equation:
Xa_Q+Ya_Q+Za_Q:)(’a_Q+ y'a_Q+ za_Q
ox ay 972 ~ox oy o7

(46)
upon setting, to abbreviate:

Q=QVY,zX,Y,2Z),
in such a way that equation (46) is simply:

xI2 g X2, 7092y
o oy oz

One will thus obtain equation (19) upon setting:

0Q 0Q 0Q
(47) a=—C,  f=—S. y=
ox oy

and eliminatingl, y', Z between (47) and:

(48) Q(x,y,zX,y,Z) =1
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As a result, the unique differential relation thattessfrom (19), i.e.:

(49) a_l_ldx+a_|_| dy+a_r| dz+a_r| d].}-a_n (;B+a_n o=0,
0x oy 0z oa os oy

is a consequence of relations (47), (48), and the onesoti@tdeduces by total
differentiation.

Now, upon deducing the tangential equation (19) of the sporeling pointwise
equation, one will be led to write the relations:

orl orl orl
50 X =—— , =, 7Z =——— ,
(50) oa y s oy

which are, as a result, consequences of (47) and (48)cima way that (49) becomes:

(51) I i+ 0 4y O s g+ Y@+ zp=o0.
0x oy 0z

One then deduces from (47) that:

X da+y dB+7 dy

, 0°Q 9°Q 0°Q
X + +2Z dx
0X'0X 0yoy 020z

2 2 2
:(x’aQ+ aQ+Zand)'(

which reduces, due to the degree of homogeney and its partial derivatives, to:

Xda+y dB+Z dy = %—de+a—Q dy+a—Q dz.
X

ay 0z

Furthermore, since this is the only differential relatin dx, dy, dz da, dg, dythat one
can deduce from (47) and (48) it must be identical to (5Dnef takes into account the
finite equations (47) and (48); i.e., one has, as a consegwérthanging the tangential
coordinates into pointwise coordinates, the identities:

(52) —+—=0, —+—=0, —+—=0

Having said this, the change of variables in question ieedaput immediately in the
equations (15), (18), (19). Upon comparing (15) and (50), onelsatesll one must do
is to set:
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(53) %:x’, ﬂ: , d_Z:z’

in the preceding formulas. (This results, moreovemftbe geometric considerations of
no.2.) Furthermore, equations (18), when compared with (52) &g give the stated
system:

da(m) s _
dt\ox ) ox
(54) s )
dtl ay ) ay
dafm) s _g
dt\oZz ) 9z

to which one must adjoin equation (48):

(48) Q(Xo, Yo, 20, X, Y, Z) = 1.

One thus finds the trajectories defined directly, and & bas integrated that system
then one has deduced the motion of the contact themdmsiveeans of equations (47).
One thus has a new form of the equations for an infimigscontact transformation.

One may remark that one deduces from equations (54) upiplymg by X, y', Z
and adding:

L

d( ,0Q 0Q  ,0Q
dt

— | X—+y—+Z—
dt ox oy 0z

which is an identity, in view of the homogeneity @f In reality, these equations thus
reduce to only two.

11. If one takes the equation f#4, in an arbitrary form that is equivalent to:
(55) oKy, zX,y,2) =0,

then one will have, by arguing as in do.

% _ 0o _ 0 % _ 0o
0x 0x ay oy 0z 0z
0 _ 00 w_ 0o 0 _ 0o
ox oy’ ay oy’ 0z o7’

1:x'a—@+ y'a—@+ 266

L “ax Toay o7

The first equation in (54) must therefore become:
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d(, 00 00
—|L=—=|-L=—==0,
dt\ ox 0X

d oo _00_ _dL/dtoo (dlo jae
dtox ox L ox \adt X’

One will thus have to adjoin to equation (55), the system

do@ 90 dIO _09 (9o 00

(56) drox_ox _dtoy 9y _dia7 oz
0 E) 00
ox’ oy 0z

One sees, moreover, that the common value of tles ia (56) is:

gIog x— y— 6_@
dt ox oy 61 ’

but this is a consequence of equation (55).
The general differential system of the trajectorgethus composed of only equations

(56) and (55).
In particular, suppose that equation (55) is of the form:

(57) ©=HKXyYy,zX,y,Z)-1=0,

H being homogeneous of degmeen X', y', Z. One may always arrange for this to be the
case by taking H to be a power®f One then has:

My My
“ox Yoyt ez

and the common value of the ratios in (56) is zerbe equations of the trajectories then
take the Lagrangian form:

doH _oH_
dt oxX o0x
(58) ————=0,

dtoZ 9z
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with the condition (57). However, ih # 1 then one may suppress condition (57),
because, upon multiplying equations (58xhy', Z and adding them, one obtains:

d(_,oH OH _oH) dH dH
X =—+V—+72— |-/ =(m-1 =0,
dt(xax Y3y azj a MY
le.:
(59) Hk, y, z X, ¥, Z) =h = const.

Now, replacing the term — 1 in equation (57) with the terdmamounts to replacing
the characteristic surfac% with homothetic surfaces (with a constant homothetip)
without essentially altering the trajectories. In arenprecise manner, this amounts to
replacingt with h'™ in all of the equations.

Conversely, it is clear that if one starts with ateys(58), where H is an arbitrary
homogeneous function K, y', Z then one may always interpret it as correspondiranto
infinitesimal contact transformation and reduce itum, to the canonical form.

12. Return to equations (54); they do not apparently conia®. IndeedgQ/oxX,
0Q/oy, 0Q/0Z are of degree zero Ky, Y, Z, in such a way that one has, for example:

0Q 0Q(x, Y,z dx dy dz

X a(dx)

On the contrarygQ/ox, 0Q/dy, 0Q/0z are homogeneous of degree one, and one has,
for example:

a_th:aQ(x, Y,z dx dy d2
ox ox '

Thus, upon setting, to abbreviate:
(57) Q=Q(x Y, z dx dy, d2),

equations (54) may be written:
0Q 0Q
adx) ox
o0 _on_
ody) dy
00 40 _
a(d2) 09z

(58)

One then sees that they define the trajectoridgpe@ndently of the law by which they are
written. Of course, they reduce to only two distiaquations.
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It is equation (48) that consequently determines the mannehic the trajectories
are written, because it is written:

(59) Q(x, Y, z, dx dy, d2 =dt,

i.e.,tis given by the quadrature:
(60) t=1Q(x,y, z dx dy, d2) = j Q.

13. Equations (58) give a characteristic property of thgdtories. In effect, they
express the fact that the variation of the integral:

(61) 0 =1Q(x y, z dx dy, d2)

is null when one displaces along a trajectory and ditang60) shows that the tinteis
justifiably the corresponding value of that integral (61).

We seek to interpret then integral (61) when it is tddetwveen two pointd andB of
an arbitrary curve. For this, it suffices to repredtant curve as a canal of infinitely
small diameter, and in whose interior the disturbanopayates without friction. We
assume that if the disturbance arrives at an arbitnstgnt at the poin¥l of that curve
whose coordinates argy, zthen after a timdt it will arrive at the pointM' on that curve
that is found on the elementary wave wihas its origin; i.e., the time that it takes to go
fromM to M’ is given, up to a higher-order infinitesimal, by the equmatio

Q(x, Y, z, dx dy, d2 =dt

Therefore, the integral (61) represents the time that the disturbance takes to
propagate from A to B when one follows the curve in question.

Furthermorethe trajectories are the curves for which the variation of i t(when
one deforms it infinitesimally) is null.

If we look for the condition that corresponds tmi@imumtime then, according to the
classical theory of the second variation, we mustate that the quadratic form:

Q _, Q
© Yot 2y

be constantly positive, except for values of thenfo
$=AX, n=2y, J=AZ.

We shall interpret this condition geometrically.

To that effect, consider the characteristic swfég at an arbitrary poinA(x, y, 2) of
a trajectory. The tangent foon that trajectory pierce8, at the pointP, which has the
coordinates(, y', Z (when the origin is transported &), because one may suppose that
one has:
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(63) Qxy,zX,y,Z)—1=0.
The tangent plane ¥, atP has the equatiors¢eno. 10):

0Q _0Q _aQ
64 G Vi iy Py}
(64) ox oy a7

We seek the position of an arbitrary pdihof W, , which is assumed to be infinitely
close toP with respect to that tangent plane. The coordmatN beingx + &y + 17, Z
+ ¢, one must look for the sign of:

(X+5)——+(Y+U)57+(2 Z)—— 1,

which, on account of (63), reduces to:

(65) £
ox

ay Za_z
Now, the poiniN being on¥,, one has:

QX +&y +17,Z2+4)—-1=0,
i.e., upon developing:

aZQ Q
—+-——| & =0,
5 [ ¢ 6)(2 ayazj
or again:
(66) se0Q-_ 15000, 00
ox 1[2 ox'? ayaz

Thus, if the form (62) is positive then the resaflithe substitution is negative, i.e., of

the same sign as at the point:
M(X=0,Y=0,Z=0).

The exceptional value§= AX', n= Ay, { = AZ do not correspond to any point, since

the condition:
QX +AX, Y + Ay, Z +AZ) =1
reduces, due to the homogeneity{nfto:
1+A=1;

A=0,
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which will give the pointP itself.
Therefore, if the analytical condition for the mmum is satisfied therboth
curvatures for the surfac€s have the same sign at P and it is concave towards M
Conversely, suppose that this geometric condition isfeat. The form (62) has null
discriminant, due to the relations that give Euler'sotken when it is applied to the
homogeneous functions of degree zé€yox, 0Q/dy ,0Q/0Z (seeno. 10). If this is a
difference of two squares then it will be annulledtf@o relations of the form:

(67) Af+Bn+CJ=0,

which are verified foré = AX, n= Ay, { = AZ, since these values annul the partial
derivatives of that form. Geometrically, these tielas represent two planes passing
through the lineAP and which, under the hypotheses that were made onrtineofdV,,

cut that surface along two curves that pass thrdughrherefore, there will be some
points on the surface that are infinitely closePtand for which, by virtue of equation
(66), their distance to the tangent planePawvill be of order higher than the second.
However, this contradicts the hypothesis that the ¢urga both have the same sign.

The form (62) might no longer reduce to a perfect squaeeause it will now be
annulled by all points of a plane passing throAghand the same contradiction presents
itself.

The geometrical condition that we found is equivalenthe classical analytical
condition.

We conclude thathe trajectories are the curves along which the disturbances
propagate the fastest whenever the elementary waves are the sutfatdave both
curvatures with the same sense at each point and whose concavity pbivagdowards
their respective origins.

The application of this result to the various cases bne envisions in optics is
immediate. From the theory of the calculus of vamatit is clear that it is not true in
general, i.e., besides the arcs of trajectories thaotieontain pairs of foci (Weierstrass
conjugate points).

14. The property of trajectories that corresponds to timskang of the variation of
an integral persists for any differential system tra defines.

The system (15), (18), (19) is provided by the condition:
(68) Ol adx + Bdy + ydz=0,

whena, £, yare coupled by the condition (19):

(29) nxy,zapBy=1
andt is given by (21):
(21) dt=adx+£dy + ydz

The system (3) is given by the equivalent condition:
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(69) 3] dz- pdx- qa pV?IX_ ad_

with the equation that defines time, i.e.:

(70) dt= p dx+ gqdy- dz.
W
However, these new forms of the theorem, which lea#t bmthe results that were
presented by Yoshiyé)(and E.-R. Hedrick?}, from ideas of Hilbert, are less susceptible
to simple geometrical interpretations.

15. For the sake of applications, we insist upon the ptppétrajectories, relative to
families of waves, that they result from assimilgtiine propagation of waves into a
group of contact transformations. Moreover, in orttermake the statements more
concise we introduce the following nomenclature:

Let A be an arbitrary point, and |& a contact element at that point; a well-defined
trajectory corresponds to that element. We saytti@tdirection of the tangent to the
trajectory is conjugate to the element and also tieatrajectory itself is conjugate to the
element. Ifa, B, yare the direction coefficients of the normal te #ement and', vy, Z
are those of the trajectory then the conditions éxgiress the fact that the trajectory is
conjugate to the element are equations (47), which we wpten supposing that, g5, y
are defined only up to a factor here, along witly', Z:

a_B_Vy
(71) 679_679_679'
ox oy 07

We likewise say that the trajectory is conjugatéddb any surface and any curve
admitting the elemert for one of its contact elements. In the case sifréace, this fact
will always be expressed by equations (71), wheregf, y will be the direction
coefficients of the normal to the surface. In tlsecof a curve having n, { for the
direction coefficients of its tangent, one will hate condition:

Q. 90 00
72 B in®i 7%
(72) Cox Toy ‘o7

It expresses the fact that the tangent to the csrparallel to one of the lines that are
tangent to the elementary wave at the point wherenthe¢ is pierced by the direction of
the trajectory.

One may, moreover, state the following facts:

() Math. Annalenv. LVII, pp. 185.
() Ann. of Math, 2" series, v. IV, pp. 141, 157.
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If o trajectories are conjugate to a surface then they are conjugate’ surfaces
and the arcs of the trajectories that lie between two of thesacasrtorrespond to equal
times.

If o’ trajectories are conjugate to a curve then they are conjugate’ trurves and
the arcs of the trajectories that lie between two of these cwilesorrespond to equal
times.

In effect, these two stated results result in th@agation of an initial wave, whether
in the form of a surface or curve, by means of the groupoatact transformations
considered. Relative to the second statement, onerkerttat theco® curves issuing
from the given curve are traced on the superficial wasssing from the curve that
constitutes the initial wave. One also remarks Wian one is givem® trajectories that
form a continuous system there always exists familyobfcurves to which they are
conjugate because the coordinatey, z of a point of any one of these trajectories are
functions oft and a parametex:

(74) x =1(t, 9), y =9t 9), z=Nh(t, 9),
and the desired curves will be defined by the differentjgphson:

Q. 00 . 00
75 982 4x+ 22 dy+ 222 = 0.
(75) x oy ez &

wherex, v, z, dx, dy, dz must be replaced with the functions (74) and their difitgaés,
and whered, ¥, Z must have the values:

(76) Xx=2y=2 7=20,

Finally, one may append to the preceding two statemeatf®llowing one:

The? trajectories issuing from a point A are conjugéteo’ surfaces, and the arcs
of the trajectories between A and one of thesasesfcorrespond to equal times.

The surfaces in question are, in effect, the surfdggghat we started with in nd.

IV. — GENERAL SUMMARY. APPLICATIONS.

16. The preceding considerations may be reformulatedh wmo essential
modifications, upon passing from ordinary space to a sphoedimensions. We state
the most important points.
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I. That space being considered to represent a mediantafstant nature in which
disturbances of a certain nature propagate accordingval-aefined law, the mode of
propagation is determined by tiegstem of elementary wawbdst have their origins at the
various points of the medium.

This propagation may be considered to be a displaceafetbntact elements in
space that is defined by a one-parameter group of contadfdraations. The
elementary wave that has its origin at an arbitramptp@i, Xz, ..., X») is the locus of
extremities of elementary displacemerds; (dx, ..., dx,) that move that point, which is
considered to be associated with all of its successwgact elements, when the time
varies bydt.

Its general equation is therefore of the form:

(77) Q(X1, X2, ..., Xn | OXq, dXo, ..., dx,) =dt,
Q being homogeneous of degi@aeein dx;, dx, ..., dx,.

One may likewise define the system of elementary wdyetheir general equation
when written in tangential coordinates, which willdfehe form:

1
(78) rl(X]_, X2, ...,anp]_, P2, ...,pn) :a,

wherell is homogeneous of degreeein py, p2, ..., pn. Here, one supposes that the
general equation of a tangent plane, with the transporigith being at X;, X2, ..., Xn), IS
taken to have the form:

(79) pPiX1+ pXo+ ... +pnXn—1=0.

One may consider, instead of elementary waves, claisict surfaces that are
related to the extremities of velocitgpg / dt, ..., dx, / dt). Upon setting:

dx _, dx, _, dx, _
80 —= , —== , , — = ,
(80) {0 at 2 a
they are defined by one or the other of two equations:
(81) Q(X1, X2, «ooy Xn | X5 X, wony X)) =1,
or:
(82) rl(X]_, X2, ...,anp]_, P2, ...,pn):].,

according to whether one takes the pointwise viewpoith@tangential one. Equation
(82) is verified identically by the formulas:

0Q 0Q 0Q
(83) pl :_, ) p2 :_, ) sy pn -
0% 0x,
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and equation (81) is verified identically by the formulas:

arl arl an
(84) X =—, == e X =
op, op, ap,

One must also associate these formulas with the tommdi

(85) PX+ pX++ px=1

[I. An arbitrary contact element will have the cdioates X, X2, ..., X | P1, P2s ---,
pn); 1.e., K1, X2, ..., Xn) Will be the coordinates of its point anghk,(ps, ..., pn) will be the
direction coefficients of its normal. Moreoveretgroup of contact elements considered
will be defined by the canonical equatiofs (

(86) d_)ﬁ = a_rl , d_p = —a_rl
d dp dt 0X

In order for them to define the propagation considered g@lyct i.e., in order for the
parametet to actually represent time in them and not time miigigpbby a constant — one
must combine them with equation (82) or the condition (85)chvimay be written:

(87) dt=prdx+p2dxe+ ... +pydx.

ll. The same mode of propagation may be defined Bctyr searching for the*
surfaces that are provided by an arbitrary initial wavaie €@uchfamily of waveseing
represented by an equation of the form:

(88) t=f(xq, X2, ..., Xn),

the problem amounts to seekihgs a function ob, X, ..., X,). The formula (87) being
then supposed to represent the total differentia) tife solution of the problem consists
of integrating equation (82), which is considered to be aapditferential equation.

Furthermore, if one has an integral of that equati@t tefers tor{ — 1) essential
arbitrary constants, none of which are additive:

(89) t=1f(x, X2, ..., %0 | &, @, ..., 8n1),

then the integration of the system (86), (87) is givethkyformulas?):

() This form of equations for an infinitesimal contacinsformation was given by LieSee for
example Theorie der Transformations-Gruppen Il, pp. 263.

(®) This is thelacobi theoremin one of its forms. If one would like to abstréiam the condition (87)
then it suffices to multiply by a new arbitrary constant in the formulas (90); tesults in all of the
preceding.
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of of
| = — —=h, t= f(x,x, -, 8, a
(90) o ox 23 o} (%% 1a, 3,0t @

(i=12:-n) k=12 n- 1.

IV. If, during the motion of contact elements, ommsiders only the motion of the
points of these elements then one obtains what one calhythe trajectories of the
propagation. They are defined directly by the differésiatem:

(91) a_Q—a_Q:
a(dx) 0x

and the manner by which they are described is dwyethe equation:
(92) dt = Q(Xg, X2, ..., X | X, AXe, ..., dXy).

This is equivalent to saying that they annul thgation of the integral:

(93) 0=) Q0 X, ..., Xa | d¥s, A, ..., dX0).

The value of that integral, when taken along anadran arbitrary curve, gives the
time that it takes for the disturbance to propagaiag that arc.

Finally, if one agrees to say that a trajectorycasjugate to a multiplicity if it
corresponds to the motion of a contact elementhat tultiplicity then one has the
following theorem:

If P trajectories are conjugate to a multiplicity of démsion p then they are
conjugate too® multiplicities of the same nature, and the arcthefse trajectories that
lie between two of these multiplicities all correrd to the same time interval.

17. The applications are numerous. First considergtopagation of light in an
isotropic, but not homogeneous, medium. The eléangrmvaves are spheres; i.e.:

Q=axy, ) X*+y>+ 2%,

The trajectories are the luminous rays and comwtig7l) and (72) become the
orthogonality conditions.

From this, one deduces the theorem that the lumsinays that issue from a point and
are normal to one surface are normal to an infid@taf surfaces. The families of waves
are the families of orthogonal surfaces to the saamgruence of rays. These rays are
curvilinear, in general.

If the medium is homogeneous, but not necessaolyopic, them is a function of
only X, VY, Z; one then concludes from equations (58) and (&), y', Z are constants.
The luminous rays are rectilinear and the velogaftpropagation is constant on each ray.
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To each ray direction there is associated one magetion. It is the tangent plane to the
wave surface at the point where it is pierced by thelirection ).

18. Any problem that involves an integral of the form (93)osdn variation is null
constitutes an application of the preceding, and the moti@ontact transformation will
prove useful. Examples of such problems arebtlaehistochrone problenthe general
problem of theequilibrium of filamentsthe problem ofeodesic lingsand ultimately, the
general problem of dynamics The general theorem on multiplicities and conjugate
trajectories gives the key to the theorems of ThonasminTait, and their generalizations.

Without insisting upon the details, we examine the chfisecequations of dynamics.
Start with the Lagrange equations, where we suppose tila¢mehevis viva2T (X, X,
aa X | X0, X, ..., X)) Of the system nor the force functiondd(x, ..., X,) depends upon

time. These equations are:

d oT aT _adu

(94) —_—
dtox o0x o0x

and upon supposing that one has given a partigalae to the constanis viva,one may
write the equation ofis vivathat must be appended to (94):
(95) T=U.

By means of that equation, we shall eliminatetithe in equations (94). Set:

T=TXe, X2, ...y % | O, dXe, .., dXy),

and we write (95) in the form:

T=Udf
ie.:
_T_
(96) dt:\/E:S(xl,xz, ooy Xn | OXg, dXe, ..o, OX).
Therefore:
_T oT _1 0T or _1o07
S X Sodx’ ox S ox

As a consequence:
oT _10(US')_,,, 95 _,0(US)

oX S adx adx  ddx

and the equations (94) become:

(*) Compare: LEVISTAL,Recherches d'Optiques géometriques (Annales de I'Ecole Norrifale
series, v. IV, pp. 195).
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19(US) ., 9S_dU_au

— 20— ——=— i=1,2,..n),
S 0x 0% 0Xx 0X
or finally, upon setting:
(97) Q = 2US =2y UT,
one has:
a_Q—a_U: @ =1, 2, ,n)
o(dx) 0x

Also, sinceQ is homogeneous of degreme with respect to the differentials, it is a
system of the form (91), whef2 has only the particular form:

(98) Q = 2JU(%,+,%)TO4 o, % [ dx e, dx),

which is characterized by the fact that T is a fpeesidefinite quadratic form in the
differentials.

This functionQ is theelementary actiorof the system, and we thus arrive, by a
classical calculation, at tharinciple of least action.However,Q has another meaning
for us: The equatio = dt defines the system of elementary waves of one rbdave
propagation in which the trajectories are the sasdhose of the dynamical motion
considered, except that what corresponds to timehe wave motion is thection of the
dynamical motion.

In other words, the trajectories of any problendwyfiamics are identical with those of
one-parameter group of contact transformations;dvew the canonical parameter of this
group is not the timg but the action:

(99) tzzj JUT
of the dynamical problem.

It results from the preceding that upon preservihg use that action for the
independent variable one may reduce the integratigproblem to that of a canonical
system (86) or a partial differential equation (82)ne must then determine the time by
the quadrature:

(100) t=1pd7,
2° U
which provides the two formulas:

dt:\/g, dt =24 UT.

Compare these calculations with those of Hamiltdn.order to arrive at equation
(82), we have to eliminate, ...,x, from equations (83), which are homogeneous of
degreezerq i.e.:
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_|u T .
(101) P —\E% (=12 ..n).

In the calculations of Hamilton, in order to arratethe partial differential equation of
Jacobi:
(102) Hkw, %2, ..., % [P1, ..., pn) =0,

one must eliminatg , ...,x, between the equations:

_oT

103 i '
(103) P %

T-U=0 (=12, ..n).

Now, one deduces the homogeneous equations (10t )these equations.
Equation (82):
(104) M(x1, X2, .oy, %0 | P2y -y Pn) —1=0

is therefore equivalent to (102) of Jacobi-Hamil@p and if one writes (102) in the

form:
/H+U _1=o0,
U

then, the radical that appears here being homoger&alegre®ne one has identically:

H

(105) ns= U+1.
As for our canonical system:
(106) d_>g:6_|'l’ dp __on (=12, ..n),
dr op dr 0X

in order to deduce the system of Hamilton one naasicern oneself with not only
formula (100), but also the equation wis viva H = 0. The calculation results
immediately from formula (105).

Finally, we remark that formula (105), which giwbe characteristic function of the
infinitesimal contact transformation, may be writte

T
107 n=,|—,
(107) 0

() This fact was confirmed by Lie in the particulaseaf the motion of a material poirtefpziger
Berichtg v. XLI, pp. 145).
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upon denoting the adjoint form to T By or, more precisely, what T becomes under a
change of variables:

(108) o=

= i=1,2, ...n).
ox @i n)




