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Introduction.

1. Goal and plan of the present report.The organizing committee of the Congrés
international de Physique, while requesting that the auther aireport on the present
state of our knowledge dlfie elasticity of crystajexpressed the desire that this account
should contain, in addition to a documentation of #ment progress in the theory and
experiment, some general views on the use of symmetayians in the physics of
crystals, and some proposal for a uniform nomenclatuitee domain of elasticity.

It can be only an honor and a pleasure for the authaontrast the experimental
study of the elasticity of crystald)(with the general theory of elasticity, as he has
dedicated part of his lifework to the exploration of #hakmains, and that proposal
comes from the country in which the general theory adteity was born, and in which
the premier scientific association has designatedith (three reiterations) to be one of
the most important questions.

The following presentation, in which the author has sbtmhespond to that desire,
is composed of six parts, which are preceded by some geasratks on the scientific
nomenclature.

Conforming to a suggestion that the committee madeetaukhor expressly, the first
part is occupied with some general properties of thecpédatidirected quantities that
play a significant role in elasticity, and that thehmuthas described with the name of
tensorsto the vectors that are essentially their parehtghat presentation, we have tried
to principally summarize their properties that will Ingportant in the rest of this paper,

(") Translated from the French translation of the Germidginal by P. Weiss, Maitre de Conférences
on the science faculty at Lyon.
() Comptes rendud, (1870), 160jbid. 75 (1872), 1391ibid. 81 (1875), 1369.
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without at the same time neglecting the suggestionthéuse of tensors in other parts of
physics.

Part Two presents the methods that have been fedlow the development of the
theory of elasticity (viz., action at a distance amsnediate action), and are attached to
the general properties of the components of stressamrdedl bodies.

Part Three deduces some relations between the steesseteformations in elastic
bodies, while especially taking into account the rotatiof molecules with respect to the
volume elements. It introduces two systems of elgstrameters (constants and moduli)
and shows how they behave under changes of coordinates.

Part Four discusses the general principles of the apphcaf some elements of
crystalline symmetry to the use and specialization afoua scalar functions, and
especially the elastic potential.

Part Five begins by specifying some questions that camdveeaed by determining
the elastic parameters of the crystal and then gitagset of formulas that are necessary
for the calculation of the observations.

Part Six contains a general overview of some obsens regarding the elasticity of
crystals and their application to the explanationdome experimental facts that have
been discussed for some time now and that belongeadalm of the elasticity of
isotropic bodies.

An Appendix contains the statements of some lawkarhto-elasticity.

The conclusion of each part is composed of a smalbeuwf directed propositions —
or theses- that are intended to clearly summarize the mogbitant questions that were
raised or resolved in that part.

2. Scientific nomenclature- The branches of science in which the deeper study of
the special problems that precede the development of tlerajdheory are generally
devoid of any systematic nomenclature. Elasticity, wictvthe cases of tension, flexion,
and compression, in any sense of the terms, havediesenved since the earliest times,
is a striking example of that. The older terms — irtipalar, the terms for the simplest
parameters (e.g., coefficient of elasticity, modulus eddisticity) — are less than
characteristic and are not employed uniformly by alharg. One can also point out the
indeterminacy in some of the terms lafge elasticity(grande élasticit§ or of very
elastic bodieswhich can be employed for simple deformations, as$ asin cases of
great resistance to the deformation.

The necessity for such reforms have been sensed foe sime now, and has
provoked the creation of a certain number of new tdonshe case of isotropic bodies
(*) that realize some appreciable progress, but for thé paos were conceived in too
narrow a context to be extended to crystals. Byresttfor quite a few years now, the
author has appealed to a nomenclature for some parartieensas created especially
for the elasticity of crystals and that can be transobimmediately to isotropic bodies,
and whose use, it seems, has been generalized littigkoyn Germany.

() W. THOMSON, Trans. Roy. Soc. 24 April 1856, 18 May 1865. chetiElasticity” in the §' edition
of theEncyclopoedia Britannical 878.
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Scientific terms must be (at least, in the opinionthef author) established in old
languages, or be sufficiently clear that they can bslyedranslated. Brevity of
expression implies that in the former case.

Indeed, that rule has been observed very generally upwe and the striking
exception of the expressiaurl, which originated in England during the last decade,
apparently confirms that. That term has only the adgnbf brevity. It is based less in
the nature of the object than the Latin weadtex (Fr. tourbillion), whose significance
has been established for thirty years now, and whoseedahted formvort can be
employed as a symbol, as well@sfor cosine.

How short a term can be is inversely proportional tagdmerality of its usage, as the
terms “electric permeability” and “magnetic permeayilthat Maxwell introduced show
in a convincing manner. Although they are attached to ya sgecify interpretation of
certain phenomena and are very lengthy, those termesquickly popularized, thanks to
their intuitive character.

The author’s proposals regarding the nomenclature adlédseicity of crystals will be
developed later on. Here, in the Introduction, we sieatlark only that this terminology,
when adapted to the problems in the elasticity of crgistahs conceived in a very
general manner. It is then perfectly compatible witinaplification and a modification
of some terms in the case of isotropic bodies. Hewemn the interests of unity, there
was good reason to proceed according to some principlésdthaot establish a
separation between isotropic bodies and crystalsshab sharp.

l. — Some tensors and triple-tensorg').

3. Tensors— In elasticity, in addition to scalars and vectorg encounters a third
type of functions that play an important role thatlmmacst always attributed to vectors,
although they possess completely different properflé® only common character to the
last two types of functions — namely, that they apreésented by a number and a
direction — has no fundamental significance, as a deeg@anination will show. Indeed,
that direction has an essentially different charaéberthe two types of quantities:
Vectors possess two sides widliferent valueswhile these new quantities possess two
equivalentsides, which entails some essential differencelseim &inalytical properties.

The author has proposed the nat@esorsfor those functions, which, like that of
vector, is derived from a simple example and picture (viz., dineple elongation of a
volume). We shall appeal to it in what follows.

Since the number of elements that fix a tefisor a vectowV is the same — viz., three
— one also seeks to express the magnitude and diredtiartemsor symmetrically in
terms of components along the coordinate axes. Howexele the projections of a
vector onto the axes:

(1) F=Vcos ¥, X), G=Vcos{,Y), H=VcosV{, 2

() W. VOIGT, Die fundamentalen Eigenschaften der Krystalieipzig, 1898, pp. 2@t seq.
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suggest themselves naturally, they are not useful fensot, because those projection,
which will not change when one changes both the sfgv and its sense, correspond
precisely to theinilateral character of the vector that distinguishes the tenso

By contrast, the bilateral character of a tensoexpressed equally well by two
different types of functions that can be consideretdd its components along the axes,
because each of those functions exhibits one of theveixle respect to the other two.

We call the expressions:

2) A=Tcos(T,X), B=Tcog(T,Y), C=Tcog (T, 2

components of the first kind.
They completely determine the magnitudd dify the formula:

(3) T=A+B+C,

and its direction, by contrast, is determined incomfyldig

A B C
4 cod (T, X) = —, cod (T,Y)= =, co (T,2) ==,
(4) (T, X) = (T.Y) = (T. 2) =

since the trihedron in which one finigemains indeterminate. We call the expressions:

A =Tcos(T,Y)cos( ,Z2),
(5) B'=Tcos(T,Z)cos{ ,X)
C'=Tcos(T,X)cosT Y)

components of the second kind.
They determine the magnitudeTéntirely by the formula:

BC CA, 6 AB
= + +

6 T ,
©) A B C

except whe coincides with one of the axes. The expressioneis thdeterminate. By
contrast, the direction dfis then always determined unambiguously by the formulas:

(7) cosT,X):cos[,Y):cosT,2) =

>
w.l.H
O_| [EEN

Since three elements suffice to determine the tenseill result that the two types of
components are mutually dependent; indeed, one has:

(8) A?=BC, B'? = CA, C?=AB,
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) A:ﬁ, _CA’ _AB.

A B' C'

For certain positions that are determined by a coomlsypdtem, a component of the
first kind can be identical to the tensor itself, but thdl never happen for a component
of the second kindThe components of first kind then have the same nature as the tensor,
while the components of the second kind have a different nature.

The vectorial quantities can always be made positivarbyppropriate choice of
positive direction for them. Tensors are neither p@stor negative. The components
A, B, C always have the sign dfitself, while A’, B', C' can have the same sign B®r
the opposite one.

If one setsT = + V2, according to its sign, and if one attributes onehefdirections
for T to V then the components, B, C will be represented by the squares of the
componentss, G, H of the vectorV, while the A', B', C' will be represented by the
products of those components. The components of thiekimd of tensors will then
transform like the squares, while those of the second kiiidtransform like the
components of vectors.

4. Tensor triples.— In nature, tensors are encountered mainly in groupbreé t
whose directions are mutually orthogonal, but whosenmhagdes are independent. We
shall call such a systentensor triple(*) and denote it bz, To, Ts .

A tensor triple is determined entirely, in magnitude ansitjpm, by the six sums of
parallel components of the same type of the ternsctivaprise them:

(10) A=2.A. B=2B, C=2C,
(11) A=A, B=)B, C=>C, h=123

In order to prove that, consider the tensor:

(12) © =Acog (O, X) +Bcog (6, Y) +C co¢ (0, 2)
+2A' cos @,Y)cos @,2) + 2B’cos @, Z) cos @, X)
+2C’cos @, X) cos @, ),

which has the same type AsB, C, since it coincides with those three values foraiert
particular directions o®. Replace® with 1 /r? on the left, where represents a length
that is carried by both directions ® The equation:

(12) r—12=A00§ (r,X) +Bcog (r,Y) + Ccog (r, 2)

+ 2A' cos €, Y) cos ¢, Z) + B’cos (, Z) cos (, X)
+2C’cos (, X) cos (, Y)

() In GermanTensortripel
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represents a centered surface that will have degreehavast referred to its principal
axes wherA', B', C’are zero. However, that will be true only if all ti#¢, B, ,C, are

zero individually. In that case, from what was saicage 5, each of th& B, C will be
identical with one of th@;, T,, Ts. The principal axes of the surface (13) will then give
the tensor tripld, T», T3 in both magnitude and direction.

Just as the components of vectors are deduced lpathélelepiped constructigra
tensor triple is determined by the construction of tbeord-degree surface that was
considered above, which call telipsoid constructionto abbreviate.

Here, we point out that a very important categorjuottions in rational mechanics
has the same character as the components of tenEbesmoments of inertia of a body
with respect to the coordinate axes are the compodrstdensorof the first king the
moments of deviation are the componeotshe second kind. The tensor triple that
corresponds to those components is that of the principalents of inertia.

Like the components of a unique tensor, those of sotetriple behave like the
squares and products of the components of a vector underraierttansformations. It
then results that they have a character that altmvesto know whether one can consider
six functions that are pair-wise referred to the saowdinate axis to be the components
of a tensor triple. When the properties of requishegformations exist, one can deduce
the tensor triple that corresponds to those six quesitity the method of the ellipsoid.

One knows that the transformations of the componEntS, H of a vector into
another coordinate system can be performed by means sathecoefficients as the
reciprocal transformation. Let,, 5, J be the direction cosines of one of the syst&¥ms
Y, Z with respect to the othefo, Yo, Zo ; Consequently, one can represent the relations
between the components in the two systems by the fioiptable:

|F G H

(14) FO al ﬁl yl
G |a, B Vs

HO a3 ﬁ3 y3

The same (orthogonal) relations exist for the gpressions:

F2 G2 H2, GH\/E, HF\/E, FG\/E,

and consequently, they will also exist for the expoessihat are obtained by means of
the components of the tensor:

A/B,CA,2,B.2,C"2.

The system of coefficients of the transformatisithien, upon setting2=r :
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A B C rA B rC
AL a BN rB.y, ry,a, ra B,

(15) :
A | 10,0, TBBs TY.Ys (BYstyB) (vastay) (@B +B84g)

We represent that table in the abbreviated form:

|A B C rA B rC
(16) Ab 511 512 513 514 515 516

5. Relations between scalars, vectors, and tenso¥&hen a scalar magnitu@as a
function of a vectol, or to express that symmetrically, of its componént&, H, the
derivatives:

0S 0S 0S
a7 Fs= —, Gs=—, Hs:a—H

are, as one knows, the components of a vector ofteydar type. The most important
case is the one in whicis a function of the coordinatasy, z
In an analogous manner:

2 2 2
oF 0G oH
(18) 9°S 9°S 9°S
A= = =

0GOH' ° OHOF' ° O0F0G

are, conforming to their transformation properties, tbenmonents of a tensor of a
particular kind.

When the scald is a function of a tensor triple — i.e., of the sboponent, B, C,
A', B', C’—the derivatives:

Alzﬁ, BlZE, Clzﬁ,
oA B aC
105 o 105, _10S

20A" 208" ' 24C

will likewise be the components of a tensor.
Those properties are attached to the property of theléneed quantities:

(20) S=F1F,+G1 G +Hi Hy,
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and
(21) S=ALA+BIB+C G+ 2(AA+BB+CCQC),

one of which is deduced from two vectors, and the otharhich is deduced from two
tensor triples, that they must be scalar functions.

When a vectolV; is given as a function of another vecdrone can deduce the
components of a vector or tensor by the following ojmarat

_OM, 06, o _OR_OM, 06 _0F

22 Fop= —-—1, , ;
(22) "8G oH “TOH oF OF 0G
oF 0G oH

23 A= —L, B, = —1, C,=—1,
(23) °ToF *7 3G *7 oH

A; :E(aHl +Ej, B; :E(E.}-%j, C; :E(ﬁ.}-%j

2\ 0G 0oH 2\0H OF 2\l 0F 0G

If the functions~1, G;, Hi have the same nature as BRe G, Hs in (17) therF,, Gy,
H, will be zero, and;, ..., A, ... will become identical to thas, ..., A, ..., resp., in
(18).

Here again, the usual case is the one in whichctimponents of the independent
vector are the coordinates. The correlation thaepresented in (22) is then the one that
has been denoted My = curlV; orV, = vortV; .

The general case gives rise to an important refinark the standpoint of principles.
In several places in the physics of crystals, oneoenters linear relations between
vectors. For example, let:

Fl = AllF +AlZG +A13H !
(24) Gl = AZlF +A22G+A 23H’
H, =A,F+A,G+A,H,

and apply equations (22) and (23) to those relatithey will become:

(25) As2—A23 =F>, A13—A31 =Gy, A21—A12 = Ha,
(26) A1 =As, A2 =By, A3z =Cy,
T(A2+A22) =A,  $(Az3+A31) =B, 1(Aa1+ A1) =C,.

The nine constants in equations (24) then reptdékerthree components of a vector
and the six components of a tensor. In certairsd®r example, in the cases of
magnetic or dielectric influence), one will haves tfelationsAnc = Ay . In others (for
example, in those of the conduction of heat andteddy), they will be valid only for
certain crystalline systems. When they are trine, ¢rystal will be characterized
completely for the phenomena in question by just tensor triple that belongs to it
individually; in the contrary case, one must appanector.



Voigt — Present state of our knowledge on the elastfityystals. 9

That remark, to which one can add some others, isrtanuo since it shows that not
just variable quantities, but also constant parametes, lave the nature of the
components of vectors and tensors.

THESIS

Tensors have a certain kinship with vectors, insoathay are directed quantities.
However, the bilateral character of tensors will deire the essential differences
between their properties.

Tensor triples, with their six independent componemtich are generally
encountered in tensorial phenomena, have no analogeetors.

Since the tensor triples that one encounters imtbst varied topics in physics are
variables, as well as constant parameters, in additine agrees to make tensors the
object of an independent study.

Il. — General properties of stresses in deformable bods.

6. Theory of action-at-a-distance and immediate actiohike many other branches
of theoretical physics, elasticity was first explbreith the aid of a particular conception
of the mechanics of the phenomena that we calintbkecular hypothesis.Under that
hypothesis, the structure of a body is supposed to bérgotesl from distinct elementary
masses — viz., molecules, in the broad sense of the-tavhich are maintained in their
positions or displaced by mutual actions that have perceptiEignitudes only for
imperceptible distances. More particularly, for an doxdeed, homogeneous crystal,
one assumes that its molecules are identical, edeint the same manner, and regularly
distributed in such a fashion that each molecule is surrduibpg®ther ones in the same
manner. The distances over which those mutual actiensexerted are considered to be
very large in comparison to the distances between neigigomolecules, and one agrees
that the deformations will vary in space slowly enougdt,teven in the deformed body,
the distribution of the molecules can be considereldetoegular, in the sense that was
suggested above, in the extent of the sphere of moteatiaity.

The molecular theory — or action-at-a-distance — twas founded upon these
particular concepts by Navie)( Cauchy 9), and Poisson®( soon fell into disfavor.
Indeed, it made the elastic properties of an isotropicy bdebend upon just one
parameter, while numerous observations seemed to contitzaticesult.

That is why a new theory was generally adopted after soneethat established the
elementary laws of elasticity by assuming that matiees continuous and that the mutual
actions between the portions of neighboring matter veralized to their separation
surface by a process that had served as an examplehtarlwanches of physics, and
deduce some fundamental formulas of elasticity, sudhesenter of gravity theorem,

() N
O A
O s

AVIER, Mém. de I'Acad.7 (1827), 375.
. CAUCHY, Exerc. de Math3 (1828), 188 and 214. )
.-D. POISSON, Mém. de 'Aca8.(1829), 357; Journ. de I'Ecole Polyt., Cah. 201831).
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the area theorem, and the energy equation, as it apgplieohveniently-chosen volume
elements¥).

Contrary to the preceding theory, the theory thatsiall call theheory of immediate
action gives two constants that are characteristic dfagic media, and all of its results
found to be in accord with observations. Much latdter the molecular theory of
elasticity had encountered some difficulties in the ytafl isotropic bodies, it also
experienced one defeat after another in the contegtysfals. Indeed, the laws that it
provided for those bodies did not agree with observatimdle the ones that were
derived from the theory of immediate action were comdid. We shall develop that
point in a more detailed manner later on.

If one sets no other goal than that of obtaining thenetgary laws of elasticity in a
form that answers to reality then one can declare thiey should be satisfied by the
results of the theory of immediate action without dading to knowwhy the molecular
hypothesis leads to inexact results. However, if one tiendsrds a general theory that is
a consequence of matter and in which one will not loglet ©if the remarkable results
that were obtained in other domains with the aid ofagmls hypotheses then one will
find it informative to look for the reasons that wouldseéem to fail in the domain of
elasticity. That search shows that the old molectilaory of elasticity started from a
pointlessly-specialized fundamental concept, namedyhitpothesis of central molecular
actions that depended upon only the distance, and that alogy it failed.

Moreover, a very simple reflection on the mecharagithe growth of crystals would
convince one of the inadmissibility of that conceptause the regular formation of a
crystal in a solution or a melt is comprehensible aindydirecting momenacts upon the
particle that one associates with the crystal by givirap orientation that is parallel to
the ones that already compose the structure. Howdman the principle of the
conservation of energy, mutual actions that are direatedg the line of centers and
depend upon only the distance are incompatible with swehents. That is because the
existence of moments demands a potential for the mati@in that depends upon the
orientation, and that will lead to forces that varh the orientation of the molecule and
do not coincide with the line of centers, in general.

In his last, unfinished paper, Poissénhiad already constructed a molecular theory
that sought to take these circumstances into accountveter, he made some further
restrictive hypotheses, and consequently, his results nvere specialized than those of
the theory of immediate actions, and were partialgompatible with experiments. A
more general presentation that has been envisioned byttiar avill be sketched out in
what follows ¢).

7. The components of stress in deformable bodieEver since the fundamental
work of Cauchy and Poisson, the general tendency has befaurtd the molecular
theory of elasticity, not upon the consideration dcfiregle molecule, but upon that of a

() S.-D. POISSON, Journ. de I'Ecole Polyt. Cah. 20 (1882), A. CAUCHY, Exerc. de Math4
(1829), 293; G. GREEN, Camb. Phil. S8q1839), 121.

() S.-D. POISSON, Mém. de I'Acad8 (1842), 3.

() W. VOIGT, “Theoretische Studien (iber die Elastisit@rhaltnisse der Krystalle,” Abh. d. Ges. d.
Wiss. z. Géttinger34 (1887), 3.
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volume element that is large with respect to the sphar molecular action, and
consequently contains an extremely large number ofaul@lse. The molecules around
the volume element then act upon only the moleclhas are inside the separation
surface in its immediate neighborhood and that will commbto give the stress
components.

As one knows, the latter were defined by Cauchy and Ro@sto be the sums of
the parallel components of the forces that all mdésc() inside of a right cylinder that
is raised over a surface elemenexperience as a result of all the molecu®sifat are
situated on the other side @fand divided by ; i.e., when referred to a unit surface:

i
q

Since the dimensions of the surface element are largemparison to the distances
over which the molecules act, in a homogeneous bddget components of the stress
can be considered to depend upon only the orientatidreddurface element. In a body
whose state varies in a continuous manner, they wifubctions of the coordinates, in
addition.

It is customary to fix the orientation of the sudaelement by the direction of the
normaln, when counted positively on the sideWhere one finds the attracting masses;
i.e., in the case where one is dealing with a serfllement that surrounds the volume
considered, it will bgositive from the exterior to the interior.

As far as the notations for the components ofstege concerned, there can hardly be
any doubt that only a symbol with two letters, afevhich denotes the direction of the
components and the other of which denotes thdteohbrmal, will achieve the proposed
goal. One then arrives almost necessarily at tbpgsal that was undoubtedly made for
the first time by Fr. Neumanf)(of letting S, denote the component in the direct®nf
the pressure on a surface element whose (intex@mrpal isn. From the definition that
was given above, one will then have:

in which Se is the component in the directi®@of the force that is exerted by a molecule
(e) on a moleculei}, and in Whichz is extended over all the molecules on the negative

side ofg, while Z is extended over all molecules in the cylinder thatonstructed on

the positive side.
One will then have the system of notations:

XX, Xy, XZ, YX, Yy, YZ, ZX, Zy, ZZ

() A. CAUCHY, Exerc. de Math3 (1828), 213; S.-D. POISSON, Mém. de I'’Ac&8q1829), 373jbid.
18(1842), 47.

() FR. NEUMANN, Vorlesungen (iber Elasticitatstheqgrieritten in 1830, but published in 1885. G.
KIRCHHOFF, Crelle’s Journdd6 (1856), 285.
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for the components that are parallel to the coordiaags of the pressure against the
surface elements that are parallel to the coordinateplaso when one abbreviates this
by X, ... Zz, one will always suppose that they are written it tineler.

Xx Yy, Z; can be callechormal stresses, whileY;, Z,, Z,, X; Xy, Yy are called
tangentialstresses; similarly, more generally, one will h&eT;, on the one hand, and
S, Ts, on the other, when(Js.

Poisson {) showed that, from the definition that was givenwahdhe components of
the pressure against the planes that are parallel tocotvelinate planes is calculated in
the following manner: One has:

(28) Xx=— %VSXX : Yy =— %VSXY, Zy=- %VSXZ, etc.

in which the sunS must be taken over all forc&sY, Z that a molecule feels on the part
of all of the other ones whose relative coordinatesxay, z, and in whichv represents
the number of molecules per unit volume. From thesgegafor the components of the
stress, one will get the relations:

(29) Xn =Xx Ccos ), X) + Xy cos Q,y) +X; cos (, 2, ..., etc.

One knows that the theory of immediate action likewisads to these fundamental
equations.

As long as one is dealing with pressures against the samface element, the
magnitudesX,, Yn, Z, will be simple components of a vector and are conseyuetated
to the resultant vector of the total pressure by tlaiosis:

(30) P? = XZ+Y + Z,

X Y Z
31 cosP, X)=—", cosP,Y) ==, cosP,”Z2) = —=.
(31) . X) P ey 5 e 2 P

n

However, if one lets the directiam of the normal be arbitrary, while keeping the
point of the body where one finds the surface elemenséime, then more complicated
relations will come about.

Indeed, from the properties of the transformatioX,of .., Z, that result directly from
their definitions that are contained in (28), and also femmations (29) and (31) in a
more complicated manner:

X<, Yy, Zz,
and
1(.+2),  3@Z+X), (XY

will be the components of the first kind; by contrast:

(Yz- Zy)’ (Zx =Xy, (Xy =Yy

() S.-D. POISSON, Mém. de '’Aca8.(1829), 374ibid. 18 (1842), 51.
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will be the components of a vector.

From page 5, the tensors that constitute a tensoe thgve the same nature as the
components of the first kind, and consequently, likenthdey will benormal pressures
They are therincipal stresseshat we denote b, P,, P; . As one can see directly, the
vector is themoment per unit volume that the body experiences as a result of internal
stresses.

Up to now, we have considered the stresses that areodarcesthat act between
molecules, but it is certain that the moments €auples— that act against them can be
treated in the same manner.

They also intervene in the volume element considengdio the form of sums of the
form of (27) that one can refer to by the expressmment stressesWith respect to an
arbitrary axisD, one can write:

(32) qDn=> > D,

in which the sums must be performed in the way thatdiszsissed on page 11.

In the particular case in which one takes the momeitksrespect to the coordinate
axes and the stresses to act upon planes that ailke i@ the coordinate planes, one will
have the nine particular stress moments:

LX, Ly, LZ, MX, My, MZ, NX, Ny, NZ,

which correspond t&y, ..., Z;.
The energy equation establishes a well-defined reldbetween the molecular
moments and the molecular forces. If one again eysglee notationXe, ... andLie, ...
for the components and moments that a molecukxperiences as a result of a molecule
(e), and if one sets:
Xi—X=Xe, Yi—¥%=VYe, Z—2%=12Z

for the relative coordinates then one will hate (
(33) Lie + Lei + Zie Yie — Yie Ze = O, etc.

In particular, if the molecules are oriented in $@me manner then due to the
symmetryLie = L, , One will have:

(34) Lie = %(Yie Ze — Zie Yie), etc.

Since, by hypothesis, the molecules are reasonablyigbarathe interior of the
sphere of activity, even in the deformed body, the ldttenula can be employed in the
sums that givdy, ..., N,. However, since, from what was said above, theusadf
activity must be considered to be an infinitely-small giaiieven a second order one),
these sums will have the same infinitely-small natuite respect to the ones that give

() W. VOIGT, “Theoretische Studien (iber die Elastisit@rhaltnisse der Krystalle,” Abh. d. Ges. d.
Wiss. z. Gottingerd34 (1887), 71.
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the components of the stress, ..., Z;in a manner that is analogous to what happens in
the theory of capillarity, in which the Laplace coms$td is imperceptible with respect to
the constanK. If we skip over the particular cases that haveeason to be addressed
here then we can abstract the introduction of mosteesses from the foregoing.

8. The general equations of motienThe problems that concern a function inside of
a volume demand that one state some conditions thstt loe fulfilled at any instant for
any point of the interior, along with some conditidhat refer only to the points of the
surface, and some other ones that refer only to adeétted instant. There are no
general terms for these various types of equations. rrAirielogy that conforms to the
nature of the object is to call the first tyjumdamental equationshe second typsurface
conditions and the third typenitial conditions.

The forces that can be exerted on deformable bodEsgmse into forces that act
upon the interior points and forces that act upon the$of the surface. The former can
be conveniently calledpatial forcesor evenvolumeforcesor mass forcesaccording to
whether are referred to a unit volume of mass, resgdgtivi he latter are callegkterior
stresses

For reasons that were given above, we have no nudageerting exterior moment
stresses; by contrast, we must assume the possiiiléyerting thespatial momentsn
the exterior. For example, that is possible whenelleenentary masses that we have
called moleculespossess electric or magnetic polarity, and the badplaced in an
electric or magnetic field.

We represent the spatial components and the spatiaemenwith respect to the
coordinate axes by, Y, Z’, andL’, M, N’, resp., call the densiig, and suppose that the
infinitely-small displacements have the components v, w, and neglect the products of
the angular accelerations with the infinitely-smathments of inertia of the molecules.
The fundamental equations of elasticity then takedha:f

2 oX
(35) ,06 E‘—X'+6XX +—7 +6XZ =0, etc.,
ot ox 0y 0z

(36) Z,-Y,—-L' =0, etc.

We write down the surface conditions by introducing tkterer stresses by way of
the componentsX), (Y), (2). They will be:

(37) X, =X, Y, =Y, Z,=(2

in which n denotes thénterior normal to the surface element, a@d signifies that the
functionG must be taken on the surface.

In the particular case where one does not exertaspadiments on the body, formulas
(36) will become:
(38) Y, =2y, Zy =Xz, Xy = Yy
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The only six independent stress components:
XX1YY1ZZ1 YZ:ZY1 ZX:>(Z1 xy:YX1

which we shall always arrange in that order, are themselves theomponents of the
first and second kind of the tensor triple of principal stresseBRPs .

Here, we remark thathe components,X..., X, are not only the elements that
determine the tensor triple, they are equivalent to it.

THESIS

The notationS, for a component of the pressure that is paralle io a surface
element whose (interior) normalngs more expressive and more practical than any other
and must be preferred.

It is convenient to classify the condition equatioms Spatial problems into
fundamental equations, surface equations, and initial conditions.

The external forces that act upon the interior sogan be callethass forcesvhen
they are referred to a unit mass ammume forcesvhen they are referred to a unit
volume. In general, the latter notation is preferable.

[ll. — Particular laws for stresses in elastic bodies.

9. General relations— From the molecular theory, the nine components e§stare
defined in a completely general manner by formulas (28)onUpaking the hypotheses
that were stated in page 11 and assuming that the batbfasmed by starting with a
state in which all of the stresses are zero and applgonginuous, infinitely-small
displacements whose components @re, w and infinitely-small, continuous molecular
rotations whose components dyen, n, one can develop the sums that appear in those
formulas {).

The result of the calculation will be a systenmivie equations of the form:

Cn +C12(_+ j'*' Q{(;_;_ n‘ﬂ
(39) +Cl4(gz JRCEN e

ow ow ow
+C17(&+ mj'*’ Cis(ay Ij'*' ClSE’

in which theCy are characteristic parameters of the body (inutiekeformed state), and
the orientation of the coordinate axes, which atnined, on the one hand, by the law
of elementary actions, and on the other hand, bydiktribution of molecules in space

) W. VOIGT, loc. cit, pp. 21.
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and between which, the relatiol&x = Cy, are valid. As a result, the number of
independent constan@s will be 45.

If there are no volume moments, M’, N’ that act upon the body so if one
consequently has, from (36), that:

YZ:ZYl ZX:le xy:YXl

then one can eliminate the components of the rotgtimnn in the formulas for the stress
components by means of those relations.
The result of that operation consists of six expoessfor the stress components:

xXl YYl ZZ! YZ = ZYl ZX = xZa Xy = YX!
which are linear and homogeneous with respect to thegixrents:

au ov aw ov Oow ow Ju oOu ov

+— — =, —+—

X’ ay 9z’ oz oy ox 0z dy O0x’

which, as one knows, play a fundamental role in thiestheory of elasticity, and which
we shall discuss later on. Here, we confine ourseteesimply introducing an
abbreviated notation for those quantities.

Like the six components of stress, each of the piegedifferential expressions
refers to one or two coordinate axes. Consequently,ahtirely justified to appeal to a
notation that is analogous to that of the stress coamgen

With Kirchhoff (), we set:

u_, v w_,
(40) oy Yooz ¢
ov ow _ ow du _ ou,ov
—t5o7Y.7%, t -7 X e X= %
0z 0y ox 0z oy 90X

However, we will show the inconvenience in that atioin later on, despite its
uncontestable advantages.

In what follows, those six arguments ..., X, will be arranged in that order, which
corresponds to the order in the stress components.

The result of the aforementioned elimination wikn be six equations of the form:

(41) —Xx=Ci1 X +Cr2Yy+Ci3Z +CiqY; + Ci5 & + Ci6 Xy ,

in which ¢,k are characteristic parameters of the substanteh@aody is composed of
and the orientation of the coordinate system. @ the following relations between
them:

() G. KIRCHHOFF,loc. cit, we should probably also point out the influence of Neumann; see
Pogg. Ann31(1834), 180.
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(42) Chk = Ckh ;

the number of independent parametgiss then 21.

In addition to equations (41), one will obtain thredHer linear relations between the
components of the rotatidnm, n, and the nine derivativesi / 9x, ..., 0w/ dy, which can
be arranged in a remarkable manner.

Indeed, if one introduces the components:

43) A:E 6_W_6_v , ’uzé(%_a_vvj, VZE @_@
2l oy oz 2\ 3z ox 2\ ax oy

of the rotation of the volume element with resptcthe coordinate axes then those
equations will become linear and homogeneous imitine arguments:

[—A, M=y Nn—=\ X, Yy Z Yz Zo Xy .

The relative rotations of the molecules with respgecthe volume elements are then
represented by linear functionsxg ..., xy .

We shall now explain how the method that is baggon the theory of immediate
actions leads to some analogous results. In ci@emake the symmetry in these
developments complete, we shall first assume tieesce of volume moments, M/,
N’that act upon the elementary masses, as befowe dombine the three equations (35)
with the factorgdu, dv, dw and the three equations (36) with the facttlysim dninto a
single equation in which the first of those factoepresent the increments in the
components of the displacement with respedttavhile the last of them represent the
components of the increments in the molecular imtaf and when one integrates the
result of that combination over the entire extehthe body, or any part of it, one will
obtain thevis vivaequation for the volume considered.

The work that is done, which is equal to the iaseein thesis vivg decomposed into
a work that is done by volume forces, volume momsieakterior stresses, and finally,
something that we represent by the expressia, (vhich must be considered to be the
work that is done by internal stresses in a uriive:

da = X, dx+ Y dy- Z dz
(44) +3 (L, +Z) dy,+3(Z+ X) dz+5( X+ ¥ dx
Y, = Z) A=)+ (Z- X)) dm-p)+( X- Y € rv).

Now, from the principles of thermodynamics, itnecessary thaia should be the
(negative) differential of a function that depeng®n only the current state of the body
at the point considered, namely, tpeneral elastic potentiab per unit volume.Hence,
it will result that® is a function of:

) SHN 9 [—A, m—-y n-v
and one must have:
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XX:_aﬁ, Yy:—ai, 4:—6;‘)’
X, ay, 0z,
0P 0P oo
45 1Y, +2)=—-——, 1(Z2+ X)=——7—, (X + Y)=—"—,
( ) z(z y) ayz 2( X Z) azx 2( y x) a)g/
Voz = 0% gy X y=—_ 0%
Y a(1-2) a(m- 1) Y a(n-v)

The function® is assumed to be developed in powers of the nine argumé&his
constant term in the result has no significance amdbe omitted. The linear terms will
lead to stresses in the undeformed body and must tkappear, from the hypotheses
that were made above. One will then obtain the lbwegree term in the development
(which must behe only onéghat is conserved, as observation would permit) in tha fo
of an expression that lmogeneous of the second degnee

XX! le ZZa yZl ZX! XYl I - A, m _ﬂ, n—\Vv
We set:

(46) D=g+y+x,
whose significance is:

2¢:alle+2a12xxyy+ 20 X Zt e+ 2 X Y,
(47) +0'22y>2/ +2023yy 4+"'+2a26yy)§

G =0-2) (BuX+ By, *t+ LX)
(48) +(m_,u)(:821)§<+,322 yy+"'+:326 X,)
+(n-v) (:831>&+:332 yy+"'+:336)§/)

2 = yll(l _/])2 +2V120 _/])(m_,u) +2y13a—)l)(n—v)
(49) +y22(m—,u)2 +2y23(m—,u)(n—|/)
+ yag(n_V)Z’

in which ang = akn, Wk = Kn but not necessarilw = G-
The ank , Gk, Wk represent characteristic parameters of the sulestand the
coordinate system. With those notations, onevaille:

(50) X == 2@*%) e 1(Y,+2) =201 e
X, oy.

z

(51) —L’:YZ—Zy:—aa(g/jj()),etC.
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If one excludes the volume momehtdv’ N’then one will have:

(52) WX _ g WX _q oW+X _
a1 -A) a(m— 1) a(n-v)

These three equations determine A, m — 4, n — vin terms ofx,, ..., X, . If one
substitutes the values that one infers in the fangt then it will become homogeneous
of second degree iy, ..., X%,. As a consequence, we can write:

2@+ x)=2f =, X+ 26,X Y, + 2G; % 2+ + 2G X ¥
(53) +CpYo  t2C,Y, Zt -+ 26 Y X

in which one will have:

(54) x =2 of

T YZ = Iy
0X, oy,

f is called theelastic potential in the narrow sense of the word.

It is clear that the results that were just deduegpglee completely with the ones on
pagel6.

However, the theory of action-at-a-distance peynaibe to rise to an important
viewpoint from these results to the theory of immgsl action. In that theory, since the
parameter€y— and consequentlg,k, as well- must be calculated by starting from the
law of molecular action and the distribution of emlles in space, one can, by way of
special hypotheses on that law and that distribytestablish some particular relations
between the elastic parameters and compare thdtsresith experiments. The
observations can then be used to examine certaticpkar hypotheses, and in turn, the
development of our ideas on molecular actions.

The most important specialization of the generglotheses on molecular actions
have been pointed out already: It is the hypothibsisforces must coincide with the line
that links the molecules and be functions of oméy distances.As Poisson and Cauchy
have shown ), without making any particular hypothesis on thistribution of the
molecules, that will lead to the following six retms between the parameters:

C44 = C23, C33 = Caa, Ces = C12,
(55)

C3s = Ci4, Ceq = C25, C45 = Csg,

which we shall call th®oisson-Cauchy relation$) abbreviate.

() A. CAUCHY, Exerc. de Math3 (1828), 226 (it is not stated explicitly, here). S.-D.IPEDN,
Mém. de I'Acad.18 (1842), 115 (only for crystals with three rectangular sgtnynplanes) Compare
CLAUSIUS, Pogg. Ann76 (1849), 46. DE SAINT-VENANT, Savants étrang&dq1853), 260.
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One obtains some relations that are even more $pediavhen one, like Lord
Kelvin, makes some well-defined hypotheses on the disisibatf molecules?).

As we already said above, observations are, in genier contradiction with the
Poisson-Cauchyelations (55), and in turn, with the concepts that #aeybased upon.
One can then cease to make the mutual actions dependnepa@tative orientation of the
molecules. However, it seems possible that somdadjzations of a different kind will
lead to relations that are confirmed by experimentieaat, in certain cases.

10. The components of the dilatatienlf one compares the definitions (40) of the six
functionsxy, ..., X, with formulas (23), page 8, for the components of the tethem one
will see that it is noky, Yy, Z, Yz, 2, Xy, but:

1 1 1
XX! le ZZa EyZl EZXl EXYl

that are the components of a tensor. One can doatbit thould be better to Ist, z, X,
denote the expressionS'

1fow, du (6u 6Wj ov, du

ay 9z 0z 0x ax 6y
as Christiansen®( did. However, formulas (41) and (54), althougimmetric, will
undergo an unpleasant modification by the replaceraéY,, Z,, X, with 2Y;, 2Z,, 2X,
that will make them give, instead of the componefts tensor of the second kind, twice
those components. The factor 2, when suppressed they,, z, X, will then be
recovered in thd., Zy, Xy; the asymmetry will be only displaced then.

One will obtain formulas that are entirely symneetonly if one introduces the

orthogonal system, B, C, rA’, rB’, rC’, in whichr :\/E, in place of the components

B, C, A, B, C’of the tensor that was used up to now. In the tlast we are presently
occupied with, we will then have the two systemsahponents:

Xxo Yy, Zgy 1Yo, 12y, TXy
@@a_wg@aw (aw@j au v
ox oy 0z r\oz ody) r\ox oz ay ax

However, the factor or denominatgr2 that appears in the various formulas, as well

as the less intuitive significance of those compisi@f the second kind, prevents one
from making the convention that would be most atkg@ous from the standpoint of
form alone.

and

() LORD KELVIN, Proc. Roy. Soc. of Edinburgt6 (1890), 693; Proc. Roy. Sot4 (1893), 59. B.
ELIE, Journ. de Phys. (%)(1886), 204.

(® C. CHRISTIANSEN, Elemente der Theor. Physleipzig, 1896; pp. 98. Compare also
TODHUNTER and PEARSONA History of Elasticityv. I, Cambridge, 1886; pp. 881.
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We then preserve the convention that we made, whishihegaadvantage of being in
accord with a very considerable number of authors.

As far as the geometric significance of the fundti®gn ..., X, is concerned, one
knows that at each point of the boay, yy, z represent the linear dilatations parallel to
the coordinate axes, and, z, X, represent the decreases in the angles between the
elements of parallel lines and the coordinate axes tohwthie symbols refer before the

deformation. The tensor triple whose componentslaeauantities, ..., %, is then

represented by three linear dilatatiods &, J; in the three mutually-perpendicular
directions whose angles do not change under the dafiomm Ordinarily, one calls those
dilatationsprincipal dilatations One will then refer to the tensor tripdg &, J; as that
of the principal dilatations, or more briefly, thensor triple of dilatations The term
components of the dilatatias then completely justified for the, ..., +X%,. One can also

apply it to the system,, ..., %,, with a slight imprecision.
For the sake of reference, we further give some oefbons as functions of the
components of the dilatation that are important fagesvations.

Thevolume dilatatiorD is:
(56) D=%+t+y +7.

Thesurface dilatatiomormal to theZ-axis is:
(57) O, =X +Vy.

Thelinear dilatation din a direction whose angles with the coordinate axggnally
havea, S, yfor their cosines is:

(58) d=xa’+yy B2+zy’+y, By+z ya+x, ap.

The increasey in the angle between the normals to two planesadhginally have the
direction cosinesr, S, )i anda, [, )4is given by:

nsing = 2x.aa,+Y,B.8,+ 2y V)
(59) +Y,(BY, Btz (ya . tay )+ X(a B+ Ba)
—(4,+9,)cosp,

in which g, and &, represent linear dilatations in the original directidmhe two normals,
and ¢ represents the angle between those two directions.

When these normals coincide with two coordinate afegekampleY andz), 77 will
be equal to the corresponding components of the dilatgmn, for example).
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11.The elastic parameters of crystaf§. — As was said on page 17, the general
expressions (41) for the stress components as functbrthe components of the
dilatation contain twenty-one characteristic paraaredf the substance and the system of
coordinates that is employed. One calls themethstic constant¢and more rarely, the
elastic coefficienjsfor the substance. One can reproach those temtiseip total lack of
color. It would be more expressive, and entirely hanows with the nomenclature that
is used in heat and electricity, to call thencbefficients of elastic resistance.

At present, it is undoubtedly impossible to get awaynfrthe neutral ternelastic
constantsn the fundamental system (41), but it would be nonetkelecommended, in
all of the laws that express an elastic modificatignmeans of a force on a length, an
angle, a surface, or a volume, to call the combinatibthe cn« that appears in the
formulaas a divisor of the forgeheelastic resistance of that modificaticend to always
give it the dimension of an elastic constant. Tiwees for example, in the well-known
formula for the elongation of a prism by a weight

(60) d_:ﬂ,
EQ

the denominatoiE (which is generally known by the name elastic coefficientor
Young’s modulysmust be called the (specifi®sistance to elongatioof that prism.

The solution of equations (41) for the components of atitat is provided by
expressions that we will write in the form:

(61) X =S1 X+ S12 Yy +S13 2, +S14 Y2 + S14 Zx + Si6 Xy

Here, thes are certain ratios of the determinants of ¢ghe, between which, as a result
of the relations:
Chk = Cikn,
there will exist the relations:
(62) Shk = Skh

which will reduce their number to 21.

Formulas (61), which are reciprocal to formulas (418, tae point of departure for
the theory of deformations that is most important ircfica. Consequently, they also
define the basis for the theory of all the importargestation methods. Measurements
will always first lead to the parametess , which one can infer from the elastic
constants, properly speaking, only by some calculatlmatsare often very complicated.

Since the probable error in the determination byestn calculations increases
extremely, it would seem rational to characterifgsec media by theiryg , rather than
their g .

() W. VOIGT, Abh. der Kgl. Ges. d. Wiss. zu Gottinggé (1890), 40; Wied. Ann41 (1890), 715.
Die fundamentalen Eigenschaftetc., pp. 137t seq.
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The great importance of these new parameters, whidhriged from what we just
said, justifies a special terminology. Since #e, as proportionality factors in the
expressions for the components of the dilatation, aleasure them, the author has
proposed the name efastic modulifor them, which presently has a certain measure of
usage in Germany.

In a general manner, it is recommended that when amalide elastic modification
is expressed by a force, one should saydulus of that modificatiomo mean the
combination of then or s\ that appeaas a factor of that forcand which will always
have the dimension of an elastic modulus. For exaniiplve write equation (60) for the
elongation of a prism in the form:

(63) A = DIPLL

Q

then D will be the modulus of elongation (for longitudinal dtian) in the prism
considered.

The elastic moduli and the elastic resistanceshae teciprocal in the same way that
resistivities and conductivities are reciprocal for leeat electricity.

In (53), the expression for the elastic potential igely as a function of the
components of the dilatation; its parameters arednstants of electricity. With the aid
of equations (61), one can first define the symmetric quadaate in the two types of
tensor components:

(64) A =X Yy W2+ Y, Yo+ 2+ Xy Xy

If one recalls the expression (21) (pp. 8) then otlanier immediately that:

2f =5, X0 +29, XY +28%XZ + +25 X ¥
(65) tSY,  +28,YZ 4 425 X

The number of moduli and elastic constants thatexthibited by the preceding is
twenty-one. Meanwhile, we remark that this enumeration isfqrened according to
another principle that will givehree for the number of resistance or conductivity
constants for heat or electricity. The first ewdion supposes aarbitrary coordinate
system, while the second one supposesnapletely speciaystem, namely, the principal
axes. For arbitrary coordinate systems, the nurab#itermal or electric constants is six,
while principal axis systems require three of theigeconstants for their definition.

One can also refer equations (41) or (61) to aigpgystem of axis that is chosen line
the principal axis system and is defined threetimrla between the parameters. The
number of them will then be reduced from twenty-tmeighteen It is obvious that once
the system of principal axis is introduced by threlation between the elastic constants,
one must introduce only equations between the mdisktiare deduced from themand
no others, and conversely.
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We denote the principal axes of elasticityXay Yo, Zo, and the parameters that refer
to them byc;, and s, . Later on, we shall speak of the principals that le#id one to

choose a system of elastic principal axes.

The introduction of the principal axes presents a eabte advantage, and above all
in certain general studies. In order to treat somecpiati problems — for example, the
deformation of truncated prisms with an arbitrary origotain a crystal — it is, by
contrast, generally more advantageous to choose thdioate systenX, Y, Z in such a
manner that the surface conditions will take on a q@adrly simple form in that
problem. In that case, one will be dealing with the espion of the parametess and
Cnk In terms of the parameters of the principal syst&mYo, Zo, when the former
parameters refer to the arbitrary systénY, Z and can be callesecondary parameters
where clarity would demand it.

That problem is solved in the simplest manner by meaas efastic potentidlthat
is expressed in (53) in terms of the components of théatida, and in (65) by the
components of the stress, and that one begins to dsfineferring to the principal axes
Xo, Yo, Zo . If one then transforms the components of thesstog dilatation in the
arbitrary systenx, y, z by means of known properties of the transformation n$de
components then one will obtain a form that is amib (53) or (65), in which one will

find some linear functions of all the!, or thes;, in place of thex or s, resp.

The relations that one then obtains between theypestof parameters will generally
be very complicated. Here, it will suffice to giveetformulas for the moduli, which are
the only ones that are important in the applications.

If one letsdn, denote what the coefficient,, in (15) and (16) (pp. 7) will become
when one replacaswith 2 in the first three columns, and by 1 in the laste, then the
secondary moduli, expressed in terms of the principal ol be ():

h, k
m,n

(66) Sk= D > S Oy Aoy }:1, 2,3,...,6.

One has equations of the same form for the constaittsa meaning for the factak
that has changed somewhat.

THESIS

A definition of the arguments that determine the dwefdion that would be
convenient in every regard seems impossible. The not#tiat Kirchhoff proposed
seems preferable, due to its intuitive and practical charaand its analogy with
Neumann’s symbols for the components of stress, asagelbr the symmetry that it
gives to the formulas.

There is no reason to favor the elastic constantiset detriment of the moduli, as one
generally does. There is no advantage to giving nantbe telastic constants that would
express anything but their place in the expression fopahential.

() W. VOIGT, Wied. Ann.16, pp. 404; “Theoretische Studien (iber die Elasticitatsvieikée der
Krystalle; Abh. d. Ges. d. Wiss. z. Gotting&d,(1887).
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In the particular laws that are intended to be contptyeexperimental results, it is
desirable to characterize unambiguously the factorstheaelastic parameters depend
upon as resistances or moduli according to their placé®iformulas.

IV. — Introduction of symmetry elements into crystals.

12.Independent symmetry elements for 32ecrystal groups.— The basis for the
specialization of the preceding general formulas thafocms to the properties of the
various crystal groups is the rule that is derived fropeerents and was undoubtedly
stated explicitly for the first time by F. Neumanh, (which says thaany symmetry
element that manifests itself in the phenomena of the growth andutiesaif a crystal
also enters into all other physical phenomena that are based in it.

Since other symmetry elements occasionally rdsufh the particular laws of those
phenomena that are superimposed with the laws of tbein, fone can express that
hypothetical rule by saying that all physical phenomena that are based upon a crystal,
those of growth and dissolution possess the lowest degree of symmetry.

From that proposition, it is impossible to deduce themete symmetry of the form
of a crystal from some other physical property, asnsetones attempted.

The first applications of that rule of crystal eleisy were made by Fr. Neumann
himself, and were repeated, in a simplified form, by Kimaff ¢). In that era, there was
no way of classifying the most important examples, sinbservations were also
completely lacking. Their number was ultimately augreeérby the author’ and by
Aron (*). That question was treated systematically for tre fime by Minnigerode®.
However, the procedures that are inferred from the yhebgroups that address it are
somewhat disproportionate to the simplicity of the pnobleln what follows, we shall
show how the formulas of elasticity (and similatlypse of some other topics in crystal
physics) can be established for all crystal groups by sotirelg elementary procedures.
Lack of space prohibits us from giving anything but a simpiiree, but | hope that it
will suffice to give an overview of the question.

As one knows, symmetry of form consists of the prgpefta crystal (once it has
been suitably reduced to a well-defined normal form) the&an be superimposed over
itself by certain geometric operations (e.g., rotatieflection in a mirror, inversion with
respect to a center) in such a way that the dinestio the first position will all coincide
with the directions in the second position that thsy equivalent to from the standpoint
of the phenomena of growth and dissolution.

Now, the rule that was developed at the beginning amawntsaying that the
positions that are equivalent from the standpoirfioah are also equivalent gdysical
properties in such a way that two primary determining actions (€xample, two
deformations) that are superimposed by those transfommsatioll always have two

() FR. NEUMANN, Vorlesungen. some suggestions pertaining to that question can be fourahm
Ann. 31 (1834), 177t seq.

() G. KIRCHHOFF ,Mechanik Leipzig, 1879; pp. 390.

() W. VOIGT, Wied. Ann16 (1882), 275.

() H. ARON, Wied. Ann20 (1883), 272.

() B. MINNIGERODE, Nachr. d. Ges. d. Wiss. z. Gétting&884), pp. 195, 374, 484.
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secondary phenomena as a consequence (for exampleydtems of stresses) that are
similarly superimposed.

In order to conveniently apply that rule to the vasidopics in crystal physics, it is
advantageous to define, once and for all, a table ohttependensymmetry elements
that characterize the various group)s ©nly those elementsill enter into the questions
of physics. The union o&ll the symmetry elements of a group is useful only in
crystallography, and rather tends to confuse the cleritlye problems that we shall treat
here.

For the characters of the various symmetry elememtsyefer to any treatise on
crystallography. We represent the existence frametry centeby the symbolC, that
of asymmetry axis of order oy A", that of amirage axis(°) of ordern by S, and that of
asymmetry planby P.

We suppose that we have a system of principal axescthatides, as much as
possible, with the symmetry axes or are perpendiculdhdoplanes of symmetry. A
coordinate axis, which then agrees with a symmetry elemalhthen be indicated by a

lower index on the symbol for that element. For eXamg’ signifies that the-axis is a

ternary symmetry axis, ané signifies that thex-axis is perpendicular to a symmetry
plane. When the crystal group possesses an obvious symaxétr one can always
make it coincide with the-axis; alternatively, one can prefer thaxis.

Developing what was said on page 23, we remark thatlforystal groups in which
the principal coordinate system is fixed completely by principles that were just
pointed out, while the three relations between thstielparameters that were mentioned
in page 23 and reduce their number from 21 to 18 are introducéatbyself. One sees
that there are only two groups in which the principal aystesn will remain completely
arbitrary when one has accepted those conventionsthandor three other ones, only
one of the axis will be fixed. The purely crystallogragiriocess for fixing the system of
the principal axes of elasticity will then sufficetive greatest number of cases.

As for the classification of the 32 crystal groupsbe®re, we shall adopt a proposal
that was made by Schoenfli€ that seems to be very suitable.

In the holohedral groups of some systems, one findgdtifierent ways of indicating
the independent symmetry elements. They egeivalent since, as one easily
recognizes, a symmetry center, a symmetry plane, andaaybsymmetry axis that is
perpendicular to that plane will have relationships betwbkem in such a way that the
presence of two of those elements will have that ofhilnd one as a consequence. Both
of those forms have been listed in the following tablerder to make the relationships
between the holohedral groups and the ones that areametclearly recognizable.

() W. VOIGT, Komp. d. theor. PhysikBd. I, Leipzig, 1895; pp. 133. “Die fundamentalen phys.
Eigenschaften, etc.,” pp. 191.

() l.e., mirror axis.That symmetry element corresponds to the followingnéifn: A rotation of7r/ 2
anda reflection with respect to a plane that is perpenditalthe axis that reproduces the solid. One can
just as well saynirage plane of order.nExample: The line that joins the middles of two opigostges of
a regular tetrahedron is a mirage axis of order 2 byuleethat one vertex successively reproduces the
other three. (French translator’s note.)

() SCHOENFLIESKrystallsysteme und Krystallstructut891; pp. 146, 147.
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INDEPENDENT GENERAL SYMMETRY ELEMENTS

=

a ks w

© N o

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.

21.

Anorthic system.

HolohedryC.
Hemihedry --.

Clinorhombic system.

HolohedryCA? of CP;, .
HemihedryP, .
HemimorphismA? .

Orthorhombic system

HolohedryCA’ A or CAP..
HemihedryA? A:.
HemimorphismAZP..

Rhombohedral system

HolohedryCA’ A’ or CA'P..
Hemihedral enantiomorphis#y A’ .
Hemihedral hemimorphisiA’P.,.
Hemihedral paramorphis@A’ .
TetartohedryA’.

Quadratic system

HolohedryCA' A’ or CA'P.
Hemihedral enantiomorphis#{ A’ .
Hemihedral hemimorphisi’P, .
Hemihedral paramorphis@A’ .
TetartohedryA! .

Hemihedry with a mirage ax& A .
Tetartohedry with a mirage axs;3 .

Hexagonal system

HolohedryCA’ A’ or CA’P.
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22. Hemihedral enantiomorphisay A.
23. Hemihedral hemimorphisiA’P,.

24. Hemihedral paramorphis@A’ .

18. Tetartohedry?®.

19. Hemihedry with a ternary axi&’ P, A’.
20. Tetartohedry with a ternary ax#s P..

Cubic system

28. HolohedryCA' A'.

29. Hemihedral enantiomorphisdf A[.

30. Hemihedral hemimorphisig} § .

31. Hemihedral paramorphis@A’ = A’= A
32. TetartohedryA’= A'= A’.

In the last two groups, the symbotepresents the equivalence of the three mutually-
normal symmetry axes.

The preceding table shows the extreme variety anddhetheless simple and orderly
character of the symmetry relations that are ab#ses for the physical of crystals.

The application of the principle that was presenteaein with for the specialization
of any general formula from the particular groups wiltdome particularly simple when
that formula can be reduced to one such scalar functidow such a function can be
introduced in certain cases, even when one is dealthgvectors or tensors, in principle,
will result from what was said on page 7.

In the case of elasticity, we have already encoadtsome scalar functions that are
endowed with a physical significance that permits tipatration. The elastic potenti@|
in the broad sense of the word, was introduced on page 17theCsame page, it was
decomposed into three pamws x, ¢ of differing characters that are, like, naturally
scalars, and one ultimately deduces the elastic paténtin the narrow sense of the
word, from it. ¢ andf have the same form and are distinguished by only thesrafube
parameters.

None of these functions change sign when one reverses the directidrexesal

For ¢, x, f, this is obvious from their definitions in (47), (49), (5@sp. However, it
is also true fory, which, from (48), has a form that is bilineaxi ..., x,, andl — A, m —
M, N —\, because the two types of arguments that enteritimbolividually possess the
property of keeping their sign when one reverses thgeseof all coordinate axes.

From what was said on page 2Be always superimposes a center of symmetry with
the crystallographic symmetry elements for the visible phenomesastitity, as well as
for the invisible molecular rotations that accompany thei@onsequently, the table
above simplifies noticeably. A great number of grougkhgicome equivalent for elastic
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phenomena and are subsumedigher groupsbecause, on the one hand, the symmetry
planes are now equivalent to the binary axes that aheynormal to, and on the other
hand, the mirage axes are equivalent to the symmegsy @xorder twice as high. Upon
suppressing the symb@Glthat is common to all of the groups and has no sigmtie, we
will obtain the following table):
INDEPENDENT SYMMETRY ELEMENTS OF CENTRAL PHENOMENA
Anorthic system
1,2 No symmetry element

Clinorhombic system
3,4,5 A

Orthorhombic system
6,7,8 AN

Rhombohedral system

9, 10, 11 AN
12,13 A

Quadratic system

14, 15, 16, 19 AN
17, 18, 20 Al

Hexagonal system

21, 22, 23, 26 ASA
24, 25, 27 AP

Cubic system

28, 29, 30 A A
31, 32 P A= A2,

() W. VOIGT, Kompendiumpp. 134; “Die fundamentalen phys. Eigenschaften, gip.,193.
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The32 crystal groups then reduce in the central phenomerid tugher groups that
are all characterized by only their symmetry axes.

13. Specialization of the elastic potential for the various crystal group&/e attach
the following considerations to the functidnthat is expressed in terms of elastic
constants in (53) and in terms of moduli in (65).

The best procedure for specializing that potential fow#n®us higher crystal groups
consists of first looking for relations between theapaeterschg, or S in the simplest
case in which one axis (tlzeaxis, for example) is a symmetry axis of orderOne does
that by transforming the potential into a new coordirgtgem that has turned, upon
starting from the first one, through an angle af /2n around the symmetry axis and
equating corresponding terms of the expression that taingld from the original
expression in that way. That simply amounts to applylrggeneral formulas to that

rotation of the coordinate system and equating eacbr s, thus-obtained to the’, or

s, resp., that is referred to the original system. (6&)resents the necessary

transformation formula for the moduli; as one wakdy see, it is valid for the constants
that are distinguished, in part, by the values of theficaaitsdmn .

Once one has defined a table of relations between thenptars fon = 2, 3, 4, 6,
one can pass from tlzaxis to thex-axis by a cyclic permutation through one unit of the
indices 1, 2, 3, on the one hand, and 4, 5, 6, on the dihez.likewise obtains (far = 2)
the values that are valid when thaxis is the symmetry axis.

With the aid of those relations one can, with no wat@n, define the systems of
parameters, principal constant§ , and principal modulis’, that are referred to the

principal axesXo, Yo, Zo by simply combining the formulas that are valid for vagious
symmetry elements. In the last higher group (31, 32), arst, im addition, take into

account the equivalence of the three coordinate axesgustieg the parameters, or

S » Which transform into each other by a cyclic permuratibthe indices 1, 2, 3, or 4, 5,
6, resp.

Lack of space prohibits us from characterizing all ofttlgger groups in Table Il by
the ¢, ors,,.

Here, we shall give those constants and moduli in viesoofe ultimate applications
in just the four cases in which thexis is a symmetry axis of order 2, 3, 4, or 6.

3. Systems of elastic constants and moduli in the cases of different types
of symmetry axes.

A: c1 C2 a3 0 0 ¢ Si1 S12 S13 0 0 si6
C2 C3 0 O C S22 3 0 0 s

Czz 0 O cs6 3 0 0 s

Cas Cs5 O sS4 S5 0

Css O S5 O

Ce6 S6
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Af' . Ci1 Cp2
Ci1
Af'i Ci1 Ci2
Ci1
Afi Ci1 Ci2
Ci1

C13

C13
C33

C13

C13
C33

C13

C13
C33

Ciu —C;50 S11 S12
—C14 Cops 0 S11
0 0 0
Caa 0O  Cxs

Csa Ci14

2(C11—C12)
0 0 Ci6 S11 Si2
0 0 -ci S11
0 0 0
Cau O 0

Cau O

Ce6

0 0 0 S11 Si2
0 0 0 S11
0 0 0
Ca O 0

Cua O

2(C11—C12)

S13

S13
$33

S13
$33

S13

S13
$33

S14

— S14
0
S44

[N«

S44

31

—S5 0

S5 0

0 0

0 2s5

S 2514

2(S11— S12)

0 s

0 -si6

0 0

0 0

siue O
Ce6

0 0

0 0

0 0

0 0

sia O

2(S11— S12)

The following table then results, for example, fog thgher group (9, 10, 11), which

is characterized by the simultaneous existenc&’cdnd A’ :

0
Co
0

Cuy

A K a

i3
Ciy
Cas

¢, 0 0 S S
B Cf4 0 0 %01
0 0 0
c,, 0 O
Cur  Cu
% ( Cfl - sz)

S
S
S3s

St

_Sf4

0

0
S44

0 0
0 0
0 0
0 0
S
2( %01_ sz )

When the analogous operation is performed on all oflthesie higher groups in the
table on page 29, that will show that two of them (Wil repetitions) behave in the
same manner, and that consequently only nine distinct hgybeps will exist for the
elastic potential. Their numbers of constants will then be as foow

Anorthic system......
Clinorhombic
Orthorhombic
Rhombohedral

Quadratic

1,2

(3, 4, 5)
“ (6, 7, 8)
“... (9,10, 11)

“ (12, 13)

‘L (14, 15, 16, 19)

21 constants
13
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“ ‘. (17, 18, 19) 7
Hexagonal ‘L (21to 27) 5 ¢
Cubic ‘L (28 to 32) 3 °

The preceding tables also permit one to easily writenddw particular forms for the
expressions for the components of stress and dilatéid) and (61) for each of the
groups. For example, for the important higher group (9, 10fHd yystem (61) will take

the form:
X=Xt 52+ 5 X
YL X+ ey £2- 53
(67) =X+ e+ &2

_YS:S&XS_%V'*' &Y
_%?:§4Z<)+2§4 >€’
_XS:2§O4Z>?+2(§1_ §2) )§

One remarks that, from the table on pages 30 andh& tables of elastic constants
differ from those of the moduli. That (small) ima@nience is a direct consequence of
the usual definitions of the components of stres$ @ilatation. One can avoid it by
appealing to the orthogonal componeMis Yy, Z,, r Yz, r Zy, r Xy, andx, Yy, %

%%? which we mentioned on page 20, and whose usébearecommended in
certain general studied)( However, for some particular problems in phgsione can
hardly abandon the usual notation, which confororthé remark on page 20.

Here, we point out that property of the method thas outlined above by applying it
to the elastic potentid) as well as the functiong ¢, y that were introduced on page 18
The last two are especially interesting becausem fequations (52), they determine the
rotations of the molecules relative to the volunmlenents for the ordinary elastic
deformations.

For the higher group (9, 10 11), for example, Whie characterized by’ A’, one
will have the following table for the constaf@k and jsx :

,811 - ,811 0 ,814 0 0 N1 0 0
0 0 0 0 - ,814 - ,311 N1 0
0 0 0 0 0 0 V53

The molecules then turn around the ternary axiagalvith the volume element. In
addition, the phenomenon depends upon the two &aisgh1 / )41 and Sia / 1, which
cannot be deduced from observations on elasticity.

Up to the present, no phenomena that one couldtaigketermine that value are
known. However, those of the formation of slipfaoes are truly consistent with those
molecular rotations. Certainly, they will also ypla role on the phenomena of

() W. VOIGT, Kompendiumpp. 139.
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piezoelectricity and electrostriction. In additidhe theory shows that if one does not
suppose that the moments of inertial of the elementayses that one calisolecules
and that one accounts for in formulas (36), on theraontare infinitely small then
certain vibrations in crystals will have a speed of propagahat depends upon the
period. Will that truly feeble dependency be detected axpeetially someday? That
guestion presently remains open.

THESES

It suffices to consider the objects of crystal physio be only the mutually-
independent symmetry elements.

As a result of the conventions that were made onctimaponents of stress and
dilatation, the tables of elastic constants will takiferent forms from the tables of
moduli. One can make them agree by introducing the ortladgomponents that were
defined on page 20.

However, that way of doing things presents some inconvegsethat prevent one
from recommending it.

V. — Summary of the theory of methods of observation.

14. General problems in experimentation for the elasticity of crystal$he first
experimental problem in crystal elasticity tltain be posed (and which in fakas been
posed) is to establishhether crystals can truly be distinguished from isotropic bodies in
a detectable manner from the standpoint of elasticity.

As one knows, that question was answered in the afiver by the observations of
Savart {) on the nodal lines of vibrating quartz plates. By shgwhat a circular plate
that is parallel to the optical axis will give difesit nodal figures when one proceeds
from the same excitation at various points of the boyndae established the elastic
anisotropy of matter without any measurements. Sawealt mot infer more advanced
theoretical conclusions from his experiments for simaple reason that in that era the
fundamental equations of elasticity for a body, sucla asiartz one, had not yet been
established.

Once the elastic anisotropy of crystals was estaloljsbe need for numerical
determinations was felt, all the more so becaushkarrterim the theories that had been
constructed upon the two bases that were developed imTwarhad arrived at different
results. The quantitative observations obviously firate to answer the following
question:

a. Does the most general theory that rests upon twenty-one constaras extbl
observations, or do they demand an even more general basis for thesertation?

Then, if that theory is always in accord with expemnts:

() F. SAVART, Ann. d. Chimie40 (1821), 5; Mém. de I'Acac® (1830), 405.
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b. Are all of the crystal groups that can be distinct from the viewmdithe general
theory of elasticity distinct in reality?

That question is one part of another question thatssga all branches of crystal
physics, namely, whether all of the phenomena thapa@ssible as a result of symmetry
actually exist. Recall that the answer that has lgaesn up to now by experiment has
not been in the affirmative. In the conduction ofthaad electricity, certain crystal
groups, by their symmetries, separate from the set #lahds to a system and admit
somerotational properties that the other ones do ript However, up to now, it was not
possible to exhibit those rotational effects in an aabjtcrystal f). The same thing is
true for piezomagnetic effects, which, from symmetrg, possible in a large number of
crystal groups, but have not been observed for evenfdahera €).

In those two cases, some possible theoreticalrdiftes between the different groups
do not seem to exist in reality, and that result makegjuestion that was formulatedbin
particularly interesting. It is attached to another jaeghat has a close kinship with it,
but that we shall formulate separately for more tfari

c. For the same substance, are all of the constants that the geneml #ssumes
to be independent actually independent?

In regard to that question, one must observe espedclaly whether or not the
generalmolecular theory leads to the same results ashéary of immediate actions,
from page 19, its specialization will be given in thddlwing six relations between the
twenty-one independent constants of the general theory:

(68) { C23 = C44’ C3l: CSB C12:

Cl4 = C56’ C25: C64’ C36:

The proof of all these relations, or of some of thpermits one simplify, and in turn,
to correct the concepts of the most general molet¢h&ory, which would represent a
result of great theoretical importance.

Aside from these general questions, one can naturally feseroblem of the
numerical determination of the elastic parameters émw\of applications. Among the
branches of science for which the knowledge of suchnpetexs would be indispensable,
we cite thermoelasticity”), piezoelectricity Y), electrostriction 9, and the optics of
deformed bodies’), or ones that are subject to the action of eletigids ().

() G.-G. STOKES, Camb. and Dubl. Math. Jdu(1851), 233.

() CH. SORET, Arch. Sciences phys. et 28t(1893), 355jbid. 32 (1894), 631.

() The formulas that refer to them will be publishedtriethe Annales de Drude.

(") General theory by W. THOMSON, Quart. Jour. of Math(1857), 57; application to crystals by
employing the elastic parameters W. VOIGT, Wied. A3th(1889), 743.

(°) W. VOIGT, “Allgemeine theorie, etc.,” Abh. d. Gas. Wiss. z. Géttingei36 (1890); E. RIECKE
and W. VOIGT, Wied. Ann45 (1892), 523.

() FR. POCKELS, Neues Jahrb. f. Minerologie, SuppleriaB90), 253; W. VOIGT, Wied. Anrk5
(1895), 701.

() FR. POCKELS, Wied. Anr88 (1889), 144, 269, 37%id. 39 (1890), 440.
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In order to appeal to the numerical determinations ¢batrol, and possibly correct,
the theory, they must first be applied to the particuidases that are accessible to
observation. One must then create the particuéorthof some methods of observation.
The most important of the results that were acquirkxhga those lines will be
summarized in the following chapters. Space will notriteus to deduce the formulas;
they will then be presented in a somewhat disjoimimaa. However, it seems necessary
to communicate them in order to give some idethefmoduli that one encounters in the
observed phenomena and the manner in which they present thems#ga®cognize
that there are only a small number of them that plegleain the most important laws of
observable elastic phenomena.

15.Homogeneous deformations in the crystal.The simplest case that one can
imagine of the deformation of a crystal or a prepandti@t is made from a crystal is the
one in which the components of the dilatation haeesdime values at every point; one
calls it the case dfomogeneous deformatiofhe theory of these particular phenomena
is given immediately by formulas (61) when one determihesinterior components of
the stresseX,, ..., Xy in them, which must be constants, by hypothesis, coirgrto the
general surface conditions (37), in terms of the extsti@sses that upon act the surface
of the preparation. If the preparation has the forna aectangular parallelepiped of
arbitrary orientation with respect to the principal @Xg, Yo, Zo then one will agree to
take its edges to be the directions of Xyer, Z axes of a system that has a well-defined
inclination with respect to the principal axes, and oilétiven have relations for that
systemX, Y, Z in the old form:

(69) { XERXA LY R AN S 2 5 )
in which, from (37),X, ..., Xy are immediately equal to theressuresthat must be
exercised normally and tangentially to the facesefdrism, and X, ..., — X, are equal

to the correspondingactions.

These formulas show that the elastic modulare susceptible to an extremely simple
and intuitive interpretation, because if one exerts onytype of pressubg, Yy, Z,, Y, =
Zy, Zx = Xz, Xy = Yy, and one gives zero values to the other ones thermgtitehand sides
of each of equations (69) will reduce to just one terrh gh@roportional to a modulus
Shk-

As a consequence, the paramew®is S, Sz3 occur as the longitudinal dilatation
moduli S3, Ss1, S12, the transversal dilatations for a traction or anpoessionXy, Yy, Z;
parallel to theX, Y, or Z axes. si4, Si15, S1s measure the alterations of the dihedrals by a
normal traction that is parallel to theaxis, whilesys, S5, 6 andsss, Szs, S36 measure the
analogous quantities for an action that is parallel¢ortbr Z axis.

() FR. POCKELS, “Ueber den Einfluss des elctrostatisdheldes, etc.,” Abh. d. Ges. d. Wiss. z.
Gottingen39 (1893).
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However,s14, S24, S34 are, at the same time, the moduli of linear dilategjSys, Ss4, Ss4
are those of the changes of angle by the systemngétdial stresse¥, = Z,, and the
moduliss, ..., Ss3 Si6, ---, Se6 Play analogous roles for the stres@es X,, Xy = Yy .

Only the case of normal pressures has been realizgdtice, and then only when
either all of the faces of the prism support the samgespre or when two parallel faces
support an arbitrary pressure when the other ones suppegtigilvle pressure.

We shall develop the first case here. One can constiumtly of arbitrary form from
elements that are parallelepipeds that are compressedniyifon all sides and keep it in
that state by exerting the same normal pregsoreits surface elements. Indeed, one can
satisfy the fundamental equations and the surface conslivith:

(70) Xe=Yy=Z,=p, Y,=0, Z,=0, X,=0.

Since, from (29), these formulas are valid for anteaty coordinate system, it will
be convenient to refer then to the principal axes:

Xo, Yo, 2o,
and one consequently writes them:
(71) Xy =Y =2z2=p, Y. =0, 2! =0, X{=0.

It then simply results that:

(72) _Xg =p (%01'*' §2+ §3)’ etc., _yg =p (521+ éjz'*' 'éolg)a etc.

We add a general remark in regard to these formulas. Orn2pages observed that
the principles that are deduced from the symmetry of dh& tlo not suffice in some
cases to fix the system of principal axes. The dedtiom by a stress that acts uniformly
in every direction that we just treated will provide a §dar fixing it in the cases where
it remains undetermined. It is, in fact, natural tketéhe principal axes of elasticiX,

Yo, Zo to be the three mutually-perpendicular directions wlamgges do not vary under a
compression that is uniform in every direction; i.ée directions of tensor triple of
dilatation in the case of pressure that is uniformvergdirection.

That manner of proceeding will lead to the three doomi:

(73) St St 970, Sttt 80, s+ g+ =0,

by which the number of moduli, and in turn, the elastiestants, is also reduced from 21
to 18.

We remark that in all of the higher groups in the tallgpage 27, except for the first
two, those conditions will be fulfilled identically witthe axes that are chosen by way of
symmetry considerations.

The new determination of the axes then agrees witloith@ne, and generalizes it
only in such a fashion as to make it applicable to all groups.
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The laws of deformation of volumes, surfaces, lengthd,angles by a pressure that
is uniform in all directions will result from the gemérformulas (56) to (59) by
substituting the values (72) of the components of dilatdtjo

To save space, we shall not give them. We only pmubttthe modulus of cubic
compression that relates to that case, due to itsplartimportance:

(74) S= S+ S, * H2( 9+ § §).

16. Prismatic beams of constant deformation along the axiBhe most important
methods of observation by far are attached to the defmmmseof prismatic beams whose
longitudinal dimensions are large in comparison to thaingdversal dimensions as a
result of forces that act upon the bases of the prism

As one knows, de Saint-Venaf} ttacked the theory of deformations of cylindrical
bodies by looking for the circumstances under whiclelamentary fiber that is parallel
to the axis of the cylinder would experience only longituldgteesses as a result of the
neighboring fibers. That method, which is extremelytfislfor isotropic bodies, is less
so for crystals, since the hypothesis on the pressinesdy ceases to be verified in the
simplest case of torsion. As a consequence, de Sama+\ could treat only some of the
most particular cases of the deformation of prisnatstals with his method.

For our problem, it seems more advantageous to gieenavghat different objective
to the investigations by directing them towattse general properties of deformations
that either do not at all depend upon the coordinate that is parallel to tiseofsthe
beam or depend upon it by way of a term of first degree, second degreéjke de
Saint-Venant, we suppose that the beam is suffigidomlg with respect to its transversal
dimensions that in the part that is dominated by its kerige deformation depends upon
only the components of the total external force and emirthat is exercised upon the
terminal sections and not on their distribution oWx&se sections.

The most important case is then that of a cylindatr ithdeformed uniformly along its
axis €). Analysis shows that this state can be obtained @nmef actions on the bases
that have a resultant that is parallel to the axighef cylinder and which provides
moments with respect to the longitudinal axis as wellviis respect to the transverse
axes that are situated in the terminal sections.

We make th&-axis of theX, Y, Z coordinate system coincide with the line that joins
the centers of gravity of all the sections, while theand Y axes coincide with the
principal axes of inertia of the terminal sectmi 0, which must be considered to be
fixed, in general. We then suppose that the forcesatkagxerted on the other (free) base
z =1 yield a resultanf that is parallel t& and the moment&, M, N with respect to the
coordinate axes. In order to fix the sectos 0, one must subject it to equal and

() Particular case by FR. NEUMANN, Pogg. A1 (1834), pp. 172t seq. Vorlesungenetc pp. 179
et seq.the general problem by W. Voigt, Wied. ArirG (1882), 419.

() DE SAINT-VENANT, Mém. des Sav. etrl4 (1857), 233; Jour. d. Liouville () (1856), 89.

() W. VOIGT, Wied. Ann. 16 (1882), pp. 280,et seq. “Theoretischen Studien (ber die
Elasticitatsverhaltnisse der Krystalle,” Abh. d. GesWlss. z. Géttinger34 (1887), pp. 53¢t seq;
particular case by C. CHREE, Proc. Londdh (1888), pp. 214; G.-C. MICHAELIS, Arch. Néegl
(1886), pp. 387.
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opposite actions. Conforming to the three types ofrisffthat are exerted, we must
consider three types of elastic problem.

a. Effect of a longitudinal traction— The deformation of the cylinder is
homogeneous, so the components of the dilatation eadeboted once and for all and
independently of the form of the section. They wiuk directly from (69) when one
setsX«=0,Yy=0,Y;=0,Z.=0,X,= 0, in it, butZ, =-T /g, in whichq represents the
section of the cylinder. As a result, one has:

75) { ax. =sf, ay=sf, az= &,

ay,=ssl, dz=¢l, ax= 4.

The moduli of the dilatations that are parallel te #xes ar@s, 3, Ss3 ; from (57),
the modulus of dilatation of the section $g3(+ ;3). The moduli of the variations of the
angles between the axes or coordinate planes;asss, Ss3. From the table (pp. 30), all
of the three angular variations will be zero whenZfaxis is a symmetry axis of order 3,
4, or 6, and the first twg, andz will be zero only when it is a binary symmetry axis (

b. Effect of moments with respect to the transverse ax&ge components of the
dilatation and the pressure compongnare linear functions af andy for all forms of
the sectionXy, Yy, Yz, Zy, Yy disappear.

The fiber that is situated along the axis 0,y = 0 of the cylinder is flexed into a
curve whose equations are:

(76) =M% o4 _n p=D% oy
29K 29K

y X

in which «, and x;, denote the radii of gyration of the cylindricat8en with respect to its
principal axes of inertia, which coincide wikhandY, and in which one assumes that the
two extremitiez = 0 andz = | of the axial fiber are situated along theaxis.

From (76), the projections of the axial curve hawastant radii of curvature:

2 qK2
(r7) Ry = , Rp=—2X,
Ms;; A

and are, as a result, circumferences of the circle.

If just one of the two moment& and M is non-zero then one of the two radii of
curvature will be infinite. The axial curve wihién be situated in the plane that is normal
to the principal axis of inertia with respect toigihthe moment will be zero.

Due to the constancy & andR;, one calls the flexure by M aml uniform. The
modulus of uniform flexuressis identical with the modulus of axial elongatioly
longitudinal traction.

() Particular case by FR. NEUMANNoc. cit; the general problem by W. VOIGT, Wied. Ant6
(1882), 421; “Theoretischen Studien Uber die Elasticitété¥emisse der Krystalle,” Abh. d. Ges. d. Wiss.
z. Gottinger34 (1887), pp. 65.
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In the general case, the uniform flexure of a cylintat is composed of a crystalline
substance is accompanied by a uniform torsion. The rotabi@h a section that is
situated at a distanae= { of the fixed sectioz = 0 is given by:

(78) Y wkiKy = Msk =Nk <.

From (75), that remarkable torsion possesses the same mogulinsl ss as the
angular variations yand z for a longitudinal traction.

(From pp. 38), it will disappear when th@xis is a symmetry axis of arbitrary order

).

c. Effect of a moment with respect to the longitudinal axis. this problem, which
is generally referred to as the problentasion the difficulties are incomparably larger
than in the preceding two. One can objast oneresult that is common tall forms of
section, namely, the magnitude of the uniform flexdjetiat accompanies the torsion.
With the notations of (77), one finds that this flexis:

2

2
_ 2qu’ R, = 29K,
N's;,

(79) R - .
Ns,

The secondary flexure then possesses the same mgdahds $; as the second
torsion that was in question above and will disappear with it.

Apart from that, each form for the section will vig@ another solution. The simplest
one is obtained for the elliptic sectiof).( In that case, one can satisfy all of the
conditions by functions that are linear xnandy for all of the components of the
dilatation, as well as for the stress compon&ntndZ,, and the zero values ¥f, Yy, X,

Z, . Under those conditions, one will find the value:

(80) 4wk Ky = NE(Suk; +847)

for the rotationwof the sectioz = {.

The magnitudevthen has two moduty, andsss that reduce to one only in the cases
of a very elongated section and a circular section.

The case of a rectangular section, which is excegtiprmportant for observations,
leads to some extremely complicated differential aqoatthat seem resistant to a
rigorous solution. In general, one can establish thauta ():

() W. VOIGT, Wied. Ann16 (1882), pp. 282; “Theoretische Studien, etc.,” (1887), pp. 68.

() W. VOIGT, Wied. Ann16 (1882), pp. 300; “Theoretische Studien, etc.,” (1887), pp. 72.

() W. VOIGT, Wied. Ann16 (1882), pp. 300; “Theoretische Studien, etc.,” (1887), pp. 78n#ark
that was attached to it by G. KIRCHHORW®#echanik pp. 415; CHREHpc. cit.

() W. VOIGT, Wied. Ann16 (1882), pp. 609.
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.l (S, S |P°F
3NZ{%5+%3a2+(a2+ sza%J

16ab2(1+b Fj
a

(81) w=

in whicha andb represent one-half the edges of the rectangutdiosethat are parallel
to theX andY axes, resp. By contra$i,signifies a function of the ratia/ b, which, by

the manner in which it was presented, so it cacdresidered to beonstantwhen the

section is somewhat elongated (for examaleh > 3).

That formula is not a complete solution to the bpgan of torsion then, but a
procedure for deducing numerical values for thestelamoduli from observations, in
particular ss5, in which one consider§ to be an unknown constant (after a prior
examination of the legitimacy of that hypothesisatt one eliminates by appropriate
combinations of the measurements.

The general formula will simplify when one makhe tipproximation that consists of

S S5 & b® ) S; Ss
will then have:

(82) w=

2 2 2
neglectingi and the square L{ci;+§j b"F , In comparison to unity. One
a

3N{s;s
16ab’ (1+ b Flj
a

in which F; denotes another constant. That approximatiorverygood one, even when
a/ b is relatively small, because, in realityy andsss are usually small in comparison to
Sz3 andsss .

In the particular case in whic, and s35 are zero (which will be true, as we have
said, when th&-axis is an arbitrary elastic symmetry axis), onk have:

3NJs;s

(83) w= b’
16ab3(1+a Fj

rigorously.

Here, the functior can be determined completely in a more or lesplsitmanner
(%), in such a way that it will not be necessary fimi@ate it by a combination of
observations. It is only becauBecontains moduli of elasticity of unknown numerical
values that one can employ a process of appro>omébi calculate them.

17. Prismatic beams with deformations that varies linearly along the axifie case
that follows from the one that we just treated lidey of increasing complexity, namely,
the one in which the components of the dilatatiod pressure are linear functionszpf

(') DE SAINT-VENANT, Sav. etr14 (1857), pp. 263et seq. W. VOIGT, Wied. Ann.24 (1886), pp.
612.
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will once more lead to some relatively simple resul). One can show that these
hypotheses are compatible with the pressures on thddssethat yield the results that
are perpendicular to the beam axis, as well as tloedarn the volume that are external
and of constant magnitude and parallel to the beam aMs.shall give the results for
those two cases separately.

18. Calculation of the principal moduli and principal constantdf one decomposes
the resultant that acts upon the free terminal seatim two component& andB that are
parallel to the principal axes of iner¥aandY then one will obtain:

— Ass,s 2 1 - B%g 2 1
(84) '3 20K’ ¢ (-39, n 204 ¢ (-39
as the equations of the curve of the axis, upompasipg that its first element is kept
along theZ-axis.

The axial curve has degree three, and in turmmraumiform curve. The modulus of
that non-uniform flexure is the sargg as that of the uniform flexure.

The flexure is generally accompanied by a torsadtiough there is no moment with
respect to the longitudinal axis. The mean torsiba section at a distanze { from the
fixed section is given by:

B
(85) w= %z{_A? —_§5j.
K, K
The moduli are the same as the ones that medseir®nsion that accompanies the
uniform flexure ).

b. Volume force that is longitudinal and of constamagnitude.— This case is
theoretically important only because of the smalinef the only force that can be
applied, namely, gravity. We shall then only mentbriefly that a cylinder that is
erected vertically or suspended and is subjedteacttion of its weight and is composed
of a crystalline substance will not only be elorghatbut also flexed. Its axial curve will
be represented by the equations:

(86) E=-17"%57, n=-12'%s7?

in which Z" is the volume force that acts parallel to #haxis. The projections of the
axial curve onto the coordinate planes will thertibeles of radius:

(87) Ri=2"sss, Re=27Z"sy,

() W. VOIGT, “Theoret. Studien, etc.” (1887), pp. 80.
() W. VOIGT, loc. cit, pp. 87.
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resp., and a point at a distaredrom the fixed extremity = 0 will be subject to a
displacement:

(88) w=3Z"s3¢.

The modulisss, S34, Sssthat come into play here will then be the same dhaswe
first encountered together in the problem of homogenedusndation {).

Somigliana }) has undertaken a generalization of that problem taake in which
the components of pressure and dilatation are proportion@Edwers ot that are higher
than the first.

18. Calculation of the principal moduli and principal constantsOne result of the
preceding is a way to deduce certain modylfrom observations when they are referred
to a particularX, Y, Z coordinate system. However, these moduli are navichdal
parameters of the crystal considered; they vary withdirection of theX, Y, Z axes
within the crystal. It is then necessary to tréwt problem of the determination of the

characteristic principal modu§, in terms of the observed secondary mosil(®).

On page 23, that was a question of finding relations betwee two types of
parameters. Whes are represented by formula (66) as linear functiondl ¢hie s’ ,

they will be coefficients that depend upon the orieatatif theX, Y, Z coordinate system
with respect to the system of principal elastic aXgo, Zo . One will then arrive at the
principal moduli by observing, along witim)(conveniently-chosen second moduli that
the crystal possesses, some independent principal magah, expressing each of them
in terms of the principal moduli and solving the equations-thbtained for the principal
moduli s, .

Those secondary moduli must be chosen, as much asatbaahwill permit, in such
a manner that those equations will take as simplena ésrpossible in order to reduce the
probable errors in the calculated principal moduli.

On first glance, one can suppose that one can deterihofdlae principal moduli of
a crystal by observing the same deformations rfatifferent ways of preparing the
orientation; i.e., by determining just one secondary modulwsgith respect ta different
X, Y, Z coordinate systems.

However, one sees very simply that this manner ofgading will not lead to the
goal. The trigonometric factods , dnk in the expression (66) for the secondary moduli
are not all independent of each other, and consequémlyrincipal moduli will not all
be distinct in those formulas, but partially combinechveiach other.The observation of
just one type of deformation does not generally suffice then to deteathioé the
principal moduli of a crystal

The most convenient method for determining an elastic eds undoubtedly the
flexure of a beam of rectangular section. From foasnfl’6) and (84), it will yield the

t VOIGT, loc. cit., pp. 95.

O w.
(®) C. SOMIGLIANA, Giorn. di Min. Crist. e Petrogr. (#)(1893), pp. 1.
() W. VOIGT, Wied. Ann16 (1882), pp. 404.
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modulusss . If one expresses the principal modsf]j by equation (66) then one will

obtain a relation that contains thg, only in 15 combinations; for example, the
following ones:

S S0 Sia0 Soer Saa S50 Siss St Soe
(824+2§3)’ (Sé)5+2§l)’ (S((5)6+2§2)’ (%04+2§6)’ (S(Z)S+2§4)’ (%06-*_2315)'

One is easily convinced that, even for some speciatargroups, the number of
combinations that enter infias is always less than then the numbeshfthemselves.

It then results that in order to experimentally deiee all of the moduli one must
always combine the observation of flexures with thofssome other deformations. The
practical fact that the same preparations that came $erthe flexure will also serve for
torsion can give preference to the latter deformaticar the other one.

However, from (81) and (83), the torsion of a beaneofangular section will lead to
the modulussss . In order for the combination of flexure and torsionléad to the
objective, the expression fegs in terms of the principal moduli must contain the modul

Sis S50 Seo0 So30 S0 v Sias Soss Se0 Sses S S

in other combinations tha®s; . Indeed, the calculation that is performed will shbat
Ss5 can be expressed in terms of:

%01 +%03_sz_531’ %()2+%)1_%()3_sz’ Sg3+sz—S§1—%03,
0 0 0 0

SYRREVE 33,4_834’ Sgs_%os’ st_%os’ Sfe_sge’ %06_836’
Sas» S50 Sosr S0 Soar Ses

S0 one can infer six independent combinations of the gwregén several ways.

The combination of observations of flexure and torsion then permits onestonohet
all of the principal moduli for each crystal group. In addition, it ggesome advanced
resources for checking the theorindeed, any observation in excess of the number that
IS necessary to determine the principal moduli must be capélideing calculated in
terms of the other observations.

Once the principal moduli has been found, the constaiitsbe calculated by
considering that formulas (61) must give equations (41) whewn are solved for the
stress components. The principal constafjtswill then be ratios of the determinants of
the moduli, and conversely. It is easy to establighnécessary formulas in terms of
some known rules. However, their calculation is miess convenient for the crystal
groups with fewer constants, and the probable error iptineipal constants is, in turn,
incomparably larger than that of the principal modulwas said already on page 22.
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THESIS

The combination of observations of flexure and torslwat are made on prismatic
beams provides a method that best agrees with the deteomin&the elastic constants
of crystals.

One determines the greatest possible number of parameéta the aid of flexures,
and one adds the torsion only in order to complete them.

In practical applications, the moduli are less coreminthan the constants for the
characterization of a crystal.

It is particularly recommended that one should takeptingcipal elastic axes to be
three rectangular directions whose angles do notgehander uniform compression in
every direction.

VI. — Observations on the elastic parameters of crystals antieir usage.

19. Determination of some incomplete systems of constamée first enumerate the
observations that are directed towards certain spguaedtions and do not lead to the
determination of a complete system of principal moduli.

The first quantitative measurements of the elastigftgrystals, which in itself was
epochal, were due to Baumgartel). ( In our language, its objective was the
determination of the modulisss by observations of flexure for prisms that were made of
calcite in various orientations, and a comparison ofith whe general expression that
results for those bodies from formula (66). The olst@as were found to be in accord
with the theoretical law and, in turn, contributed teegan answer to the general question
aon page 33.

The determination of the numerical values for the rhesde; for some cubic crystals
was also the objective of the observations of K&plaid Beckenkamp®. The former
did research with rock salt, sylvite, and sodium chigratile the latter did research with
potassium alum and chromium alum. The two seriesheérvations did not suffice to
give a comparison with the theory. The observatiofisCoromilas f) on two
clinorhombic crystals (gypsum and mica) were likewdsacerned with the modulisss,
but extended only in the directions that were containedplane, and were consequently
incomplete.

The values ofszz in the directions of the principal crystallographic axesre
determined by Niedmanr)(with barite. Some isolated numbers for varioustelgsare
given by Mallock ).

All of those observers appealed to prismatic beamshbytwere not always careful
to fulfill the fundamental condition that is assun®sdthe formula that is employed for

G. BAUMGARTEN, Pogg. Ann152(1874), 369.

K.-R. KOCH, Wied. Ann18(1883), 325.

J. BECKENKAMP, Zeit. Kryst12 (1887), 419.

L.-A. COROMILAS, Inaugural dissertation, Tubingen, 1877.
H. NIEDMANN, Zeit. Kryst.13 (1888), 362.

A. MALLOCK, Proc. Roy. Soc49 (1891), 380.
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the calculation of the observations, namely, thatttansverse dimensions must be small
in comparison to the longitudinal dimensions.

The flexure of circular discs that are supported by parallel knife edges') does
not lend itself to exact determinations, and similattie flattening of an isotropic sphere
that is pressed against a plate of crystallized snbst§), because those phenomena
cannot be treated theoretically. Meanwhile, the netbiothe circular disc can serve to
show, with a small expenditure of matter, that irsthparticular cases, the elasticity has
the symmetry of a solid of revolution around the ax#& ith normal to the plane of the
disc. It was in that sense that the method that mdisated by Groth was employed by
Vater @) in order to confirm a consequence of the theory wlitep of calcite and apatite
that were cut perpendicularly to the axes of order@iarthose crystals.

From (74), the determination of the cubic compressibitifya crystal with a
piezometer yielded only one combination of principal modarigl in turn, attracted no
great interest for the determination of a completéesyof moduli, especially since exact
measurements of that type presented the greatest difffcul Nevertheless, that
observation, when calculated in terms of moduli thatendetermined in some other way,
can provide an independent verification of the thedry (

20.Determination of some complete systems of constant®Jp to now, the
determination of complete systems of moduli or constéias been done only by the
author [by abstracting from a series of observatidnghét he had suggested and that has
not decisive significance, due to the inferior quality @f thaterials]. The measurements
that he made referred to the following crysté)s (

Cubic system

Group 28........... Rock salt, fluorite
“ 29 Sylvite
“ 31 Pyrite
“ 320, Sodium chlorate

) H. NIEDMANN, loc. cit; H. VATER, Zeit. Kryst.11 (1886), 549.

) F. AUERBACH, Wied. Ann43 (1891), 61.

() H. VATER, loc. cit.

() W.-C. RONTGEN and J. SCHNEIDER, Wied. Ar#1.(1887), 1000.

() H. KLANG, Wied. Ann.12 (1881), 321. (Observations with fluorite, calculated wita inexact
torsion formulas of FR. NEUMANN.)

() W. VOIGT, Pogg. Ann. Erganzungsband 7 (1875), pp. 1 and 1@hse(vations on rock salt,
likewise calculated with the inexact formulas); Wied. AB6.(1888), 642. (Fluorite, pyrite, rock salt,
sylvite); Ibid. 49 (1893), 710. (Sodium chloratdlid. 31 (1887), 474. (Beryl and quartajid. 39 (1890),
412. (Calcite, while appealing to some observations of feelyrBaumgarten as an alternativiéjd. 40
(1890), 642. (Dolomite)|bid. 41 (1890), 712. (Brazilian tourmalinelhid. 34 (1888), 981. (Topaz and
barite).
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Rhombohedral system

Group 9............ Calcite
“ 10........... Quartz
R B U Tourmaline
120 (Dolomite)

Orthorhombic system
Group 6............. Topaz, Barite

Strictly speaking, the observations on dolomite havelace in this table, since the
material that was available was not sufficient to wuhetee all of the parameters.
However, if one takes one of the general questionsweae¢ formulated above into
consideration then they will give an important contidauto the answer to that question
when one compares their results with the ones that wietained for the other crystals
with rhombohedral systems. They are thus intimdieked with the other observations.

To return to those general questions in their own right finds no divergence
between the most general theory (of action-at-aftbstaor immediate action) and
experiment (question) in the calculations for the observations of rock, dagryl, and
calcite that are directed in such a manner that theyldveerify certain surprising
consequences of the theory. One can then considewlms with 21 constants to
embrace the observations, especially since it iscdiffto see in what way they can be
further generalized while one preserves the proportiondiyween the stress
components and those of dilatation that has beenrgwmd to a very great extent by
experiments.

Up to now, the differences in the properties of thdous crystal groups that are
possible from symmetry have always been encountered lityreén particular, cubic
crystals,although optically isotropic, are strongly elastically anisotro@od the crystals
of the rhombohedral systemvhile optically equivalent to those of the hexagonal system,
are completely different from them in regard to their elastapprties. The elasticity of
dolomite has an entirely special interest in compartsathat of calcite, which resembles
it crystallographically. The diversity of symmetry ti®sometimes not manifested in the
form at all and can be exhibited only by etchinfigufes de corrosiohis expressed in an
extremely striking way in the elastic properties.

Observation has not exhibited any well-defined numenieldtions between the
elastic constants of the same crystal (question In particular, the Poisson-Cauchy
relations (69) have not been confirmed. For rock sais, ttue that the single relation
that one deduces for the cubic system — nansely; c44 — is fulfilled approximately. By
contrast, it is not true at all for the other crystaf that system; for pyrite and sodium
chlorate, even the signs of, andcy4 disagree. Similarly, in the other systems, along
with isolated approximate disagreements, such as for,beng will also find large
divergences.

The hypothesis of molecular forces that act along the line of centers pedddepon
only the distance must be regarded as having been definitively refutaddayresults.
The fact that it is unlikely for other reasons was erpld already on page 10.
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As for the numerical values of the elastic modud aonstants, without a doubt, there
IS no reason to enumerate them here. We make ltbwvifog remarks:

The absolute numerical values of the elastic moahdi extremely different for the
various crystals that were studied. In general, théebasith the greatest rigidity possess
the smallest moduli and the largest elastic resistance

Upon taking the unit of force to be the gram-weight thedunit of length to be the
millimeter, one will have, for sodium chlorate, fora@exple:

s’ =24.1x 10°%, s, =12.3x 10°%, so, = 82.1x 10°,
for topaz:

s’ = 4.34x 10°, ), =—0.65% 107, S0, = 9.06x 10°,

s’ =3.46x 10°, s =-0.84x 107, so. =7.37x 10°,

s}, =3.77x 10°%, s, =—1.35x 107, o, = 7.49% 10°,

However, that rule is far from general: For examfade pyrite, one will have:
s =2.83x 107, s’ =0.43x 10°%, 0, =9.30x 10°.

From what was said on page 3§, = s, for h andk equal to 1, 2, 3, but > k andh

< k measures the transverse dilatation in the directibthe coordinate axis that
corresponds tb for tractions that are parallel to the coordinate &has corresponds tio
For those moduli, as one would expect from the expmrisnthat were done with
isotropic bodies, observations would give negative walie most cases. The
longitudinal dilatation is accompanied by #&ansversal contraction Topaz is one
example. However, that property is not general. Aumabers above that relate to pyrite
and sodium chlorate show that cylinders that are cut fhmse substances parallel to one
of the principal axes and dilated longitudinally will alsxperience a transverse
dilatation, which is a result that seems a bit sunpgisi

The general research into the existence of uniquei@aduin these elastic problems
(i.e., on the possibility of several states of equulibrifor given external actions and
infinitely-small displacements, v, w) has led to the result that the existence of just one
solution can be proved in a general manner only in treewehsre the elastic potentfab
essentially positive.

The general conditions for that to be true were giwedacobit). They are satisfied
or not according to the numerical values of the elgsrameters. It is then interesting to
see whether the complete systems of parameterhdlat been determined satisfy the
Jacobi conditions. Wesendond ltas done that research and showed that, in rediity, t
elastic potential is an essentially-positive function in the crystakst were studied.

21. Application of the preceding results to isotropic bodieshe results that were
developed above give rise to some interesting applicattaastropic bodies.

(%) Jacobi, Crelle’s Journ&B (1857), 281; K. WESENDONCK, Wied. Ang5 (1888), 21.
) K. WESENDONCK, Wied. Ann36 (1888), 725.
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In Part Two, we have shown that the elastic forswwi#h one constant that yield the
oldest molecular theory are not confirmed by experisieiow, one can suppose that
the introduction of the general laws of molecular actiwith which, the most recent
theory of action-at-a-distance operates, and by whiehfadhmulas of crystal elasticity
arrive at an agreement with the theory of immediat@a and with experiments, will
lead in an analogous manner for isotropic bodies to flasnwith two constants that the
theory of immediate action yields and which are in egrent with observations.

However, that is not true immediately, because if coesiders an isotropic body to
be a collection of elementary masses callmdleculesthat all possess relative
orientations then the definition on page 12 of thesstemponents will show that the
manner by which the molecular actions depend upon tketwins in them will have no
influence on the values of the sums in question. |dther are the same ones that one will
get if one makes a constant form of a certain mean mo@gnact in place of the force
that varies with direction, and the same relatiotwben the two elastic constants that
gave the old molecular theory will result from it.

Direct examination suggests another way of imaginingape bodies that will lead
to some new and more satisfying resuljs (

All metals and almost all compact rocks immediatelespnt themselves as
collections of crystals whose size varies with thiewnstances, which are juxtaposed in
all possible orientations. In other bodies — fornegke, in certain types of glass — the
same structure is made visible by the etching of a polistiddce. One can then assume
that a structure of that tygevhich is calledquasi-isotropi¢ by the author) is the rule in
nature.

When the individual crystallites are large with respecthe sphere of activity of
molecular force, but small with respect to the dimamsiof the body, and when they fill
up space completely without any intermediate layers thigiht have a loose and
powdery consistency, one can calculate the mean vafube stress components, and in
turn, the elastic constants of the quasi-isotropic bobiesstarting with those of a
homogeneous crystal.

From the fundamental hypothesis, any plane that ds tlaiough a quasi-isotropic
body will cut the individual crystallites in all possildeientations, and the portions of the
plane that is contained in each of them will be lamgé respect to the molecular sphere
of action. It then results thtte components of the pressure against such a plane can be
equated to the arithmetic mean of the values that the analogous componenistheke i
homogeneous crystal for all possible orientations of the surface element.

Consequently, if one starts with the formulas:

(89) { _xx:Cn)&'*'Clzyy'*""'*' Ge X%

_Yz =Xt Gy yy+"'+ Ge %
then if one forms these expressions for all possibéntations of theX, Y, Z system with
respect to the principal systexs, Yo, Zo, when one takes their arithmetic mean, one will
obtain the values of the normal and tangential comgdsneinthe stress for the quasi-
isotropic body. The resulting expressions take the:form

() W. VOIGT, “Theoretische Studien, etc.” pp. 48; Wied. AB&(1889), pp. 573.
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-X = ,
(90) { x_quyﬁq;
- Z_ECZyZ’

in whichc, ¢, ¢, signify:
(91) C=1(BA+2B+4), c=t(A+4B-2), =1(2A-2B+4d),
in which one has set:

(92) Qi+ Cppt G = 3A, G+ 0y + 0, =3B, Cyy+Cygt G = T,
to abbreviate.

A, B, I are then certain simple means 0% 3 = 9 principal constants with similar
meanings. The other 12 principal constants do not enterti formulas for the
constants of a quasi-elastic body at all.

From (91), one will always have the relation:

(93) c2=(-0q)

between the constants ci, ¢, of equations (90) that the old molecular hypothesis
provided, along with the theory of immediate actiom$owever, there is generally no
other relation between the constantSsormulas (90) and (93) are then identical with the
results of the theory of immediate action.

It is only in the case where the molecules of thaviddal crystals possess no
polarity, and in which, from (59), the Poisson-Cauchyrialas:

0 — 0 _ A0 0 _ A0
C44_C23’ C45_031’ C66_C12

will consequently be valid, that one will have B =and in turn:
CL = %Cz, c=3 .

It is the Poisson relation for isotropic bodies testablishes the transition to the elastic
formulas with just one constant and for whose verificabne will carry out research
with the most varied successes.

Starting from the viewpoint that was explained above diliersity of the rati@ / ¢;
in various bodies is perfectly comprehensible. Fostaty whose elastic constant have
been determined, the raid c; is easy to calculate with formulas (91) and (92), arel on
will find the most extreme variety in the numbers, vihstarts with 13.7 for rock salt and
descends down to negative values for pyrite and sodiurnatél

As for the verification of that theory by experimerase must take into account the
difficulty that resides in the rarity of the quasitispic bodies of the supposed
composition, which exists simultaneously with the crgstd the same material that are
susceptible to measurements. The compact (quasi-isotragpiefies generally present
individual crystals that are weakly agglomerated by powdsagses of extremely small
elastic resistance. It is then natural that thepukhgive resistances that are noticeably
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weaker than the ones that were derived by means of fasnf@1) and (92) from the
measurements that were made by the author in collaomsith Drude ). Meanwhile,
one can show that it is plausible that those pertionmbhave effects that are proportional
to the different sums that enter into the formdtasthe stresses, and in turn, despite the
diminution of the absolute value of the constaraslc;, their ratio must have roughly the
theoretical value.

If one compares the values ©f c; that are observed for compact varieties with the
ones that are calculated by means of the elasticardssbf a homogeneous crystal then
one will find an approximate agreement. What is partibulstriking is the manner by
which the two varieties of amorphous silica compar¢htwse of quartz. As was said
above, the latter will give the exceptionally high numbg13.7, in place of Poisson’s
number 3. For flint, observation gave 11.7, and for apalas 15.6. In order to better
judge the significance of those results, it is convertieronsider that, on the one hand,
it is not certain that flint and opal actually contaifica in the same modification as
quartz, and that, on the other hand, the directly-obbégwalues of the resistances to
elongation and torsioB andT combine in the expression for the ratio of the cons@ah
c:1 in such a fashion that the result will possess aivelgtiow degree of certainty.

Consequently, it is better to make the comparisorheftheory and observation on
the basis of the rati& : T itself. From the Poisson-Cauchy relations, that gtjargi
equal to 2.5 for all bodies, so the theory that wasldped above will demand that one
get 2.13 for quartz, while observations give 2¢lfar flint and 2.13 for opal. That
excellent agreement is a confirmation of the greatase for the theory.

THESIS

The observations that have been made up to today agtkethei equations of
elasticity with 21 constants in all of their aspects.

Some crystal groups that can have different elastipgrties from the general theory
have always been found to be different, up to the present.

The Poisson-Cauchy relations between the elastic constants are verified
approximately in certain cases, but in most of theny, #ne not even close.

The elastic properties of isotropic bodies can be aaxed by the molecular
hypothesis only if one assumes that those bodies arpased of crystal fragments.

APPENDIX
Theory of thermoelasticity (%).

In the preceding exposition, one exclusively imaginextimnical forces that acted
upon crystals (except for volume moments, which wereud&ed in passing, and which
are barely realizable mechanically). However, onensnthat elastic forces can be put
into play by other phenomena, such as the action ¢f &ded electric and magnetic fields,
in particular. Each of those actions will give risetheoretical considerations that are

() W. VOIGT and P. DRUDE, Wied. And2 (1891), 537. — W. VOIGTipid. 44 (1891), 170.
() W. THOMSON, Quart. Jour. Math.(1857), 57. — N. SCHILLER, Jour. russ. phys. Gds(1879),
6. Especially for crystals: W. VOIGT, Wied. A6 (1889), 743.
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important generalizations of the preceding ones. Spateitpeus to give only some
brief suggestions about those questions.

One considers those phenomena to be reversible thehmodynamic sense, and one
consequently represents their laws most convenientljnégns of the function that is
called thethermodynamic potentialvhose existence is precisely the expression for that
reversibility, and whose derivatives, one knows, provalk of the characteristic
guantities of the phenomena considered in the simpleshen.

Let Q denote the thermodynamic potential per unit volume farystal. In the
phenomena considered, it will depend upon not only the tidataomponents, ..., Xy,
but also the variatiom of the temperature and the componefit¥, Z andA, B, C of the
electric and the magnetic field.

From the principles of thermodynamics, minus the fiestial derivatives of2 with
respect to the components of the dilatatign ..., X, will then provide the general
components of the stress, ..., =y, and the derivatives with respect to the components of
the electric and magnetic field will give the electnomentsé, 7, { and magnetic
momentsa, £, y per unit volume. Minus the first partial derivative hwitespect to
temperature will give the increase in entropy per unit meluhat is determined by the
other arguments. If one is always dealing with dilatatomponents that are extremely
small, as well as temperature variations that arewige very small and weak field
components, then one can devef@dpin powers of those variables and keep only the
terms of lowest degree that appear (viz., the onescohgedegree). The specialization
of that expression for the various crystallographicesyst can then be made from the
principles on page 30, and the best way of doing that isnake a convenient
decomposition of2 into simpler terms, as was done on page 18.

For the phenomena of thermoelasticity, only the teimas depend upog,, ..., Xy,,
and r will occur. HereQ is then composed of a function that is homogeneouscohde
degree in the, ..., X, —i.e., an ordinary elastic potentfat a term in7?, and a term that
is bilinear inT andx, ..., X, . We can then set:

(94) Q=f—T(quX+GYy+ ... +0s %) — 21 77,

in which theq, andr represent constants.
One will then have the formulas:

for the stress components, in whicky, ..., Xy have the values that were indicated in
(41). The termsy 7 are then the thermal components of stress, whicladded to the
purely elastic or isothermal componeHMis ..., Xywhen the temperature changes.

For example, if there are no external actions thgn.., =, will be zero, and upon
substituting the values (41) fo%, ..., X,, some expressions for the components of the
dilatation that corresponds to the variation in terapee r will result from (95) that will
have the form:

(96) X«=ay T, W=a T, v Xy a6 T,
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The coefficients of thermal deformatiom awhich are defined by these equations, will
then be given by the formulas:

(97) = S1tg2Set ... +0sSs,
which will also give:
(98) Oh=a1Cut+aCp+ ... +3Chs

when it is solved for the .

The latter formulas are particularly interestingcdugse they make it possible to
calculate the constantg of the thermal stresses by starting with the comstahelastic
and thermal deformation that are accessible to expetim Moreover, their
determination will permit one to perceive, on the oardj the absolute magnitude of the
stresses that are produced by the temperature variatindspn the other hand, they
permit one to appreciate if and how much those stressgswith direction in the crystal.

In regard to those questions, observation shows teathdgrmal stresses, like the
elastic stresses, are functions of the orientatiotiie surface element on which they act,
that they are positive, even when the crystal contriactsie direction by heating, and
that the effect of an elevation in temperature can géipdre annulled by a pressure that
is uniform in every direction.

From the preceding, one infers the expression:

(99) H=thx+ QY+ ...+0sX, +r T

from (94) for the increase in entropy per unit volume that will correspond to the
deformatiorx,, ..., %, and the variation of temperature

If ©p represents the initial absolute temperature by startong which one will count
the (small) increase then, from the principles of thermodynami€; H will be the
qguantity of heat per unit volume in the crystal, as medsarenechanical units, ar@/ r
will be thecaloric capacityl” per unit volume.Consequently, ®, will be equal to that
capacity in the case where the deformation is lacking.

When the phenomenon is adiabatic — i.e., there exobange of heat — one will have
H = 0, and that equation will give the valweof the variation of temperature that is a
consequence of only the deformation when one substitigesxgression given by (99)
for H. If one substitutes that value in the expressions {86)the general stress
componentsy, ..., =y then one will obtain expressions that are homogengoxs ...,
Xy that play the same role for all adiabatic elastienmmena that the fundamental
formulas (41) play for isothermal phenomena. In ptEdie isothermal elastic constants
Chk, ONe will find adiabatic constants, that are related to the preceding ones by the

formulas:

(100) G = O Bk

One must similarly append adiabatiodulito the isothermal elastic moduli, which were
all that was employed above. The author has calillite adiabatic parameters for the
crystals when one knows the isothermal parameters. differences between those two
types of quantities are very noticeable for some bodies
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The isothermal and adiabatic phenomena are thenextoases in which the real
phenomena are approached closely enough to be identitiedhem in certain cases.

We consider an elastic phenomenon to be isothemmanh it is produced in a medium
at constant temperature slow enough that the variafitemperature that is produced by
the deformation itself, by the preceding, will have enotigie to disappear almost
completely by thermal conduction. We consider it t@thabatic when the modifications
are produced fast enough that the thermal conduction @e@ dnly extremely small
effects. The former case is that of the methodstaifc observation, while the latter one
is the one in which all vibrations are rapid, which igttbf acoustic phenomena. In the
former case, one is consequently authorized to opeittehe isothermal constants and
moduli, while in the latter, one can work with theadsditic constants and moduli.

Just as the considerations above provide, at the same the laws of thermal
deformation and those of the heat of deformation, anhgilwhen one takes into account
the electric field components, some analogous considiesavith a generalized potential
Q will give the laws of piezoelectricity and pyroelacty, as well as the reciprocal
phenomena of electrostriction and the electric heatingrystals. However, we are
obliged to settle for a simple mention of the existericdose relationships here.




