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Introduction.  
 

 1. Goal and plan of the present report. – The organizing committee of the Congrès 
international de Physique, while requesting that the author give a report on the present 
state of our knowledge of the elasticity of crystals, expressed the desire that this account 
should contain, in addition to a documentation of the recent progress in the theory and 
experiment, some general views on the use of symmetry relations in the physics of 
crystals, and some proposal for a uniform nomenclature in the domain of elasticity. 
 It can be only an honor and a pleasure for the author to contrast the experimental 
study of the elasticity of crystals (1) with the general theory of elasticity, as he has 
dedicated part of his lifework to the exploration of those domains, and that proposal 
comes from the country in which the general theory of elasticity was born, and in which 
the premier scientific association has designated it (with three reiterations) to be one of 
the most important questions. 
 The following presentation, in which the author has sought to respond to that desire, 
is composed of six parts, which are preceded by some general remarks on the scientific 
nomenclature. 
 Conforming to a suggestion that the committee made to the author expressly, the first 
part is occupied with some general properties of the particular directed quantities that 
play a significant role in elasticity, and that the author has described with the name of 
tensors to the vectors that are essentially their parents.  In that presentation, we have tried 
to principally summarize their properties that will be important in the rest of this paper, 
                                                
 (†) Translated from the French translation of the German original by P. Weiss, Maître de Conférences 
on the science faculty at Lyon. 
 (1)  Comptes rendus, 71 (1870), 160; ibid. 75 (1872), 1391; ibid. 81 (1875), 1369. 
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without at the same time neglecting the suggestions for the use of tensors in other parts of 
physics. 
 Part Two presents the methods that have been followed in the development of the 
theory of elasticity (viz., action at a distance and immediate action), and are attached to 
the general properties of the components of stress in deformed bodies. 
 Part Three deduces some relations between the stresses and deformations in elastic 
bodies, while especially taking into account the rotations of molecules with respect to the 
volume elements.  It introduces two systems of elastic parameters (constants and moduli) 
and shows how they behave under changes of coordinates. 
 Part Four discusses the general principles of the application of some elements of 
crystalline symmetry to the use and specialization of various scalar functions, and 
especially the elastic potential. 
 Part Five begins by specifying some questions that can be answered by determining 
the elastic parameters of the crystal and then giving the set of formulas that are necessary 
for the calculation of the observations. 
 Part Six contains a general overview of some observations regarding the elasticity of 
crystals and their application to the explanation for some experimental facts that have 
been discussed for some time now and that belong to the realm of the elasticity of 
isotropic bodies. 
 An Appendix contains the statements of some laws of thermo-elasticity. 
 The conclusion of each part is composed of a small number of directed propositions – 
or theses – that are intended to clearly summarize the most important questions that were 
raised or resolved in that part. 
 
 
 2. Scientific nomenclature. – The branches of science in which the deeper study of 
the special problems that precede the development of the general theory are generally 
devoid of any systematic nomenclature.  Elasticity, in which the cases of tension, flexion, 
and compression, in any sense of the terms, have been observed since the earliest times, 
is a striking example of that.  The older terms – in particular, the terms for the simplest 
parameters (e.g., coefficient of elasticity, modulus of elasticity) – are less than 
characteristic and are not employed uniformly by all authors.  One can also point out the 
indeterminacy in some of the terms of large elasticity (grande élasticité), or of very 
elastic bodies, which can be employed for simple deformations, as well as in cases of 
great resistance to the deformation. 
 The necessity for such reforms have been sensed for some time now, and has 
provoked the creation of a certain number of new terms for the case of isotropic bodies 
(1) that realize some appreciable progress, but for the most part, were conceived in too 
narrow a context to be extended to crystals.  By contrast, for quite a few years now, the 
author has appealed to a nomenclature for some parameters that was created especially 
for the elasticity of crystals and that can be transported immediately to isotropic bodies, 
and whose use, it seems, has been generalized little-by-little in Germany. 

                                                
 (1) W. THOMSON, Trans. Roy. Soc. 24 April 1856, 18 May 1865.  Article “Elasticity” in the 9th edition 
of the Encyclopoedia Britannica, 1878.  
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 Scientific terms must be (at least, in the opinion of the author) established in old 
languages, or be sufficiently clear that they can be easily translated.  Brevity of 
expression implies that in the former case. 
 Indeed, that rule has been observed very generally up to now, and the striking 
exception of the expression curl, which originated in England during the last decade, 
apparently confirms that.  That term has only the advantage of brevity.  It is based less in 
the nature of the object than the Latin word vortex (Fr. tourbillion), whose significance 
has been established for thirty years now, and whose abbreviated form vort can be 
employed as a symbol, as well as cos for cosine. 
 How short a term can be is inversely proportional to the generality of its usage, as the 
terms “electric permeability” and “magnetic permeability” that Maxwell introduced show 
in a convincing manner.  Although they are attached to a very specify interpretation of 
certain phenomena and are very lengthy, those terms were quickly popularized, thanks to 
their intuitive character. 
 The author’s proposals regarding the nomenclature of the elasticity of crystals will be 
developed later on.  Here, in the Introduction, we shall remark only that this terminology, 
when adapted to the problems in the elasticity of crystals, was conceived in a very 
general manner.  It is then perfectly compatible with a simplification and a modification 
of some terms in the case of isotropic bodies.  However, in the interests of unity, there 
was good reason to proceed according to some principles that do not establish a 
separation between isotropic bodies and crystals that is too sharp. 
 
 

I. – Some tensors and triple-tensors (1). 
 
 3.  Tensors. – In elasticity, in addition to scalars and vectors, one encounters a third 
type of functions that play an important role that is almost always attributed to vectors, 
although they possess completely different properties.  The only common character to the 
last two types of functions – namely, that they are represented by a number and a 
direction – has no fundamental significance, as a deeper examination will show.  Indeed, 
that direction has an essentially different character for the two types of quantities: 
Vectors possess two sides with different values, while these new quantities possess two 
equivalent sides, which entails some essential differences in their analytical properties. 
 The author has proposed the name tensors for those functions, which, like that of 
vector, is derived from a simple example and picture (viz., the simple elongation of a 
volume).  We shall appeal to it in what follows. 
 Since the number of elements that fix a tensor T or a vector V is the same – viz., three 
– one also seeks to express the magnitude and direction of a tensor symmetrically in 
terms of components along the coordinate axes.  However, while the projections of a 
vector onto the axes: 
 
(1)   F = V cos (V, X), G = V cos (V, Y), H = V cos (V, Z) 
 

                                                
 (1) W. VOIGT,  Die fundamentalen Eigenschaften der Krystalle, Leipzig, 1898, pp. 20, et seq. 
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suggest themselves naturally, they are not useful for a tensor, because those projection, 
which will not change when one changes both the sign of V and its sense, correspond 
precisely to the unilateral character of the vector that distinguishes the tensor. 
 By contrast, the bilateral character of a tensor is expressed equally well by two 
different types of functions that can be considered to be its components along the axes, 
because each of those functions exhibits one of the axes with respect to the other two. 
 We call the expressions: 
 
(2)   A = T cos2 (T, X), B = T cos2 (T, Y), C = T cos2 (T, Z) 
 
components of the first kind. 
 They completely determine the magnitude of T by the formula: 
 
(3)      T = A + B + C, 
 
and its direction, by contrast, is determined incompletely by: 
 

(4)   cos2 (T, X) = 
A

T
, cos2 (T, Y) = 

B

T
, cos2 (T, Z) = 

C

T
, 

 
since the trihedron in which one finds T remains indeterminate.  We call the expressions: 
 

(5)     

cos( , ) cos( , ),

cos( , ) cos( , ),

cos( , ) cos( , )

A T T Y T Z

B T T Z T X

C T T X T Y

′ =
 ′ =
 ′ =

 

 
components of the second kind. 
 They determine the magnitude of T entirely by the formula: 
 

(6)     T =
B C C A A B

A B C

′ ′ ′ ′ ′ ′
+ +

′ ′ ′
, 

  
except when T coincides with one of the axes.  The expression is then indeterminate.  By 
contrast, the direction of T is then always determined unambiguously by the formulas: 
 

(7)    cos (T, X) : cos (T, Y) : cos (T, Z) = 
1 1 1

: :
A B C

. 

 
 Since three elements suffice to determine the tensor, it will result that the two types of 
components are mutually dependent; indeed, one has: 
 
(8)  A′2 = BC, B′2 = CA, C′2 = AB, 
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(9)  A = 
B C

A

′ ′
′

, B = 
C A

B

′ ′
′

, C = 
A B

C

′ ′
′

. 

 
 For certain positions that are determined by a coordinate system, a component of the 
first kind can be identical to the tensor itself, but that will never happen for a component 
of the second kind.  The components of first kind then have the same nature as the tensor, 
while the components of the second kind have a different nature. 
 The vectorial quantities can always be made positive by an appropriate choice of 
positive direction for them.  Tensors are neither positive nor negative.  The components 
A, B, C always have the sign of T itself, while A′, B′, C′ can have the same sign as T or 
the opposite one. 
 If one sets T = ± V2, according to its sign, and if one attributes one of the directions 
for T to V then the components A, B, C will be represented by the squares of the 
components F, G, H of the vector V, while the A′, B′, C′ will be represented by the 
products of those components.  The components of the first kind of tensors will then 
transform like the squares, while those of the second kind will transform like the 
components of vectors. 
 
 
 4. Tensor triples. – In nature, tensors are encountered mainly in groups of three 
whose directions are mutually orthogonal, but whose magnitudes are independent.  We 
shall call such a system a tensor triple (1) and denote it by T1, T2, T3 . 
 A tensor triple is determined entirely, in magnitude and position, by the six sums of 
parallel components of the same type of the terns that comprise them: 
 
(10)   A = hA∑ , B = hB∑ , C = hC∑ , 

 
(11)   A′ = hA′∑ , B′ = hB′∑ , C′ = hC′∑ , h = 1, 2, 3. 

 
 In order to prove that, consider the tensor: 
 
(12)  Θ = A cos2 (Θ, X) + B cos2 (Θ, Y) + C cos2 (Θ, Z) 
  + 2A′ cos (Θ, Y) cos (Θ, Z)  + 2B′ cos (Θ, Z) cos (Θ, X)  
  + 2C′ cos (Θ, X) cos (Θ, Y), 
 
which has the same type as A, B, C, since it coincides with those three values for certain 
particular directions of Θ.  Replace Θ with 1 / r2 on the left, where r represents a length 
that is carried by both directions of Θ.  The equation: 
 

(12)  
2

1

r
= A cos2 (r, X) + B cos2 (r, Y) + C cos2 (r, Z) 

  + 2A′ cos (r, Y) cos (r, Z)  + 2B′ cos (r, Z) cos (r, X)  
  + 2C′ cos (r, X) cos (r, Y) 
                                                
 (1) In German: Tensortripel.  
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represents a centered surface that will have degree two that is referred to its principal 
axes when A′, B′, C′ are zero.  However, that will be true only if all the hA′ , hB′ , hC′  are 

zero individually.  In that case, from what was said on page 5, each of the A, B, C will be 
identical with one of the T1, T2, T3 .  The principal axes of the surface (13) will then give 
the tensor triple T1, T2, T3 in both magnitude and direction. 
 
 Just as the components of vectors are deduced by the parallelepiped construction, a 
tensor triple is determined by the construction of the second-degree surface that was 
considered above, which call the ellipsoid construction, to abbreviate. 
 Here, we point out that a very important category of functions in rational mechanics 
has the same character as the components of tensors.  The moments of inertia of a body 
with respect to the coordinate axes are the components of a tensor of the first kind; the 
moments of deviation are the components of the second kind.  The tensor triple that 
corresponds to those components is that of the principal moments of inertia. 
 Like the components of a unique tensor, those of a tensor triple behave like the 
squares and products of the components of a vector under coordinate transformations.  It 
then results that they have a character that allows one to know whether one can consider 
six functions that are pair-wise referred to the same coordinate axis to be the components 
of a tensor triple.  When the properties of requisite transformations exist, one can deduce 
the tensor triple that corresponds to those six quantities by the method of the ellipsoid. 
 One knows that the transformations of the components F, G, H of a vector into 
another coordinate system can be performed by means of the same coefficients as the 
reciprocal transformation.  Let αh , βh , γh be the direction cosines of one of the systems X, 
Y, Z with respect to the other X0, Y0, Z0 ; Consequently, one can represent the relations 
between the components in the two systems by the following table: 
 

(14)     0 1 1 1

0 2 2 2

0 3 3 3

F G H

F

G

H

α β γ
α β γ
α β γ

 

 
 The same (orthogonal) relations exist for the six expressions: 
 

F2, G2, H2, GH 2 , HF 2 , FG 2 , 

 
and consequently, they will also exist for the expressions that are obtained by means of 
the components of the tensor: 
 

A, B, C, A′ 2 , B′ 2 , C′ 2 . 

 

 The system of coefficients of the transformation is then, upon setting 2 = r : 
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(15) 

2 2 2
0 1 1 1 1 1 1 1 1 1

0 2 3 1 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3( ) ( ) ( )

A B C rA rB rC

A r r r

rA r r r

α β γ β γ γ α α β

α α β β γ γ β γ γ β γ α α γ α β β α

′ ′ ′



 ′ + + +



⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

 

 
We represent that table in the abbreviated form: 
 

(16)    0 11 12 13 14 15 16

A B C rA rB rC

A δ δ δ δ δ δ
′ ′ ′

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

 

 
 
 5. Relations between scalars, vectors, and tensors. – When a scalar magnitude S is a 
function of a vector V, or to express that symmetrically, of its components F, G, H, the 
derivatives: 

(17)    Fs = 
S

F

∂
∂

, Gs = 
S

G

∂
∂

, Hs =
S

H

∂
∂

  

 
are, as one knows, the components of a vector of a particular type.  The most important 
case is the one in which S is a function of the coordinates x, y, z. 
 In an analogous manner: 
 

(18)   

2 2 2

2 2 2

2 2 2

, , ,

, ,

s s s

s s s

S S S
A B C

F G H

S S S
A B C

G H H F F G

 ∂ ∂ ∂= = = ∂ ∂ ∂
 ∂ ∂ ∂ ′ ′ ′= = =
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
are, conforming to their transformation properties, the components of a tensor of a 
particular kind. 
 When the scalar S is a function of a tensor triple – i.e., of the six components A, B, C, 
A′, B′, C′ – the derivatives: 
 

 A1 = 
S

A

∂
∂

, B1 = 
S

B

∂
∂

, C1 = 
S

C

∂
∂

, 

 1A′  = 
1

2

S

A

∂
′∂
, 1B′  = 1

2

S

B

∂
′∂
, 1C′  = 

1

2

S

C

∂
′∂
 

 
will likewise be the components of a tensor. 
 Those properties are attached to the property of the two derived quantities: 
 
(20)   S = F1 F2 + G1 G2 + H1 H2 , 
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and 
(21)   S = A1 A2 + B1 B2 + C1 C2 + 2 1 2 1 2 1 2( )A A B B C C′ ′ ′ ′ ′ ′+ + , 

 
one of which is deduced from two vectors, and the other of which is deduced from two 
tensor triples, that they must be scalar functions. 
 When a vector V1 is given as a function of another vector V, one can deduce the 
components of a vector or tensor by the following operations: 
 

(22) F2 = 1 1H G

G H

∂ ∂−
∂ ∂

, G2 = 1 1F H

H F

∂ ∂−
∂ ∂

, H2 = 1 1G F

F G

∂ ∂−
∂ ∂

, 

 

(23) A2 = 1F

F

∂
∂

, B2 = 1G

G

∂
∂

, C2 = 1H

H

∂
∂

, 

 

2A′  = 1 11

2

H G

G H

∂ ∂ + ∂ ∂ 
,  2B′  = 1 11

2

F H

H F

∂ ∂ + ∂ ∂ 
,  2C′  = 1 11

2

G F

F G

∂ ∂ + ∂ ∂ 
. 

 
 If the functions F1 , G1, H1 have the same nature as the Fs , Gs, Hs  in (17) then F2, G2, 
H2 will be zero, and A2 , …, 2A′ , … will become identical to the As , …, sA′ , …, resp., in 

(18). 
 Here again, the usual case is the one in which the components of the independent 
vector are the coordinates.  The correlation that is represented in (22) is then the one that 
has been denoted by V2 = curl V1 or V2 = vort V1 . 
 The general case gives rise to an important remark from the standpoint of principles.  
In several places in the physics of crystals, one encounters linear relations between 
vectors.  For example, let: 

(24)    
1 11 12 13

1 21 22 23

1 31 32 33

,

,

,

F F G H

G F G H

H F G H

λ λ λ
λ λ λ
λ λ λ

= + +
 = + +
 = + +

 

 
and apply equations (22) and (23) to those relations; they will become: 
 
(25) λ32 – λ23  = F2 ,  λ13 – λ31 = G2 ,  λ21 – λ12 = H2 , 
(26) λ11  = A2 , λ22 = B2 , λ33 = C2 , 
 1

2 (λ32 + λ23) = 2A′ , 1
2 (λ13 + λ31) = 2B′ , 1

2 (λ21 + λ12) = 2C′ . 

 
 The nine constants in equations (24) then represent the three components of a vector 
and the six components of a tensor.  In certain cases (for example, in the cases of 
magnetic or dielectric influence), one will have the relations λhk = λkh .  In others (for 
example, in those of the conduction of heat and electricity), they will be valid only for 
certain crystalline systems.  When they are true, the crystal will be characterized 
completely for the phenomena in question by just one tensor triple that belongs to it 
individually; in the contrary case, one must append a vector. 
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 That remark, to which one can add some others, is important, since it shows that not 
just variable quantities, but also constant parameters, can have the nature of the 
components of vectors and tensors. 
 

THESIS 
 

 Tensors have a certain kinship with vectors, insofar as they are directed quantities.  
However, the bilateral character of tensors will determine the essential differences 
between their properties. 
 Tensor triples, with their six independent components, which are generally 
encountered in tensorial phenomena, have no analogue in vectors. 
 Since the tensor triples that one encounters in the most varied topics in physics are 
variables, as well as constant parameters, in addition, one agrees to make tensors the 
object of an independent study. 
 
 

II. – General properties of stresses in deformable bodies. 
 

 6. Theory of action-at-a-distance and immediate action. – Like many other branches 
of theoretical physics, elasticity was first explored with the aid of a particular conception 
of the mechanics of the phenomena that we call the molecular hypothesis.  Under that 
hypothesis, the structure of a body is supposed to be constructed from distinct elementary 
masses – viz., molecules, in the broad sense of the term – which are maintained in their 
positions or displaced by mutual actions that have perceptible magnitudes only for 
imperceptible distances.  More particularly, for an undeformed, homogeneous crystal, 
one assumes that its molecules are identical, oriented in the same manner, and regularly 
distributed in such a fashion that each molecule is surrounded by other ones in the same 
manner.  The distances over which those mutual actions are exerted are considered to be 
very large in comparison to the distances between neighboring molecules, and one agrees 
that the deformations will vary in space slowly enough that, even in the deformed body, 
the distribution of the molecules can be considered to be regular, in the sense that was 
suggested above, in the extent of the sphere of molecular activity. 
 The molecular theory – or action-at-a-distance – that was founded upon these 
particular concepts by Navier (1), Cauchy (2), and Poisson (3) soon fell into disfavor.  
Indeed, it made the elastic properties of an isotropic body depend upon just one 
parameter, while numerous observations seemed to contradict that result. 
 That is why a new theory was generally adopted after some time that established the 
elementary laws of elasticity by assuming that matter was continuous and that the mutual 
actions between the portions of neighboring matter were localized to their separation 
surface by a process that had served as an example for other branches of physics, and 
deduce some fundamental formulas of elasticity, such as the center of gravity theorem, 

                                                
 (1) NAVIER, Mém. de l’Acad. 7 (1827), 375.  
 (2) A. CAUCHY, Exerc. de Math. 3 (1828), 188 and 214.  
 (3) S.-D. POISSON, Mém. de l’Acad. 8 (1829), 357; Journ. de l’École Polyt., Cah. 20, 8 (1831).  
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the area theorem, and the energy equation, as it applied to conveniently-chosen volume 
elements (1). 
 Contrary to the preceding theory, the theory that we shall call the theory of immediate 
action gives two constants that are characteristic of isotropic media, and all of its results 
found to be in accord with observations.  Much later, after the molecular theory of 
elasticity had encountered some difficulties in the study of isotropic bodies, it also 
experienced one defeat after another in the context of crystals.  Indeed, the laws that it 
provided for those bodies did not agree with observations, while the ones that were 
derived from the theory of immediate action were confirmed.  We shall develop that 
point in a more detailed manner later on. 
 If one sets no other goal than that of obtaining the elementary laws of elasticity in a 
form that answers to reality then one can declare that they should be satisfied by the 
results of the theory of immediate action without demanding to know why the molecular 
hypothesis leads to inexact results.  However, if one tends towards a general theory that is 
a consequence of matter and in which one will not lose sight of the remarkable results 
that were obtained in other domains with the aid of analogous hypotheses then one will 
find it informative to look for the reasons that would it seem to fail in the domain of 
elasticity.  That search shows that the old molecular theory of elasticity started from a 
pointlessly-specialized fundamental concept, namely, the hypothesis of central molecular 
actions that depended upon only the distance, and that alone is why it failed. 
 Moreover, a very simple reflection on the mechanism of the growth of crystals would 
convince one of the inadmissibility of that concept, because the regular formation of a 
crystal in a solution or a melt is comprehensible only if a directing moment acts upon the 
particle that one associates with the crystal by giving it an orientation that is parallel to 
the ones that already compose the structure.  However, from the principle of the 
conservation of energy, mutual actions that are directed along the line of centers and 
depend upon only the distance are incompatible with such moments.  That is because the 
existence of moments demands a potential for the mutual action that depends upon the 
orientation, and that will lead to forces that vary with the orientation of the molecule and 
do not coincide with the line of centers, in general. 
 In his last, unfinished paper, Poisson (2) had already constructed a molecular theory 
that sought to take these circumstances into account.  However, he made some further 
restrictive hypotheses, and consequently, his results were more specialized than those of 
the theory of immediate actions, and were partially incompatible with experiments.  A 
more general presentation that has been envisioned by the author will be sketched out in 
what follows (3). 
 
 
 7. The components of stress in deformable bodies. – Ever since the fundamental 
work of Cauchy and Poisson, the general tendency has been to found the molecular 
theory of elasticity, not upon the consideration of a single molecule, but upon that of a 

                                                
 (1) S.-D. POISSON, Journ. de l’École Polyt. Cah. 20 (1831), 82; A. CAUCHY, Exerc. de Math. 4 
(1829), 293; G. GREEN, Camb. Phil. Soc. 7 (1839), 121. 
 (2) S.-D. POISSON, Mém. de l’Acad. 18 (1842), 3.  
 (3) W. VOIGT, “Theoretische Studien über die Elasticitätsverhältnisse der Krystalle,” Abh. d. Ges. d. 
Wiss. z. Göttingen 34 (1887), 3. 
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volume element that is large with respect to the sphere of molecular action, and 
consequently contains an extremely large number of molecules.  The molecules around 
the volume element then act upon only the molecules that are inside the separation 
surface in its immediate neighborhood and that will combine to give the stress 
components. 
 As one knows, the latter were defined by Cauchy and Poisson (1) to be the sums of 
the parallel components of the forces that all molecules (i) inside of a right cylinder that 
is raised over a surface element q experience as a result of all the molecules (e) that are 
situated on the other side of q, and divided by q ; i.e., when referred to a unit surface: 
 

| |i

q
. 

 
 Since the dimensions of the surface element are large in comparison to the distances 
over which the molecules act, in a homogeneous body, those components of the stress 
can be considered to depend upon only the orientation of the surface element.  In a body 
whose state varies in a continuous manner, they will be functions of the coordinates, in 
addition. 
 It is customary to fix the orientation of the surface element by the direction of the 
normal n, when counted positively on the side (i) where one finds the attracting masses; 
i.e., in the case where one is dealing with a surface element that surrounds the volume 
considered, it will be positive from the exterior to the interior. 
 As far as the notations for the components of stress are concerned, there can hardly be 
any doubt that only a symbol with two letters, one of which denotes the direction of the 
components and the other of which denotes that of the normal, will achieve the proposed 
goal.  One then arrives almost necessarily at the proposal that was undoubtedly made for 
the first time by Fr. Neumann (2) of letting Sn denote the component in the direction S of 
the pressure on a surface element whose (interior) normal is n.  From the definition that 
was given above, one will then have: 
 
(27)     q ⋅ Sn = ie

i e

S∑∑ , 

 
in which Sie is the component in the direction S of the force that is exerted by a molecule 
(e) on a molecule (i), and in which 

e
∑ is extended over all the molecules on the negative 

side of q, while 
i
∑ is extended over all molecules in the cylinder that is constructed on 

the positive side. 
 One will then have the system of notations: 
 

Xx, Xy, Xz, Yx, Yy, Yz, Zx, Zy, Zz 

                                                
 (1) A. CAUCHY, Exerc. de Math. 3 (1828), 213; S.-D. POISSON, Mém. de l’Acad. 8 (1829), 373; ibid. 
18 (1842), 47. 
 (2) FR. NEUMANN, Vorlesungen über Elasticitätstheorie, written in 1830, but published in 1885.  G. 
KIRCHHOFF, Crelle’s Journal 56 (1856), 285. 
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for the components that are parallel to the coordinate axes of the pressure against the 
surface elements that are parallel to the coordinate planes, so when one abbreviates this 
by Xx, … Zz, one will always suppose that they are written in that order. 
 Xx, Yy, Zz  can be called normal stresses, while Yz, Zy, Zx, Xz, Xy, Yx are called 
tangential stresses; similarly, more generally, one will have Ss, Tt, on the one hand, and 
St, Ts, on the other, when t ⊥ s. 
 Poisson (1) showed that, from the definition that was given above, the components of 
the pressure against the planes that are parallel to the coordinate planes is calculated in 
the following manner: One has: 
 

(28)  Xx = − 1
2 Sv xX , Yx = − 1

2 Sv xY, Zx = − 1
2 Sv xZ , etc. 

 

in which the sum S must be taken over all forces X, Y, Z that a molecule feels on the part 
of all of the other ones whose relative coordinates are x, y, z, and in which v represents 
the number of molecules per unit volume.  From these values for the components of the 
stress, one will get the relations: 
 
(29)   Xn = Xx cos (n, x) + Xy cos (n, y) + Xz cos (n, z), …, etc. 
 
One knows that the theory of immediate action likewise leads to these fundamental 
equations. 
 As long as one is dealing with pressures against the same surface element, the 
magnitudes Xn, Yn, Zn will be simple components of a vector and are consequently related 
to the resultant vector of the total pressure by the relations: 
 
(30)     2

nP  = 2 2 2
n n nX Y Z+ + , 

(31)  cos (P, X) = n

n

X

P
, cos (P, Y) = n

n

Y

P
, cos (P, Z) = n

n

Z

P
. 

 
 However, if one lets the direction n of the normal be arbitrary, while keeping the 
point of the body where one finds the surface element the same, then more complicated 
relations will come about. 
 Indeed, from the properties of the transformation of Xx, …, Zz that result directly from 
their definitions that are contained in (28), and also from equations (29) and (31) in a 
more complicated manner: 

Xx , Yy , Zz , 
and  

1
2 (Yz + Zy), 1

2 (Zx + Xz), 1
2 (Xy + Yx) 

 
will be the components of the first kind; by contrast: 
 

 (Yz − Zy),  (Zx − Xz),  (Xy − Yx) 

                                                
 (1) S.-D. POISSON, Mém. de l’Acad. 8 (1829), 374; ibid. 18 (1842), 51.  
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will be the components of a vector. 
 From page 5, the tensors that constitute a tensor triple have the same nature as the 
components of the first kind, and consequently, like them, they will be normal pressures.  
They are the principal stresses that we denote by P1, P2, P3 .  As one can see directly, the 
vector is the moment per unit volume that the body experiences as a result of internal 
stresses. 
 Up to now, we have considered the stresses that are due to forces that act between 
molecules, but it is certain that the moments – or couples – that act against them can be 
treated in the same manner. 
 They also intervene in the volume element considered only in the form of sums of the 
form of (27) that one can refer to by the expression moment stresses.  With respect to an 
arbitrary axis D, one can write: 
(32)     q Dn = ie

i e

D∑∑ , 

 
in which the sums must be performed in the way that was discussed on page 11. 
 In the particular case in which one takes the moments with respect to the coordinate 
axes and the stresses to act upon planes that are parallel to the coordinate planes, one will 
have the nine particular stress moments: 
 

Lx, Ly, Lz, Mx, My, Mz, Nx, Ny, Nz, 
 
which correspond to Xx, …, Zz . 
 The energy equation establishes a well-defined relation between the molecular 
moments and the molecular forces.  If one again employs the notations Xie , … and Lie , … 
for the components and moments that a molecule (i) experiences as a result of a molecule 
(e), and if one sets: 

xi – xe = xie , yi – ye = yie , zi – ze = zie 
 
for the relative coordinates then one will have (1): 
 
(33)    Lie + Lei + Zie yie − Yie zie = 0, etc. 
 
 In particular, if the molecules are oriented in the same manner then due to the 
symmetry Lie = Lei, , one will have: 
 
(34)    Lie = 1

2 (Yie zie − Zie yie), etc. 

 
 Since, by hypothesis, the molecules are reasonably parallel in the interior of the 
sphere of activity, even in the deformed body, the latter formula can be employed in the 
sums that give Lx , …, Nz .  However, since, from what was said above, the radius of 
activity must be considered to be an infinitely-small quantity (even a second order one), 
these sums will have the same infinitely-small nature with respect to the ones that give 

                                                
 (1) W. VOIGT, “Theoretische Studien über die Elasticitätsverhältnisse der Krystalle,” Abh. d. Ges. d. 
Wiss. z. Göttingen 34 (1887), 71. 
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the components of the stress Xx , …, Zz in a manner that is analogous to what happens in 
the theory of capillarity, in which the Laplace constant H is imperceptible with respect to 
the constant K.  If we skip over the particular cases that have no reason to be addressed 
here then we can abstract the introduction of moment stresses from the foregoing. 
 
 
 8. The general equations of motion. – The problems that concern a function inside of 
a volume demand that one state some conditions that must be fulfilled at any instant for 
any point of the interior, along with some conditions that refer only to the points of the 
surface, and some other ones that refer only to a well-defined instant.  There are no 
general terms for these various types of equations.  A terminology that conforms to the 
nature of the object is to call the first type fundamental equations, the second type surface 
conditions, and the third type, initial conditions. 
 The forces that can be exerted on deformable bodies decompose into forces that act 
upon the interior points and forces that act upon the points of the surface.  The former can 
be conveniently called spatial forces, or even volume forces or mass forces, according to 
whether are referred to a unit volume of mass, respectively.  The latter are called exterior 
stresses. 
 For reasons that were given above, we have no means of exerting exterior moment 
stresses; by contrast, we must assume the possibility of exerting the spatial moments on 
the exterior.  For example, that is possible when the elementary masses that we have 
called molecules possess electric or magnetic polarity, and the body is placed in an 
electric or magnetic field. 
 We represent the spatial components and the spatial moments with respect to the 
coordinate axes by X′, Y′, Z′, and L′, M′, N′ , resp., call the density ρ, and suppose that the 
infinitely-small displacements s have the components u, v, w, and neglect the products of 
the angular accelerations with the infinitely-small moments of inertia of the molecules.  
The fundamental equations of elasticity then take the form: 
 

(35)   
2

2

yx z
XX Xu

X
t x y z

ρ
∂∂ ∂∂ ′− + + +

∂ ∂ ∂ ∂
= 0, etc., 

 
(36)    Zy – Yz – L′ = 0, etc. 
 
 We write down the surface conditions by introducing the exterior stresses by way of 
the components (X), (Y), (Z).  They will be: 
 

(37)   nX  = (X), nY  = (Y), nZ = (Z), 

 
in which n denotes the interior normal to the surface element, and G  signifies that the 
function G must be taken on the surface. 
 In the particular case where one does not exert spatial moments on the body, formulas 
(36) will become: 
(38)   Yz = Zy , Zx = Xz , Xy = Yx . 
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 The only six independent stress components: 
 

Xx , Yy , Zz , Yz = Zy , Zx = Xz , Xy = Yx , 
 
which we shall always arrange in that order, are then themselves the components of the 
first and second kind of the tensor triple of principal stresses P1, P2, P3 . 
 Here, we remark that the components Xx, …, Xy are not only the elements that 
determine the tensor triple, they are equivalent to it. 
 

THESIS 
 

 The notation Sn for a component of the pressure that is parallel to S in a surface 
element whose (interior) normal is n is more expressive and more practical than any other 
and must be preferred. 
 It is convenient to classify the condition equations for spatial problems into 
fundamental equations, surface equations, and initial conditions. 
 The external forces that act upon the interior points can be called mass forces when 
they are referred to a unit mass and volume forces when they are referred to a unit 
volume.  In general, the latter notation is preferable. 
 
 

III. – Particular laws for stresses in elastic bodies. 
 

 9. General relations. – From the molecular theory, the nine components of stress are 
defined in a completely general manner by formulas (28).  Upon making the hypotheses 
that were stated in page 11 and assuming that the body is deformed by starting with a 
state in which all of the stresses are zero and applying continuous, infinitely-small 
displacements whose components are u, v, w and infinitely-small, continuous molecular 
rotations whose components are l, m, n, one can develop the sums that appear in those 
formulas (1). 
 The result of the calculation will be a system of nine equations of the form: 
 

(39)  

11 12 13

14 15 16

17 18 16 ,

x

u u u
X C C n C m

x y z

v v v
C n C C l

x y z

w w w
C m C l C

x y z

  ∂ ∂ ∂ − = + + + −    ∂ ∂ ∂  
 ∂ ∂ ∂    + − + + +    ∂ ∂ ∂   
  ∂ ∂ ∂ 
 + + + − +  ∂ ∂ ∂   

 

 
in which the Chk are characteristic parameters of the body (in the undeformed state), and 
the orientation of the coordinate axes, which are determined, on the one hand, by the law 
of elementary actions, and on the other hand, by the distribution of molecules in space 

                                                
 (1) W. VOIGT, loc. cit., pp. 21.  
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and between which, the relations Chk = Ckh are valid.  As a result, the number of 
independent constants Chk will be 45. 
 If there are no volume moments L′, M′, N′ that act upon the body − so if one 
consequently has, from (36), that: 
 

Yz = Zy , Zx = Xz , Xy = Yx , 
 

then one can eliminate the components of the rotation l, m, n in the formulas for the stress 
components by means of those relations. 
 The result of that operation consists of six expressions for the stress components: 
 

Xx, Yy, Zz, Yz = Zy , Zx = Xz , Xy = Yx , 
 
which are linear and homogeneous with respect to the six arguments: 
 

u

x

∂
∂

, 
v

y

∂
∂

, 
w

z

∂
∂

, 
v w

z y

∂ ∂+
∂ ∂

, 
w u

x z

∂ ∂+
∂ ∂

, 
u v

y x

∂ ∂+
∂ ∂

,  

 
which, as one knows, play a fundamental role in the entire theory of elasticity, and which 
we shall discuss later on.  Here, we confine ourselves to simply introducing an 
abbreviated notation for those quantities. 
 Like the six components of stress, each of the preceding differential expressions 
refers to one or two coordinate axes.  Consequently, it is entirely justified to appeal to a 
notation that is analogous to that of the stress components. 
 With Kirchhoff (1), we set: 
 

(40)  

, , ,

, , .

x y z

z y x z y x

u v w
x y z

x y z

v w w u u v
y z z x x y

z y x z y x

∂ ∂ ∂ = = = ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ + = = + = = + = =
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
However, we will show the inconvenience in that notation later on, despite its 
uncontestable advantages. 
 In what follows, those six arguments xx, …, xy will be arranged in that order, which 
corresponds to the order in the stress components. 
 The result of the aforementioned elimination will then be six equations of the form: 
 
(41)   − Xx = c11 xx + c12 yy + c13 zz + c14 yz + c15 zx + c16 xy , 
 
in which chk are characteristic parameters of the substance that the body is composed of 
and the orientation of the coordinate system.  One has the following relations between 
them: 

                                                
 (1) G. KIRCHHOFF, loc. cit., we should probably also point out the influence of Fr. Neumann; see 
Pogg. Ann. 31 (1834), 180.  
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(42)     chk = ckh ; 
 
the number of independent parameters chk is then 21. 
 In addition to equations (41), one will obtain three further linear relations between the 
components of the rotation l, m, n, and the nine derivatives ∂u / ∂x, …, ∂w / ∂y, which can 
be arranged in a remarkable manner. 
 Indeed, if one introduces the components: 
 

(43)  λ = 
1

2

w v

y z

 ∂ ∂− ∂ ∂ 
,  µ = 

1

2

u w

z x

∂ ∂ − ∂ ∂ 
, ν = 

1

2

v u

x y

 ∂ ∂− ∂ ∂ 
 

 
of the rotation of the volume element with respect to the coordinate axes then those 
equations will become linear and homogeneous in the nine arguments: 
 

l – λ, m – µ, n – v, xx, yy, zz, yz, zx, xy . 
 
The relative rotations of the molecules with respect to the volume elements are then 
represented by linear functions in xx, …, xy . 
 We shall now explain how the method that is based upon the theory of immediate 
actions leads to some analogous results.  In order to make the symmetry in these 
developments complete, we shall first assume the existence of volume moments L′, M′, 
N′ that act upon the elementary masses, as before.  If we combine the three equations (35) 
with the factors du, dv, dw and the three equations (36) with the factors dl, dm, dn into a 
single equation in which the first of those factors represent the increments in the 
components of the displacement with respect to dt, while the last of them represent the 
components of the increments in the molecular rotations, and when one integrates the 
result of that combination over the entire extent of the body, or any part of it, one will 
obtain the vis viva equation for the volume considered. 
 The work that is done, which is equal to the increase in the vis viva, decomposed into 
a work that is done by volume forces, volume moments, exterior stresses, and finally, 
something that we represent by the expression (dα), which must be considered to be the 
work that is done by internal stresses in a unit volume: 
 

(44)  1 1 1
2 2 2( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

x y z

z y z x z x y x z

z y x z y x

d X dx Y dy Z dz

Y Z dy Z X dz X Y dx

Y Z d l Z X d m X Y d n

α

λ µ ν

 = + +
 + + + + + +
 + − − + − − + − −

 

 
 Now, from the principles of thermodynamics, it is necessary that dα should be the 
(negative) differential of a function that depends upon only the current state of the body 
at the point considered, namely, the general elastic potential Φ per unit volume.  Hence, 
it will result that Φ is a function of: 
 

xx, …, xy, l – λ, m – µ, n – v, 
and one must have: 
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(45) 1 1 1
2 2 2

, , ,

( ) , ( ) , ( ) ,

, , .
( ) ( ) ( )

x y z
x y z

z y x z y x
z x y

z y x z y x

X Y Z
x y z

Y Z Z X X Y
y z x

Y Z Z X X Y
l m nλ µ ν

 ∂Φ ∂Φ ∂Φ= − = − = − ∂ ∂ ∂
 ∂Φ ∂Φ ∂Φ + = − + = − + = − ∂ ∂ ∂
 ∂Φ ∂Φ ∂Φ
 − = − − = − − = −

∂ − ∂ − ∂ −

 

 
 The function Φ is assumed to be developed in powers of the nine arguments.  The 
constant term in the result has no significance and can be omitted.  The linear terms will 
lead to stresses in the undeformed body and must then disappear, from the hypotheses 
that were made above.  One will then obtain the lowest-degree term in the development 
(which must be the only one that is conserved, as observation would permit) in the form 
of an expression that is homogeneous of the second degree in: 
 

xx, yy, zz, yz, zx, xy,  l – λ,   m – µ,   n – v. 
 We set: 
(46)     Φ = ϕ + ψ + χ, 
whose significance is: 
 

(47)  

2
11 12 13 16

2
22 23 26

2 2 2 2

2 2

.........................................................

x x y x z x y

y y z y y

x x y x z x y

y y z y x

ϕ α α α α
α α α

 = + + + +
 + + + +



⋯

⋯  

 

(48)   
11 12 16

21 22 26

31 32 36

( ) ( )

( )( )

( ) ( )

x y y

x y y

x y y

l x y x

m x y x

n x y x

ψ λ β β β
µ β β β

ν β β β

 = − + + +
 + − + + +
 + − + + +

⋯

⋯

⋯

 

 

(49)  

2
11 12 13

2
22 23

2
33

2 ( ) 2 ( )( ) 2 ( )( )

( ) 2 ( )( )

( ) ,

l l m l n

m m n

n

χ γ λ γ λ µ γ λ ν
γ µ γ µ ν

γ ν

 = − + − − + − −
 + − + − −
 + −

 

 
in which αhk = αkh , γhk = γkh, but not necessarily βhk = βkh . 
 The αhk , βhk , γhk represent characteristic parameters of the substance and the 
coordinate system.  With those notations, one will have: 
 

(50)  Xx = − 
( )

xx

ϕ ψ∂ +
∂

, etc.,  1
2 (Yz + Zy) = − ( )

zy

ϕ ψ∂ +
∂

, etc., 

 

(51)    − L′ = Yz − Zy = − ( )

( )l

ψ χ
λ

∂ +
∂ −

, etc. 
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 If one excludes the volume moments L′ M′ N′ then one will have: 
 

(52)  
( )

( )l

ψ χ
λ

∂ +
∂ −

= 0,  
( )

( )m

ψ χ
µ

∂ +
∂ −

= 0,  
( )

( )n

ψ χ
ν

∂ +
∂ −

= 0. 

 
 These three equations determine l – λ, m – µ, n – v in terms of xx, …, xy .  If one 
substitutes the values that one infers in the function y then it will become homogeneous 
of second degree in xx, …, xy .  As a consequence, we can write: 
 

(53)  

2
11 12 13 16

2
22 23 26

2( ) 2 2 2 2

2 2

.........................................................

x x y x z x y

y y z y y

f c x c x y c x z c x y

c y c y z c y x

ϕ χ + = = + + + +
 + + + +



⋯

⋯  

 
in which one will have: 

(54)    Xx = −
x

f

x

∂
∂

, …, Yz = −
z

f

y

∂
∂

, … 

 
f is called the elastic potential in the narrow sense of the word. 
 It is clear that the results that were just deduced agree completely with the ones on 
page 16. 
 However, the theory of action-at-a-distance permits one to rise to an important 
viewpoint from these results to the theory of immediate action.  In that theory, since the 
parameters Chk − and consequently, chk , as well − must be calculated by starting from the 
law of molecular action and the distribution of molecules in space, one can, by way of 
special hypotheses on that law and that distribution, establish some particular relations 
between the elastic parameters and compare the results with experiments.  The 
observations can then be used to examine certain particular hypotheses, and in turn, the 
development of our ideas on molecular actions. 
 The most important specialization of the general hypotheses on molecular actions 
have been pointed out already: It is the hypothesis that forces must coincide with the line 
that links the molecules and be functions of only the distances.  As Poisson and Cauchy 
have shown (1), without making any particular hypothesis on the distribution of the 
molecules, that will lead to the following six relations between the parameters chk : 
 
 c44 = c23 , c33 = c31 , c66 = c12 , 
(55) 
 c36 = c14 , c64 = c25 , c45 = c36 , 
 
which we shall call the Poisson-Cauchy relations, to abbreviate. 

                                                
 (1) A. CAUCHY, Exerc. de Math. 3 (1828), 226 (it is not stated explicitly, here).  S.-D. POISSON, 
Mém. de l’Acad. 18 (1842), 115 (only for crystals with three rectangular symmetry planes) Compare  
CLAUSIUS, Pogg. Ann. 76 (1849), 46.  DE SAINT-VENANT, Savants étrangers 14 (1853), 260.  
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 One obtains some relations that are even more specialized when one, like Lord 
Kelvin, makes some well-defined hypotheses on the distribution of molecules (1). 
 As we already said above, observations are, in general, in contradiction with the 
Poisson-Cauchy relations (55), and in turn, with the concepts that they are based upon.  
One can then cease to make the mutual actions depend upon the relative orientation of the 
molecules.  However, it seems possible that some specializations of a different kind will 
lead to relations that are confirmed by experiments, at least, in certain cases. 
 
 
 10.  The components of the dilatation. – If one compares the definitions (40) of the six 
functions xx, …, xy with formulas (23), page 8, for the components of the tensor then one 
will see that it is not xx, yy, zz, yz, zx, xy, but: 
 

xx, yy, zz, 1
2 yz, 1

2 zx, 1
2 xy, 

 
that are the components of a tensor.  One can doubt that it would be better to let yz, zx, xy 
denote the expressions: 

1

2

w u

y z

 ∂ ∂+ ∂ ∂ 
, 

1

2

u w

z x

∂ ∂ + ∂ ∂ 
, 

1

2

v u

x y

 ∂ ∂+ ∂ ∂ 
 

 
as Christiansen (2) did.  However, formulas (41) and (54), although symmetric, will 
undergo an unpleasant modification by the replacement of Yz, Zx, Xy with 2Yz, 2Zx, 2Xy 
that will make them give, instead of the components of a tensor of the second kind, twice 
those components.  The factor 2, when suppressed from the yz, zx, xy, will then be 
recovered in the Yz, Zx, Xy ; the asymmetry will be only displaced then. 
 One will obtain formulas that are entirely symmetric only if one introduces the 

orthogonal system A, B, C, rA′, rB′, rC′ , in which r = 2 , in place of the components A, 

B, C, A′, B′, C′ of the tensor that was used up to now.  In the case that we are presently 
occupied with, we will then have the two systems of components: 
 

Xx, Yy, Zz, rYz, rZx, rXy 
and 

u

x

∂
∂

, 
v

y

∂
∂

, 
w

z

∂
∂

, 
1 v w

r z y

 ∂ ∂+ ∂ ∂ 
, 

1 w u

r x z

∂ ∂ + ∂ ∂ 
, 

1 u v

r y x

 ∂ ∂+ ∂ ∂ 
. 

  

 However, the factor or denominator 2  that appears in the various formulas, as well 

as the less intuitive significance of those components of the second kind, prevents one 
from making the convention that would be most advantageous from the standpoint of 
form alone. 

                                                
 (1) LORD KELVIN, Proc. Roy. Soc. of Edinburgh 16 (1890), 693; Proc. Roy. Soc. 14 (1893), 59.  B. 
ÉLIE, Journ. de Phys. (2) 5 (1886), 204. 
 (2) C. CHRISTIANSEN, Elemente der Theor. Phys., Leipzig, 1896; pp. 98.  Compare also 
TODHUNTER and PEARSON, A History of Elasticity, v. I, Cambridge, 1886; pp. 881.  
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 We then preserve the convention that we made, which has the advantage of being in 
accord with a very considerable number of authors. 
 As far as the geometric significance of the functions xx, …, xy is concerned, one 
knows that at each point of the body, xx, yy, zz represent the linear dilatations parallel to 
the coordinate axes, and yz, zx, xy represent the decreases in the angles between the 
elements of parallel lines and the coordinate axes to which the symbols refer before the 
deformation.  The tensor triple whose components are the quantities xx, …, 1

2 xy  is then 

represented by three linear dilatations δ1, δ2, δ3 in the three mutually-perpendicular 
directions whose angles do not change under the deformation.  Ordinarily, one calls those 
dilatations principal dilatations.  One will then refer to the tensor triple δ1, δ2, δ3 as that 
of the principal dilatations, or more briefly, the tensor triple of dilatations.  The term 
components of the dilatation is then completely justified for the xx, …, 1

2 xy .  One can also 

apply it to the system xx, …, xy , with a slight imprecision. 
 For the sake of reference, we further give some deformations as functions of the 
components of the dilatation that are important for observations. 
 The volume dilatation D is: 

(56)     D = xx + yy + zz . 

 
The surface dilatation normal to the Z-axis is: 
 
(57)     Θz = xx + yy . 
 
 The linear dilatation δ in a direction whose angles with the coordinate axes originally 
have α, β, γ for their cosines is: 
 
(58)   δ = xx α 2 + yy β 2 + zz γ 2 + yz βγ + zx γα + xy αβ . 
 
The increase η in the angle between the normals to two planes that originally have the 
direction cosines α1, β1, γ1 and α2, β2, γ2 is given by: 
 

(59)  
1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 1

sin 2( )

( ) ( ) ( )

( ) cos ,

x y z

z x y

x y z

y z x

η ϕ α α β β γ γ
β γ γ β γ α α γ α β β α

δ δ ϕ

= + +
 + + + + + +
 − +

 

 
in which δ1 and δ2 represent linear dilatations in the original direction of the two normals, 
and ϕ represents the angle between those two directions. 
 When these normals coincide with two coordinate axes (for example, Y and Z), η will 
be equal to the corresponding components of the dilatation (so yz, for example). 
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 11. The elastic parameters of crystals (1). – As was said on page 17, the general 
expressions (41) for the stress components as functions of the components of the 
dilatation contain twenty-one characteristic parameters of the substance and the system of 
coordinates that is employed.  One calls them the elastic constants (and more rarely, the 
elastic coefficients) for the substance.  One can reproach those terms for their total lack of 
color.  It would be more expressive, and entirely harmonious with the nomenclature that 
is used in heat and electricity, to call then the coefficients of elastic resistance. 
 At present, it is undoubtedly impossible to get away from the neutral term elastic 
constants in the fundamental system (41), but it would be nonetheless recommended, in 
all of the laws that express an elastic modification by means of a force on a length, an 
angle, a surface, or a volume, to call the combination of the chk that appears in the 
formula as a divisor of the force, the elastic resistance of that modification, and to always 
give it the dimension of an elastic constant.  Therefore, for example, in the well-known 
formula for the elongation of a prism by a weight P: 
 

(60)     δL = 
P L

E Q

⋅
⋅

, 

 
the denominator E (which is generally known by the name of elastic coefficient or 
Young’s modulus) must be called the (specific) resistance to elongation of that prism. 
 The solution of equations (41) for the components of dilatation is provided by 
expressions that we will write in the form: 
 
(61)   − xx = s11 Xx + s12 Yy + s13 Zz + s14 Yz + s14 Zx + s16 Xy . 
 
Here, the shk are certain ratios of the determinants of the chk , between which, as a result 
of the relations: 
 chk = ckh , 
there will exist the relations: 
(62)     shk = skh , 
 
which will reduce their number to 21. 
 Formulas (61), which are reciprocal to formulas (41), are the point of departure for 
the theory of deformations that is most important in practice.  Consequently, they also 
define the basis for the theory of all the important observation methods.  Measurements 
will always first lead to the parameters shk , which one can infer from the elastic 
constants, properly speaking, only by some calculations that are often very complicated. 
 
 Since the probable error in the determination by these calculations increases 
extremely, it would seem rational to characterize elastic media by their shk , rather than 
their chk . 
 

                                                
 (1) W. VOIGT, Abh. der Kgl. Ges. d. Wiss. zu Göttingen 36 (1890), 40; Wied. Ann. 41 (1890), 715.  
Die fundamentalen Eigenschaften, etc., pp. 137, et seq. 
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 The great importance of these new parameters, which is derived from what we just 
said, justifies a special terminology.  Since the shk , as proportionality factors in the 
expressions for the components of the dilatation, also measure them, the author has 
proposed the name of elastic moduli for them, which presently has a certain measure of 
usage in Germany. 
 In a general manner, it is recommended that when an observable elastic modification 
is expressed by a force, one should say modulus of that modification to mean the 
combination of the chk or shk that appear as a factor of that force and which will always 
have the dimension of an elastic modulus.  For example, if we write equation (60) for the 
elongation of a prism in the form: 

(63)     δL = 
D P L

Q

⋅ ⋅
 

 
then D will be the modulus of elongation (for longitudinal traction) in the prism 
considered. 
 The elastic moduli and the elastic resistances are then reciprocal in the same way that 
resistivities and conductivities are reciprocal for heat and electricity. 
 In (53), the expression for the elastic potential is given as a function of the 
components of the dilatation; its parameters are the constants of electricity.  With the aid 
of equations (61), one can first define the symmetric quadratic form in the two types of 
tensor components: 
(64)   − 2f = Xx xx + Yy yy + Zz zz + Yz yz + Zx zx + Xy xy . 
 
 If one recalls the expression (21) (pp. 8) then one will infer immediately that: 
 

(65)  

2
11 12 13 16

2
22 23 26

2 2 2 2

2 2
x x y x z x y

y y z y y

f s X s X Y s X Z s X X

s Y s Y Z s Y X

 = + + + +
 + + + +



⋯

⋯

⋯ ⋯ ⋯

 

 
 The number of moduli and elastic constants that are exhibited by the preceding is 
twenty-one.  Meanwhile, we remark that this enumeration is performed according to 
another principle that will give three for the number of resistance or conductivity 
constants for heat or electricity.  The first evaluation supposes an arbitrary coordinate 
system, while the second one supposes a completely special system, namely, the principal 
axes.  For arbitrary coordinate systems, the number of thermal or electric constants is six, 
while principal axis systems require three of those six constants for their definition. 
 One can also refer equations (41) or (61) to a special system of axis that is chosen line 
the principal axis system and is defined three relations between the parameters.  The 
number of them will then be reduced from twenty-one to eighteen.  It is obvious that once 
the system of principal axis is introduced by three relation between the elastic constants, 
one must introduce only equations between the moduli that are deduced from them, and 
no others, and conversely. 
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 We denote the principal axes of elasticity by X0, Y0, Z0, and the parameters that refer 
to them by 0

hkc  and 0
hks .  Later on, we shall speak of the principals that will lead one to 

choose a system of elastic principal axes. 
 The introduction of the principal axes presents a noticeable advantage, and above all 
in certain general studies.  In order to treat some particular problems – for example, the 
deformation of truncated prisms with an arbitrary orientation in a crystal – it is, by 
contrast, generally more advantageous to choose the coordinate system X, Y, Z in such a 
manner that the surface conditions will take on a particularly simple form in that 
problem.  In that case, one will be dealing with the expression of the parameters shk and 
chk in terms of the parameters of the principal system X0, Y0, Z0, when the former 
parameters refer to the arbitrary system X, Y, Z and can be called secondary parameters 
where clarity would demand it. 
 That problem is solved in the simplest manner by means of an elastic potential f that 
is expressed in (53) in terms of the components of the dilatation, and in (65) by the 
components of the stress, and that one begins to define by referring to the principal axes 
X0, Y0, Z0 .  If one then transforms the components of the stress or dilatation in the 
arbitrary system x, y, z by means of known properties of the transformation of tensor 
components then one will obtain a form that is similar to (53) or (65), in which one will 
find some linear functions of all the 0hkc  or the 0

hks  in place of the chk or shk, resp. 

 The relations that one then obtains between the two types of parameters will generally 
be very complicated.  Here, it will suffice to give the formulas for the moduli, which are 
the only ones that are important in the applications. 
 If one lets dmn denote what the coefficients δmn in (15) and (16) (pp. 7) will become 
when one replaces r with 2 in the first three columns, and by 1 in the last three, then the 
secondary moduli, expressed in terms of the principal moduli, will be (1): 
 

(66)   shk = 0
mn mh nk

m n

s d d∑∑   
,

,

h k

m n





= 1, 2, 3, …, 6. 

 
 One has equations of the same form for the constants, with a meaning for the factor d 
that has changed somewhat. 
 

THESIS 
 

 A definition of the arguments that determine the deformation that would be 
convenient in every regard seems impossible.  The notation that Kirchhoff proposed 
seems preferable, due to its intuitive and practical character and its analogy with 
Neumann’s symbols for the components of stress, as well as for the symmetry that it 
gives to the formulas. 
 There is no reason to favor the elastic constants to the detriment of the moduli, as one 
generally does.  There is no advantage to giving names to the elastic constants that would 
express anything but their place in the expression for the potential. 

                                                
 (1) W. VOIGT, Wied. Ann. 16, pp. 404; “Theoretische Studien über die Elasticitätsverhältnisse der 
Krystalle; Abh. d. Ges. d. Wiss. z. Göttingen, 34 (1887). 
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 In the particular laws that are intended to be compared to experimental results, it is 
desirable to characterize unambiguously the factors that the elastic parameters depend 
upon as resistances or moduli according to their places in the formulas. 
 
 

IV. – Introduction of symmetry elements into crystals. 
 

 12. Independent symmetry elements for the 32 crystal groups. – The basis for the 
specialization of the preceding general formulas that conforms to the properties of the 
various crystal groups is the rule that is derived from experiments and was undoubtedly 
stated explicitly for the first time by F. Neumann (1), which says that any symmetry 
element that manifests itself in the phenomena of the growth and dissolution of a crystal 
also enters into all other physical phenomena that are based in it. 
 Since other symmetry elements occasionally result from the particular laws of those 
phenomena that are superimposed with the laws of their form, one can express that 
hypothetical rule by saying that of all physical phenomena that are based upon a crystal, 
those of growth and dissolution possess the lowest degree of symmetry. 
 From that proposition, it is impossible to deduce the complete symmetry of the form 
of a crystal from some other physical property, as is sometimes attempted. 
 The first applications of that rule of crystal elasticity were made by Fr. Neumann 
himself, and were repeated, in a simplified form, by Kirchhoff (2).  In that era, there was 
no way of classifying the most important examples, since observations were also 
completely lacking.  Their number was ultimately augmented by the author (3) and by 
Aron (4).  That question was treated systematically for the first time by Minnigerode (5).  
However, the procedures that are inferred from the theory of groups that address it are 
somewhat disproportionate to the simplicity of the problem.  In what follows, we shall 
show how the formulas of elasticity (and similarly, those of some other topics in crystal 
physics) can be established for all crystal groups by some entirely elementary procedures.  
Lack of space prohibits us from giving anything but a simple outline, but I hope that it 
will suffice to give an overview of the question. 
 As one knows, symmetry of form consists of the property of a crystal (once it has 
been suitably reduced to a well-defined normal form) that it can be superimposed over 
itself by certain geometric operations (e.g., rotation, reflection in a mirror, inversion with 
respect to a center) in such a way that the directions in the first position will all coincide 
with the directions in the second position that they are equivalent to from the standpoint 
of the phenomena of growth and dissolution. 
 Now, the rule that was developed at the beginning amounts to saying that the 
positions that are equivalent from the standpoint of form are also equivalent as physical 
properties, in such a way that two primary determining actions (for example, two 
deformations) that are superimposed by those transformations will always have two 

                                                
 (1) FR. NEUMANN, Vorlesungen… some suggestions pertaining to that question can be found in Pogg. 
Ann. 31 (1834), 177 et seq.  
 (2) G. KIRCHHOFF, Mechanik, Leipzig, 1879; pp. 390.  
 (3) W. VOIGT, Wied. Ann. 16 (1882), 275.  
 (4) H. ARON, Wied. Ann. 20 (1883), 272.  
 (5) B. MINNIGERODE, Nachr. d. Ges. d. Wiss. z. Göttingen (1884), pp. 195, 374, 484. 
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secondary phenomena as a consequence (for example, two systems of stresses) that are 
similarly superimposed. 
 In order to conveniently apply that rule to the various topics in crystal physics, it is 
advantageous to define, once and for all, a table of the independent symmetry elements 
that characterize the various groups (1).  Only those elements will enter into the questions 
of physics.  The union of all the symmetry elements of a group is useful only in 
crystallography, and rather tends to confuse the clarity in the problems that we shall treat 
here. 
 For the characters of the various symmetry elements, we refer to any treatise on 
crystallography.  We represent the existence of a symmetry center by the symbol C, that 
of a symmetry axis of order n by An, that of a mirage axis (2) of order n by Sn, and that of 
a symmetry plane by P. 
 We suppose that we have a system of principal axes that coincides, as much as 
possible, with the symmetry axes or are perpendicular to the planes of symmetry.  A 
coordinate axis, which then agrees with a symmetry element, will then be indicated by a 
lower index on the symbol for that element.  For example, 3

zA  signifies that the z-axis is a 

ternary symmetry axis, and Px signifies that the x-axis is perpendicular to a symmetry 
plane.  When the crystal group possesses an obvious symmetry axis, one can always 
make it coincide with the z-axis; alternatively, one can prefer the x-axis. 
 Developing what was said on page 23, we remark that for all crystal groups in which 
the principal coordinate system is fixed completely by the principles that were just 
pointed out, while the three relations between the elastic parameters that were mentioned 
in page 23 and reduce their number from 21 to 18 are introduced by that itself.  One sees 
that there are only two groups in which the principal axis system will remain completely 
arbitrary when one has accepted those conventions, and that for three other ones, only 
one of the axis will be fixed.  The purely crystallographic process for fixing the system of 
the principal axes of elasticity will then suffice in the greatest number of cases. 
 As for the classification of the 32 crystal groups, as before, we shall adopt a proposal 
that was made by Schoenflies (3) that seems to be very suitable. 
 In the holohedral groups of some systems, one finds two different ways of indicating 
the independent symmetry elements.  They are equivalent, since, as one easily 
recognizes, a symmetry center, a symmetry plane, and a binary symmetry axis that is 
perpendicular to that plane will have relationships between them in such a way that the 
presence of two of those elements will have that of the third one as a consequence.  Both 
of those forms have been listed in the following table in order to make the relationships 
between the holohedral groups and the ones that are not more clearly recognizable. 
 
 

                                                
 (1) W. VOIGT, Komp. d. theor. Physik, Bd. I, Leipzig, 1895; pp. 133.  “Die fundamentalen phys. 
Eigenschaften, etc.,” pp. 191. 
 (2) I.e., mirror axis. That symmetry element corresponds to the following definition: A rotation of π / 2 
and a reflection with respect to a plane that is perpendicular to the axis that reproduces the solid.  One can 
just as well say mirage plane of order n.  Example: The line that joins the middles of two opposite edges of 
a regular tetrahedron is a mirage axis of order 2 by the rule that one vertex successively reproduces the 
other three.   (French translator’s note.) 
 (3) SCHOENFLIES, Krystallsysteme und Krystallstructur, 1891; pp. 146, 147. 
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INDEPENDENT GENERAL SYMMETRY ELEMENTS 
 

Anorthic system. 
 

1. Holohedry C. 
2. Hemihedry --. 
 

Clinorhombic system. 
 

3. Holohedry 2
zCA  of CPz . 

4. Hemihedry Pz . 
5. Hemimorphism 2

zA . 

 
Orthorhombic system 

 
6. Holohedry 2 2

z xCA A  or 2
z xCA P . 

7. Hemihedry 2 2
z xA A . 

8. Hemimorphism 2
z xA P . 

 
Rhombohedral system 

 
9. Holohedry 3 2

z xCA A  or 3
z xCA P . 

10. Hemihedral enantiomorphism 3 2
z xA A . 

11. Hemihedral hemimorphism 3z xA P . 

12. Hemihedral paramorphism 3
zCA . 

13. Tetartohedry 3
zA . 

 
Quadratic system 

 
14. Holohedry 4 2

z xCA A  or 4
z xCA P . 

15. Hemihedral enantiomorphism 4 2
z xA A . 

16. Hemihedral hemimorphism 4z xA P . 

17. Hemihedral paramorphism 4
zCA . 

18. Tetartohedry 4
zA . 

19. Hemihedry with a mirage axis 2 2
z xS A . 

20. Tetartohedry with a mirage axis 2zS . 

 
Hexagonal system 

 
21. Holohedry 6 2

z xCA A  or 6
z xCA P . 
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22. Hemihedral enantiomorphism 6 2
z xA A . 

23. Hemihedral hemimorphism 6z xA P . 

24. Hemihedral paramorphism 6
zCA . 

18. Tetartohedry 6
zA . 

19. Hemihedry with a ternary axis 3 2
z z xA P A . 

20. Tetartohedry with a ternary axis 3z xA P . 

 
Cubic system 

 
28. Holohedry 4 4

z xCA A . 

29. Hemihedral enantiomorphism 4 4
z yA A . 

30. Hemihedral hemimorphism 2 2
x yS S . 

31. Hemihedral paramorphism 2
zCA ≈ 2

yA ≈ 2
zA . 

32. Tetartohedry 2
xA ≈ 2

yA ≈ 2
zA . 

 
 In the last two groups, the symbol ≈ represents the equivalence of the three mutually-
normal symmetry axes. 
 The preceding table shows the extreme variety and the nonetheless simple and orderly 
character of the symmetry relations that are at the basis for the physical of crystals. 
 The application of the principle that was presented to begin with for the specialization 
of any general formula from the particular groups will become particularly simple when 
that formula can be reduced to one such scalar function.  How such a function can be 
introduced in certain cases, even when one is dealing with vectors or tensors, in principle, 
will result from what was said on page 7. 
 In the case of elasticity, we have already encountered some scalar functions that are 
endowed with a physical significance that permits that operation.  The elastic potential Φ, 
in the broad sense of the word, was introduced on page 17.  On the same page, it was 
decomposed into three parts ϕ, χ, ψ of differing characters that are, like Φ, naturally 
scalars, and one ultimately deduces the elastic potential f, in the narrow sense of the 
word, from it.  ϕ and f have the same form and are distinguished by only the values of the 
parameters. 
 
 None of these functions change sign when one reverses the directions of all axes. 
 
 For ϕ, χ, f, this is obvious from their definitions in (47), (49), (53), resp.  However, it 
is also true for ψ, which, from (48), has a form that is bilinear in xx, …, xy, and l – λ, m – 
µ, n – v, because the two types of arguments that enter into it individually possess the 
property of keeping their sign when one reverses the senses of all coordinate axes. 
 From what was said on page 25, one always superimposes a center of symmetry with 
the crystallographic symmetry elements for the visible phenomena of elasticity, as well as 
for the invisible molecular rotations that accompany them.  Consequently, the table 
above simplifies noticeably.  A great number of groups will become equivalent for elastic 
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phenomena and are subsumed by higher groups, because, on the one hand, the symmetry 
planes are now equivalent to the binary axes that they are normal to, and on the other 
hand, the mirage axes are equivalent to the symmetry axes of order twice as high.  Upon 
suppressing the symbol C that is common to all of the groups and has no significance, we 
will obtain the following table (1): 
 

INDEPENDENT SYMMETRY ELEMENTS OF CENTRAL PHENOMENA 
 

Anorthic system 
 

 1, 2 No symmetry element 
 

Clinorhombic system 
 

 3, 4, 5 2
zA  

 
Orthorhombic system 

 
 6, 7, 8 2 2

z xA A  

 
Rhombohedral system 

 
 9, 10, 11 3 2

z xA A  

 12, 13 3
zA  

 
Quadratic system 

 
 14, 15, 16, 19 4 2

z xA A  

 17, 18, 20 4
zA  

 
Hexagonal system 

 
 21, 22, 23, 26 6 2

z xA A  

 24, 25, 27 6
zA  

 
Cubic system 

 
 28, 29, 30 4 2

z yA A  

 31, 32 2
xA ≈ 2

yA ≈ 2
zA . 

 

                                                
 (1) W. VOIGT, Kompendium, pp. 134; “Die fundamentalen phys. Eigenschaften, etc.,” pp. 193.  
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 The 32 crystal groups then reduce in the central phenomena to 11 higher groups that 
are all characterized by only their symmetry axes. 
 
 
 13.  Specialization of the elastic potential for the various crystal groups. – We attach 
the following considerations to the function f that is expressed in terms of elastic 
constants in (53) and in terms of moduli in (65). 
 The best procedure for specializing that potential for the various higher crystal groups 
consists of first looking for relations between the parameters chk , or shk in the simplest 
case in which one axis (the z-axis, for example) is a symmetry axis of order n.  One does 
that by transforming the potential into a new coordinate system that has turned, upon 
starting from the first one, through an angle of 2π / n around the symmetry axis and 
equating corresponding terms of the expression that is obtained from the original 
expression in that way.  That simply amounts to applying the general formulas to that 
rotation of the coordinate system and equating each chk or shk thus-obtained to the 0hkc  or 

0
hks , resp., that is referred to the original system.  (66) represents the necessary 

transformation formula for the moduli; as one will easily see, it is valid for the constants 
that are distinguished, in part, by the values of the coefficients dmn . 
 Once one has defined a table of relations between the parameters for n = 2, 3, 4, 6, 
one can pass from the z-axis to the x-axis by a cyclic permutation through one unit of the 
indices 1, 2, 3, on the one hand, and 4, 5, 6, on the other.  One likewise obtains (for n = 2) 
the values that are valid when the y-axis is the symmetry axis. 
 With the aid of those relations one can, with no calculation, define the systems of 
parameters, principal constants 0

hkc , and principal moduli 0
hks  that are referred to the 

principal axes X0, Y0, Z0 by simply combining the formulas that are valid for the various 
symmetry elements.  In the last higher group (31, 32), one must, in addition, take into 
account the equivalence of the three coordinate axes by equating the parameters 0hkc  or 

0
hks , which transform into each other by a cyclic permutation of the indices 1, 2, 3, or 4, 5, 

6, resp. 
 Lack of space prohibits us from characterizing all of the higher groups in Table II by 
the 0

hkc  or 0
hks . 

 Here, we shall give those constants and moduli in view of some ultimate applications 
in just the four cases in which the z-axis is a symmetry axis of order 2, 3, 4, or 6. 
 

3. Systems of elastic constants and moduli in the cases of different types  
of symmetry axes. 

 
 2

zA : c11 c12 c13 0 0 c16 s11 s12 s13 0 0 s16 

   c22 c23 0 0 c26  s22 s23 0 0 s26 
    c33 0 0 c36   s33 0 0 s36 

     c44 c45 0    s44 s45 0 
      c55 0     s55 0 
       c66      s66 
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 3
zA : c11 c12 c13 c14 − c15 0 s11 s12 s13 s14 − s25 0 

   c11 c13 − c14    c25 0  s11 s13 − s14 s25 0 
    c33 0 0 0   s33 0 0 0 

     c44 0 c25    s44 0 2s25 
      c44 c14     s44 2s14 
      1

2 (c11  − c12)     2(s11 − s12) 

 
 4

zA : c11 c12 c13 0 0 c16 s11 s12 s13 0 0 s16 

   c11 c13 0 0 − c16  s11 s13 0 0 − s16 
    c33 0 0 0   s33 0 0 0 

     c44 0 0    s44 0 0 
      c44 0     s44 0 
       c66      c66 
 
 6

zA : c11 c12 c13 0 0 0 s11 s12 s13 0 0 0 

   c11 c13 0 0 0  s11 s13 0 0 0 
    c33 0 0 0   s33 0 0 0 

     c44 0 0    s44 0 0 
      c44 0     s44 0 
      1

2 (c11  − c12)     2(s11 − s12) 

 
 The following table then results, for example, for the higher group (9, 10, 11), which 
is characterized by the simultaneous existence of 3

zA  and 2
zA : 

 
 3 2

z xA A : 0
11c  0

12c  0
13c  

0
14c  0 0 

0
11s  

0
12s  

0
13s  

0
14s  0 0 

   0
11c  

0
12c  − 0

14c  0 0  
0
11s  

0
13s  − 0

14s  0 0 

    0
33c  0 0 0   

0
33s  0 0 0 

     0
44c  0 0    0

44s  0 0 

      0
44c  0

14c      0
44s  0

142s  

      1
2 ( 0

11c − 0
12c )     2( 0

11s − 0
12s ) 

 
 When the analogous operation is performed on all of the eleven higher groups in the 
table on page 29, that will show that two of them (with two repetitions) behave in the 
same manner, and that consequently only nine distinct higher groups will exist for the 
elastic potential f.  Their numbers of constants will then be as follows: 
 
 Anorthic system…… (1, 2) 21 constants 
 Clinorhombic  “ …. (3, 4, 5) 13 “ 
 Orthorhombic “ …. (6, 7, 8) 9 “ 
 Rhombohedral “ …. (9, 10, 11) 6 “ 
  “ “ …. (12, 13) 7 “ 
 Quadratic “ … (14, 15, 16, 19) 6 “ 
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  “ “ … (17, 18, 19) 7 “ 
 Hexagonal “ … (21 to 27) 5 “ 
 Cubic  “ … (28 to 32) 3 “ 
 
 The preceding tables also permit one to easily write down the particular forms for the 
expressions for the components of stress and dilatation (41) and (61) for each of the 
groups.  For example, for the important higher group (9, 10, 11), the system (61) will take 
the form: 

(67)   

0 0 0 0 0 0 0 0 0
11 12 13 14

0 0 0 0 0 0 0 0 0
12 11 13 14

0 0 0 0 0 0 0
13 13 33

0 0 0 0 0 0 0
14 14 44

0 0 0 0 0
44 14

0 0 0 0 0 0
14 11 12

,

,

,

,

2 ,

2 2( ) .

x x y z z

y x y z z

z x y z

z x y z

x x y

y x y

x s X s Y s Z s Y

y s X s Y s Z s Y

z s X s Y s Z

y s X s Y s Y

z s Z s X

x s Z s s X

 − = + + +
 − = + + −
 − = + +
 − = − +
 − = +


− = + −

 

 
 One remarks that, from the table on pages 30 and 31, the tables of elastic constants 
differ from those of the moduli.  That (small) inconvenience is a direct consequence of 
the usual definitions of the components of stress and dilatation.  One can avoid it by 
appealing to the orthogonal components Xx , Yy , Zz , r Yz , r Zx , r Xy , and xx , yy , zz 

, zy

r
, xz

r
, yx

r
, which we mentioned on page 20, and whose use can be recommended in 

certain general studies (1).  However, for some particular problems in physics, one can 
hardly abandon the usual notation, which conforms to the remark on page 20. 
 Here, we point out that property of the method that was outlined above by applying it 
to the elastic potential f, as well as the functions ϕ, ψ, χ that were introduced on page 18  
The last two are especially interesting because, from equations (52), they determine the 
rotations of the molecules relative to the volume elements for the ordinary elastic 
deformations. 
 For the higher group (9, 10 11), for example, which is characterized by 3 2

z xA A , one 

will have the following table for the constants βhk and γhk : 
 
 β11 − β11 0 β14 0 0 γ11 0 0 
 0 0 0 0 − β14 − β11  γ11 0 
 0 0 0 0 0 0   γ33 
  
 The molecules then turn around the ternary axis along with the volume element.  In 
addition, the phenomenon depends upon the two constants β11 / γ11 and β14 / γ11, which 
cannot be deduced from observations on elasticity. 
 Up to the present, no phenomena that one could use to determine that value are 
known.  However, those of the formation of slip surfaces are truly consistent with those 
molecular rotations.  Certainly, they will also play a role on the phenomena of 

                                                
 (1) W. VOIGT, Kompendium, pp. 139.  
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piezoelectricity and electrostriction.  In addition, the theory shows that if one does not 
suppose that the moments of inertial of the elementary masses that one calls molecules, 
and that one accounts for in formulas (36), on the contrary, are infinitely small then 
certain vibrations in crystals will have a speed of propagation that depends upon the 
period.  Will that truly feeble dependency be detected experimentally someday?  That 
question presently remains open. 
 

THESES 
 

 It suffices to consider the objects of crystal physics to be only the mutually-
independent symmetry elements. 
 As a result of the conventions that were made on the components of stress and 
dilatation, the tables of elastic constants will take different forms from the tables of 
moduli.  One can make them agree by introducing the orthogonal components that were 
defined on page 20. 
 However, that way of doing things presents some inconveniences that prevent one 
from recommending it. 
 
 

V. – Summary of the theory of methods of observation. 
 

 14.  General problems in experimentation for the elasticity of crystals. – The first 
experimental problem in crystal elasticity that can be posed (and which in fact has been 
posed) is to establish whether crystals can truly be distinguished from isotropic bodies in 
a detectable manner from the standpoint of elasticity. 
 As one knows, that question was answered in the affirmative by the observations of 
Savart (1) on the nodal lines of vibrating quartz plates.  By showing that a circular plate 
that is parallel to the optical axis will give different nodal figures when one proceeds 
from the same excitation at various points of the boundary, he established the elastic 
anisotropy of matter without any measurements.  Savart could not infer more advanced 
theoretical conclusions from his experiments for the simple reason that in that era the 
fundamental equations of elasticity for a body, such as a quartz one, had not yet been 
established. 
 Once the elastic anisotropy of crystals was established, the need for numerical 
determinations was felt, all the more so because in the interim the theories that had been 
constructed upon the two bases that were developed in Part Two had arrived at different 
results.  The quantitative observations obviously first have to answer the following 
question: 
 
 a. Does the most general theory that rests upon twenty-one constants explain all 
observations, or do they demand an even more general basis for their representation? 
 
 Then, if that theory is always in accord with experiments: 
 

                                                
 (1) F. SAVART, Ann. d. Chimie, 40 (1821), 5; Mém. de l’Acad. 9 (1830), 405. 
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 b. Are all of the crystal groups that can be distinct from the viewpoint of the general 
theory of elasticity distinct in reality? 
 
 That question is one part of another question that is posed in all branches of crystal 
physics, namely, whether all of the phenomena that are possible as a result of symmetry 
actually exist.  Recall that the answer that has been given up to now by experiment has 
not been in the affirmative.  In the conduction of heat and electricity, certain crystal 
groups, by their symmetries, separate from the set that belongs to a system and admit 
some rotational properties that the other ones do not (1).  However, up to now, it was not 
possible to exhibit those rotational effects in an arbitrary crystal (2).  The same thing is 
true for piezomagnetic effects, which, from symmetry, are possible in a large number of 
crystal groups, but have not been observed for even one of them (3). 
 In those two cases, some possible theoretical differences between the different groups 
do not seem to exist in reality, and that result makes the question that was formulated in b 
particularly interesting.  It is attached to another question that has a close kinship with it, 
but that we shall formulate separately for more clarity: 
 
 c. For the same substance, are all of the constants that the general theory assumes 
to be independent actually independent? 
 
 In regard to that question, one must observe especially that, whether or not the 
general molecular theory leads to the same results as the theory of immediate actions, 
from page 19, its specialization will be given in the following six relations between the 
twenty-one independent constants of the general theory: 
 

(68)   23 44 31 55 12 66

14 56 25 64 36 45

, , ,

, , .

c c c c c c

c c c c c c

= = =
 = = =

 

 
 The proof of all these relations, or of some of them, permits one simplify, and in turn, 
to correct the concepts of the most general molecular theory, which would represent a 
result of great theoretical importance. 
 Aside from these general questions, one can naturally pose the problem of the 
numerical determination of the elastic parameters in view of applications.  Among the 
branches of science for which the knowledge of such parameters would be indispensable, 
we cite thermoelasticity (4), piezoelectricity (5), electrostriction (6), and the optics of 
deformed bodies (7), or ones that are subject to the action of electric fields (1). 

                                                
 (1) G.-G. STOKES, Camb. and Dubl. Math. Jour. 6 (1851), 233.  
 (2) CH. SORET, Arch. Sciences phys. et nat. 29 (1893), 355; ibid. 32 (1894), 631.  
 (3) The formulas that refer to them will be published next in the Annales de Drude.  
 (4) General theory by W. THOMSON, Quart. Jour. of Math. 1 (1857), 57; application to crystals by 
employing the elastic parameters W. VOIGT, Wied. Ann. 36 (1889), 743.  
 (5) W. VOIGT, “Allgemeine theorie, etc.,” Abh. d. Ges. d. Wiss. z. Göttingen 36 (1890); E. RIECKE 
and W. VOIGT, Wied. Ann. 45 (1892), 523. 
 (6) FR. POCKELS, Neues Jahrb. f. Minerologie, Supplement 7 (1890), 253; W. VOIGT, Wied. Ann. 55 
(1895), 701. 
 (7) FR. POCKELS, Wied. Ann. 38 (1889), 144, 269, 373; ibid. 39 (1890), 440.  
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 In order to appeal to the numerical determinations that control, and possibly correct, 
the theory, they must first be applied to the particular cases that are accessible to 
observation.  One must then create the particular theory of some methods of observation.  
The most important of the results that were acquired along those lines will be 
summarized in the following chapters.  Space will not permit us to deduce the formulas; 
they will then be presented in a somewhat disjoint manner.  However, it seems necessary 
to communicate them in order to give some idea of the moduli that one encounters in the 
observed phenomena and the manner in which they present themselves.  We recognize 
that there are only a small number of them that play a role in the most important laws of 
observable elastic phenomena. 
 
 
 15. Homogeneous deformations in the crystal. – The simplest case that one can 
imagine of the deformation of a crystal or a preparation that is made from a crystal is the 
one in which the components of the dilatation have the same values at every point; one 
calls it the case of homogeneous deformation.  The theory of these particular phenomena 
is given immediately by formulas (61) when one determines the interior components of 
the stresses Xx, …, Xy in them, which must be constants, by hypothesis, conforming to the 
general surface conditions (37), in terms of the exterior stresses that upon act the surface 
of the preparation.  If the preparation has the form of a rectangular parallelepiped of 
arbitrary orientation with respect to the principal axes X0, Y0, Z0 then one will agree to 
take its edges to be the directions of the X, Y, Z axes of a system that has a well-defined 
inclination with respect to the principal axes, and one will then have relations for that 
system X, Y, Z in the old form: 
 

(69)  11 12 13 14 15 16 ,

............................................................................,
x x y z z x yx s X s Y s Z s Y s Z s X− = + + + + +




 

 
in which, from (37), Xx, …, Xy are immediately equal to the pressures that must be 
exercised normally and tangentially to the faces of the prism, and − Xx, …, − Xy are equal 
to the corresponding tractions. 
 These formulas show that the elastic moduli shk are susceptible to an extremely simple 
and intuitive interpretation, because if one exerts only one type of pressure Xx, Yy, Zz, Yz = 
Zy, Zx = Xz, Xy = Yx, and one gives zero values to the other ones then the right-hand sides 
of each of equations (69) will reduce to just one term that is proportional to a modulus 
shk. 
 As a consequence, the parameters s11, s22, s33 occur as the longitudinal dilatation 
moduli s23, s31, s12, the transversal dilatations for a traction or a compression Xx, Yy, Zz 
parallel to the X, Y, or Z axes.  s14, s15, s16 measure the alterations of the dihedrals by a 
normal traction that is parallel to the X axis, while s24, s25, s26 and s34, s35, s36 measure the 
analogous quantities for an action that is parallel to the Y or Z axis. 

                                                                                                                                            
 (1) FR. POCKELS, “Ueber den Einfluss des elctrostatischen Feldes, etc.,”  Abh. d. Ges. d. Wiss. z. 
Göttingen 39 (1893). 
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 However, s14, s24, s34 are, at the same time, the moduli of linear dilatations, s44, s54, s64 
are those of the changes of angle by the system of tangential stresses Yz = Zy , and the 
moduli s13, …, s63, s16 , …, s66 play analogous roles for the stresses Zx = Xz , Xy = Yx  . 
 Only the case of normal pressures has been realized in practice, and then only when 
either all of the faces of the prism support the same pressure or when two parallel faces 
support an arbitrary pressure when the other ones support a negligible pressure. 
 We shall develop the first case here.  One can construct a body of arbitrary form from 
elements that are parallelepipeds that are compressed uniformly on all sides and keep it in 
that state by exerting the same normal pressure p on its surface elements.  Indeed, one can 
satisfy the fundamental equations and the surface conditions with: 
 
(70)   Xx = Yy = Zz = p, Yz = 0,   Zx = 0,   Xy = 0. 
 
 Since, from (29), these formulas are valid for an arbitrary coordinate system, it will 
be convenient to refer then to the principal axes: 
 

X0 , Y0 , Z0 ,  
and one consequently writes them: 
 
(71)  0

xX  = 0
yY  = 0

zZ  = p, 0
zY  = 0,   0

xZ  = 0,    0
yX  = 0. 

 
 It then simply results that: 
 
(72) − 0

xx  = p 0 0 0
11 12 13( )s s s+ + , etc., − 0

zy  = p 0 0 0
41 42 43( )s s s+ + , etc. 

 

 We add a general remark in regard to these formulas.  On page 26, we observed that 
the principles that are deduced from the symmetry of the form do not suffice in some 
cases to fix the system of principal axes.  The deformation by a stress that acts uniformly 
in every direction that we just treated will provide a basis for fixing it in the cases where 
it remains undetermined.  It is, in fact, natural to take the principal axes of elasticity X0, 
Y0, Z0 to be the three mutually-perpendicular directions whose angles do not vary under a 
compression that is uniform in every direction; i.e., the directions of tensor triple of 
dilatation in the case of pressure that is uniform in every direction. 
 That manner of proceeding will lead to the three conditions: 
 
(73)  0 0 0

41 42 43s s s+ + = 0, 0 0 0
51 52 53s s s+ + = 0, 0 0 0

61 62 63s s s+ + = 0, 

 
by which the number of moduli, and in turn, the elastic constants, is also reduced from 21 
to 18. 
 We remark that in all of the higher groups in the table on page 27, except for the first 
two, those conditions will be fulfilled identically with the axes that are chosen by way of 
symmetry considerations. 
 The new determination of the axes then agrees with the old one, and generalizes it 
only in such a fashion as to make it applicable to all groups. 
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 The laws of deformation of volumes, surfaces, lengths, and angles by a pressure that 
is uniform in all directions will result from the general formulas (56) to (59) by 
substituting the values (72) of the components of dilatation (1). 
 To save space, we shall not give them.  We only point out the modulus s of cubic 
compression that relates to that case, due to its particular importance: 
 
(74)    s = 0 0 0 0 0 0

11 22 33 23 31 122( )s s s s s s+ + + + + . 

 
 
 16. Prismatic beams of constant deformation along the axis. – The most important 
methods of observation by far are attached to the deformations of prismatic beams whose 
longitudinal dimensions are large in comparison to their transversal dimensions as a 
result of forces that act upon the bases of the prism. 
 As one knows, de Saint-Venant (2) attacked the theory of deformations of cylindrical 
bodies by looking for the circumstances under which an elementary fiber that is parallel 
to the axis of the cylinder would experience only longitudinal stresses as a result of the 
neighboring fibers.  That method, which is extremely fruitful for isotropic bodies, is less 
so for crystals, since the hypothesis on the pressures already ceases to be verified in the 
simplest case of torsion.  As a consequence, de Saint-Venant could treat only some of the 
most particular cases of the deformation of prismatic crystals with his method. 
 For our problem, it seems more advantageous to give a somewhat different objective 
to the investigations by directing them towards the general properties of deformations 
that either do not at all depend upon the coordinate that is parallel to the axis of the 
beam or depend upon it by way of a term of first degree, second degree, etc.  Like de 
Saint-Venant, we suppose that the beam is sufficiently long with respect to its transversal 
dimensions that in the part that is dominated by its length, the deformation depends upon 
only the components of the total external force and moment that is exercised upon the 
terminal sections and not on their distribution over those sections. 
 The most important case is then that of a cylinder that is deformed uniformly along its 
axis (3).  Analysis shows that this state can be obtained by means of actions on the bases 
that have a resultant that is parallel to the axis of the cylinder and which provides 
moments with respect to the longitudinal axis as well as with respect to the transverse 
axes that are situated in the terminal sections. 
 We make the Z-axis of the X, Y, Z coordinate system coincide with the line that joins 
the centers of gravity of all the sections, while the X and Y axes coincide with the 
principal axes of inertia of the terminal section z = 0, which must be considered to be 
fixed, in general.  We then suppose that the forces that are exerted on the other (free) base 
z = l yield a resultant Γ that is parallel to Z and the moments A, M, N with respect to the 
coordinate axes.  In order to fix the section z = 0, one must subject it to equal and 

                                                
 (1) Particular case by FR. NEUMANN, Pogg. Ann. 31 (1834), pp. 177 et seq.; Vorlesungen, etc. pp. 179 
et seq.; the general problem by W. Voigt, Wied. Ann. 16 (1882), 419. 
 (2) DE SAINT-VENANT, Mém. des Sav. etr.  14 (1857), 233; Jour. d. Liouville (2) 1 (1856), 89. 
 (3) W. VOIGT, Wied. Ann. 16 (1882), pp. 280, et seq.; “Theoretischen Studien über die 
Elasticitätsverhältnisse der Krystalle,” Abh. d. Ges. d. Wiss. z. Göttingen 34 (1887), pp. 53, et seq; 
particular case by C. CHREE, Proc. London 44 (1888), pp. 214; G.-C. MICHAELIS, Arch. Néerl. 21 
(1886), pp. 387. 
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opposite actions.  Conforming to the three types of efforts that are exerted, we must 
consider three types of elastic problem. 
 
 a. Effect of a longitudinal traction. – The deformation of the cylinder is 
homogeneous, so the components of the dilatation can be denoted once and for all and 
independently of the form of the section.  They will result directly from (69) when one 
sets Xx = 0, Yy = 0, Yz = 0, Zx = 0, Xy = 0, in it, but Zz = − Γ / q, in which q represents the 
section of the cylinder.  As a result, one has: 
 

(75)   13 23 33

43 53 63

, , ,

, , .
x y z

z x y

qx s qy s qz s

qy s qz s qx s

= Γ = Γ = Γ
 = Γ = Γ = Γ

 

 
 The moduli of the dilatations that are parallel to the axes are s13, s23, s33 ; from (57), 
the modulus of dilatation of the section is (s13 + s23).  The moduli of the variations of the 
angles between the axes or coordinate planes are s43, s53, s63 .  From the table (pp. 30), all 
of the three angular variations will be zero when the Z-axis is a symmetry axis of order 3, 
4, or 6, and the first two yz and zx will be zero only when it is a binary symmetry axis (1). 
 
 b. Effect of moments with respect to the transverse axes. – The components of the 
dilatation and the pressure component Zz are linear functions of x and y for all forms of 
the section; Xx, Yy, Yz, Zx, Yy disappear. 
 The fiber that is situated along the axis x = 0, y = 0 of the cylinder is flexed into a 
curve whose equations are: 

(76)    ξ = 33
22 y

s

qκ
Μ

 ζ (l – ζ), η = 33
22 x

s

qκ
Λ

 ζ (l – ζ), 

 
in which κx and κy denote the radii of gyration of the cylindrical section with respect to its 
principal axes of inertia, which coincide with X and Y, and in which one assumes that the 
two extremities z = 0 and z = l of the axial fiber are situated along the Z-axis. 
 From (76), the projections of the axial curve have constant radii of curvature: 
 

(77)    R1 = 
2

33

yq

s

κ
Μ

, R2 = 
2

33

yq

s

κ
Λ

, 

 
and are, as a result, circumferences of the circle. 
 If just one of the two moments Λ and M is non-zero then one of the two radii of 
curvature will be infinite.  The axial curve will then be situated in the plane that is normal 
to the principal axis of inertia with respect to which the moment will be zero. 
 Due to the constancy of R1 and R2 , one calls the flexure by M and Λ uniform.  The 
modulus of uniform flexure s33 is identical with the modulus of axial elongation by 
longitudinal traction. 

                                                
 (1) Particular case by FR. NEUMANN, loc. cit.; the general problem by W. VOIGT, Wied. Ann. 16 
(1882), 421; “Theoretischen Studien über die Elasticitätsverhältnisse der Krystalle,” Abh. d. Ges. d. Wiss. 
z. Göttingen 34 (1887), pp. 65. 
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 In the general case, the uniform flexure of a cylinder that is composed of a crystalline 
substance is accompanied by a uniform torsion.  The rotation ω of a section that is 
situated at a distance z = ζ of the fixed section z = 0 is given by: 
 
(78)    2q ω 2 2

x yκ κ  = 2 2
34 34( )x ys sκ κΜ − Λ ζ . 

 
 From (75), that remarkable torsion possesses the same moduli s34 and s35 as the 
angular variations yz and zx for a longitudinal traction. 
 
 (From pp. 38), it will disappear when the z-axis is a symmetry axis of arbitrary order 
(1). 
 
 c. Effect of a moment with respect to the longitudinal axis. – In this problem, which 
is generally referred to as the problem of torsion, the difficulties are incomparably larger 
than in the preceding two.  One can obtain just one result that is common to all forms of 
section, namely, the magnitude of the uniform flexure (2) that accompanies the torsion.  
With the notations of (77), one finds that this flexure is: 
 

(79)    R1 = 
2

34

2 yq

s

κ
Ν

, R2 = −
2

33

2 yq

s

κ
Ν

. 

 
 The secondary flexure then possesses the same moduli s34 and s33 as the second 
torsion that was in question above and will disappear with it. 
 Apart from that, each form for the section will require another solution.  The simplest 
one is obtained for the elliptic section (3).  In that case, one can satisfy all of the 
conditions by functions that are linear in x and y for all of the components of the 
dilatation, as well as for the stress components Yz and Zx, and the zero values of Xx, Yy, Xy, 
Zz .  Under those conditions, one will find the value: 
 
(80)     4q ω 2 2

x yκ κ  = Nζ 2 2
44 55( )x ys sκ κ+  

 
for the rotation ω of the section z = ζ. 
 The magnitude ω then has two moduli s44 and s55 that reduce to one only in the cases 
of a very elongated section and a circular section. 
 The case of a rectangular section, which is exceptionally important for observations, 
leads to some extremely complicated differential equations that seem resistant to a 
rigorous solution.  In general, one can establish the formula (4): 
 

                                                
 (1) W. VOIGT, Wied. Ann. 16 (1882), pp. 282; “Theoretische Studien, etc.,” (1887), pp. 68.  
 (2) W. VOIGT, Wied. Ann. 16 (1882), pp. 300; “Theoretische Studien, etc.,” (1887), pp. 72. 
 (3)  W. VOIGT, Wied. Ann. 16 (1882), pp. 300; “Theoretische Studien, etc.,” (1887), pp. 73.  A remark 
that was attached to it by G. KIRCHHOFF, Mechanik, pp. 415; CHREE, loc. cit. 
 (4)  W. VOIGT, Wied. Ann. 16 (1882), pp. 609. 
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(81)    ω = 

2 2 2 2 2
34 34 35

35 2 2 2
33 33

2

3

16 1

s b s s b F
s

s a a b a s

b
ab F

a

ζ
  

Ν + + +  
  

 + 
 

, 

 
in which a and b represent one-half the edges of the rectangular section that are parallel 
to the X and Y axes, resp.  By contrast, F signifies a function of the ratio a / b, which, by 
the manner in which it was presented, so it can be considered to be constant when the 
section is somewhat elongated (for example, a / b > 3). 
 That formula is not a complete solution to the problem of torsion then, but a 
procedure for deducing numerical values for the elastic moduli from observations, in 
particular s55, in which one considers F to be an unknown constant (after a prior 
examination of the legitimacy of that hypothesis) that one eliminates by appropriate 
combinations of the measurements. 
 The general formula will simplify when one makes the approximation that consists of 

neglecting 
2 2
34

2
33 55

s b

s s a
 and the square of 

2 2 2
34 35
2 2

33 55

s s b F

a b s s

 
+ 

 
, in comparison to unity.  One 

will then have: 

(82)     ω = 55

3
1

3

16 1

s
b

ab F
a

ζΝ
 + 
 

, 

 
in which F1 denotes another constant.  That approximation is a very good one, even when 
a / b is relatively small, because, in reality, s34 and s35 are usually small in comparison to 
s33 and s55 . 
 In the particular case in which s34 and s35 are zero (which will be true, as we have 
said, when the Z-axis is an arbitrary elastic symmetry axis), one will have: 
 

(83)     ω = 55

3

3

16 1

s
b

ab F
a

ζΝ
 + 
 

, 

rigorously. 
 Here, the function F can be determined completely in a more or less simple manner 
(1), in such a way that it will not be necessary to eliminate it by a combination of 
observations.  It is only because F contains moduli of elasticity of unknown numerical 
values that one can employ a process of approximation to calculate them. 
 
 
 17.  Prismatic beams with deformations that varies linearly along the axis. – The case 
that follows from the one that we just treated in order of increasing complexity, namely, 
the one in which the components of the dilatation and pressure are linear functions of z, 

                                                
 (1) DE SAINT-VENANT, Sav. etr. 14 (1857), pp. 263, et seq.; W. VOIGT, Wied. Ann. 24 (1886), pp. 
612.  
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will once more lead to some relatively simple results (1).  One can show that these 
hypotheses are compatible with the pressures on the free base that yield the results that 
are perpendicular to the beam axis, as well as the forces on the volume that are external 
and of constant magnitude and parallel to the beam axis.  We shall give the results for 
those two cases separately. 
 
 
 18.  Calculation of the principal moduli and principal constants. – If one decomposes 
the resultant that acts upon the free terminal section into two components A and B that are 
parallel to the principal axes of inertia X and Y then one will obtain: 
 

(84)   ξ = 33
22 y

As

qκ
ζ 2 (l – 1

3 ζ), η = 33
22 x

B s

qκ
ζ 2 (l – 1

3 ζ)  

 
as the equations of the curve of the axis, upon supposing that its first element is kept 
along the Z-axis. 
 The axial curve has degree three, and in turn, a non-uniform curve.  The modulus of 
that non-uniform flexure is the same s33 as that of the uniform flexure. 
 The flexure is generally accompanied by a torsion, although there is no moment with 
respect to the longitudinal axis.  The mean torsion of a section at a distance z = ζ from the 
fixed section is given by: 

(85)     ω = 2 34 351
2 2 2

y x

As B sζ
κ κ

 
−  

 
. 

 
 The moduli are the same as the ones that measure the torsion that accompanies the 
uniform flexure (2). 
 
 b. Volume force that is longitudinal and of constant magnitude. – This case is 
theoretically important only because of the smallness of the only force that can be 
applied, namely, gravity.  We shall then only mention briefly that a cylinder that is 
erected vertically or suspended and is subject to the action of its weight and is composed 
of a crystalline substance will not only be elongated, but also flexed.  Its axial curve will 
be represented by the equations: 
 
(86)    ξ = − 1

2 Z′ s35 ζ 2, η = − 1
2 Z′ s35 ζ 2, 

 
in which Z′ is the volume force that acts parallel to the Z-axis.  The projections of the 
axial curve onto the coordinate planes will then be circles of radius: 
 
(87)    R1 = Z′ s35 , R2 = Z′ s34 , 
 

                                                
 (1) W. VOIGT, “Theoret. Studien, etc.” (1887), pp. 80.  
 (2) W. VOIGT, loc. cit., pp. 87.  
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resp., and a point at a distance z from the fixed extremity ζ = 0 will be subject to a 
displacement: 
(88)     w = 1

2 Z′ s33 ζ . 
 
 The moduli s33 , s34 , s35 that come into play here will then be the same ones that we 
first encountered together in the problem of homogeneous deformation (1). 
 Somigliana (2) has undertaken a generalization of that problem to the case in which 
the components of pressure and dilatation are proportional to powers of z that are higher 
than the first. 
 
 
 18.  Calculation of the principal moduli and principal constants. – One result of the 
preceding is a way to deduce certain moduli shk from observations when they are referred 
to a particular X, Y, Z coordinate system.  However, these moduli are not individual 
parameters of the crystal considered; they vary with the direction of the X, Y, Z axes 
within the crystal.  It is then necessary to treat the problem of the determination of the 
characteristic principal moduli 0hks  in terms of the observed secondary moduli shk (

3). 

 On page 23, that was a question of finding relations between the two types of 
parameters.  When shk are represented by formula (66) as linear functions of all the 0

hks , 

they will be coefficients that depend upon the orientation of the X, Y, Z coordinate system 
with respect to the system of principal elastic axes X0, Y0, Z0 .  One will then arrive at the 
principal moduli by observing, along with (n) conveniently-chosen second moduli that 
the crystal possesses, some independent principal moduli, upon expressing each of them 
in terms of the principal moduli and solving the equations thus-obtained for the principal 
moduli 0

hks . 

 Those secondary moduli must be chosen, as much as the material will permit, in such 
a manner that those equations will take as simple a form as possible in order to reduce the 
probable errors in the calculated principal moduli. 
 On first glance, one can suppose that one can determine all of the principal moduli of 
a crystal by observing the same deformations for n different ways of preparing the 
orientation; i.e., by determining just one secondary modulus shk with respect to n different 
X, Y, Z coordinate systems. 
 However, one sees very simply that this manner of proceeding will not lead to the 
goal.  The trigonometric factors dmh , dnk in the expression (66) for the secondary moduli 
are not all independent of each other, and consequently, the principal moduli will not all 
be distinct in those formulas, but partially combined with each other.  The observation of 
just one type of deformation does not generally suffice then to determine all of the 
principal moduli of a crystal. 
 The most convenient method for determining an elastic modulus is undoubtedly the 
flexure of a beam of rectangular section.  From formulas (76) and (84), it will yield the 

                                                
 (1) W. VOIGT, loc. cit., pp. 95. 
 (2) C. SOMIGLIANA, Giorn. di Min. Crist. e Petrogr. (1) 4 (1893), pp. 1.  
 (3) W. VOIGT, Wied. Ann. 16 (1882), pp. 404.  
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modulus s33 .  If one expresses the principal moduli 0
hks  by equation (66) then one will 

obtain a relation that contains the 0hks  only in 15 combinations; for example, the 

following ones: 
0
11s , 0

22s , 0
33s , 0

24s , 0
34s , 0

35s , 0
15s , 0

16s , 0
26s  

0 0
44 23( 2 )s s+ , 0 0

55 31( 2 )s s+ , 0 0
66 12( 2 )s s+ , 0 0

14 56( 2 )s s+ , 0 0
25 64( 2 )s s+ , 0 0

36 45( 2 )s s+ . 

 
 One is easily convinced that, even for some special crystal groups, the number of 
combinations that enter into s33 is always less than then the number of 0

hks  themselves. 

 It then results that in order to experimentally determine all of the moduli one must 
always combine the observation of flexures with those of some other deformations.  The 
practical fact that the same preparations that can serve for the flexure will also serve for 
torsion can give preference to the latter deformation over the other one. 
 However, from (81) and (83), the torsion of a beam of rectangular section will lead to 
the modulus s55 .  In order for the combination of flexure and torsion to lead to the 
objective, the expression for s55 in terms of the principal moduli must contain the moduli: 
 

0
44s , 0

55s , 0
66s , 0

23s , 0
31s , 0

12s , 0
14s , 0

25s , 0
36s , 0

56s , 0
64s , 0

45s  

 
in other combinations than s33 .  Indeed, the calculation that is performed will show that 
s55 can be expressed in terms of: 
 

0
11s  + 0

23s − 0
12s − 0

31s , 0
22s + 0

31s − 0
23s − 0

12s , 0
33s + 0

12s − 0
31s − 0

23s , 
0
24s − 0

14s ,  0
34s − 0

14s ,  0
35s − 0

25s ,  0
15s − 0

25s ,  0
16s − 0

36s ,  0
26s − 0

36s , 
0
44s , 0

55s , 0
66s , 0

56s , 0
64s , 0

45s , 

 
so one can infer six independent combinations of the preceding in several ways. 
 The combination of observations of flexure and torsion then permits one to determine 
all of the principal moduli for each crystal group.  In addition, it yields some advanced 
resources for checking the theory.  Indeed, any observation in excess of the number that 
is necessary to determine the principal moduli must be capable of being calculated in 
terms of the other observations. 
 Once the principal moduli has been found, the constants will be calculated by 
considering that formulas (61) must give equations (41) when they are solved for the 
stress components.  The principal constants 0

hkc  will then be ratios of the determinants of 

the moduli, and conversely.  It is easy to establish the necessary formulas in terms of 
some known rules.  However, their calculation is much less convenient for the crystal 
groups with fewer constants, and the probable error in the principal constants is, in turn, 
incomparably larger than that of the principal moduli, as was said already on page 22. 
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THESIS 
 

 The combination of observations of flexure and torsion that are made on prismatic 
beams provides a method that best agrees with the determination of the elastic constants 
of crystals. 
 One determines the greatest possible number of parameters with the aid of flexures, 
and one adds the torsion only in order to complete them. 
 In practical applications, the moduli are less convenient than the constants for the 
characterization of a crystal. 
 It is particularly recommended that one should take the principal elastic axes to be 
three rectangular directions whose angles do not change under uniform compression in 
every direction. 
 
 

VI. – Observations on the elastic parameters of crystals and their usage. 
 

 19. Determination of some incomplete systems of constants. – We first enumerate the 
observations that are directed towards certain special questions and do not lead to the 
determination of a complete system of principal moduli. 
 The first quantitative measurements of the elasticity of crystals, which in itself was 
epochal, were due to Baumgarten (1).  In our language, its objective was the 
determination of the modulus s33 by observations of flexure for prisms that were made of 
calcite in various orientations, and a comparison of it with the general expression that 
results for those bodies from formula (66).  The observations were found to be in accord 
with the theoretical law and, in turn, contributed to give an answer to the general question 
a on page 33. 
 The determination of the numerical values for the modulus s33 for some cubic crystals 
was also the objective of the observations of Koch (2) and Beckenkamp (3).  The former 
did research with rock salt, sylvite, and sodium chlorate, while the latter did research with 
potassium alum and chromium alum.  The two series of observations did not suffice to 
give a comparison with the theory.  The observations of Coromilas (4) on two 
clinorhombic crystals (gypsum and mica) were likewise concerned with the modulus s33, 
but extended only in the directions that were contained in a plane, and were consequently 
incomplete. 
 The values of s33 in the directions of the principal crystallographic axes were 
determined by Niedmann (5) with barite.  Some isolated numbers for various crystals are 
given by Mallock (6). 
 All of those observers appealed to prismatic beams, but they were not always careful 
to fulfill the fundamental condition that is assumed by the formula that is employed for 

                                                
 (1) G. BAUMGARTEN, Pogg. Ann. 152 (1874), 369.  
 (2) K.-R. KOCH, Wied. Ann. 18 (1883), 325.  
 (3) J. BECKENKAMP, Zeit. Kryst. 12 (1887), 419.  
 (4) L.-A. COROMILAS, Inaugural dissertation, Tübingen, 1877. 
 (5) H. NIEDMANN, Zeit. Kryst. 13 (1888), 362.  
 (6) A. MALLOCK, Proc. Roy. Soc. 49 (1891), 380.  
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the calculation of the observations, namely, that the transverse dimensions must be small 
in comparison to the longitudinal dimensions. 
 The flexure of circular discs that are supported by two parallel knife edges (1) does 
not lend itself to exact determinations, and similarly, the flattening of an isotropic sphere 
that is pressed against a plate of crystallized substance (2), because those phenomena 
cannot be treated theoretically.  Meanwhile, the method of the circular disc can serve to 
show, with a small expenditure of matter, that in these particular cases, the elasticity has 
the symmetry of a solid of revolution around the axis that is normal to the plane of the 
disc.  It was in that sense that the method that was indicated by Groth was employed by 
Vater (3) in order to confirm a consequence of the theory with plates of calcite and apatite 
that were cut perpendicularly to the axes of order 3 or 6 in those crystals. 
 From (74), the determination of the cubic compressibility of a crystal with a 
piezometer yielded only one combination of principal moduli, and in turn, attracted no 
great interest for the determination of a complete system of moduli, especially since exact 
measurements of that type presented the greatest difficulties.  Nevertheless, that 
observation, when calculated in terms of moduli that were determined in some other way, 
can provide an independent verification of the theory (4). 
  
 
 20. Determination of some complete systems of constants. – Up to now, the 
determination of complete systems of moduli or constants has been done only by the 
author [by abstracting from a series of observations (5) that he had suggested and that has 
not decisive significance, due to the inferior quality of the materials].  The measurements 
that he made referred to the following crystals (6): 
 

Cubic system 
 

 Group 28……….. Rock salt, fluorite 
 “ 29……….. Sylvite 
 “ 31……….. Pyrite 
 “ 32……….. Sodium chlorate 
 

Hexagonal system 
 

 Group 21……….. Beryl 

                                                
 (1) H. NIEDMANN, loc. cit.; H. VATER, Zeit. Kryst. 11 (1886), 549.  
 (2) F. AUERBACH, Wied. Ann. 43 (1891), 61. 
 (3) H. VATER, loc. cit.  
 (4) W.-C. RÖNTGEN and J. SCHNEIDER, Wied. Ann. 31 (1887), 1000. 
 (5)  H. KLANG, Wied. Ann. 12 (1881), 321.  (Observations with fluorite, calculated with the inexact 
torsion formulas of FR. NEUMANN.) 
 (6)  W. VOIGT, Pogg. Ann. Ergänzungsband 7 (1875), pp. 1 and 177.  (Observations on rock salt, 
likewise calculated with the inexact formulas); Wied. Ann. 35 (1888), 642.  (Fluorite, pyrite, rock salt, 
sylvite); Ibid. 49 (1893), 710. (Sodium chlorate); Ibid. 31 (1887), 474. (Beryl and quartz); Ibid. 39 (1890), 
412. (Calcite, while appealing to some observations of flexure by Baumgarten as an alternative); Ibid. 40 
(1890), 642. (Dolomite); Ibid. 41 (1890), 712. (Brazilian tourmaline); Ibid. 34 (1888), 981. (Topaz and 
barite). 
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Rhombohedral system 
 

 Group 9………… Calcite 
  “ 10……….. Quartz 
  “ 11……….. Tourmaline 
  “ 12……….. (Dolomite) 
 

Orthorhombic system 
 

 Group 6…………. Topaz, Barite 
 
 Strictly speaking, the observations on dolomite have no place in this table, since the 
material that was available was not sufficient to determine all of the parameters.  
However, if one takes one of the general questions that were formulated above into 
consideration then they will give an important contribution to the answer to that question 
when one compares their results with the ones that were obtained for the other crystals 
with rhombohedral systems.  They are thus intimately linked with the other observations. 
 To return to those general questions in their own right, one finds no divergence 
between the most general theory (of action-at-a-distance or immediate action) and 
experiment (question a) in the calculations for the observations of rock salt, beryl, and 
calcite that are directed in such a manner that they would verify certain surprising 
consequences of the theory.  One can then consider formulas with 21 constants to 
embrace the observations, especially since it is difficult to see in what way they can be 
further generalized while one preserves the proportionality between the stress 
components and those of dilatation that has been confirmed to a very great extent by 
experiments. 
 Up to now, the differences in the properties of the various crystal groups that are 
possible from symmetry have always been encountered in reality.  In particular, cubic 
crystals, although optically isotropic, are strongly elastically anisotropic, and the crystals 
of the rhombohedral system, while optically equivalent to those of the hexagonal system, 
are completely different from them in regard to their elastic properties.  The elasticity of 
dolomite has an entirely special interest in comparison to that of calcite, which resembles 
it crystallographically.  The diversity of symmetry that is sometimes not manifested in the 
form at all and can be exhibited only by etchings (figures de corrosion) is expressed in an 
extremely striking way in the elastic properties. 
 Observation has not exhibited any well-defined numerical relations between the 
elastic constants of the same crystal (question c).  In particular, the Poisson-Cauchy 
relations (69) have not been confirmed.  For rock salt, it is true that the single relation 
that one deduces for the cubic system – namely, c12 = c44 – is fulfilled approximately.  By 
contrast, it is not true at all for the other crystals of that system; for pyrite and sodium 
chlorate, even the signs of c12 and c44 disagree.  Similarly, in the other systems, along 
with isolated approximate disagreements, such as for beryl, one will also find large 
divergences. 
 The hypothesis of molecular forces that act along the line of centers and depend upon 
only the distance must be regarded as having been definitively refuted by those results.  
The fact that it is unlikely for other reasons was explained already on page 10. 
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 As for the numerical values of the elastic moduli and constants, without a doubt, there 
is no reason to enumerate them here.  We make the following remarks: 
 The absolute numerical values of the elastic moduli are extremely different for the 
various crystals that were studied.  In general, the bodies with the greatest rigidity possess 
the smallest moduli and the largest elastic resistances. 
 Upon taking the unit of force to be the gram-weight and the unit of length to be the 
millimeter, one will have, for sodium chlorate, for example: 
 
 0

11s  = 24.1 × 10−8, 0
12s  = 12.3 × 10−8, 0

44s  = 82.1 × 10−8, 

for topaz: 
 0

11s  = 4.34 × 10−8, 0
23s  = − 0.65 × 10−8, 0

44s  = 9.06 × 10−8, 

 0
12s  = 3.46 × 10−8, 0

31s  = − 0.84 × 10−8, 0
45s  = 7.37 × 10−8, 

 0
33s  = 3.77 × 10−8, 0

12s  = − 1.35 × 10−8, 0
46s  = 7.49 × 10−8. 

 
 However, that rule is far from general: For example, for pyrite, one will have: 
 
 0

11s  = 2.83 × 10−8, 0
12s  = 0.43 × 10−8, 0

44s  = 9.30 × 10−8. 

 
 From what was said on page 35, 0

hks  = 0
khs  for h and k equal to 1, 2, 3, but h > k and h 

< k measures the transverse dilatation in the direction of the coordinate axis that 
corresponds to h for tractions that are parallel to the coordinate axis that corresponds to k.  
For those moduli, as one would expect from the experiments that were done with 
isotropic bodies, observations would give negative values in most cases.  The 
longitudinal dilatation is accompanied by a transversal contraction.  Topaz is one 
example.  However, that property is not general.  The numbers above that relate to pyrite 
and sodium chlorate show that cylinders that are cut from those substances parallel to one 
of the principal axes and dilated longitudinally will also experience a transverse 
dilatation, which is a result that seems a bit surprising. 
 The general research into the existence of unique solutions in these elastic problems 
(i.e., on the possibility of several states of equilibrium for given external actions and 
infinitely-small displacements u, v, w) has led to the result that the existence of just one 
solution can be proved in a general manner only in the case where the elastic potential f is 
essentially positive. 
 The general conditions for that to be true were given by Jacobi (1).  They are satisfied 
or not according to the numerical values of the elastic parameters.  It is then interesting to 
see whether the complete systems of parameters that have been determined satisfy the 
Jacobi conditions.  Wesendonck (2) has done that research and showed that, in reality, the 
elastic potential f is an essentially-positive function in the crystals that were studied. 
 
 
 21. Application of the preceding results to isotropic bodies. – The results that were 
developed above give rise to some interesting applications to isotropic bodies. 
                                                
 (1) Jacobi, Crelle’s Journal 53 (1857), 281; K. WESENDONCK, Wied. Ann. 35 (1888), 21.  
 (2) K. WESENDONCK, Wied. Ann. 36 (1888), 725. 
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 In Part Two, we have shown that the elastic formulas with one constant that yield the 
oldest molecular theory are not confirmed by experiments.  Now, one can suppose that 
the introduction of the general laws of molecular action, with which, the most recent 
theory of action-at-a-distance operates, and by which the formulas of crystal elasticity 
arrive at an agreement with the theory of immediate action and with experiments, will 
lead in an analogous manner for isotropic bodies to formulas with two constants that the 
theory of immediate action yields and which are in agreement with observations. 
 However, that is not true immediately, because if one considers an isotropic body to 
be a collection of elementary masses called molecules that all possess relative 
orientations then the definition on page 12 of the stress components will show that the 
manner by which the molecular actions depend upon the directions in them will have no 
influence on the values of the sums in question.  The latter are the same ones that one will 
get if one makes a constant form of a certain mean magnitude act in place of the force 
that varies with direction, and the same relation between the two elastic constants that 
gave the old molecular theory will result from it. 
 Direct examination suggests another way of imagining isotropic bodies that will lead 
to some new and more satisfying results (1). 
 All metals and almost all compact rocks immediately present themselves as 
collections of crystals whose size varies with the circumstances, which are juxtaposed in 
all possible orientations.  In other bodies – for example, in certain types of glass – the 
same structure is made visible by the etching of a polished surface.  One can then assume 
that a structure of that type (which is called quasi-isotropic, by the author) is the rule in 
nature. 
 When the individual crystallites are large with respect to the sphere of activity of 
molecular force, but small with respect to the dimensions of the body, and when they fill 
up space completely without any intermediate layers that might have a loose and 
powdery consistency, one can calculate the mean values of the stress components, and in 
turn, the elastic constants of the quasi-isotropic bodies by starting with those of a 
homogeneous crystal. 
 From the fundamental hypothesis, any plane that is laid through a quasi-isotropic 
body will cut the individual crystallites in all possible orientations, and the portions of the 
plane that is contained in each of them will be large with respect to the molecular sphere 
of action.  It then results that the components of the pressure against such a plane can be 
equated to the arithmetic mean of the values that the analogous components take in the 
homogeneous crystal for all possible orientations of the surface element. 
 Consequently, if one starts with the formulas: 
 

(89)   11 12 16

41 42 46

,x x y y

z x y y

X c x c y c x

Y c x c y c x

− = + + +
 − = + + +

⋯

⋯

 

 
then if one forms these expressions for all possible orientations of the X, Y, Z system with 
respect to the principal system X0, Y0, Z0, when one takes their arithmetic mean, one will 
obtain the values of the normal and tangential components of the stress for the quasi-
isotropic body.  The resulting expressions take the form: 

                                                
 (1) W. VOIGT, “Theoretische Studien, etc.” pp. 48; Wied. Ann. 38 (1889), pp. 573.  
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(90)    1 1

1
22

,

,
x x y z

z z

X cx c y c z

Y c y

− = + +
 − =

 

in which c, c1, c2 signify: 
 
(91)  c = 1

5 (3A + 2B + 4Γ),    c1 = 1
5 (A + 4B − 2Γ),    c2 = 1

5 (2A − 2B + 6Γ), 

 
in which one has set: 
 
(92)  0 0 0

11 22 33c c c+ +  = 3A, 0 0 0
23 31 12c c c+ +  = 3B, 0 0 0

44 45 46c c c+ +  = 3Γ, 

to abbreviate. 
 A, B, Γ are then certain simple means of 3 × 3 = 9 principal constants with similar 
meanings.  The other 12 principal constants do not enter into the formulas for the 
constants of a quasi-elastic body at all. 
 From (91), one will always have the relation: 
 
(93)     c2 = (c – c1) 
 
between the constants c, c1, c2 of equations (90) that the old molecular hypothesis 
provided, along with the theory of immediate actions.  However, there is generally no 
other relation between the constants.  Formulas (90) and (93) are then identical with the 
results of the theory of immediate action. 
 It is only in the case where the molecules of the individual crystals possess no 
polarity, and in which, from (59), the Poisson-Cauchy formulas: 
 

0
44c = 0

23c , 0
45c = 0

31c , 0
66c = 0

12c  

 
will consequently be valid, that one will have B = Γ, and in turn: 
 

c1 = 1
2 c2 , c = 3c1 . 

 
It is the Poisson relation for isotropic bodies that establishes the transition to the elastic 
formulas with just one constant and for whose verification one will carry out research 
with the most varied successes. 
 Starting from the viewpoint that was explained above, the diversity of the ratio c / c1 
in various bodies is perfectly comprehensible.  For crystals whose elastic constant have 
been determined, the ratio c / c1 is easy to calculate with formulas (91) and (92), and one 
will find the most extreme variety in the numbers, which starts with 13.7 for rock salt and 
descends down to negative values for pyrite and sodium chlorate. 
 As for the verification of that theory by experiments, one must take into account the 
difficulty that resides in the rarity of the quasi-isotropic bodies of the supposed 
composition, which exists simultaneously with the crystals of the same material that are 
susceptible to measurements.  The compact (quasi-isotropic) varieties generally present 
individual crystals that are weakly agglomerated by powdery masses of extremely small 
elastic resistance.  It is then natural that they should give resistances that are noticeably 
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weaker than the ones that were derived by means of formulas (91) and (92) from the 
measurements that were made by the author in collaboration with Drude (1).  Meanwhile, 
one can show that it is plausible that those perturbations have effects that are proportional 
to the different sums that enter into the formulas for the stresses, and in turn, despite the 
diminution of the absolute value of the constants c ad c1, their ratio must have roughly the 
theoretical value. 
 If one compares the values of c / c1 that are observed for compact varieties with the 
ones that are calculated by means of the elastic constants of a homogeneous crystal then 
one will find an approximate agreement.  What is particularly striking is the manner by 
which the two varieties of amorphous silica compare to those of quartz.  As was said 
above, the latter will give the exceptionally high number of 13.7, in place of Poisson’s 
number 3.  For flint, observation gave 11.7, and for opal, it was 15.6.  In order to better 
judge the significance of those results, it is convenient to consider that, on the one hand, 
it is not certain that flint and opal actually contain silica in the same modification as 
quartz, and that, on the other hand, the directly-observable values of the resistances to 
elongation and torsion E and T combine in the expression for the ratio of the constants c / 
c1 in such a fashion that the result will possess a relatively low degree of certainty. 
 Consequently, it is better to make the comparison of the theory and observation on 
the basis of the ratio E : T itself.  From the Poisson-Cauchy relations, that quantity is 
equal to 2.5 for all bodies, so the theory that was developed above will demand that one 
get 2.130 for quartz, while observations give 2.150 for flint and 2.120 for opal.  That 
excellent agreement is a confirmation of the greatest value for the theory. 
 

THESIS 
 

 The observations that have been made up to today agree with the equations of 
elasticity with 21 constants in all of their aspects. 
 Some crystal groups that can have different elastic properties from the general theory 
have always been found to be different, up to the present. 
 The Poisson-Cauchy relations between the elastic constants are verified 
approximately in certain cases, but in most of them, they are not even close. 
 The elastic properties of isotropic bodies can be explained by the molecular 
hypothesis only if one assumes that those bodies are composed of crystal fragments. 
 

APPENDIX  
 

Theory of thermoelasticity (2). 
 

 In the preceding exposition, one exclusively imagined mechanical forces that acted 
upon crystals (except for volume moments, which were discussed in passing, and which 
are barely realizable mechanically).  However, one knows that elastic forces can be put 
into play by other phenomena, such as the action of heat, and electric and magnetic fields, 
in particular.  Each of those actions will give rise to theoretical considerations that are 

                                                
 (1) W. VOIGT and P. DRUDE, Wied. Ann. 42 (1891), 537. – W. VOIGT, ibid. 44 (1891), 170.  
 (2) W. THOMSON, Quart. Jour. Math. 1 (1857), 57. – N. SCHILLER, Jour. russ. phys. Ges. 11 (1879), 
6.  Especially for crystals: W. VOIGT, Wied. Ann. 36 (1889), 743. 
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important generalizations of the preceding ones.  Space permits us to give only some 
brief suggestions about those questions. 
 One considers those phenomena to be reversible in the thermodynamic sense, and one 
consequently represents their laws most conveniently by means of the function that is 
called the thermodynamic potential, whose existence is precisely the expression for that 
reversibility, and whose derivatives, one knows, provide all of the characteristic 
quantities of the phenomena considered in the simplest manner. 
 Let Ω denote the thermodynamic potential per unit volume for a crystal.  In the 
phenomena considered, it will depend upon not only the dilatation components xx, …, xy, 
but also the variation τ of the temperature and the components X, Y, Z and A, B, C of the 
electric and the magnetic field. 
 From the principles of thermodynamics, minus the first partial derivatives of Ω with 
respect to the components of the dilatation xx, …, xy will then provide the general 
components of the stress Ξx, …, Ξy, and the derivatives with respect to the components of 
the electric and magnetic field will give the electric moments ξ, η, ζ and magnetic 
moments α, β, γ per unit volume.  Minus the first partial derivative with respect to 
temperature will give the increase in entropy per unit volume that is determined by the 
other arguments.  If one is always dealing with dilatation components that are extremely 
small, as well as temperature variations that are likewise very small and weak field 
components, then one can develop Ω in powers of those variables and keep only the 
terms of lowest degree that appear (viz., the ones of second degree).  The specialization 
of that expression for the various crystallographic systems can then be made from the 
principles on page 30, and the best way of doing that is to make a convenient 
decomposition of Ω into simpler terms, as was done on page 18. 
 For the phenomena of thermoelasticity, only the terms that depend upon xx, …, xy,, 
and τ will occur.  Here, Ω is then composed of a function that is homogeneous of second 
degree in the xx, …, xy  − i.e., an ordinary elastic potential f − a term in τ 2, and a term that 
is bilinear in τ and xx, …, xy .  We can then set: 
 
(94)   Ω = f – τ (q1 x1 + q2 yy + … + q6 xy) – 1

2 r τ 2 , 
 
in which the qh and r represent constants. 
 One will then have the formulas: 
 
(95)    Ξx = Xx + q1 τ,  …, Ξy = Xy + q6 τ 
 
for the stress components, in which  Xx , …, Xy  have the values that were indicated in 
(41).  The terms q1 τ are then the thermal components of stress, which are added to the 
purely elastic or isothermal components Xx , …, Xy when the temperature changes. 
 For example, if there are no external actions then Ξx, …, Ξy will be zero, and upon 
substituting the values (41) for Xx , …, Xy , some expressions for the components of the 
dilatation that corresponds to the variation in temperature τ will result from (95) that will 
have the form: 
(96)   xx = a1 τ, yy = a2 τ, …, xy = a6 τ, 
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The coefficients of thermal deformation ah , which are defined by these equations, will 
then be given by the formulas: 
 
(97)    ah = q1 sh1 + q2 sh2 + … + q6 sh6 , 
which will also give: 
(98)    qh = a1 ch1 + a2 ch2 + … + a6 ch6  
when it is solved for the qh . 
 The latter formulas are particularly interesting, because they make it possible to 
calculate the constants qh of the thermal stresses by starting with the constants of elastic 
and thermal deformation that are accessible to experiment.  Moreover, their 
determination will permit one to perceive, on the one hand, the absolute magnitude of the 
stresses that are produced by the temperature variations, and on the other hand, they 
permit one to appreciate if and how much those stresses vary with direction in the crystal. 
 In regard to those questions, observation shows that the thermal stresses, like the 
elastic stresses, are functions of the orientation of the surface element on which they act, 
that they are positive, even when the crystal contracts in one direction by heating, and 
that the effect of an elevation in temperature can generally be annulled by a pressure that 
is uniform in every direction. 
 From the preceding, one infers the expression: 
 
(99)    H = q1 xx + q2 yy + … + q6 xy + r τ 
 
from (94) for the increase in entropy H per unit volume that will correspond to the 
deformation xx, …, xy, and the variation of temperature τ. 
 If Θ0 represents the initial absolute temperature by starting from which one will count 
the (small) increase τ then, from the principles of thermodynamics, Θ0 H will be the 
quantity of heat per unit volume in the crystal, as measured in mechanical units, and Q / τ 
will be the caloric capacity Γ per unit volume.  Consequently, r Θ0 will be equal to that 
capacity in the case where the deformation is lacking. 
 When the phenomenon is adiabatic – i.e., there is no exchange of heat – one will have 
H = 0, and that equation will give the value τ of the variation of temperature that is a 
consequence of only the deformation when one substitutes the expression given by (99) 
for H.  If one substitutes that value in the expressions (95) for the general stress 
components Ξx , …, Ξy then one will obtain expressions that are homogeneous in xx, …, 
xy that play the same role for all adiabatic elastic phenomena that the fundamental 
formulas (41) play for isothermal phenomena.  In place of the isothermal elastic constants 
chk, one will find adiabatic constants hkc′  that are related to the preceding ones by the 

formulas: 

(100)     hkc′  = chk + h kq q

r
. 

 
One must similarly append adiabatic moduli to the isothermal elastic moduli, which were 
all that was employed above.  The author has calculated the adiabatic parameters for the 
crystals when one knows the isothermal parameters.  The differences between those two 
types of quantities are very noticeable for some bodies. 
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 The isothermal and adiabatic phenomena are the extreme cases in which the real 
phenomena are approached closely enough to be identified with them in certain cases. 
 We consider an elastic phenomenon to be isothermal when it is produced in a medium 
at constant temperature slow enough that the variation of temperature that is produced by 
the deformation itself, by the preceding, will have enough time to disappear almost 
completely by thermal conduction.  We consider it to be adiabatic when the modifications 
are produced fast enough that the thermal conduction can have only extremely small 
effects.  The former case is that of the methods of static observation, while the latter one 
is the one in which all vibrations are rapid, which is that of acoustic phenomena.  In the 
former case, one is consequently authorized to operate with the isothermal constants and 
moduli, while in the latter, one can work with the adiabatic constants and moduli. 
 Just as the considerations above provide, at the same time, the laws of thermal 
deformation and those of the heat of deformation, similarly, when one takes into account 
the electric field components, some analogous considerations with a generalized potential 
Ω will give the laws of piezoelectricity and pyroelectricity, as well as the reciprocal 
phenomena of electrostriction and the electric heating of crystals.  However, we are 
obliged to settle for a simple mention of the existence of those relationships here. 
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