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1. Since 1900 the statistical and mathematical work inogilhas intensified. It
commenced with statistics, and it was in 1900 precisedy #n eminent English
mathematician, Karl Pearson, founded the jouBiametrica, which has rendered an
immense service to the sciences. It was Pearsomredognized that the problems that
were posed by the theories of evolution, transformianad natural selection must be
envisioned from the demographic viewpoint, but it was not ichately adopted by
scholars. It has taken some time to convince them.

After Pearl, one of the greatest living biologicaltist&ians, the theories in question
seem to have been on their deathbed for some years.

Nonetheless, the ideas of evolution and the strugglexistence have aroused great
interest prima facie. They have been the object of innumerable writings Haeve
exceeded everything that had been done on the other questieadity.

However, despite the contributions of celebrated asthbe writing and experiments
that have been performed on these subjects during thealésehtury have not arrived
at any conclusions of great import. That is the opimibRearl, who added that it is the
new path along which one will engage genetics, and th& the new studies on
population and demographic dynamics that have resuscitegedfdrmism and the
struggle for life by showing that these theories presarserprising vitality.

Presently, these studies continue to progress frohereithe experimental and
practical viewpoint or the mathematical and theoretigalvpoint. Ross, and principally
Lotka, Elton, Gause, Thompson, and many others, musitdx for their calculations,
experiments, and their practical struggle against pestlensects in agriculture.

Among the most recent works, | would like to point dw& beautiful volume that was
published by Kostizin in the Colin collection.
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Two new branches of biology have thus developed ientetimes: mathematical
biology and experimental biology.

| have had occasion to speak on that subject in Rargsa time already. | first gave
a series of lectures on the struggle for life at litnstHenri Poincaré that have been
collected into a volume that was published in 1931. Leest, v a conference, | showed
that one can advance in biological dynamics in a maragris analogous to what was
followed by rational mechanics by introducing a variatiqgoraiciple of the same type as
Hamilton’s, reducing the fundamental equations to themaal form, developing some
theories that are analogous to the energetic theanesfinally, by statinghe principle
of least action for life.

l.
2. | shall begin by giving a summary of the general theor
If one has just one species whose populatidi,isnd if the growth coefficient is the

positive numbee; then the law of Malthus will be expressed by:

dN,
dt

=& Ng,

and the population will increase in an exponential manhéewise, if the population of
a second speciesh& then one will have:

dN,

at =—&Ns.

The growth coefficient will be the negative numbers, . The population will then
decrease in an exponential manner, and the specieseweilhiausted.

If the two species live together, but they have noprecal action with each other,
then the preceding two equations will be verified simeicarsly.

However, suppose that the individuals of the second speatethose of the first, so
the growth coefficient of the first species diminislssthe population of the second one
increases, whereas the growth coefficient of the skapecies will increase with the
population of the first one, whose individuals form ib®d. If we assume, in a first
approximation, that these increases and diminishmenisaes then we must replacg
and& with & — )4 N, and— & + )5 N1, where)s and )5 are constant positive coefficients.
That is why one must replace the preceding equationgheétfollowing ones:

N dN,

= (- &+ pN) Ny
dt TR

(A)

We leave aside the integration of these equations, wiashdefined the subject of
several papers, and pass on to the general casgpeties.
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In order to study that case, | have employke principle of encounter in my
preceding works. We now show, in a very summary maiinatr one can also obtain the
same results by generalizing the process that was jusirutdee case of two species.

Imagine a biological association wfpecies that have populatiddsg Na, ..., N, and
suppose that the individuals of the one species eat diidise other.

Their growth coefficients, which will be,, &, ..., & if each species is isolated, will
be modified due to their mutual actions.

If we always suppose that these modifications arergiy terms that are linear
functions of the populations then the growth coeffitsefior the species ands will be
written:

&+iA§rNs’ £5+iA§rNr'
s=1 r=1

Now, it is obvious thafs andA;s must be constant and of opposite sign, since if the
speciess eats the specieshenAs must be negative; however, the speciesthen eaten
by the species, and as a resul®y,s must be positive. If the two types have no reciprocal
action then one will havés = As = 0. In addition, one will have that all of tlhethat
have the same indices will always be zero. Whdtassignificance ofs andAs?

It is obvious thaAs measures the effect that is exerted on the growtheo$pecies
by the presence of each individual of the spesiasthe biological association, whikgs
measures the reaction that is exerted on the growtheirspecies by the presence of
each individual of the species Now, these two effects cannot be made equal in alsolut
value, in general.

For example, suppose that one is dealing with two speé@ms of them consists of
large fish, while the other one consists of small, fesid suppose that the individuals of
the former eat those of the latter. One easilg $keat the introduction of a large fish that
eats the small ones will have a greater effect engtiowth of the latter species than it
will on the growth in the species of large fish, whhe introduction of a small fish will
have no other effect than to increase the food ftaige fish to a lesser degree.

One can take that remark into account by making a newthgsis, which is very
easy to accept, moreover, and which consists of givirdgrdift values to the individuals
according to whether they belong to one or the othetiespe The inverses of these
values will then be equivalent to the individuals ofdiféerent species.

Call these value@,, [, ..., G, and in turn, those of the equivalent@&1l/1/5, ...,
1/, which corresponds to saying that & individuals of the speciasare equivalent to
1/ individuals of the species By virtue of that hypothesis, one can take:

1 1
Ay = —ag, As=—as, as=—as,
B, Bs

and then the growth coefficients of the differgmeces will be given by:

1n 1n
&+ — N, &+ — <N, .
: [J,r;a“ 3 ﬁS;aT
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One will then have:

dN 1
(B) dtr = [sr +EZS:aSr NSer r=1,2,..n)

as an extension of equatiory (o the general case nfspecies.

The process that we just followed is not as rigorouth@sne that we employed in
our preceding work, but perhaps it is more intuitive and l&mp

One can also write equatior) @s:

dN "
@ f o= en Tann
s=1
in which:
ay =—as, ax=0, B, By ..., B> 0.

If ag is positive then that will signify that the speciesats the specieswhile if it is
negative then contrary statement will true — i.e.,dpecies will be eaten by the other
one. Ifag = 0 then the individuals of the two species do not a#ach other.

The quantitiess,, &, ..., & are the growth coefficients of the species when each
species is isolated. One takes them to be positive winerspecies is effectively
augmented and negative for the ones that tend to be extiaust

3. If the equations:

@) &R+ aN,=0
s=1

are satisfied then the populatidds N, ..., N, will stay constant.
Equations (2) ar¢he equations of equilibrium or the stationary state. We suppose
that the determinanfundamental determinant):

8, 0 - a,
ay a, - 0

IS not zero.

In order for that to be true, it is necessary thatnumbers of species must be even,
since that determinant is half-symmetric. Moreover, care prove that if is odd then
one will generally have that some of the speciestesiltl to exhaust or grow indefinitely.
That will produce a complete modification of the biatad association that loses its
stability. We then suppose ththe number of speciesis even and that the determinant is
non-zero.
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In addition, one makes the hypothesis that the roagdtions (2) must be positive.
We denote them byn, 02, ..., g, and we will then be certain that there exists an
equilibrium state and that these numbers will giveetpailibrium populations.

4. One infers from equations (2) that:
>.&69 =0.
r=1

That is why it is necessary that theshould not all have the same sign in order to
have equilibrium, since th& are all positive.

Vary the & by A&, so the roots of equations (2) will vary By, AQy, ..., Agn.
Consequently, due to equations (2), one will have:

(3) B D& + Y a,Aq =0,
s=1
SO
(4) Y BA&Ag, =0.
r=1

If the quantitied\& are non-zero and all have the same sign theAdheannot all be
zero [gee (3)] and the ones that are non-zero will have diffes@ns pee (4)].

5. Now, let us envision the fundamental laws of fluctuatiohe statement of the
first one is as follows:

If one has an even number of species, and if there exists a stationary state then upon
starting with a non-equilibrium initial state, one will produce fluctuations that do not die
out.

One says that one h#lsctuations of a population if it has maxima and minima for
infinitely large values of time.

Theydie out if the oscillations become as small as one destrestufficiently large
values of time.

In order to prove that law, one must begin by obtainmmeegral of equations (1).

Suppose that equations (2) have the rggts,, ..., g, . One can then write:

&5 == a0,
s=1
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and upon eliminating; &, equations (1) will become:

dN,
dt

B = i%(Ns—qs)Nr-

Upon multiplying these equations b’;!fl\l_—qf and summing over the indexrom 1

to n, they will become:

- B dnN, _
P (N.-g)—= =0,
;Nr(s %)~

sinceag = — a5, i.€.:

o , dN 1 dN
ro_ = r :0’
;[ﬁr dt Al N, dtj

and upon integrating:

5) S (AN, -5 logN,) =C,

r=1
in whichC is a constant.
Set:

G (Nr—q logNy,) =P;.

Upon differentiating, one will get:

dP q d’P q
_I‘: 1__r , r = A I .
G g

r

The minimum value o, is then obtained by taking. = g,, and will be:

pr =4 o (1 -logqy).

On the other hand, one will see that the valuedN.odnd P, correspond in the
following manner:
Nr, 0,...—>qr,... — 00,

Pr, 00,...<—pr,...—>00.

(The arrow indicates the sense in which it incregse
Since:

(in which C is finite if theN; have finite initial values), one will infer fronhis thateach
N must be kept between finite, positive numbers.
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It is obvious that if thé\, = g, then one will havez p. =C, and conversely, whed
r=1
has that value, one will have thét=q; .
That is why the necessary and sufficient conditiantfie constanC to be equal to

n
z p. is that the state of the biological associationtrbesstationary.
r=1

Equations (1) give:

dlogN n
ﬁ——f—L=[aﬁ+§kaNJ,
t pry

and upon integrating this frotato t, one will get:

1
t—t,

B . NGO _ :
N TSR LA

j: N,(7)dr .

Since N((t), Ni(tp) must be found between finite, positive numberdpllows that
upon lettingt grow indefinitely, the left-hand side of the préirg equation will have the
limit 0, and consequently, one will find that theaqtities:

.= lim——[' N,(z) d7
taoot—to to

satisfy equations (2) of equilibrium. Since theéedminant is non-zero, one must have
thatns = g ; i.e., the asymptotic mean of Ns will be g.. One will call thatasymptotic
mean simply themean.

If N1, N2, ... Nphave limits fort infinite then those limits will be their asympioti
means, and as a result, they will correspond ttatorary state. The consta@twill

n
therefore have the valu{ p,, and consequently, the valuds , N, ... Ny will
s=1
correspond to an equilibrium state and will be kegmstant. One infers from this that if
the initial state is not an equilibrium state ttb@N;, N, ... N, will not tend to limits,
and in turnthe fluctuations will not die out.
The first law is thus proved completely. It betirs name othe law of conservation
of fluctuations.
From what we found previouslyhe means of the populations are equal to the
equilibrium populations. That is the second law.
That law is calledhe law of the conservation of means.
Indeed, since they are equal to the equilibriunpytetions, they will be independent
of the initial conditions, and therefore they wilbt change when one varies the initial
conditions.
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6. We now arrive at the third law, which is callén |aw of variation of the means.

It refers to the change in the asymptotic means when roodifies the growth
coefficients — i.e., when one simultaneously augmentdiminishes all of the numbers
&, &, ..., &, which corresponds to supposing that one increasestiogethe species in
proportion to their populations. For example, the destnaacan be realized by fish
when the biological association is comprised of séwspacies of fish that cohabitate in
the same medium.

We calculate the variations of the asymptotic mehatsdorrespond to th&s that all
have the same sign.

One infers from paragraph 4 that if the are all positive or all negative then the
cannot be either all zero or all of the same sighatTs whythe means of certain species
must be augmented, and the means of other species must be diminished; that is, upon
simultaneously augmenting or diminishing the growth coeffits of the species, some of
them will be at an advantage, while other ones wikbe disadvantage.

However, the species can be classified into thresgoaes:

1. The ones that eat other ones without being eatanyiiing.
2. The ones that are eaten by others without eatirttpiagy
3. The ones that are eaten by others and also eaok®

t is obvious that the first category cannot existisolation, and likewise for the
second category, but it can happen that the three caegxist simultaneously or that
there exist two of them, or that the third exists bglits

Suppose that th&&g, As, ..., A& are negative and the first species is comprised of
the ones that are at an advantage for destruction tha®Aq; is positive.

Two cases can then present themselves: Either aife elumbersy, asy, ..., an IS
negative, or these numbers are all positive or zerms&juently, by virtue of the first of
equations (3), there will be some positive values amond\gheAdy, ..., Ag,, and in
turn, there will be some species 2, 3, n.that are eaten by the species 1 that will be at an
advantage.

Therefore, there will always exist a species thaaien and favored — i.e., among the
species that are at an advantage, there will be sitdea of them that belongs to category
2or 3.

However, if the species 1 is at an advantage fodélséruction (which corresponds to
the diminution of the quantities;) then there must exist a species that is at a
disadvantage. Thus, if one argues in this case by analigyhe argument that we just
made for species 1 then one will find that there must exileast one species in category
1 or 3-i.e., adisadvantaged species that is harmed.

7. The third law — i.e., the law of the variation of timeans — can thus be stated in
the following manner:

If one destroys all of the species uniformly and in proportion to their populations then
the mean of at least one of the disadvantaged species (i.e., the species that belong to
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categories 2 and 3) will be augmented, and the mean of at least one of the disadvantaged
species (i.e., ones that belong to categories 1 and 3) will diminish.

That corresponds to the fact that at least of pleeiss that belong to categories 2 and
3 will be at an advantage, and at least one of theespdtat belong to categories 1 and 3
will be harmed.

In the case for which there exist only species oégmties 1 and 2, the destruction
will favor at least one of the species 2 and disfatdeast one of the species 1.

My preceding work envisioned only that case. | calledispeaters only when they
belonged to category 1 amdten when they belonged to category 2. | suppressed the
existence of species that belonged to category 3, whestlgrimited the scope of the
third law and estranged me from the real conditionsatepresented in nature.

| shall leave aside the exposition of the experimeargafications that the three laws
have led to, because we are getting further away fronmtteematical viewpoint that
we would not like to abandon.

8. Rather, we shall pass on to the exposition of thprecity principles that emerge
from the laws and formulas that we have envisioned.
Suppose that we have two equilibrium states. Thedirstcorresponds to the growth

coefficients&, &, ..., & and to the equilibrium populations, ¢, ..., gn.
The other one corresponds to the coefficiegjts e, , ..., & and to the equilibrium
populationsq , @,, ..., g,. In addition, we make the hypothesis (which we alsdl sh

also maintain in what follows) that tlf# anda,s do not change.
By virtue of equations (3), one will have:

&8 +Y a,q,=0,
(2') s:l
&5+ a,q,=0,
s=1
SO
d&Bq =) > a0,
r=1 r=1 s=1
dYeBd =YY a0
r=1 r=1 s=1
However:
Y Ya.qe=.>a060 == 224,00,
r=1 s=1 r=1 s=1 r=1 s=1
SO.

Y eBg=->¢€Bq.
r=1 r=1
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That is thefirst reciprocity principle.

9. We remark that the quantitigsand g, must be positive, but that limitation does
not extend to their variations. In addition, obsena gquations (3), which one obtains
by varying equations (R have the same form since they are linear.

Now, neither thes nor theq, appear in equations (3); therefore, figg will always
be the same for argy, g, ..., gn, provided that one preserves the values of\ifhe One
can then state the theorem:

The variations of the equilibrium populations depend upon variations of the growth
coefficients, but they are independent of the growth coefficients and the original
equilibrium populations.

It is obvious that this proposition is subordinateht® tondition that the equilibrium
populations will remain positive after their variation.

10. By virtue of equations (2) and (3), one will get:

n n

D & BAG =Y > aqAq,,
r=1

r=1 s=1

D A B0 =Y > ahqg,
r=1

r=1 s=1

and by a process that is analogous to the one that Wasdd in paragraph 8, one will
have:

> & BAG =~ Y A B0, .
r=1 r=1

This isthe second reciprocity principle.

11. One infers from equations (4) thatAg is non-zero, whil\&, ..., A&-1, A&,
..., A& are zero, then one must hav@ = 0. The theorem then results:

The equilibrium population of a species will be preserved when one changes its
growth coefficient, provided that one does not change the coefficients of the other
Species.

However, we have found in paragraph 5 that the mean giogpelation of a species
coincides with its equilibrium population; therefore,eomgan state the preceding
proposition in the following manner:
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If one preserves the growth coefficients of the species without alteration, except for
one of them, then the mean of the population of that species will not change, while the
means of the other species will change.

The statement of this theorem seepasadoxical, which is why one calls it the
demographic paradox. It is nonetheless easy to persuade oneself ofaitiende.

In order to do that, it will suffice to envision arpeular example, namely, that of the
two species that we considered in paragraph 2.

In the case of equilibrium, equatiory (will become:

51—}11N2:0, —€2+}éN1:0,

which is why the equilibrium populations will be:

& &
gL = -2, 0o = .y
12 n
and we will have:
Aql: AEZ , quzﬁ_
) n

For example, ifA& > — & is negative and& = 0 thenAg, will be negative and\q
= 0. Therefore, a reduction of the growth in the sgeeti(viz., the eaten species) without
there being any variation in the growth coefficientmégaes 2 will produce a diminution
of the equilibrium population, and in turn, of the me&nhe species 2 (viz., the eating
species), but it will not modify the equilibrium populatiof species 1, and in turn, its
mean. It is easy to imagine the truth of this conalyssince there will be one kind of
compensation between the negative variation of growtthefeaten species and the
diminution of the destruction that is due to the reductibthe population of the eating
species. That is why the mean of the first specidisnet change, while that of the
second species will diminish.

All of the other cases that can be presented camtieepieted in an analogous
fashion.

12. Suppose that one is first given the variatidas, As, ..., A& of the growth
coefficients and then the variatidkie, A's, ..., A'& , and that one first obtains the
variations of the equilibrium populatiod};, Acp, ..., Ag, and them\'qu, A'qp, ..., A'qn,
respectively.

Due to equations (3), one will have:

5 D& + Y aAq, =0,
s=1

B D&+ a,0q=0,
s=1
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SO
Y BAsANq = ZZaTSAqu q
r=1 r=1 s=1
Y BNeNAY =D > aNgAq, .
r=1 r=1 s=1
However:
Y>> a g, = ZZ%MA g ==Y > algAq, .
r=1 s=1 r=1 s=1 r=1 s=1
Therefore:

Zn‘,ﬁrAfrA’qr =- Zn‘,ﬁrA'frAqr :
r=1 r=1

This isthird reciprocity principle.
We have called (8 2p, £, ..., £ the values of the individuals of the different
species. That is why, = 5 N; will be the value of the speciesand:

V=> Bq,
r=1

will be the mean value of the association.
Sinceay = — &, one will have:

zﬁ _igfﬁl’Nf+i ) aSrNSNr:igrﬁrNri
=1 r=1 r=1 s=1 r=1
and consequently:
dv = Zn:é‘rﬁrNr dt.

r=1

Therefore, at each instant, the augmentation of theeaf the association will depend
upon only the growth coefficients, because it will nopetel upon the reciprocal action
that the different species exert upon each otheras&nciation of that sort will be called
conservative.
Suppose that:
Ag =A& = ... =01 =A&§1= ... =A& =0,
Ng=Ng=..=Nga1=Ngan=..=0&=0,

while A& andA'& are non-zero.
Due to the third reciprocity principle, one will have:

G A& N =— A &G,
and in turn, if:
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Ag =g,
then one will get:
B A =~ S Ads;
le.:
AV == Avs.

One will then have the proposition:

The variation of the mean value of the speciesr (i.e., the variation of the value of the
equilibrium population}hat is produced by a variation of the growth coefficient in the
species sis equal and of opposite sign to the variation of the mean value of the species s
(i.e., the variation of the value of the equilibriumpptation) that is due to an equal
variation of the growth coefficient in the speciesr.

This theorem presents an analogy with the knowmprecity theorems of the theories
of elasticity and electrostatics, but it differs bylaange of sign. Indeed, these latter
theorems depend upon a symmetric determinant, while thedongchneorem that one
has in biology follows from the existence of a hegymmetrical determinant.

15. I will conclude with an elegant extension of the presgdgiropositions that was
given H. Freda.

Take a group of species that belong to the associatibcansider its mean valQe
5 O, which one obtains by adding the mean values of theespdtat comprise it. The

variation of that value that is due to a change irgtieevth coefficients will beZ,Br Aq; .
If one varies only the growth coefficients of thesigs of the group, ary the same
guantity A« (i.e., uniform variation) then due to equation (4), ofleget:

2,31 AeAgn =0,
and in turn:

2,31 Ag, = 0;

the mean value of the group does not change.

Imagine a second group of different species. If we coentiiem with the first group
then we will obtain an ensemble whose value does maige when we give the same
variation to all of the growth coefficients of theesies that comprise it.

However, the variation of the mean value of theearise is composed of variations
of the mean values of the two groups; in each of tlmma,can combine the terms that
result from the uniform variation of just one growth dwefnt of the species of one or
the other group. If we distinguish the two groups by tfteces 1 and 2 then we will
have:

AV11 + AVo, + AV + AV = 0,
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in which AVix denotes the variation of the mean value of the groupen the uniform
modification of the growth coefficients applies toytile species of the grokp

Since the first two terms in the preceding equality z#e, the other two must
compensate — i.e., they must be equal and of opposite sign.

One can thus state the following theorems:

If one gives the growth coefficient of one group of species a uniform variation then
the mean value of that group will not change.

The variation of the mean value of a group that is due to a uniform variation of the
growth coefficients of another group is equal and of opposite sign to the variation of the
mean value of the second group for the same uniform variation of the coefficients of the
first one.

These theorems generalize the ones in paragraphs 11 and 14.
One can add that the first of these theorems withain valid when the group
includes the entire association.

VITO VOLTERRA



