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Applications of motor algebra. 
 

By R. v. MISES in Berlin 1) 
 

Translated by D. H. Delphenich 
 

 The following paper is immediately connected with the thesis “Motorrechnung, ein 
neues Hilfsmittel der Mechanik” that was published in the previous issue.  The two parts 
of that thesis will be consistently referred to by the notation I and II, resp., with the 
addition of the number of the section or the equation. 
 In the choice of examples and the limits of the domain in which they are being dealt 
with, the driving consideration was not just that the old results should be derived anew. 
Rather, it was my goal, as well as the actual purpose, to make the explanation and 
clarification of the new calculation procedures for dealing with force and inertia seem 
consistent with the methods that are arrived at by other paths.  One must therefore avoid 
going too far into the details.  In the first two sections, the equations of motion for a rigid 
body were developed in sufficient generality that they subsumed the case of a materially 
extended Foucault pendulum as an example, which itself involves the consideration of 
the non-uniform equation of translation for the Earth.  The third section presents a more 
fundamental argument that might be of interest in the systematic construction of 
mechanics.  In sections 4 to 6, I give a sketch of the treatment of the general equilibrium 
problems of structural mechanics.  For spatial systems that are composed of elastic rods 
in a completely arbitrary way, the equilibrium equations and the general theorems on 
work done by deformation, etc., will be established for all special cases of the 
frameworks that are comprised of articulated or stiff nodes with continuous beams for the 
frame supports in a unified manner.  The seventh and eighth sections are concerned with 
two hydrodynamical problems that mostly come up quite short in the usual presentations, 
namely, the calculation of the so-called “action” and “reaction” in moving water and the 
equations of motion for a rigid body in an ideal fluid.  The ninth section speaks briefly on 
the equations of motion of an aircraft, which, as one knows, decompose into two groups 
under the transition to the consideration of small oscillations in certain cases: viz., the 
longitudinal equations and the lateral equation.  This then allows us to go briefly into the 
more geometrically oriented question of the three-dimensional subgroups of the general 
concept of motor in the last section, in which the questions of the statics of rigid bodies 
come to the foreground. 
 

                                                
 1) The basic ideas of the present work were already in existence in the year 1912, and were distributed at 
the time in a provisional version to a small circle of specialists.  In many talks and university lectures since 
then, I have also communicated the individual parts of the theory.  The complete elaboration should be 
dedicated to E. Study on his 60th birthday on 23 March 1922, although the final form has been delayed on 
various other grounds.  The essay might now be devoted to firmly establishing the great fruitfulness of the, 
unfortunately, much-to-little noticed “Geometrie der Dynamen,” by Study. 
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 1.  Basic equations for rigid bodies.  We shall start with the following basic facts 
from the mechanics of rigid bodies: When a rigid body moves, at each instant, the totality 
of all forces that act on it yield a force motor, which is also called a dyname or a force 
screw K.  The instantaneous velocity state will be determined by a velocity motor or 

motion screw G, whose first vector component is the rotational velocity, while the 

second one is the translation velocity.  Ultimately, the mass inertia will be represented by 
a special symmetric motor dyadic: the inertia dyadic T, whose 36-element schema was 
already characterized in II.3.  These three quantities K, G, and T are now coupled with 

each other by a fundamental law that is completely analogous to the simple lex secunda 
of Newton for the “material” point, and which we now write down in the following form: 
 

T ⋅ G = I, 
d

dt

I
= I.    (1) 

In words: 
 
 The product of the inertia dyadic with the velocity motor is called the impulse motor.   
 The derivative of the impulse motor with respect to time is equal to the force motor. 
 
 The following remark will serve to explain (1): From the explanation that was given 
in II.3 for the inertia dyadic, one can also regard its product with G by saying that if the 

rigid body decomposes into mass elements dm and each such element with the position 
vector x is “attached” to its “quantity of motion” v dm as a special motor (rod, rotor) then 

I is the sum of all these elementary motors; i.e., the first vector component is I = ∫ v dm 

and the second one is Io = ∫ (r × v) dm.  In the same way, the derivative of I with respect 

to time can be interpreted as the motor sum of the mass-times-acceleration products w dm 

that are “attached” to the individual mass particles.  For the first vector component, this is 
immediately obvious, since when one differentiates ∫ v dm one arrives at ∫ w dm, 

precisely.  For the second one, one must observe that the derivative of the position vector 
x with respect to time is v and that the vector product v × v vanishes.  One thus has: 

 
d

dt
 ∫ (r × v) dm = ∫ (r × w) dm + 

d
dm

dt
 × 
 
∫
x
v = ∫ (r × w) dm. 

 
Therefore, the left-hand side of the second equation in (1) has, in fact, the vector 
components ∫ w dm and ∫ (r × w) dm. 

 For a material point, the force (velocity, resp.) motor reduces to the force (velocity, 
resp.) vector, and the inertia dyadic reduces to the mass scalar.  Eq. (1) then says: The 
product of mass with velocity vector, when differentiated with respect to time, is equal to 
the force vector.  In the general case of the finitely-extended rigid body, the Ansatz (1) – 
whereby one imagines that the I that comes from the first equation has been substituted 

into the second one – is equivalent to two vector equations, one of which is the so-called 
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center–of-mass theorem and the other one expresses the areal theorem; we shall come 
back to this later in 2. 
 A general scalar relation shall be derived from (1) that will be called the energy 
theorem or the vis viva equation.  To that end, we introduce the following notations that 
are connected with the usual terminology: One calls the scalar product of the force motor 
and the velocity motor the power, and one-half the scalar product of the velocity motor 
and the impulse motor, the vis viva, or kinetic energy: 
 

K ⋅ G = L, 1
2G ⋅ I = E.    (2) 

 
When one scalar multiplies the second of eq. (1) by G then L appears on the right-hand 

side and the scalar product G ⋅ dI / dt appears on the left-hand side, from which we will 

prove that it amounts to the derivative of E.  Namely, we have: 
 

dE

dt
= ( )1

2

d

dt
⋅G I  = 1 1

2 2

d d

dt dt
+I G
I ,   (3) 

 
and it is easy to see that the two summands on the right are equal to each other.  Then, 
from the calculation rule that was mentioned at the end of I.7 and derived in II.7, one has 
the following equation for the motor M: 

 
d

dt

A
=

d

dt

′A
 + (G × A),     (4) 

 
if d′/dt denotes the “apparent” derivative with respect to time – i.e., the change in time as 
seen from the system that moves with G.  One thus has: 

 

G
d

dt

I
= G

d

dt

′I
+ G (G × A) = G

d

dt

′ 
 
 

GΤΤΤΤ  = G
d

dt
 
 
 

GΤΤΤΤ =
d

dt

G
 G.  (5) 

 
The first equal sign follows immediately from the application of (4) to I; the second one 

is explained when one imagines that ΤΤΤΤ is constant when considered from the moving 
body, and, on the other hand, the ternary product vanishes as a result of the commutation 
rule I (10) and since G×G = 0.  The equality of dG / dt and d′G / dt is likewise a 

consequence of G×G = 0 and the relation (4), while the last equal sign follows from the 

symmetry of ΤΤΤΤ, according to II (49).  The first and last term in (5) are now, in fact, the 
two components of the derivative of E in (3), such that we have proved the identity: 
 

dE

dt
= G

d

dt

I
.      (3′) 

 
The scalar multiplication of the Newtonian equation (1) by G then yields: 
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dE

dt
= L.     (6) 

 
In words: The power exerted by the applied force on the body is, at any instant, equal to 
the increase in vis viva during a unit time interval. 
 
 For many purposes, it is useful to have the component representations for E, L, and I.  

For the sake of clarity, we would thus like to alter the notations from the ones in the 
general investigations of I and II somewhat.  The three components of the resultant force 
K may be called X, Y, Z, while the moment Ko = M for the reference point o might be 

called Mx , My , Mz ; analogously, let u, v, w be the velocity components of the point o 
(vector v) and let ωx, ωy, ωz be those of the rotational velocity ω .  We denote the inertia 

and deviation moments by Tx , Ty , Tz (Dx , Dy , Dz , resp.) and the center-of-mass 
coordinates by a, b, c (vector r).  The expression for the power L then reads: 

 
L = Xu + Yv + Zw + Mx ωx + My ωy + Mz ωz = K v + Mω .  (7) 

 
The inertia dyadic has the schema: 
 

0 0 0

0 0 0

0 0

0

0

0

x x y

x y z

y z z

m mc mb

m mc mx

mc mb mb mx

mc mb T D D

mc ma D T D

mb ma D D T

− 
 − 
 − − 
 − − − 
 − − −
 − − −  

    (8) 

 
The scalar components of the impulse are, from II (14): 
 

1

2

3

( ),

( ),

( ),

y z

z x

y x

J m u c b

J m v c a

J m w a b

ω ω
ω ω
ω ω

= + −
= − +
= − +

  
4

5

6

( ),

( ),

( ).

x x z y y z

y y x z z x

z z y x x y

J T D T m bw cv

J T D T m cu aw

J T D T m av bu

ω ω ω
ω ω ω
ω ω ω

= − − + −
= − − + − 
= − − + − 

 (9) 

 
 It is only when the reference point o is the center of mass that the first three impulse 
components depend upon just the translation velocity and the last three, on just the 
rotational velocity.  The former will be called mu, mv, mw, which are the components of 
the vector mv that is often simply called the “quantity of motion.”  If one chooses the axis 

direction, moreover, in such a way that they are principal axes of inertia (free axes) of the 
body then one also obtains likewise simple expressions for the second group of impulse 
components, namely, Txωx, Tyωy, Tzωz . 
 One obtains the explicit expression for 2E from the definition (2) in the form: 
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2 2 2 2 2 22 ( )

2 [ ( ) ( ) ( )]

2[ ].

x x y y z z

z y x z y x

x y z y z x z x y

E m u v w T T T

m a v w b w u c u v

D D D

ω ω ω
ω ω ω ω ω ω

ω ω ω ω ω ω

= + + + + +
+ − + − + − 
− + + 

  (10) 

 
 The second group of terms with the common factor of 2m drops away when the 
center of mass is the reference point, while the last group drops out when the coordinate 
directions are the principal axes.  The middle group admits different rearrangements, 
since it represents the ternary product 2m r(v × ω ) = 2m v(ω × r) = 2mω (r  × v). 

 
 2.  General forms for the equations of motion.  The second equation in (1), in 
which we imagine that I has been substituted into the first one, gives, as we have said, 

the equation of motion for a rigid body in motor form (so it is equivalent to six scalar 
equations).  In order to obtain the component decomposition for any fixed or moving 
reference system, one needs only to apply the rules of calculation of motor analysis in a 
purely schematic way.  We next chose an axis cross that is rigidly linked with a moving 
body, but otherwise arbitrary, and imagine that the component notations that were 
introduced in 1 refer to this.  When we make use of the differentiation rule (4), we obtain 
from (1): 

ΤΤΤΤ 
d

dt

′G
+ G× (ΤΤΤΤ G) = K.    (11) 

 
 The components of the motor I that appears in the brackets are already summarized 

in (9), in such a way that the components of the second summands on the left in (11) 
follow from I (4) immediately; those of the first one are found immediately from the 
components of I, when one replaces the u, v, w, ωx, ωy, ωz with the derivatives u, v, etc., 
in each of the 6 expressions (9).  It will suffice to write down the first and fourth 
component equation here, since the other ones emerge by cyclic permutation with no 
further assumptions: 
 

m(u + cωy – bωz) + mωy (w − bωx + aωy) − mωz (v − cωx + aωz) = X, (12a) 
 
 Txωx – Dzωy – Dyωz + m(bw – cv) + (Tz – Ty) ωy ωz + Dx (

2
zω  − 2

yω ) 

ωx (Dzωz – Dyωy) + mωx (cw + bv) − mu (cωz + cωy) = Mx .  (12b) 
 

 The former of these two equations makes the genesis suggested above immediately 
obvious, while in the latter, some contractions in the terms that arise from G × Io + Go × 

I were carried out.  If one chooses the center of mass to be the origin of the coordinates 

then the left-hand side of (12a) goes to the components of the vector: 
 

d
m

dt
ω

′ − × 
 

v
v

 = 
d

m
dt

v
, 
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such that (12a) defines the well-known center of mass equation m dv / dt = K.  From 

(12b), one achieves the familiar form of the Eulerian equation Txωx + (Tz – Ty) ωy ωz = Mx 

, when one also lets the axis directions coincide with the principal axes, moreover.  The 
general form (12a), (12b) of the equations of motion (their left-hand sides, resp.) was 
given by K. Heun on the basis of vectorial derivatives, although his result is marred by 
some errors in calculation 1). 
 One can derive (12a) and (12b) in a somewhat different way when one carries out the 
differentiation in (1) immediately, while bypassing (4): 
 

ΤΤΤΤ 
d

dt

G
+ 

d

dt

ΤΤΤΤ
G = K.     (13) 

 
 The first summand gives the actual acceleration terms in the same way as before 
(since, as was already mentioned in 1, dG / dt is identical with d′G / dt).  One obtains the 

components of the second one as the product of the dyadic whose elements were written 
down in II (39) with the velocity motor.  One now sees, since (11) must coincide with 
(13), that the following rule of computation must exist for the dyadic product of the 
motor and dyadic that was introduced in II.7: 
 

(G × ΠΠΠΠ) G = G × (ΠΠΠΠ G).    (14) 

 
 Eqs. (12) still do not represent the greatest generality that is either attainable or 
requisite.  In many cases of the motion of rigid bodies – e.g., the Foucault pendulum, the 
vehicular gyroscope, the gyrocompass – one would like to employ a reference system, 
such that one of the bodies under scrutiny exhibits independent motion, like the rotating 
Earth, the moving gyroscope, the rocking ship, etc.  We would thus like to assume that 
the motor R determines the relative velocity of the body when compared to an axis cross 

whose motion is given by the motor F of the guiding velocity, such that the absolute 

velocity is: 
G = F + R.     (15) 

 
 If we substitute this in (1) and employ (4) then it becomes: 
 

( ) ( )
d d

dt dt

′ ′
+ + + × +F R

F R F RΤ Τ Τ ΤΤ Τ Τ ΤΤ Τ Τ ΤΤ Τ Τ Τ  = K.  (16) 

 
 However, as a rule, one will assess the change in the guiding velocity, not from the 
moving body under scrutiny, but from rest space − or, what amounts to the same thing, 

                                                
 1) K. Heun, Lehrbuch der Mechanik I, Leipzig, 1906, pp. 271.  The signs in the terms 2

x y
D ω  and Dz ωx 

ωz have been inverted there when compared to (12b), and furthermore, some indices in the last terms have 
been switched.  In the Encykl. d. math. Wissensch. IV, Art. 11 (K. Heun), pp. 398, the individual signs of 
the first group of terms do not coincide with the ones in (12a). 
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from the moving reference system; i.e., we would like to employ the derivative dF / dt, in 

place of d′F / dt.  This requires that one has introduced the product ΤΤΤΤ (R × F) in (16), 

according to (4).  We then arrange that, at first, only the terms that depend upon relative 
motion, and then the ones that depend upon the guiding velocity, and finally, the mixed 
terms (“Coriolis” acceleration) appear then we obtain: 
 

 ( ) ( )
d d

dt dt

′   + × + + ×      

R F
R R F FΤ Τ Τ ΤΤ Τ Τ ΤΤ Τ Τ ΤΤ Τ Τ Τ  

+ [F × (ΤΤΤΤ R) + R × (ΤΤΤΤ F) − ΤΤΤΤ (R × F)] = K. (17) 

 
 The writing down of the component equations results in a completely schematic way.  
For the sake of example, we assume that the axis cross that is fixed in the body coincides 
with the principal axes of inertia and let the guiding velocity be unchanging (say, the 
rotational velocity of the Earth).  Furthermore, let the components of the relative motion 
be denoted by u, v, w, ωx, ωy, ωz, where the same symbols with primes refer to the 
guiding motion.  (17) then yields the equations: 
 

m[u + wy w – wz v + 2( )]y z y zw v w vω ω ω ω′ ′ ′ ′ ′ ′− + −  = X.  (17a) 

 
Tx (ωx − y z z yω ω ω ω′ ′+ ) + (Tx – Ty)(ωy + yω′ )(ωz + zω′ ) = Mx .       (17b) 

 
 If one would like to treat the physical Foucault pendulum (i.e., the oscillation of rigid 
body that is coupled to the moving Earth at a point) then one would do better to choose 
the reference point to be the point of suspension, for which u = v = w = 0.  If the center of 
mass in the coordinate system, which is still assumed to be referred to the principal axis 
cross, has the coordinates 0, 0, c, then the term mc( )x zw uω ω′ ′ ′ ′−  is added to the first 

moment equation, and the term mc( )y zw vω ω′ ′ ′ ′− to the second one, while the third one 

remains unchanged.  The general Ansatz (17) is entirely suited to the case in which, 
besides the Earth rotation, the orbital motion of the Earth in the ecliptic is also 
considered. 
 
 3.  Foundations of continuum mechanics.  For the presentation of the equations of 
motion for continuously deformable bodies, one basically means an analogous resetting 
of Newton’s axioms: Mass times acceleration equals the force that can be found acting on 
the volume element.  In place of the mass of the “material point” that was considered by 
Newton, one finds the specific mass, and in place of the resultant force, one finds the 
specific force that acts on the unit volume, e.g., the specific weight as the length of a 
vector that is directed vertically downwards.  First, Boltzmann, and after him, Hamel 1) 
have clearly explained that one does not come to a single axiom in this way, but an 
assumption that is completely independent of it and must be introduced in some form as a 
“moment theorem” or “surface theorem.”  We are now in a position to give this 

                                                
 1) Cf., G. Hamel, Mathem. Annalen, 66, 1908, pp. 350 and L. Boltzmann, Populär-wissenschaft. 
Schriften, Leipzig, 1905, pp. 298. 



von Mises – Applications of motor algebra.                                             8 

derivation in a somewhat simpler and more unified way using the tool of motor analysis, 
in order to also materially extend the foundations of the mechanics of continua in a 
direction that can possibly be once more meaningful in the applications. 
 The concept of velocity motor, and therefore, that of inertia dyadic, loses all meaning 
for a body whose individual parts are not rigidly coupled to each other.  For each point of 
the body, there is only one velocity vector v and one specific mass µ, which equals the 

limiting value dm : dV of the quotient of mass over volume. Nonetheless, one can define 
the impulse motor I of such a body when one uses the second explanation for I that was 

given in 1: I represents the “motor sum” of the rods (specialized motors) v dm that are 

“attached to” the individual mass particles, and accordingly, dI/dt (cf., the passage 

quoted above on this) is the analogous sum taken over w dm, when w denotes the 

acceleration vector of the mass element dm.  For the mechanics of continua, this then 
leads to the following theorem, which can call the “extended” Newton Law: 
 
 For every part of an arbitrary body, the derivative of the impulse motor with respect 
to time equals the force motor, 
 
where this is defined by summing over all external forces and moments that act on the 
volume elements, as well as the surface elements of the parts of the body.  The first of eq. 
(1) for the rigid body emerges immediately, and the second one can be written as: 
 

d

dt

I
= KF + KV,    (18) 

 
from which, the decomposition into volume and surface forces is likewise proved.  The 
fact that the Ansatz (18) or the one that was given in words above is not attained when 
one considers vectors instead of motors is the essential content of the converse argument.  
The most general equation of motion of a deformable body comes about when one 
applies eq. (18) to a volume element. 
 We construct the following picture of the volume and surface forces that appear in 
(18) that is somewhat extended when compared to the usual one: First, let a be an 
arbitrary point in the interior of the body and let V be a region of space that contains a 
(Fig. 1).  All of the volume forces that act on the points of V then yield the motor KV, 

which might perhaps be reduced to a as a reference point.  If V is reduced more and more, 
while a always remains an interior point, then we assume that there exists a limiting value 
KV : V; it is the “specific force motor” for the point a whose vector components relative 

to a will be denoted by k and m.  As a rule, one is usually only concerned with forces for 

which the second vector component (referred to a) of this motor vanishes, but there is 
nothing to prevent the presence of – say – magnetic effects in the form of “specific force 
moments.”  In a similar way, the following is true for a point b on the outer surface of the 
part of the body that was considered in (18): If KF is the resultant force motor for all 

forces that act on a surface patch F that surrounds b then the limiting value KF: F exists 

when one concentrates F at the point b.  We call this limiting value the stress motor for 
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the surface element at b that is more rigorously determined by its normal direction.  The 
generalization of the Ansatz that we used is again the same as before.  We denote the 
vector components of the stress motor referred to b by pν and qν, where ν refers to the 

direction of the surface element. 
 The coexistence of volume and surface forces is possible only when the boundary 
surface forces that act on a closed boundary surface yield a sum over all pieces that has 
the same magnitude as the sum of the volume forces that act inside of it.  If one pursues 
this line of reasoning for an oriented tetrahedron (Fig. 2) of coordinate directions then, as 
is known, one obtains a relation that allows pν  to be computed from px, py, pz, and which 

reads the same way for the q in our case: 

 
cos( , ) cos( , ) cos( , ),

cos( , ) cos( , ) cos( , ).
x y z

x y z

x y z

x y z
ν

ν

ν ν ν
ν ν ν

= + + 
= + + 

p p p p

q q q q
  (19) 

 
 From II (2), this means that p, as well as q, defines a vectorial dyadic at each point. 

 If one now considers a parallelepiped volume element dx dy dz (Fig. 3) then the first 
vector component of (18) delivers the well-known differential equation: 
 

µ w = k + yx z

x y z

∂∂ ∂+ +
∂ ∂ ∂

pp p
.     (19a) 

 
 In the second component equation, the left-hand side drops out because ∫ (x × w) dm 

goes to zero with the reduction in volume, using its linear measure.  On the right-hand 
side, along with the terms that are analogous to (19a) that are determined by m and q, 

there are ones that originate in the equal and opposite (up to terms of higher order) 
tangential components of p on the opposite surface such that one obtains: 

 

0 = m + yx z

x y z

∂∂ ∂+ +
∂ ∂ ∂

qq q
 + (pyz – pyz) i1 + (pzx – pzz) i2 +(pxy – pyx) i3 , (19b) 

 
where i1, i2, i3 refer to the unit vectors in the coordinate directions.  If, as usual, one sets 

the moment quantities m and q equal to zero from now on then (19b) says that pyz = pyz , 

pzx = pzz , pxy = pyx , such that the stress dyadic is therefore symmetric.  This somewhat 
unexpected requirement follows casually from the Newton Ansatz when it is extended in 
the sense of motor algebra.  The case in which m and q do not both vanish, so the stress 

dyadic loses its symmetry, has occasionally been treated in relation to the quasi-elastic 
ether theory of A. Brill 1). 
 

                                                
 1) A. Brill, Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Leipzig and Berlin 
1909. 
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 4.  The elastic rod.  One finds a particularly convenient validation for the concept 
definitions and formulas of motor algebra in the treatment of the equilibrium problem of 
general elastic framework (ideal frames and frame structures are special cases of these).  
We begin with an investigation of the individual elastic rod, which we regard as a very 
slender straight elastic prism, according to the usual assumptions.  The loads consist of 
isolated forces and moments, and are no larger then the corresponding elastic limit of the 
material.  We also assume that for the relation between forces and deformations only 
linear laws apply and the effects of the individual load components simply superpose; a 
reaction to the load during the deformation (kinking) shall remain beyond the scope of 
consideration. 
 A piece of the rod of length l that is free from external applied forces (Fig. 4) will be 
in equilibrium by means of the forces and moments that are applied to the two end cross-
sections 1 and 2.  If we combine the forces X, Y, Z and moments Mx, My, Mz that act on 2 
into a motor S – briefly called a “rod force” in the sequel – then the motor that is applied 

to 1 must be – S.  We can imagine a rigid body, or, what will also suffice, any axis cross 

as being rigidly fixed in the rod-ends, whose change in position, rotation and 
displacement under the transition from the unloaded to the loaded state will likewise be 
represented by motors U1 and U2.  One may then consider all displacements as being 

infinitely small, as is also done in the equilibrium problems of elasticity theory, and such 
changes in position are, just like the velocities of rigid bodies, representable by motors.  
The first three scalar components of U1 then mean the components of the rotation of the 

left-hand rod end for the chosen axis cross and the other three are components of the 
displacement, taken at the reference point, which is thought of as rigidly fixed on the rod 
end.  Our first problem is to ascertain the relations between the rod force S and the 

relative displacement of the two rod ends U = U2 – U1 on the grounds of the well-known 

equations of elasticity. 
 We establish the coordinate system in the following way (Fig. 4): We let the 
longitudinal axis of the rod that links the centroids of the cross-sections be the z-axis, and 
let the origin be the midpoint of this axis, so the distance to either end is l / 2.  The x and 
y-axis, which run through the central cross-section, shall be the principal bending axes of 
the cross-section.  The positive direction of the z-axis runs from 1 to 2, so the sense of 
direction of the x and y axes shall fulfill the condition that the three axes define a right-
hand system.  The first three scalar components of S are now equal to the three 

components of the end force applied to 2: S1 = X, S2 = Y, S3 = Z.  By comparison, the next 
three components do not coincide completely with the components Mx, My, Mz of the 
stress moment on 2, but one has S4 = Mx – Yl / 2, S5 = My + Xl / 2, and S6 = Mz , since 
these quantities define the moment of the force system that is defined by X, Y, Z, Mx, My, 
Mz for the chosen reference point at the center of the rod.  Now, let u, v, w be the 
components of the relative displacement that endpoint 2 of the z-axis experiences 
compared to the endpoint 1 as a result of the load through S (i.e., the difference that 

equalsthe displacement of 2 minus the displacement of 1) and let ϑx, ϑy, ϑz be the 
analogous components of the relative rotation of an axis cross that is thought of as fixed 
in the rod-end 2 when compared to the rod-end 1.  One then has, analogously, the 
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following relations for the six components of the motor U that was introduced above: U1 

= ϑx , U2 = ϑy , U3 = ϑz; U4 = u − ϑy l / 2, U5 = v + ϑx l / 2, U6 = w.  We seek the 
connection between the S1, …, S6, on the one hand, and the U1, …, U6, on the other. 
 The simplest components to account for are the z-components.  If E is the elastic 
modulus and F is the cross-sectional area then w = Zl / EF, and thus under this 
displacement the effect of the longitudinal component Z is exhausted.  In a completely 
analogous way, the moment Mz (torsion moment) acts merely along the longitudinal axis 
as a rotation that is directly proportional to the moment Mz and length l, inversely 
proportional to the shear modulus G, and is to be set equal to a cross-sectional magnitude 
J (which is π d4/32, for a circle).  One thus has: 
 

U6 = S3 
l

EF
,  U3 = S6

l

GJ
.    (20) 

 
 We now consider, at the same time, the effect of the force Y and the moment Mx, 
which both provoke a bend of the rod along the x-axis (Fig. 5).  The bending moment at a 
distance z from the left-hand end is Mx – (l – z) Y, and if Jx refers to the moment of inertia 
then the bending equations read, with the conditions y = y′ = 0 for z = 0 imposed on its 
integrals: 
 

EJx y″ = − Mx + (l – z)Y,    EJx y′ = − zMx + z
2

z
l
 − 
 

Y,   EJxy = −
2

2

z
Mx+ 

2

2 3

z z
l
 − 
 

Y. 

 
If one inserts z = l on the right then y goes to v and y′ goes to – ϑx, such that: 
 

ϑx = 
2x

x

l l
M Y

EJ
 − 
 

, v = − 
2 3

2 3x
x x

l l
M Y

EJ EJ
+ , v + 

2 x

l ϑ  = 
3

12 x

l

EJ
Y. 

 
 If one compares this result with the connection that was presented above between U1 
and ϑx , U5 and v, S2 and Y, S4 and Mx then one sees that: 
 

U1 = 
x

l

EJ
S4,  U5 = 

3

12 x

l

EJ
S2    (21) 

 
appear, in addition to (20), as further conditions between forces and displacements.  In 
precisely the same way, one ultimately finds by examining the bending around the y-axis: 
 

U2 =
y

l

EJ
S5,  U4 = 

3

12 y

l

EJ
S1.   (22) 
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 Eq. (20), (21), (22) deliver the complete connection between the force motor S and 

the motor U of the relative displacement of the rod ends.  If we introduce a motor dyadic 

ΚΚΚΚ with the component schema: 
 

3

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
12

0 0 0 0 0
12

0 0 0 0 0

x

y

y

x

l

EJ

l

EJ

l

GJ

l

EJ

l

EJ

l

EF

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   (23) 

then we can write: 
U = U3 – U1 = ΚΚΚΚ ⋅ S,    (24) 

and say: 
 
 The relative displacement of the ends of the elastic rod is the product of a motor 
dyadic that is determined by the rod constants whose schema is represented in the chosen 
reference system by (23) with the motor of the rod force. 
 
 One sees that the “dyadic of rod elasticity,” like the inertia dyadic that was treated in 
II.10, is of completely symmetric type.  The reference system that we chose, which 
recommends itself as the only uniquely-distinguished one from the outset, stands out as 
the principal cross for the dyadic.  From the rules that were given II.6 and 7, one can, 
starting from one’s knowledge of the six quantities that appear in (23) as the component 
schema, also present them for an arbitrary reference system, and thus give a 
representation of the connection between arbitrary displacements and the load 
components. 
 
 5.  The elastic rod-work, equilibrium conditions.  We now consider a general “rod-
work” (generalization of “framework”), which we summarize as follows: A number of 
straight elastic rods of the type that was treated in section 4, which are stressed by 
isolated forces and moments at arbitrary points, are coupled to each other at their ends 
into some arrangement by rigid bodies, which call “nodal bodies” and which are likewise 
subject to external forces and moments (Fig. 6).  For the sake of unity, we would like to 
count any force-free piece of a rod as a special rod and think of the point of application of 
a force as a nodal body (which is, in reality, non-existent) that accepts the external force 
and is rigidly coupled with the two partial rod ends that meet there; i.e., it takes part in 
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the displacement and twisting of the continuously-connected ends.  By this enumeration, 
the rod-work consists of s rods and k-nodal bodies, and we let the external forces, which 
now merely act at the nodes, be given by k motors P1, P2, …, Pk.  We denote the 

displacements that the individual nodal bodies experience as a result of the various 
applied forces by U1, U2, …, Uk.  We would now like to not enumerate the individual 

rods, but characterize them by the two indices that go with the nodes at their ends.  (Rods 
that either flow into an actual node at one end or carry a load can be excluded from 
consideration.)  Let the rod-force that is conceived of as acting on the rod that runs 
between the nodes ι and κ from the node ι to the other be Sικ, and accordingly Sικ = − 

Sκι.  Finally, we call the displacement that the end of this rod at the node ι experiences 

Bικ, so the displacement of the second end of the same rod must be Bκι.  Between Sικ 

and the difference Bικ − Bκι, there exists a relation like the one that was written down in 

4: 
Bικ − Bκι = ΚΚΚΚικ ⋅ Sικ.    (25) 

 
In this, ΚΚΚΚικ means a motor dyadic of the form (23), where the constants l, E, Jx, … are 
thought of as being set equal to the values that correspond to the rod ικ.  One naturally 
has ΚΚΚΚικ  = ΚΚΚΚκι, and the exchange of the two indices in (25) only reiterates the fact that the 
rod force motor changes sign under this exchange. 
 We need a precise explanation for the way that the rod-ends are connected to their 
nodal bodies.  If we generally assume that the connection is a rigid one then the 
possibility of relative displacements (or twists) of the rods that meet at a node (as they 
would be for a framework) is eliminated.  In order to encompass the most general case, 
we assume that each rod-end is elastically bound with the nodal bodies; i.e., a linear 
relation exists between the rod-force Sικ and the relative displacement Bικ − Uι, where 

Uι denotes the displacement motor of the ιth nodal body.  For example, it might be the 

case that for a certain coordinate cross whose starting point lies on a rod end the first 
three (rotational) components of Bικ − Uι are proportional to the three moment 

components of Sικ, and the last three are the resultant components.  If all of the 

proportionality coefficients are null then we have the case of a rigid coupling; conversely, 
one obtains loose coupling by increasing the individual coefficients by passing to the 
limit for the components in question.  The ideal framework is characterized by the 
assumption that the coupling is rigid with respect to displacements and completely loose 
with respect to rotations.  In general, we must assume a linear relation in the form: 
 

Bικ − Uι = ΛΛΛΛικ Sικ,     (26) 

 
in which ΛΛΛΛικ  denotes a motor dyadic.  The aforementioned assumption of a simple 
proportionality would correspond to the following schema for ΛΛΛΛικ: 
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1

2

3

1

2

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

α
α

α
β

β
β

 
 
 
  
 
 
 
 
  

    (27) 

 
 When the α are all zero and the β take on excessively high values, we have the 
limiting case of nodes in an ideal framework; if all of the α and β are zero then one is 
dealing with the case of the stiff coupling, as one has for a supporting structure.  In what 
follows, we will only assume that the schema of ΛΛΛΛικ is symmetric, which is certainly true 
for the case (27) in question. 
 It should be expressly remarked here that the actual nodal plates or joints must be 
regarded as “nodal bodies;” however, that is also the case when such things are absent 
and the “nodal bodies: can be replaced by a purely idealized, geometrically defined axis 
cross.  If we assume that “nodal body” is present in the middle of an elastic rod, simply 
because a notion of force exists there, this does not mean that there is a coordinate cross 
by which the two partial rods are rigidly coupled.  If such a node has the index ι, while 
the two partial rods extend to the nodes ι and κ then the following two equations replace 
(26): 

Bικ − Uι = 0,  Bλκ − Uλ = 0.   (26′) 
 

 We now go on to specifying the conditions for equilibrium in our general elastic rod-
work.  The Ansatz is no more tedious or protracted than it is for an ideal framework in 
the ordinary notation. 
 First, one must have equilibrium at every node; i.e., the sum of the rod-form motors 
that start from a nodal body must be equal to the motor of external forces that act upon 
this node: 

ικ

κ
∑S = Pι.     (28) 

 
 The summation of naturally extended over all κ whose incidence with ι corresponds 
to an actual rod of the framework being present.  If one thinks of eq. (28) as being written 
down for all nodes and added then every rod force appears on the left-hand side twice, 
and in fact, with opposite signs, such that one obtains the condition: 
 

1

k
ι

ι=
∑P  = 0,     (29) 

 
which shows that the Pι might not perhaps be written down independently of each other.  

Eq. (28), which gives the equilibrium conditions in the restricted sense, succeeds in 
determining the rod forces only in very rare cases (viz., so-called static determinacy).  In 
general, one must add the elastic relations that follow from (25) and (26).  If one subtracts 
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the analogously defined equation for the opposite index combination from (26) then, 
since Sικ = − Sκι, what comes about is: 

 
Bικ − Bκι = Uι – Uκ + (ΛΛΛΛικ + ΛΛΛΛκι) Sικ, 

 
and when one combines this with (25): 
 

Uι – Uκ  = (ΚΚΚΚικ − ΛΛΛΛικ − ΛΛΛΛκι) = Sικ =    ΜΜΜΜικ Sικ.  (30) 

 
 Here, ΜΜΜΜικ has been used as an abbreviation for the sum of three motor dyadics that is 
inside the parentheses. 
 There are s such equations (30) in all, one for each rod, just as there are k equilibrium 
conditions (28), namely, one for each nodal body.  Both groups of equations collectively 
solve the problem when perhaps all Pι up to Pι and Uι (e.g., U1 = 0), as well: the k + s 

motor equations then serve to determine the s unknown rod force motors Sικ, the k – 1 

unknown displacement motors U2, U3, …, Uk, and the support reaction Pι.  However, in 

order to also include the case of arbitrary support conditions, as well as elastically 
flexible supports, we add the following equation for each node to eq. (28) and (30): 
 

ΑΑΑΑι Uι + ΒΒΒΒι Pι = G,      (31) 

 
in which ΑΑΑΑι, ΒΒΒΒι, and G shall denote the given coefficient system (any two dyadics and a 

motor).  ΑΑΑΑ vanishes for every node at which the external load P is given, and B can 

perhaps be the identity dyadic, such that eq. (31) reads simply Pι = G.  If U is 

prescribed, in stead of P, then this means that ΒΒΒΒ vanishes and ΑΑΑΑ is set to the identity 

dyadic.  Finally, if one has an elastically flexible support then G = 0, and from (31), one 

will have a linear, homogeneous relation between U and P.  Naturally, cases in which 

the individual components of Uι and Pι are given (unknown, resp.) are included in (31) 

immediately. 
 In summary, we can then say that the (2k + s) motors of the rod forces Sικ, the 

displacements Uι, and the external loads Pι are coupled together by the following (2k + 

s) linear motor equations: 
 
 (a) k equilibrium conditions ικ

κ
∑G = Pι  for each node, 

 (b) s elasticity equations  Uι  − Uι = ΜΜΜΜικ Sικ for each rod, 

 (c) k external data   ΑΑΑΑι Uι + ΒΒΒΒι Pι = G for each node. 

 
 This Ansatz subsumes every imaginable rod-work that can be constructed from 
straight rods, the continuous beams with arbitrary supports and isolated loads, the ideal 
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framework in space and in the plane with arbitrary static indeterminacy, frameworks with 
stiff or elastically flexible joints, frame supporting structures of any sort, as well as 
arbitrary spatial supports when one considers the torsion of rods. 
 
 6.  Deformation work.  reciprocity of displacements.  From the Ansatz (a), (b), (c), 
one can effortlessly derive a series of general statements, through which, the known 
theorems of the theory of frames first take on their true place and illumination.  Next, eq. 
(a) can be written in the form of the “principle of virtual displacements.”  Namely, if one 
denotes any motors by B1, B2, …, Bk, which we would like to regard as arbitrary 

displacements of the nodal bodies, then scalar multiplication of the k equations (a) by the 
Bι in question and the subsequent addition of the right-hand sides delivers that work 

done by this displacement of the rod-work by the external forces, namely, the sum of all 
products Pι Bι .  On the left-hand side, there is a double sum of products Sικ Bι, 

which is taken over all of the number combinations ι, κ that are realized by rods.  Any 
rod-force appears twice in it, and indeed with vanishing sign, once multiplied by the B 

of the first endpoint and then with the B of the second endpoint.  Thus, one can write for 

(a): 

( , )

( )ικ ι κ

ι κ
−∑S B B  = ι ι

ι
∑PB     (32) 

 
in which the summation symbols in parentheses imply that every value combination ι, κ 
is to be included just once (thus, e.g., only with ι < κ).  Eq. (32) says: 
 
 For any infinitely small displacement of the rod-work the work done by the applied 
forces equals the elastic work (deformation work) done by the rod forces. 
 
The fact that B might also coincide with the actual displacements is self-explanatory; for 

that reason, the smallness of the B must be assumed, since otherwise the left-hand side of 
(32) could not be spoken of as the deformation work. 
 An entirely simple step now leads us to the most general form of Maxwell’s theorem 
on the “reciprocity of displacements.”  One lets Bι denote those nodal displacements that 

correspond to an equilibrium state with the external loads Qι and the rod forces Tικ.  The 

connection between these quantities will then originate with eq. (a) and (b), of which, we 
write down the first one in the form that is precisely analogous to (32), with the use of the 
symbol U for the arbitrary displacements: 

 

( , )

( )ικ ι κ

ι κ
−∑T U U  = ι ι

ι
∑QU ,  Bι − Bκ =    ΜΜΜΜικ Tικ.   (33) 

 
 If one inserts the second of these equations in (32) then one obtains: 
 

( , )

( )ικ ικ ικ

ι κ
∑S TΜΜΜΜ = ι ι

ι
∑PB , 
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and when one introduces the value from (b) into the first of eq. (33): 
 

( , )

( )ικ ικ ικ

ι κ
∑T SΜΜΜΜ = ι ι

ι
∑QU . 

 
 From theorem II (49), the expressions on the left-hand side are equal when the dyadic 
M is assumed to be symmetric.  In this case, one then has: 
 

ι ι

ι
∑PB  = ι ι

ι
∑QU ;    (34) 

in words: 
 
 If P and Q are two equilibrium systems of external loads and U and B are the 

displacements of the nodes that they provoke then the work that P does under the 

displacement B equals the work done by Q under the displacement U. 

 
 This is the generalized Maxwell theorem that one can employ in a well-known way 
for the calculation of the displacements U by a special choice of Q.  As one sees, its true 

source is in the symmetry of the dyadic ΜΜΜΜ that links the rod forces with the relative 
displacements of the nodes.  It is remarkable that eq. (c) was not employed in the 
derivation of (34), so the support conditions have no influence on the validity of (34); 
naturally, the support reactions are included in P and Q, which then drop out only when 

they exert no work. 
 Finally, in order arrive at the analogue of Castigliano’s theorem, we would like to 
specialize the support conditions that enter into (c) somewhat.  We assume that the 6k 
scalar equations into which (c) resolves might be arranged such that for a part of them the 
coefficients of the displacements vanish, while in the remaining one the coefficients of 
the force components and the right-hand sides are zero, such that perhaps the former 
equations determine 6k−m force components, while the latter ones make the displacement 
equal to zero for the remaining m components.  In other words, at the ιth node, let either 
all six force components be given or let one of them be unknown, but the let the relevant 
displacement components be zero.  We then define the “reduced system of equations 
(a),” when we omit those m of the 6k component equations that correspond to the 
unknown forces and vanishing displacements.  We obtain an expression for the 
deformation work from (32) by the substitution of (b): 
 

A = 1
2

ι ι

ι
∑PB = 1

2
( , )

ι ικ ικ

ι κ
∑S SΜΜΜΜ .    (35) 

 
 From what we accomplished in II.10, the right-hand side is a quadratic form in the 6s 
components of the rod force motors.  We have now proved the theorem: 
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 The rod forces S that are provoked by the external loads P are determined by the 

fact that they make the deformation work A a minimum with the reduced system of eq. (a) 
for auxiliary conditions. 
 
 In order to see this, we must only convince ourselves that eq. (b) can be regarded as 
the conditions for an extremum of A in the given sense. 
 How is one to solve the extremum problem that was suggested?  One must add to the 

expression A, the 6k−m components of ικ ι

κ

 − 
 
∑S P  that appear in the reduced system 

(a), when multiplied by undetermined factors λ1, λ2, …, λ6k−m, and then set the 
derivatives of each of the 6s components of the Sικ equal to zero.  The 6s equations thus 

defined, together with the reduced system (a), then determine the S and λ.  For the 
multipliers λ, one now chooses a better notation with double indices, say, 1

ιλ , 2
ιλ , …, 6

ιλ  

where each upper or lower index might coincide with the corresponding one in the 
component of Pι.  One now sees immediately that the differentiation of the additional 

term, for example, with respect to the component S3
1, 2 delivers precisely the expression 

1
3λ  − 2

3λ ; S3
1, 2 then enters into the third component equation of ∑ S1κ  = P1 with a 

positive sign and in the third component equation of ∑ S2κ  = P2 with a negative sign.  

The derivative of A in (35) with respect to S3
1, 2 is, however, from the remark in II.10, 

equal to the third component of the product ΜΜΜΜ1,2 ⋅ S1,2.  Correspondingly, setting the 

derivative with respect to S3
1, 2 equal to zero leads to the equation: 

 
1
3λ  − 2

3λ  + (ΜΜΜΜ1,2 ⋅ S1,2) = 0,    (36) 

 
and completely corresponding equations arises by differentiation with respect to the 
remaining components.  However, one sees that these 6s equations are nothing but the 
component decomposition of (b) when each 1U ρ  is replaced with − ι

ρλ .  If one therefore 

eliminates the 6k−m multipliers from the 6s eq. (36) and the reduced system (a) then what 
remain to be determined for the 6s components S are precisely the same equations that 
arise from eliminating the displacements from (a), (b), (c).  With that, the proof of the 
general theorem on the minimum deformation work is complete. 
 Here, we shall not go further into the issue of how one arrives at the analogues of the 
other forms of Castigliano’s theorem and further generalizations of it. 
 
 7.  Action and reaction in flowing fluids.  We consider a rigid body (A, in Fig. 7) 
whose instantaneous velocity is given by the motor G, and which is in contact with a 

flowing – i.e., moving – fluid in whatever way.  Nothing will be assumed about the 
mechanical nature of the fluid – e.g., its viscosity, etc.  We seek an expression for the 
force K that the fluid exerts on the rigid body or a particular piece O of its outer surface.  

This leads us to the application of Newton’s equation to the fluid – while observing the 
reaction principle for the internal stresses – and a generalized Gauss integral conversion. 
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 In general, the outer surface piece O will not bound any closed region of space, in its 
own right.  We then extend it by a surface F that runs through all of the fluid, and assume 
that F, together with O, bounds a volume V that is completely filled with a fluid that has a 
continuous velocity distribution, and in whose interior one therefore also finds no other 
fixed bodies or free surfaces.  All of the spatial integrals that appear in the sequel are 
taken over this volume V and all boundary surface integrals, over F.  Now, let m denote 
the specific mass of the fluid – which is assumed constant – and let P denote the total 

external forces (gravity) that act on all particles in V.  Furthermore, let v be the velocity 

vector at an arbitrary point of V and let p be the stress vector at a point of the boundary F.  

When we “attach” v and p to the points that they belong to, we make rods of the vectors − 

and thus, special motors − and then write v (p, resp.) for them.  The motor v thus has the 

two vector components v and x × v, if x denotes the vector from the reference point to the 

point with the velocity v.  Newton’s equation, when applied to all mass particles in V and 

integrated over V, immediately delivers: 
 

K = P + 
d

dF dV
dt

µ−∫ ∫
v

p .     (37) 

 
The expressions – K, P, and ∫ p dF are then the forces that the accelerations of the fluid 

particles are attributed to.  We shall now treat a conversion of the last expression on the 
right, by which one primarily arrives at an examination of the differential processes. 
 Any fluid point p possesses a velocity c relative to the rigid body, which differs from 

v by the guiding velocity vector Gp .  The vector lines of c define the “relative 

streamlines,” of which it is certain that they do not go through the body A and the surface 
O.  One lets ds refer to the element of length of such a streamline, and df, to the cross-
section of a stream tube that they define then it results from the continuity condition that 
c df is constant along the tube and equal to the flux dQ.  Now, since the following 
differentiation rule is valid: 

d

dt
= c

t s

∂ ∂+
∂ ∂

 

 
 when one regards a variable as a function of time and position relative to the body A, and 
on the other hand, one can write dV = df ⋅ ds, one then obtains for the integral in (37): 
 

d
dV

dt
µ∫
v

= dV c ds
t t

µ µ∂ ∂+
∂ ∂∫ ∫
v v

=
( )F

dV dQ
t

µ µ∂ +
∂∫ ∫
v

v .  (37′) 

 
The last integral is taken over the entire surface F, so dQ is taken to be positive wherever 
the fluid leaves it and negative wherever it enters.  One can correspondingly think of F as 
divided into two parts F1 and F2, such that any relative streamline begins at a point of F1 
and ends at a point if F2, and as long as one establishes that the absolute value of dQ is 
always taken, one can form the expression R – A in question, where: 
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R = 
2( )F

dQµ ∫ v , A = 
1( )F

dQµ ∫ v .    (38) 

 
These two quantities are the ones that one refers to, as a rule, as the “reaction” and 
“action” of the flowing water; they are motors whose resultant (moment, resp.) 
components one obtains when one sets v in place of v in one case under the integral sign 

and x × v, in the other.  It is expressly emphasized that R and A are defined by the 

absolute velocity v, although the relative flux dQ = c df must then be taken. 

 The value (37) for K now reduces to: 

 
K = P + ∫ p dF + A – R,     (39) 

 
or the dynamic effect of the flow will be given by the difference “action minus reaction” 
when the first integral in the right in (37′) vanishes, thus certainly when for each fixed 
point, the absolute velocity v relative to A is unchanging when it is evaluated from rest 

space.  For example, this is the case for a rocket (Fig. 8), as long as one makes sure that 
the absolute exhaust velocity of the gas remains constant; as the enclosing surface F, 
what will serve the purpose most simply here is the plane across the exhaust opening, and 
F coincides with F2 . 
 If the rocket does not move in an acceleration-free way then, as a rule, the assumption 
of constant absolute velocity will not be fulfilled, but rather, the one that the relative 
velocity c does not change at a point that is fixed in A.  For such cases, one must bring 

(37) into another form.  If we denote the guiding velocity at that point by f, which is then 

a motor with the vector components Gp and x  × Gp, then the first integral on the right in 

(37′) decomposes into two of them: 
 

dV cdV
t t

µ µ∂ ∂+
∂ ∂∫ ∫
f f

. 

 
The first one gives the derivative with respect to time for the impulse that the fluid 
possesses when it moves with the rigid body.  If we call this I then we have, in place of 

(39): 

K = P + ∫ p dF + 
d

dt

I
 + A – R,    (40) 

 
when the relative – but not the absolute – velocity is stationary in the moving body. 
 As we already mentioned, it is true for (39), as well as (40), that the required 
invariability of v (c, resp.) is to be assessed in rest space.  If the body A does not execute 

a pure translational motion and v or c remains stationary relative to A then the 

assumption of (39) ((40), resp.) is not fulfilled.  Eq. (39) and (40) are then not true for a 
turbine or a propeller, in general, but only those of their scalar component equations, for 
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which the components of v or c in question are also stationary when seen from rest space.  

If one sets using (4): 

t

∂
∂
v

 = 
t

′∂
∂
v

+ (G × v), 

 
then one sees that when only the first part on the right vanishes, an expression: 
 

− G × µ  ∫ v dV 

 
must appear in (39), of which, one only lets the resultant component in a boundary 
integral vary.  However, since, for a motor product, one of whose factors is G, the 

resultant vector and the moment vector for a point on the axis of G that is chosen to be 

the reference point are both perpendicular to this axis, it follows that: 
 
 For relatively stationary v (c, resp.), the first scalar resultant and first moment 

component is employed in eq. (39) ((40), resp.) when the 1-axis coincides with the 
instantaneous screw axis of A. 
 
 In fact, for turbines and propellers, only the axial thrust and the moment around the 
rotational axis can be calculated from the theorem of action and reaction.  It is not futile 
to observe that in the example of a propeller whose advance is not in the axis direction 
eq. (39) ((40), resp.) must also be corrected in this regard. 
 The influence of internal viscosity or external motion resistance is not specifically 
knowable by our Ansatz.  However, it might be the case that − perhaps, for a given entry 
velocity − the end velocity will be different, and furthermore p will not be perpendicular 

to dF, in general. 
 Theoretical hydromechanics does not care to make note of the foregoing formulas and 
the concepts of “action” and “reaction,” so in the technical literature the derivation is 
mostly full of ambiguities and − not so seldom − flaws, as well.  However, when the 
mechanical foundations are clarified completely, the separate derivation of the moment 
components of (39) and (40), in particular, also brings with it some complications that 
will be lessened by the use of the concept of motor that is appropriate to the problem 1). 
 
 8.  Inertia increase of a rigid body in an ideal fluid.  We would now like to 
specialize the Ansatz (37) of the foregoing section for the case in which the fluid is an 
ideal one and the motion is vortex-free and as a result, without circulation.  Moreover, the 
boundary surface F will be assumed to be a level surface of the potential ϕ, such that one 
can assume ϕ = 0 along F, with no further restrictions in generality (Sec. 7 and 9).  The 
potential ϕ must be determined at all points of A by this condition and the further one that 

                                                
 1) I gave a complete, but somewhat more general, basis for the theorem of action and reaction in § 9 of 
my Habilitationsschrift: “Theorie der Wasserräder,” Leipzig, 1908, and also in Zeitschr. f. Math. u. Phys., 
57, 1908, pp. 1 to 120.  The special case of a guiding surface O at rest was treated briefly by U. Cisotti, 
Rendic. Lombard. Ist., ser. II, v. 50, pp. 502 to 515. 



von Mises – Applications of motor algebra.                                             22 

the normal derivative ∂ϕ / ∂n must coincide with the normal component of the velocity 
Gp of A on O.  If we let N denote the unit vector in the normal direction that is 

“attached” to the point p of O then this velocity component has the value of the scalar 
product G ⋅ N; from I.3, since the moment component of N relative to p vanishes, one 

has G ⋅ N = Gp ⋅ N. 

 We now make the Ansatz for the potential ϕ: 
 

ϕ  = U ⋅ G = G1U4 + G2U5 + G3U6 + G4U1 + G5U2 + G6U3 , (41) 

 
and subject the six scalar functions U to the following conditions: 
 1. The U must individually satisfy the potential equation ∆U = 0. 
 2. Each of the U vanish along F. 
 3. The derivative condition: 
 

n

ϕ∂
∂

 = 
n

∂
∂
U ⋅ G = N ⋅ G 

 
must be satisfied along O, which is certainly the case when the normal derivatives of the 
six U coincide with the six scalar components of N in sequence.  We have thus 

introduced a new type of “motor potential” U that will be determined by the following 

equations in what follows: 
 

∆U = 0 in V;  U = 0 along F; 
n

∂
∂
U

 = N.  (42) 

 
Naturally, U still depends upon time, insofar as the position of O and possibly that F 

changes in time. 
 With the help of the motor potential, one can now give the integral in (37) a definite 
characteristic form in a simple manner.  It is known that the velocity vector v at any point 

of V equals grad ϕ.  If we denote the gradients as a motor Grad ϕ that is “attached” to its 
position then we have v = Grad ϕ.  One now has the extended Gaussian integral 

formula: 

∫ Grad ϕ  ⋅ dV = ∫ ϕ N dO,     (43) 

 
if the integral on the right-hand side is taken over the entire boundary of V.  The first 
three scalar components of (43) are then immediately (scalar) Gaussian transformation 
formulas and one treats the three other ones according to the template: 
 

y z dV
z y

ϕ ϕ ∂ ∂− ∂ ∂ 
∫ = 

( ) ( )y z
dV

z y

ϕ ϕ ∂ ∂− ∂ ∂ 
∫ = ∫ ϕ[y cos(N, z) – z cos(N, y)] dO. 
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If we call I′ the total impulse of the fluid mass that is enclosed within V, whose 

derivative with respect to t appears in the right in (37), then we have, from (41) and (43): 
 

I′ = µ ∫ v ⋅ dV = µ ∫ Grad ϕ ⋅ dV = µ ∫ (U ⋅ G) N dO, 

 
in which the last integral can be taken over just O, since U vanishes along F from the 

second of eq. (42).  We now apply the dynamic conversion II (21) to the last integrands: 
N (U ⋅ G) = (N; U) G.  One can take the motor G out of the integration, and one gets: 

 

I′ = ( ; ) dOµ 
 ∫ N U G= ΤΤΤΤ G   with     ΤΤΤΤ′ =  ∫ µ (N; U) dO = ; dO

n
µ ∂ 
 ∂ 

∫
U
U ,    (44) 

 
while using the last of eq. (42).  The impulse motor of the fluid proves to be the product 
of a motor dyadic ΤΤΤΤ′ with the velocity motor G of the body A, which determines the 

motion of the fluid.  The elements of the dyadic are found immediately from II (19′): 
 

ικ′T  = 
U

U dO
n

κ
ιµ ∂

∂∫ ,  ι, κ = 1, 2, …, 6.  (44′) 

 
With regard to the first of eq. (42), the Green formula: 
 

UU
U U dO

n n
ικ

ι κ
∂∂ − ∂ ∂ 

∫  = ∫ (Uι ∆Uκ – Uκ ∆Uι) dV = 0 

 
yields the symmetry of the nine “inertia dyadics” ΤΤΤΤ. 
 If the rigid body A possesses an inertia ΤΤΤΤ and moves under the influence of a force K 

that originates in the flow and other forces with the resultant P′ then one can write its 

equation of motion: 
d

dt
(ΤΤΤΤ ⋅ G) = P′ + K, 

 
when one brings the last term of K into the left-hand side, into the form: 

 
d

dt
 [(ΤΤΤΤ + ΤΤΤΤ′) G] = P + P′ + ∫ p dF.      (45) 

 
The “dynamical influence” of the fluid flow on the rigid body thus asserts itself 
completely as an apparent “increase in inertia;” the individual supplementary terms that 
are added to the elements of the original inertia dyadic are given by (44′).  Since ΤΤΤΤ is 
indeed symmetric, but generally does not possess the much more specialized form of the 
inertia dyadic, one cannot maintain the notion of an “inertia increase” in full detail.  For 
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example, there is generally no number m′ that can be added to m, etc.  We shall not go 
further into the relations the come about in regard to the principal axes and similar things. 
 The behavior of motor algebra likewise gives a very simple representation of the 
kinetic energy E′ of the fluid that is contained in V.  From Gauss’s law, one has: 
 

E′ = 21
2 (grad ) dVµ ϕ∫ = 1

2 dO
n

ϕµ ϕ ∂
∂∫ . 

 
If one substitutes the value of ϕ from (41) then one obtains: 
 

2 ( )

; ,

E dO dO
n n

dO
n

µ µ

µ

∂ ∂    ′ = ⋅ ⋅ = ⋅    ∂ ∂    


∂  ′⋅ ⋅ = ⋅  ∂  

∫ ∫

∫

U U
G U G U G

U
=G U G G I

  (46) 

 
i.e., the vis viva of the fluid is expressed by its impulse I and the velocity motor G, like 

that of a rigid body.  In other words:  One can also employ the concept of “inertia 
increase” for the kinetic energy of the system that is composed of the rigid body and 
fluid. 
 
 The total energy of the system is equal to that of a rigid body that moves with the 
velocity G and possesses the inertia dyadic ΤΤΤΤ + ΤΤΤΤ′. 
 
 The eq. (45) is ordinarily applied to the motion of a rigid body in an infinitely 
extended fluid.  The boundary surface ϕ = 0 then lies completely at infinity, and one 
infers from the general theorems of potential theory that p = 0 the integral on the right in 

(45) may thus be omitted.  The conceptualization of the equations of motion, as well as 
the computational derivation, will be simplified essentially by the notion of motor 1). 
 
 9.  Motion of an aircraft.  Kinematically, an aircraft can be regarded as a rigid body; 
if its individual parts are more or less elastically flexible then this flexibility affects the 
distribution of velocity and acceleration only very slightly.  We refrain from considering 
the relative motion of the control units, such as the propeller and motor.  In the equation 
of motion (1), which contains the velocity motor G and the inertia dyadic ΤΤΤΤ on the left-

hand side, the following forces enter on the right: The weight S, the propeller thrust P, 

and the aerodynamic forces, which act on the different components (minus P), such as 

the airfoil, control surfaces, etc.  Of the aerodynamic forces, we may assume that their 
magnitudes and relative positions depend upon only the velocity motor G, which is also 

assessed relative to the aircraft.  In other words: The six components of the resultant 
                                                
 1) The presentation in the German edition of Lamb, Hydromechanik, Leipzig, 1907, pp. 117, et seq., is 
completely confused.   As long as one is dealing with an isolated rigid body, appealing to the Lagrangian 
equations is entirely unfounded. 
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aerodynamic force are functions of the six components of G, when everything is referred 

to an axis system that is fixed in the aircraft.  If we then write down the equation in the 
form (11) then we have an Ansatz in the form of: 
 

ΤΤΤΤ 
d

dt

′G
 + G (ΤΤΤΤ G) = S + P + K,    (47) 

 
which – as far as it relates to the left-hand side and K – includes the six components u, v, 

w; ωx, ωy, ωz of G and their derivatives with respect to time as the variable under a 

decomposition in a co-moving coordinate system only.  We can regard the propeller 
thrust P as given by its relative position and magnitude; however, the weight S brings a 

complication along with it that is given immediately either relative to the aircraft or to 
rest space.  S is constant in direction relative to rest space, but the line of action will 

follow the moving body.  Now, since, in general, from (4) one has: 
 

d

dt

S
= 

d

dt

′S
+ (G × S), 

 
then one has the first vector component from this: 
 

0 =
d

dt

′S
+ (G × S).      (48) 

 
 If one imagines that the vector r from the reference point to the center of mass has 

unchanging components in our reference system, such that the components 4 to 6 of S 

are given by S0 = r × S when the first three are given then one sees that the motor 

equation (47), together with the vector equation (48), define a complete system of 9 
differential equations of first order for the 6 components of G and the 3 components of 

S.  By scalar multiplication of (48) by S, one easily finds the relation d′(S2) / dt = 0, 

which is naturally known, a priori, and which gives the integral 2 2 2
1 2 3S S S+ +  = const., 

such that one recognizes the integration problem as being one of eighth order. 
 The so-called “gyroscopic effect” in the rotating parts of the aircraft may also be 
easily considered to a high degree of approximation.  The force on the right in (47) 
actually acts on the entire system that is composed of the aircraft itself and the propeller.  
Therefore, the impulse increment for both rigid bodies must also appear on the left-hand 
side.  As we may assume, the rotating parts have an approximately unchanging inertia 
dyadic T′ relative to the aircraft (this is true precisely only for pure rotating bodies), and 
an unchanging relative velocity G′.  The first part of the impulse ΤΤΤΤ′(G + G′) has already 

been considered. When one calculates ΤΤΤΤ accordingly, the second one gives an increment 
I′ to the impulse, namely, the product of the rotational velocity and the moment of inertia 

of the rotating parts, as a moment vector in the direction of the propeller axis.  One then 



von Mises – Applications of motor algebra.                                             26 

adds G × I′ on the left-hand side of (47), which only affects the moment components; 

the expression I′ × G on the right-hand side, which comes with the impressed force, 

represents the “gyroscopic effect” in the usual terminology. 
 If we choose the reference system to be the principal axes that goes through the center 
of mass of the aircraft then the component equations of (47) read: 
 

1 1 1

4 4

( ) ,

( ) ,
y z

x y z y y z y z z y

m u w v S P K

T T T J J P K

ω ω
ω ω ω ω ω

+ − = + + 
′ ′+ − + − = + 

⋯

⋯
   (49) 

 
Naturally, in this P4, K4, … are the components of the propeller thrust and the 
aerodynamic forces.  The three components of (48) are then added to the six equations 
(49): 

0 = 1Sɺ  + ωy S3 – ωz S2 = 2Sɺ  + ωz S1 – ωx S3 = 3Sɺ  + ωx S2 – ωy S1 .  (50) 

 
 A stationary motion under which all derivatives with respect to time vanish is 
possible as a result of (48) only when G is vertical, so the motion consists of an arbitrary 

translation and a rotation around a vertical axis.  If we assume that the vertical is a 
principal axis of inertia (and neglect the gyroscopic effect of the propeller) then (49) 
shows that the forces must possess a horizontal resultant that goes through the center of 
mass, is perpendicular to the center of mass velocity, and is equal to the product of this 
velocity with the mass and the rotational velocity.  Under a pure translation, the forces 
naturally define an equilibrium system.  Since K depends upon the velocities, it is 

imperative to know if there are solutions for u, v, w, S1, S2, S3 that satisfy the equations: 
 

S + P + K = 0,     (51) 

 
along with ω = 0, and how they behave.  The ratios of the S determine the position of the 
aircraft with respect to the vertical, while the u, v, w are the magnitudes and positions of 
the translation vector relative to the aircraft. 
 If we assume that G0 is a possible stationary velocity state, K0 is the associated value 

of the aerodynamics forces, etc., and the actual motion might be a small deviation from 
stationary, such that in G = G0 + G′, the higher powers of G′ can be neglected.  The 

system of linear differential equations for G′ and S′ is: 

 

0 0

0 0

( ) ( ) ,

( ) ( ) 0.

d

dt
d

dt

′ ′ ′ ′ ′ ′+ × + × = + + 
′ ′ ′+ × + × =


G
G G G G S P K

G
G S G S

Τ Τ ΤΤ Τ ΤΤ Τ ΤΤ Τ Τ
  (52) 

 
In this, K′ is a linear homogeneous function of G′, so it will be represented by a motor 

dyadic: 
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K′ = ΜΜΜΜ ⋅ G′.     (52′) 
 

Eqs. (52) and (52′), in which the elements of ΜΜΜΜ are considered to be given constants that 
possibly depend upon G0, determine the small oscillations around the stationary state of 

motion; the component equations are read off immediately.  We would like to write them 
down explicitly for the following special case: The aircraft has a symmetry plane that is 
vertical to the stationary motion; let this be a pure translation with the components u0, w0, 
and v0 = 0 if the symmetry plane is the xz-plane.  The system of equations: 

0 0 0 0
1 1 2 2 3 3

4, 5, 6,

1 3 2 3 1 3 1

( ) , ( ) , ( ) ,

, ,

y z x y

x x y y z z

y x z y

m u w S K m v u w S K m w u S K

T K T K T K

S S S S S S S

ω ω ω ω
ω ω ω

ω ω ω ω

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ + = + + − = + − = +
′ ′ ′ ′ ′ ′= = = 
′ ′ ′ ′ ′ ′ ′= − = − − = 

ɺ ɺ ɺ

ɺ ɺ ɺ

   (53) 

then follows from (52), or also from (49) and (50).  The presence of a symmetry plane, in 
which the stationary velocity vector also falls, has, however, a peculiarity for K′ (ΜΜΜΜ, 

resp.) in (52) as a consequence.  Namely, if the additional motion consists of only a 
rotation around an axis that is perpendicular to the symmetry plane (which can also lie at 
infinity) then the additional aerodynamic force certainly has a resultant in the plane or 
defines a force-couple that lies in the plane.  Conversely, if the additional motion is a 
rotation around an axis that lies in the symmetry plane then the additional force is 
perpendicular to the plane.  Analytically expressed: 1K ′ , 3K ′ , 5K ′  depend upon only u′, w′, 

yω′ , and 2K ′ , 4K ′ , 6K ′  depend upon only v′, xω′ , zω′ .  One sees that eqs. (53) divide into 

two mutually independent groups.  The one, which subsumes the first, third, fifth, 
seventh, and ninth equation includes only the variables u′, w′, yω′ , 1S′ , 3S′ , while only the 

variables v′, xω′ , zω′ , 2S′  appear in the four remaining equations.  Recalling the 

aforementioned general integral, each group of equations defines an integration problem 
of fourth order.  As is known in stability theory, one distinguishes the two parts of the 
total problem as the theory of longitudinal and transverse oscillations 1). 
 
 10.  The special case of three dimensions.  Application to statics.  The 
consideration of the decomposition of a six-dimensional motion problem into two three-
dimensional ones that was just presented is closely related to the examination of the 
special case that arises when one rigorously examines individual components of the six 
motor components and thus comes down to lower-dimensional structures in this way.  
We would like to make some brief remarks about them, and thus concern ourselves 
chiefly with the questions of the statics of rigid bodies. 
 It is first clear that one comes to ordinary vector equations by examining the fourth 
through the sixth scalar components of any motor.  From the standpoint of statics, this 
means the problem of the equilibrium of a material point.  In precisely this way, the 

                                                
 1) The equations are treated without any use of the concept of motor in closer detail regarding the 
connection between aerodynamic forces and velocity in my reference “Dynamische Probleme der 
Maschinenlehre,” Enzykl. d. math. Wiss., v. IV, article 10.  Cf., v. IV, sub-volume 2, pp. 343, et seq. 
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conservation of the fourth through sixth components alone yields the statics of bodies 
when one of the points is fixed.  Here, however, there are two other three-dimensional 
special cases of greater interest, namely: the examination of a (scalar) resultant 
component and the two other moment components, and conversely, two resultant 
components and the third moment component.  In the first case, when we preserve, say, 
A1, A2, and A6 for any motor U, statically speaking, we have a plane force system before 

us, and indeed one with the xy-plane as its force plane.  A1, A2 are the two components of 
the force and A6 is the moment of the force referred to a point of the plane itself; in planar 
statics, one has nothing to do with anything else except for this moment.  The second 
case, which is, in a certain sense, dual to the first one, is the preservation of A3, A4, A5 .  
In statics, it refers to a system of parallel forces that one can also regard as a system of 
listed (kotierter) points in the plane or ones that are endowed with masses.  A3 is the 
magnitude of the force (in the z-direction) or the magnitude of the mass distribution of its 
piercing point with the xy-plane, A4 and A5 are the components of the moment of the 
force (static moment of the mass, resp.) when referred to a point of the plane. 
 It is now interesting to see that both special cases of motors admit an invertible 
single-value map to the vectors of three-dimensional space, in the sense, that the 
problems of planar statics and the parallel statics in such planes go to point statics.  For 
the case of the planar force systems, I have the carried out the map on a previous 
occasion, with the objective of making the problems of statics for spatial force systems 
accessible to a constructive treatment in a drafting plane 1).  The connection between the 
“planar” force A1, A2, A3 and a space vector 1A′ , 2A′ , 3A′  will be mediated here by the 

equations: 
A1 = 1A′ , A2 = 2A′ , A3 = 3A′ ,   (54) 

 
in which c denotes a reduction line segment that has been chosen once and for all.  The 
geometric relationship between the two structures is expressed in Fig. 10.  If we start 
from the space vector oa then the magnitude and direction of the planar force that is 
mapped equals the projection oa′ of the vector onto the plane, while the line of action A is 
displaced from the reference point o through the distance c tan ϕ.  The fact that the rules 
of addition carry over under this map emerges immediately from (54). 
 For the case of parallel systems of forces, a map onto vectors is already given in the 
basics of the so-called barycentric calculus.  Analytically, the relation between the 
“parallel force” A3, A4, A5, and the space vector 1A′′ , 2A′′ , 3A′′  is represented by: 

 

1A′′  = c A3 , 2A′′ = A5 , 3A′′  = − A4 ,    (55) 

 
and the geometric relationship is suggested by Fig. 11.  If one again starts with the space 
vector oa then one obtains the position of the mass point or the line of action of the 
parallel force when one cuts oa with a plane that is perpendicular to the direction of the 
force and at a distance c from o, and chooses the magnitude of force or the mass to be the 
quotients of oa by the distance oa′ to the piercing point.  The transformation formulas 
(55) show immediately that the addition of the space vectors and that of parallel forces 

                                                
 1) “Graphische Statik räumlicher Kräftesysteme,” Zeitschr. f. Math. u. Phys., 64, 1917, pp. 209 to 232. 
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correspond to each other.  Since one can conveniently solve barycentric addition 
problems constructively when one is dealing with just a few mass points, Runge has 
sometimes employed the map that was defined by (55) in order to convert problems in 
spatial vector analysis to planar ones.  However, since the constructive methods are, by 
no means, as well developed as in the case of planar force systems it is often useful to 
carry out the transition from parallel systems to planar systems, as is defined by the 
equations: 

A4 = c A1, A5 = c A2,  c A3 = A6 .  (56)  
 

Geometrically, when one interprets the parallel forces as point masses, this yields the 
connection by a purely planar construction, as is suggested in Fig. 12: If m is the position 
of the mass point (piercing point or parallel force) then one obtains the magnitude and 
direction oa of the mapped planar force when one assigns the angle whose tangent equals 
A3 : c to om and regards the line of action A as the antipolar of m relative to the circle 
around o with radius c, when one makes oa′ equal to c and drops the perpendicular to ma′ 
at a′.  On the basis of this transition, any planar center-of-mass determination will be 
achieved by the construction of a force diagram and a funicular polygon. 
 These relations do not carry over to the problems of kinetics completely.  Only the 
planar motion of a disc defines a self-contained three-dimensional special case of general 
kinetics (naturally, like the point motion and the rotation of a body around a fixed point).  
Here, the velocity motor is a rotor with an axis that is perpendicular to the plane, so it 
belongs to a parallel system, while impulse and force motors fall into the plane.  Any 
problem of planar motion may be completely mapped to a three-dimensional point 
motion.  However, things are different in the case of the motion of a body with a 
symmetry plane that is yet to be addressed here.  If the velocity is a rotor that falls in this 
plane then this yields an impulse that is perpendicular to the plane; so far, the analogy 
still works.  However, if we now also assume that the force is likewise perpendicular to 
the plane then impulse does not retain this property.  The perturbation acts on the second 
expression on the left-hand side of the equation of motion: the motor product of two 
mutually perpendicular rotors lies in the common normal to the two axes, so it is coplanar 
to each of the two factors, but parallel to none of them.  For the aircraft problem that was 
treated in 9, the anomaly lies in the fact that one was dealing with small oscillations such 
that as a result of neglecting the terms of higher dimensions the product of velocity and 
impulse was not completely valid. 
 


