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Applications of motor algebra.

By R.v. MISESin Berlin %)
Translated by D. H. Delphenich

The following paper is immediately connected with thesit “Motorrechnung, ein
neues Hilfsmittel der Mechanik” that was published in trevpius issue. The two parts
of that thesis will be consistently referred to by tlwation | and II, resp., with the
addition of the number of the section or the equation.

In the choice of examples and the limits of the donin which they are being dealt
with, the driving consideration was not just that theé @sults should be derived anew.
Rather, it was my goal, as well as the actual purpmsenake the explanation and
clarification of the new calculation procedures forlugawith force and inertia seem
consistent with the methods that are arrived at byrgtaths. One must therefore avoid
going too far into the details. In the first two sens, the equations of motion for a rigid
body were developed in sufficient generality that thelgsumed the case of a materially
extended Foucault pendulum as an example, which itsadfivies the consideration of
the non-uniform equation of translation for the Earfihe third section presents a more
fundamental argument that might be of interest in $gstematic construction of
mechanics. In sectiodsto 6, | give a sketch of the treatment of the general eqiuihior
problems of structural mechanics. For spatial systbatsare composed of elastic rods
in a completely arbitrary way, the equilibrium equati@msl the general theorems on
work done by deformation, etc., will be established &r special cases of the
frameworks that are comprised of articulated or stffes with continuous beams for the
frame supports in a unified manner. The seventh and esgltions are concerned with
two hydrodynamical problems that mostly come up quite shdhe usual presentations,
namely, the calculation of the so-called “actiontldreaction” in moving water and the
equations of motion for a rigid body in an ideal fluidheTninth section speaks briefly on
the equations of motion of an aircraft, which, as omewks, decompose into two groups
under the transition to the consideration of smadlillasions in certain cases: viz., the
longitudinal equations and the lateral equation. This gilews us to go briefly into the
more geometrically oriented question of the three-dsiomaval subgroups of the general
concept of motor in the last section, in which the doestof the statics of rigid bodies
come to the foreground.

) The basic ideas of the present work were alreadyistence in the year 1912, and were distributed at
the time in a provisional version to a small cirefespecialists. In many talks and university lectisinse
then, | have also communicated the individual parts ofttiteery. The complete elaboration should be
dedicated to E. Study on his"8Birthday on 23 March 1922, although the final form has hietayed on
various other grounds. The essay might now be devotedrtly #stablishing the great fruitfulness of the,
unfortunately, much-to-little noticed “Geometrie der Bgmen,” by Study.
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1. Basic equations for rigid bodies. We shall start with the following basic facts
from the mechanics of rigid bodies: When a rigid bodyes, at each instant, the totality
of all forces that act on it yield farce motor which is also called dynameor aforce
screw K. The instantaneous velocity state will be determined bglocity motoror
motion screw®, whose first vector component is the rotational e#o while the
second one is the translation velocity. Ultimatéiyg mass inertia will be represented by
a special symmetric motor dyadic: timertia dyadicT, whose 36-element schema was
already characterized in 3l. These three quantities, &, andT are now coupled with

each other by a fundamental law that is completelyogoas to the simpléex secunda
of Newton for the “material” point, and which we nowite down in the following form:

dJ

TB =7, —
dt

= 7. (1)

In words:

The product of the inertia dyadic with the velocity motor is calhednpulse motor.
The derivative of the impulse motor with respect to time is ¢égqubé force motor.

The following remark will serve to explain (1): Frohetexplanation that was given
in 11.3 for the inertia dyadic, one can also regard its prodittt & by saying that if the

rigid body decomposes into mass elemeimsand each such element with the position
vectory is “attached” to its “quantity of motions dmas a special motor (rod, rotor) then
J is the sum of all these elementary motors; i.e fiist vector component = [ v dm
and the second oneds =/ (t x v) dm In the same way, the derivativeZfvith respect

to time can be interpreted as the motor sum of the-tiags-acceleration produetsdm
that are “attached” to the individual mass particlésr the first vector component, this is
immediately obvious, since when one differentiates dm one arrives af w dm
precisely. For the second one, one must observéehinalerivative of the position vector
r with respect to time is and that the vector productx v vanishes. One thus has:

% [ (¢ xv) dm=] (¢ x ) dm+ j(%xnjdmII(txm) dm

Therefore, the left-hand side of the second equatiofl)nhas, in fact, the vector
component$ o dm and/ (v % o) dm

For a material point, the force (velocity, resp.) onaeduces to the force (velocity,
resp.) vector, and the inertia dyadic reduces to tr&esmeaalar. Eqg. (1) then says: The
product of mass with velocity vector, when differemttvith respect to time, is equal to
the force vector. In the general case of the fipigettended rigid body, the Ansatz (1) —
whereby one imagines that tfiethat comes from the first equation has been suleditut

into the second one — is equivalent to two vector egsitione of which is the so-called
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center—of-mass theoreand the other one expresses #éneal theorem;we shall come
back to this later i2.

A general scalar relation shall be derived from (Bt thill be called theenergy
theoremor thevis vivaequation To that end, we introduce the following notatiolnat t
are connected with the usual terminology: One cadlsstialar product of the force motor
and the velocity motor thpower, and one-half the scalar product of the velocity motor
and the impulse motor, thas viva or kinetic energy:

RO =L, 1i16D=E ()

When one scalar multiplies the second of eq. (1¥bthenL appears on the right-hand
side and the scalar produst [(dJ / dt appears on the left-hand side, from which we will
prove that it amounts to the derivativeEof Namely, we have:
de_ d (1 dJ d&

d

t 160) = %—t+-;3—, (3)

and it is easy to see that the two summands ondhe are equal to each other. Then,
from the calculation rule that was mentioned atahé of |7 and derived in |7, one has

the following equation for the motépt:

d2A _d'A
=2 (B XA, 4
adr ) @

if d'/dt denotes the “apparent” derivative with respect to time.-the change in time as
seen from the system that moves véih One thus has:

637699, 6 (@ x2) :6(Td—6j :6(Td—6j=d—6 . (5)
dt dt dt dt ) dt

The first equal sign follows immediately from the aggtion of (4) toJ; the second one

is explained when one imagines thats constant when considered from the moving
body, and, on the other hand, the ternary product vaneshagsesult of the commutation
rule 1 (10) and sincax& = 0. The equality ofi®s / dt andd'® / dt is likewise a

consequence abx& = 0 and the relation (4), while the last equal sigrofedl from the

symmetry ofT, according to Il (49). The first and last term in (5) aosv, in fact, the
two components of the derivative Bfin (3), such that we have proved the identity:

dE _ 4 3

TR 3

The scalar multiplication of the Newtonian equationkit¥ then yields:
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dE:L

m (6)

In words: The power exerted by the applied force on the body is, at any instantt@qual
the increase in vis viva during a unit time interval.

For many purposes, it is useful to have the compoepnésentations fdg, L, andJ.

For the sake of clarity, we would thus like to alteg thotations from the ones in the
general investigations of | and Il somewhat. The tomeaponents of the resultant force

K may be calle, Y, Z, while the momenR, = 9t for the reference poird might be

calledMy, My, M. ; analogously, leti, v, w be the velocity components of the pomnt
(vectorv) and letw, w), « be those of the rotational velocity. We denote the inertia

and deviation moments by, , Ty, T, (Dx, Dy, D, , resp.) and the center-of-mass
coordinates by, b, ¢ (vectort). The expression for the powlethen reads:

L=Xu+Yv+Zw+ My +Mya) + M@= R v + Mw. (7)

The inertia dyadic has the schema:

m 0 0 0 mc—-mA{
0 m O-mc O mx
O-mc mb mb—mx O

8
O-mc mb T-D-D ®)
mc O-ma-0Q T -0
-mb ma 0-D-D T
The scalar components of the impulse are, from Il (14):
J, =mlut @, - lw,), J,=Tw -Dw,~Tw,+ n(bw cy,
‘]2 = n(V_ m)z + a‘)x)’ ‘]5 = Tya)y - Dx‘”z_ Tza)x+ rr( Cu- a\b/, (9)
J, =m(w- aw, + ), Js =T,w,- Dw,—Tw + n(av b

It is only when the reference pointis the center of mass that the first three impulse
components depend upon just the translation veglaitd the last three, on just the
rotational velocity. The former will be calledu mv, mw which are the components of
the vectomw that is often simply called the “quantity of matid If one chooses the axis
direction, moreover, in such a way that they anegipal axes of inertia (free axes) of the
body then one also obtains likewise simple expoessfor the second group of impulse

components, namelf¥ya, Ty, T.a.
One obtains the explicit expression fé& ffom the definition (2) in the form:
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2E=m(U + V+ W)+ Taf+ Tw)+ Tw?
+omla(w, - ve) + o~ w) + ¢ w,- w)] (10)
-Dww,+Dww +D ]

The second group of terms with the common factor mfd2ops away when the
center of mass is the reference point, while thedestip drops out when the coordinate
directions are the principal axes. The middle group addifferent rearrangements,
since it represents the ternary produttt® x @) = 2muo(wx t) = 2mw(c X v).

2. General forms for the equations of motion. The second equation in (1), in
which we imagine thal has been substituted into the first one, gives, afhave said,

the equation of motion for a rigid body in motor forno (& is equivalent to six scalar
equations). In order to obtain the component decompodioany fixed or moving
reference system, one needs only to apply the rulesl@flation of motor analysis in a
purely schematic way. We next chose an axis crossshaidly linked with a moving
body, but otherwise arbitrary, and imagine that the caompb notations that were
introduced inl refer to this. When we make use of the differemtratule (4), we obtain
from (1):

Tdd—?+ &x (T &) = &, (11)

The components of the motOrthat appears in the brackets are already summarized

in (9), in such a way that the components of the sesanimands on the left in (11)
follow from | (4) immediately; those of the first erare found immediately from the
components of, when one replaces tiev, w, a, &), a with the derivatives,, v, etc.,
in each of the 6 expressions (9). It will suffice toitevdown the first and fourth
component equation here, since the other ones emerge loy mganutation with no
further assumptions:

m(u + ca —bay) + may (W - b +aw)) —may (v - cax +aw) =X, (12a)

Teak — D26y =Dy + mbw — ¢y + (T~ Ty) & @ + Dy (& — &)
ax (D;a —Dyag) + mayg (cw + by) — mu(ca + cay) = My . (12b)

The former of these two equations makes the genesisstadgabove immediately
obvious, while in the latter, some contractions in thesethat arise fron® x J, + &, %

J were carried out. If one chooses the center of neabs the origin of the coordinates
then the left-hand side of (12a) goes to the componéiie eector:

(d’n _j __dv
m —-vx@| = m—,
dt dt
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such that (12a) defines the well-known center of masatequm o / dt = K. From

(12b), one achieves the familiar form of the EuleggoationTya + (T; — Ty) &) @ = My
, when one also lets the axis directions coincide Wighprincipal axes, moreover. The
general form (12a), (12b) of the equations of motion (tledirhand sides, resp.) was
given by K. Heun on the basis of vectorial derivasivalthough his result is marred by
some errors in calculatio.

One can derive (12a) and (12b) in a somewhat differentwinay one carries out the
differentiation in (1) immediately, while bypassing (4):

796, 9T 6_g (13)
dt dt

The first summand gives the actual acceleration tenmthie same way as before
(since, as was already mentioned. i / dt is identical withd' & / dt). One obtains the

components of the second one as the product of thecdydudise elements were written
down in Il (39) with the velocity motor. One now ses®ce (11) must coincide with
(13), that the following rule of computation must exist the dyadic product of the
motor and dyadic that was introduced ifTll.

(BxM)G =06 x(a6). (14)

Egs. (12) still do not represent the greatest genertdy is either attainable or
requisite. In many cases of the motion of rigid bodiesg., the Foucault pendulum, the
vehicular gyroscope, the gyrocompass — one would likemploy a reference system,
such that one of the bodies under scrutiny exhibits indkpe#mmotion, like the rotating
Earth, the moving gyroscope, the rocking ship, etc. Weldviws like to assume that
the motorR determines the relative velocity of the body when copgbém an axis cross

whose motion is given by the mot@t of the guiding velocity, such that the absolute

velocity is:
G =F +R. (15)

If we substitute this in (1) and employ (4) then itdiees:

SEIRLL:

pm TﬁL(S +R)X(TF+TR) =K. (16)

However, as a rule, one will assess the change igulaing velocity, not from the
moving body under scrutiny, but from rest spacer, what amounts to the same thing,

) K. Heun,Lehrbuch der Mechanik Leipzig, 1906, pp. 271. The signs in the terlblsaj andD,

w, have been inverted there when compared to (12b), andriudhe some indices in the last terms have
been switched. In the Encykl. d. math. Wissensch. IV, B (K. Heun), pp. 398, the individual signs of
the first group of terms do not coincide with the oimeld 2a).
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from the moving reference system; i.e., we would likertgploy the derivativeg / dt, in
place ofd'§ / dt. This requires that one has introduced the pro@iu®& x §) in (16),

according to (4). We then arrange that, at first, orgytédnms that depend upon relative
motion, and then the ones that depend upon the guidingityeland finally, the mixed
terms (“Coriolis” acceleration) appear then we obtain

d',:m 8 dF 8
[TFJF% (T%)}+[TE+3 (T&)}
FH[FXTR)+RX(TF) -TORxF)] =K. (17)

The writing down of the component equations rasulta completely schematic way.
For the sake of example, we assume that the axss that is fixed in the body coincides
with the principal axes of inertia and let the guogdvelocity be unchanging (say, the
rotational velocity of the Earth). Furthermord, tlee components of the relative motion
be denoted by, v, W, &, @, w, where the same symbols with primes refer to the
guiding motion. (17) then yields the equations:

miu+wy w—wz v+ W -V +2(d w- V)] =X (17a)
Tx (- ww,+ow) + (=T + &)@+ o) =M. (17b)

If one would like to treat the physical Foucawdngulum (i.e., the oscillation of rigid
body that is coupled to the moving Earth at a pdimtn one would do better to choose
the reference point to be the point of suspens@mnyhichu=v=w=0. Ifthe center of
mass in the coordinate system, which is still agslito be referred to the principal axis
cross, has the coordinates 0,cQthen the termmc(Wa) —uUa)) is added to the first

moment equation, and the temc(waj, - V) to the second one, while the third one

remains unchanged. The general Ansatz (17) isegntsuited to the case in which,
besides the Earth rotation, the orbital motion loé tEarth in the ecliptic is also
considered.

3. Foundations of continuum mechanics. For the presentation of the equations of
motion for continuously deformable bodies, one d@bi means an analogous resetting
of Newton’s axioms: Mass times acceleration egtre@dorce that can be found acting on
the volume element. In place of the mass of thatémial point” that was considered by
Newton, one finds the specific mass, and in placth® resultant force, one finds the
specific force that acts on the unit volume, etlge, specific weight as the length of a
vector that is directed vertically downwards. EiBoltzmann, and after him, Ham®|
have clearly explained that one does not come smgle axiom in this way, but an
assumption that is completely independent of it mdt be introduced in some form as a
‘moment theorem” or “surface theorem.” We are nowa position to give this

) Cf., G. Hamel, Mathem. Annalen, 66, 1908, pp. 350 and L. @aitm, Populér-wissenschaft.
Schriften, Leipzig, 1905, pp. 298.
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derivation in a somewhat simpler and more unified wagguthe tool of motor analysis,
in order to also materially extend the foundations h&f tmechanics of continua in a
direction that can possibly be once more meaningftierapplications.

The concept of velocity motor, and therefore, tHahertia dyadic, loses all meaning
for a body whose individual parts are not rigidly coupgtee@ach other. For each point of
the body, there is only one velocity vectoand one specific magg which equals the

limiting valuedm : dV of the quotient of mass over volume. Nonethelesscanedlefine
the impulse moto® of such a body when one uses the second explanatiGntifiat was

given in1: J represents the “motor sum” of the rods (specializetbrapv dm that are
“attached to” the individual mass particles, and acogigj dJ/dt (cf., the passage

guoted above on this) is the analogous sum taken tovdm, whent denotes the

acceleration vector of the mass elemémt For the mechanics of continua, this then
leads to the following theorem, which can call thetéexled” Newton Law:

For every part of an arbitrary body, the derivative of the impulseomaith respect
to time equals the force motor

where this is defined by summing over all external foaes$ moments that act on the
volume elements, as well as the surface elementeqdarts of the body. The first of eq.
(1) for the rigid body emerges immediately, and the@séone can be written as:

B _gFr g, (18)
dt

from which, the decomposition into volume and surfaceds is likewise proved. The

fact that the Ansatz (18) or the one that was given irdsvabove is not attained when
one considers vectors instead of motors is the eateatitent of the converse argument.
The most general equation of motion of a deformable bmmiyes about when one

applies eq. (18) to a volume element.

We construct the following picture of the volume andface forces that appear in
(18) that is somewhat extended when compared to the usealFarst, leta be an
arbitrary point in the interior of the body and \étbe a region of space that contams
(Fig. 1). All of the volume forces that act on thenp® of V then yield the motoR”,

which might perhaps be reducedatas a reference point. Wis reduced more and more,
while a always remains an interior point, then we assuntettieae exists a limiting value
K1 V; it is the “specific force motor” for the poilat whose vector components relative

to a will be denoted by andm. As a rule, one is usually only concerned with foroes f

which the second vector component (referre@)tof this motor vanishes, but there is
nothing to prevent the presence of — say — magnetic gffethe form of “specific force

moments.” In a similar way, the following is true fBnpointb on the outer surface of the
part of the body that was considered in (18)K&ff is the resultant force motor for all

forces that act on a surface pafethat surrounds then the limiting value’™: F exists
when one concentrat&sat the pointb. We call this limiting value thetress motoffor
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the surface element htthat is more rigorously determined by its normal diogct The
generalization of the Ansatz that we used is again dheesas before. We denote the

vector components of the stress motor referreld by p, andq,, wherev refers to the

direction of the surface element.

The coexistence of volume and surface forces is possitllewhen the boundary
surface forces that act on a closed boundary surfaat aisim over all pieces that has
the same magnitude as the sum of the volume forces¢hanside of it. If one pursues
this line of reasoning for an oriented tetrahedron (Figof Zpordinate directions then, as
is known, one obtains a relation that allopysto be computed from, py, pz, and which

reads the same way for then our case:
p, =p,coSY X )+p, cof y ¥p, cos( z ), (19)
q, =q,Ccos X)tq, cosf y yq, cos( z ).

From 1l (2), this means that as well agj, defines a vectorial dyadic at each point.

If one now considers a parallelepiped volume elerdgrdy dz(Fig. 3) then the first
vector component of (18) delivers the well-known difféf@ equation:

apx +apy +apz.
ox 0y 0z

Mo =+ (19a)

In the second component equation, the left-hand side dugpsecauseé (x x rv) dm

goes to zero with the reduction in volume, using its limaaasure. On the right-hand
side, along with the terms that are analogous to (ttfd)are determined by andq,

there are ones that originate in the equal and oppfgite¢o terms of higher order)
tangential components pfon the opposite surface such that one obtains:

O=m+

dq,  0d,  dq . . :
X 4 + z 4+ ,— + (Pzx— + — s 19b
ox oy oz (Byz— B2 i1 + (Px— ) B2 +(Pxy — B i3 (19b)

whereiy, iy, i3 refer to the unit vectors in the coordinate dirawio If, as usual, one sets
the moment quantities andq equal to zero from now on then (19b) says hat py.,

Pzx = Pzz, Pxy = Pyx, such that the stress dyadic is therefore symmeffhis somewhat
unexpected requirement follows casually from the Newkosatz when it is extended in
the sense of motor algebra. The case in whicdmdq do not both vanish, so the stress
dyadic loses its symmetry, has occasionally beeneuleia relation to the quasi-elastic
ether theory of A. Brill).

Y A. Brill, Vorlesungen zur Einfithrung in die Mechanik raumerfiillender Madseipzig and Berlin
1909.
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4. The elagtic rod. One finds a particularly convenient validation for tuscept
definitions and formulas of motor algebra in the treainod the equilibrium problem of
general elastic framework (ideal frames and frame strestare special cases of these).
We begin with an investigation of the individual elastid,rwhich we regard as a very
slender straight elastic prism, according to the ussslraptions. The loads consist of
isolated forces and moments, and are no larger thesothesponding elastic limit of the
material. We also assume that for the relationveen forces and deformations only
linear laws apply and the effects of the individual loathponents simply superpose; a
reaction to the load during the deformation (kinking) shaethain beyond the scope of
consideration.

A piece of the rod of lengththat is free from external applied forces (Fig. 4] be
in equilibrium by means of the forces and moments tteatpplied to the two end cross-
sections 1 and 2. If we combine the for¥e¥, Z and moment#l,, My, M, that act on 2
into a motorS — briefly called a “rod force” in the sequel — then th@on that is applied

to 1 must be 6. We can imagine a rigid body, or, what will alsofisgf any axis cross

as being rigidly fixed in the rod-ends, whose change initipps rotation and
displacement under the transition from the unloadeatiédoaded state will likewise be
represented by motort* and $1>. One may then consider all displacements as being

infinitely small, as is also done in the equilibriunolplems of elasticity theory, and such
changes in position are, just like the velocities odrigodies, representable by motors.
The first three scalar componentss#f then mean the components of the rotation of the

left-hand rod end for the chosen axis cross and the thhees are components of the
displacement, taken at the reference point, whichaaght of as rigidly fixed on the rod
end. Our first problem is to ascertain the relationsvéen the rod forc& and the

relative displacement of the two rod erdls $1° — $1* on the grounds of the well-known

equations of elasticity.

We establish the coordinate system in the followingy Wig. 4): We let the
longitudinal axis of the rod that links the centroidshef tross-sections be thaxis, and
let the origin be the midpoint of this axis, so the diséato either end is/ 2. Thex and
y-axis, which run through the central cross-section/ fleaihe principal bending axes of
the cross-section. The positive direction of zhexis runs from 1 to 2, so the sense of
direction of thex andy axes shall fulfill the condition that the three axedine a right-
hand system. The first three scalar component&oare now equal to the three

components of the end force applied t&2= X, S =Y, S =Z. By comparison, the next
three components do not coincide completely with th@pmmentsM,, My, M, of the
stress moment on 2, but one s M, —-YI1 /2, S =My + Xl / 2, andS = M, , since
these quantities define the moment of the force sydtatrig defined by, Y, Z, My, My,
M, for the chosen reference point at the center ofrtlie Now, letu, v, w be the
components of the relative displacement that endpdirdf the z-axis experiences
compared to the endpoint 1 as a result of the load thr@idhe., the difference that
equalsthe displacement of 2 minus the displacement @nd)let %, &, &, be the

analogous components of the relative rotation of an@amiss that is thought of as fixed
in the rod-end 2 when compared to the rod-end 1. One th&nahalogously, the
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following relations for the six components of the magbthat was introduced above;

=, U= ,Us=F Us=u-41/2,Us=v+ HI| /2 Us=w We seek the
connection between ti&, ..., S, on the one hand, and tbk, ..., Us, on the other.

The simplest components to account for arezhemponents. IE is the elastic
modulus andF is the cross-sectional area then= ZI / EF, and thus under this
displacement the effect of the longitudinal compareéms exhausted. In a completely
analogous way, the momeld; (torsion moment) acts merely along the longitudinas axi
as a rotation that is directly proportional to the moimél, and lengthl, inversely
proportional to the shear modulGs and is to be set equal to a cross-sectional magnitude
J (which is77d"/32, for a circle). One thus has:

I I
Ug=% —, Us=S—. 20
6= EF 3 SGGJ (20)
We now consider, at the same time, the effect offéhee Y and the momeniy,
which both provoke a bend of the rod alongxfaxis (Fig. 5). The bending moment at a
distancez from the left-hand end &l — (| — 2 Y, and ifJ, refers to the moment of inertia
then the bending equations read, with the condityons/ = 0 forz = 0 imposed on its
integrals:

z v v z
ELY =—-M+(-2Y, ELY =—zl\/lx+z(l —EJY, Eny:—?Mx‘*‘ ?(I ——jY,

If one insertz =1 on the right thely goes tor andy’ goes to —%, such that:

2 3 3
§X=I—(MX—|—YJ, vV=- | M, + | Y, v+|—79X: |
EJ, 2 2EJ, 3EJ, 2 12EJ,

If one compares this result with the connecticat thas presented above betwéhn
and % , Us andv, S andY, S andMy then one sees that:

| E
U= — , Us=
! = °T12E],

S (21)

appear, in addition to (20), as further conditimetween forces and displacements. In
precisely the same way, one ultimately finds byneiréng the bending around tlyeaxis:

| 2
Ur=—S;, Us= . 22
>7Eg, 3 *= ey, (22)
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Eqg. (20), (21), (22) deliver the complete connection betwée force moto& and
the motorsl of the relative displacement of the rod ends. lintedduce a motor dyadic
K with the component schema:

I— 0O O 0 0 0
EJ,
0 I— 0 0 0 0
EJ,
0 0 é 0 0 0
3 (23)
0 0 0
12EJy
|3
0 0
12EJ,
0 0O O 0 0 I—
EF
then we can write:
AU=s3-4'=K 05, (24)

and say:

The relative displacement of the ends of the elastic rod is thaugtr of a motor
dyadic that is determined by the rod constants whose schema is répdesethe chosen
reference system §923) with the motor of the rod force.

One sees that the “dyadic of rod elasticity,” like inertia dyadic that was treated in
11.10, is of completely symmetric type. The reference esysthat we chose, which
recommends itself as the only uniquely-distinguished oo the outset, stands out as
the principal cross for the dyadic. From the rulest twere given 16 and7, one can,
starting from one’s knowledge of the six quantities dygtear in (23) as the component
schema, also present them for an arbitrary referesystem, and thus give a
representation of the connection between arbitraryplatiements and the load
components.

5. Theeélastic rod-work, equilibrium conditions. We now consider a general “rod-
work” (generalization of “framework”), which we sumnmgias follows: A number of
straight elastic rods of the type that was treatedettian 4, which are stressed by
isolated forces and moments at arbitrary points, avpled to each other at their ends
into some arrangement by rigid bodies, which call “nddalies” and which are likewise
subject to external forces and moments (Fig. 6). F@s#ke of unity, we would like to
count any force-free piece of a rod as a special rddrank of the point of application of
a force as a nodal body (which is, in reality, nontexiy that accepts the external force
and is rigidly coupled with the two partial rod ends timeet there; i.e., it takes part in
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the displacement and twisting of the continuously-cot@teends. By this enumeration,
the rod-work consists &frods anck-nodal bodies, and we let the external forces, which

now merely act at the nodes, be givenkbsnotors*, P2 ..., B We denote the

displacements that the individual nodal bodies expeeiess a result of the various
applied forces by, $12, ..., &*. We would now like to not enumerate the individual
rods, but characterize them by the two indices thatijothe nodes at their ends. (Rods
that either flow into an actual node at one end orycarload can be excluded from
consideration.) Let the rod-force that is conceivéd® acting on the rod that runs
between the nodesand « from the node to the other b&’, and accordinghs"” = -

&Y. Finally, we call the displacement that the endhaf tod at the nodeexperiences
B'* so the displacement of the second end of the sacheust be”'. Betweens'™

and the differenc®“ - 8" there exists a relation like the one that wast@mitiown in
4:
%IK_ %KI — KIK %IK. (25)

In this, K’ means a motor dyadic of the form (23), where the amtst, E, J,, ... are
thought of as being set equal to the values that correspaihe rod/x. One naturally
hasKk’® =K", and the exchange of the two indices in (25) only raierthe fact that the
rod force motor changes sign under this exchange.

We need a precise explanation for the way that ddeends are connected to their
nodal bodies. If we generally assume that the coiumeds a rigid one then the
possibility of relative displacements (or twists)tbé rods that meet at a node (as they
would be for a framework) is eliminated. In order to enpass the most general case,
we assume that each rod-end is elastically bound widhmdtdal bodies; i.e., a linear
relation exists between the rod-foré€“ and the relative displaceme®’ - 3/, where

31 denotes the displacement motor of tenodal body. For example, it might be the

case that for a certain coordinate cross whoseirgigobint lies on a rod end the first
three (rotational) components @8'“ — s’ are proportional to the three moment

components of&™, and the last three are the resultant componentsall bf the

proportionality coefficients are null then we have tdase of a rigid coupling; conversely,
one obtains loose coupling by increasing the individualficosdts by passing to the
limit for the components in question. The ideal framdwis characterized by the
assumption that the coupling is rigid with respect to dgrinents and completely loose
with respect to rotations. In general, we must assulnea relation in the form:

%IK_ Lll :AIK GIK, (26)

in which A denotes a motor dyadic. The aforementioned assumpfi@n simple
proportionality would correspond to the following schenraNG:
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00 0B 00O
0000 O
0000 08

When thea are all zero and thg take on excessively high values, we have the
limiting case of nodes in an ideal framework; if allthé a and 5 are zero then one is
dealing with the case of the stiff coupling, as one bas fsupporting structure. In what
follows, we will only assume that the schemandfis symmetric, which is certainly true
for the case (27) in question.

It should be expressly remarked here that the actual mpdal&ls or joints must be
regarded as “nodal bodies;” however, that is also #se evhen such things are absent
and the “nodal bodies: can be replaced by a purely iéelgeometrically defined axis
cross. If we assume that “nodal body” is presenhénrhiddle of an elastic rod, simply
because a notion of force exists there, this does nat thasithere is a coordinate cross
by which the two partial rods are rigidly coupled. Ifls@cnode has the indexwhile
the two partial rods extend to the nodesd « then the following two equations replace
(26):

B 51'= 0, B - =0, (26)

We now go on to specifying the conditions for equilibrivmour general elastic rod-
work. The Ansatz is no more tedious or protracted thanfor an ideal framework in
the ordinary notation.

First, one must have equilibrium at every node; ifee,sum of the rod-form motors
that start from a nodal body must be equal to the naftexternal forces that act upon
this node:

D & =g (28)

The summation of naturally extended oversaWhose incidence with corresponds
to an actual rod of the framework being present. If bimk$ of eq. (28) as being written
down for all nodes and added then every rod force appeatisedeft-hand side twice,
and in fact, with opposite signs, such that one ofthie condition:

> P =0, (29)

which shows that thg’ might not perhaps be written down independently oh edher.

Eqg. (28), which gives the equilibrium conditions in thetieted sense, succeeds in
determining the rod forces only in very rare cases (Wzcadled static determinacy). In
general, one must add the elastic relations that folom (25) and (26). If one subtracts
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the analogously defined equation for the opposite indembemation from (26) then,
since& = - &*, what comes about is:

%IK_ %KI — u/ _uK_I_ (AIK +AKI) GIK,
and when one combines this with (25):
ul _uK - (KIK_AIK_AKI) — GIK — MIK GIK- (30)

Here,M has been used as an abbreviation for the sum of tiwem dyadics that is
inside the parentheses.

There ares such equations (30) in all, one for each rod, just as #nekeequilibrium
conditions (28), namely, one for each nodal body. Bothups of equations collectively
solve the problem when perhaps$il up to3’ andst’ (e.g.,41* = 0), as well: thé + s

motor equations then serve to determinestb@known rod force motor&’*, thek — 1
unknown displacement motot§?, 13, ..., $1¥ and the support reactid’. However, in

order to also include the case of arbitrary support tondi as well as elastically
flexible supports, we add the following equation for each nods. (28) and (30):

AI Lll + BI ml = 6, (31)

in whichA’, B, and& shall denote the given coefficient system (any twadibs and a
motor). A vanishes for every node at which the external ig&ds given, andB can
perhaps be the identity dyadic, such that eq. (31) readslysid’ = &. |If sl is
prescribed, in stead @B, then this means th& vanishes and\ is set to the identity
dyadic. Finally, if one has an elastically flexilslepport ther& = 0, and from (31), one
will have a linear, homogeneous relation betwg&eand®}3. Naturally, cases in which
the individual components ai’ and3’ are given (unknown, resp.) are included in (31)

immediately.
In summary, we can then say that th& §2s) motors of the rod force&’, the

displacementdl’, and the external loadB’ are coupled together by the followingk(2
) linear motor equations:

(@ k  equilibrium conditions ZQS’K =’ for each node,
(b) s elasticity equations M- =M"*&"™ for each rod,
() k external data A" s'+B P = for each node.

This Ansatz subsumes every imaginable rod-work that bmarconstructed from
straight rods, the continuous beams with arbitrary supomtl isolated loads, the ideal
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framework in space and in the plane with arbitrary statieterminacy, frameworks with
stiff or elastically flexible joints, frame supportingriectures of any sort, as well as
arbitrary spatial supports when one considers the toodicods.

6. Deformation work. reciprocity of displacements. From the Ansatza), (b), (c),
one can effortlessly derive a series of general saattsnthrough which, the known
theorems of the theory of frames first take on ttreie place and illumination. Next, eq.
(a) can be written in the form of the “principle of widl displacements.” Namely, if one
denotes any motors BB, B2 ..., B* which we would like to regard as arbitrary
displacements of the nodal bodies, then scalar phattion of thek equationsg) by the
B’ in question and the subsequent addition of the righttsades delivers that work
done by this displacement of the rod-work by the extdoraks, namely, the sum of all
productsB’ B’ . On the left-hand side, there is a double sum of pred&¢t B’

which is taken over all of the number combinatieng that are realized by rods. Any
rod-force appears twice in it, and indeed with vanishing sigoe multiplied by thes

of the first endpoint and then with tB®& of the second endpoint. Thus, one can write for
(a):
ZGIK (%/ _%K) — zm/%/ (32)

(1,x) /

in which the summation symbols in parentheses irtidy every value combinatian
is to be included just once (thus, e.g., only withk). Eq. (32) says:

For any infinitely small displacement of the rod-work the work donthéyapplied
forces equals the elastic work (deformation work) done by the rodsforce

The fact thatd might also coincide with the actual displacemeastelf-explanatory; for

that reason, the smallness of Bxenust be assumed, since otherwise the left-hamdadid
(32) could not be spoken of as the deformation work

An entirely simple step now leads us to the mesiegal form of Maxwell’'s theorem
on the “reciprocity of displacements.” One |83$ denote those nodal displacements that

correspond to an equilibrium state with the extelowds’ and the rod forceT’*. The

connection between these quantities will then patg with eq.d) and ), of which, we
write down the first one in the form that is pretysanalogous to (32), with the use of the
symbolsl for the arbitrary displacements:

z‘le(ul_uK) — ZQIL[I , %1_%K:MIK‘ZIK. (33)
(1,4) /

If one inserts the second of these equations2ht{n one obtains:

z GIK (M IK‘zIK) - zm/%/ ,

(1K)
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and when one introduces the value frdanigto the first of eq. (33):

z ‘I/K (MIKGIK) - ZQIL[I .

(1,x) /

From theorem Il (49), the expressions on theHaftd side are equal when the dyadic
M is assumed to be symmetric. In this case, onelibs:

DPB =D Qs (34)
in words: I

If I3 and £ are two equilibrium systems of external loads amdand 25 are the
displacements of the nodes that they provoke then the workj¥hdbes under the
displacemen®3 equals the work done b under the displacement.

This is the generalized Maxwell theorem that oae employ in a well-known way
for the calculation of the displacemenatsby a special choice a@}. As one sees, its true

source is in the symmetry of the dyadit that links the rod forces with the relative
displacements of the nodes. It is remarkable #watC) was not employed in the
derivation of (34), so the support conditions haeeinfluence on the validity of (34);
naturally, the support reactions are includeg@irand£), which then drop out only when

they exert no work.

Finally, in order arrive at the analogue of Cdgtimp’s theorem, we would like to
specialize the support conditions that enter icjospmewhat. We assume that the 6
scalar equations into which)(resolves might be arranged such that for a gahem the
coefficients of the displacements vanish, whileha remaining one the coefficients of
the force components and the right-hand sides ame, such that perhaps the former
equations determinekém force components, while the latter ones make @atement
equal to zero for the remainimg components. In other words, at tflenode, let either
all six force components be given or let one ofrthee unknown, but the let the relevant
displacement components be zero. We then defia€rdduced system of equations
(@),” when we omit thosean of the & component equations that correspond to the
unknown forces and vanishing displacements. Waaioban expression for the
deformation work from (32) by the substitution bj:(

=1y PV =1 &M S". (35)
/ (1,4)

From what we accomplished in10Q, the right-hand side is a quadratic form in tke 6
components of the rod force motors. We have nawvet the theorem:
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The rod forcesS that are provoked by the external log§isare determined by the

fact that they make the deformation work A a minimum with the redysésim of eqa)
for auxiliary conditions.

In order to see this, we must only convince ourselveseiipap) can be regarded as
the conditions for an extremum Afin the given sense.
How is one to solve the extremum problem that was steg2sOne must add to the

expressiorA, the &-m components o{ZG’” —23’} that appear in the reduced system

(@), when multiplied by undetermined factofs, Az, ..., Aek-m, and then set the
derivatives of each of thes@omponents of th&'* equal to zero. Thes@&quations thus
defined, together with the reduced systa) (hen determine th& and A. For the
multipliers A, one now chooses a better notation with double indgass A, A;, ..., A
where each upper or lower index might coincide with ¢beresponding one in the
component of3’. One now sees immediately that the differentiatbthe additional
term, for example, with respect to the compor&ht delivers precisely the expression
AY = AZ; " % then enters into the third component equatio o™ = B* with a

positive sign and in the third component equatiofl @2 =3 with a negative sign.

The derivative ofA in (35) with respect t&" ?is, however, from the remark in 10,
equal to the third component of the prodMtt? OS2 Correspondingly, setting the

derivative with respect t6&" 2 equal to zero leads to the equation:
Ay = A+ M08 =0, (36)

and completely corresponding equations arises by ditiatem with respect to the
remaining components. However, one sees that tresquations are nothing but the

component decomposition db)(when eacm; is replaced with-A, . If one therefore

eliminates the I6-m multipliers from the 6 eq. (36) and the reduced systentben what
remain to be determined for the 6omponentsS are precisely the same equations that
arise from eliminating the displacements froa, (b), (c). With that, the proof of the
general theorem on the minimum deformation work ispeta.

Here, we shall not go further into the issue of how arrives at the analogues of the
other forms of Castigliano’s theorem and further gdizat@ons of it.

7. Action and reaction in flowing fluids. We consider a rigid bodyA( in Fig. 7)
whose instantaneous velocity is given by the masorand which is in contact with a
flowing — i.e., moving — fluid in whatever way. Nothing Wie assumed about the
mechanical nature of the fluid — e.qg., its viscositg, eWWe seek an expression for the
force K that the fluid exerts on the rigid body or a paracuydieceO of its outer surface.

This leads us to the application of Newton’s equatothe fluid — while observing the
reaction principle for the internal stresses — andnemgdized Gauss integral conversion.
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In general, the outer surface pigaeavill not bound any closed region of space, in its
own right. We then extend it by a surfdeéhat runs through all of the fluid, and assume
thatF, together withO, bounds a volum¥ that is completely filled with a fluid that has a
continuous velocity distribution, and in whose interioedherefore also finds no other
fixed bodies or free surfaces. All of the spatiakgrals that appear in the sequel are
taken over this volum¥ and all boundary surface integrals, offer Now, letm denote

the specific mass of the fluid — which is assumed emtst and lef3 denote the total
external forces (gravity) that act on all particles/in Furthermore, let be the velocity
vector at an arbitrary point & and letp be the stress vector at a point of the bounéary
When we “attach’ andp to the points that they belong to, we make rodsedttors-

and thus, special motorsand then writew (p, resp.) for them. The moterthus has the
two vector componentsandy X v, if r denotes the vector from the reference point to the
point with the velocity. Newton’s equation, when applied to all mass paditi®/ and
integrated ove¥, immediately delivers:

A=P+ jde jy—dv (37)

The expressions &, B, and] p dF are then the forces that the accelerations of tlie fl

particles are attributed to. We shall now treat a emsiwn of the last expression on the
right, by which one primarily arrives at an examinatad the differential processes.
Any fluid point p possesses a velocityrelative to the rigid body, which differs from

v by the guiding velocity vecto®, . The vector lines ot define the ‘“relative

streamlines,” of which it is certain that they do gotthrough the bod and the surface
O. One letdsrefer to the element of length of such a streamlind,dnto the cross-
section of a stream tube that they define then ititeeom the continuity condition that
c df is constant along the tube and equal to the @< Now, since the following
differentiation rule is valid:

d_o + 0

dt ot o0s

when one regards a variable as a function of time asitiggorelative to the bods, and
on the other hand, one can writ¥ = df (s one then obtains for the integral in (37):

J.,u dv = J.,u dv+jyc—d<— y@dv yj(F)udQ (37)

The last integral is taken over the entire surfacsodQ is taken to be positive wherever
the fluid leaves it and negative wherever it ent@se can correspondingly think Bfas
divided into two part$; andF,, such that any relative streamline begins at a poiRt of
and ends at a point i, and as long as one establishes that the absoluteofadi@@is
always taken, one can form the expres$ivr 2l in question, where:
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QizyL@udQ, A=y vdQ. (38)

(R

These two quantities are the ones that one referast@ rule, as the “reaction” and
“action” of the flowing water; they are motors whosesultant (moment, resp.)
components one obtains when one sdtsplace ofv in one case under the integral sign

andr x v, in the other. It is expressly emphasized thaand( are defined by the
absolutevelocity v, although theelativeflux dQ = ¢ df must then be taken.
The value (37) fork now reduces to:

A=P +]pdF+A R, (39)

or the dynamic effect of the flow will be given by théfelience “action minus reaction”
when the first integral in the right in (3Aanishes, thus certainly when for each fixed
point, the absolute velocity relative toA is unchanging when it is evaluated from rest
space. For example, this is the case for a rocket @igs long as one makes sure that
the absolute exhaust velocity of the gas remains autnsda the enclosing surfaée
what will serve the purpose most simply here is thegécross the exhaust opening, and
F coincides with; .

If the rocket does not move in an acceleration-ivag then, as a rule, the assumption
of constant absolute velocity will not be fulfillebut rather, the one that the relative

velocity ¢ does not change at a point that is fixedhin For such cases, one must bring
(37) into another form. If we denote the guiding veloeityhat point byf, which is then

a motor with the vector componersg andy x &, then the first integral on the right in
(837) decomposes into two of them:

of of

—dV + | y—cdV.
Jugravelug

The first one gives the derivative with respect to time the impulse that the fluid

possesses when it moves with the rigid body. If wietleis J then we have, in place of

(39):

5<€:*]3+h::dF+(fj—‘tJ +9A —9R, (40)

when the relative — but not the absolute — velocityaganary in the moving body.

As we already mentioned, it is true for (39), as waddl (40), that the required
invariability of v (¢, resp.) is to be assessed in rest space. If theAddgs not execute
a pure translational motion anal or ¢ remains stationary relative t& then the

assumption of (39) ((40), resp.) is not fulfilled. Eq. (88) (40) are then not true for a
turbine or a propeller, in general, but only those ofrteealar component equations, for
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which the components of or ¢ in question are also stationary when seen from pastes

If one sets using (4):
% = Q+ (Qj X U),
ot ot

then one sees that when only the first part on gl rianishes, an expression:
-Gxulodv

must appear in (39), of which, one only lets the resulcmmponent in a boundary
integral vary. However, since, for a motor product, ohevhose factors i85, the

resultant vector and the moment vector for a pointhenaxis of& that is chosen to be
the reference point are both perpendicular to this axajows that:

For relatively stationaryv (c, resp.), the first scalar resultant and first moment

component is employed in eq. (39) ((40), resp.) when the 1-axis coinaitheshe
instantaneous screw axis of A.

In fact, for turbines and propellers, only the axial thargl the moment around the
rotational axis can be calculated from the theorewctbn and reaction. It is not futile
to observe that in the example of a propeller whas&arce is not in the axis direction
eq. (39) ((40), resp.) must also be corrected in this regard.

The influence of internal viscosity or external moti@sistance is not specifically
knowable by our Ansatz. However, it might be the case-tiperhaps, for a given entry
velocity — the end velocity will be different, and furthermqrevill not be perpendicular

to dF, in general.

Theoretical hydromechanics does not care to make ndte déditegoing formulas and
the concepts of “action” and “reaction,” so in thehmical literature the derivation is
mostly full of ambiguities and not so seldon+ flaws, as well. However, when the
mechanical foundations are clarified completely, the re¢palerivation of the moment
components of (39) and (40), in particular, also brings widome complications that
will be lessened by the use of the concept of motoristegipropriate to the probletn

8. Inertia increase of a rigid body in an ideal fluid. We would now like to
specialize the Ansatz (37) of the foregoing section Herdase in which the fluid is an
ideal one and the motion is vortex-free and as atresitihout circulation. Moreover, the
boundary surfac& will be assumed to be a level surface of the potegtialich that one
can assume = 0 alongF, with no further restrictions in generality (S&and9). The
potentialg must be determined at all pointsAby this condition and the further one that

) | gave a complete, but somewhat more general, barsted theorem of action and reaction in § 9 of
my Habilitationsschrift: “Theorie der Wasserréader,idzg, 1908, and also in Zeitschr. f. Math. u. Phys.,
57, 1908, pp. 1 to 120. The special case of a guiding subfaterest was treated briefly by U. Cisotti,
Rendic. Lombard. Ist., ser. Il, v. 50, pp. 502 to 515.
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the normal derivativ@g / on must coincide with the normal component of the vejocit
&, of A onO. If we let 9t denote the unit vector in the normal direction tlsat i

“attached” to the poinp of O then this velocity component has the value of théasca
product® [)1; from 1.3, since the moment componentifrelative top vanishes, one

has® Dt = &, [D1.
We now make the Ansatz for the potenfal

¢ =3 [ =G Uy + GoUs + G3Ug + G4Uq + GsU» + GgU3 (41)

and subject the six scalar functidigo the following conditions:
1. TheU must individually satisfy the potential equatibd = 0.
2. Each of th&J vanish alond-.
3. The derivative condition:

99 M 5 oy
on on

must be satisfied alon@, which is certainly the case when the normal derieatof the
six U coincide with the six scalar components ‘¥f in sequence. We have thus

introduced a new type of “motor potentiaf that will be determined by the following
equations in what follows:

AsL=0 inV, 31 =0 alongF; — =91. (42)

Naturally, $f still depends upon time, insofar as the positiorDadind possibly thaF

changes in time.

With the help of the motor potential, one can now ghesintegral in (37) a definite
characteristic form in a simple manner. It is kndhait the velocity vectar at any point
of V equals grad@. If we denote the gradients as a mddoad ¢ that is “attached” to its
position then we have = Grad ¢. One now has the extended Gaussian integral

formula:
[Grad ¢ mv=] g do, (43)

if the integral on the right-hand side is taken oVer éntire boundary df. The first
three scalar components of (43) are then immediateblgl9 Gaussian transformation
formulas and one treats the three other ones accaalihg template:

I(y%‘z%j dv= j(a(wﬁ) _devzj #ly cosO, 2) —z coset, y)] dO.
0z 0y 0z ay
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If we call 7' the total impulseof the fluid mass that is enclosed withif whose
derivative with respect tbappears in the right in (37), then we have, from (4d)(48):

5 =l o V=l Grad ¢ v = ] (4 08) 9 do,

in which the last integral can be taken over fDstsincesl vanishes along from the

second of eq. (42). We now apply the dynamic convelsi(iti) to the last integrands:
I (LU O08) = (OT; L) &. One can take the mote¥ out of the integration, and one gets:

3':U,u(m;ﬂ)dOJ6:T6 with T':fy(m;ﬂ)dO:ju(%;ujdo, (44)

while using the last of eq. (42). The impulse matbthe fluid proves to be the product
of a motor dyadicl’ with the velocity motor® of the bodyA, which determines the

motion of the fluid. The elements of the dyadie frund immediately from Il (IR

U, do, k=12, ..,6. (49
on

T, = [y,

With regard to the first of eq. (42), the Greemiaia:

j(U, ou, _Ukﬁjdo =] (U,AU,-U,AU,)dV=0
on on

yields the symmetry of the nine “inertia dyadids”
If the rigid bodyA possesses an inerfiaand moves under the influence of a foRe

that originates in the flow and other forces witle resultant]3’ then one can write its
equation of motion:

L o) =g + 5,
dt
when one brings the last termg@finto the left-hand side, into the form:

%[(T+T’)®]:m+m'+fpdﬁ (45)

The “dynamical influence” of the fluid flow on thdagid body thus asserts itself
completely as an apparent “increase in inertiag’ itidividual supplementary terms that
are added to the elements of the original ineryiade are given by (44 SinceT is
indeed symmetric, but generally does not posse&sstith more specialized form of the
inertia dyadic, one cannot maintain the notion of'iaertia increase” in full detail. For
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example, there is generally no numbp@rthat can be added to, etc. We shall not go
further into the relations the come about in regattiégorincipal axes and similar things.

The behavior of motor algebra likewise gives a vergpée representation of the
kinetic energ\E' of the fluid that is contained M. From Gauss’s law, one has:

' 0
E = [ uaradp Fav = 3uf 9L do.
If one substitutes the value gffrom (41) then one obtains:
2F' =jy(@5 DJ)(QS ﬂfﬁjdo:jyu(es G‘EJ do
on on

5 (46)
:es[jy(u;—”jes WO=& [,
on

i.e., thevis vivaof the fluid is expressed by its impulSeand the velocity moto®, like

that of a rigid body. In other words: One canoagsnploy the concept of “inertia
increase” for the kinetic energy of the system tisatomposed of the rigid body and
fluid.

The total energy of the system is equal to thad afjid body that moves with the
velocity® and possesses the inertia dyadlie T'.

The eq. (45) is ordinarily applied to the motioharigid body in an infinitely
extended fluid. The boundary surfage= 0 then lies completely at infinity, and one
infers from the general theorems of potential thgbatp = O the integral on the right in

(45) may thus be omitted. The conceptualizatiothefequations of motion, as well as
the computational derivation, will be simplifiedsestially by the notion of motdy.

9. Motion of an aircraft. Kinematically, an aircraft can be regarded agid body;
if its individual parts are more or less elastigdlexible then this flexibility affects the
distribution of velocity and acceleration only vestightly. We refrain from considering
the relative motion of the control units, such laes propeller and motor. In the equation
of motion (1), which contains the velocity mo#r and the inertia dyadi€ on the left-

hand side, the following forces enter on the righite weight&, the propeller thrusjs,
and the aerodynamic forces, which act on the @ffecomponents (minuj), such as

the airfoil, control surfaces, etc. Of the aeraayic forces, we may assume that their
magnitudes and relative positions depend upon th@welocity motom, which is also

assessed relative to the aircraft. In other woilldge six components of the resultant

) The presentation in the German edition of LakdromechanikLeipzig, 1907, pp. 11%&t seq is
completely confused. As long as one is dealing withsalated rigid body, appealing to the Lagrangian
equations is entirely unfounded.
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aerodynamic force are functions of the six componeh¢s, when everything is referred

to an axis system that is fixed in the aircraft. If then write down the equation in the
form (11) then we have an Ansatz in the form of:

T%?+®awﬂ:6+m+ﬁ, (47)

which — as far as it relates to the left-hand sidesandincludes the six componentsy,
W, aw, &), a of & and their derivatives with respect to time as the béiander a
decomposition in a co-moving coordinate system only. Weregard the propeller
thrust®J3 as given by its relative position and magnitude; howeaherweightS brings a
complication along with it that is given immediat&igher relative to the aircraft or to
rest space.& is constant in direction relative to rest space, hatline of action will
follow the moving body. Now, since, in general, frofih ¢ne has:

ds _ d's

=2+ (6 x6),
at a0

then one has the first vector component from this:

O:%?+@XG) (48)

If one imagines that the vecterfrom the reference point to the center of mass has
unchanging components in our reference system, sucthtgh@mponents 4 to 6 &

are given bySy = v x & when the first three are given then one sees tfwatrtotor

equation (47), together with the vector equation (48), deficermplete system of 9
differential equations of first order for the 6 composenit® and the 3 components of

&. By scalar multiplication of (48) bg, one easily finds the relatiadi(G?) / dt = 0,

which is naturally knowna priori, and which gives the integr&’ + S+ $ = const.,
such that one recognizes the integration problem as beengfeeighth order.

The so-called “gyroscopic effect” in the rotating tgaof the aircraft may also be
easily considered to a high degree of approximation. ®heefon the right in (47)
actually acts on the entire system that is composélaecdircraft itself and the propeller.
Therefore, the impulse increment for both rigid bodiestrals® appear on the left-hand
side. As we may assume, the rotating parts have anxamately unchanging inertia
dyadicT' relative to the aircraft (this is true precisely ordy pure rotating bodies), and
an unchanging relative velocit§'. The first part of the impulsE (& + &') has already

been considered. When one calculdtesccordingly, the second one gives an increment
J' to the impulse, namely, the product of the rotationkloiy and the moment of inertia

of the rotating parts, as a moment vector in thectloe of the propeller axis. One then



von Mises — Applications of motor algebra. 26

adds® x J' on the left-hand side of (47), which only affects themant components;
the expressiory’ x & on the right-hand side, which comes with the impredsezk,

represents the “gyroscopic effect” in the usual tertomn
If we choose the reference system to be the paheixes that goes through the center
of mass of the aircraft then the component equatio(é¢7@fread:

m(u+@,w-m,9 = $+ P+ K (49)
T, +(T,-T)ww,+wJ-~w =R+ K,
Naturally, in this Ps, K4, ... are the components of the propeller thrust and the

aerodynamic forces. The three components of (48)hare added to the six equations
(49):
0=8+WS-uS=S +uS-uS=$ +uS-4S. (50)

A stationary motion under which all derivatives witbspect to time vanish is
possible as a result of (48) only wh&ns vertical, so the motion consists of an arbitrary
translation and a rotation around a vertical axis.wéf assume that the vertical is a
principal axis of inertia (and neglect the gyroscopic atfief the propeller) then (49)
shows that the forces must possess a horizontdtaesthat goes through the center of
mass, is perpendicular to the center of mass veaaitg is equal to the product of this
velocity with the mass and the rotational velocitynder a pure translation, the forces
naturally define an equilibrium system. Singe depends upon the velocities, it is

imperative to know if there are solutions fgwv, w, S, S, S that satisfy the equations:
S+P+KR=0, (51)

along withw= 0, and how they behave. The ratios of$teeetermine the position of the
aircraft with respect to the vertical, while thev, w are the magnitudes and positions of
the translation vector relative to the aircratft.

If we assume thas’ is a possible stationary velocity sta®,is the associated value
of the aerodynamics forces, etc., and the actual motight be a small deviation from
stationary, such that i®6 = &° + &', the higher powers o' can be neglected. The

system of linear differential equations #&f and&' is:

Td—6+05’><(T05°) +&'X(TH)=&"+P'+ K1,

dt
46 (52)
E+(Q§°><6’)+(Q§'><6°)=O.

In this, &' is a linear homogeneous function ®f, so it will be represented by a motor
dyadic:
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A =MD8" (52)

Egs. (52) and (8% in which the elements &l are considered to be given constants that
possibly depend upo®?, determine the small oscillations around the statjostate of

motion; the component equations are read off immediatlg would like to write them
down explicitly for the following special case: The &aft has a symmetry plane that is
vertical to the stationary motion; let this be a puamslation with the componeni§ w’,
andv’ = 0 if the symmetry plane is thxzplane. The system of equations:

m(U+wa)= $+ K, o' - dw)= St K M'w °wf)= ;8 ;
T =K, Td =K Td, =K (53)
S =-5d, $=- g4 - 8, & 8

then follows from (52), or also from (49) and (50). Thespree of a symmetry plane, in
which the stationary velocity vector also falls, haswever, a peculiarity foR' (M,

resp.) in (52) as a consequence. Namely, if the addltimotion consists of only a

rotation around an axis that is perpendicular to the symrpi&ane (which can also lie at
infinity) then the additional aerodynamic force certaihas a resultant in the plane or
defines a force-couple that lies in the plane. Conversethe additional motion is a

rotation around an axis that lies in the symmetry plamm tthe additional force is

perpendicular to the plane. Analytically expresséfl; K;, K; depend upon only’, w,

«,, andK;, K,;, K; depend upon only', «, «,. One sees that egs. (53) divide into

two mutually independent groups. The one, which subsurneedirt, third, fifth,
seventh, and ninth equation includes only the variableg, «j, S, S;, while only the

variablesVv, o, o), S, appear in the four remaining equations. Recalling the

aforementioned general integral, each group of equatidimeden integration problem
of fourth order. As is known in stability theory, odistinguishes the two parts of the
total problem as the theory of longitudinal and transvessdlations').

10. The gpecial case of three dimensions. Application to statics. The
consideration of the decomposition of a six-dimensionation problem into two three-
dimensional ones that was just presented is closedyecklto the examination of the
special case that arises when one rigorously examidesdinal components of the six
motor components and thus comes down to lower-dimensitmn&fwges in this way.
We would like to make some brief remarks about them, tand concern ourselves
chiefly with the questions of the statics of rigid e

It is first clear that one comes to ordinary vectguaions by examining the fourth
through the sixth scalar components of any motor. Rtwrstandpoint of statics, this
means the problem of the equilibrium of a material poiit precisely this way, the

) The equations are treated without any use of the comfemiotor in closer detail regarding the
connection between aerodynamic forces and velocitymn reference “Dynamische Probleme der
Maschinenlehre,” Enzykl. d. math. Wiss., v. IV, artit® Cf., v. IV, sub-volum@&, pp. 343¢et seq.
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conservation of the fourth through sixth components algelels the statics of bodies
when one of the points is fixed. Here, however, tlesetwo other three-dimensional
special cases of greater interest, namely: the ex#éionnaf a (scalar) resultant
component and the two other moment components, and celweta/o resultant
components and the third moment component. In thecrst, when we preserve, say,
A1, Ao, andAg for any motorsd, statically speaking, we have a plane force systeforé®

us, and indeed one with tlg-plane as its force planéd;, A; are the two components of
the force andds is the moment of the force referred to a point efggtlane itself; in planar
statics, one has nothing to do with anything else exapthfs moment. The second
case, which is, in a certain sense, dual to thedmst is the preservation 8§, A4, As .

In statics, it refers to a system of parallel fortlest one can also regard as a system of
listed (kotierter) points in the plane or ones that emdowed with massesA; is the
magnitude of the force (in thedirection) or the magnitude of the mass distributibnso
piercing point with thexy-plane,A, and As are the components of the moment of the
force (static moment of the mass, resp.) when redeio a point of the plane.

It is now interesting to see that both special cadesotors admit an invertible
single-value map to the vectors of three-dimensionakep in the sense, that the
problems of planar statics and the parallel staticsiah planes go to point statics. For
the case of the planar force systems, | have theedaout the map on a previous
occasion, with the objective of making the problemstafics for spatial force systems
accessible to a constructive treatment in a draftlaged). The connection between the
“planar” force A;, A;, As and a space vectol, A, A, will be mediated here by the

equations:
A= A, A=A, As=A, (54)

in which ¢ denotes a reduction line segment that has been cbhoserand for all. The
geometric relationship between the two structures is sgpdein Fig. 10. If we start
from the space vectara then the magnitude and direction of the planar force itha
mapped equals the projectiod of the vector onto the plane, while the line of actlois
displaced from the reference poothrough the distancetan ¢. The fact that the rules
of addition carry over under this map emerges immediftehg (54).

For the case of parallel systems of forces, a map wactors is already given in the
basics of the so-called barycentric calculus. Amzdily, the relation between the
“parallel force”As, A4, As, and the space vectady', A, A is represented by:

A =ch, A=A, A=-A, (55)

and the geometric relationship is suggested by Fig. 11. lagae starts with the space
vector oa then one obtains the position of the mass pointherline of action of the
parallel force when one cuta with a plane that is perpendicular to the directiothef
force and at a distaneefrom o, and chooses the magnitude of force or the massttebe
guotients ofoa by the distanc®a to the piercing point. The transformation formulas
(55) show immediately that the addition of the spaaore and that of parallel forces

1) “Graphische Statik raumlicher Kraftesysteme,” Zgitsf. Math. u. Phys., 64, 1917, pp. 209 to 232.
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correspond to each other. Since one can convenieniy smarycentric addition
problems constructively when one is dealing with justva feass points, Runge has
sometimes employed the map that was defined by (55) in tyd=ynvert problems in
spatial vector analysis to planar ones. However, dimeeonstructive methods are, by
no means, as well developed as in the case of plarag $ystems it is often useful to
carry out the transition from parallel systems tonpfasystems, as is defined by the
equations:
As=chA, As=ch, Cch=As. (56)

Geometrically, when one interprets the parallel feras point masses, this yields the
connection by a purely planar construction, as is suggestad. 12: Ifmis the position
of the mass point (piercing point or parallel force)ntlime obtains the magnitude and
directionoa of the mapped planar force when one assigns the amglse tangent equals
As : c to omand regards the line of actignas the antipolar ai relative to the circle
aroundo with radiusc, when one makesa equal toc and drops the perpendicularrta

at &. On the basis of this transition, any planar ceatanass determination will be
achieved by the construction of a force diagram and a fianipolygon.

These relations do not carry over to the problemisiredtics completely. Only the
planar motion of a disc defines a self-contained tkigeensional special case of general
kinetics (naturally, like the point motion and the ratatof a body around a fixed point).
Here, the velocity motor is a rotor with an axis tlsaperpendicular to the plane, so it
belongs to a parallel system, while impulse and foro¢ors fall into the plane. Any
problem of planar motion may be completely mapped toreetdimensional point
motion. However, things are different in the casetr@ motion of a body with a
symmetry plane that is yet to be addressed herde Welocity is a rotor that falls in this
plane then this yields an impulse that is perpendicoldh¢ plane; so far, the analogy
still works. However, if we now also assume that fbrce is likewise perpendicular to
the plane then impulse does not retain this property. p€h@rbation acts on the second
expression on the left-hand side of the equation of motiee motor product of two
mutually perpendicular rotors lies in the common notimadhe two axes, so it is coplanar
to each of the two factors, but parallel to none ofrithd-or the aircraft problem that was
treated in9, the anomaly lies in the fact that one was dealing amball oscillations such
that as a result of neglecting the terms of higheredsions the product of velocity and
impulse was not completely valid.



