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Motor algebra — a new tool for mechanics.

By R. v. MISES in Berlin %)
Translated by D. H. Delphenich

Anyone who is concerned with problems in mechanics today gstart from the
simplest place will scarcely avoid the convenient tdolector algebra. We only need to
go back a few decades from recent times to see thdefimtion of concepts and, above
all, the formulas of vector analysis were so foreign‘applied mathematicians” that
textbooks on mechanics dared to make use of it only weatgsuspicion, in sparse
amounts, and after long preparations. A similar toallshow be developed in what
follows that will not, however, | will say in advanceeplace the vector algebra or
presume to supersede it, but only extend a certain ofgeoblems. Thus, we will not,
by any means, treat any of the various forms in whichaameregard the essentials of
vector algebra. Whether one should employ the sysinobf the present-day vector
algebra, the Grassmann calculus of extensions, quaterrar matrix algebra in working
with directed quantities is a pointless dispute, to whichattention will be paid here.
The nucleus of “motor algebra,” as we would like to ¢thé new techniques that are
connected with a word that was introduced by E. Studyuad, moreover, in the fact
that one can advance the manner of thinking that leawl® the coordinates or
component calculations to the vectors by another stepainy problems of mechanics.
Just as it is the essential result of operating wébtars that all calculations remain
unaffected by the arbitrary choice of coordinate diogisj so can one, in many cases,
also freely make an arbitrary choice of the coordimatigin when one computes with
“motors.”

Since one arrives at problems in three-dimensionalespathe study of equilibrium
and motion, one knows that the composition of arbitfarges or velocities leads to a
guantity that is no longer a simple vector, or a “lomind” vector like a force with a
fixed line of action, but something much more general: gpéexof a force and a force-
pair, for which one employs different notations: Dym®arscrew, line or rod sum, central
axis, etc. In the second half of the™@entury, above all, the Englishman Sir Robert
Ball, undertook the elaboration of “screw theory” Imetgeometric direction and, in
Germany, Felix Klein has, with great vigor, exhibited theiiv® appeal, the elementary
character, and the great utility of Ball's developmenthe mechanics of rigid bodies.
The ground-breaking, but sadly much-too-little known, work o6tudy on the geometry

) The basic ideas of the present work were alreadyistence in the year 1912, and were distributed at
the time in a provisional version to a small cirefespecialists. In many talks and university lectsinse
then, | have also communicated the individual parts ofttitrery. The complete elaboration should be
dedicated to E. Study on his"8Birthday on 23 March 1922, although the final form has lietayed on
various other grounds. The essay might now be devotedrtly #stablishing the great fruitfulness of the,
unfortunately, much-too-little noticed “Geometrie demB@gnen,” by Study.
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of dynames represented a very meaningful advance beydhd)Banhich appeared in
1903, and, in part, summarized the previously published wotitk afithor into a large,
complete system of ideas, and encroached upon a reah@obfanical applications that is
still very difficult and remote, to this day. For wd,the elementary results of Study,
above all, the most important ones are the fact jhstt as the vector is determined by a
point-pair (initial and final point of the line segmerit)e dyname — or motor — can be
realized by a line-pair, and the fact that one can defifigeometric addition” of motors
on the basis of this geometric representation. |l stwa¥ go a step further from Study
and introduce, in complete analogy with the two de@n# of product in vector algebra,
a scalar and a motor product of two motors, which, asb&ilshown, both possess an
immediate and elementary meaning in mechanics. In this we obtain the most
important hand tool for arriving at the aforementioned gbaomplete independence of
the coordinate system. The type of calculation thased here was not included in the
work of Study, in which it was replaced by the symbolighecamplex “dual’ numbers,
which relate to our motor analysis in a manner thaimdas to the way that quaternions
relate to ordinary vector algebra.

So widely distributed today are the knowledge and appicatf the simplest vector
formulas that it is almost customary for one to galherevert to an earlier stage in the
utilization of vector analytic tools, namely, in thehaical literature. It is wrong to apply
the customary vector presentation to the mechanicalon®tiof force, velocity,
acceleration, etc., and then, however, to abandocotmpletely analogous advantage for
the advanced notions, such as moment of inertia, s$tats deformation, and similar
things, when it would contribute a logical extensiorany presentation and definition of
concepts. One might find a certain explanation fos state of affairs in the fact that
amongst the theoreticians in this domain, a much gretdes of disunity prevails than
amongst the practitioners of vector algebra, suchthigascarcely-substantial argument of
whether one should speak of “tensors,” “dyadics,”“matrices” will be practically
omitted, so the simple and, elevated beyond all debas&; weas will crystallize and be
appropriated for the practical use. With the new motgelah, it now also seems that its
full utility in mechanics first proves itself when oneretts one’s attention to the
structures of second order, such as the motor dyadin@bor tensor, motor matrix).
With hindsight of the aforementioned state of affainswhat follows | would not like to
assume acquaintance with the ordinary vectorial dyatfjebea, but employ the —
perhaps to many readers, welcome — opportunity of giving arelgnskimpy, but |
believe, intuitive and easily understood introductiom ititis domain, before | develop
the structures of second order in motor algebra in inatedinalogy to therf). The
motor dyadic and everything connected with it was not censitlby Study.

In all of its constructions, the present work subdivigiés three sectiony, of which
the first one, in connection with a brief hint of theown basic notions of vector analysis,
develops the simplest definitions of addition and mudtgilon of motors, and thus

) E. Study,Geometrie der Dynamenie Zusammensetzung von Kraften und verwendte Gegensténde
der Geometrie.Leipzig, Teubner, 1903.

3 As is well-known, the tensor (dydadic, resp.) algabes founded by W. Voigt and J. W. Gibbs.
However, G. Jaumann first established the role of thdidymncepts in all of physics in a decisive way.
Cf., perhaps, Archiv d. Mathem. u. Phys., Bd. 25, 1916, pm 32.t

% Due to space limitations, the third section first app@athe following volume.
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makes only fleeting contact with the meaning of the d&gims for the various problems
of mechanics. The second section, as we said, thegsba brief presentation of the
main points of the dyadic algebra — i.e., the explanafor the dyadic concepts in the
context of the ordinary three-dimensional vector aialyand then couples it with the
analogous developments in the domain of motor algeBmally, in the last section, a
series of examples of the possible applications of s concept definitions and
formulas will be suggested from general mechanics, the nigsaof rigid bodies,
structural mechanics, and hydraulics. | shall not @ntera somewhat outlying analogy
that exists between the motor, as a geometric struthates determined by six scalar
guantities, and the so-called “six-vectors” of relatithgory. The well-informed might
be satisfied with the fact that the motor appears,dertin sense, to be the six-vector of
real four-dimensional line geometry.

|. First-order motor algebra.

1. Vector; rod and wedge. If one finds the explanation at the summit of the
customary presentation of vector algebra that theovesta “directed quantity” then any
reasonable person must recognize that almost nothingoressed by this. The other
definition that one likewise frequently encounters, thatvector is a “triple of numbers”
is obviously too broad, since the number of men, womedh,caildren at a location is
certainly not a vector. In fact, one can give an amatig¢finition for a vector, as well as
a geometric one; we will be concerned with the armalytie in Il, but here we shall first
start with the geometric one.

If the positions of two pointa andb are given, and, in addition, one has established
which of them is the first one and which of them isosel then we would like to say: An
ordered point-pair has been given. In the notation,bessé represents an ordered point-
pair when one draws a line with an arrowhead from om& pm the other. The extent or
definition of the vector concept will then be achiev®d means of the following two
theorems:

a) Any ordered point-pair determines a vector.

b) All ordered point-pairs that go to each other under lgaraisplacement
determine the same vector.

From these theorems, one can immediately deduce dhatvectors will be
representable by point-pairs with one and the samergtgobinto and will then be
determined only by the position of the endpoint. The mithdbvectors is then, like the
points in space, a three-fold, and in the plane, afblb- If one take® to be the origin
of a Cartesian coordinate system then one can corthidehree coordinates of the end
point as the determining data of the vector, which aredals “components,” etc.,
However, one can also take the direction and magnitudeeo€onnecting line that is
common to all point pairs that represent the sameowexs its determining data. How
one further develops all of the theorems and formulagctor algebra on the basis of the
definition that was given here is not the purpose of arte here; we will come back to
one point or the other.

In the mechanics of rigid bodies, one learns of tbhacept of force, which is
determined by its direction, magnitude, and the positiatsdihe of action. One cares to
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call the force a “bound” or “line-bound” vector, but waong with Study, will more
briefly say that a force is a “rod.” The rod will defined in a similar way to the vector,
namely, by the theorems:

a) Any directed point-pair determines a rod.

b) All directed point-pairs that go to each other undsplacement along their
connecting lines determine the same rod.

One derives from this, with no further assumptionst #tlarods, except for certain
exceptions, can be represented by point-pairs whosengtgsbints lie in a fixed,
arbitrarily chosen plane (Fig. 1); only the rods that @aeallel to this plane are then
omitted. If one takes the plane to be xygplane of a Cartesian coordinate system then
one can regard the two coordinates of the starting jpoiitthe three coordinates of the
endpoint to be the determining data of the rod. The mldnifbrods in space is then a
five-fold (this numbering will not be impaired by thedsothat are parallel to the plane);
the manifold of all rods that lie in a plane proves ¢cab

three-fold by the same way of looking at things. b

However, an essential difference between the rodtend d
vector lies in the fact that one cannot give five ,
determining data here with the same applicability as the b’a d

three components of vectors. The aforementioned five
coordinates obviously do not give us that, and when one
takes, say, the distancb and then looks for four
guantities that determine the position of a line (coneple
with a sense of direction) in space, one then has only /
shifted the complications into the choice of suitdlre .
coordinates. The difficulty is based in the nature of Figure 1
things and also finds its expression in the fact thextetiis no sort of addition for rods, as
there is for vectors; we will come back to this later

Study juxtaposed the concept of rod with one that was wudl in the sense of
geometry, that of “wedge,” which is indeed of only theasdtinterest, but due to its
intuitive and elementary character, it will be men&éd here. Whenever two intersecting
planesa, S (Fig. 2) are given and one of them is characterizetiea¥itst” one, one can
just as well speak of an ordered point-pair as one can tdrdered plane-pair.” One
defines a wedge by the rules:

a) Any ordered plane-pair determines a wedge.

b) All ordered plane-pairs that go to each other by a
rotation around their line of intersection determine the
same wedge.

One easily recognizes that the manifold of wedges is

\ likewise a five-fold. The wedge can perhaps be
AW, determined by the line that is its carrier and the
‘opening,” namely, the angle between the planes
(including the sense of rotation), as measured in some
suitable manner. Study showed how one could associate
the rods and wedges in space with each other in a omeetoranner such that rods and
wedges are interchangeable with each other. — In the meshaf rigid bodies, along
with force, the angular velocity also takes the farfra rod. The presentation of force

Figure -
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may be so closely linked with the rod, namely, a ppait-of fixed distance bound to a
fixed line that, on the other hand, it seems intuitikat angular velocity should be
represented as a wedge: Its carrier gives the rotatigisalvehile the opening and sense
of rotation from the first plane to the second onedghe measure of the angular velocity.
We must stop short of pursuing this behavior further here.

2. Introduction of the concept of motor. After these preparations, it is no longer
difficult to define a “motor.” Two line#\, B that are not parallel always possess one and
only one common norma that intersects both of them (Fig. 3), which shaltaked the
“axis” of the line pairA, B. If A andB lie in a plane theN is the altitude to the plane that
is erected at the intersection pointAfB. If one displace®\ andB parallel to itself
through each line segments along the axis, namely, insweky that the intersection of
A, B slides along this axis, or if one rota#&sndB through the same angle around the
axis, then one always again obtains line pairs witlséime axis. One can express this as
follows:

If a line pair is screwed around its initial axis then it continuallgg®rves that axis.

This theorem is the analogue of the following, entiredyf-explanatory, one about a
point-pair:

If a point-pair is parallel displaced along its original connecting line tlhieat line
continually remains the connecting line.

An entirely corresponding theorem on the rotation gblane pair does need to be
expressed explicitly.

We now add that a line-pair shall again be “ordered” wdwea of the two lines is
characterized as the “first” one, so we can define @dni by the following two rules:

a) Any ordered line-pair determines a motor.

b) All ordered line-pairs that go to each other by
screwing around their axis determine the same motor.

In Fig. 3, the line-pairé, B andA’, B’ represent the same
motor if N is the common normal t4, B, as well aA', B',
when the separation betwe@randB, as measured aloriy
is equal and equally-directed to that®fandB’, and finally,
when the angle and sense of rotation frdmo B agrees with
those ofA’ andB'. The motor will thus be determined by six
pieces of data: the distance from the first lineh® $econd

Figure 3 one, their angle, and the four data that determineatiee
The manifold of motors in space is a six-fold. One ksow
from mechanics that the manifold of force systemstaadstate of angular velocity of a
rigid body is likewise a six-fold, and we will see latkat these two quantities, which are
fundamental to the study of motion are “motors,” justhasindividual force is a rod and
the velocity of a point is a vector. Study choseténen “motor” due to this interpretation
and completely in accord with the word “vector.” Aslwi explained in more detalil, for
a motor that represents a screw velocity the separaB — we call it the “length” of the
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motor — is a measure of the translation and the targfehe angleAB — we call it the
“opening” of the motor — is a measure of the angular vtglowhile naturally the “motor
axis” — i.e., the axis of the line-pak, B — likewise defines the screw axis.

In the defining rules, the case in which the two lioEthe pair are parallel was not
excluded, despite the fact that two parallel lines dopostsess a uniquely defined axis.
We must therefore extend our assignment and do it isegthge that any common normal
to two parallel lines shall serve as their axis. Adewy to theorem b), two parallel pairs
A, B andA', B' then determine the same motor when the distABde equal and equally-
directed to the distand®B'. Then to such four lines (Fig. 4) there is one (pogdyhg
at infinity) common normal that intersects all fourtbem, and in order for this to be
true, one must be able to scréB into the positiorA’'B'. We then refer to any of the?
lines that are parallel to the common normal asattise of the motor represented by a
parallel pair, while the motor that is represented by-parallel lines possesses a
uniquely defined axis. Where it is necessary to make aclisin in what follows, we
will refer to a motor with many-to-one axes as “inragy.”

The manifold of line pairs that represent one and theesaotor is a two-fold. Two
simply counted mutually independent motions are then pahbieissliding along a fixed
line and rotation around it. For an imaginary motor, thsnifold, as one easily
recognizes, is a three-fold. In any case, one has@tant theorem:

Any line that intersects the axis of a motor perpendicularly can be rchodee the
starting line of a given line-pair that represents a motor.

It does not need to be expressly stated that whenpeaksof a screw here the
exceptional cases of pure rotation or pure sliding shall beded and the translation or
sliding motion takes the form of a rotation around amitdly distant axis.

3. Geometric addition of motors. The known behavior of vector addition can be
formulated in the following way (can be divided into tgt@ps, resp.). Let two vectors
be given by the associated point-pairs, andb; b, . One now represents:

1. The vectors by two pairs with the common startioigitp; let them beoa andob.
One then looks for:

2. The fourth point that is the opposite corner to the panthat is one of three
pointso, a, b of a parallelogranmc then represents the vector sum.

In complete analogy with this, we define, as Study'did

Let two motors be given by the ordered line paif®Aand B B, . One represents
them by:

1. Two line-pairs OAOB with a common starting line O.
One then looks for:

2. The fourth point c in an arbitrary plane perpendicular to O that is the opposit
corner to o in a parallelogram that includes the three piercing poing and b of QA,
and B.

) Geometrie der Dynamepp. 54.
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The locus of the point ¢ is a line C, and the motor that is represbptéd is called
the sumof the given motoré-ig. 5).

The line O cannot be chosen arbitrarily (this is different frome tcase of vector
addition), since otherwise, from the theorem at the
conclusion of the previous section, the axes of thergiv
motors would intersect perpendicularly (for ideal mators
an axis of each motor, resp.) Such a choice is always/
possible, because there is at least one common ntomal
two arbitrary lines. It now remains to be proved that t
locus of the point, which is to be sought, according to
the prescription of the definition, actually defines a.line
In order to see this without much bother, we imaginé tha
O is chosen to be theaxis of an ordinary coordinate
system and that the lines and B are given by linear )
equations that are solved fer(y, resp.), so perhapsis Figure 5
givenbyx=m+mx,y=as+tazandBbyx=5g+ L& X y=65+ /[ z Ifone
substitutes a fixed value farthen this gives equations for tkendy coordinates of the
points a and b in each case, while the point by construction and by its known
properties, possesses a vector sum whose coordinates are:

X=m+Li+t(@+B)X% yY=as+L+(u+f)z

Since these are again linear equations for varihg locus ot is, in fact, a lineC.

The commutability of the summands is given immedidrelgn our definition. Other
simple theorems, line the arbitrary combinability of gienmands in a sum of several
motors, the relationships to multiplication by a whoilember, the degeneracies in the
special case of ideal motors, intersecting line-paics, reay be deduced without much
effort by further pursuing the construction of Fig. 5. $Wall not go into this, since all of
these results will become obvious in a later context.
Whoever would work in the world of geometric
constructions will, however, do well to work througitlea
of these lines of reasoning.

4. Moment of a motor. In the final analysis, the
geometric theory of the composition of forces in tlenp
rests upon a simple planimetric theorem that goes back to
Varignon, the founder of planar statics, and a cammec
that is established between the lengths of the adjoining
sides of a parallelogram, its diagonals, and the three
distances of these lines from an arbitrary point. milar
i role is played in general statics by the following tlesor

Figure 6. which is fundamental to the geometry of motors: If one
lays the altitude planesg and £ to two linesA and B through a point (Fig. 6) and
intersectsA with S ata andB with a atb then the line segmenb remains unchanged in
magnitude and direction when one hotéixed and screws the common line-pAiB
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around its axis. From the definitions of vector andtanothis theorem reads, more
briefly: The vector that is represented by the intdisa pointsa, b of two linesA, B
with the altitude planeg, a that fall upon a poinb depend upon the moté&B, along
with the pointo. This vector will temporarily be called timeomentof the motor for the
pointo. When we seek to prove the theorem, we obtainrnmgtion from this about the
behavior of this moment vector.

It is next clear that a pure sliding motion of the Jp@ar AB parallel to the common

normal N leaves the vectoab unchanged; the altitude plane@sand £ then remain
preserved and the intersection poiatsand b move uniformly withA and B in the
direction of the axis, which is also the directiortltd intersection ofr andf. In order to
appraise the influence of the rotation, we project thereerspace figure onto a
perpendicular to the normal, thus, onto a plane parallel £oandB. In the projection
(Fig. 7), the two lines whose projections are denoted b’ appear, the traces Af, B;

of the altitude planeg, £, which are perpendicular #, B' and include the projectiout

of the pointo, define the real angle. The vectdy consists of its projectioa’b’ and a
component that is parallel t¢ whose magnitude equals the distance to theABeso it

is, in any event, unchanging. Therefore, all that musprhoeed is the planimetric
theorem that in Fig. 7 the magnitude and directio& lof
remain unchanged when one rotates the line-pg&jrs’
andA4, B; aroundn (o, resp.) through equal angles in the
same sense. Nowab' is, in fact, perpendicular to the
fixed line nd, so in the triangle a b A; andB; are two
altitudes and therefore the third altitude — i.e., the éot
nonalb’ — must also go through their intersection point
0. From the similaritya’b’'b; ~ ndby, it follows that

ab:nd = ah:nh, and sincea’h = nh tan@ B'), one
hasa’b = nd tan@ B) — i.e., the magnitude @b’ is
the product of the distance from the pomto the axis times the tangent to the angle

between the line4, B.
One can express these results more briefly wherusas the notions and formulas of

vector algebra. Let be the vectond, and let)t be a vector of magnitude t#&) that

is known from any side of the nornid) from which, the rotation frorA to B is seen to
be positive (thus, under the image surface in Fjgso the vectoa'b' is the vectorial
productixe. This formula also remains true whemmeans the vector that is drawn

from an arbitrary poinh of the axis tm, since the addition of a component parallelto
to the vector product changes nothing. If we thal 9, the moment of the motors
relative to a poinb, and calbJi,, the one for the point, then we have:

Figure 7.

Mo = My + (Oxt), (1)

whereMt, can be nothing but the vector that is paralleNtand points fronA to B, and
whose length is the distané#. We summarize the result by saying:
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Any point o of space of a vectt, will be associated with a motor.

The totality of these vectors is, from €fj), given by two vector®t and 9., of
which the latter is the value @ft, for point on the motor axis.

We call the vecto?)t that was defined above thesultant vectoof the motor.

5. Vectorial and scalar components. Addition and multipcation by scalars. If
one develops the vector algebra in a purely geometric veaydhe must show at some
later point that whenever three coordinate directianes chosen, everything turns into
scalar computations. Correspondingly, we would nowtlikeee that by the choice of a
reference point everything in motor algebra (to the éxteat we know up to now, and as
we will further develop in the sequel) can be solved.thib end, we prove the theorem:

A motor is uniquely determined by its resultant ve@iband its moment vectdi,
for any reference point.

In fact, by definition )t gives the direction of the axis and the angle oflittee pair AB,
including the sense of rotation, and, from (1), the compsneiilt, in the direction of
I give the distancAB. In order to then find the position of the akisfrom eq. (1) (by
the construction that led to (1), resp.), we mustrekgeline segmern fromo along the
perpendicular to the plane that is definedyand7t,, which yields the component of
M, that is perpendicular T, multiplied by the length od)t; the sense of direction on

onis therefore determined by the sign convention fororgatoducts.
We call9t the first vector componeraind 9., the second vector componeot the

motor for the reference point the first vector component is the same for any refsre
point. We call the two times three scalar componef®& and9i,, when referred to any
three perpendicular directions, the spalar components of the motoFor everything
that follows, we now introduce a unified notation: Motaisall be denoted by bold
Gothic symbols. The same symbol, but not bold, shall @ehetfirst vector component,
and we refer to the second vector component relative by the symbolo. The
corresponding Latin symbols refer to the magnitude offitise vector component, the
symbols 1, 2, 3 refer to its scalar components, andytihédas 4, 5, 6 refer to the scalar
components of the second vector component. The MGterthen, after the addition of

a reference poind, representable by the two vectdis andi,, after a further addition

of three directions, by the six numbéfs, M, M3, M4, Ms, Mg .
The meaning of these definitions is immediately illnated by the theorem:

In the geometric addition of motors, one adds their vector and scalgrarents.
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One can also say that the motor equafor 28 = € is equivalent to the two vector

equation( + B = ¢ and®, + B, = &, . One next recognizes that the theorem must be

true for any reference point, as long as it is truefer of them. The difference between
the moment vectors of a motdR for any two point®, o' is, from (1):

Mo =My =M x (x —1'). (2)

One can then compute the position vectoesdy' for the two points ando from an
arbitrary starting point. If th&t and9t, behave additively then this must also be the
case fofi,, when it is increased W)t x (r —1') — i.e., forMy . In Fig. 5, in which the

geometric addition was introduced, we now choose aemder pointo on the same
starting lineO that represents the motds 2B, €. If one constructs the moment vector
for this o by the prescription that was given in sect. 4 then se®s that it will be
represented by the point-paios, ob, oc, which lie in the normal plane t®. The
existence ofl, + B, = &, is therefore obvious hefeom the rule by which the search for

c was given. However, this relation is also true dosecond poind’ of O and one
therefore has( —2y) + (B —By) =€ —&y. From (2), one can also writd ¢ B) x (¢
—1') =€ x (r —¢') for this, wherex — ' denotes the vecta'o, and since it is certainly
perpendicular t&, 9B, &, it then follows tha®l + 5 =¢.

By this process, motor addition reduces to the well-knawctor addition, and
therefore, to ordinary scalar addition, as well, $ofalhe essential properties of addition
— e.g., the commutative and associative laws, etc eshablished. We can also connect
the explanation for the multiplication of a motor &ynumber, with no further ado, by
saying:

The product of the motdpt with the numben, which is writtenA9t, shall mean the
motor whose components (vectorial and scalar) Atienes the componentsot.

This multiplication is distributive with the previouslystgibed addition, so, in
particular, + 2 = 2% and —B =2 + (- B), where =B = (-1) 8. Speaking briefly:
One may work with the “linear” operations that werecdibed up to now as if the
objects in them were ordinary numbers.

An especially important application of the rules foomputation is to the
differentiation of motors. If a motddt is given as a function of the scalar quartittyen

we understand the derivatid®t / dt to mean the motor whose components are the
derivatives of)t.

6. Example of an application. Before we go further, the applicability of the simple
concepts that were introduced up to now shall be cldrifie a beautiful example from
statics. O. Mohr has given a proof of the theorem ¢foees back to Culmann on the
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relationship between the funicular polygons that belongdoal force systems, which
actually works with the fundamental ideas of motor algebWhen we present Mohr’s
argument with the help of the foregoing results, wewike obtain an essentially
generalized theorem for spatial funicular polygonsedts:

If two spatial n-gons are equilibrium funicular polygons for the same n thevi
forces then the common normal to any two corresponding sides of the n-gdie will
intersected at right angles by a line. (Fig. 8).

If the forces andn-gons lie in a plane then the common normals are the
perpendiculars to the plane that are erected at thdspomintersection: From our
theorem, if the perpendiculars themselves have a commwonahthat cuts everything
then the intersection points lie on a line, whicthes €ulmann line.

For the proof, we must assume as given that theddhzt we are concerned with in
statics are (special) motors and that the equilibriomdition consists of the statement
that the motor sum must be zero. Equilibrium exists &éetwhe external nodal force and
the two side forces at each corner point of the fuaigoolygon. If we call the external
forcesRi, K, ..., Ky and the side forceS;, S, ..., &, in such a way that, e.g5,
denotes the force that the side that goes fromdbenrsl to the third node exerts on the
last one, then the conditions of equilibrium read:

R=6,-6, R =6,—-6,, R3=63-6,, ... Rn=6-6p1.

The same equations are valid for the second funiculgg@o, except tha®' appears
in place ofS. If one subtracts the one equation from the othettlwer® one obtains:

61—61 :62—6'2 :63—6; = Gn—G'n.

The axis of a force-motor is the line of action of thrce itself. From the definition
in 3, one can represent the mot& — &' by a line-pair whose initial lin® is the
common normal to the axes & and&’. On the other hand, the axis of a motor cuts the
lines represented perpendicularly. Therefore,ntttmmmon normals to the associated
sides of the funicular polygon are cut perpendicularly hy &xis of the motosS;
-6 =6;-6, = ...

The representation that Mohr gave for the basidreutf statics and kinematic,

works with the essence of motor addition (except forfaleé that the interpretation of a
motor as a line-pair is missing). However, Mohr did inbtoduce a special notation for

the motor-like quantities, but he changed the operat@grssusing+ for addition and=
for equality. For the advanced studies then, just asator algebra, the connection

) 0. Mohr, Abhandlungen a. d. Gebeit d. technischen MechBeilin 1906, Abh. | and II, esp., pp.
15, et seq.
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between the motor quantities and their components timels fits expression in our
system of notation, and with deep significance.

7. Scalar and motor product of two motors. We now go on to the explanation of
the two types of multiplication, by whose introductitime first-order motor algebra finds
its completion. We first definéfhe scalar product of two moto”¥ and 23, which is

written 2 33, or alsofA B, is the number:
A OB =2AB, +AsB = A1Bg + AoBs + AsBg + AuB1 + AsBo + AsBs . (3)

The second definition (which follows from the firgteoby the rules of vector algebra)
expresses the scalar product in a way that is completéépendent of the coordinate
system, while the first one seems to depend only upochihiee of origin. If we denote

the vector frono to o' by, corresponding to the previogls-¢, then, from (2), we have:
ABy + AsB = A(Bot+(Bxr)) +B(Ao+(Axt)) = AB, + AB + A(Bxr) + B(Axr). (3)

The two three-fold products on the right drop out agsult of the well-known
commutation rule of vector algebra that s&ly® x t) =—8B(2 x t). The invariance of

the product defined in (3) is proved by this.
The meaning of the scalar product in mechanics correspornte scalar product of

two vectors. If]R denotes a force motor ail is a velocity motor then the scalar product
K 8 is thepower delivered in unit timelf & denotes an infinitely small displacement
then® & is the work that is done by this displacement. Intresh to the situation in

vector algebra, here, one is spared the separatite avork done by translation and the
work done by rotation, a separation that will be etd by the arbitrary choice of origin.
We define themotor productor motor-like productof two motors2( and*B to be a

motorB with the following vector components:
P=AxDB, Po=@xB)+ @oxBo). (4)

The determination of the resultant comportnis immediately free of the concerns

over the reference point. For the second componernheobasis of (2), we obtain, again
witht =¢" —:

Po=RAXBy) + Qo XB)=(RAXB) +AX (B x1)+ RAoXB)+ A xt) xB
=Po+ @ xB) xv="Po+ (B xr). (4)

In this, use has been made of the well-known theoreveaibr algebra that for arbitrary
vectors, one always has:
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[2A % (B x )] +[B x (A x )] + [vx (A x B)] =0. ®)

Eq. (4) shows that under the transition to a new refergaet o' the new moment
vector, as defined by (4), is computed from the oneofor the same way that for any
motor Mt the momendiy is computed fromMi, anddt. With this, we have proved that

under our definition (4) any pair of mota?s B will actually be associated with a new
motorP. The scalar components‘Bfare:

Pi=A:B3—A3sBy, ..., Pa=A:Bg—AsBs+ As B3 —As B> . 4

An immediate invariant representation of this andsitedar product will follow later

(8).

The mechanical interpretation for the motor produthésfollowing one: LefJt be a

motor that is fixed in space (i.e., a motor whose 6 compts are constants relative to a
fixed coordinate system) and &t be the velocity motor of a moving rigid bod2tx&

is then the virtual increment that the mofdt experiences in a unit time when it is
regarded from the moving body. One can also say that Whdmas fixed components in
a reference system that is moving with the veloéitythe components abx9t furnish

the changes that the componentsdf experience per unit time in rest space. This

expression plays a decisive role in the presentatidheoequations of motion for rigid
bodies.

The two definitions (3) and (4), which reduce the productwai motors to the
analogous product of vectors, show us that all of thesraf calculation emerge from
vector algebra (scalar algebra, resp.). In particolae, has the commutative law for the
motor product with a sign change:

A B =98 A, AU XB =—B xA,
the distributive law:

A B + ) =A B +2A [, AX(B+E)=AXB +2A X &,
the associative law:
AU B8 = A 38), AU x B = A(A x B).

In a word:One may calculate with the scalar and motor products of two motors just
like the scalar and vectorial product of two vectors.

8. Invariant representation and construction of the product. The invariant — i.e.,
free from the choice of arbitrary reference point —irdgdns of the two products
(corresponding to the ones in vector algebra for lengthiection, area) seem to be less
simple here, but they still exhibit a remarkable symyetin addition, a noteworthy
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phenomenon manifests itself, namely, that the produats canstructible without
assuming a unit, as long as one performs them with gesntifithe same dimension as
the factors, while the products in the vector algebra higleer dimensions.

We will first assume that the resultant vectoroand®23 are non-zero, so one is

dealing with an actual motor. If one chooses an arpiteference poind on the axis of
A then the moment vect@, has the direction dll — namely, it is equal to the vector

from the initial line of the motor to the final line tha drawn along the axis — and can
perhaps be denoted lal. We would like to call the number the pitch of the motor

(corresponding to the pitch of a screw), in order that magnitudeA of the resultant
vector and the position of the axis should together onerthe motof( in an invariant
way. In the same way, let the mo@rbe given by its axis, along withandB, although
one must observe thb®s is the moment vector relative to a point on the ak% osuch

that from (2):
Ao = a2, Ao = bB — (BxD). (7)

Here,0 can mean any vector that points from the first axis {point on the second

one, although we will assume thashall denote the shortest vector, so it must be mraw

along the common normal to the two axes. If the tmaiors were represented with a
common initial lineO, as in3, thend would be parallel t@ and our reference poiot

would lie onO.
From (7), the expression (3) for the scalar productrassuhe form:

A OB =bADCB —-A(B x0) xaA B = (a + b) AB —o(A x B), (8)
while, from (4), the components of the motor producobes

P =2 x B, Po = b2 x B) —2A x (B x ) +b(A x B) = @+ b) (A x B) +d(AB) . (9)

The scalar product of the mota®s and 23 is, from (8), equal to the sum of the

pitches times the scalar product of the resultantovechinus the scalar triple product of
the two resultant vectors and the shortest distaetveeen the axes. This consequence of
(8) is even more important and intuitive: The scalar prodéitwo motors vanishes for
arbitrary values o#, b, A, B when and only when the two axes cut each other lat rig
angles — since thel® = 0,0 = 0. Except for this case and that of the vanishing ef on

factor, the scalar product also vanishes wéerb = d tanfd, 23), where R, 28) denotes

the angle between the motor axes.
Eqg. (9) next shows that the axis of the product m@3as the common normaD to

the axes oRl and23. ThenSB, as well asl3,, has the direction d. If we assume that
I8 does not have length O then we obtain the gtohthe product motor as the quotient
Po: P =a+b+dcot®, B). One can then easily put the definitiorf}dfinto words.
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One also sees that the product motor vanishes for aybér®d, A when and only when
the axes of( and®23 coincide — because the<5 = 0,0 = 0.

If a motor is represented by a line-pair then its resultector appears as the
unknown number (tangent of the angle) and the momexbas the length. Equations
(3) and (4) or (8) and (9) show us that the scalar produastamotors is a length and the
motor product is a motor with the same dimensions as faator. From this, it follows
that one can construct the product, as was mentionemblgjrevithout a special unit of
length, or as the case may be, having to choose one, \We next give the characteristic
construction for the moment vectfi, of the motor product.

In Fig. 9, let the motor2l and®B be represented by the
line-pairsOA and OB, such thatO is the common normal to
their axes, and likewise, to the axis of the motor proggic
When we define the momentg and2l for any two pointso,

b that determine the vecteras its starting point and end point
then from (2)2, — A, =2 x v. One can then construct the
product2l x B, that appears in (4), when one choasesidb
such thatob represents the moment vect®, . We then

choose, similar to what we did in sec. 5, the paanasidb on
A andB in a perpendicular plane @, drop the perpendicular plane o#dhat meet©
at a; from b, and the perpendicular plane orBothat meetO at b; from a, so a;b;
represents the desired vecfdg . One then has, g denotes the intersection Gf with

the perpendicular plane @througha andb:

Figure ¢

oa =, ob =B,, aa =Ap, bb =%,
08 =Ao—A=—Ax 0b =Box A, 0h =Bo—Ba=—2Ax 0a =A% B,

and therefore one actually s = o — 0g = ab. The fact thaf, is independent of
the choice of poind onO delivers a simple stereometric theorfm
From the product motdl3, one now knows the position of the axis and the moment

vector for its points. The magnitude of the resulteettor depends only upon the
directionsO, A, B. If one directs three parallels to them throughxadipoint, and they
intersect through a perpendicular plan®tat a distance from the origin then twice the
area of the intersection point trianglab gives c® times the desired quantity, which is
therefore easy to construct as the tangent of the dtrgingle of equal area withas the

leg).
One can construct the magnitudes of the scalar produ2tsanfd®B as lengths oo

when one alters the construction Bf somewhat: Since one needs the prodédds

cosf, B,) andA.B cosfl,, B) in place of the analogues with the sine of the angén
one must perform only corresponding rotations through 90

) Cf., the problem that | posed in the Jahresber. d. déathematiker-Verein 31, 1922, pp. 65.
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9. Multiple products, rules of calculation. The commutation rule for the
combination of a scalar and a motor product is completehlogous to the one in vector

algebra. LeRl, 23, € be three arbitrary motors, so one has:
A B x €) =B LHE xA) =€ A xB). (10)

The proof follows from the definitions (3) and (4), asdaas one makes use of the
known commutation theorem of vector algebra. Froma(®) (4), the first product in
(10) is equal to:

A (B x &) +2A (B x €) +2A, (B x ),

and the sequence of factors in each summand here may malgygermuted, from
which (10) is proved.

The commutability also emerges immediately from tkpresentation in scalar
components. By definition, one has:

A A A AA A A
AUB*x€) =B B, B+ B B B+ B B B. (10)
GG G GG G G

The three determinants arise when one replaces @meir the matrix of nine
components ofl, B, ¢ with the components &f,, B,, &, in succession.

The decomposition of the triple product that arisesmfroepeated motor
multiplication into two summands is not as simpkgom (3) and (4), one has:

P = AX(BXE), T = AX(BxXE), Po = AX(BXEe)X AX(BXE) + AX(BXC).  (11)

If one applies the development theorem for the tygpéduct of vector algebra here,
namely:
P=Ax(BxC) =B (A ) - ¢ (A B),

then one sees thg§8 may be, in fact, represented as the differéjice K& — £ of two
motors:
K=BARAW), R, =B, (AL&)+B(A Et),} (12)

£=C(AM), £, =¢ (ACB)+C(AG),

however, the component® and £ are not immediately expressible as products of the

motorsd, B, ¢.

This minor deviation makes things no longer valid, unt# @onsiders the ternary
product that emerges from (11) by cyclic permutation offélceors. Analogous to the
vector formulaa X (b X ¢) +b % (¢ X a) + ¢ X (a X b) =0, one has:
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AUAX (B XxE)+ B x (ExA)+Cx (AXxB)=0. (13)

One obtains (13) when one develops each of the sreenands according to (12).
The four-fold product displays a remarkable symmetry thises from the scalar
multiplication of two motor products. If one appliég ttommutation formula (10) to:

Q=R xB) (€ xD), (14)

when one focuses o@ (heraushebt), then the second factor that remaif® is (20 x
B), and the development formula (12) may be then appli¢his. One then obtains:

Q=B9)@AB)+A)(BD)-(AD)(BC - (B (AD). (15)
This equation appears in place of the vector formula:
(axb) (¢x0) = (ac)(bd) —(a b)(b ¢),
which is derived in an analogous way, as is known.

10. Simple geometric applications. A motor 21 that is represented by two

intersecting lines is analytically characterized byfde that its moment vector vanishes
for the intersection point of the lines and then fibpaints of its axis. From (1), for an
arbitrary reference poirg the momengl, is therefore perpendicular 29; i.e., the well-

known equation:
AR =ALAL+AA+A3A=0 (16)

exists between the 6 scalar components, which goes mathe of theéPlicker relation.
(The mean of the expression in this equation is, moreowe-half the scalar product of
the motor with itself, so it is an invariant of the tmo®(.) Study called such a special

motor a “rotor;” in dynamics, it corresponds to an indinal force, and in kinematics, to
a pure rotation. The position of a line in space, nantedaxis of the motor, will be

determined by the ratios of the six componet$o As, in long as they satisfy (16) and
A1, A, Az do not vanish identically. The rotor components ates thothing but the
Plucker coordinates.

A motor that is represented by two parallel lines idyaically characterized by the
fact that its resultant component vanishesAse A, = A3 = 0. From (1), the moment
component is then the same for any reference pointhanchotor is given completely by
three scalar numbeps, As, As. Study called such a motor a “translator;” in dynamics, it
corresponds to a force-pair, and in kinematics, to a panslation. Naturally, the ratios
of the A4, As, As determine only one direction. It is recommended thatiotroduce the
notion of “unit motor,” by analogy with that of unit at®r. We would like to use the
termunit motorto refer to:
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1) All motors, for whichA’ + A2+ A = 1.
2) All motors, for whichA; = A, = A; = 0 and A’ + A+ A = 1; these are the

translators whose moment vector has length 1.
Later, we will make extensive use of this notion.
Let 2( andB be two rotors, such that one then has:

AL AL+ A As + Az As =0, B:Bs+B,Bs+B3;Bs =0. (17)

The two-times-six numbersy, ..., As and By, ..., Bg — or really their ratios —
determine two line#, B, as was shown above. As long as they are not pacpéandto
each other, they again determine the starting line andirmn@dfla motof)t, and it must

therefore be possible, to calculate hisfrom2( and23. One can see that:

o = 2B (18)
A B

From the definition ir7, the motor that is defined by (18) has the common noonAl

and B for its axis and the resultant vect@t & B) (2 [¥8), whose length is therefore

tan(A, B). From (9), the second vector component)®if for a point of the axis as
reference point is equal ©(AB) : (UB) =0, sincea =b = 0 now for the rotor@ and
B, from which, the assertion is proved. The six compbeguations of (18):

M, =AB,~ AB, M,= AB- AB } (19)
M,=AB,-AB+ AB- AB M= AB- AB- AR AR~

deliver the components of a motor, as expressed in wrthe Plicker coordinates of its
representative line-pair.

If one gives fixed values M, ..., Mg then eq. (19), together with (17), determine all
line pairs that go to each other by a screwing motion arthmr axis. In this way, one
can represent the various line loci through motor equatams their component
decompositions, if not all of motor analysis, as a gdoynwhose element is the line,
similarly to the way that vector analysis employs tndinary point-geometry. We shall
not go into this further here.



II. Second-order motor algebra (motor-dyadics).

1. Vector and vector-dyadic. In the first section, we gave a geometric definitadn
a vector, and fixed out attention on an analytic onewelfnow turn to it, then we must
naturally start with the concept of vector componentt thre associated with the
directions of space. However, as we already meadipit does not suffice to say that a
vector is a triple of numbers that related to a wellréel axis cross. The two numbers of
people strolling along the one line or the other in at+agtgled street cross certainly does
not determine any actual vector. The definitive andyaically essential property of a
vector is the fact that every direction is ass@dawith a certain number — the “value” of
the vector for this direction — and that the totalityabfthese numbers satisfies a certain
legitimacy condition. If a spatial directianis established by the three direction cosines
cos(, X), cos(, y), cos(, 2) then one can call an expression of the fggm a cos(, x) +
b cos(, y) + c cos(, 2), in whicha, b, c are constants, lanear direction function If one
chooses a new reference system with the &xg5 Z then, as one easily sees, the linear
expression that we just considered again goes to anaibblrexpression — say, = &
cos(, X) + b’ cos(, y) + ¢ cos(, Z). Thus,a, b, c mean the values of the function in
the directions of th&, y, andz axis, resp., and can also be reasonably denoted By v,
(since- e.g., forv = x — the first cosine equals 1, the other ones will be,zc), while
the &, b', ¢ means the values for theg y', Z axis, resp. We arrive at the following
analytical definition of a vectoBy the termvectorv, we understand this to mean the

totality of directions in space that are associated with a scalar numbby a certain
linear law:
Vy = Vy COS(V, X) + Vy COS(V, y) + V, COS(, 2). (1)

The vector is thus determined by the three numbgng, v, — its “values” in the three
coordinate directions. One easily calculates fromtlfa) v, possesses the maximum

value Vi +V. + V., which it assumes for the directianthat is given by cos( X) :

cos(, y) : cos, 2 = w, W, vz, and which vanishes for all directions that are
perpendicular to it. When one takes the magnitudeeofitiximum and its direction as
the determining data (and thus, chooses only the corresgoreference system), one
achieves the link to the geometric definition of vector.

The way that a vector appears in mechanics or phyBis ¢orresponds to our
definition. When we say that the velocity of a pasa vector, this rests upon the fact
that a moving point exhibits a certain advance per ung in every direction of space,
and that all of these magnitudes are connected by (1). bEbosmes clearer when we
consider the statement: The first derivative of dascspace functiof(x, y, 2) is a vector
(gradient). In fact, by the rules of differential @allis, any direction will be associated
with a number — the “derivative in this direction” — ahe totality of all these numbers
will be determined by three of them using (1).

Moreover, it is an effortless task to introduce vestouctures of second and higher
order. In mechanics and physics, there are also tasdsch any spatial direction is not
associated with a number, but a vector. For exampleach point in the interior of a
body, any direction of intersectiancorresponds to a stress vecgpr, namely, the stress
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on the surface element that is perpendicularvto From well-known equilibrium
theorems, one easily deduces that the infinitude of stiiesstions at a point are by no
means independent of each other, but have a relatiomsttiprie must further refer to as
“linear.” Namely, one expresses in the forma cos{, X) + b cos(, y) + ¢ cos(, 2),

wherea, b, ¢ are constant vectors, which naturally equal the vatdes in thex, y, z

directions, resp. The totality of stress vectors pbiat defines a structure of “second
order,” such as a tensor or vector-dyadic. In corapkatalogy to the analytical
definition of a vector, we defin@®y the terntensoror vector-dyadicwe understand this
to mean the totality of vectors that are associated with the drectof space by a
certain linear law:

pu =Py COS(, X) +py cOS(, y) + p; cOS, 2). (2)

With no further assumptions, it is clear that, in rehyi the same way, a third order
structure — owector-triadic— can take the form of the totality of dyadics that lanearly
associated with the directian etc.

The simplest and most intuitive example of a vestarcture of higher-order is given
by the repeated differentiation of a space functiore NAive mentioned this above, and in
what sense, the first derivative of a scalar functibq y, z) is a vector. If one
differentiates a given vector as a function of posiiio a given direction then one again
obtains a vector. The totality of vectors that @eéned by the derivatives in all space
directions satisfies (from the theorem on “totalfeliéntials) a relation of the form (2),
so it is a dyadic. The second derivative of a ve¢ha third derivative of a scalar, or the
first derivative of a dyadic will be represented ineamirely analogous way by the totality
of dyadics that obey a linear law, so they are ic@detc. Each differentiation then raises
the order of the structure by a unit.

2. The motor-dyadic. In order to convert the concept of dyadic (or anyeoth
structure of higher order) from vector algebra to motor algewe must now let the
notion of “unit motor” enter in place of that of fdction,” which is indeed represented

by a unit vector. In 110 we defined a unit motaZ to be one whose componekis E,,
..., Eg satisfy either:

Ef+E;+E=1 or E=E=E=0, EZ+EX+E=1. (3)

The invariant meaning of the unit motor has already lokstussed above. Depending
upon whether the first or the second of the alternsit{@ is the case, we would like to
speak of a unit motor of the first or second type, respy.

Now, if an arbitrary motofJt is given by its componentdi, M, ..., Mg then one

can — always in analogy with vector algebra — define isduty for the unit moto€” to
be the scalar produént O& =My By + Ms E; + Mg Ezs + My E4 + My Es + M3 Es .

Conversely, when one has, say, established the ndtamoit motor, but not that of an
arbitrary motor, one can asseBy the termmotor, we understand this to mean the
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totality of scalar numbers Mthat are associated with the unit motors in space by a

certain linear law:
M¢:M4E1+M5E2+M6E3+M1E4+M2E5+M3E5. (4)

If a coordinate system is chosen then the motor isdeted by the 6 numbei; to Me.
The fact that this definition has not immediate pcadtsignificance follows from only
the fact that there is no geometric structure thassciated with a unit motor that is as
simple and intuitive as that of space direction f@r anit vector.

Only the “analytical” definition of a motor that viermulated above will give us the
possibility of arriving at the notion of motor-dyadic witb further complications. We
assume that, instead of the six scalar numligrdvl,, ..., Mg that establish a motéot,

we are now given six motofB1, Po, ..., Ps . We defineBy the ternmotor-dyadicl,

we understand this to mean the totality of mo8¥s that are associated with the unit
motors in space by a definite linear law:

Pe=P1E1+PsEx + PeEzs + P1E4s + PoEs + P ks . (5)

The motor-dyadic is therefore determined by 6 motors dr2oyectors or by 36 scalars.
We would like to denote the vector component§3af R, ... by L1, Pav; Po, Pov; ...,
and the scalar components By, Pio, ..., Pis; P21, P2y, ..., Pos; ... If we would like to

represent the dyadidl by its scalar components then we would arrange themnant
guadratic schema as follows:

P11 Plz' ' Pl6
I:)21 Pzz’ P26 (6)
P61 Pez’ Pes

The quadratic matrix with 6 rows and columns decompodesdirsquares with 3 rows
and columns. They represent the ordinary vector-dydicwe would like to denote by
the series11,, M1z, M2y, M2z, such that we can abbreviate (6) by also writing:

{nll an}. (6)
rlZl M 22

The lack of an immediately intuitive interpretatiom tbe unit motor makes itself felt
in the definition of the motor-dyadic. Namely, sinftem 1.10, any motor takes the form
of a scalar multiplicity of unit motors, one does ncaually see why the unit motor was
even used in the definition (6); one can just as welalspd linear functions of any
motor. However, for the unified and unique conceptiorhefdomponent schemata (6)
and (6) it is better to stay with our definition. Before ge further, we would now like
to employ the newly-obtained concept of motor-dyddi@ specific and very important
example in mechanics.
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3. The inertia dyadic. As is well-known, the inertia of a moving point can be
described by a single scalar number — viz., the “mass’ while the inertia of a rigid
body demands further data for its complete descripti@position of the center of mass,
the magnitudes of the centrifugal and deviation momeWs. will now show that all of
the quantities define the elements of single motor-ayadi which all of the inertia-
related properties thus find their expression.

Let B be the velocity vector of a mass elemdnt whose position is determined

relative to a fixed origimo by the position vector. The produc®s dmis then called the
quantity of motioror theimpulseof dmandt x % dmis themoment of the quantity of
motion or theimpulse moment When we think of5 as linked with the point — or at

least with the line going through the point in the dimecbfB — as the vector “attached”

to the point, we arrive at the conception of the impas a “rod” or as a special kind of
motor (viz., a “rotor”). Its resultant vector %8 dm while its second vector component

relative too ist x 6 dm The addition of impulses over all parts of the bddivers an
impulse motor with the vector components:

T=]%dm To =]t x B dm 7)

In this, it is assumed that the distribution of magsesontinuous; if only discrete mass

points are present then corresponding summations appglaceof the integrals in (7).
The total velocity state of a rigid body will be delsed by a motor. If we assume

that its unit motor i€ then the velocitys at the point is the moment o€, hence, from

I (2):
B=C+ (€ xr). (8)

It is obvious that (7) and (8) define an association abns® with the total unit motors.
This association is certainly linear; then, if we anluce (8) into (7), the components&®f
always appear only as expressions that containd m multiplied together. Thus, we

have a motor-dyadic that we call timertia dyadicT of the body and whose component
matrix we would like to compute immediately.

From the foregoing, in the first row of the quadratit©iesna, one finds the six
components of the mot&; that, as (5) shows, is associated with any unit meétéor

which all of the components vanish, except Ey while E4 equals 1. The vector
components of this unit motor a¢e= o and¢, =i, when we denote the unit vectors in

the three directions of the coordinate cross by, as usual. From (8), the velocity of an
arbitrary point is independent offor the case considered, and inde®d~i. If one
substitutes this in (7) and writes y, z for the components aof then one obtains the
expression§; =i ] dm i, =] ¢ x i dmfor the two components &, so the six scalar
components ar€; =/ dm T12=T13=0,T1u=0,Tis=/zdm Tie=—]y dm We call the
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total mass of the body, the coordinates of the center of masy ', z then this gives the
first row of the schema @f that corresponds to (6):

m, 0,0, 0mz, —my. 9)

In exactly the same way, one calculate the secoddlard rows that arise from certain
permutations of (9), namely:

0,m, 0,—- mz, 0, mx and 0, Om, my, — mx, O. (9)

In order to now obtain the fourth (and then the lasi)trows, from (5), we must first
choose the unit motor fof that is characterized s = 1, E; = Es = ... =Es = 0, for

which one then hag€ =1, ¢, = 0. It then follows from (8) tha®8 =i x v with the
componenty/; = 0,V, =—2z V3 =y. Substituting in (7) yields the first three components
of 1, which are the componerft% dm=0,- | z dm=-mz, and,[y dm=my ; the last

three components are those of the second expresg[@)) 8o they are firét (YVzs—2z V)

dm=[ (% + 2) dm then] (z Vi —x \5) dm= [ xy dm and finally] (x Vo —y \5) dm= - [
xz dm One sees how the inertia and deviation moments appearfor which we would
also like to use the abbreviatiods Jo, J3 (D1, D2, D3, resp.). The fourth row of the
desired schema then reads:

0,- mi, my*, Ji, — D3, — Dos. (9’)

The last two rows are obtained by the same argumenhéygdrresponding exchanges
of:
mf, 0,—mx*,—D3, b, — D, with —my*, mx*, 0,—D2,—D1,J3, (9”)

resp.)

If one introduces the static moment in place of theter-of-mass coordinates v/,
Z, and- in connection with the previously-introduced abbreviatiessts:

m:J'dm S= Rnrpj' xdm & Dymj ydm,S " z@ rd
L=[(Y+2)dm J=[(2+ ® dm F[( % ¥ d (10
D, = [ yzdm D= zxdm D=| xydm

then the schema for the inertia dyafliassumes the neat form:
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m O 0 0 S -$S
O m 0-S 0 S
0 0m s -5 0 an
0-s S J-D-D
s, 0-5-0 1 -0
-5 § 0-D-0 J

One sees that this matrix is symmetric about the dalgdat also exhibits certain
peculiarities that, together with the symmetry, reddee number of distinct elements
from 36 to 10. We will come back to the use of the iaalyadic at a later place.

4. Addition and multiplication. The dyadic as transformation The addition of
dyadics and their multiplication by scalar numbers roaydisposed of quite simply in
connection with the definition of dyadics. We clgrfat the sum of the dyadiésandB
is a dyadid™ that is defined by the fact that any unit mogois associated with the motor

¢, =%, + B, ; analogously, the product of the numieand the dyadid is the dyadi®
for which B, = A4 2. One can then perform the “linear operations” of &aidiand

multiplication by a scalar on the components — i.a.tle elements of the 36-element
matrix. The integration and differentiation with resip® a scalar are likewise explained
in this way.

However, the most important computational context iwtoch a dyadic enters is
simply multiplying the associated first-order structdre.g., the vector (motor, resp.) —
by it. This operation also leads to a somewhat altecgateption of the dyadic itself.
For the sake of intuitiveness, we would now like to whkscthe vector-dyadic and the
vector.

Let I be a vector dyadic and letbe an arbitrary vector. For a direction (unit vector)
v, IN has the valug, that is represented in the form of the expression KBw, if we let
v be chosen to be the directionvoé&nd letv be the length of the vectorthen we callv
py theproduct of the dyadiEl with the vectom, and write:

Mo =0upy, =pxU cospx) +pyu cosly) + pU cosl 2 =pxu,+pyu, + pU,.  (12)

The latter form of the expression shows the analoitjy the scalar product of two
vectors; it is now just one factor in each of the threéigdgroducts of a vector, which
the other is a scalar. The fact that an invariane 5 independent of the choice of axis
direction — value exists comes from the first fornthaf definition. In words, it readBy

the termproduct of the (vector-)dyadid with the vectomw, we understand this to mean
the product of the vector length in the direction ofv with the vectorp, that is
associated with the dyadid. Here, if we replace the dyadit by a vectorp and
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accordingly sep, equals to the vector compongntthen we obtain a new definition of
the scalar produatyp.

One achieves the transition to the altered interpoetaidf the dyadic when one
applies eq. (12) to a unit vectar. One obtains:

MV =ypy,=pxcoslX) +pycosly) + p,cos( 2); (12)

i.e., the “value” of the dyadic for the directioris equal to its product with unit vector in
this direction (like the “value” of the vecteorfor the directionv in relation to the product

vV ). This is closely related to the interpretation @f @2) thatan arbitrary vector is
“linearly associated” with a new vectdrv by means of the dyadid (while only the
unit vectorsv are associated with, under the original definition). The 9 elements of

the matrix that is determined by the dyadic likewise rietihe coefficient schema of
three equations that express the components of thefdrared vector in terms of the
original one. We turn to this precisely, in order tolaxpthe analogous definitions of
the concepts in the context of motor analysis.

Let T be a motor dyadic and |88, be its value for the unit mota®. An arbitrary
motor It can always be regarded as a scalar multiple of acplartiunit motor, so one
perhaps set9t = M €. We then refer to thproduct of the motor-dyadifl with the
motor 2t when we mean the product of the number M and the rijdjaf the dyadidl
that is associated with the unit mow@rof 9t:

N ‘:)Jt:M‘B@ :M(m4 E, + s135 E,+ ...+ s133 E]_) :M1m4+qu35+ +Meq33. (13)

For the motogdt, multiplication by the dyadi€l then means a transformation into a
motor DT, which we write a$l 9t. One obtains the 6 transformation equations, which
express the components &t in terms of thedt, by decomposing (13) into
components:

Ml’ = I:)11'\/|4+ PZIM 5+ PBlM 6+ P41M 1+ I:)51|VI é*_ PGM 3
M; = P12M4+ PZZM 5+ P32M 6+ P4Z|VI 1+ PSJVI é*_ PGN B
MZ’% = I:)13'\/|4+ P23M 5+ P33M 6+ P43‘|VI 1+ PSSIVI é*_ PGN
M; = P14M4+ I:)24'\/I 5+ P34M 6+ P44M 1+ I:)54|VI é*_ PGJVI B
ME") = P15M4+ PZS'\/I 5+ P35M 6+ I:)45|VI 1+ PSN é*_ PGN B
M;S = HGM 4+ PZGM 5+ PSGM 6+ P4N l+ PSN 2+ PGN B

(14)

Here, the 36 elements of the matrix described by (8htcoefficient schema define
the six linear equations that convépt into t'. In it, the rows and columns must
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generally be switched, and one must observe thabthef the variable begins witk,,
not with M.

The application of the transformation property ofdiga (the multiplication that we
are now treating, resp.) that is most important for ug/ee from the fact thatelocity
motor of a body is transformed into the impulse méta@., the motor of the quantity of
motion) by multiplication with the inertia dyadicWe will speak of this more thoroughly
in section 1.

5. Dyadic product. In vector algebra, as well as in motor algebra, @meacrive at
the concept of dyadic (if only a somewhat restrictauinfof it) by another process, and
indeed, by a formal computation. Here, we would alsotbkdiscuss the argument that
is associated with the vector theory and then thdteofnotor theory by analogy.

The concept of “dyadic product” originates with the detn#imat each factor in a
triple product of vectors should be “distinguishable.” Hwe producta (b % ¢), the

demand is fulfilled a result of the commutation ruled.,(1.9), with no further
assumptions; for the produgtx (b x ¢), the rule for development 9. gives no solution,
so the product(b [t) remains to be resolved. If two arbitrary vecto@ndb are given,

one now defines their “Gibbs product dyadic” or Gibbs produdiet the dyadic whose
then value is equal ta(b[¥) for the directionv. One recognizes, with no further

assumptions, the fact that this will actually estabdidnear function of the direction as
long as one writes the expression in the farfiy cos xX) + by cos@ y) + b, cos 2)].
Here, any directiorv is associated with a vector that has the sametaireasa and
whose length is times the projection o onto the direction in question. With Gibbs,
we denote the dyadic product by b (written: a — prime— b). The nine components of
this dyadic are:

ab ab ah
ab, ab alb., (15)
ab, ab ab,

from which, one sees that its specific propertes @roduct ofi andb come from, e.g.,
the fact that the components change under a \ariafithe lengtta or b by a factor that
is proportionality to them. If one now denotesaahbitrary vector in the directio by c,
such thatc = cv, then one obtains, by the definition of the prddoica dyadic with a
vector (4):

(a;6)c=a(6V)c=a (b k). (16)

With this, the formal objective is achieved ofmegenting the vector defined byb [
¢) as a product in whichis a factor.

G. Jaumann has contrasted the Gibbs product dyatifica second one that proves to
be the analogue of the other ternary product thes defined above. We define the

“Jaumann product dyadic,” or Jaumann product, efuhctorsa andb to be the dyadic
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whose value for the directiom equalsa x (b x V) and thus writex x b for it (read:a —
cross -b). One again recognizes that one is dealing with a lifugeation of direction
since the direction cosines enter into the expresdimnthe components afx (b x V)
only linearly; e.g., tha&-component is equal t@, [b, cos’y) —by cos( X)] — ax [b, cos
X) — by cos(v 2)], etc. The nine-element matrix (whose first coluiobtained from the
present expression when one letoincide withx, y, z) then reads:

—ab-ab,  ab ab,
ab  -ab-ab  ab . (17)
a,b, ab,  -ah-ah

Whenc has the directiorv , the application of the product notion that was disediss
in 4 yields:
(axb)c=ax(bxV)c=ax(bxq), (18)

with which, in fact, the desired objective is achievedle will not go into the many
applications of the dyadic product of vectors in variousnbhes of mechanics and
physics here, but turn to the definition of the analogousejuts in motor algebra.

We define the firstlyadic product of two motofd and 23 to be amotor dyadic ;

B3 whose value for the unit motdrequals (23 (). If one introduces the expression
(3) in | for the scalar produ® [ then one obtains the value of the dyadic from:

UBLE +ABsEs + A BgEs+ 2B E4 + 2By Es + 21 Bs Es. (19)

The 36-element schema of the dyadic, which must inclndecomponents of the
motorsA By, A By, ..., A Bsas its columns, then takes the form:

AB AB - AB
MRARIIE (19)
AlBG e e ABBG

Since any element in this contains a componef @k a factor, it follows from this
that multiplying®2( will multiply the value of the dyadic to the samdent; moreover, the

values behave additively when one replaewith a sumd’ + 2(”. In other words: One
has the rules for calculation:

(A 2A; B) =1 (A; B), QU +2A") ;B = A B) + (A"; B), (20)
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and naturally the corresponding statements are trué 8r (23’ + 8", resp.). Wher€
refers to any motor, this yields:

(1, B) € =A (B ), (21)

so the expression on the right in (21) emerges from @®)ong as one replaces the
component&,;, By, ..., Es with Cy, C,, ..., Cg, here.

We now define theecond dyadic motor product of the mot2¢s2 to be the motor
dyadice x B (read:2 — cross -8B), whose value for the unit motdrequals( x (8 x
¢). The first three scalar components of this, théomassociated with the unit motdy
are the components of the vecfbix (B x ¢€), thus, they aré, (B; E; — B, E;) — Az (B:
E; —Bi1 E3), etc.; the other three are the components of thengick (5B x &, + B, x €)
+ 2o X (B x ), of which, the first one read8; (B; Es — B, E4 + B4 E; —Bs E;) — As (Bs

Eg —B1 Es + Bg E1 —Bg Ez) + As (Bl E,-B; El) + Ag (B3 E,-B; Ez), etc. One obtains the
schema for the dyadic when one focuses on the facfoEs,oE,, ..., Es Iin these
expressions, as follows:

0 0 0 ~(AB+AB) AB AB

0 0 0 AB -(AB+ AB) AB

0 0 0 AB AB -(AB+ AB)
~(AB,+AB) AB AB  -(AB+ AR AB AB AB AB AB AB

AB -(AB+ AB) AB AB+ AB -( AR AR AB AP AB AB

AB AB  —(AB+AB) AB+ AB AB+ AB -( AB+ AR AB AE

Since any element again includes a facta?idfas well as¥) here, one has the rules of
calculation that are analogous to (20):

AAXBW) =1 (AxBW), @A +2A") x B = @A x V) + @A" xB),  (23)

and naturally the analogous statements are true foetdomd facto23. Finally, one has,
corresponding to (21), and from the product definitiof:in

(AxB) €=AX (B x ). (24)

6. Product of two dyadics. The pursuit of the important question of how the 36
scalar components of a dyadic change when one chaas®s coordinate system leads
to the definition of a product of two dyadics. We figste the explanation for the case of
vector analysis.

Let A andB be two (vector-) dyadics whose values for a directiowere denoted by
2A (°B,, resp.) up to now, and IEtbe a third dyadic with the components. We denote

the product oA andB by " and write:
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F=AxB, if ¢, =BA,; (25)

I.e., therefore any value 6fis the value oA after it has been transformed By Since
the 2, define a linear function of the direction cosines, shme is true foB 2(,, such

that, in fact, a dyadic is defined by the second of 2§).( The value of for the x-
direction is€, = B 20 = Ay By + Ay By + A B, . If one takes the-component of this
then one obtain€,x = Aw Bxx+ Axy Byx+ Az By, likewise, they-component isC,y = Axx
Byy+ Axy Byy+ Az By, etc. The matrix off thus takes a form in which ti row and the
K™ column arise from a sum of three products whoseféictor is in theé™ row of A and
whose second factor is in thé' column ofB, where both sequences run from the
beginning to the end. One sees that by this definitiorptbductB x A is essentially
different from the produch x B. If one exchanges the two rows and columns in each of
the given dyadics then the elements are transpasesich a way that the nearest
neighbors remain nearest neighbors, and converselfesproduct that is defined after
the transposition is, by definition equalBo< A.

We would now like to pursue this argument somewhat mboeotighly in the
domain of motor analysis. We consider two motor dyaéicand B with the motor
component®A and923, and introduce a produEtof A andB by the following definition:

The product of a dyadid with the dyadi® is defined to be a dyadit whose value,
for an arbitrary unit motor€ is equal to the corresponding val&e, of the dyadicA
after it has been transformed by the dyd8liso:

Nr=AxB, when &,=B[,. (28)

Since®, is a linear function of the components @fthe same is also true fd, ,

such that a dyadic is actually determined by (28).
If we let € be the unit motor with the scalar components 0, 0, 0, @ then, from (5),

one can write the motdt; for 2(,, and one can write the corresponditgfor A, from

the given definition. From (14), the compone@ts, Ci», ..., Ci6 are calculated when
one now set8i1, By, ..., Bis, In place ofP11, P1y, ..., Pis, andAqs, Aga, ..., Ass, in place
of Mll, Mlz, caey MlB, SO.

Cll = A14 Bll+ A15821+ AlGBSJﬂ_ AllB41+_ AlZBS_}l_ A13B 1
C12 = A4BIZ+ A15822+ A16832+ AllB4?_ AlZBS_é_ A13B 2 (29)

The 6 expressions, the first of which will be writteut here, appear in the first row
of the 36-element schema for the dyalic The element€;;, Cyy, ..., Cos Of the second
row are the components &% and are computed in the same way from the components

Aoy, Az, ..., Age OF &€, In summary, one can write all of these expressiotise form:
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CIK:AI4 BlK+AI5 BZK+ A/G BGK"'A/l B3K+A12 BSK+ A/3 BGK1 (29)

or, more briefly, in the form:

6
Cix= z Ap Bp+3,K ) (Zg)
=1

in which naturally the indices that are higher than 6 as®wes modulo 6; i.e., for 7, 8,
9, one sets 1, 2, 3. These conventions yield the fallpwale for the formation of the
product of two dyadicsOne obtains the element in tHerow and thex" columnof the
productl” as a sum of six products of two factors; the @utof is given by the sequence
of elements in thé"irow of A, while the other one is given by the elementheflf
column ofB, after the sequence has been (cyclically) permuyetthitee places.

The definition and formulas (28) and (29) tell one nothimgenthan the fact that the
operation that we have now defined is associative aad rthultiplication by a scalar
distributes with the addition of dyadics; i.e., omeh

A(A x B) = (JA) x B, Fx(A+B)=FxA+lxB. (30)

On the contrary, the commutative law is not valichen, when the roles & andB
are switched, the elements of tifferow of B and thek™ column ofA appear in (29.
One then has:

Fr=AxB, andsimilarly I'"=B"xA’, (31)

in which the symbols with an accent denote the dyathed come about under
transpositiont i.e., switching the rows and columns — of the onesowitlaccents.
A second associative law of practical utility is exgsed by the following formula:

(AxB)xT =Ax (BxT). (32)

In order to prove this, one only observes that, froni)(2Be element with the indices
1/, Aon the left-hand side is the double summation gvand x of A,, Bpiax Casa i ; here,
if one combines the second and third factors for a fixdten this gives the element with
the indicesp + 3, A of the producB x I', such that the total sum also yields the right-
hand side, with the addition of the first factor oé #lement with the indices A. The
brackets may thus continue to be omitted in writing ddventriple products.

7. Coordinate transformation. One finds applications for the product concept,
above all, when one deals with the representatiometransition from one coordinate
cross to another. Let — first, in the context ofteealgebra ', y', Z be the new (right-
angled) axis directions and I€t be an arbitrary vector dyadic with the components
(referred to the old axig, py, Pz (Pxxs Pxy, ---» Pzz, resp.). If we briefly denote the cosine

of the angle between a new axis and an old one by dgmbbrackets:xX), (xy), etc.,
then we have the value of the dyadic in ¥aéirection in the formp,(xxX) + py(yx) +
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pAzX). In order to obtain the components of this vectolordxample, for they/-

direction — we must we must add the three componete i y, andzdirections, when
multiplied by &y), (yy), and gy), resp., in sequence. One then obtains:

Pry = (XY)[PdXY) + PydyX) + Pex(zX)] + (YY)[P2AXX) + Pyy(yX) + Pz(zX)]
+ (@)[PAxX) + pAyX) + pAzX)], (26)

and analogous expressions for the remaining componentgie ifiow introduces the two
vector dyadic€2 andQ' that arise by transposition, and whose matrices l&ek li

(xxX) (yX) (zX (xX) (xy) (x3)
(xy) (y¥) (z9); and  (yx) (yy¥) (Y9, (27)
(xZ) (y9) (23 (zX) (zy) (23

then one finds that the three expressions in the stuac&ets define precisely the three
elements of the first row d x IN. If they exist as products whose second factor is
always taken to be the first row Qf, while the other factor comes from the first, sekon
and third column ofT, resp. Now, these expressions are multiplied in seguby the
elements of the second column®f Therefore, the expression (26) defines the element
of the first row and second column of a product dyadkt dbne can write in the forn@(

x 1) x Q". However, since one also finds in the other combinatidtise terms in (26)
that they define the analogous elements in the prdductl1 x Q'), one may also drop
the parentheses and say:

One obtains the components of the dydditor the new axis crossyz from the
components of the produ& x I x Q', when referred to the old axes, wh&e Q' are
the dyadics that were defined(17) in terms of the direction cosines.

In the context of motor algebra, the coordinate tamshtion means a transition from
an axis cross with the origim and the axis directions y, zto a new reference system
with o' as origin and the axis directiors y', Z. The vector that reaches framto o',
when referred to the old directions, has the compasraitt, ¢, while the nine directions
are established in terms of the old ones by the ninetiirecosines (27). We ask: What
do the scalar componenB, of a motor dyadid1 look like they are when referred to the
nine axes if the old components are given By, ..., Pss? In order to respond to this
question, we consider six unit motéts ..., &,, of which, the first three, when regarded
as dynames, are pure force couples with moment vectdeagih 1 in the directions of
the nine axes, and the last three are individual forEesjwal magnitude and direction

that act ono’. The components of these six unit motors, referoethé old axis cross,
yield the following schema when written in successivemois:
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0 0 O (xX) (yX) (zX)
0O 0 O xy') (yy) (zy)
0 0 O xZ) (y2) (29)

, 33
(xX) (yX) (289 16 zZ3— € yx (c B (azx (a’yx ( b) 9

(xy) (y9) (z3) 6 2y- € yy (c Xy (a2y (ayy (b)
(xZ) (y9) (23 b Zp- (c Yz (ckz (@)yayd) - lf X3

(N V4

For the values that the dyadicassumes in succession for the six unit mo#jr¢o
¢, , we must define the six components relative to thead@s/cross and combine them:
They are then the desird®| . Now, the value offl for & is, from (5), equal to the sum
taken fromp = 1 to 6 of3,3E , and itsk" component (relative to the old axis cross)
equals the sum d,3, E ;. From the six old components that this formula dedier

k=1, 2, ..., 6, one defines the component that corresponitie tonit motor from (4),
when one multiplies these components by the compooér@s in the sequence 4, 5, 6,

1, 2, 3, so the valu®; is represented as a double sum according to:
R/'l = z E/’p Pp+3,K El K+3 " (34)
P.K

This expression agrees precisely with the one thatgnes above in connection
with (32) for the general term for the components tffde product, when one replaces
the symbolB with P, and now writesE,, for A, and E,, for C.y . Thus, we have the

theorem:

If a new axis cross is given by the displacementovea, b, c, and the direction
cosinegxX), ... (z2) then one defines the motor dyafiovhose schema {83), and the
one Q' that arises from transposition; the elements & pgroductQ x 1 x Q" (when
referred to the old axis) are then equal to theredats off1, when referred to the new
axis cross.

The complete analogy between this theorem and theironector analysis that was
discussed above is immediate.

If the coordinate change is a pure translation (pureisataesp.) then the schema for
Q assumes the simpler form:
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0001 0 O 0 0 0 (xX)(yx%) (2%
0000 1 O 0 0 0 &y) W) (z¥)

1 Z Z z
0000 O | 0 O o' (x)(y)(z),resp. (33
1000 c -b (xX) (yX) (z®% O 0O O
010-c 0 a xy) (yy) (zy) O 0O O
001b -a o (x2) (x2) (z2 O 0O O

If one sets, b, c equal to zero in the first case, or makes the anglkeelesix andx’ in the
second one equal to zero, etc., then one arrives atraiat contains nothing but ones
in the two three-rowed parallels to the main diagonat, Zeroes everywhere else.
Multiplication by this dyadic leaves a motor, as wedl any other arbitrary dyadic,
unchanged; one is then justified in calling it the “idgrdyadic,” or unit dyadic.

The dyadicQ whose schema is (33) (its transpose, resp.) can alge teerepresent
the transformation of a motor to a new axis crossie @eeds only to imagine that the
componentsM, of a motorMt, when referred to the new axis cross, equal the values o

1 for the unit motorsE,, so:

M = S ELM, ., = EiM, + E,Mg+ ... +E.M, . (34)

10
P

If one compares this with (14) the one sees that theugtQ )t gives the motor
with the component$/; :

One obtains the components of a md relative to a new axis cross when one
defines the old components of the proddcidIi.

8. Infinitesimal transformations. Application to the inertia dyadic. For the
applications in mechanics, it is worthwhile to also ad#s continuous coordinate
transformations, as would relate to a continuously-ngpveference system. It is most
convenient to introduce both the concepts of time aratitglhere. We thus assume that
the axis crose’; X, Yy, Z coincides witho; x, y, z at timet = 0, but then moves with the
velocity motor —&, such that &, is the velocity vector of the origin ard® represents

the rotational velocity vector of the new axes withpees to the old ones. The
components of &, dt serve as the displacement magnitualds, c of 7, while the three

direction cosinesxK), (yy), (z2) differ from 1 only by quantities of second orderdin
such that one must set them equal to 1. The valuéyfg, as one easily sees, equal to
the angle between theaxis and the projection of theaxis onto thexy-plane, up to
terms of higher order, and this is5s dt. We would like to the subtract the unit dyaHic

(i.e., drop the ones in the parallels to the main didydnam the dyadicA that is
constructed from these values using (33), and divide whainsigdt. The dyadic that
thus results, which we cal, has the following schema:
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0 0 0 0 -G, G,
0 0 0 G 0 -G
0 0 0-G G 0 -
0 -G, G 0 -G G
G, 0 -G G 0 -G,
-G, G 0 -G G, 0

If one now transposes the rows and columns then tine $hing results as when one
switches the plus and minus signs everywhere — i.e. has@ = — O, while one hag&' =

E for the identity dyadic. The elements of a dyddicelative to the new axis cross are,
from the results of, equal to the elements @@t + E) x M x (O’ dt + E) and, sinc& x

M =N xEis equal to:

(Ox M dt+M)x (O dt+E)=(©x M +Mx0O)dt+M.

up to terms in second order. If we now ask what theghas that the elements Gf
experience during the motion, and divide this change byintreeunit, in order to obtain
finite quantities, then we have to subtrBicfrom the present expression and then divide
it by dt, and what finally remains is:

%}-Oxn+nx0:0xn—nxo (36)

The fact that we have the derivative [dfwith respect to time on the left-hand side is
justified as follows: If we imagine that the motor digafll has unchanging elements
relative to an axis cross that moves with the vgjoti® (like, e.g., the inertia dyadic of

a rigid body for a system that moves with the bdtgh in the timelt a reference system
that is at rest in space acquires a displacema®itdt compared to the moving one and

(36) gives precisely the change — during the time intelvalthat has experienced, as
seen from the system at rest. The dy&lis naturally determined by the velocity motor
& alone. It is convenient to also express in the notatmwh— with the introduction of a

dyadic product of a motor with a dyadic — write (36) as:

dan

=& x. 36
o (36)

Therefore, the agreement between \a@d (36) serves as definition of this product.
The expression (36) enters the dyadic algebra in plhtee expressio® x Mt of

motor algebra that was mentioned at the conclusioh7ofwhich gives the temporal
change of a motd®t that moves with the velocitgs. One also easily convinces oneself

that & x 9t is identical toO' [T, by examining the components.
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The practical meaning of the formula (36) derives, aladlyérom the fact that allows
one to write down the changes in the 36 componenik iafa purely schematic way by
applying the multiplication rule fo6. One has, e.g., when we write, for the sake of
clarity, u, v, w for G, Gs, Gs andw, a, a for G, Gy, Gs:

dP
dil == C%le + a)ZPZl_ w3P12+ w 2P13
dR, _
W - _C’%P24 + w2P34_ WP12+ Vag_ a)3PlS+ w 2P16
dP, (37)
d_:l = _wsp42 + w2P43_ WP31+ V%l_w3|351-+_ w 2P61
db, _
T - _WP24 + VP34_C‘)3 F?r)4+ w, %4_ WF312+ VF?B—CU 3 thé" w 2R1

The value of the general transformation formulaghe foregoing section becomes
much clearer when we apply them to the examplé@fiertia dyadic. From (11), the
inertia dyadic, when we place the origin of theerehce system at the center of mass and
the axis directions in the principal axes of ingrttonsists of elements along the main
diagonal exclusivelyP11 = Py, = P33 =m, Pggy = J1, Pss = Jo, Pss = J3 . In the double sum
(34), then, there are only non-zero summands, foclwp + 3 =«. Therefore, (34) must
be replaced by the simple sum:

R/'( = z E/',)(+3 F}){ El X+3° (38)
X

' one must multiply the elements of tieand A™
rows of the matrix (33) that are above or belowheather and then add this to the
corresponding term in the main diagonal of thetiaedyadic as a third factor. One
easily convinces oneself that nothing remains & fitst quadrant of1 (1< 3, 4 < 3)
except for then in the main diagonal. Far= 1,1 =5, one obtains:

In order to obtain a well-define®®’

mOx{ b zy - € v H Yk(cky-(a)kyt Nzk 2w B (38)
=-max)+ 1§ ya+ € 2.

The equality follows from the well-known propedythe matrix (27) that each of its
elements is equal to the associated sub-determsindltte expression itself is obviously
the static momen; that, from (11), belongs to the inertia matrixlas location. If we
now look for the element = A = 4 then when we consider the properties of (2&) w
obtain:

=300+ L(YRP+ I P+ @B Y 38
with b=a(y)+ Hy)+ €2y, ‘= &% (b Y7 (cF

One thus succeeds in the most general transformtationula for the inertia dyadic, and,
when one chooses, perhaps,4, 1 = 5, the deviation moment. One obtains the skedal
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Steiner theorem of parallel translation witx} = 1, ..., &y) = 0 in the formJ; =J; +

m(b® + ¢ and from this, one sees its actual source.

We would like to apply the infinitesimal transformatithat is expressed by (37) to
the general form of the inertia dyadic, for which no sgdeed origin-reference system
will be assumed. When we replace the values in (11th&P,, in (37) this then shows
immediately, that non-zero derivatives appear onlthatlocations in (11) that are not
filled with zero of the valuen; e.g., forr=A=4,1=5,1=6,and = 2,1 = 6:

B =ows +2v5+ 20, D- 20, D,

% = ai(‘]l - ‘]3) + a)sDz_ w2D3+ W82+ V% (39)
a5

LEmuta S-S

These formulas are important for the general Areséatzhe equations of motion of rigid
bodies (cf., lll,1 and2 for this).

9. Invariants of the dyadic. From the mathematical standpoint, it is of giatdrest
to ask what expressions are defined by the elemants dyadic(and therefore, what
functions of these elements) that preserve thdimevavhen one replaces the original
elements with the values of the elements that trésuh a transformation of the reference
system. Here, the question of the “invariants’lisba treated only to the extent that is
meaningful in the applications.

From the calculation i@ and8, as well as the original definition of the motgadic,
it emerges that the “first quadrant” of its matexransformed “into itself,” and indeed in
exactly the same way as the matrix of a vector idyald we apply, say, the formula (34),
which allows one to express a new elemBhtin terms of the old onB,,, to a number

pair /A that runs through the values from 1 to 3 then shisws that well-defined values
of E' can only come from the first three rows of (33{owever, they contain only
direction cosinesxi), (xy), etc., and are zero whenever not oplybut alsox + 3 is
greater than 3; this further implies that only eswfP whose indices both lie between 1
and 3 (inclusive), have any influence on fieunder scrutiny. We thus first need to
consider the invariants of the first quadrant af #ntire matrix, which we regard as a
vector dyadic, which also immediately shows uswhg to deeper investigations.

In order to determine the invariants of a vectgadic, we start with its definition,
from which any direction in space will be assodatégth a vector by means of a certain
linear eq. (21), and then ask what the directioase whose associated vector falls in the
+ v or —v direction. If we denote its length by and likewise the elements of the vector
dyadic byPi1, P12, ..., P33, then the direction cosines of the desired dioectr must
satisfy the three equations:
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AcosfX )= B, cos¢x} B, cosyyy B, cos(z),

Acosfy )= B, cosgx )} B, costyd B, cosyz) (40)
Acos@Z )= R, cosiyx} B, cosfy} B cosyz)).

which arise from the component decomposition of (2). odder for these equations,
which are linear and homogeneous in the cosines, to dagdution, it is, as is well-
known, necessary and sufficient that the determin&nhe coefficients vanish. This
again delivers an equation of third degred:in

AB_AMB+AA-A=0, (41)

through whose three coefficiems, A;, As the value ofA can be determined. Since, by
the definition ofA, the coordinate system can play no role, theseust be invariants.
One easily computes thAt is the sunP;; + Py, + P33 of the coefficients that occupy the
main diagonalPs is the entire determinant Bf(whenA is set to zero), and; is the sum

of the elements of the main diagonal to the adgutt-determinants. One then obtain the
three invariants of a vector dyadic, but likewise asesubset of the invariants of the
motor dyadid1 in the form:

[N

40 U SO
WU 0 U
N
wU U U

N

PZZ P23

A1 =P11+ P+ P33 A=
P, Py

,  Ag= (42)

+ P33 P21+
As R

1 2

We can now apply exactly the same reasoning in orderdonvariants of the motor
dyadics. In order to not revert to the unit screws,use eq. (14) as the basis and ask
which motorsdt have associated motd®' that differ fromt by a scalar factod. If

we set the left-hand side of (14) equalitt;, A M, ..., A Mg Iin sequence then this
gives six linear, homogeneous equations for ke whose solubility condition is
expressed by the determinant equation:

R. Py P, Pi=4 Ry P

R, Py P, P P4 P2

Rs Py Pis Pis P P4 -0 (43)
Re=A Py P Pu R Pos

Ps Ps=4 Py Pis P Pes

Fe Ps Pe=A Py P Pes

The six coefficients in the equation of sixth degree A, which is identical with the
present one:
A By A+ By A*—B3 A+ B4 A —Bs A + B = 0, (44)
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are our new invariants. One sees, with no furtharmagtons, thaBs is the determinant
of all 36 elementsB; is the sum of th® that are next to thd, B, is the sum of certain
sub-determinants of second order, and in all:

Pa,a+3 Fz:,ﬂ+3

B=2 R B2 10" o

a,B|" B.a+3 T B[+3
Pa,a+3 Fz;,ﬂ+3 Fz)r£+3 P14 Hs Pl (45)
Bs - Pﬂ,a+3 F}?,ﬂ+3 FZJ£+3 Be — Pz4 st Pz
0S5
Ps,a+3 Ps,ﬂ+3 Fg£+3 %4 Pes PG

The summation symbolg, £, ... run through all combinations without repetition of
the numbers 1 to 6, where, as always, indices that egweater than 6 are replaced
with the same number, reduced by 6.

10. Symmetric dyadics. In the applications, one is mostly involved with tase of
symmetric dyadics. Therefore, it will now be assdnthat the 36 elements of the matrix
of N satisfy the 15 conditionB,, = P, , SO the schema of the dyadic is symmetric with
respect to the main diagonal. One can then arriveeainvariants (45), and likewise
(42), by following a somewhat altered line of reasoningonl forms the scalar product
of a motor))t with the motoB)t’ that is associated with it by means of the dy&atiten

what arises is a form of second degree in the compekkrib Mg whose coefficients are
theP. If one subtracts from this form, the expressigél; M4 + M2 Ms + ... + Mg M3),
whose value, from | (3) is independent of the refererystem, then this produces a
guadratic form whose coefficient matrix is written dowr{43). Setting the determinant
equal to zero delivers the value dfor which the positive-definite character of the form
can vanish, which thus represents an invariant relationshigr woordinate changes; the
coefficients of eq. (46) are then invariants. Howewee can now go a bit further and

also subtractd’(MZ+MZ+M2) from the original form; i.e.d’ times the square of the
length of the first vector component®t. With the difference®s4 — A', Pss — A", Pss —

A", in place ofP44, Pss , Pss, What results from setting the determinant equal to Bean
equation in4, A" of the form:

A°=BA*+(B,~ AN)A*~(B+ BANA*+(B-A' B+ M)A (46)
~(B, - N'B+ATEDA+ B B+ BA - A1 =0,
The coefficientsA; to As and B; to Bg are the ones that were given in (42) ((45),

resp.), while the other ones represent six new invarizat can likewise be computed as
certain determinants; e.g.:
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[N
N

S0 S0 0 T
S0 0 S0 0
S0 40 0,0
.0 U U T

N

w

[y
N
w

B

o=

2

Foe R
. Bi=> 1P, P, Py | etc.  (47)
B

sy
w

For thea, B, ... one now takes only combinations of the numbers frotm 2, while
considering the constraint that was imposed abovééother ones.

The evaluation of the question of whether the expvassihat were given in (42),
(45), and (47) are all independent invariants, at leash®symmetric case, leads to the
following argument. We prove:

If A1, A2 are two different roots qf44) then the associated motd® and 9)t', which
are defined by the equations:

ALt =N Y, A2 " =1 ", (48)
are mutually orthogonal

Namely, if one multiplies the first of the scatguations byt” and likewise, the
second one bPt’, then one obtains:

(AL —A) v DO” =<,t"(N ') — o' (N D).

Application of the multiplication formula (13) showhat the & component of the
product that appears in the first bracket on the righthe sum oP,..3, M, over/, so the

first expression on the right is the sumMf{ P.3, M, over/ andk. The exchange of

M" and M", which leads to the second expression on the righd-s&de, is equivalent
here to the exchange of the indigeg, which does not change the sum, however, due to
the symmetryP,, = P4, . With this, both expressions are exactly equafpgai” = 0.

Q. E.D.
The theorem:
A (N B) =B (N B3A) for symmetricll (49)

will find an immediate application later on.

We now know that — except for the case of multipetsaf (44), which nevertheless
presents no complications here — the six unit motorsghwtihange only by numerical
factors Ay, A, ..., As under the linear transformation that is determined byPtheare
pairwise orthogonal to each other. The entire transtion is obviously determined by
the given of these unit screws and thiat correspond to them (as a general “affinity”).
Now, six unit screws possess 30 independent determining dlat. gives 65/2 = 15
orthogonality conditions and 6 line segments, whicll@sthes the entire system (as a
rigid body) relative to the coordinate cross. Thérestremain 9 quantities, in addition to
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the 6 values of the roots, so, in total, 15 determining datthéolinear transformation.
Since we now have also found 15 invariants in eq. (46) weassyme that their number
is therefore exhausted.

An overview of the possible forms for the transforiomtthat is the result of a
symmetric dyadic must start with a discussion efslistem of six orthogonal motors. If
we then base the definition of a dyadic on such aftdd right-angled system” of the
general form, instead of a Cartesian coordinate sydtemwe obtain a very symmetric
representation. Now, let us choose a very specssd, oahich seems to dominate the
applications (inertia dyadic in B, elasticity dyadic of a rod in IW). Here, the six
principal motors have an ordinary right-angled axissaisany two edges; thus, any time
the two coaxial motors are “orthogonal,” fror8,lit is also necessary and sufficient that
they have equal and opposite pitches. If we call ttehgst a, £ £, £ ythen the unit
motor with the components 1, 0, &, 0, 0 must go tol;, 0, 0, 414, O, O under the
transformation. If one substitutes this in (14) thea obtains:

A1 =P11a+Pa, 0=P11a+Ps1=Pioa+Psy,
A =P1aa+Pas, 0=Pi5a0+Pss=Pisa+Pss.

SinceP14 = P43, the first and fourth of these equations shows thatnoumst havé,, = P11

a’, while the other ones show that it must follow tRat= P13 = Pi5 = Pig = P> = Pag =
P45 = Pyg = 0, since they also must be true foo— If one repeats the argument for the
other two axes then one finds that the matrix thatweeconsidering — the “completely
symmetric dyadic,” as we would like to say — appears besw® when referred to the
principal axis cross:

PR, OO R O O
OR,0 0 B, O
0 0P, 0 0 PR
P, 0 0a°R, O O
0PR, 0 0 BPR, O
0 0R, 0 0 VR

i.e., they now include non-vanishing elements only in tle@nndiagonal and the two
parallel “half-diagonals.” From (46), the equation Jfois easy to solve, and it delivers,
when we again writ€,, instead of? Py, etc:

A, Ao =Piat 1/F)11|:P44, A3, A4:P2511/P22|:P5 , s, A6:P3Bi«/P33|:PeG-

One sees that — as compared to the case in vector algebwa cannot conclude the
reality of A from the symmetry of the dyadic.

We would now like to thoroughly consider a series of appbns of the concept
definitions and formulas that we developed here to thehamacs of rigid bodies,
elasticity theory, and hydrodynamits

') Section Ill appears in the next issue.



