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 As is known, Hölder and Voss (1) have presented the principle of least action in the general 

form: 
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t
L dt L d t U dt    +  +   = 0 , 

 

in which L represents the present energy and U   is the elementary external force, and time is also 

varied. That equation is true for all purely-mechanical processes, but breaks down as soon as the 

principle is applied to reversible, not purely-mechanical, processes, e.g., to thermodynamics, 

electrodynamics, etc. It would then be advisable to write the principle in the form: 
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H dt H E d t U dt   + +  +   = 0 ,         (I) 

 

in which H is now the kinetic potential, which is a function of the general coordinates pi and ip , 

U = 
i iP p  represents the elementary external work, and the quantity E, which later proves to 

be the energy, is defined by the relation: 

E = i

i

H
p H

p


−


 .     (II) 

 

 Namely, if one imagines that in our case the variation   of a velocity   obeys the rule: 

 
 (1) Göttinger Nachrichten, 1896 and 1900. 
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  = 
d d t

dt dt

 
− , 

then one will find that: 
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or when one recalls (II): 

 

H  dt = [ ]i i i

i i i
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dt p p dt p E H dt
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and 
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since the term i

i

H
p

p





  vanishes at the limits. That will then yield the generalized Lagrange 

equations in the form: 

i i

H d H
P

p dt p

  
− + 

  
 = 0 . 

 

 If one multiplies those equations by 1p , …, ip , … in succession, adds them, and integrates 

over time then (as is known) one will find the equation for the conservation of energy: 

 

d E = 
i iP dp , 

 

such that the E that is defined by (II) will actually represent the energy. One sees clearly from (II), 

as Helmholtz had already emphasized, that E is defined completely by H, but H cannot be 

determined uniquely from E. Namely, if F represents a linear function of ip , such that one has: 
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then one will also have: 
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such that H can then be increased by the arbitrary F, and the same E will nonetheless emerge from 

that. 

 Conversely, if the kinetic potential H is known for a reversible process then E can be calculated 

uniquely. It is only for purely-mechanical processes that one has H = L − , E = L + , in which 

 represents the potential energy. 

 Knowing the kinetic potential H as a function of pi , ip , and the external work  U = 
i iP p  

=  E makes it possible to apply the principle of least action even in those cases of reversible 

processes that are foreign to mechanics. If the variation of time is excluded, i.e., d  t = 0, then one 

will get back to the case that Helmholtz treated. Examples of that kind were found by M. Planck 

in the “Acht Vorlesungen über theoretische Physik,” pp. 100, et seq. 

 Here, all that shall be shown is how the equations of motion for an electron can be derived 

from the known kinetic potential H. One has: 
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where 2q  = 
2 2 2x y z+ + ,  is the mass for q = 0, and c is the speed of light. One then finds the 

kinetic energy: 
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and easily obtains from the rules above that: 

 H  dt + (H + E) d t = 
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 If one sets  U = Fx x + Fy y + Fz z and integrates over t in the sense of (I) then that will 

give: 
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 = Fx , … 

 In so doing, as is known: 

Fx  = [ ]x z y

e
e y z

c
+ −E H H  , …, 
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in which E is the electric field strength, H is the magnetic field strength, and e represents the charge 

of the electron (1). 

 

__________ 

 

 
 (1) Cf., Einstein, Jahrb. der Radioaktivität (1907), pp. 433. – Max Planck, loc. cit., pp. 123. 


