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A point min a system of particles might move fr@o b in time 7, if it were free,
while its actual motion is represented by the line segmaat It is known that the
principle of least constraint th&aussexpressed will then say thatm [(bc)®> must be a
minimum, or that one must always hayem Obc)? < Y m O(bd)?, whenad is a virtual
motion (i.e., one that is consistent with the ctinds on the system). K vy, z are the
coordinates of the pointh on which the forcesn X m Y, m Z should act then any
coordinatex will go to:

in a very small timer under the actual motion, and:

x+%r+éx r’
dt 2

for the free motion, such that the square of theiatien bc® or the square of the

4 2 2
coordinate differences will be equal t{%{(%—xj +} One then has an

expressior that shall be called theonstraint(from the GermaZwang and that takes

the form:
d*x ’ d’y “(kz )
Z=>Ym||l—-X| + -Y| +| —- ,
2 Kdt2 j [dt2 j dt®

in which the summation extends over all particlg] this is the function that must be

. . . .d’x d’y d*z
minimized in regard to the various acceleratlegts[, prakivrel
written briefly as X, y, Z, ... If one differentiates the condition equatidons the

system¢g; = 0, ¢» = 0, ... twice with respect to time then, as woutdeege from the

..., which shall be
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derivation above Y, one must currently regard the coordinatesand their first

. . : . _d? 09 .
differential quotients agiven The equatlondez 0 expresses only that thae{ix + ...
must possesgnvaryingvalues. For given values afanddx / dt, the X shall then be
determined in such a way thZatwill be a minimum. One will then get the known
equations:

YUY RO S,

Now, n mutually-independent variables, pz, ps, ..., pn Will be introduced in place of
the coordinatesg, y, z ... such that the virtual work will be equalRe dp; + P2 dp2 + ...
+ Pn don and thevis vivawill be equal torl = %Zam P, P, , in which theP, and thea,; =
KA

a,« depend upon only the coordinates, and the Greek symbols molfito n, as they
always will from now on.
Then, ad.ipschitz showed lpc. cit, pp. 330), the constraigt will be expressed by:

_ AW{ I {11] . {12] . }
Z= q, Bta, Rt TRRT AR
%;A g g U U

y y 1. . (12) .
X18y Pt a, Pt t y R At Y Rp+-— P
in whichA represents the determinant of theg andA,, represents the adjoint:
_ 0A
(A&lv - aaﬂv j’

{K/ﬂ _1|0a, +6aﬂ, _da,,
M| 2| dp, dp  Ap, |

and one sets:

The expression foZ will become clearer and more suited to (some) ichys
problems when theis vivaT is introduced. Namely, if one sets:

491 _oT

“ dtap, ap,
then €) one will also have:

() Lipschitz, Borch. Journ., Bd. 82pp. 316 (Rausenberger Mechanik | pp. 166). Gibbs,
Supplement 1V, pp. 319.
() Cf., e.g.Rayleigh, Sound pp. 111 (in the German translatior§tackel Borch. Jour107, pp. 322.
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e i [12]
=a,bra, bt BBt R

and one will have:

Z= ; AﬂAV [Ty—PJ [T, - Py, )

All(Tl_ Fi)z'*' A&z(Tz_ P2)2+"'
+2A,(T, = B)(T,— B)+--
+2,(T, = P)(T,~ B+

>~

Since this expression for the constraintvould seem to be new, it would not be
irrelevant to show that one comes to the Lagrarget®ons when one addresses the
minimum condition forZ. Therefore, as a result of the remark above,must regard

the quantitieg; and p, asgivenor fixed in the differentiation o with respect top,,

and make use of the relation:

oT
o = Quk = Ay

P,
One then gets:

pl_za“‘ YT, - P)+Z%Aﬁ(T R),

or, since those sums are equal to each other:

a- ZZ% A, (T,

or

ESM-R)Ya, A= ST -R)la At a At

Now, from a property of the determinant tla@t Ay, + a;2 Aoy + ... = A Or zero

according to whethev = 1 orv > 1, so it would follow from? = 0 that one must also
B
haveT; —P; = 0; i.e., Lagrange’s equation:

doT 0T

—— T — —F

dtop oJp



Wassmuth — On the application of the principle of leasstaint to electrodynamics 4

One can find even more expressions for the constzainta way that is entirely
similar to the way that one exhibiguxiliary forms () for Lagrange’s fundamental
equation.

It is important for the applications to note that toastraintZ can be represented in
such a way thabne acceleration — e.g.j3 — will appear in it detached from the

remaining ones. One ha&:0A = (L, p? +2M, p,+ N,), in whichL;, M;, N; do not

include p,, andL1 andM; can be easily found from the equatig_%r =0.
P
If the virtual work ZPﬂdpﬂ and the vis viva F %Zam P, p, are given for a
7 KA

physical problem then the constraint on the systam be determined by means of
equation(l). The minimum property of Z expresses a law for fetesn — which is
certainly new in many cases — and entirely distifnotn the fact that other, perhaps
already known, laws would follow from Z by actuifedtentiation.

That is how, e.g.Boltzmann has derived Maxwell's equations for electricity in a
wonderfully simple way from Lagrange’s equations in vauhof his lectures, and thus
supported it by mechanical processes. It illuminated dbe that one could also start
from the principle of least constraint in the form exfuation (I) above as the main
theorem, and once the virtual work and vivawere given, one would have to arrive at
Lagrange’s equations by appealing to the minimum condiadong with Maxwell's
equations — in which one now proceeds entirehBakzmann did. If it might also
become very hard to simpligoltzmann’s classical methods (especially in Part 2 of his
lectures) any more in that way, nonetheless, the tond = minimum will, after all,
express aewly-recognizedruth.

As an example, one might consider the case of tyeticccoordinatesp, = |, and

p, = |, (the slowly-varying parametekswill be ignored temporarily). Here, one has:

o . . . A I B I I I
T=ia,p+tia,km+ia,pp= 5I12+3I22+CI1I ”

when one introduces Boltzmann’s notation. It willrtHellow that:

aq = A, ax =B, a2 =C,
A C
= ‘ ‘ =AB - C,
B
A11 =B, A,=-C, A=A,

d I 12 d [} [
Ti=(AL+BL), To= (B +Cl).

() Weinstein, Wied. Ann.15. Budde, Mechanik J pp. 397.



Wassmuth — On the application of the principle of leasstaint to electrodynamics 5

In addition, when there is friction or viscosity, tissipation functionl@c. cit., pp. 108
and 109) that Rayleigh exhibited might be denoted by:

F= %Z(lef'*'"'): %bn pf'*’%bzz p22+% b12 'pl'p:-

As is known, one then adelsgp—F to the force?, =L, . Itis also clear thdt;, = 0, on
U
intrinsic grounds.
Ultimately, the constrairk will then be expressed by:

ZOAB-CG) = B[%(AIHCE)— Ll—bn"l}

PP I IO,
—2c[a(Ag+C|2) L, b11|1}[dt(A|2+C|]) L, blq

2
+A[%(Alé +Ch)-L,-b, llz} '

andZ must be a minimum, in such a way that one willdm%l%L =0 and%: 0. Inthis
1 2

(Boltzmann |, pps. 34 and 35), and I, represent the current strengths in the two

conductors; andb,, are their resistancek; andL, are the electromotive forces in
them,A andB are the coefficients of self-induction and, &da the mutual induction. If
condenserddc. cit,, I, pp. 35) are also included then terms of thenfd, |; andd, I, will
also enter into the brackets.

The conditiorZ = minimum then expressesasic electrodynamical laand implies
the theory of self-induction and mutual induction €urrent fluctuations that are not too
fast. If one would also like to include ponderoivetforces then one would have to
introduce a slowly-varying parameteralong withl; andl; as a third variable, exhibit the

general expression fa£ and construct the equatio%%z 0, in whichk and k are

assumed to be constant. Oafgerwardsdoes one také& = 0 andk= 0 and obtain, as
Boltzmann did, the relation:

9T __IP9A_129B_,,0C

K=——=-L1 2
ok

20k 20k ‘29K’

Acoustics also serves as another field of appdinat for the principle above.
Frequently, only purely-quadratic terms with constaoefficients appear in the
expression for theis vivain that context, which makes the equation for ¢bastraint
take an even simpler form;
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If one introduces the abbreviatioh, — P, = Q, then the constrairf will be given
by:
Z =2 A, T -BXT-B =2.Q,Q
Y78 Y78

= A QF+2AQ Qo+ ... +2A,, QL Oy
+A, Q2+ ... + 2P0 Q2 Qn

+AQ
.. 0Z .07
The condition— = 0 can be replaced with—= 0. Namely, one has:
ap, 0Q,

0Z _0z 0Q, , 9Z Q,
app aQ]_ app 6Q1 app ,

or, since:
9Q, _ 0T, _

m, o,

Vo »

one will have:
0Z _ 0Z 0Z 0Z

+ +...43 ——
b, *aq . aq, | ™aq

(=1, ....n).

Since the determinaf = | a,, | does not vanish, it will generally follow froresen
equations that:

a_z =0

0Q,

If one actually differentiates the expression abthen that will yield the equations:

Ea_Z:A1VQ1+A2VQ2+,__+AvnQn:0 v=1, ...,n),

20Q,

and since the determinanf/, | = D" can never be zero, that will, in turn, imply the
Lagrange equation§:; =0, ...,Q,=0.

If the forceP has a potentidl, such thaP, =-0U / dp, , and the conditions do not
include timet explicitly then one will have, on the one hand; it vivain the form:

or
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LT d(aT), T
a Patlap ) Pap

whereas, on the other hand, sificie also a function gb;, p,, ..., one will have:
dr_ . oT . 0T
= + + ...

E - pla pla
Since:

it will follow upon subtraction that:

dT

ST RTERT

to which, one adds:
du ou
—=—p+..=—pP-pPBP+..
at aplpl PbE-R K

and sincel, — P, = Q,, one will ultimately arrive at the equation:

d(T+U , ; .
—( d: ): A+ P Q+ -+ R Q=R

One sees that fd@; = 0, ...,Q, = 0, one will also havR = 0; i.e.,T + U must be equal to
a constant, or that the principle of the conservatibanergy must also hold, from the
Lagrange equations that were found above. Both of therhecabtainedgimultaneously
when one eliminates one of the quantitigs e.g.,Q; — with the help of the relatioR =

p,Q+ ... and presents the minimum conditionag(:%: 0, %: 0 afterwards. It is
1 n

preferable to use the determinant form for the constéaintthat. For example, far =
3, one has:

0 Q Q Q 0 R Q@ Q
_ Z I:D _ Ql ail a12 a13 _ i R Q1 QZ QS
- - .2 ’
QZ a21 a22 a23 pl QZ bZl a22 a23
QS a31 aSZ a33 QS Ql aSZ a33
which will make:
) ) ) oT .,
b1 = (8, P+ &y Dot By P+ ... =— P+ ... = T,

op,
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) ) ) oT
o1 =biz=a, p+a, P+ a,p=—,
op,
) ) ) oT
b31:b132831p1+832 Pt & P.= —.
op,

Applying the minimum conditions will yield:
A R+Q[R A-RBA+d RA RA =0
A R*QIRA-RAI+Ad ' RA RA=O
AsR+Q[R A~ R A+ d'R AT R A =0,

= p?[D never vanishek = 0

or, since the determinant of this system, nameM,A)W

andQ, = 0,Qs; = 0; i.e., one has the law of energy and Lagrange’s ieqsat
If one eliminates, sa@i, from the general equation:

Aval+A2vQ2+ +Aann =0
by using the relation:
R=pQ +..
then it will likewise follow naturally that:

R=0, Q,=0,..Q,=0.

Addendum

Concerning linear current branches

If py, ..., pc are, in turn, cyclic coordinates,= +a, p +3a, B+...+ $a, p, p,+ ...
is thevis viva andF = ib, P +1ib, B+...+ $b, p, p,+... is the dissipation function

that Lord Rayleigh introduced then the forcegTFz -(b, p+b, pt+ ...) wil be

U
added to any forcE, , and that will yield the principle of least consttaimamely, that:

ZMD=) A, QQ=AQF+A,G+2AQ Q+ ... (1)

must be a minimum for an. Therefore, one has:



Wassmuth — On the application of the principle of leasstaint to electrodynamics 9

d . . : :

Q= e pta, Rt - R p+ b pe], )
D
D:|a,d|, AK/1: a .
aa}d
If one goes over to electrodynamics and spfs:Ji, p, =Jo, ..., as well as:

d

Q= lan it ay, bt - R 3+, 3], (3)

then theminimum property1) will imply a property of a linear current branchn it, a1,

ag, ass, ... are the coefficients of the self-inductions of finst, second loopsa;,, ass,

aps, ... are the coefficients of mutual induction, aAg is the constant electromotive
force. Furthermoreh;; is the resistance of the entire first lodwp; is that of the entire
second loop, etc, arwl; as is the resistance of that piece of the conductoisicammon

to loops 1 and 2.b;, is positive whenl; andJ, have the same directions and negative
when they have opposite directions. Applying the mininmomdition will imply thatQ;
=0,ie.

d
Pi=bi1Ji+bip o+ ... +byn I +a[8.11\]1+8.12\]2+ ], (4)

Those are (in a somewhat generalized form) the esatlmatH. von Helmholtz
presented in 1851Aphandlungen, pp. 435) for the induction in linear current branches,
which one must think of as being decomposed into the sstglbssible number of
simple loops.

For the work done by the retarding forces, one gets:

ZT:dQ+ = B—'_:ldpﬁ--} dt=2Fdt=[b,J’+b, o+ --+2 b, J I+,

up to sign; i.e., the Joule heat, and all of the summanthe bracket are positive.
Now assume that; =ax; = ... = O;au1 =ax, =apz = ... =@, which is a case is not too
difficult to realize experimentally. One will thérave:

d

and one must have thZta = Q>+ Q+ ... is a minimum whem is taken to be small
enough. For lima = 0, the current strengths will be independent of ties constant,
and it will follow from the conditiorz' = Q% + Q2+ ... = minimum.Q, =by, Ji + ... =P,
=0.
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1
Since the determinant of thedoes not vanish, the equati%z— = 0 can be replaced
U

. Z! e
with ZT = 0. For constant currents, one then has to minimize

Z'= Z[(blp‘]1+"') - F:,]z

for everyd.

Remark: One can get an oft-mentioned minimum propertyasfstant currents from
the well-known equation:

d(T+U) __

oF or - [—+F+—}: F, (1)
dt t

in whichU =P, p; + ... represents the potential of the constant faand as above:
T: %all pf+ :%all‘]l2 + B F = Ebll pf+ :Ebll‘]l2 ..

If the current strength3;, J,, which are initially zero, attain their full strghis J; ,

J,, ... fort = (sinced_T: ot dJ,
dt 93, dt
the right-hand side of (1), which consists of nathibut positive terms, will attain its

greatestvalue. Therefore, the negative left-hand sid@)of.e.:

+...), and also(jj—-![-: 0, then thd- that is found on

F +C:j_Li: %bll‘]lz + ... —(P1J1+P2J2+ ),

must represent a minimum for ady




