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By Rudolf Kohlrausch and Wilhelm Weber1,2,3

1 Section 1

The intensity of an electric current can be usually determined by observing
either its magnetic, electrodynamic, or finally, its electrolytic effects. How-
ever, those effects can be observed under very different situations, and it
is the task of the observer to choose those situations in such a manner as
to give his observations the greatest completeness, while appealing to the
electromagnetic, electrodynamic, and electrolytic laws, which can reduce the
effects that are observed in the various situations to each other. That is be-
cause it is only by reducing the observations under the same conditions that
one can achieve a comparison of the current intensities. Now, one calls those
common conditions, to which all observations that were made under different
circumstances should be reduced, normal conditions, and the unit of current
intensity will be established by defining those normal conditions according
the following rule:

The unit of current intensity is the intensity of the current that
will produce one unit of measurable effect under normal condi-
tions.

The normal conditions for the observation of the magnetic effects of a
current are the following: The current goes through a circular conductor
that encircles a unit area and acts upon a magnet that possesses one unit of
magnetism4 at an arbitrary, but large, distance equal to R. The center of
the magnet lies in the plane of the conductor, and its magnetic axis points
towards the center of the circular conductor. Under those conditions, the
rotational moment D that is exerted on the magnet by the current will vary
with current intensity, as well as with distance R. However, the product R3D
depends upon merely the current intensity, and is therefore the measurable
effect of the current under those conditions, from which one will then get

1[KW57].
2Translated by D. H. Delphenich, http://www.neo-classical-physics.info/

index.html, e-mail: feedback@neo-classical-physics.info, and edited by A. K. T. Assis,
www.ifi.unicamp.br/~assis

3The Notes by Kohlrausch and Weber are represented by [Note by KW:]; the Notes by
H. Weber, the Editor of Volume 3 of Weber’s Werke, are represented by [Note by HW:];
D. H. Delphenich’s Notes are represented by [Note by DHD:]; while the Notes by A. K.
T. Assis are represented by [Note by AKTA:].

4[Note by AKTA:] That is, a magnet that possesses one unit of magnetic moment.

http://www.neo-classical-physics.info/index.html
http://www.neo-classical-physics.info/index.html
www.ifi.unicamp.br/~assis
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the unit of the current intensity from the intensity of the current whose
measurable effect under the conditions that were just described will be:

R3D = 1 .

That unit of current intensity, which is then obtained from electromag-
netic laws, is at the same time also the intensity of that current that flows
around a planar region of size one unit of area, producing the same effect
everywhere at a distance as a magnet that is found at the center of that
region that possesses one unit of magnetism and whose magnetic axis is per-
pendicular to the plane. Alternatively, it is also the intensity of the current
that will equilibrate a tangent galvanometer5 with a single multiplier loop of
radius equal to R when it deviates from the magnetic meridian by:

ϕ = arctan
2π

RT
,

if T denotes the horizontal component of the Earth’s magnetism.
The normal conditions for the observation of the electrodynamic effects

of a current are as follows: The same current goes through two circular con-
ductors, each of which encircles a unit area and lie at an arbitrary, but large,
distance equal to R from each other: The line of intersection of the two per-
pendicular planes of the circles bisects the first circular conductor. — Under
those conditions, the rotational moment D that the current in the first con-
ductor exerts upon the current that flows in the second conductor will vary
with the current intensity, as well as with the distance R. However, the
product R3D depends upon merely the current intensity and is therefore the
measurable effect of the current under those conditions, from which one will
then get the unit of the current intensity from the intensity of the current
whose measurable effect will be:

R3D = 1

under those conditions.
The normal conditions for the observation of electrolytic effects are the

following ones: The current goes through water during a time interval T
that can be measured with arbitrary precision without suffering any change in
intensity. — Under those conditions, the mass of waterM that is decomposed
by the current, when expressed per assumed unit of mass (e.g., milligrams),
will vary with current intensity, as well as with the time interval T (expressed
in seconds). However, the quotient M/T will depend upon merely the current

5[Note by AKTA:] Tangentenboussole in the original.
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intensity, and is therefore the measurable effect of the current under those
conditions, from which one will then get the unit of the current intensity
from the current whose measurable effect is:

M

T
= 1

under those conditions.
All that remains for one to be able to compare the intensities of all cur-

rents whose magnetic, electrodynamic, or electrolytic effects were observed is
to relate the three units that were given under the aforementioned normal
conditions to each other.

One infers the relationship between the first two units from the funda-
mental electrodynamic law, which include the laws of magnetism and elec-
tromagnetism, as Ampère exhibited them, namely, as was proved before in
“Elektrodynamischen Maassbestimmungen II,” p. 261,6,7 one infers that the

6[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 360.
7[Note by AKTA: [Web52, p. 360 of Weber’s Werke].



7

first unit relates to the second one like:8

8[Note by KW:] It is therefore interesting to point out that one can exhibit a complete
identity between those two units when one, under the aforementioned normal conditions,
defines the electrodynamic effect to be the rotational moment that the current in the second
circle exerts upon the current in the first one, instead of the rotational moment that the
first one exerts upon the second. The reason why that is not done is found merely in the
fact that the expression that Ampère gave for the force of repulsion between two current
elements would remain unchanged, so if α and α′ are the lengths of both elements, i and
i′ are the current intensities, r is the distance between them, ε is the angle between α and
α′, ϑ is the angle between α and r, and ϑ′ is the angle between α′ and the extension of r,
then that force will be represented by:

−αα
′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)
,

or

1

2
· αα

′

r2
ii′ (3 cosϑ cosϑ′ − 2 cos ε) .

However, all that generally follows from Ampère’s fundamental law of electrodynamics
is that that force is proportional to that expression, and therefore when one leaves the
measure of the current intensity undetermined, the force itself will be represented by the
product of that expression with an arbitrary constant, and so by:

−C · αα
′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)
,

or by

D · αα
′

r2
ii′ (3 cosϑ cosϑ′ − 2 cos ε) .

in which C or D refer to the aforementioned constant. Now, Ampère assigned the value
C = 1 to the constant C or the value D = 1/2 to the constant D in order to establish a
well-defined unit for the current intensity, and in that way, he obtained the aforementioned
expression for the force of repulsion between two current elements:

−αα
′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)
=

1

2
· αα

′

r2
ii′ (3 cosϑ cosϑ′ − 2 cos ε) ,

which reduces to:

−αα
′

r2
ii′

for two parallel current elements that are perpendicular to r and for which ε = 0 and
ϑ = ϑ′ = 90o. However, for the sake of agreement with the electromagnetic measurements,
it would be preferable to set D = 1 or C = 2, which would then make the expression for
the force of repulsion between two current elements equal to:

αα′

r2
ii′ (3 cosϑ cosϑ′ − 2 cos ε) = −2

αα′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)
,
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√
2 : 1 .

The third unit will imply the reduction to the first, and therefore also the
second one immediately, by simultaneous observations of the magnetic and
electrolytic effects that are produced by one and the same current. Namely,
one will find upon comparing the reduced observations, under the afore-
mentioned normal conditions, that the third unit of current intensity, or the
intensity of the current that will decompose 1 milligram of water in 1 second,
is 1062

3
times larger than the first unit, or than the intensity of the current

that, when it flows around a plane of size one unit area, will produce the
same effects everywhere at great distances as a magnet at the center of that
planar region that possesses one unit of magnetism and whose magnetic axis
is perpendicular to the plane. See “Resultate aus der Beobachtungen des
magnetischen Vereins in Jahre 1840,” p. 96,9,10 and Casselmann “Über die
galvanische Kohlenzinkkette. Marburg 1844,” p. 70.11

2 Section 2

However, the intensity of an electric current can be determined not only by
its effects, but also by its origins. Nonetheless, the deepest roots of an electric
current lie in the mass of neutral electric fluid that is contained in a closed
conductor, and in the velocity with which its two components, namely, the
masses of the positive and negative fluids, move simultaneously in opposite
directions. On the basis of this origin, the unit of the current intensity will
be established from the following measurements:

The unit of the current intensity is the intensity of the current
that is produced by such a velocity for the two electric fluids, for

and for two current elements that coincide with r, [that is, for two current elements parallel
to one another and pointing along the direction r,] for which ϑ = ϑ′ = ε = 0, that will
reduce to:

αα′

r2
ii′ .

The cited change in the normal conditions for the electrodynamic current effects will agree
with that, and in that way, one will arrive at a complete identity between the electrody-
namic unit of the current intensity and the magnetic one.

9[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 17.
10[Note by AKTA:] [Web41, p. 96 of the Resultate] and [Web42, p. 17 of Weber’s

Werke].
11[Note by AKTA:] [Cas43, p. 70].
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which the mass of each fluid that flows through the cross-section
of the conductor divided by the time during which it flows through
it is equal to 1.

This unit is the mechanical unit of the current intensity, and the problem
that is being addressed in this treatise is to reduce the unit that was described
in the previous Section to this unit, which is most simply based in the essence
of the current, and will therefore have an advantage over the other measures
for the fundamental determination of that current intensity.

3 Section 3. Reducing the Magnetic, Elec-

trodynamic, and Electrolytic Units for the

Current Intensity to Mechanical Units

Up to now, no attempt has been made to determine current intensities from
a mechanical unit, and even less, to reduce the current intensities that were
determined from the other units to the latter. One merely knows that the
amount of electricity that flows in the form of weak currents through the
cross-section of the closed circuit, which can be produced by the most humble
galvanic processes, must also be very large for a very brief time, since the
most powerful electrification machine (whose conductor is coupled with the
site of friction by a conducting wire) will give a much weaker current than
a single galvanic element that is closed by a conducting wire of very large
resistance.

The lack of any way of determining current intensities by mechanical
measurements is based upon the difficulties that one finds in their implemen-
tation, while the determination of current intensities in the other aforemen-
tioned units is very easy to do, and thus allows for a much higher degree of
precision. The last unit will always be the first choice to be applied in prac-
tice, and one will essentially deal with the fact that a current intensity that
is known in one of the latter units can only once be measured as precisely as
possible in order to ascertain the ratio of the magnitude of the mechanical
unit to that of the latter unit, and in that way, to find oneself in a position to
reduce all of the determinations that were made in those units to mechanical
units.

For such a measurement, one lacks, above all, any knowledge of the
amount of electricity in a closed conductor that carries current, or rather,
since that knowledge while the current is flowing is not at all gained, from
knowing the amount of electricity that is transferred by the current, and
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which is found to have been accumulated previously — e.g., in a Leyden jar.
In order to do that, one possesses excellent means and methods for measuring
electricity that go back to Coulomb, but which are never used to measure
the electricity that is collected in a charged Leyden jar.12,13

The question of the amount of electricity that is found to be collected in
a Leyden jar is often raised: Once it has been answered, and the amount of
electricity has been determined by the forces that it might exert, it is in no
way merely a question of curiosity, but is linked with important determina-
tions that are presently still lacking in the theory of electricity, and might
lead the way to interesting investigations.14

This question in regard to the amount of electricity in a Leyden jar has a
special relationship to electrodynamic units that deserves a closer look, in any
event. A fundamental law of electrical action was presented in the first part of
this series of articles on [electrodynamic] measurements that simultaneously
included electrostatics, electrodynamics, and induction. According to that
fundamental law, the force that the electrical mass e exerts upon the electrical
mass e′ at a distance r is not merely a function of that distance, but at the
same time, a function of the relative state of motion of the two electrical
masses that is given by the relative velocity dr/dt and acceleration d2r/dt2

12[Note by KW:] In the Annalen der Chemie und Physik, Vol. 86, p. 33, Buff found,
with the help of his tangent galvanometer and long conducting wires, that the amount of
electricity that would be sufficient to liberate 1 milligram of hydrogen from 9 milligrams of
water electrically, when one possesses the means to condense it, was to charge a battery of
45,480 Leyden jars that were each 480 millimeters in height and 160 millimeters in diameter
up to a spark gap of 100 millimeter. Buff’s determination is the best and most precise
one that exists, but it still does not suffice to determine the amount of electricity that is
included in that jar, for which, from mechanical principles, one requires a knowledge of the
force of repulsion that this amount of electricity, when concentrated into a point, would
exert upon an equal amount of electricity that is also concentrated into a point at a large
distance from the latter. However, knowledge of that force of repulsion is still lacking, and
up to now, no attempts have been made to measure such forces by the various means and
methods that were given by Coulomb and others, or even to gain a better knowledge of it.

13[Note by AKTA:] As a matter of fact, this paper was published in the Annalen der
Chemie und Pharmacie and not in the Annalen der Chemie und Physik: [Buf53, p. 33].

14[Note by KW:] When one observes that most of the applications of the laws of nature
depend upon determining the values of certain constants, that fact is based upon the
determination of the unknown constants in the theory of electricity, which depend upon
answering the question above. — Moreover, it is very likely that determining the electricity
required to decompose water by the forces that it might exert could be used to investigate
the forces that are active in the decomposition of water, and that in the same way, a
determination of the amount of electricity by which a wire would be made to glow within
a certain period of time from the forces that it might exert would lead to a deeper insight
into the forces at work during the generation of heat, etc. Some of those applications will
be discussed in more detail in Part Two.
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with which they pass to the distance r. That fundamental law of the electrical
action is:

ee′

r2

[
1− 1

c2

(
dr2

dt2
− 2r

d2r

dt2

)]
in which the constant c means the relative velocity at which the electrical
masses would exert no effect at all on each other, as long as it remained
unchanged. In the second article in this series,15 it was then shown how the
determination of the value of that constant c might provide the possibility of
reducing not merely the units of the electromotive forces, but also the units
of the current intensities, to the units of mechanics, and that in itself will
give the relationship by which the constant c will allow one to determine the
amount of electricity that passes through a cross-section of the conductor in
a unit of time in terms of the unit of measurement of current intensity that is
based in the magnetic and electrodynamic effects of the current. Conversely,
the knowledge of that amount of electricity that is acquired in other ways
would also lead to a determination of the value of the constant c, which is
brought to our attention by the fundamental law above. The determination
of such a constant of nature is a topic that is especially appropriate for a
finer measurement. In the foregoing case, that determination can be reduced
to the following problem.

4 Section 4. Problem

Determine the amount of electricity that passes through the cross-section
of a conductor in unit of time for a current whose intensity has a unit of
measurement that is based in its magnetic or electrodynamic or electrolytic
effects, and indeed, that amount of electricity shall be determined from the
magnitude of the fundamental electrostatic force that it exerts; or, more es-
pecially:

Let a constant current be given,16 under which a tangent gal-
vanometer with a simple multiplier circle of radius equal to R
would take on a deflection of ϕ = arctan 2π/RT in equilibrium,
where T means the intensity of the horizontal component of the
Earth’s magnetism that directs the compass. It should be deter-
mined how the amount of electricity that flows through the cross-
section of the conductor in one second under such a current, re-
lates itself to the amount of electricity that is contained on each

15[Note by AKTA:] [Web52].
16[Note by AKTA:] Current of intensity = i.
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of two small equally-charged balls that repel each other with a unit
force at a unit distance. In that way, the unit of force shall be
taken to be the force that would accelerate a mass of one milligram
to one unit of velocity in one second.

From our previous determination, the given current is one that will exert
entirely the same effects at a distance as a magnet that possesses one unit
of magnetic moment when it flows around a planar region of magnitude one
unit of area; i.e., the current whose strength is ordinarily chosen the be the
unit of the strength of all other currents by observing it with the tangent
galvanometer, and the amount of electricity that is present on each of the
small balls is the amount that one is accustomed to assign as the basis for
the unit of measurement for electrostatic measurements with the Coulomb
torsion balance.

5 Section 5. Plan for Solving the Problem

If the amount of electricity E that is collected on an isolated conductor is
discharged to Earth through the multiplier of a galvanometer, then it will
exert a rotational moment on the magnetic needle of the galvanometer as
it flows through it. Now, if one also extends the discharge time as much
as needed by inserting a column of water into the path of the current in
order for no spark to jump between the windings of the multiplier, then that
discharge time will still define only an extremely small fraction of the period
of oscillation of the magnetic needle, such that the part of the path that the
needle covers during that discharge time (that is during the action of the
discharge current) will be vanishingly small in comparison to the entire path
of the needle; i.e., in comparison to the magnitude of the elongation that the
needle attains over the course of one-half an oscillation period. The effect
of the discharge current can then be considered to be an impulse that the
needle would experience in its rest position, after which the angular velocity
that the needle acquired could be calculated from known laws of oscillation
by observing the initial elongation of the needle after the discharge at the
moment of the impulse itself.

Furthermore, everything behaves exactly like an induction impulse, and
also insofar as the nature of the discharge current is entirely indifferent to
whether it consists of many separate partial discharges that rapidly follow
each other or whether it is continuous with an intensity that decreases to zero
rapidly according to some law. The angular velocity that the needle acquires
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in that way will always depend upon the amount of electricity E.17

We can give the needle of the galvanometer a similar impulse by means
of a constant current when we let the current act for only a very short time,
and indeed the initial elongation will be the same whether the current has
an intensity i during the time t or with the greater intensity ni during the
shorter time t/n . Namely, if the duration t of the current is very small
compared to the period of oscillation of the needle, then the angular velocity
will always be found to be the same.18 However, precisely the same amount
of electricity will flow through the cross-section of the conductor in time t
with an intensity of i that flows through it in time t/n with an intensity of
ni.

Hence, when we impart an impulse to the needle by a constant current
of short duration, the angular velocity of the needle (and as a result, its
elongation as well) will also depend solely upon the amount of electricity that
has moved through the cross-section of the multiplier during the duration of
the current in this case.

Now, if we have discharged a known amount E of positive electricity
through the same multiplier in one case and produced the same elongation of
the magnetic needle by means of a constant current of very short duration in
the other case, then we can conclude that the positive amount of electricity x
that flows through the cross-section of the conductor during the short duration
of the constant current is:

x =
1

2
E ,

which is a result of whose validity one can easily convince oneself, and which
one might have to envision in terms of the processes that take place inside
of the conductor during the discharge.

17[Note by KW:] One finds that fact confirmed in all experiments. As is shown in the
experiment in Appendix II (among other things), the elongation is not only proportional
to the amount of electricity that is discharging, but it is also independent of the discharge
time, within wide limits; because it does not matter how long or short the water column
that one inserts is, provided the windings of the multiplier are not jumped over or the
discharge time is extended in such a way that the effect of the discharge current will still
continue when the needle has already moved noticeably from the rest position.

18[Note by KW:] As long as the direction of its magnetic axis deviates only slightly
from the plane of the multiplier windings, the acceleration that a needle whose magnetic
moment is M and whose moment of inertia is K will acquire from a constant current of
intensity i will be equal to AMi/K, where A means a constant that depends upon the
dimensions of the multiplier and the distribution of magnetism in the needle. It will follow
from this that the angular velocity that it acquires during time t will be equal to AMit/K,
whose value will remain unchanged when i is replaced with ni and at the same time t is
replaced with t/n.
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If one would like to assume of the discharge, e.g., that all of the accumu-
lated positive amount of electricity E flows through the entire multiplier in
only the direction of the Earth, or that an equal amount of negative electric-
ity flows in the opposite direction from the Earth, then the magnetic effect
of such a discharge current would be precisely the same as the effect of a
current for which only one-half of that positive amount of electricity flowed
through the cross-section of the conductor in the given direction, but at the
same time, an equal negative amount of electricity flowed in the opposite di-
rection, which is a process that is assumed to take place at constant current.
— However, should one be of the opposite opinion, namely, that absolutely
none of the amount of electricity E that is collected in the isolated conductor
(and just as little of the amount that is found in the Earth) will flow through
the total windings of the multipliers, but that it will merely give rise to a
double current in the wire that will include masses of neutral fluids that are
large enough that a very small change in those masses will suffice to supply
the isolated conductor with so much negative electricity that the positive
electricity E that is collected in it will be neutralized, then one would also
arrive at the same result in that way, since the whole discharge wire could
be divided into a very large number of small pieces such that the amount of
electricity +1

2
E would flow from each piece into the following one, while −1

2
E

would flow into the preceding one, and as a result, an amount of electricity
+1

2
E would flow from the last piece into the Earth, which would replace

the first piece of the wire with the isolated conductor, while the amount of
electricity −1

2
E would flow out of the first piece into the isolated conductor

and neutralize the electricity that remains in it, but which will replace the
last piece of the wire with the Earth. Finally, if one were also required to as-
sume that somewhat more than one-half of the positive amount of electricity
E went from the isolated conductor to the wire, while somewhat less than
−1

2
E of negative electricity went in the opposite direction from the wire to

the isolated conductor, then nothing would change in the result, since the
magnetic effect will be determined by the sum of the two moving charges.

The impulse that the needle feels when the accumulated amount of elec-
tricity E discharges through the multiplier will be just the same as when a
constant current goes through the multiplier during a time interval τ such
that precisely one-half of E goes through the cross-section in the direction
of the current as positive electricity and just as much goes in the opposite
direction as negative electricity, assuming that the time interval τ represents
only a very small part of the period of oscillation of the needle.

The solution to the problem will then emerge from taking the following
two steps:
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1. Measure the amount of electricity E in the given electrostatic units and
observe the elongation of the magnetic needle of a galvanometer under
its discharge.

2. Determine the small time τ during which a constant current of intensity
equal to 1 (in magnetic units) must go through the multiplier of that
galvanometer in order for the needle to acquire the same elongation.

If one then multiplies 1
2
E by the number that shows how often t is included

in one second, then E/2τ will express the amount of positive electricity that
passes through the cross-section of the conductor during one second in the
direction of a current whose intensity is equal to 1 in magnetic units. In
other words:

1

2τ
· E : 1

is the ratio of the amount of positive electricity that passes through that
cross-section, to the one whose unit is based upon measuring the accumulated
amount of electricity E in the isolated conductor, namely, the amount that
must be found on each of two small balls for them to repel each other with
a force equal to 1 at a distance equal to 1.

As far as the second step is concerned, the determination of τ requires no
special experiment, since the value of τ can be determined by calculation from
the number and dimensions of the windings of the multiplier, the elongation
of the tangent galvanometer that is observed under the discharge, and the
intensity of Earth magnetism much more precisely than would be possible
by direct experiment, as one will see in Section 13.

However, the first step, which is concerned with determining the amount
of electricity E, requires a combination of several experiments, which shall
be described in Sections 6-12. Namely, it is important that, first of all, a
still-unknown, but greater, amount of electricity is split into two parts in a
previously-determined ratio, and then that the greater part E is discharged
through the tangent galvanometer in order to observe its magnetic effect, but
finally, the smaller part is measured by the electric force that it exerts upon
the Coulomb torsion balance in order for the discharged part E to also get
measured by the same measurement.

A Leyden jar whose external coating is connected to the Earth in a well-
conducting way seems to be most suitable as a vessel for that amount of
electricity whose part E should not be insignificant if its discharge were
to produce a precisely-measurable effect on the needle of the tangent gal-
vanometer. Hence (Section 6), that would next require the ratio by which
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the positive charge in that jar is divided between it and a large isolated ball,
the latter of which contacts the knob on the jar. The ratio n : 1, by which the
charge in the jar before contact with the large ball to its charge afterwards is
determined with the help of the sine electrometer, which will yield the ratio
1 : (n−1) of the amount of electricity E to the amount that goes over to the
ball.

After this ratio has been determined precisely by several repetitions, the
measurement of the amount of electricity that would go over to the large ball
after such a division would be continued, to which end, the large ball, likewise
after a charge that results from contact with the Leyden jar, would itself once
more contact the 1 inch larger fixed ball of a Coulomb torsion balance that is
equipped with a larger measuring scale. As Poisson and Plana have shown,19

the ratio by which the electricity is divided between those two balls can be
calculated from the ratio of their radii. That will be done in Section 8, from
which, the charge that the large ball has received from the Leyden jar can be
found from the amount of electricity e that is transferred to the fixed ball of
the torsion balance, and then also the amount that remains in the Leyden jar,
which will be employed to find the discharge current whose magnetic effect
is to be observed.

The amount of electricity e would be measured after the fixed ball of
the Coulomb torsion balance in which it is contained contacts the equally
large moving ball, and in that way, e would be divided equally between those
two balls. Namely (Section 7), from observing the gradual decrease in the
torsion that would be necessary in order to keep the two balls at a well-defined
distance from each other, the torsion would then be calculated that would, on
first glance, be required if the charge in it were likewise to be able to go from
the large ball through the Leyden jar, the fixed ball through the large one,
and the moving one though the fixed ball while one observes the torsion. —
In Section 9, one will find the calculation of the amount of electricity ε that
would exert a unit rotational moment on the balance at the same distance
when it is divided equally between the two balls of the torsion balance, in
which one must take into account the non-uniform distribution of electricity
on the surface of the ball. — In Section 10, one will find the determination
of the torsion that would likewise exert a unit rotational moment on the
balance from various observations. — With the help of the determinations
that are contained in Sections 9 and 10, the amount of electricity e itself can
be determined easily from the torsion that was found in Section 7, and then
also the amount that remains in the Leyden jar, which will be done in Section
11, where the latter will be denoted by E ′, in order to distinguish it from

19[Note by AKTA:] [Poi12a], [Poi12b], [Poi13], [Pla45] and [Pla54].
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the amount of electricity E that is employed by the discharge current whose
magnetic effect is to be determined. — In the brief intervening time between
the moment of the division to the moment of the discharge, the electricity
that remains in the Leyden jar will change, namely, a small part of the charge
in the jar will be lost to the air, and part of it will be lost to a change in the
residue in the jar, and although that change during such a brief intermediate
time of — say — only three seconds would be extremely negligible, from the
superb quality of the jar that was selected for that experiment, it will still
be included in the calculation in Section 12, from which, one will at least
see how the change E − E ′ would be determined for other jars and longer
intermediate times.

Finally, with the help of the determination of τ that is contained Section
13 and mentioned on p. 233,20,21 the quantity 1

2τ
· E will be calculated in

Section 14, and with that, the problem that was posed above will be solved.
The Section that follows it will include applications, for the most part, to
which the determination of the constant c, which has been mentioned several
times, belongs.

The two Appendixes include more precise descriptions of the torsion bal-
ance and the tangent galvanometer; for that of the sine electrometer, see
Poggendorf’s Annalen 88 (1853).22

It can be inferred from the satisfying agreement, without exception, be-
tween all published experiments (of which ones that were analyzed in Sections
6 and 7 were the most difficult) that the result can be considered to be accu-
rate to within 1 to 2 percent. The calculation was performed with a precision
of an even smaller fraction in order for the determination of the uncertainty
in the results to depend upon merely the magnitude of the unavoidable ob-
servation error.

20[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 621.
21[Note by AKTA:] [KW57, p. 621 of Weber’s Werke].
22[Note by AKTA:] [Koh53].
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6 Section 6. Determining the Conditions un-

der which Electricity will be Divided be-

tween the Interior of a Leyden Jar and a

Large Ball while the Exterior of the Jar is

Connected to the Earth

The following table gives the results of two series of observations that were
performed with the sine electrometer of the decrease in charge in a Leyden
jar by transferring it to a large uncharged ball that contacted the knob on
the jar, while the exterior of the jar was connected to the Earth by a good
conductor.

The Leyden jar was previously connected to the sine electrometer with a
conducting wire whose end was placed in a small indentation into the knob
on the jar. Once the position of the sine electrometer had been observed,
that end of the conducting wire was raised with a silk thread, and then
the large ball contacted the knob of the jar, whereupon the exterior of the
jar was connected to the Earth by a conductor. With double, triple and
quadruple contacts, the individual contacts followed as quickly in succession
as would permit the large ball to discharge completely in between them. If the
sine electrometer, which suffered only a negligible loss to the air in between
contacts, was then once more connected with the jar by a connecting wire
that was kept insulated by a silk thread, then the needle of the electrometer,
which was initially at rest, would be deflected only slightly in that way, since
the jar had lost relatively little of its charge by contact with the ball, and
since that loss was compensated approximately by the relatively smaller loss
to the air that the jar suffered in comparison to the sine electrometer, which
explained the shortness of the time during which the individual measurements
could be performed in comparison to the end of each series of experiments.

Precise time measurements of the moment at which each individual con-
tact was made could not be carried out, and the data that is contained in
the following table is based upon mere estimates, which can, however, be
considered to be admissible to within 1-2 seconds, which is a precision that
suffices completely for this. Both series were made on 2 April 1854 in the
Physics Institute at Göttingen.
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First Series
No. Time Needle deflection on n

the sine electrometer
1. 8h49′54′′ 32o36.2′

2. 50′0′′ (quadruple contact) 1.0324
3. 51′25′′ 24o13.7′

4. 53′46′′ 23o31.3′

5. 53′52′′ (quadruple contact) 1.0299
6. 54′42′′ 17o45.6′

7. 58′56′′ 14o49.3′

8. 59′2′′ (quadruple contact) 1.0167
9. 59′55′′ 12o47.6′

10. 9h2′7′′ 12o34.3′

11. 2′13′′ (quadruple contact) 1.0325
12. 2′50′′ 9o41.7′

13. 4′12′′ 9o41.7′

14. 4′18′′ (quadruple contact) 1.0355
15. 4′53′′ 7o21.3′

16. 7′22′′ 7o30.2′

17. 7′28′′ (quadruple contact) 1.0311
18. 8′9′′ 5o51.2′

19. 10′7′′ 4o48.3′

20. 10′13′′ (quadruple contact) 1.0305
21. 10′51′′ 4o32.9′
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Second Series
No. Time Needle deflection on n

the sine electrometer
1. 9h40′7′′ 46o30.5′

2. 41′57′′ 44o9.0′

3. 42′0′′ (single contact) 1.0330
4. 42′23′′ 40o23.9′

5. 44′0′′ 39o10.5′

6. 44′3′′ (single contact) 1.0308
7. 44′23′′ 36o15.7′

8. 46′24′′ 35o11.7′

9. 46′27′′ (single contact) 1.0379
10. 46′51′′ 32o24.6′

11. 48′24′′ 32o46.6′

12. 48′27′′ (single contact) 1.0490
13. 48′51′′ 29o21.1′

14. 51′41′′ 28o31.0′

15. 51′44′′ (single contact) 1.0390
16. 52′9′′ 26o14.2′

17. 52′52′′ 26o14.2′

18. 52′55′′ (single contact) 1.0375
19. 53′25′′ 24o14.7′

20. 58′30′′ 19o41.9′

21. 9h58′33′′ (single contact) 1.0303
22. 59′1′′ 18o27.6′

23. 10h5′52′′ 17o42.6′

24. 5′56′′ (double contact) 1.0328
25. 6′28′′ 15o30.1′

26. 7′14′′ 15o30.1′

27. 7′19′′ (triple contact) 1.0338
28. 7′45′′ 12o38.7′

29. 10′13′′ 12o38.7′

30. 10′19′′ (quadruple contact) 1.0315
31. 11′27′′ 9o50.0′

32. 12′44′′ 9o50.0′

33. 12′50′′ (quadruple contact) 1.0292
34. 13′27′′ 7o47.8′

The last column in this table, under n, gives the ratio of the charge in
the jar before contact with the ball to the charge after contact, which is
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always made immediately before and after the moment of contact between
the two. The second and third columns contain observations that are reckoned
according to the following rule:

• q2′′ and q′2 denote the sines of the observed deflections for the two pre-
vious times of observation,

• q′2 and q
′′2

denote the sines of the observed deflections for the two
following times of observation,

• −t′′ , −t′ , t′, t′′ are the associated observation times, measured from the
moment of contact,

• m is the number of times the contact was repeated.
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Hence:23

23[Note by KW:] The observations of the deflection of the needle in the third column
and the time in the second column will immediately give the values of q′′ , q′ , q

′
, q

′′
and the

associated values of −t′′ , −t′ , t′, t′′ at which the values of q0 and q0 should be calculated,
which are true for the moments immediately before and after the contact. The cited rule
will then be implied in the following way:

1) For the brief time duration of the experiment, it suffices to assume that the charge
lost to the air over time and the charge at the moment of observation are proportional,
from which, one will then get the following four values for the reduced observations at the
moment of contact:

(1− αt′′) q′′ , (1− αt′) q′ , (1 + αt′) q
′
, (1 + αt′′) q

′′
.

2) If one adds each of these values to the residue in the jar at the time in question then
the first two, which represent the total charge before contact, must be equal, and similarly
for the last two, which represent the total charge after contact. When one denotes the
residue at time t by rt, one will then get the equations:

(1− αt′′) q′′ + r−t′′ = (1− αt′) q′ + r−t′ = q0 + r0 ,

(1 + αt′) q
′
+ rt′ = (1 + αt′′) q

′′
+ rt′′ = q0 + r0 .

However, the residue before and after contact (see Section 12) can be represented by:

rt = β
(

1− e−γ(ϑ+t)
δ
)
· (q0 + r0) , rt = β

(
1− e−γ(ϑ

′+t)δ
)
·
(
q0 + r0

)
.

The residue remains unchanged at the moment of contact, so r0 = r0. That easily implies
that for small values of t before and after contact, rt can be set to:

rt = r0 + at , rt = r0 + a′t ,

where a and a′ denote two coefficients that are determined from the observations. — By
substituting those values in the equations above, in which one might likewise replace αq′′

and αq′ with αq0, and similarly replace αq
′

and αq
′′

with αq0, one will get:

q0 = q′ − (a+ αq0) t′ = q′′ − (a+ αq0) t′′ ,

q0 = q
′
+
(
a′ + αq0

)
t′ = q

′′
+
(
a′ + αq0

)
t′′ ;

and as a result:

q0 =
t′′q′ − t′q′′
t′′ − t′

, q0 =
t′′q

′ − t′q′′

t′′ − t′
,

n = m

√
q0
q0

= m

√
t′′ − t′
t′′ − t′

· t
′′q′ − t′q′′
t′′q′ − t′q′′ .
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n = m

√
t′′ − t′
t′′ − t′

· t
′′q′ − t′q′′
t′′q′ − t′q′′

.

Indeed, some of the observations in these two series of observations are
less definitive (which is almost unavoidable when three observers collaborate),
and in that way one can find that is permissible to discard some values of n
completely: for example, the one that is cited in no. 8 in the first column
and the ones in nos. 12, 15, 33 in the second column. However, it will
follow that the removal of those values will have no appreciable effect on the
determination of the mean value of n, since one finds that the mean values
with and without removal are:

n = 1.03282 , n = 1.03297 ,

respectively.
A similar series of observations with the same jar and ball that was carried

out earlier in Marburg yielded the following mean value for the ratio n:

n = 1.03263 .

Hence, the desired ratio will be henceforth assumed to be:

n = 1.03276 .

Finally, this ratio of the charge in the jar before and after contact with
the large ball also yields the ratio of the distribution of the electricity between
the jar and the large ball at the moment of contact; namely it is equal to:

1 : 0.03276 .
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7 Section 7. Corresponding Observations of

the Deflection of the Tangent Galvanome-

ter that is Produced by the Amount of Elec-

tricity E that Flows Through the Multi-

plier, and the Torsion in the Coulomb Tor-

sion Balance Through which the Two Balls

Charged with the Amount of Electricity e

will be Maintained at the Same Distance

as the Uncharged Ones

The arrangement of the instruments that were used in the experiment that
was mentioned before in Section 5 is depicted in Figure 1, which will serve
to make it more intuitive.24

24[Note by AKTA:] An improved version of Figure 1 has been prepared by D. H. De-
sphenich, namely:
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The tangent galvanometer is denoted by m, whose multiplier wire is con-
nected to the Earth at its one end by a conducting wire l that is soldered
to a plate E that is buried in wet soil, while the other end of the wire leads
through the air to the long U -shaped glass tubes g and g′, which are filled
with water. m′ represents the scale and telescope for observing the needle of
the tangent galvanometer, which is provided with a mirror.

d refers to the Coulomb torsion balance, which will be described in more
detail at the end of this treatise in Appendix I. d′ represents the scale and
telescope for observing the state of the torsion balance. Namely, a long
hanging shellac rod is fixed to the torsion wire under the arm that carries
the moving ball, and it carries a mirror at its end, to which the telescope
points. — The large ball hangs from the ceiling of the room by a silk thread
at k. l′ is a fork in the conducting wire l so one can connect the exterior of
the jar f to the Earth. — u is a clock, and a is a hole in the ceiling of the
room through which a wire from the conductor of an electrification machine
that was found in the upper room was led to the small conductor c in order
to charge the jar f .

Once the jar f was charged, and a clamping screw was fixed to the wire
l′, the jar was then contacted by the large ball k. The amount of electricity
that remained in the jar after that contact will be denoted by E ′. After three
seconds, during which E ′ went to E by losing electricity to the air and the
formation of a residue, the knob on the jar f , as is suggested in Figure 1, was
contacted by a metal knob that stuck out of the U -shaped tube g, and the
observer at the telescope m watched the elongation of the magnetic needle
of the tangent galvanometer that was produced by the discharge current of
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the amount of electricity E that went through the multiplier.
Immediately after the jar f was discharged, the fixed ball on the Coulomb

torsion balance, which had been kept on standby, was charged by the ball
k and quickly placed into the torsion balance; however, the ball k itself was
likewise discharged in that way.

Thereupon, the torsion was measured several times in brief intermediate
times, which was necessary in order to keep the two balls in their positions,
in which, the two radii that pointed from the rotational axis to center of
the ball would define a right angle. The torsion that would exist at the
moment when the large ball k was charged by the jar f (so the two balls
in the torsion balance had also been charged and could be inserted) could
then be calculated from the gradual decrease in that torsion according to
Coulomb’s law, which says that the charge decreases geometrically when time
increases arithmetically.25 The torsion that was first noticed for each number
is calculated in that way in the following table. The amount of electricity e
that went from the large ball k to the fixed ball of the torsion balance at the
moment of contact will be determined from it in Section 11.

The last column of the following table, which is labeled with A/
√
T ,

contains the quotients that take the form of the deflection of the magnetic
needle in the tangent galvanometer, expressed in scale divisions, divided by
the square root of the torsion in the torsion balance, expressed in minutes.
— The distance from the mirror to the scale of the tangent galvanometer
was equal to:

6437
1

2
scale divisions .

25[Note by KW:] By a series of experiments in which the fixed ball was sometimes
found to be outside the case of the torsion balance and sometimes inside of it between the
individual determinations of torsion, it was confirmed that the loss of electricity to the
air when it was inside the case was the same as the loss to the air when it was outside of
it, which might have been expected from the size of the case. If that were not the case
then the aforementioned application of Coulomb’s law would not be directly applicable,
since the fixed ball would be found outside of the case for some moments before it could
be placed inside the torsion balance.
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No. Time Deflection of the Torsion of the A/
√
T

tangent galvanometer torsion balance
in scale divisions in minutes

= A = T
1. 8h11′8′′ 73.5 175.3′ 5.55

16′13′′ 152.4′

21′16′′ 136.1′

26′35′′ 118.3′

32′32′′ 99.9′

2. 8h37′8′′ 80.0 237.1′ 5.20
42′4′′ 208.4′

45′14′′ 189.1′

50′10′′ 165.3′

54′40′′ 148.1′

3. 9h0′37′′ 96.5 332.9′ 5.29
5′14′′ 297.5′

9′19′′ 270.6′

14′11′′ 238.5′

18′10′′ 218.3′

4. 9h31′14′′ 91.1 265.1′ 5.59
35′17′′ 249.2′

41′1′′ 226.2′

47′43′′ 201.1′

55′0′′ 178.0′

5. 10h1′46′′ 97.8 332.4′ 5.36
6′24′′ 306.0′

10′54′′ 280.4′

16′31′′ 251.1′

22′4′′ 228.6′

8 Section 8. Calculating the Ratio of the

Two Amounts of Charge E ′ : e

The radius of the large ball was:

a = 159.46 millimeters ,

and the radius of the fixed ball in the Coulomb torsion balance was:

ba = 11.537 millimeters .
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If one now sets the ratio by which the electricity equal to 0.03276E ′ that is
transferred from the jar to the first ball by contact with the latter equal to:

(0.03276E ′ − e) : e = A : b2B ,

as in Section 6, then, from Plana (“Mémoire sur la distribution de l’électricité
à la surface de deux sphères conductrices,” Turin, 1845, pages 64, 66):26

B

h
=

1

1 + b
+

1

(1 + b)2

{
k2 +

b

1 + b
k3 +

b2

(1 + b)2
k4 +

b3

(1 + b)3
k5 ...

}
,

and when one sets b/(1 + b) = a:

A

h
=

1

2
+

a3

1− a2
+
πa

2
cot πa+ a3k3 + a5k5 + a7k7 ... ,

where:

kn =
1

2n
+

1

3n
+

1

4n
+

1

5n
+ ...

That yields the cited value for the desired ratio:

(0.03276E ′ − e) : e = A : b2B = 1 : 0.0079377 ;

as a result:

E ′ : e = 3876 : 1 .

9 Section 9. Calculating the Amount of Elec-

tricity ε with which the Two Balls in the

Coulomb Torsion Balance Must be Charged

in Order for Their Repulsion to Exert One

Unit of Rotational Moment on the Torsion

Balance

The radius of the fixed ball on the Coulomb torsion balance was equal to
11.537 millimeters, and the radius of the moving ball was equal to 11.597
millimeters, so one can then assume to no detriment that the mean radius of
the two almost-equal balls in the following calculation is:

26[Note by AKTA:] [Pla45].
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a = 11.567 millimeters .

Furthermore, the distance from the rotational axis to the center of the
fixed ball was equal to 93.53 millimeters, the distance from the rotational
axis to the center of the moving ball was equal to 61.7 millimeters, and both
centers defined a right angle with the axis of rotation. That yielded the
distance between the centers as being equal to:

112.05 millimeters ,

which was also confirmed by direct measurement of that distance.
Now, if each of the two balls contains one-half of the amount of electricity

to be determined ε, then if one assumes that this electricity is distributed
uniformly on the surface of each ball then, from known laws, that:

1. A uniformly distributed amount of electricity on the surface of the ball
will act upon all points in external space just as if it were concentrated
at the center of the ball.

2. The force of repulsion that the amount of electricity that is concen-
trated at a point exerts upon another [amount of electricity] concen-
trated at a point, is equal to the quotient of the product of both
amounts of electricity divided by the square of the distance between
them,

one would obtain immediately the force of repulsion between both balls, namely:

1

4
· ε2

112.052
=

ε2

50221
.

However, if that force of repulsion were to be found precisely, then the as-
sumption above would be inadmissible, and one would have to determine
the non-uniformity of the distribution of electricity on the surface of every
ball precisely from the given magnitude and distance and include it in the
calculation.

In Poisson’s “Mémoire sur la distribution de l’éléctricité à la surface des
corps conducteurs” (Mèmoires de l’Institut. Année 1811. Première partie,
page 88),27 one finds the following expression for the density z of the electric-
ity on the surface of a small ball at a great distance from another ball when

27[Note by AKTA:] [Poi12a] and [Poi12b].
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the mean density on the first ball is given to be equal to B and is equal to A
on the latter:

z = B − 3a2A

c2
· µ| +

5a2bA

2c3

(
1− 3µ2

|

)
,

in which b and a are the radii of the two balls, c is the distance between
their centers, and µ| means the cosine of the angle ϕ that the radius of the
first ball defines with the direction of c at the location in question. — If one
wishes to apply that general rule to the foregoing case, then one must set:

A = B

a = b ,

and when one writes the value cosϕ for µ|, it will follow that the density is:

z = A

[
1− 3a2

c2
cosϕ+

5

2

a3

c3

(
1− 3 cos2 ϕ

)]
.

Furthermore, that density implies the outward-pointing electric pressure per-
pendicular to the surface of the ball at the location in question from the known
law that was proved by Poisson in the cited treatise, according to which, the
pressure is proportional to the square of the density, or more precisely, it is
equal to the square of the density z2 multiplied by the number 2π:

2π · z2 .

If one then decomposes that pressure in the direction of the extended
line c and a direction that is perpendicular to it, then one will get that the
component parallel to the extended line c is equal to:

−2πz2 · cosϕ .

Finally, if one substitutes the value of z above in this [expression], then
one will get the decomposed pressure for two equal elements of the surface
of the ball whose connecting line is parallel to the line c, for which the value
of ϕ between them is then extended to π, and collected along the direction of
the extended line c from:

24
πa2

c2
A2

[
1 +

5

2

a3

c3

(
1− 3 cos2 ϕ

)]
cos2 ϕ ,
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from which, one will find the force of pressure that is parallel to the extended
line c, first of all, for the two zones of width adϕ, which both include the
elements of the surface of the ball that belong to the values of ϕ, extended
to π, upon multiplying by the area 2πa2 sinϕdϕ:

48
π2a4

c2
A2

[
1 +

5

2

a3

c3

(
1− 3 cos2 ϕ

)]
cos2 ϕ sinϕdϕ ,

and secondly, for the total surface of the ball, by integration:

48
π2a4

c2
A2
∫ π/2

0

[
1 +

5

2

a3

c3

(
1− 3 cos2 ϕ

)]
cos2 ϕ sinϕdϕ

= 16
π2a4

c2

(
1− 2

a3

c3

)
A2 ,

in which A is the mean density of the electricity on the surface of each of the
two balls of radius a, and as a result:

4πa2 · A

will represent the amount of electricity that is distributed on the surface of
each ball.

However, the desired amount of electricity that is distributed on both
surfaces collectively (whose force of repulsion should exert a unit of rotational
moment on the torsion balance) was denoted by ε above; as a result, one has:

1

2
ε = 4πa2 · A ,

from which:

A =
ε

8πa2
.

If one substitutes this value of A, one will get the force of pressure parallel
to the direction of the extended line c; i.e., the force of pressure on the two
balls:

1

4

(
1− 2

a3

c3

)
ε2

c2
,

or when one substitutes the aforementioned values for a and c in this [ex-
pression], namely:
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a = 11.567 ,

c = 112.05 ,

one will get:28

ε2

50331
.

Finally, the product of the force of repulsion between the two balls in the
direction from the rotational axis to the direction of that force — i.e., along
the perpendicular dropped from the line c — gives the value of the rotational
moment that this force of repulsion exerts upon the torsion balance, which
should be equal to 1.

However, since the line c that connects the centers of both balls defines
a right triangle at the rotational axis with the horizontals that are drawn
from both centers to the rotational axis, the perpendicular that is dropped
from the rotational axis to the hypotenuse of the rectangular triangle c will
be equal to the product of the two catheti29 divided by the hypotenuse, or
since the two catheti are 93.53 and 61.7 millimeters long, and c = 112.05
millimeters, that expression will be equal to:

61.7× 93.53

112.05
= 51.5025 millimeters .

Now, it follows from this that the rotational moment that is exerted by
the electric force of repulsion on the two balls of the torsion balance will be
equal to:

51.5025 · ε2

50331
=

ε2

977
.

28[Note by KW:] That implies that, due to its non-uniform distribution on the outer
surface, the electricity that is contained in each ball cannot be thought of as concentrated
at the center of the ball. — However, one has:

ε2

50331
=

1

4
· ε2

112.17432
,

which then implies that the force of repulsion between the two balls is the same as if the
two halves of the total amount of electricity that is contained in them were concentrated
at two points that are separated by 112.1734 millimeters, that is, since that distance is
0.1234 millimeters greater than the distance between the centers, at two points that lie at
a distance of 0.0617 millimeters from the two centers.

29[Note by DHD:] Viz., shorter sides.
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The requirement that the rotational moment that originates in the electric
force of repulsion on the two balls should be equal to 1 will be satisfied in
such a way that the amount of electricity that is contained in the two balls
collectively will be:

ε =
√

977 = 31.25 .

This determination of ε bases the unit for the amount of electricity as the
amount that will make two equal amounts of electricity exert a unit force of
repulsion when they are at a unit of distance and in a state of relative rest.

10 Section 10. Calculating the Torsion ϑ that

the Wire from which the Coulomb Torsion

Balance Hangs Must Possess in Order to

Exert One Unit of Rotational Moment on

the Torsion Balance by Its Force of Tor-

sion

The rotational moment that is exerted upon the torsion balance by the torsion
in the wire to which it [that is, the balance] hangs is known to be proportional
to the torsion and the torsion coefficient of the wire — or more precisely —
it is equal to the product of the torsion angle, expressed in units of radii,
with the directing force30 that the wire exerts upon the torsion balance. One
therefore needs only to determine that directing force in order to infer from
it the torsion angle ϑ for which the rotational moment that is exerted upon
the torsion balance is equal to one unit.

From the known laws of the elasticity of solid bodies, the magnitude of
the directing force that is exerted upon the wire is independent of the size
and weight of the body that hangs from the wire, and other bodies, instead
of the torsion balance, can therefore be hung from the wire and observed in
order to determine the directing force of the wire.

First of all, one might hang a circular brass plate horizontally at its center
from the wire, instead of the torsion balance. That brass plate has:

a mass of 191 112.4 milligrams,
a radius of 63.95 millimeters.

A small vertical cylinder with:

30[Note by AKTA:] Direktionskraft in the original.
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a mass of 2626.0 milligrams,
a radius of 3.25 millimeters

will serve to connect the wire with the disc. The period t of the torsion
oscillations of the plate was then observed and found to be:

t = 47.139 seconds.
However, from the foregoing data, the moment of inertia of the oscillating

plate was:

K1 =
1

2
· 63.952 · 191112.4 = 390 790 000 ,

and the moment of inertia of the small cylinder was:

K2 =
1

2
· 3.252 · 2626 = 13 868 ,

so when they are combined:

K = K1 +K2 = 390 603 868 .

Now, from the known laws of such oscillations, one will get the value of the
directing force D from that moment of inertia K and the observed period of
oscillation t:

D =
π2K

t2
= 1 735 800 .

Secondly, a brass cylinder was hung horizontally by its center from the
same wire. That cylinder had:

a mass of 58897.1 milligrams,
a length of 269.7 millimeters,
a radius of 2.865 millimeters.

That same small vertical cylinder served to connect it with the wire, as
it did in the foregoing experiment. The period t′ of the torsional oscillation
of that rod was then observed and found to be:

t′ = 44.9537 seconds.
From the foregoing data, the moment of inertia of the oscillating rod was:

K ′1 =
1

12

(
269.72 + 3 · 2.8652

)
58897.1 = 357 130 000 ,

and then the total moment of inertia, including the small vertical cylinder
was:

K ′ = 357 143 868 .
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Those observations then yielded the value of the directing force D as:

D =
π2K ′

t′2
= 1 744 200 .

As a result, the mean of the two series of observations was:

D = 1 740 000 .

Now, should the product of this value of D with the torsion angle, ex-
pressed in units of the radius — i.e., the rotational moment that the wire
exerts upon the torsion balance — be equal to 1, then that would imply that
the value of the angle of rotation or the desired torsion in the wire ϑ would
be equal to the angle whose arc is equal to 1/1740000 of the radius, or:

ϑ = 0.0019757 arcminutes .

11 Section 11. Calculating the Amounts of

Electricity E ′ and e in the Observations

that were Described in Section 7

In the experiments that were described in Section 7, the following values were
found for the torsion angle in the Coulomb torsion balance when it was in
equilibrium, where the various experiments are distinguished by numbers:

No. Torsion angle
in minutes

1. 175.3
2. 237.1
3. 332.9
4. 265.1
5. 332.4

However, the equilibrium of the torsion balance shows that the rotational
moment that is exerted on the torsion balance by the wire is equal and
opposite to the rotational moment of the force of repulsion between the two
balls. — Nonetheless, the first rotational moment was found by dividing
the observed torsion angle by the angle ϑ = 0.0019757 arc minutes that was
determined in the previous Section, which was the angle through which the
wire would have to be rotated in order to exert one unit of rotational moment
on the torsion balance. One then gets the rotational moment that the wire
exerts on the torsion balance in the experiments that were described.
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No. Rotational moment
of the wire

1. 88 728
2. 120 010
3. 168 500
4. 134 180
5. 168 240

From Section 9, the last of the rotational moments that originates in the
electric repulsive forces between the two balls is:

e2

ε2
=

e2

977
,

where e denotes the amount of electricity with which the two balls of the
torsion balance are collectively charged, which one can then calculate in the
five cited experiments from the equality of the two rotational moments, which
is done in the following table. In addition, the values of E ′ that are calculated
from the proportion:

E ′ : e = 3876 : 1

that was found in Section 8 are entered the last column of that table.

No. e E ′

1. 9 310 36 086 000
2. 10 828 41 970 000
3. 12 830 49 730 000
4. 11 450 44 379 000
5. 12 821 49 593 000

12 Section 12. Calculating the Correction

that is Required by the Loss of Electricity

and the Residue in the Leyden Jar Dur-

ing the Transfer of Electricity up to the

Elapsed Time when the Jar is Discharged,

which Equals E ′ − E
The amount of electricity E ′ that remains in the Leyden jar after the charging
of the large ball will experience a small change during the time interval of
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three seconds up to its discharge, partly by loss to the air and partly by the
formation of residue. The amount E that is still present in the jar can then
be determined from E ′ in the following way:

In Poggendorf’s Annalen 91 (1854), one will find a method given for
determining the formation of the residue in a Leyden jar.31 In accordance
with it, if Q is an amount of electricity that is suddenly transferred to the
jar, Qt of which is lost to the air in t seconds, then a residue of rt will have
formed at time t whose equation is:

rt = p
(
Qt −Qe−

b
m+1

·tm+1
)
. (I)

From the previous investigation, the constants of the jar that is used have
the values:

p = 0.04494 , b = 0.1834 ,

while m+ 1 possesses a magnitude equal to 0.4255, which is the same for all
jars.

If those constants are determined for a jar then the constant α that refers
to the electricity lost to air can also be easily found. One suddenly transfers
an unknown charge Q from the jar to the Earth and at the times:

t1, t2, ..., tn ,

one observes the available charges:

Lt1 , Lt2 , ..., Ltn

with the sine electrometer. Now, if νt denotes the amount of electricity that
has leaked to the air up to time t then:

Lt = Q− rt − νt . (II)

However, for small values of t, one can set:

νt = α · tQ+ Lt
2

,

and if Q− νt is written for Qt in equation (I), in addition, then one will get:

Lt = Q(1− ρt)− α(1− p)tQ+ Lt
2

,

31[Note by AKTA:] [Koh54a] and [Koh54b].
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in which p
(
1− e−

b
m+1

·tm+1
)

has been replaced with ρt.
Now, that equation shall suffice for all observations. If one calculates ρt

for the times of the first and last observations and substitutes those values
in the equation, along with the observed values of Lt and t, then one will get
two equations in the two unknown quantities Q and α.

Now, once a charge was suddenly imparted to the Leyden jar in the loca-
tion where the previous experiments were carried out, the following results
for the determination of α would be obtained from the observations:

t Lt ρt
23 0.6676 0.03619
65 0.6576 0.04142
128 0.6483 0.04344
226 0.6389 0.04435

One has Lt =
√

sinϕ in this, and ϕ is the deflection that is observed in
the sine electrometer. However, ρt is calculated from t and the constants of
the jar. — Upon combining the first and last observations, one finds that:

Q = 0.6956 , α = 0.000 179 35 .

Equation (III) then yields the following associated values for t and Lt with
those values:

t Lt
23 0.6676
65 0.6592
128 0.6506
226 0.6389

which deviate from the observed values so slightly that the values that were
found for α can employed precisely in order to find the correction to E ′. In
three seconds then, the loss of electricity to the air will amount to:

0.000538
times the total charge E ′.
The residue that is created in the same time will be found in the following

way:
Immediately before contact with the large ball, which results t seconds

after the jar is charged, the latter will have an available charge of Lt and
residue rt that cannot be discharged. If one writes Q − νt in place of Qt in
equation (I), sets νt equal to its value of α · tQ+Lt

2
, and sets Q equal to the
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value that is implied by equation (III) then one will get the residue at the
time t, expressed in terms of the available charge that is present at that time:

rt =
ρt − αt

(
p− 1

2
ρt
)

1− ρt − 1
2
αt(1− p)

· Lt = βLt . (IV )

After the ball has been charged, only an available charge of Lt/n will

remain in the jar (Section 6), so an amount of electricity
(
1
n

+ β
)
Lt. Now,

the form that the ratio of the residue will take after that partial discharge
will depend upon whether the residue that forms βLt is less than, equal to,
or greater than the limiting value:

p
(

1

n
+ β

)
Lt

of the residue for the charge that is still present in the jar, which will, in turn,
depend upon whether n is less than, equal to, or greater than p/[β(1 − p)],
respectively.

In the present experiments, t was close to 60 seconds, in the mean. If one
substitutes that value in equation (IV) then that will imply that:

β = 0.04286 ,
p

β(1− p)
= 1.0978 .

Since it was found in Section 6 that n = 1.03276, so it is less than p/[β(1−p)],
it emerges that the residue will continue to increase. However, its growth will
be slower than before the partial discharge, since the present limiting value
of the residue that has already formed lies closer than it did before, and
indeed the further formation will proceed as if the residue that is present
βLt were generated by the present charge (1/n+ β)Lt. However, that would
have required a time that follows from the equation:32

rt = βLt =
(

1

n
+ β

)
Lt · p

(
1− e−

b
m+1

tm+1
)
,

from which, it will follow that:

log t =
1

m+ 1
log

−m+ 1

b
ln

1− β(
1
n

+ β
)
p

 ,

which yields 85.9 seconds.

32[Note by KW:] That equation is formed according to the residue equation (I), in which
one must now set Q = (1/n+ β) in place of Qt.
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From the charge E ′ = Lt/n that is present the moment after contact with
the large ball, the resulting growth in the residue will then get lost in the
three seconds up to the discharge of the jar, which is determined from:[(

1

n
+ β

)
p
(
1− e−

b
m+1

88.9m+1
)
− β

]
Lt = 0.00010Lt ,

or since Lt = nE ′:

0.000 103 · E ′ .

That finally gives the desired correction:

E ′ − E = (0.000 538 + 0.000 103)E ′ = 0.000 641E ′ ,

and one will then get the corrected values E for the values of E ′ that were
given in the previous Section, which will give the amount of electricity that
is actually discharged to the multiplier, as follows:

No. E
1. 36 060 000
2. 41 940 000
3. 49 700 000
4. 44 350 000
5. 49 660 000

13 Section 13. Calculating the Time Dura-

tion that a Current with the Normal Strength

that was Described in Section 4 Must Ha-

ve in Order to Produce the Deflections of

the Tangent Galvanometer that were Ob-

served in Section 7

The deflections of the tangent galvanometer that were cited in Section 7 were
observed in scale divisions. One will obtain those deflections in arc values
for a radius of 1 by dividing them by the radius (or twice the distance from
the mirror to the scale), expressed in scale divisions, which equals 12875.
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No. Deflection in Deflection in arc values
scale divisions for radius = 1

ϕ
1. 73.5 0.005 708 7
2. 80.0 0.006 213 6
3. 96.5 0.007 495 2
4. 91.1 0.007 075 7
5. 97.8 0.007 596 2

In “Elektrodynamischen Maasbestimmungen,” II, p. 363,33,34 it was
proved that a current of strength 1 that goes through a winding of a multi-
plier whose radius is a will exert a force F on a particle of the North magnetic
fluid +µ or a particle of the South magnetic fluid −µ that is found at a dis-
tance of b from the plane of the multiplier winding, and whose projection
onto that plane lies at a distance of x from the center, that is perpendicular
to the plane of the winding of the multiplier:

F = ± 2πa2µ

(a2 + b2 + x2)3/2
·
{

1 +
3

4

(
3a2 − 2b2 − 2x2

) x2

(a2 + b2 + x2)2
+ ...

}
,

from which, it will follow that the same current will exert a rotational moment
D on a needle that contains the particles +µ and −µ at a very small distance
of 2ε apart that is parallel to the plane of the multiplier:

D =
4πa2µε

(a2 + b2 + x2)3/2
·
{

1 +
3

4

(
3a2 − 2b2 − 2x2

) x2

(a2 + b2 + x2)2
+ ...

}
,

where 2µε denotes the magnetic moment of the needle or the needle mag-
netism.

Now, three different applications can be made of this equation: First of
all, to the normal conditions that were assumed for the magnetic effects in the
Section 1, next, to the tangent galvanometer with a single multiplier loop, and
finally, to the tangent galvanometer with multiple multiplier loops that was
used in the present experiments. The first two applications show only that,
as was pointed out before in loc. cit. in relation to the current strengths, this
equation is actually the basis for the current intensity unit that is derived
from magnetic effects. The last application leads to the calculation of the
desired time interval τ .

If one applies this equation first of all to the normal conditions that were
assumed for the magnetic effects of a current in Section 1, then one will

33[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 454.
34[Note by AKTA:] [Web52, p. 454 of Weber’s Werke].
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have πa2 = 1, b = 0, 2µε = 1, x = R, and that a/R is a vanishingly-
small fraction. The equation above will then yield the rotational moment D
(without the sign, which depends upon the direction of the current):

D =
1

R3
or R3D = 1 ,

which then agrees with the magnetic current effect that was established for
a current intensity of 1 in Section 1. It follows from this that the equation
above is the basis for the unit of current intensity that was derived from
magnetic effects in Section 1.

Secondly, if one applies that equation to a tangent galvanometer with a
single multiplier loop of radius R, where a small magnetic needle is in the
center of loop, parallel to the plane of the loop, pointing to the magnetic
meridian, then a = R, b = 0, x = 0. The equation above then yields the
rotational moment that the current exerts on the needle when it is found
along the magnetic meridian:

D =
4πµε

R
.

For a deflection of the needle from the magnetic meridian that equals ϕ, that
will go to:

D cosϕ =
4πµε

R
· cosϕ .

If T denotes the horizontal component of the Earth magnetism, then−2πεT sinϕ
will be the rotational moment that the Earth exerts upon the needle. The
sum of these two moments is equal to 0 when the needle persists at rest for
the deflection ϕ; as a result:

2π

R
= T tanϕ or ϕ = arctan

2π

RT
.

However, this deflection is the same as the [deflection which a] normal current
that was described in Section 4 should produce in a tangent galvanometer
with a single loop.

Third, and finally, that same equation shall be applied to the tangent
galvanometer with multiple multiplier loops that is used in the present exper-
iment, and the rotational moment shall be determined that the aforemen-
tioned normal current that was described in Section 4 exerts upon the needle
when it goes through all windings of the multiplier.

We next consider one winding of the multiplier that has radius a and
whose plane is separated from the meridian plane of the needle by b. The
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rotational moment D′ that this winding exerts upon the needle will be de-
termined from the equation above:

D′ =
4πa2µε

(a2 + b2 + x2)3/2
·
{

1 +
3

4

(
3a2 − 2b2 − 2x2

) x2

(a2 + b2 + x2)2
+ ...

}
,

in which one can set x = 0, as in the previous application, if the length of
the needle is a very small fraction of the diameter of the multiplier winding.
Now, the length of the needle in our tangent galvanometer was, in fact,
merely 60 millimeters, while the mean diameter of the multiplier windings
amounted to 267 millimeters, which was, however, still not enough to be able
to neglect x entirely. However, it sufficed to set x equal to an approximate
value that suggested itself when one understood the +µ and −µ in the needle
magnetism, [that is, in the magnetic moment of the needle,] which is equal
to 2µε, to mean the combination of the north-magnetic and south-magnetic
fluids that are distributed on the surface of the needle according to the ideal
distribution, and accordingly determined 2ε, which then meant the distance
from the center of mass of the north-magnetic fluid to that of the south-
magnetic fluid, such that one would set x = ε. From the length and nature
of the needle that was used, 2ε could not be very far from 40 millimeters,
and one could then set:

x = ε = 20 millimeters

with sufficient accuracy.
If one then lets a′ and a′′ denote the inner and outer radii of the multiplier

ring and lets 2b′ denote its width, then the cross-section of the entire ring
will be equal to:

2(a′′ − a′)b′ .

If one further denotes the part of the cross-section that the multiplier winding
in question occupies (whose radius was equal to a, and whose plane was
separated from the common center of the needle and the multiplier ring by
b) by da · db then the product of those elements of the cross-section in the
multiplier winding under consideration with the rotational moment that is
exerted upon the galvanometer will be equal to:

4πa2µε

(a2 + b2 + ε2)3/2
· dadb

{
1 +

3

4

(
3a2 − 2b2 − 2ε2

) ε2

(a2 + b2 + ε2)2
+ ...

}
,

or since the terms that include the fourth and higher powers of the fraction
ε/a can be neglected, due to the smallness of that fraction:
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4πa2µε

(a2 + b2)3/2
· dadb

{
1 +

3

4

a2 − 4b2

(a2 + b2)2
· ε2

}
.

It then follows from this that the sum of the products of the cross-section of
each winding with the rotational moment that is exerted upon it will be:

4πµε
∫ a′′

a′
a2da

∫ +b′

−b′

db

(a2 + b2)3/2
·
{

1 +
3

4

a2 − 4b2

(a2 + b2)2
· ε2

}

= 8πµεb′

log
a′′ +

√
a′′2 + b′2

a′ +
√
a′2 + b′2

+
1

4

(
a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)
· ε

2

b′2

 .

Upon dividing this value by the cross-section of the entire ring, which is equal
to 2(a′′ − a′)b′, one will get the rotational moment that is exerted upon the
needle in the center of one multiplier winding, from which, after multiplying
by the number of windings n, one will get the total rotational moment that
the multiplier exerts upon the needle due to the normal current that flows
through it, namely:

D =
4πnµε

a′′ − a′

log
a′′ +

√
a′′2 + b′2

a′ +
√
a′2 + b′2

+
1

4

(
a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)
· ε

2

b′2

 .

That rotational moment D, when divided by the moment of inertia of the
needle K, which is then equal to:

D

K
,

will give the angular acceleration of the needle in terms of the given nor-
mal current, and when that acceleration is multiplied by the duration of the
current τ , which is very brief in comparison to the period oscillation, which
equals t, will give the angular velocity that is given to the needle by the
normal current during its brief duration, which equals:

Dτ

K
.

Finally, the deflection — i.e., the initial elongation width ϕ — of the needle
that is set into oscillation can be calculated from that angular velocity that is
suddenly given to the needle at rest by known rules (see “Elektrodynamische
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Maassbestimmungen” II, p. 348),35,36 namely, when the decrease in the arc
of oscillation of the needle is given by the ratio of two successive oscillation
arcs eλ : 1:

ϕ =
Dτ

K
· t
π
· e
−λ
π
arctan π

λ√
1 + λ2

π2

.

In order to not have to determine the value of the moment of inertia of the
needle K and its magnetic moment 2µε from special observations, one can
eliminate both of them by consulting the known equation for the period of
oscillation, but in which one must account for the force of torsion of the wire.
If 1 : ϑ denotes the ratio of the geomagnetic directing force that acts upon
the needle, which equals 2µεT , to the one that is exerted by the wire, then
the equations for the period of oscillation t will be:

2µε · T
K

=
π2

t2
·

1 + λ2

π2

1 + ϑ
,

and a result, if one sets:

d =
D

2µε
=

2πn

a′′ − a′

log
a′′ +

√
a′′2 + b′2

a′ +
√
a′2 + b′2

+
1

4

(
a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)
· ε

2

b′2

}

and multiplies the foregoing equation by D
2µε·T = d

T
then:

D

K
=
d

T
· π

2

t2
·

1 + λ2

π2

1 + ϑ
.

If one substitutes that value in the equation for ϕ then one will get:

ϕ = π
d

T
· τ
t
·

√
1 + λ2

π2

1 + ϑ
· e−

λ
π
arctan π

λ ,

and that will give the desired duration of the normal current:

τ = t · ϕ
π
· T
d
· 1 + ϑ√

1 + λ2

π2

· e
λ
π
arctan π

λ .

35[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 440.
36[Note by AKTA:] [Web52, p. 440 of Weber’s Werke].
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However, it was determined by measurement that for the multiplier of
the tangent galvanometer that was used here:

2πa′ = 709.0 millimeters,
2πa′′ = 965.35 millimeters,

2b′ = 72.04 millimeters,
n = 5635,

from which, with the aforementioned value of ε = 20 millimeters, one will
get the value of d:

d = 262.1 .

If the value of ε also has an uncertainty of 1 millimeter, then that will imply
the uncertainty in d, which only amounts to 0.4, out of 262, however (i.e.,
only 1/657), which is not worth considering.

In addition, the period of oscillation of the needle t, the horizontal com-
ponent of the Earth’s magnetism at the location of the tangent galvanometer
T , the logarithmic decrement in the decrease of the arc of oscillation λ, and
the ratio ϑ of the directing force of the wire to the one that is due to geo-
magnetism T were found the usual way:

t = 9.244 seconds ,

T = 1.7983 seconds ,

λ = 0.070 seconds ,

ϑ =
1

691
.

If one substitutes these values in the equation for τ then one will get:

τ = 0.020 921 · ϕ .

The values of ϕ that were obtained from the five experiments that were
described in Section 7 were collected at the beginning of this Section. If one
substitutes them in the equation for τ then one will get the following five
results for the cited experiments:

No. τ
1. 0.000 119 4
2. 0.000 130 0
3. 0.000 156 8
4. 0.000 148 0
5. 0.000 158 9
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14 Section 14. Calculating the Quantity 1
2τ ·E

Finally, it still remains for us to calculate the value of 1
2τ
·E from the values

of E and τ that were found. Namely, if we summarize the corresponding
values of E and τ from the previous two Sections in the following table:

No. E τ
1. 36 060 000 0.000 119 4
2. 41 940 000 0.000 130 0
3. 49 700 000 0.000 156 8
4. 44 350 000 0.000 148 0
5. 49 660 000 0.000 158 9

then that will yield the following five values of 1
2τ
·E that result from the

five measurements that were described in Section 7:

No. (1/2τ) · E
1. 151 000 · 106

2. 161 300 · 106

3. 158 500 · 106

4. 149 800 · 106

5. 156 250 · 106

All of the measurement collectively then give the mean value:

1

2τ
· E = 155 370 · 106 .

However, from Section 5:

1

2τ
· E : 1

denotes the ratio of the amount of positive electricity that passes through
the cross-section of the conductor in one second for a constant current that
is composed of equally-large masses of positive and negative electricity that
flow in opposite directions and whose intensity is equal to the magnetic cur-
rent intensity, to the amount that would exert a force at a distance of one
millimeter that would impart a velocity of one millimeter per second to a
mass of one milligram during one second, if an equal amount of electricity
were concentrated into a point. That ratio was determined in the problem in
Section 4 that remains to be solved, which shall now be done.
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15 Section 15. Reducing the Magnetic, Elec-

trodynamic, and Electrolytic Units of the

Current Intensity to Mechanical Units

However, the solution of the problem that was posed in Section 4 shall now
be used to reduce the magnetic, electrodynamic, and electrolytic units of the
current intensity to mechanical units.

From Section 2, for a constant current that is composed of equally-large
masses of positive and negative electricity that flow in opposite directions
whose intensity is equal to the mechanical unit of current intensity, the
amount of positive electricity that passes through the cross-section of the
conductor in one second shall be equal to one; i.e., it is equal to the amount
of electricity concentrated into a point that would exert a force at another
equal amount of electricity concentrated into another point at a distance of
one millimeter that would impart a velocity of one millimeter per second to
a mass of one milligram in one second. However, from the foregoing Sec-
tion, that unit amount of positive electricity has a ratio with the amount of
positive electricity that passes through the cross-section in one second for a
current whose intensity is given by the magnetic current unit of:

155 370 · 106 : 1 .

Now, since the current intensities are proportional to the amounts of elec-
tricity that pass through the cross-section in equal time intervals, that will
immediately imply the reduction of the magnetic unit for current intensity
to the mechanical unit, since the magnetic current unit of the amount of elec-
tricity that passes through the cross-section in the same time interval will
then be:

155 370 · 106

times greater than the amount in the mechanical unit of current. As a result,
from the cited proportion, the magnetic unit of the current intensity will
itself also be 155 370 · 106 times larger than the mechanical unit.

Furthermore, since, from Section 1, p. 223,37,38 the magnetic unit of
current intensity has a ratio of

√
2 : 1 with the electrodynamic one, the

electrodynamic unit of current intensity will be 109 860 · 106(= 155 370 · 106 ·√
1
2
) times greater than the mechanical unit.

37[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 613.
38[Note by AKTA:] Page 8 of this work, or [KW57, p. 613 of Weber’s Werke].
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Finally, since, from Section 1, p. 224,39,40 the mechanical unit of current
intensity has a ratio of 1 : 1062

3
with the electrolytic one, the electrolytic unit

of current intensity will be 16 573 · 109(= 1062
3
· 155 370 · 106) greater than

the mechanical unit.
The problem in this treatise, as it was expressed in Section 2, of reducing

those three units of current intensity to the mechanical unit, is then solved,
and all that remains is to discuss the applications that can be made of the
result that was found.

Applications

16 Section 16. Determining the Amount of

Electricity that is Required to Liberate 1

Milligram of Hydrogen from 9 Milligrams

of Water

The first application that we shall make of the results that were found is
to the precise determination of the amount of electricity that is required to
liberate 1 milligram of hydrogen from 9 milligrams of water, over which the
determination that Buff found with the help of his tangent galvanometer and
a long conducting wire and published in Annalen der Chemie und Physik, Vol.
86, p. 33 was referred to already in the footnote to Section 3, p. 226.41,42,43

According to Buff, that amount of electricity was sufficient to charge
a battery of 45480 Leyden jars, each of which were 480 millimeters high
and 160 millimeters in diameter, up to a spark gap of 100 millimeters. That
determination that Buff made lacked only more precise data on the amount of
electricity that a Leyden jar contained when it had been charged as described.

Now, the results that were found in the present treatise imply that the
amount of electricity that is required to liberate 1/9 milligram of hydrogen
from 1 milligram of water is equal to the amount of positive electricity that
passes through the cross-section of the conductor in one second for a constant
current whose intensity has the electrolytic unit. However, the latter is, in
proportion to the current intensities that correspond to the electrolytic and

39[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 614.
40[Note by AKTA:] Page 8 of this work, or [KW57, p. 614 of Weber’s Werke].
41[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 616.
42[Note by AKTA:] Page 10 of this work, or [KW57, p. 616 of Weber’s Werke].
43[Note by AKTA:] As a matter of fact, this paper was published in the Annalen der

Chemie und Pharmacie and not in the Annalen der Chemie und Physik: [Buf53, p. 33].
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magnetic current units (see Section 1, p. 224),44,45 1062
3

times greater than
the amount of positive electricity that passes through the cross-section in one
second for a constant current whose intensity has the magnetic current unit,
and from Section 14, that is:

155 370 · 106

times greater than the unit amount of electricity concentrated into a point
that would exert a force at a distance of one millimeter that would impart a
velocity of one millimeter per second on a mass of one milligram during one
second if an equal amount were concentrated into a point.

It follows form this that:

9·1062
3
·155 370·106 = 149 157·109 units, as it was just determined,

are required to liberate 1 milligram of hydrogen from 9 milligrams
of water.

If such an amount of positive electricity were concentrated into a cloud
and an equal amount of negative electricity were concentrated on the surface
of the Earth at the location that is directly below it, then that would yield
an attraction of the cloud to the Earth that would be equal to a weight of
45 000 hundredweights (= 2 268 000 kilograms) if they were at a distance of
1000 meters from each other.

If one divides that number of units by the number of Leyden jars in the
battery that Buff described (viz., 45 480), then one will get the precise data
for the amount of electricity that is contained in the charge in one Leyden
jar as described by Buff, namely:

3280 · 106 units .

However, from Buff’s description, the charged surface of such a jar has an
area of:

480 · 160 · π = 241 300 square millimeters

and as a result, each square millimeter will be charged with:

13 600 units ,

from which, one can determine the compression or condensation of electricity
in the jar that is required for a spark gap of 100 millimeters.

44[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 616.
45[Note by AKTA:] Page 8 of this work, or [KW57, p. 614 of Weber’s Werke].
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17 Section 17. Determining the Constant c

From the fundamental law of electrical action that was established in the first
treatise on electrodynamic measurements,46 which encompassed electrostat-
ics, electrodynamics, and induction, the force that an amount of electricity
e exerts upon an amount of electricity e′ at a distance of r with a relative
velocity of dr/dt and an acceleration of d2r/dt2 is expressed by:

ee′

r2

[
1− 1

c2

(
dr2

dt2
− 2r

d2r

dt2

)]
.

That force splits into two parts, the first of which, which is equal to ee′/r2,
can be called the electrostatic force, and the second of which, which is equal
to −(ee′/c2r2)(dr2/dt2 − 2rd2r/dt2), can be called the electrodynamic force.
The ratio of those two forces is determined from the constant c. c means
the value of relative velocity (assumed uniform) at which the electrostatic
force would cancel the electrodynamic force. That constant c will now be
determined in the following way:

In Section 14, the ratio 1
2τ
E : 1 (that is, the ratio of the magnetic unit of

current intensity to the mechanical one) was found to be:

155 370 · 106 : 1 .

In Section 26, p. 261 of the second treatise on electrodynamic measure-
ments,47,48 the ratio of the magnetic unit of current intensity to the electro-
dynamic one was given as:

√
2 : 1 ,

and in Section 27, p. 269,49,50 the ratio of the electrodynamic unit for the
current intensity to the mechanical one was given as:

c : 4 ,

from which, the ratio of the magnetic unit of current intensity to the me-
chanical one would follow:

c
√

2 : 4 .

46[Note by AKTA:] [Web46] and [Web87] and [Web07].
47[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 360.
48[Note by AKTA:] [Web52, p. 360 of Weber’s Werke].
49[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 367.
50[Note by AKTA:] [Web52, p. 367 of Weber’s Werke].
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Setting this ratio equal to the one that was found in Section 14 of the treatise
will then give:

c = 4 · 155 370 · 106 ·
√

1

2
= 439 450 · 106 .

From this determination of the constant c, one then sees that two electrical
masses must move with a very large velocity with respect to each other if
the electrodynamic force were to cancel the electrostatic one, namely, with a
velocity of 439 million meters or 59320 miles per second, which exceeds the
speed of light significantly.

However, the speed of light is not the speed of motion of a body, but of
a wave, while all of the speeds of actual motions of bodies that are known
to us, even those of the celestial bodies, constitute only very small fractions
of it. Now, if one observes that the ratio of the electrodynamic force to
the electrostatic one corresponds to the square of that fraction, then that
will imply that the electrodynamic force can always be considered to be
vanishingly small in comparison to the electrostatic one. Indeed, we still
have no knowledge of the speeds at which electric fluids move in metallic
conductors. However, in various situations, one can assume that the amount
of neutral electricity that is contained in those conductors is exceptionally
large. Nonetheless, the greater the latter gets, the less the speed of the actual
motion will be, which is then implied by the unit of current intensity that
is present. The speed of those motions probably defines only a very small
fraction of the speed c then.

Furthermore, the large value of the constant c that was found implies the
interesting consequence that such a dynamical part could also be attached
to the gravitational force on ponderable bodies (which would exhibit a great
analogy between the interactions of ponderable and imponderable bodies)
without that dynamical part of the force having the slightest observable
influence of the motions of the celestial bodies.

The fact that the effect of the electrodynamic force does not always vanish
for electricity, but can emerge very apparently for galvanic currents, has its
basis in merely the complete cancellation of all electrostatic forces that takes
place during the neutralization of positive and negative electricity, against
which those [electrostatic] forces would disappear. Wherever no such neu-
tralization takes place, but free electricity is present, only the electrostatic
force would come under consideration in the effect of free electricity. That
explains why not all experiments that were intended to establish the funda-
mental laws of electrical action could be performed with merely two masses
of free electricity, but some experiments had to be performed with two pairs
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of electrical masses (viz., current elements) that were neutralized electrostat-
ically.

For ponderable masses, for which the law of indifferent attraction is true,
one can speak of no neutralization of the masses.

Remark. — At the beginning of this Section, the following equation for
the determination of the constant c was presented:

c =
E

τ
·
√

2 ,

in which 1
2τ
·E : 1 denoted the ratio that was found in Section 14 of the amount

of positive electricity that passes through the cross-section of a conductor in
one second for a constant current whose intensity is measured magnetically
to the amount of electricity concentrated into a point that would exert at an
equal amount of electricity concentrated into a point a force at a distance
of one millimeter that would impart a velocity of one millimeter per second
on a mass of one milligram in one second. — The second treatise on elec-
trodynamic measurements51 was referred to in order to prove that equation.
However, the validity of that equation can also be inferred directly from the
fundamental law of electrical action and the definition of the magnetic cur-
rent measure. To that end, one merely needs to consider the interaction of
two equal current elements α and α of a current flowing along a straight line
separated by a distance of r, about which, as it was already mentioned in
the footnote on p. 22452,53 that they repel each other with a force equal to:

α2

r2
i2 ,

if i is expressed in terms of the magnetic current unit. As is known, that
follows from Ampère’s fundamental law and the relationship between electro-
magnetism and electrodynamics that it gives.

Assuming that, one proposes that the rectilinear conductor of our current
should contain one unit of positive and negative electricity in each piece
of it that is one millimeter long. (From Section 14), 1

2τ
· E then denotes

the number of millimeters that both electrical currents must traverse in the
opposite directions in order to make:

i = 1 .

51[Note by AKTA:] [Web52].
52[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 614.
53[Note by AKTA:] Page 8 of this work, or [KW57, p. 614 of Weber’s Werke].
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Those simple relationships give not only the amounts of electricity in the two
current elements α and α, whose distance and the remaining relationship
depends upon their force of repulsion (according to the fundamental law of
electrical action), but also the magnitude of that force of repulsion itself;
namely, since i = 1:

α2

r2
.

That merely depends upon the fact that this force of repulsion, which is
known already, can be derived from the fundamental law of electrical action,
so since c is contained in that fundamental law, it will contain an expression
for that force that depends upon c, and one needs only to set [the repulsive
force] equal to the value that is known already in order to find c. However, the
force of repulsion between the two current elements α and α can be derived
very easily from the fundamental law of electrical action with the simple
relationships that were described. We then decompose the total force that is
given by the fundamental law into two parts, namely, into the electrostatic
and electrodynamic forces. That will shed light upon the fact that the sum of
the electrostatic forces between the two current elements is zero (due to the
electrostatic neutralization that is present in both current elements). It will
likewise illuminate the fact that no acceleration exists between the electrical
masses in both current elements, so d2r/dt2 = 0. With that, the general
expression for the electrical action:

ee′

r2

[
1− 1

c2

(
dr2

dt2
− 2r

d2r

dt2

)]

will reduce to:

− 1

c2
ee′

r2
dr2

dt2

in our case. Now, when that expression is applied:
1) to the two positive masses in the two current elements e = +α and

e′ = +α, it will give a force of repulsion that is equal to zero, since the
relative velocity of the masses dr/dt = 0 (because both of them move in the
same direction with equal velocities).

2) The same thing will be true for two negative masses e = −α and
e′ = −α.

3) However, when the same expression is applied to a positive mass e =
+α and a negative one e′ = −α, it will give a force of repulsion that is equal
to + 1

c2
ee′

r2
· 1
τ2
·E2, since the relative velocity of those masses is dr/dt = E/τ

(because they both move in opposite directions with the velocity 1
2τ
· E).
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4) The same thing will be true for a negative mass e = −α and a positive
one e′ = +α.

It then follows from this that the sum of all forces of repulsion between
the electrical masses that are contained in the two current elements is equal
to:

2 · 1

c2
α2

r2
· 1

τ 2
· E2 ,

and if that sum is set equal to its value α2/r2 that is known already, then
that will imply the following equation for the determination of c:

α2

r2
= 2 · 1

c2
· α

2

r2
· 1

τ 2
· E2 ,

or

c =
E

τ
·
√

2 ,

which was to be proved.

18 Section 18. The Electrical Laws, with the

Numerical Determination of Their Con-

stants

The electrical laws that were developed in the first and second treatise on
electrodynamic measurements are the following:

1) The fundamental law of electrical action. — According to it, the force
the electrical mass e exerts upon the electrical mass e′ at a distance of r with
a relative velocity of dr/dt and an acceleration of d2r/dt2 is expressed by:

ee′

r2

[
1− 1

c2

(
dr2

dt2
− 2r

d2r

dt2

)]
.

2) The fundamental law of electrodynamics. — According it, the force
that an unchanging and motionless current element of length α and current
intensity i will exert upon an equal current element of length α′ and current
intensity i′ at a distance of r when α makes an angle of ϑ with r, α′ makes
an angle of ϑ′ with the extension of r, and α makes an angle of ε with α′ is
expressed by:

αα′

r2
ii′(3 cosϑ cosϑ′ − 2 cos ε) .
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3) The law of voltaic induction for an unchanging current element that
moves with respect to a conductor. — According to it, the electromotive
force that a current element of length α and current intensity i exerts upon
an element of a conductor of length α′ that moves with a velocity u at a
distance of r when α makes an angle of ϑ with r, α′ makes an angle of ϕ
with r, u makes an angle of ϑ′ with the extension of r, and α makes an angle
of ε with u is expressed by:

2
√

2

c
· αα

′

r2
· ui cosϕ(3 cosϑ cosϑ′ − 2 cos ε) .

4) The law of voltaic induction for a variable current element that does not
move with respect to a conductor. — According to it, the electromotive force
that a current element of length α whose current intensity grows uniformly
by i in a time interval t exerts upon a conductor element of length α at a
distance of r when α makes an angle of ϑ with r and α′ makes an angle of
ϑ′ with the extension of r is expressed by:

−2
√

2

c
· αα

′

r
· i
t

cosϑ cosϑ′ .

5) The law of voltaic induction for a location where there is sliding. —
According to it, the electromotive force that a current of intensity i and slid-
ing velocity v that goes through the sliding location exerts upon a conducting
element of length α′ at a distance of r when v makes an angle of ϑ with r,
and α′ makes an angle of ϑ′ with the extension of r is expressed by:

−2
√

2

c
· α
′

r
vi cosϑ cosϑ′ .

A positive value in the expressions (1) and (2) means a force of repulsion,
while a negative value means a force of attraction. The numerical values
of our measurements give the magnitudes of the forces as ratios with the
force that would impart a velocity of one millimeter per second on a mass
of one milligram during one second. In the expression (2), as well as in
all of the following ones, the current intensities i and i′ are assumed to be
measured in magnetic units, which can always be easily done with the tangent
galvanometer. If one lets ε′ denotes the electrical capacity of the conductor α′

— i.e., the ratio of the amount of positive electricity that it contains (which is
equal to that of the negative) to its length, — then for ε′ = 1 the expressions
(3), (4), (5) will give the difference between the two forces that act in the
direction of α′ on the amounts of positive and negative electricity that are
contained in α′, and in fact, they will give that force difference as a ratio
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with the force that would impart a velocity of one millimeter per second on a
mass of one milligram during one second. — If ε′ is not equal to 1, then the
expressions (3), (4), (5) must be multiplied by ε′ in order to get the given
force difference.

A complete determination of all forces by means of the given laws requires
that the constant c must be set equal to the numerical value that was found
in the previous Section in all of the expressions above. One will then get:

ee′

r2

[
1− 1

c2

(
dr2

dt2
− 2r

d2r

dt2

)]

=
ee′

r2

[
1− 1

193 120 · 1018

(
dr2

dt2
− 2r

d2r

dt2

)]
, (1.)

αα′

r2
ii′(3 cosϑ cosϑ′ − 2 cos ε) , (2.)

2
√

2

c
· αα

′

r2
· ui cosϕ(3 cosϑ cosϑ′ − 2 cos ε)

=
1

155 370 · 106
· αα

′

r2
· ui cosϕ(3 cosϑ cosϑ′ − 2 cos ε) , (3.)

−2
√

2

c
· αα

′

r
· i
t

cosϑ cosϑ′ = − 1

155 370 · 106
· αα

′

r
· i
t

cosϑ cosϑ′ , (4.)

−2
√

2

c
· α
′

r
· vi cosϑ cosϑ′ = − 1

155 370 · 106
· α
′

r
· vi cosϑ cosϑ′ . (5.)

When all constants have been determined numerically, the law of electric-
ity, in the last form, will satisfy all requirements in practice. However, for
theoretical investigations, it can be necessary in many cases to substitute the
values of i and i′ that are derived from the causes of the current intensities
(see Section 2) in the expressions above, instead of the current intensities i
and i′ that are measured in magnetic units. Namely, if +αε and −αε denote
the amounts of positive and negative electricity, respectively, that are con-
tained in the conductor α, and +u and −u, respectively, are the velocities
with which they move in the conductor, and if +α′ε′, −α′ε′, +u′, and −u′,
respectively, denote the same things for the conductor α′, then εu and ε′u′,
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respectively, will be the values of the current intensities, when determined in
mechanical units, and from the relationships that were found in Section 15,
those values must be divided by 155 370 · 106 in order to obtain the values of
the same current intensities, when expressed in magnetic units. As a result,
one will have:

i =
εu

155 370 · 106
, i′ =

ε′u′

155 370 · 106

in the expressions above, and those values can be substituted for i and i′ in
the expressions above, if that should be necessary.

19 Section 19. Application to Electrolysis

All electrical forces that are determined by means of the laws that were
cited in the foregoing Section are forces that act directly upon only electrical
masses. However, all forces that act directly upon only electrical masses will
also act indirectly upon the ponderable carriers of those electrical masses. In
that way, the application of electrical laws to the investigation of ponderable
bodies opens up a broad field, since electricity will, in that way, become
an instrument for us, with whose help we can make known forces act upon
ponderable bodies by means of relationships for which no other known forces
act.

When electrical masses are coupled with their ponderable carriers, the law
above explains why the electrical masses cannot move without their carriers.
However, even in metallic conductors, in which the electricity can move, while
their ponderable carrier (the metal) remains at rest, so the electrical masses
go from one metallic particle to another, one still finds a coupling between
the electrical masses and the metallic particles that must be resolved before
the electrical mass can go from one metallic particle to another. As long as
that coupling exists, all forces that act upon only the electrical masses will,
however, carry over directly to the metallic particles that they are coupled
with, and only those forces that act upon the electrical masses, once they
have been liberated from the metallic particles, will no longer carry over to
those metallic particles, but will impart a certain velocity on those electrical
masses until they arrive at the next metallic particle, but due to the coupling
between those electrical masses and the next metallic particle, it will again
be cancelled, which would have the same effect as if the electrical forces that
produced that velocity were carried over to that next metallic particle. One
calls all of those forces that emerge from the coupling of electrical masses with
individual metallic particles forces of resistance, by which the metal opposes
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the motion of electricity in its interior, from which Ohm’s law follows, that
the electricity in the metallic conductor can persist in a uniform motion only
when it is driven forward continually by an equally-large force, and that
current will momentarily vanish as soon as the driving force ceases. — It
will then follow from this that, even in conductors, all forces that act upon
the electricity in the conductor directly, will be transferred indirectly to the
conductor itself due to the resistance of the conductor.

In electrolysis, one does not deal with a metallic conductor that remains
at rest while the electrical fluid moves in it, but with a body (e.g., water) that
is composed of various kinds of ponderable particles, of which, the one kind
(viz., hydrogen particles) follows the motion of the positive electricity, while
the other (viz., oxygen particles) follows the negative electricity. That then
raises the question: What is the origin of the forces that produce the various
motions of the two components of the water? The laws of electrolysis show
that these motions must be an indirect effect of the electrical forces, if not also
a direct one. Now, if the electrical forces act directly upon only the electrical
masses that are bound to the hydrogen and oxygen particles, then the fact
that the hydrogen particles follow the motion of the positive electricity and
the oxygen particles follow the motion of the negative electricity shows that
the one must be bound to positive electricity in water, and the other, with
negative electricity, so it will remain in the water, regardless of whether
it contains a quantity of neutral fluid, in addition to the free electricity.
The strength of that coupling of the hydrogen particles with free positive
electricity and the oxygen particles with the negative electricity might also go
unmentioned, such as whether it is so strong that they cannot be separated
at all, so the electricity will only move with its ponderable carrier under
electrolysis, or if it behaves as it does in metallic conductors, such that the
electricity will take on a motion that is independent of the motion of the
ponderable carrier, in addition to the latter motion. However, in the latter
case, the law that the decomposition of the different combined bodies that is
due to that current will be proportional to the chemical equivalent will not
be strictly valid, which has been shown by the most recent investigations of
that case.

Now, if the electrical forces, which only seek to separate the electrical fluid
directly, are transmitted to the components of the water by whatever bond
that couples the fluid to the components, then one can achieve a closer de-
termination of the chemical separating forces54 that produce the separation
of the ponderable components from a more precise knowledge of the elec-
trical separating forces, and that is the reason for the special interest that

54[Note by AKTA:] Chemischen Scheidungskräfte in the original.



60

electrolysis enjoys in comparison to the other methods of chemical separa-
tion. Namely, electricity can be used as an instrument by which we link each
hydrogen and oxygen particle in the water by a thread and we can stretch
both threads in opposite directions with known forces until the hydrogen and
oxygen particles are torn from each other.

In order to employ that instrument, and in that way to actually deter-
mine the forces that are required to separate the chemically bound parts in
terms of known measurements, we must give the electrical law, along with
the numerical determination of its constants. Once that has been done, we
would also like to attempt to apply that to the known results.

The forces that put the electrical fluid into current motion will be called
electromotive forces. That special terminology (which will be used to dis-
tinguish that type of force, and not merely its effects) is merely based upon
the fact that up to now those forces cannot be measured with known units,
but can be determined only indirectly by the effects of the currents that
they produce (e.g., thermal, chemical, and magnetic effects), by which they
can indeed be compared to each other, but absolutely cannot be expressed
in terms of known units, and therefore they also cannot be compared with
other known forces. That argument breaks down when one determines those
forces from the laws that were given in the foregoing Section, by which they
will be expressed in terms of known units. One can also express the forces
that one cannot calculate directly from the laws above in terms of known
units by comparison them with the ones that can. — Finally, since one can
determine the resistance in a closed circuit precisely, and for a constant cur-
rent the electromotive force and resistance must always have the same ratio
to each other, according to Ohm’s law, one also learns how the electromotive
forces are distributed over the various parts of the circuit. Thus, if a volt-
meter is introduced into a circuit, then the electrical separating forces that
act in the water can be ascertained precisely.

However, with water, one encounters the special circumstance that it de-
fines a very bad conductor in its pure state and is very difficult to decompose.
All electrolytic measurements then relate to water that has been mixed with
sulfuric acid or other chemicals: One obtains different results in regard to
decomposability for different mixtures. It is necessary to initially restrict
oneself to a particular mixture then, and here we shall choose a mixture of
water and sulfuric acid with a specific gravity of 1.25, following the inves-
tigations that Horsford published in Poggendorf’s Annalen, Vol. 70 (1847),
p. 238, which is the easiest of all mixtures of water and sulfuric acid to
decompose.55

55[Note by AKTA:] [Hor47].
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For equal lengths and cross-sections, the resistance by which that mixture
opposes the current that Horsford gave was found to be:

696 700
times larger than the resistance of silver, or when one sets the ratio of the
resistance of silver to that of copper equal to 1 : 0.7417, following Lenz
(Poggendorf’s Annalen, Vol. 34, p. 418, Vol. 45, p. 105):56

516 750
times larger than the resistance of the copper that Lenz used. — From
the measurements that were communicated in the Abhandlungen der K.
Gesellschaft der Wissenschaften in Göttingen, Vol. 5 (“Über die Anwendung
der magnetischen Induktion auf Messung der Inklination mit dem Magne-
tometer”),57 the resistance of a copper wire of length one millimeter and a
mass of one milligram (= 1/8.427 square millimeters of cross-section) was
found to be equal to:58

2 310 000
in absolute units of the magnetic system; i.e., for a copper wire of length one
millimeter and a cross-section of 1 square millimeter, it will be equal to:

274 100.
That yields the resistance of the mixture above when it is one millimeter long
and one square millimeter in cross-section as being:

141 640 · 106

in magnetic resistance units. However, that mixture contained about nine
parts water to one part sulfuric acid by volume, and the pure water would
then amount to only 9/10 of the total cross-section. If one assumes that the
total current goes merely through the water (because if a part of the cur-
rent were conducted by the sulfuric acid then that would define an auxiliary
current, which would have to be excluded from any consideration of the de-
composition of water) then the resistance would refer to just the water, and
one would have to set it equal to:

127 476 · 106

for one millimeter of length and one square millimeter of cross-section.

56[Note by AKTA:] [Len35] and [Len38].
57[Note by AKTA:] [Web53c], [Web53a] and [Web53b].
58[Note by KW:] In the cited place, [Wilhelm Weber’s Werke, Vol. II, p. 319] one finds

the resistances given for various types of copper, among which, one finds the one above,
which corresponds to the copper that Jacobi used for his standard resistance (Widerstands-
Etalon), which is the largest of them. That value was chosen because Lenz often referred
to the same papers as Jacobi, so he probably appealed to the same types of copper as
Jacobi in his experiments.
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Now, should this resistance to the current intensity in magnetic units be
equal to 1062

3
— namely, strong enough that, from Section 1, p. 224,59,60 one

milligram of water would decompose in one second — then the electromotive
force for each millimeter in magnetic units would have to amount to:

106
2

3
· 127 476 · 106 ,

which must be multiplied by 2
√
2
c

= 1
155 370·106 in order to obtain its expression

in mechanical units.
However, from the foregoing Section, that number means the difference

between the forces that act in each direction of the current on each unit of
free positive electricity (in the hydrogen particles) in a column of water that
is one millimeter long and on each unit of the free negative electricity (in the
sulfuric acid that is found in it), and that number must then be multiplied
by n in order to obtain the total force that acts, if n is the number of units of
free positive or free negative electricity that is contained in the hydrogen or
oxygen particles, respectively, in a water column that is one millimeter long.

However, the hydrogen in one milligram of decomposed water gives up
its free positive electricity to the electrode where it develops, which will then
flow through the electrode (or, what amounts to the same thing, in effect, it
will be neutralized by the supply of negative electricity in it) and will flow
through the cross-section in one second. However, since the current intensity
in electrolytic units is equal to 1, and from Section 15, with that current
intensity, 1062

3
· 155 370 · 106 units of positive electricity and just as much

negative electricity will go through the cross-section in one second (when
one-half of the free positive electricity that is on the electrode flows through
the electrode, while the other half is neutralized by the negative electricity
that the electrode supplies), which will yield:

1

2
n = 106

2

3
· 155 370 · 106 ,

If one then multiplies that number by:

2
√

2

c
· n = 2 · 106

2

3

then the product

2 ·
(

106
2

3

)2

· 127 476 · 106

59[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 614.
60[Note by AKTA:] Page 8 of this work, or [KW57, p. 614 of Weber’s Werke].
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will give the difference between the forces that must act in the direction of
the current on the hydrogen particles in one milligram of water that defines a
column that is one millimeter long, which contain free positive electricity, and
on the negative electricity that is contained in the oxygen particles (under
the influence of the neighboring sulfuric acid) if the decomposition of the
water is to result with a velocity of one millimeter per second, and indeed
that difference in forces is determined from the number above as a ratio to
the force that would impart a velocity of one millimeter per second on a mass
of one milligram during one second.

The weight of one milligram is a force that will impart a velocity of 9811
millimeters per second on a mass of one milligram in one second. Therefore, if
one divides the given number by 9811, then one will get that force difference,
as expressed in milligram weights:

2

9811
·
(

106
2

3

)2

· 127 476 · 106 = 2 · 147 830 · 106 .

One can express that result in the following way: If all of the hydrogen
particles in one milligram of water in a column one millimeter long were
coupled by one thread and all of the oxygen particles were coupled with another
thread, then both threads would each have to be tensed in opposite directions
with a weight of:

147 830 kilograms,
or about 2956 hundredweights, in order to produce a decomposition of the
water with such a rate that one milligram of water would decompose in one
second. The tension would remain the same for columns of different cross-
sections but would increase in proportion to the length of the column.

Should the water decompose at a small rate under the same conditions
— e.g., with a rate of one milligram per 2956 seconds — then the tension
above would have to be proportionally smaller; viz., only one hundredweight.
Above all, the tension could then be arbitrarily small, and decomposition
would always result, but only at a lower rate as the tension become smaller.
However, that is true only under the assumption that the force of resistance
by which the water opposes its decomposition (the motion of the hydrogen
and the oxygen in opposite directions), which is analogous to the force of
resistance that opposes the motion of positive and negative electricity inside
of a metallic conductor according to Ohm’s law, is proportional to the rate
of decomposition.61 However, for metallic conductors, it is very likely that

61[Note by KW:] From Ohm’s law, the ratio of the force of resistance by which a con-
ductor opposes the motion of the electricity inside of it to the velocity of that motion is a
constant that is called the resistance of the conductor.
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Ohm’s law does not correspond to reality precisely, but that, strictly speak-
ing, the force of resistance consists of two parts, one of which is proportional
to the rate, while the other is constant, since it is only in that way that
the better conductors (e.g., metals) can be included in the same law as the
worse ones (e.g., insulators). The same thing is also probably true for the
force of resistance by which the water opposes the motion of the hydrogen
and oxygen in opposite directions in its interior. The resistance (viz., the
force of resistance divided by the current velocity) will then be represented
by the sum of a constant w and a part k/i that is inversely proportional to
the current velocity. Now, if one substitutes that sum for the resistance in
Ohm’s law then one will get the current intensity i, expressed in terms of the
electromotive force E and the given sum, in the following way:

i =
E

w + k/i
,

or

E = k + wi .

For metallic conductors, k is very small compared to the value of wi that
comes from the measurements; for insulators, wi vanishes in comparison to
k.

Now, no precise experiments involving water exist from which the value
of the constant k could be measured. However, there do exist experiments in
which it was shown that this constant does not vanish completely, although
it is still very small. Namely, if one conducts magnetically induced currents
through water, then one can infer from the measurable current effects that
this induction would decompose more or less water according to whether it
happened faster or slower, respectively, which would not be the case if one
had k = 0. — For electrolytic measurements, wi is typically so large that k
will not come under consideration in comparison to it.

One refers to the forces that define the resistance to the decomposition of
the hydrogen and oxygen in water as forces of chemical affinity, which one
is not, however, in a position to express in known units. In this Section, it
will be shown in an example how the results of the foregoing investigation
can actually be employed to implement such a determination. In that way,
the path to a more detailed exploration of the laws of forces of chemical
affinity will be blazed, but numerous measurements of those forces would
be necessary for that, of which, only one measurement shall be given as an
example.
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20 Section 20. Electricity Content in a Con-

ductor

The intensity of the current that goes through a conductor is proportional
to the velocity with which the positive and negative electricity flows through
the cross-section of the conductor and therefore depends upon two factors:

1. The amount of electricity that is contained in each element of length of
the conductor (which can be called the capacity of the conductor).

2. The velocity with which that amount of electricity (viz., positive and
negative moving in opposite directions) advances in the conductor.

The intensity of the current that flows through the cross-section of the
conductor — that is, the amount of positive and negative electricity — can
also be measured in known units, so either the amount of electricity that is
contained in an element of length in the conductor or the velocity with which
it advances in that conductor can be determined individually: That could
happen only in those cases where the one kind of electricity does not move
by itself, but the particles of the conductor in which it is contained move
with it.

Now, whether that case comes about when the electricity jumps from one
conductor to another (through a layer of air), whereby small particles of the
one conductor break away and go over to the other conductor, has not, in fact,
been ascertained experimentally, and it also cannot be ascertained completely
and with certainty. However, it seems that under certain conditions, it can
be established factually that small particles can break away from only the
positively charged conductor and go over to the negative conductor. There
is also no doubt that these small particles that break away are charged with
free positive electricity and that the transfer of a well-defined amount of
electricity from one conductor to another will be mediated by them. However,
whether the transfer of only part of the positive electricity or all of it from one
conductor to the other will be mediated in that way, and furthermore whether
those small breakaway particles contain merely free positive electricity or also
a well-defined amount of negative electricity, in addition, and finally, how the
negative electricity on the other conductor behaves during the process, has
not been subjected to a more detailed discussion up to now.

As far as the behavior of the electricity on the negatively-charged con-
ductor is concerned, of which, no particles will break away and move to the
positive conductor under the aforementioned conditions, it would seem to
emerge from this that the negative charge on the conductor suffers some sort
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of deceleration under those conditions and therefore that before that charge
has attained the strength that is required for the liberation of small particles,
the particles that break away from the positively-charged conductor have al-
ready arrived at the negative one and hinder the growth in negative charge
by transmitting their positive charge. Hence, no electricity at all would go
from the negatively charged conductor to the positively charged one under
those conditions.

As far as the other question is concerned, of whether the liberated parti-
cles contain merely positive electricity or whether they carry a well-defined
quantity of neutral fluid with them, in addition, a definite opinion on that
could only be based upon some fact about the liberated particles at the
highest level of detail.

Namely, it is known that when a larger ball is separated from a smaller
one after contact, the free electricity that is contained in both of them will
split between them in a well-defined ratio, and indeed in such a way that the
mean densities of the layers of electricity that are found on the surface of
each ball will not be equal, but the mean density that is found on the surface
of the smaller ball will be larger than the density that is found on the surface
of the larger ball, and in fact that ratio will approach:

1.6449 : 1
as the two balls become the more unequal.

Now, a particle that breaks away can be considered to be only an extremely-
small ball, and therefore when one denotes the density of amount of electricity
that is present on the surface of the positively-charged conductor by ε, the
density of liberated particles that are present on the surface will be set equal
to 1.6449 · ε. Now, it is known that whereas ε vanishes in comparison to
the radius of curvature of the surface of the positively-charged conductor,
1.6449 · ε will also vanish in comparison to the radius of the smallest liber-
ated particle, but in contrast, due to the extreme smallness of that particle,
one must assume that its radius is smaller than 1.6449 ·ε, or at least no larger
than it. However, it would then follow that this layer of positive electricity
would fill up the entire positive particle, and therefore no space would be left
in that layer that might contain a well-defined amount of neutral fluid. The
small liberated particle would then contain merely free positive electricity.
Finally, in regard to the question of whether the free electricity goes from
the positively-charged conductor to the negative conductor only by means
of the liberated particles or if another quantity of positive electricity with-
out ponderable carriers finds a path to the negatively-charged conductor by
itself, as well, one can only assert that given the lack of any physical basis
upon which it would depend, under exactly the same conditions, the one part
of the electricity should move independently of its ponderable carrier, while



67

the other part must move with its ponderable carrier. Since that would then
actually establish that part of the transferred electricity was drawn along by
its ponderable carrier, that must be assumed of all the transferred electricity
until the contrary has been proved.

The case of a current for which the conducting particles, which con-
tain only positive electricity, would advance would then actually exist. The
amount of advancing electricity that goes from the one conductor to the
other can now be determined precisely from the measurements that are ob-
tained (by measuring the current intensity). As a result, all that remains
is to measure precisely the amount of ponderable mass that simultaneously
breaks away from the positive conductor and lands on the negative conduc-
tor. Although that ponderable mass might also be so small, nonetheless, it
can still be clearly observed, and from that, one can assume that its weight
can also be determined with the most accurate balance that we possess.

In any event, that implies that even for very large amounts of electric-
ity that go from the positively-charged conductor to the negatively-charged
one, the ponderable mass of the conducting particles that break away is very
small, and as a result, the amount of electricity that is contained in each el-
ement of length in the conductor is exceptionally large. However, the larger
that amount of electricity gets, the smaller that the velocity with which that
amount of electricity advances in the conductor will be, and that smaller
velocity with which the electrical fluid moves in its conductor can then by no
means be confused with the extremely large velocity with which the perturba-
tion of the equilibrium in the electrical fluid propagates through the metallic
conductor, to which the well-known experiment of Wheatstone referred.62

The facts that the amount of electricity that is contained in one element of
length in a metallic conductor is very large and that the velocity with which
the amount of electricity moves in the conductor is very small for all currents
that are presented in reality, could have been expected beforehand by analogy
with the results that were found in Section 15 for a wet conductor (e.g.,
water), because it was found there that for a current whose intensity is equal
to 1 in electrolytic units, an amount of positive electricity of 1062

3
·155 370·106

units, together with 1/3 milligram of hydrogen, will move in one direction,
while an equally-large amount of negative electricity that is bound to 8/9
milligram of oxygen will move in the opposite direction through the cross-
section of the conductor in one second, from which, it would follow that
1062

3
· 155 370 · 106 units of positive electricity and equally-much negative

electricity must be contained in one milligram of water, but they (together
with their ponderable carriers) advance only with the very small velocity of

62[Note by AKTA:] [Whe34].
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1/2 millimeter in one second when the area of the cross-section of the wet
conductor is only 1 square millimeter. If the cross-section were larger, then
the velocity would be proportionally smaller.

21 Section 21. Applying This to Units

The units that are useful in physics are divided into the fundamental units
and the derived units. In general mechanics, where all forces are considered
to be given individually, all units can be reduced to the known fundamental
units of space, time, and mass. — In all of those branches of physics where
the law of gravitation must be assumed to apply, all units can be reduced to
merely the two fundamental units of space and time, since the units of mass
can also be derived with the help of the law of gravitation. Namely, one
can take the unit of mass to be the mass that would, if it were concentrated
at a point, exert a force upon another mass at a unit distance that would
impart a velocity to the latter that would equal one unit length per unit time
according to the law of gravitation.

Now, it is interesting to note that this system of units is capable of being
simplified even further, and that it is possible to derive all of the units that
are used in physics from the single basic unit of space when one assumes
two fundamental laws of nature to that end, namely, in addition to the
law of gravitation of ponderable masses, one assumes the fundamental law of
electrical action, since one can also derive the unit of time from the unit of
space with the help of the latter. Namely, one can take that unit of time
to be the time during which two electrical masses that move with uniform
relative velocity must move towards or away from each other if they are to
have no influence on each other according to that law.

If one chooses the millimeter to be the spatial unit, then the unit of time
could be derived from it under the assumption of the fundamental law of
electrical action, and it would be the:

439 450 millionth part of a second,
since when two electrical masses that move with uniform relative velocity
approach or move apart from each other [the distance] of 1 millimeter in
that small time interval, they will exert no effect on each other according to
the fundamental law of electrical action.

Once the time unit has been derived from the spatial unit in that way, the
unit of mass can also be derived from those two units under the assumption
of the law of gravitation. Namely, from the law of gravitation, the Earth is a
mass that, if it were concentrated into a point, would impart an acceleration
equal to 9811 upon another mass at a distance equal to the Earth radius if
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the millimeter were used as the spatial unit and the second were used as the
unit of time. If one were to take the unit of time that was just derived instead
of the second, which is 439450 million times smaller, then the derived unit
of acceleration would be 4394502 billion times larger, and the acceleration
would be equal to:

9811

4394502 · 1012

in that larger unit. Now, if one sets the radius of the Earth equal to 6370 ·106

(millimeter), then according to the law of gravitation, if the mass of the Earth
were concentrated into a point, then it would impart an acceleration upon
another mass at a unit of distance that would equal:

9811 · 63702 · 1012

4394502 · 1012
,

and as a result, a mass that amounts to 4394502

9811·63702 , or almost one-half the
mass of the Earth, which is the mass that one will get as the derived mass
unit from the law of gravitation, under the assumption that the millimeter
is the spatial unit and with the help of the time unit that was derived from
it before.

Finally, all of the remaining units that are used in physics can be derived
from the millimeter as the spatial unit and the units of time and mass that
were just derived from it in known ways.

According to this system, in which all units can be derived from the single
fundamental unit of distance, the force of attraction between two masses m
and m′ at a distance of r will be equal to mm′/r2, and the force of repulsion
of two amounts of electricity e and e′ at a distance of r will be equal to
(ee′/r2)(1−dr2/dt2+2rd2r/dt2), without having to add that these expressions
or the individual terms in them must be constant factors.
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Appendix

A Appendix I. Description of the Torsion Bal-

ance

In order to avoid, as much as possible, an unequal reaction of the charged balls
on the moving ball of the torsion balance due to the electrostatic induction
of its electrified walls, the balance is usually associated with a very large
scale. The case in which the balls were hung was a parallelepiped that was
1.16 meters long, 0.87 meter wide, and 1.44 meter high. The twelve edges
of the parallelepiped were constructed from square posts (with a thickness
of 80 mm) of hard wood. Once the framework was established on a large
stone foundation, a heavy sheet of wood was laid upon it as a lid, but the
side walls were draped with a tightly-stretched oilcloth in such a way that
the edges of the posts would not protrude into the interior of the space.
After that draping, which left merely the upper fourth of a wall open for one
to hang the apparatus, the rigidity of the case was increased appreciably by
bolted struts. For the measurement itself, once the fixed ball was introduced,
the opening was closed with a slide. However, in addition, the entire case
was covered with multiple layers of towels and blankets that rested upon the
stone in order to keep the draft off of it. Nevertheless, it was necessary to
make the observations at night in an unheated room, since the opening and
closing of the doors in other parts of the building and the uneven warming
of the floor by the Sun would give rise to air currents that would produce
an occasional oscillation of the moving ball of up to one-half of a degree.
However, at night, when the outside air was not too agitated, the ball did
not oscillate by even one minute.
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The torsion circle T was fixed over the center of the lid, whose cross-
section is denoted by D in Figure 2, whose alidade AA′ allowed one to read
off the individual minutes from its vernier scale and would lead to a finer
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adjustment of the torsion with a Hook key63 H or also by freely loosening it
by hand. Furthermore, the definitions of the symbols in the Figure are:

• a the hard-drawn brass wire (no. 12), which is 398 mm long and fixed
in the axis of the alidade;

• b a small brass cylinder with a side screw for clamping it fast to the
lower end of a. Under it, is

• c a 5 mm protruding threaded spindle, in order to attach either the
body whose period of oscillation is to be determined from the torsion
coefficient, or the brass wire

• d, to which the 5 mm thick, 450 mm long, cylindrical rod ef of pure
shellac was fused.64

• hi means the shellac lever for the moving ball, which was tapered on
both sides up to 2.5 mm in thickness along perhaps 60 mm in length.

• fg is a wire that is immersed an inch deep in olive oil with a mirror s on
it that is attached to wood. The oil has the effect of damping out not
only the oscillation of the moving ball, but also the pendulum motions
that arise from vibrations, in the shortest time, while on the other
hand, it is no impediment that the lever follows the most imperceptible
changes in torsion.

The two balls of the torsion balance consist of very thin Argentan sheet
metal that were finely polished and gold-plated, and merely heat-glued to
the shellac.

The long vertical shellac rod for the fixed ball, which was tapered below,
was glued to a curved brass rod mn. A horizontal axis pq with two steel
tips was solidly fixed to it, and at right angles to it, a brass rod rt with a
running weight. The running weight pushed the upper end of the brass rod
mn against an adjusting screw, such that precisely the same position of the
torsion balance would result whenever the fixed ball was taken out or put in.
If one pushed the brass rod mn forward in order to charge the moving ball
until the rod tr joined up with an adjustment screw, then the charged fixed
ball would be found to be near the moving one, so the former could attract
and charge the latter without the latter needing to describe a large path.

63[Note by DHD:] Hook’schen Schlüssel in the original.
64[Note by KW:] The length ef , and above all, the length Tg, are too negligible in

comparison to the size of the upper part of the figure to be indicated. The balls were
further away from the lid.
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Opposite to the mirror s, there was an opening in the wall of the torsion
balance that was closed with flat glass. Outside at some distance, one found
a horizontal scale whose mirror image could be observed in a telescope. The
distance to the scale was chosen such that when the rotation of the level in
the torsion balance amounted to one minute, the scale in the telescope would
move by one scale division. At the same time, the scale was positioned such
that when the centers of the two balls defined precisely a right angle with
the axis of rotation, its zero-point, which was placed in the center and from
which the scale was numbered on both sides outward, would appear in the
crosshair of the telescope.

That was the position of the balls in which they should be observed, which
could always be known with great accuracy in that way. Had the moving
ball moved further from the fixed ball after they were electrified, then the
observer who was found at the telescope could likewise read off how many
degrees or minutes would be needed to correct the state of the moving ball by
torsion. On the other hand, a disc was installed on the hook key that allowed
one to see the rotation of that key in minutes of the rotation of the alidade,
and the torsion-adjusting second observer could bring about the correction on
command65 without needing to look at the vernier scale. Some practice with
the timely assignment and performance of that command and the excellent
effect of the oil soon brought one to the point that the moving ball, which
was thought to be put into a state of violent motion by the charging, could be
brought to rest completely in a relatively short time in such a way that the
centers of the two balls would define an angle with the axis of rotation that
was larger than a right angle by only a few minutes; i.e., such that the zero-
point of the scale in the telescope would be at a distance of a few tick marks
on the crosshair of the telescope. The loss of electricity would then bring the
ball gradually closer to the fixed ball due to the torsion on it that was present,
such that the time-point at which the zero-point of the slowly-drifting scale
passed the crosshair of the telescope would be determined accurately. The
torsion could be read off from that.

The state in which the centers of the two balls define precisely a right
angle with the rotational axis of the torsion balance is found in the following
way:

65[Note by KW:] If one wished to bring the lever in an uncharged torsion balance from
one position to another without producing long-lasting oscillations, then one would make
one-half the correction suddenly when the lever was still at rest and the other half just
as suddenly at the moment when attained its greatest elongation and began to reverse.
It would then become more still the less the air resistance came into consideration in
comparison to its moment of inertia. One will achieve the goal approximately for the
charged torsion balance in that way.
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Once a fine filament that was weighted down (whose projection m rep-
resents the axis of rotation in Figure 3), was fixed to the small cylinder on
the torsion wire in place of the shellac rod, a theodolite T was placed at a
distance of a few meters, and the distance Tm was measured precisely. From
there, an ivory yardstick that was divided into millimeters was brought into
the positions MN and M ′N ′ horizontally, such that it stood parallel to md
each time and was tangent to the fixed ball at one-half its height. The ver-
tical crosshair in the telescope of the theodolite allowed one to estimate the
lengths ab, ac, a′b′, and a′c′ to one tenth of a millimeter due to its higher
magnification. One then had:

md =
1

4
(ab+ ac+ a′b′ + a′c′) .

After that, a second theodolite was placed at a point T ′ such that the
vertical line in its telescope covered the rotational axis m and was tangent
to the fixed ball. Once T ′m was measured, the telescope was rotated into
the position T ′n such that the line was tangent to the other side of the fixed
ball, and it then remained unperturbed.

One then hung the shellac rod with the moving ball from the torsion wire
again and measured the angle pTq with the theodolite T . The moving ball,
which was protected from light reflection, stood out very sharply from the
white background, and the theodolite pointed to the tangent to the circle
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inside of which it moved by slow rotation. The distance from the center of
the moving ball to the axis of rotation was then:

me = Tm sin
1

2
pTq − r′ ,

in which r′ is the previously measured radius of the moving ball.
The fixed ball was now taken out, and in order to avoid air currents,

the case of the torsion balance was closed completely, except for two small
openings in the already-known direction T ′n′, and the moving ball was placed
in such a way that it would be tangent to the direction T ′n′ by means of the
torsion wire.

It would then be necessary to rotate the moving ball through 90o + dme
in order to make its center come to the position e′, in which it would describe
a right angle with m and d. Now, the angle:

dme = mfT ′ +mT ′f − nmd ,

while:66

mfT ′ = arcsin
T ′m sinmT ′n′ − r′

me
,

mT ′f = 2 · arcsin
r

T ′m+md cosnmd
,

nmd = arcsin
r

md
.

Since everything in that has been given, dme could be easily calculated,
and the rotation of the moving ball through 90o + dme was accomplished by
means of the torsion circle, so the zero-point of the observer scale was located
correctly.

B Appendix II. Description of the Tangent

Galvanometer

The copper wire that was employed for the multiplier was wound quite tightly
with silk, and then almost 2/3 of a mile of collodion was pulled along its entire

66[Note by KW:] The multiplicity of these possibilities was due to the opacity of the
hanging shellac rod.
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length.67 From the large roll on which it was then found, with the help of
a very uniformly tensed pulley, it would be wound around the circular ring
of the tangent galvanometer with 5635 windings. That metal ring, which
defined a channel of rectangular cross-section, was previously given a thick
coating of heated sealing wax everywhere that the wire was laid in it. After
that, a 20 pound copper weight was placed into the ring as a damper. All of
the remaining procedures are known.

The main idea was to confirm one’s belief that all windings of the tangent
galvanometer would actually be traversed by the discharge current, and that
it would not perhaps jump over some of them by a spark that occurred deep
within the windings, but perhaps not visibly. Now, a small multiplier of 1000
windings that had been used often at Marburg was on hand, and it could be
predicted from the dimensions of the two instruments that they would have
roughly the same sensitivity to the discharge of a Leyden jar. Both multipliers
were coupled in such a way that the same discharge from a larger Leyden jar,
when retarded by a column of water, would have to flow through the windings
in both of them. Now, since not only the predicted behavior of the sensitivity
occurred, but upon raising the charge, the data from both galvanometers
remained proportional to each other, as well as the data that corresponded
to a sine electrometer, which allowed one to compare the charge on the
Leyden jar in isolation when coupled to it, one could convince oneself that the
large tangent galvanometer would serve its purpose. For all discharges that
would be regulated by a specially-constructed pendulum, the knob on the
jar remained coupled with the multiplier for the same time (and in fact, only
2/3 of a second) in order to allow only a very small (and in fact proportional)
part of the residue to appear again. The results are as follows:

67[Note by KW:] Experiments concerned with whether the degree of insulation would
actually increase in that way have not been performed, but one should, nonetheless, assume
that is so. In any event, in that way, one will arrange that the silk not only adheres to
the wire very firmly, but also that it does not become slightly rough on the surface. The
process is simple: One leads the wire from the original roll to a small fixed roll with a
horizontal axis, and from there, to a larger roll at a greater distance, around which it
will be temporarily wound. The small fixed roll is immersed halfway in a container of
collodion.
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No. a. b. c. d.
Deflection ϕ

√
sinϕ Small multiplier. Tangent- d/c d/b

of the sine Elongation in galvanometer.
electrometer scale divisions Elongation in

scale divisions
1. 9o31′ 0.4078 41.75 170.40 4.1060 417.85
2. 19o59′ 0.5845 59.50 244.85 4.1151 418.91
3. 34o57′ 0.7569 76.95 316.10 4.1078 417.62
4. 49o54′ 0.8746 88.97 365.45 4.1076 417.85

Each of the numbers under c and d is the mean of 2 to 3 measurements
that differed from each other by at most one scale division. The desired
proportionality then emerged from this completely. Now, the distance from
the mirror to the scale was 1633 for the small multiplier and 6437.6 scale
divisions for the large one, and their sensitivities then had roughly the ratio
that was required above, namely, 1 : 1.0423.

Those measurements, the second of which could obviously be assumed
to include an observation error in the tangent galvanometer, showed an ex-
traordinary accuracy in the comparison of the available charge in a Leyden
jar for all three instruments.
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d’une autre sphère conductrice électrisée que l’on tient isolée dans
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