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On the system of forms of linear complexesin R;
By R. WEITZENBOCK in Teodo.

Translated by D. H. Delphenich

The system of forms of linear complexes in thraeetisional space was presented by
F. Mertens in the treatise: “Invariant Gebilde von Nutsynen,” Sitzungsberichte der
Kaiserl. Akademie der Wissensch., Vienna, May, 1889, andverghall also make use
of a symbolic notation, at least, partially.

The same topic was treated in a paper by E. Waelsalr: If®¥ariantentheorie der
Liniengeometrie,” Sitzungsberichte der Kaiserl. Akaderder Wissensch., Vienna,
December, 1889, but the results that were given in that pagre not exact. In regard to
their rectification, cf., the remark that E. Waelssibmitted to theEnzyklopédie der
mathematischen Wissenschaftdahresbericht der Deutschen Mathem.-Vereinigung, V.
19, Part 1, Section 2.

In my book,Komplexe-SymbolikSammlung Schubert, v. LVII, 1908), page 28,
seq, | made a mistake that was similar to that of E. Mé&e and among other things,
stated that all invariants of a system of linear corgdeare given by the quantiti@g .
Professor Study brought that mistake to my attentiorhe®WM recently addressed the
guestions in regard to it, that yielded an essential extensi the results that were
obtained by F. Mertens as far as the representatitimeahvariants of such a system of
linear complexes is concerned.

§1.
An arbitrary number of linear complexes are given leysymbolic equations:
(1) Ky = (;ra)? = 0, Ko = (7b)? =0, ...,Kn = (7rm)? = 0.
In this, we mean, e.g.:

Ky = (ra)’ = (it @)° = Zzaikﬂi’k = Zzailkni-k = Zzaikﬂmn: Zza:nnﬂ:k’
K ik

and we always set:
ak=a,, and likewise 7 =711

mn?

such that the following pairs will belong together:
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(12) and (34), (13) and (42), (14) and (23).

A point x is represented by a sequence of quantitiedhence, by the four ratios :
X2 © X3 : Xa — and a planer is represented by a sequence of quantiiesiz., (u;:

u,,us;,u,). The coordinates of a varying line will be denoted 7/iyyor ok in what
follows.

§2.

One must deal with two types of symbolic factors i ttomplex-symbolic
representation: viz., sums and determinants. The fdrasethe form:

(U X = (xU)=wx+hx+ Ux+ 45,
which always couples a primed symbol with an unprimed one.

By contrast, only the same kind of symbol is preseatsymbolic determinant — i.e.,
either all of them are primed or all of them are umpd. One then has, e.qg.:

a a a g u u U
b b, b b VARVARVARY)
(abcg = and ('VvWws)= ,
C G G G Wow, W,
d, d, d, d, s s s $

In the sequel, we will have different kinds of formes consider that all have the
property of invariance, and which we shall summarize with doncept of “invariant”
when we are dealing with general considerations or \tene@ can be no doubt as to the
meaning of the expression. For a closer examinatidineoindividual forms in regard to
the types of variables that they include, we shall alse the following, otherwise-
conventional names.

If an invariant expression contains only the coeffitseof the given linear complex
then it will be called amvariant, and if it contains only point coordinates addition to
these coefficients then it will be calledcavariant. If the coordinates of a planeare
present in place of th& then we will have acontravariant. If only varying ray
coordinates enter along with the coefficients of thamex then we will be dealing with
aray form Finally, if a form contains different sequencesafying coordinates then we
shall speak of anixed form. There are once more two different kinds of them to
distinguish then, since three different kinds of coaatiis can appear in three-
dimensional space.

§3.

In order to exhibit the complete system of forms of gheen complexes, we must
then define only sums and determinant factors of thevilig symbols and quantities:
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a b c ... p .., X
(2)
a,b,c,...mp, .., u

In this, the symbols, b, c, ..., and likewise the symbo#, b, ¢, ..., are complex
symbols and are deduced from the coefficients of thenghnear complexes. The
symbolsz  p, ..., and likewiser, o’ ..., will be employed in the representation of the
variable coordinates of lines. They are also complewbols and can also be employed
for the representation of coordinates of variable lirmeanplexes.

The rules by which one calculates with the complaxri®ls now give us a simple
means for overlooking the type of a determinant factba complex symbol appears in
such a determinant factor then one can always représentxpression as a sum of
factors. For instance, if:

F = (abcg (au) M,

in which b, ¢, andd have any sort of meaning, aMino longer includes the symbal|
then we will have®):

F=[@cq@d((bu)-@hb)@dcu)+@b)(@ c(du)] M

We can then ignore the determinant factors completely in this invéstigand
accordingly examine only aggregates of sums of factors.

§4.

We first treat thenvariants. From the foregoing considerations, only sums of facto
of type @b) will appear in them. Now, the coefficients of thelividual complexes can
also enter to a higher degree than the first. We rhestintroduce a new symbol for the
symbolic way of writing each such sequence of coefiisie We shall arrange this in
such a way that we provide the individual symbols withcesland thus write, e.g.:

Ki= (m8,)* = (7:@,)° = (7m@y)* = ... = 0
for the first of these complexes.
In order to exhibit the general type of an invariant,pr@ceed as follows: We select
an arbitrary factorgld) and put in the first position, such that we then write:

J=(ab), ...

Of the further factors, we take the ones that contiagnsymbolb’ twice, which can
happen for only one factor, since only two such symbotsccur to begin with: let that
factor be 'c). We connect it with the factor that was writtdready and get:

() In regard to such calculations, | refer to the introdacto my aforementioned book. A more
detailed presentation of these methods here would |etd tar afield.
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J=(@b) (b'e), ...

We now further write down the factor that containssiybolc twice — let that factor be
(cd) — so we will have:
J=(ab) (b'c) (cd), ...

We continue in that way. It is clear that we mimgntcome once more to a sum of
factors that include the second symbol The invariant] is also already written down
completely then; i.e., all of its symbolic factors aeounted for. The trivial case in
which J decomposes into several factors is included in this, arthuis inherently
representable as a product of simple factors.

We then now have:

3) J=(ab) (b'c) (cd) (d e (ef) ... (nm) (M @ =[abcd ... nm].

We call such an expression a “chainFFrom the way that it was constructed, we can
immediately conclude thatuch an invariant can appear only for an even number of
complexes.

Since a linear complex seems to be determined by siemcah ratios,in what

follows, we can always restrict ourselves to the investigation gfsixlsuch complexes
so every further linear complex can be representeghinst of these six in a linear way.

§5.

As the shortest chains, we come to the ones thmstistoof a sum of two factors. We
will then have, for example:

(4) Az = (@b) (H'a) = @b)* = 23 alf = 2> a.h,,

as the simplest invariant of the two complekasandK, . The invariants of a single
complex itself also belong to these shortest chams.§.:

(5) All:(aai)(aia):(alai)zz Zzaika’k: Zzaikamn'

If Aj vanishes then the compl&xwill be special.
We now introduce a shorter notation for such chainseliyng [cf., equation (3)]:

(6) J=(@b) (b'c) (cd) (de) (ef) fa) = [abcdef],

in which we have written down a chain in which only @»mplexes occur here.
By applying the identity}:

() These important identities appear in different forms.f., @.g., E. Milller, “Beitrage zur
GralBmannschen Ausdehnungslehre I,” remark on equation (22).
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(pq) (pU) (@X) =~ (aP) (Qu) (P'X) +2 (pq)* (U'X)
or the one that is dual to it:
(pq) (pU) (@X) =~ (aP) (Qu) (P'X) +2 (pq)* (U'X)

to an aggregate of three factorsljrwe can now convert in the various ways. We then
have, e.g.:

J=@a[©q(f)(cd)@e(ef)

and if we apply the second of the identities that vggren above to the first three factors
then we will get:

J=@h@oMmf)cd)deEef)-1(@h’cf)cd)dei(Hh,
SO:
(7 J=[abcd’ef’] = [bdcd’ef' ] — 1 Az [cd ef].

In an analogous way, one gets the equation:
(8) J=[abcd’ef’] =-[achd’ef’] - 4 Axz[ad’ef’] .

These two equation(@) and (8) show us that one can convert a chain in such a way
that two successive symbols seem to be switched ¥eit.another term will arise from
such a conversion, in which, however, an actual fagtonas been split off. The other
factor of that term will then be a chain that iss@oby two than the original chainVe
conclude from this fact that it is possible to bring about an arbitrary arraegermf the
symbols in a chain.

However, that possibility will likewise imply that suffices to consider only those
chains in which the coefficients of each individual complex occur linedf, e.g., the
coefficientsay of the complexXX; do not occur linearly in a chaily so that chaid will
contain symbolsy, a,, ..., etc., then we can convert that chain such a way that these
equivalent (and therefore permutable) symlaotdand next to each other in such a way
that we can write:

J=[aa&as ...,b cd’ef].

However, if we apply such an expression to one of th@tons (7) or (8) then we will
obtain, e.g., by applying (7) ta and &,:

J=[a1d,83, ...,b' cd’ef’] = - [apa a3, ..., b cd’ef’] — 1 Aq1 [as, ..., b cd’ef’].

They were given for the first time in the form abdwe E. Waelsch in the paper (1889) that was
mentioned in the introduction.
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Here, we can then switd with a; in the first term on the right, and then combine that
term with the one on the left, which will give the etjoi

(9) J=[a1d&,83, ...,b' cd’ef’] = - 2[as, ...,b' cd’ef’] A1 .

One then splits off the actual factdn from such an invariant.

§ 6.

We therefore now consider only those invariahtisat contain the coefficients of the
individual complexe<; linearly. Since, as we already remarked above, an aumber
of complexes must enter inth we will then have to examine the chaththat contain
two, four, or six complexes. The invariants thus-otgdj along with the six invariants
Ai that were already pointed out, will then give all $ibke invariants of the six
complexes in question that there are.

For instance, for only two complexks andK,, we will have the chain:

Ar2= (ab) (ba) = (@b)?,
and we will then obtain fifteen such invariaig in all, for six complexe&; (i = 1, 2, 3,
* 5I’:(t)sr)lfour complexes, we have the chain:
(10) J=[abcd’] = (ab) (b'c) (cd’) (d’a).
When this chain is converted according to (7) and (8) llitgivie:

[abcd’] =-[bacd’] =1 Az Asa,
=+ [bcad’] -4 A1z Az —5 A12 Aaa,
=—[cbad’] —5 Az Ass +2 A13 Aoa— 1 A12 Asa,

and since one has the equation:
[abcd’] = [cbad’],

as one easily confirms by rearranging the symboliofacbne will have'j:
(11) [abcd’] = =4 A12 Asa +5 A1z Aos— 5 A1a Aos .

This equation shows that no other invariants thanAhend Ay exist for four
complexes, as well.

() Confer the conclusion of § 3 in the treatise of F.tstes that was mentioned in the introduction.
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§7.

We now consider any chain that contains all six corgdd¢o be the latter case. We
then have:

(12) R = [abicd’ef] = (alf) (b'c) (cd’) (d’€) (ef') (F'a).

A conversion of this invariarR that would lead to only th& is no longer possible. The
individual conversions that one can make ouR@flong then go back to the fact that one
can perform an arbitrary reordering of the symlagls, c, d, e, andf in it. There are thus
6! such invarianR in all, and all of these differe® are expressible in terms of one such

chain — say,db'cd’ ef] — whereby th&\x will then be carried along in those equations.
We will then have, e.g.:

R=[abcd’ef] = — [bacd’ef] — 4 [cd"ef],

and [cd’ef] is once more representable in terms of the odadyy using (11).
We now have the result that all symbolically-représgnnvariants of the system of
six complexes can be expressed in tern; oAk, andR, and in fact, rationally.

§8.

The invariants then seem to have been dealt with blash¢heorem. Here, we have
a difference between our complex-symbolic represematial the results that F. Mertens
arrived at in the aforementioned paper. Namely, tHevitg invariant:

aiZ a13 a14 a34 a‘42 a
b12 b13 b14 b34 b42 b23
c:12 C13 C14 C34 C42 23

(13) D= = (abcdej
d12 d13 dl4 d34 d 42 d 23]
€, 8 & & & &

f12 f13 f14 f34 f42 f23

This six-rowed determinant is not rationally-represeletan terms of théy; andAy,
but probably irrationally. Namely, if we introduce thvémed a, , b, , ... into D then we
will also have:

D=@bcdef),
or, when written out:
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a;4 a,12 a,23 d12 é12 é14 aiZ a,13 a,14 d34 é'42 aZS
[);4 b14 biz b’23
d, d,

’4 2

f3’4 f‘;Z f;3 f Z,lZ f ;.3 f ’14 fl,2 fl’3 f]’.4 f ’34 f ,42 f ’23

as one easily confirms by rearranging the columns.
The product:

(abcdej (@ b c d'ef”)
now gives:

in which we have set:

Ar Ao As As As As
Ar Ay A Ay A Ay
1 AD O 0O 0 Agl_
(14) H= A,0 OO O A = 1Al
A, 00 0O 0O A

A Ao Az Poa Pss Ao

We then have the equation:
(15) 2M*+H=0;
i.e., D is probably expressible in terms of the and Ay , but not rationallyD will be a

root of the above quadratic equation, whose coefficients are entire and rdtimesbns
of the A« .

§9.

This suggests the question of whether the invaRahiat was defined in 8 7 can also
be represented in that way as a root of a quadratic equdtiwat is in fact the case.

To that end, we derive an identity by whose help weeti@at that representation.

Let:

(16) L = (pa) (pb) (qc) (qd”)

be a symbolic expression in whiphandq shall be equivalent and commuting complex
symbols, and', b', ¢, andd”have any meaning at all. We will then also have:

2L = (p%a'b') (¢’ q) (d’q),

and we will then converp(fa’b') (¢ o) here. We will have:
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2L =—(cpab) (pg) (d’g + (€ p?b) (@ g (d’g) - (¢ p?d) (b 9 (d’0)

=-(P'o) (pFab’c) (qd’) - (pa) (pd”) (@B) (a ©) + 2 (pa)(pc)(ab)(qd”) .

If we apply the identity that was discussed in 8 5 tofife term here then singe
commutes withlg we will have:

(17) L= (pa)(pc)(qb)(qd’)
= +3(pg)(@b'cd’) - (pa)(pd)(ab)(qc) + (pa)(pc)(ab)(ad’).

From equation (12), we now have:

R=(ab)(Ho)(cdh)(da(e i Ta=(>@bB)Ec)cd)(de(e D 13,

and we can then set:

(18) R=@Oa)(do(Ba)(bo(ch( g W TH ¢H 'd) HF ' 1.

We now apply the identity that is dual to (17) to thstfiour terms of that expression
and obtain:

R =1A,(ac¢d¢)(cd(de( T Ta c'd 'd¥ &)X "fX
—(a)dc)(bg(ha(cd( d ¢ el FH U "d of ")
+(a)da)bog(bog(cll de el fH ¢ 'd) o4 1

or, when written more briefly, if we use the notatibat was employed for chains for the
last two expressions:

(19) R =1A,G-[alcde fabcdel
-[abaf,edchgdel.

This chain can now be reduced by the process that washéesabove to shorter
chains in which terms with the factosg will then arise. The expressi@hcan likewise
be expressed in terms of tAg and the shorter chains.

Since we have now seen that only a single cRalmat cannot be reduced further will
exist for six complexes, we return to that chRirand theAy in the conversion of the
expression on the right-hand side. After a rathegtley conversion, we will obtain the
following equation:

(20) RR+RIN+M=0.

In this:

N = 3 [+ A12 Asa Ase — A1z Ass Ass + A1z Aus Aze — A1z Aog Ase + A1z Aos Ass

— A13 Aus Aoe + A1a Ass Aoe — Ara Axs Aze + Ara Axz Ase — Ars Aza Aos
+ A1s Aoa Ags — Aas Aoz Aus + Aas Aus Aoz — Are Aoa Age + Ass Asa Ags),
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andM is an expression of quite significant length thatsgnametric in theA; and Ay .
The term in the expression ff that consists of the collection of factdks Az ... Ass
has the numerical factor =*2which we would like to point out here.

It is easy to see that the expressibha&ndN are not symmetric in the complexes,
sinceR itself is not symmetric in the coefficients of thkemomplexes. The result of the
exchange of two complexeskwill be given by the equation:

R=[abcdef’] = - [badcdef] — A [cdef’].

Therefore, not only will the signs change under a swibat a term that decomposes into

the Ak will also split off. The exchange of two complexdgmnges only the sign &, so

D will therefore be different frorR, which one can also see easily in a different way.
Furthermore, no linear connection exists betweenvtbdarivariantsD andR. If such

a thing did exist then it would also have to be preservaehwve considered the case in

which the six complexes define a Kleinian system; inewhich allAx = 0 and eitheA;

> 0 orAi < 0. N would then vanish, and from a remark that was made alevevould

haveM = - 27°P, in which we have set:

P =A11 Aor Asz Ass Pss Ass,

so we would then have the equationfor
(21) RR-2°P=0.

On the other hand, in this case, since we would now Hav®, from equation (15),
we would get foD that:
(22) D*+2°% =0.

It would follow from these two equations that:
(23) R +D*=0;

i.e., an irrationality would enter into that caseawlone would like to expregsin terms
of R.

We once more remark expressly that not a single antaf the six complexes will
be given byR, but thatR = [abcdef’ ] represents a type that belongs to 6! such
invariants, in all, that one will obtain frolR by permuting the symbols, b, ..., f.
However, it will suffice to consider only one of tleeS! invariants, since all of the other
ones can be expressed in terms of it rationally aidedy with the help of thé\y; andAi

§ 10.

We therefore now have the theorem that:
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All invariants of a system of six linear complexes can be exprestsenally in terms
of the six A, the fifteen A, and R and D.

In this, D is given by equation (13), and:
R=[abcdef’] = (ab) (b'c) (cd) (d'e) (ef’) (f'a)

or non-symbolically:

R: Zaikh:I qunne'no 1:Ji
in which one always sets = a;,.

However, if we also direct our attention to the irrational regmation then we will
get the theorem that every invariant of the system of six coesptex be represented in
terms of the six ;Aand the fifteen Aalone. In particular, R and D, which are otherwise
referred to as invariant, on the whole, seem to be irrational functibtisoge quantities
in the definition of the quantities;And A, and for that reason, one can refer to them as
“symbolically-irrational” invariants.

That terminology is especially out of place @y since it is not possible to represent
D rationally in terms of the complex symbols, while swahexpression will first be
possible foiD? as has been shown.

§11.

One simultaneously deals with ttey formsby the same arguments that were applied
to the invariants, since one only needs to regard te#icients of one of the complexes
to be variable, and those variables will then be repteden precisely the same way as
those coefficients themselves.

By a simple conversion, we will therefore have tbgult that:

All ray forms of six complexes can be expressed rationallyermst of the
aforementioned invariants and the basic forms & well as the following forms:

R =[nbcdef]=(mb) (bc) (d e (e f) (7,
D'=(mrbcde)¥ [cf., equation (13)].

Six formsR andD’ are possible in this, according to which of the six glexes one
leaves out.

In this, D' = 0 means the complex that is determined by five of tkegien
complexes by the requirement that it must be in invaiuvith them.

One can also regard these ray forms R and D as “symbolically-irratibagice they
satisfy quadratic equations whose coefficients are entire, rational éunscof the six
basic forms Kand the identity ray form:
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Ko= (mp’)’ = 2)_ m 1t = 2> T 7T, = 4 (T2 T84 + Th3 T2 + Tha 7B3) .

One will haveKy = 0 when one is dealing with a line, as one knows.

§12.

We now turn to theovariants In their construction, we have to consider notyonl
factors of type 4b) that enter into the invariants, but ones of tyge)( as well. We
select such a factoa'&) and write it in the first place, such that we \ugive:

J=(xa)

for a covariant). We deduce the factors that contain the synabdbr a second time
from this factor &), etc., such that we can also define a chain herewlen have:

J = (x&) (a'b) (bc) (cd),

and it is clear that such a chain must once more netmiwith X, since we are
considering only one sequence of point coordinates. Wéhen have {):

(24) J= (xa)(@b)(be)(Cd) ... (nmi)(mx) = [xabad ... nmix].

Now, as one can easily verify, the same laws of/exsion are true for these chains
that are true for chains that represent only invaridrgs dre given by equations (7) and
(8). We conclude from this, as above, that such cavwariare always linear in the
coefficients of the individual complexes. Since we rnitave no more than six such
linear complexes to consider, and an odd number of congplexst always appear in
such a chain, the covariants will be easy to writerdow

For only one complex, we will have the chain:

Ji = (xd) (@x) = @x)*=0,

since thea’ are complex symbols. All that remain now are thses in which three or
five of the six given complexes appear. We will thusaobtwenty covariants of the

type:
(25) Js=[xd bcx=(xa)(@b) (bc) (c'x)
and six covariants of the type:

(26) J=[xdbcdéex=xa)@b) (bc) (cd (de) €X) .

() These are the forms that F. Mertens denoteé b (£ [H .. X) X + ...
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The geometric meaning of these covariants in easyv® \yhen one looks more
closely at the null systems that are given by theviddal complexes.

As a result of the dual character of the system wfceimplexes that is being
considered, theontravariantsare also dealt with by using the considerations abuve.
get, dually, twenty contravariants of the type:

27) J; = [uabcu] = (ua) (ab) (b'c) (cu)
and contravariants of the type:

(28) J; = [uabcd ed] = (Ua) (ab) (b'c) (cd) (de) (eu) .

If we attempt to exhibit quadratic equations for thesegamts and contravariants, as
we did for the invariant® andD, then we will always arrive at purely formal iderad]
and thus, obtain no such representation.

§13.

Finally, we come to thenixed forms. Here, as we already mentioned to begin with,
we will have four types of genera to distinguish (

1. Ones that contain andx.

2. Ones that containk andx.

3. Ones that contairgy andu'.

4. Ones that contairg, U, andx.

One splits off the identical forms:
Ko= (mt)>  and (1)

in this. If the coefficients of the six complexesoaksnter in then we will have to
investigate the following types of factors:

@x), (au), @m), (ma), (@), (rv), (7tx), and @).

However, we can restrict ourselves to the coefiiisieof the complexes and the
guantitiesu’ and x in the search for the general types, since the vasatl behave
precisely like those coefficients. We thereforstfireat the mixed forms that contain a

sequence of point coordinateand a sequence of plane coordinates
We then once more write down these forms as chamsfoas we have up to now.
We will then have:

J= (xd) (@b)(bc) (c¢d) ... (M"m) (mu) = [xa@bcd... n'mu].

() Cf., ClebschiJber eine Fundamentalaufgabe der Invariantentheig, Géttingen, 1872.
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We once more derive the same laws of conversion frasréipresentation as we did for
the invariants or covariants. We will then once malv&ain the result that such a mixed
form can only be linear in the coefficients of the undiial complexes. Now, since an
even number of complexes always appears in such a aleinill get:

Fifteen mixed forms of the type:

(29) J, = [xabu] = (xa) (@b) (bu) .
Fifteen mixed forms of the type:
(30) J, = [xabcdu] = (xa) (@b) (bu) (¢d) (du),
and finally, a mixed form of the type:
(31) Js = [xabcdé fu] = (xa) (ab) (be) (Cd) (de) (€f) (¢ u) .

The mixed forms that also contain variable ray coatéis will be inferred first from
the covariants and contravariants that were discuisséuk previous 8 when one first
replaces a sequence of coefficients with variaile and secondly from the mixed forms
that were given in (29), (30), and (31), when one also replasequence of coefficients
with variabler .

Teodo, March 1910.



