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 The system of forms of linear complexes in three-dimensional space was presented by 
F. Mertens in the treatise: “Invariant Gebilde von Nullsystemen,” Sitzungsberichte der 
Kaiserl. Akademie der Wissensch., Vienna, May, 1889, and here we shall also make use 
of a symbolic notation, at least, partially. 
 The same topic was treated in a paper by E. Waelsch: “Zur Invariantentheorie der 
Liniengeometrie,” Sitzungsberichte der Kaiserl. Akademie der Wissensch., Vienna, 
December, 1889, but the results that were given in that paper were not exact.  In regard to 
their rectification, cf., the remark that E. Waelsch submitted to the Enzyklopädie der 
mathematischen Wissenschaften, Jahresbericht der Deutschen Mathem.-Vereinigung, V. 
19, Part 1, Section 2. 
 In my book, Komplexe-Symbolik (Sammlung Schubert, v. LVII, 1908), page 28, et 
seq., I made a mistake that was similar to that of E. Waelsch, and among other things, 
stated that all invariants of a system of linear complexes are given by the quantities Aik .  
Professor Study brought that mistake to my attention.  When I recently addressed the 
questions in regard to it, that yielded an essential extension of the results that were 
obtained by F. Mertens as far as the representation of the invariants of such a system of 
linear complexes is concerned. 
 

§ 1. 
 

 An arbitrary number of linear complexes are given by the symbolic equations: 
 
(1)   K1 = (π a′)2 = 0, K2 = (π b′)2 = 0, …, Km = (π m′)2 = 0. 
 
 In this, we mean, e.g.: 
 

K1 = (π a′)2 = (π′ a)2 = 2 ik ik
ik

a π ′∑  = 2 ik ik
ik

a π′∑  = 2 ik mna π∑ = 2 mn ika π′ ′∑ , 

 
and we always set: 

aik = mna′  and likewise πik = mnπ ′ , 
 
such that the following pairs will belong together: 
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(12) and (34), (13) and (42), (14) and (23). 
 

 A point x is represented by a sequence of quantities x – hence, by the four ratios x1 : 
x2 : x3 : x4 – and a plane u′ is represented by a sequence of quantities u′, viz., 1(u′ : 

2u′ , 3u′ , 4)u′ .  The coordinates of a varying line will be denoted by πik or ρik in what 

follows. 
 

§ 2. 
 

 One must deal with two types of symbolic factors in the complex-symbolic 
representation: viz., sums and determinants.  The former has the form: 
 

(u′ x) = (x u′) = 1 1 2 2 3 3 4 4u x u x u x u x′ ′ ′ ′+ + + , 

 
which always couples a primed symbol with an unprimed one. 
 By contrast, only the same kind of symbol is present in a symbolic determinant – i.e., 
either all of them are primed or all of them are unprimed.  One then has, e.g.: 
 

(abcd) = 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

a a a a

b b b b

c c c c

d d d d

 and (u′ v′ w′ s′) = 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

u u u u

v v v v

w w w w

s s s s

′ ′ ′ ′
′ ′ ′ ′
′ ′ ′ ′
′ ′ ′ ′

. 

 
 In the sequel, we will have different kinds of forms to consider that all have the 
property of invariance, and which we shall summarize with the concept of “invariant” 
when we are dealing with general considerations or when there can be no doubt as to the 
meaning of the expression.  For a closer examination of the individual forms in regard to 
the types of variables that they include, we shall also use the following, otherwise-
conventional names. 
 If an invariant expression contains only the coefficients of the given linear complex 
then it will be called an invariant, and if it contains only point coordinates x in addition to 
these coefficients then it will be called a covariant.  If the coordinates of a plane u are 
present in place of the x then we will have a contravariant.  If only varying ray 
coordinates enter along with the coefficients of the complex then we will be dealing with 
a ray form.  Finally, if a form contains different sequences of varying coordinates then we 
shall speak of a mixed form.  There are once more two different kinds of them to 
distinguish then, since three different kinds of coordinates can appear in three-
dimensional space. 
 

§ 3. 
 

 In order to exhibit the complete system of forms of the given complexes, we must 
then define only sums and determinant factors of the following symbols and quantities: 
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 a,  b,  c, …,  π,   ρ, …, x 
(2) 
 a′, b′, c′, …, π′, ρ′, …, u′ 
 
 In this, the symbols a, b, c, …, and likewise the symbols a′, b′, c′, …, are complex 
symbols and are deduced from the coefficients of the given linear complexes.  The 
symbols π,   ρ, …, and likewise π′, ρ′, …, will be employed in the representation of the 
variable coordinates of lines.  They are also complex symbols and can also be employed 
for the representation of coordinates of variable linear complexes. 
 The rules by which one calculates with the complex symbols now give us a simple 
means for overlooking the type of a determinant factor.  If a complex symbol appears in 
such a determinant factor then one can always represent the expression as a sum of 
factors.  For instance, if: 

F = (abcd) (au′) ⋅⋅⋅⋅ M, 
 
in which b, c, and d have any sort of meaning, and M no longer includes the symbol a, 
then we will have (1): 
 

F = [(a′ c) (a′ d) (b u′) – (a′ b) (a′ d) (c u′) + (a′ b) (a′ c) (d u′)] ⋅⋅⋅⋅ M. 
 
 We can then ignore the determinant factors completely in this investigation and 
accordingly examine only aggregates of sums of factors. 
 
 

§ 4. 
 

 We first treat the invariants.  From the foregoing considerations, only sums of factors 
of type (ab′) will appear in them.  Now, the coefficients of the individual complexes can 
also enter to a higher degree than the first.  We must then introduce a new symbol for the 
symbolic way of writing each such sequence of coefficients.  We shall arrange this in 
such a way that we provide the individual symbols with indices and thus write, e.g.: 
 

K1 = 2
1( )aπ ′  = 2

2( )aπ ′  = 2
3( )aπ ′  = … = 0 

 
for the first of these complexes. 
 In order to exhibit the general type of an invariant, we proceed as follows: We select 
an arbitrary factor (ab′) and put in the first position, such that we then write: 
 

J = (ab′), … 
 

Of the further factors, we take the ones that contain the symbol b′ twice, which can 
happen for only one factor, since only two such symbols b′ occur to begin with: let that 
factor be (b′c).  We connect it with the factor that was written already and get: 
                                                
 (1) In regard to such calculations, I refer to the introduction to my aforementioned book.  A more 
detailed presentation of these methods here would lead us too far afield.  
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J = (ab′) (b′c), … 
 
We now further write down the factor that contains the symbol c twice – let that factor be 
(cd′) – so we will have: 

J = (ab′) (b′c) (cd′), … 
 
 We continue in that way.  It is clear that we must then come once more to a sum of 
factors that include the second symbol a.  The invariant J is also already written down 
completely then; i.e., all of its symbolic factors are accounted for.  The trivial case in 
which J decomposes into several factors is included in this, and is thus inherently 
representable as a product of simple factors. 
 We then now have: 
 
(3)   J = (ab′) (b′c) (cd′) (d′ e) (e f′ ) … (nm′) (m′ a) = [ab′cd′ … nm′]. 
 
 We call such an expression a “chain.”  From the way that it was constructed, we can 
immediately conclude that such an invariant can appear only for an even number of 
complexes. 
 Since a linear complex seems to be determined by six numerical ratios, in what 
follows, we can always restrict ourselves to the investigation of only six such complexes, 
so every further linear complex can be represented in terms of these six in a linear way. 
 
 

§ 5. 
 

 As the shortest chains, we come to the ones that consist of a sum of two factors.  We 
will then have, for example: 
 
(4)    A12 = (ab′) (b′a) = (ab′)2 = 2 ik ika b′∑  = 2 ik mna b∑  

 
as the simplest invariant of the two complexes K1 and K2 .  The invariants of a single 
complex itself also belong to these shortest chains, so, e.g.: 
 
(5)    A11 = (a 1a′ ) ( 1a′ a) = (a1 1a′ )2 = 2 ik ika a′∑ = 2 ik mna a∑ . 

 
 If Aii vanishes then the complex Ki will be special. 
 We now introduce a shorter notation for such chains by setting [cf., equation (3)]: 
 
(6)    J = (ab′) (b′c) (cd′) (d′e) (ef′ ) (f′a) = [ab′cd′ef′ ], 
 
in which we have written down a chain in which only six complexes occur here. 
 By applying the identity (1): 

                                                
 (1) These important identities appear in different forms.  Cf., e.g., E. Müller, “Beiträge zur 
Graßmannschen Ausdehnungslehre I,” remark on equation (22). 
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 (pq′) (pu′) (q′x) = − (qp′) (qu′) (p′x) + 1
2 (pq′)2 (u′x) 

 
or the one that is dual to it: 
 
 (pq′) (pu′) (q′x) = − (qp′) (qu′) (p′x) + 1

2 (pq′)2 (u′x) 

 
to an aggregate of three factors in J, we can now convert J in the various ways.  We then 
have, e.g.: 

J = (b′ a) (b′ c) (a f′ ) (c d′ ) (d′ e) (e f′ ), 
 

and if we apply the second of the identities that were given above to the first three factors 
then we will get: 
 

J = (a′ b) (a′ c) (b f′ ) (c d′ ) (d′ e) (e f′ ) − 1
2  (a′ b)2 (c f′ ) (c d′ ) (d′ e) (e f), 

so: 
(7) J = [ab′cd′ ef′ ] = − [ba′cd′ ef′ ] − 1

2  A12 [cd′ ef′ ] . 
 
In an analogous way, one gets the equation: 
 
(8) J = [ab′cd′ ef′ ] = − [ac′bd′ ef′ ] − 1

2  A23 [ad′ ef′ ] . 
 
 These two equations (7) and (8) show us that one can convert a chain in such a way 
that two successive symbols seem to be switched in it.  Yet another term will arise from 
such a conversion, in which, however, an actual factor Aik has been split off.  The other 
factor of that term will then be a chain that is shorter by two than the original chain.  We 
conclude from this fact that it is possible to bring about an arbitrary arrangement of the 
symbols in a chain. 
 However, that possibility will likewise imply that it suffices to consider only those 
chains in which the coefficients of each individual complex occur linearly.  If, e.g., the 
coefficients aik of the complex K1 do not occur linearly in a chain J, so that chain J will 
contain symbols a1, a2, …, etc., then we can convert that chain J in such a way that these 
equivalent (and therefore permutable) symbols a stand next to each other in such a way 
that we can write: 

J = [a1 2a′ a3, …, b′ cd′ ef′ ]. 
 

However, if we apply such an expression to one of the equations (7) or (8) then we will 
obtain, e.g., by applying (7) to a1 and 2a′ : 

 
J = [a1 2a′ a3, …, b′ cd′ ef′ ] = − [a2 1a′ a3, …, b′ cd′ ef′ ] − 1

2 A11 [a3, …, b′ cd′ ef′ ]. 
 

                                                                                                                                            
 They were given for the first time in the form above by E. Waelsch in the paper (1889) that was 
mentioned in the introduction. 
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Here, we can then switch a1 with a2 in the first term on the right, and then combine that 
term with the one on the left, which will give the equation: 
 
(9)   J = [a1 2a′ a3, …, b′ cd′ ef′ ] = − 1

4 [a3, …, b′ cd′ ef′ ] ⋅⋅⋅⋅ A11 . 

 
 One then splits off the actual factor A11 from such an invariant. 
 
 

§ 6. 
 

 We therefore now consider only those invariants J that contain the coefficients of the 
individual complexes Ki linearly.  Since, as we already remarked above, an even number 
of complexes must enter into J, we will then have to examine the chains J that contain 
two, four, or six complexes.  The invariants thus-obtained, along with the six invariants 
Aii that were already pointed out, will then give all possible invariants of the six 
complexes in question that there are. 
 For instance, for only two complexes K1 and K2, we will have the chain: 
 

A12 = (ab′) (b′a) = (ab′)2, 
 
and we will then obtain fifteen such invariants Aik, in all, for six complexes Ki (i = 1, 2, 3, 
4, 5, 6). 
 For four complexes, we have the chain: 
 
(10)    J = [ab′cd′ ] = (ab′) (b′c) (cd′ ) (d′ a). 
 
When this chain is converted according to (7) and (8), it will give: 
 
 [ab′cd′ ] = − [ba′cd′ ] − 1

2 A12 A34 , 

  = + [bc′ad′ ] − 1
2 A13 A24 − 1

2 A12 A34 , 

  = − [cb′ad′ ] − 1
2 A23 A14 + 1

2 A13 A24 − 1
2 A12 A34 , 

 
and since one has the equation: 

[ab′cd′ ] = [cb′ad′ ] , 
 
as one easily confirms by rearranging the symbolic factors, one will have (1): 
 
(11) [ab′cd′ ] = − 1

4 A12 A34 + 1
4 A13 A24 − 1

4 A14 A23 . 

 
 This equation shows that no other invariants than the Aii and Aik exist for four 
complexes, as well. 
 
 

                                                
 (1) Confer the conclusion of § 3 in the treatise of F. Mertens that was mentioned in the introduction. 
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§ 7. 
 

 We now consider any chain that contains all six complexes to be the latter case.  We 
then have: 
(12)   R = [ab′cd′ ef′] = (ab′) (b′c) (cd′ ) (d′ e) (ef′ ) (f′ a). 
 
A conversion of this invariant R that would lead to only the Aik is no longer possible.  The 
individual conversions that one can make out of R along then go back to the fact that one 
can perform an arbitrary reordering of the symbols a, b, c, d, e, and f in it.  There are thus 
6! such invariant R in all, and all of these different R are expressible in terms of one such 
chain – say, [ab′cd′ ef′] – whereby the Aik will then be carried along in those equations. 
 We will then have, e.g.: 
 

R = [ab′cd′ ef′] = − [ba′cd′ ef′] − 1
2 [cd′ ef′] , 

 
and [cd′ ef′] is once more representable in terms of the other Aik by using (11). 
 We now have the result that all symbolically-represented invariants of the system of 
six complexes can be expressed in terms of Aii , Aik , and R, and in fact, rationally. 
 
 

§ 8. 
 

 The invariants then seem to have been dealt with by the last theorem.  Here, we have 
a difference between our complex-symbolic representation and the results that F. Mertens 
arrived at in the aforementioned paper.  Namely, the following invariant: 
 

(13)   D = 

12 13 14 34 42 23

12 13 14 34 42 23

12 13 14 34 42 23

12 13 14 34 42 23

12 13 14 34 42 23

12 13 14 34 42 23

a a a a a a

b b b b b b

c c c c c c

d d d d d d

e e e e e e

f f f f f f

 = (abcdef) 

 
 This six-rowed determinant is not rationally-representable in terms of the Aii  and Aik, 
but probably irrationally.  Namely, if we introduce the primed ika′ , ikb′ , … into D then we 

will also have: 
D = (a′ b′ c′ d′ e′ f′ ), 

or, when written out: 
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D = 

34 12 23 12 12 14

34 14

34

34

34

34 42 23 12 13 14

a a a a a a

b b

c

d

e

f f f f f f

′ ′ ′ ′ ′ ′
′ ′
′
′
′
′ ′ ′ ′ ′ ′

⋯ ⋯ ⋯ ⋯

⋮

⋮

⋮

 = − 

12 13 14 34 42 23

12 23

12

12

12

12 13 14 34 42 23

a a a a a a

b b

c

d

e

f f f f f f

′ ′ ′ ′ ′ ′
′ ′
′
′
′
′ ′ ′ ′ ′ ′

⋯ ⋯ ⋯ ⋯

⋮

⋮

⋮

, 

 
as one easily confirms by rearranging the columns. 
 The product: 

(abcdef) (a′ b′ c′ d′ e′ f′ ) 
now gives: 

D2 = − 
6

1

2
H, 

in which we have set: 

(14)    H = 

11 12 13 14 15 16

21 22 23 24 25 26

31 36

41 46

51 56

61 62 63 64 65 66

A A A A A A

A A A A A A

A A

A A

A A

A A A A A A

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

 = | Aik |. 

 We then have the equation: 
 
(15)     26 ⋅⋅⋅⋅ D2 + H = 0; 
 
i.e., D is probably expressible in terms of the Aii and Aik , but not rationally; D will be a 
root of the above quadratic equation, whose coefficients are entire and rational functions 
of the Aik . 
 

§ 9. 
 

 This suggests the question of whether the invariant R that was defined in § 7 can also 
be represented in that way as a root of a quadratic equation.  That is in fact the case. 
 To that end, we derive an identity by whose help we can effect that representation. 
 Let: 
(16)     L = (pa′) (pb′) (qc′) (qd′ ) 
 
be a symbolic expression in which p and q shall be equivalent and commuting complex 
symbols, and a′, b′, c′, and d′ have any meaning at all.  We will then also have: 
 

2L = (p′2a′b′) (c′ q) (d′ q), 
 

and we will then convert (p′2a′b′) (c′ q) here.  We will have: 
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 2L = − (c′p′a′b′) (p′q) (d′ q) + (c′ p′2 b′) (a′ q) (d′ q) − (c′ p′2a′) (b′ q) (d′ q) 
  = − (p′q) (p′a′b′c′) (qd′ ) − (pa′) (pd′ ) (qb′) (q c′) + 2 (pa′)(pc′)(qb′)(qd′ ) . 
 
If we apply the identity that was discussed in § 5 to the first term here then since p 
commutes with q we will have: 
 
(17) L = (pa′)(pc′)(qb′)(qd′ ) 
 = + 1

4 (pq′)(a′b′c′d′ ) − (pa′)(pd′)(qb′)(qc′) + (pa′)(pc′)(qb′)(qd′ ). 
 
 From equation (12), we now have: 
 

R = 1 1 1 1 1 1 1 1 1 1 1 1( )( )( )( )( )( )a b b c c d d e e f f a′ ′ ′ ′ ′ ′  = 2 2 2 2 2 2 2 2 2 2 2 2( )( )( )( )( )( )a b b c c d d e e f f a′ ′ ′ ′ ′ ′ , 

 
and we can then set: 
 
(18) R2 = 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2( )( )( )( )( )( )( )( )( )( )( )( )b a b c b a b c c d d e e f f a c d d e e f f a′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ . 

 
 We now apply the identity that is dual to (17) to the first four terms of that expression 
and obtain: 
 
 R2  = 1

22 1 1 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 24 ( )( )( )( )( )( )( )( )( )A a c a c c d d e e f f a c d d e e f f a′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′  

  − 1 1 1 2 2 1 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2( )( )( )( )( )( )( )( )( )( )( )( )b a b c b c b a c d d e e f f a c d d e e f f a′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′  

  + 1 1 1 2 2 1 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2( )( )( )( )( )( )( )( )( )( )( )( )b a b a b c b c c d d e e f f a c d d e e f f a′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ , 

 
or, when written more briefly, if we use the notation that was employed for chains for the 
last two expressions: 
(19) R2 = 1

22 1 1 2 2 2 2 2 2 1 1 1 14 [ ]A G a b c d e f a b c d e f′ ′ ′ ′ ′ ′−  

 − 1 1 2 2 2 2 2 2 1 1 1 1[ ]a b a f e d c b c d e f′ ′ ′ ′ ′ ′  . 
 
 This chain can now be reduced by the process that was described above to shorter 
chains in which terms with the factors Aik will then arise.  The expression G can likewise 
be expressed in terms of the Aik and the shorter chains. 
 Since we have now seen that only a single chain R that cannot be reduced further will 
exist for six complexes, we return to that chain R and the Aik in the conversion of the 
expression on the right-hand side.  After a rather lengthy conversion, we will obtain the 
following equation: 
(20)     R2 + R ⋅⋅⋅⋅ N + M = 0. 
 In this: 
 
 N = 1

8 [+ A12 A34 A56 − A12 A35 A46 + A12 A45 A36 − A13 A24 A56 + A13 A25 A36 

 − A13 A45 A26 + A14 A35 A26 − A14 A25 A36 + A14 A23 A56 − A15 A34 A26 
 + A15 A24 A36 − A15 A23 A46 + A16 A45 A23 − A16 A24 A36 + A16 A34 A25], 
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and M is an expression of quite significant length that is asymmetric in the Aii and Aik .  
The term in the expression for M that consists of the collection of factors A11 A22 … A66 
has the numerical factor – 2−9, which we would like to point out here. 
 It is easy to see that the expressions M and N are not symmetric in the complexes, 
since R itself is not symmetric in the coefficients of these complexes.  The result of the 
exchange of two complexes in R will be given by the equation: 
 

R = [ab′cd′ef′ ] = − [ba′cd′ef′] – 1
2 A12 [cd′ef′ ]. 

 
Therefore, not only will the signs change under a switch, but a term that decomposes into 
the Aik will also split off.  The exchange of two complexes changes only the sign of D, so 
D will therefore be different from R, which one can also see easily in a different way. 
 Furthermore, no linear connection exists between the two invariants D and R.  If such 
a thing did exist then it would also have to be preserved when we considered the case in 
which the six complexes define a Kleinian system; i.e., in which all Aik = 0 and either Aii  
> 0 or Aii < 0.  N would then vanish, and from a remark that was made above, we would 
have M = − 2−9P, in which we have set: 
 

P = A11 A22 A33 A44 A55 A66 , 
 
so we would then have the equation for R: 
 
(21)     R2 − 2−9P = 0. 
 
 On the other hand, in this case, since we would now have H = P, from equation (15), 
we would get for D that: 
(22)     D2 + 2−9P = 0. 
 
 It would follow from these two equations that: 
 
(23)     8R2 + D2 = 0; 
 
i.e., an irrationality would enter into that case when one would like to express D in terms 
of R. 
 We once more remark expressly that not a single invariant of the six complexes will 
be given by R, but that R = [ab′cd′ef′ ] represents a type that belongs to 6! such 
invariants, in all, that one will obtain from R by permuting the symbols a, b, …, f.  
However, it will suffice to consider only one of these 6! invariants, since all of the other 
ones can be expressed in terms of it rationally and entirely with the help of the Aii and Aik 
. 
 

§ 10. 
 

 We therefore now have the theorem that: 
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 All invariants of a system of six linear complexes can be expressed rationally in terms 
of the six Aii , the fifteen Aii , and R and D. 
 
 In this, D is given by equation (13), and: 
 

R = [ab′cd′ef′ ] = (ab′) (b′c) (cd′) (d′e) (ef′ ) (f′ a) 
 
or non-symbolically: 

R = ik kl lm mn no oia b c d e f′ ′ ′∑  

 
in which one always sets aik = mna′ . 

 
 However, if we also direct our attention to the irrational representation then we will 
get the theorem that every invariant of the system of six complexes can be represented in 
terms of the six Aii and the fifteen Aik alone.  In particular, R and D, which are otherwise 
referred to as invariant, on the whole, seem to be irrational functions of those quantities 
in the definition of the quantities Aii and Aik , and for that reason, one can refer to them as 
“symbolically-irrational” invariants. 
 
 That terminology is especially out of place for D, since it is not possible to represent 
D rationally in terms of the complex symbols, while such an expression will first be 
possible for D2, as has been shown. 
 

§ 11. 
 

 One simultaneously deals with the ray forms by the same arguments that were applied 
to the invariants, since one only needs to regard the coefficients of one of the complexes 
to be variable, and those variables will then be represented in precisely the same way as 
those coefficients themselves. 
 By a simple conversion, we will therefore have the result that: 
 
 All ray forms of six complexes can be expressed rationally in terms of the 
aforementioned invariants and the basic forms Ki , as well as the following forms: 
 
 R′ = [π b′c d′ e f′ ] = (π b′) (b′c) (d′ e) (e f′ ) (f′ π), 
 D′ = (π b c d e f) [cf., equation (13)]. 
 
Six forms R′ and D′ are possible in this, according to which of the six complexes one 
leaves out. 
 In this, D′ = 0 means the complex that is determined by five of the six given 
complexes by the requirement that it must be in involution with them. 
 
 One can also regard these ray forms R and D as “symbolically-irrational,” since they 
satisfy quadratic equations whose coefficients are entire, rational functions of the six 
basic forms Ki and the identity ray form: 
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K0 = (π ρ′ )2 = 2 ik ikπ π ′∑ = 2 ik mnπ π∑ = 4 (π12 π34 + π13 π42 + π14 π23) . 

 
One will have K0 ≡ 0 when one is dealing with a line, as one knows. 
 
 

§ 12. 
 

 We now turn to the covariants.  In their construction, we have to consider not only 
factors of type (ab′) that enter into the invariants, but ones of type (a′x), as well.  We 
select such a factor (a′x) and write it in the first place, such that we will have: 
 

J = (xa′) 
 
for a covariant J.  We deduce the factors that contain the symbol a′ for a second time 
from this factor (a′x), etc., such that we can also define a chain here.  We will then have: 
 

J = (xa′) (a′b) (bc′) (c′d), 
 
and it is clear that such a chain must once more terminate with x, since we are 
considering only one sequence of point coordinates.  We will then have (1): 
 
(24)   J = (xa′)(a′b)(bc′)(c′d) … (nm′)(m′x) = [xa′bc′d … nm′x]. 
 
 Now, as one can easily verify, the same laws of conversion are true for these chains 
that are true for chains that represent only invariants that are given by equations (7) and 
(8).  We conclude from this, as above, that such covariants are always linear in the 
coefficients of the individual complexes.  Since we now have no more than six such 
linear complexes to consider, and an odd number of complexes must always appear in 
such a chain, the covariants will be easy to write down. 
 For only one complex, we will have the chain: 
 

J1 = (xa′) (a′x) = (a′x)2 ≡ 0, 
 
since the a′ are complex symbols.  All that remain now are the cases in which three or 
five of the six given complexes appear.  We will thus obtain twenty covariants of the 
type: 
(25)    J3 = [x a′ b c′ x] = (xa′) (a′b) (bc′) (c′x) 
 
and six covariants of the type: 
 
(26)   J5 = [x a′ b c′ d′ e′ x] = (xa′) (a′b) (bc′) (c′d) (de′) (e′x) . 
 

                                                
 (1) These are the forms that F. Mertens denoted by (a ⋅ b ⋅ c ⋅ d ⋅ … x) x1 + …  
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 The geometric meaning of these covariants in easy to give when one looks more 
closely at the null systems that are given by the individual complexes. 
 As a result of the dual character of the system of six complexes that is being 
considered, the contravariants are also dealt with by using the considerations above.  We 
get, dually, twenty contravariants of the type: 
 
(27)    3J′  = [u′ab′cu′] = (u′a) (ab′) (b′c) (cu′) 
and contravariants of the type: 
 
(28)   5J′  = [u′ab′cd′ eu′] = (u′a) (ab′) (b′c) (cd′) (d′e) (eu′) . 
 
 If we attempt to exhibit quadratic equations for these covariants and contravariants, as 
we did for the invariants R and D, then we will always arrive at purely formal identities, 
and thus, obtain no such representation. 
 
 

§ 13. 
 

 Finally, we come to the mixed forms.  Here, as we already mentioned to begin with, 
we will have four types of genera to distinguish (1): 
 1. Ones that contain u′ and x. 
 2. Ones that contain πik and x. 
 3. Ones that contain πik and u′. 
 4. Ones that contain πik, u′, and x. 
 
 One splits off the identical forms: 
 

K0 = (ππ′)2 and (u′x) 
 
in this.  If the coefficients of the six complexes also enter in then we will have to 
investigate the following types of factors: 
 

(a′x), (a u′), (aπ′), (π a′), (ab′), (π u′), (π′ x), and (πρ′ ). 
 
 However, we can restrict ourselves to the coefficients of the complexes and the 
quantities u′ and x in the search for the general types, since the variables πik behave 
precisely like those coefficients.  We therefore first treat the mixed forms that contain a 
sequence of point coordinates x and a sequence of plane coordinates u′. 
 We then once more write down these forms as chain forms, as we have up to now.  
We will then have: 
 

J = (xa′) (a′b)(bc′) (c′d) … (n′m) (mu′) = [xa′bc′d… n′mu′]. 
 

                                                
 (1) Cf., Clebsch, Über eine Fundamentalaufgabe der Invariantentheorie, § 3, Göttingen, 1872.  
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We once more derive the same laws of conversion from this representation as we did for 
the invariants or covariants.  We will then once more obtain the result that such a mixed 
form can only be linear in the coefficients of the individual complexes.  Now, since an 
even number of complexes always appears in such a chain, we will get: 
 Fifteen mixed forms of the type: 
 
(29)    J2 = [xa′bu′] = (xa′) (a′b) (bu′) . 
 
 Fifteen mixed forms of the type: 
 
(30)   J4 = [xa′bc′du′] = (xa′) (a′b) (bu′) (c′d) (du′), 
 
and finally, a mixed form of the type: 
 
(31)  J6 = [xa′bc′de′ fu′] = (xa′) (a′b) (bc′) (c′d) (de′) (e′f) (f u′) . 
 
 The mixed forms that also contain variable ray coordinates will be inferred first from 
the covariants and contravariants that were discussed in the previous § when one first 
replaces a sequence of coefficients with variable πik , and secondly from the mixed forms 
that were given in (29), (30), and (31), when one also replaces a sequence of coefficients 
with variable πik . 
 
 Teodo, March 1910. 
 

_________ 
 

 
 
 
 
 
 
 

 
 
 


