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 Introduction. Relationship between the general theory of relativity to the quantum-theoretic field equations of 

the spinning electron: Mass, gauge invariance, teleparallelism. The expected modifications to Dirac’s theory. 

 

  I. Two-component theory: The wave function  has only two components. 

 

§ 1. –  Coupling the transformation of the  to the Lorentz transformation of the normal axis-cross in the 

four-dimensional world. Asymmetry of future and past from the right and left. 

§ 2. –  In the general theory of relativity, the metric at a world-point is established by a normal axis-cross. 

Components of vectors relative to the axes and the coordinates. Covariant differentiation of . 

§ 3. –  General invariant conception of the Dirac action that is characteristic of the wave-field of matter. 

§ 4. –  The differential conservation laws for energy and impulse and the symmetry of the impulse tensor 

follows from the double invariance: 

  1. under coordinate transformations, 

  2. under rotations of the axis-cross. 

 Impulse and impulse-moment of matter. 

§ 5. –  Einstein’s classical theory of gravitation in the new analytical formulation. Gravitational energy. 

§ 6. – The electromagnetic field. The indeterminacy of the gauge factor in  implies the necessity of 

introducing the electromagnetic potential. Gauge invariance and the conservation of electricity. The 

spatial integral of charge. Introduction of mass. Discussion and acceptance of another possibility, in 

which electricity appears to be a phenomenon that accompanies gravitation, not matter. 

_________ 

 

 

Introduction. 

 

 In this article, I shall develop a theory that encompasses gravitation, electricity, and mass in a 

thorough form that appeared as a brief sketch in Proc. Nat. Acad. Sci., April 1929. Various authors 

have commented on the connection between Einstein’s theory of teleparallelism and the spin 

theory of the electron (*). Despite certain similarities, my Ansatz differs radically in that I reject 

teleparallelism and base it upon Einstein’s classical relativistic theory of gravitation. 

 
 (*) E. Wigner, Zeit. Phys. 53 (1929), 592, and others. 
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 On two grounds, the adaptation of the Pauli-Dirac theory of the spinning electron to general 

relativity promises to lead to fruitful results: 

 

 1. The Dirac theory, in which the wave field of the electron is described by a potential  with 

four components, gives twice too many energy levels. One should then revert to the two 

components of Pauli’s theory without abandoning the relativistic invariance. That prevents the 

mass m of the electron from being included as a factor in any term of the Dirac action. However, 

mass is a gravitational effect. There is hope for finding a replacement for that term in the theory 

of gravitation that will produce the desired correction. 

 

 2. The Dirac field equations for , together with the Maxwell equations for the four 

potentials fp of the electromagnetic field, have an invariance property that is formally the same as 

the one that I referred to as gauge invariance in my theory of gravitation and electricity from 1918. 

The equations will remain unchanged when one simultaneously replaces: 

 

 with ie     and fp with fp − 
px




 , 

 

in which  is understood to mean an arbitrary function of position in the four-dimensional world. 

The factor of /e c  has been absorbed into fp in the last expression (− e is the charge of the electron, 

cis the speed of light, and  = h / 2 is the quantum of action). The relationship between that 

“gauge invariance” and the conservation law for electricity remains inviolate. However, an 

essential difference that is experimentally significant is that the exponent of the factor that  takes 

on is not real, but purely imaginary.  now takes on the role that was played by Einstein’s ds in 

that older theory. Because of that, it seems to me that this new principle of gauge invariance, which 

arises necessarily, not from speculation, but from experiment, refers to the fact that the electric 

field is a phenomenon that necessarily accompanies, not the gravitational field, but matter, which 

is represented by the wave field . Since gauge invariance includes an arbitrary function , it has 

the character of “more general” relativity and can naturally be understood only in that context. 

 I cannot believe in teleparallelism on several grounds. First of all, my mathematical sense 

resists accepting such an artificial geometry a priori. I find it difficult to comprehend the power 

that has frozen the local axis-crosses at the various world-points in their twisted positions into rigid 

bondage with each other. I believe that two compelling physical reasons must be added: It is due 

to precisely the fact that one loosens the connection between the local axis-crosses that the gauge 

factor 
ie 

, which remains arbitrary in the quantity , will necessarily be converted from a constant 

into an arbitrary function of position, i.e., the gauge invariance that actually exists will become 

understandable by just that loosening. Secondly, as we will see in what follows, the possibility of 

rotating the axis-crosses at different locations independently of each other is equivalent to the 

symmetry of the energy-impulse tensor or the validity of the conservation law for impulse-moment. 

 With each attempt at exhibiting quantum-theoretic field equations, one must keep in mind the 

fact that they cannot be compared directly with experiment, but it is only their quantization that 

will yield the basis for the statistical statements about the behavior of material particles and light 
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quanta. The Dirac-Maxwell theory, in its form up to now, contains only the electromagnetic 

potential fp and the wave field  of the electron. Undoubtedly, the wave field    of the proton 

must be added, and indeed ,   , and fp will be functions of the same four space-time coordinates 

in the field equations. Prior to quantization, one cannot demand, say, that  is a function of a 

world-point (t, x, y, z) and    is a function of the world-point ( , , , )t x y z     that is independent of 

it. It is natural to expect that of the two component-pairs in the Dirac quantities, one of them 

belongs to the electron and the other, to the proton. Moreover, two conservation laws for electricity 

must appear that say (after quantization) that the number of electrons, like that of the protons, must 

remain constant. They must correspond to a two-fold gauge invariance that involves two arbitrary 

functions. 

 We first test the state of affairs in the special theory of relativity in regard to whether, and to 

what degree, the formal requirements of group theory (although still entirely apart from the 

dynamical differential equations that would bring about agreement with experiment) would make 

it necessary to raise the number of components of  from two to four.  We will see that one will 

arrive at two components when symmetry on the left and right is removed. 

 

 

Two-component theory. 

 

 § 1. Transformation law for . – If one introduces homogeneous projective coordinates x 

into the space with Cartesian coordinates x, y, z: 

 

x = 1

0

x

x
, y = 2

0

x

x
, z = 3

0

x

x
 

 

then the equation of the unit sphere will read: 

 

− 2 2 2 2

0 1 2 3x x x x+ + +  = 0 .     (1) 

 

If one projects it from the South pole to the equatorial plane z = 0, which is considered to be the 

carrier of the complex variables: 

x + i y =  = 2

1




, 

then these equations will be true: 

 

0 1 1 2 2 1 1 2 2 1

2 1 2 2 1 3 1 1 2 2

, ,

( ) , .

x x

x i x

       

       

= + = + 


= − + = − 
   (2) 

 

x are Hermitian forms of 1, 2 . Only the ratios of the variables 1, 2, as well as the coordinates 

x , come under consideration here. A homogeneous linear transformation of 1, 2 (with complex 
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coefficients) will produce a real linear transformation of the coordinates x : It represents a 

collineation that takes the unit sphere to itself and leaves the sense of rotation of the unit sphere 

unchanged. It is easy to show (as well as well-known) that one will obtain each such collineation 

once and only once in that way. 

 When one goes from the homogeneous standpoint to the inhomogeneous one, one will then 

regard x as coordinates in the four-dimensional world and (1) as the equation of the “light cone,” 

and one will restrict oneself to those linear transformations U of 1, 2 whose determinant has the 

absolute value 1. U acts upon the x as a Lorentz transformation, i.e., a real homogeneous linear 

transformation that takes the form: 

− 2 2 2 2

0 1 2 3x x x x+ + +  

 

to itself. However, the formula for x0 and our remark about the conservation of the sense of rotation 

on the sphere shows, with no further discussion, that of the Lorentz transformations, we will get 

only the one single  that is defined in a closed continuum and that: 

 

 1. Does not invert past and future, and 

 2. Has the determinant + 1, not – 1. 

 

Of course, that is true without exception. The linear transformation U of  is not established 

uniquely by , but one will be free to choose an arbitrary constant factor 
ie 

 of absolute magnitude 

1. One can normalize it by the demand that the determinant of U should be equal to 1, but even 

then a double-valuedness will still remain. In regard to the restriction 1, one would like to establish 

that one of the most promising aspects of the -theory is that it can carry the essential difference 

between past and future in the calculations. The restriction 2 eliminates the equivalence of left and 

right. It is only that symmetry of right and left, which actually exists in nature, that will compel us 

(Part II) to introduce a second pair of -components. 

 The Hermitian conjugate of a matrix A = || aik || will be denoted by A : 

 

ika  = kia  . 

 

Let S be the coefficient matrix of the Hermitian form of the variables 1, 2, by which the 

coordinates x will be represented in (2): 

x = S   .      (3) 

 

Here,  means the column 1, 2 . S0 is the unit matrix. The equations: 

 
2

1S  = 1, S2 S3 = i S1     (4) 

 

are true, along with the ones that emerge from them by cyclically permuting the indices 1, 2, 3. 
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 It is formally somewhat more convenient to replace the real time coordinate x0 with the 

imaginary one i x0 . The Lorentz transformations then take the form of orthogonal transformations 

of the four quantities: 

x (0) = i x0 , x () = x  [ = 1, 2, 3]. 

Instead of (3), one writes: 

x () = ( )S   .      (5) 

 

The transformation law of the -components consists of saying that under the influence of a 

transformation  of the world-coordinates x (), they will be converted in such a way that the 

quantities (5) will suffer the transformation . A quantity of that kind represents the wave field of 

a material particle, as the phenomenon of spin would imply. x () are the coordinates in a “normal 

axis-cross” e () : e (1), e (2), e (3) are real spatial vectors that define a left-handed Cartesian 

coordinate system, e (0) / i is a real, future-pointing, temporal world-vector. The transformation  

describes the transition from one such normal axis-cross to another equivalent one that might be 

referred to briefly as a rotation of the axis-cross from now on. We will get the same coefficients 

( )c    whether we express the transformation  in terms of the basis vectors of the axis-cross or 

the coordinates: 

x = ( ) ( )x


  e  = ( ) ( )x


   e , 

 

e (a) = ( ) ( )c


   e , ( )x   = ( ) ( )c x


    . 

 

That follows from the orthogonal character of . 

 In what follows, it will be necessary to calculate the infinitesimal transformation: 

 

d = dE   ,      (6) 

 

which corresponds to an arbitrary infinitesimal rotation d : 

 

dx () = ( ) ( )do x


    . 

 

The do ( ) define a skew-symmetric matrix. The transformation (6) is thought to be normalized 

such that trace of dE will be equal to 0. The matrix dE depends linearly and homogeneously upon 

the do ( ). We then write: 

 

dE = 1
3

( ) ( )do A
 

     = ( ) ( )do A    . 

 

The last summation shall extend over only the pairs: 
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( ) = (0 1), (0 2), (0 3) ; (2 3), (3 1), (1 2) . 

 

A ( ) Naturally, A ( ) depends upon  and  skew-symmetrically. One must not forget that 

the coefficients do ( ) are purely imaginary for the three pairs ( ) and real for the last three 

but are otherwise arbitrary. One finds that: 

 

A (2 3) = − 
1

(1)
2

S
i

, A (0 1) = 
1

(1)
2

S
i

 ,           (7) 

 

and two analogous pairs of equations that arise by cyclic permutation of the indices 1, 2, 3. In order 

to confirm that, one must merely calculate that the infinitesimal transformations dE: 

 

d = 
1

(1)
2

S
i

  and d = 
1

(1)
2

S  

 

will produce the infinitesimal rotations: 

 

dx (0) = 0 , dx(1) = 0 , dx (2) = − x (3) , dx (3) = x (2) , 

and 

dx (0) = i x(1) , dx(1) = − i x(0) , dx (2) =  , dx (3) = 0 . 

 

 

 § 2. Metric and parallel displacement. – We now move on to the general theory of relativity. 

We describe the metric at a world-point P by giving a local normal axis-cross e (). Only the class 

of the normal axis-crosses, which are connected with each other by the group of rotations , is 

determined by the metric. An individual element of that class will be selected arbitrarily. The laws 

are then invariant under arbitrary rotations of the local axis-crosses. In that way, the rotation of 

the axis-cross at the point P  , which is different from P, will be independent of the rotation of P. 

Let 1 (P), 2 (P) be the components of the matter potential at the point P relative to the chosen 

local axis-cross e () there. A vector t at P can be written in the form: 

 

t = ( ) ( )t


  e  . 

 

The t () are its components with respect to the axis-cross. 

 For the analytical representation, we will further require a coordinate system xp . xp are any 

four continuous functions of position in the world whose values allow one to distinguish the 

various world-points from each other. The laws are then invariant under arbitrary coordinate 

transformations. ( )pe   might be the components of e () in the coordinate system. Those 44 

quantities ( )pe   describe the gravitational field. The contravariant components 
pt  of a vector t 

in the coordinate system are connected with its components t (a) in the axis-cross by the equations: 
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pt = ( ) ( )p

pt e


  . 

 

On the other hand, one can calculate t () from its covariant components tp in the coordinate system 

by way of: 

t () = ( )p

p

p

t e  . 

 

Those equations govern the conversion of indices. I have written the Greek indices that relate to 

the axis-cross as arguments because there is nothing to distinguish between superscripts and 

subscripts here. The opposite conversion happens by means of the matrix || ep () || that is inverse 

to || ( ) ||pe  : 

( ) ( )p

pe e


   = q

p  and ( ) ( )p

p

p

e e   =  (, ) . 

 

 is equal to 0 or 1 according to whether the indices coincide or not, resp. The rule about dropping 

the summation sign will be followed for the Latin, as well as the Greek, indices from now on. Let 

 be the absolute value of the determinant | ( ) |pe   . The division of a quantity that is denoted by 

Latin characters by  will be indicated, as usual, by the conversion of the Latin symbols into the 

corresponding German ones; e.g.: 

( )p e  = 
( )pe 


. 

 

 One can describe a vector and a tensor by their components with respect to either the coordinate 

system or the axis-cross. However, in regard to the quantities , one can speak of only the 

components with respect to the axis-cross, because the transformation law for their components is 

governed by a representation of the rotation group that cannot be extended to the group of all linear 

transformations. Therefore, in the theory of matter, the gravitational field is represented in the way 

that was depicted here, instead of by the fundamental metric form (*): 

 

,

pq p q

p q

g dx dx . 

Moreover: 

gpq = ep () eq () . 

 

 The theory of gravitation must now be converted into this new analytical form. I shall begin 

with the formulas for the infinitesimal parallel displacement that is determined by the metric. It 

takes the vector e () at the point P to the vector e () at the infinitely-close point P  . It defines 

 
 (*) Which agrees formally with Einstein’s recent papers on gravitation and electricity, Sitzungsber. Preuß. Akad. 

Wiss. (1928), pp. 217, 224; ibid. (1929), pp. 2. Einstein used the symbol h instead of e. 
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a normal axis-cross at the point P   that emerges from the local axis-cross there e () = e ( ; )P  

by an infinitesimal rotation d  : 

 

 e () = ( ) ( )do


   e ,  e () = e () − e ( ; )P .   (8) 

 

d  depends linearly upon the displacement PP  or its components: 

 

dxp = (dx)p = pv  = ( ) ( )pe v   . 

We then write: 

d  = p (dx)p , do ( ) = op ( ) (dx)p = o ( ;  ) v () .   (9) 

 

As one knows, the parallel displacement of the vector t with the components pt  will be described 

by an equation: 

 

dt = − d   t ,  i.e., 
pdt  = − p r

rd t  , p

rd   = ( )p q

r q dx , 

 

in which the quantities p

r q , which are independent of t, as well as the displacement dx, are 

symmetric in r and q. We then have: 

 

e () – e () = − d   e () . 

 

Equation (8) is also true. Subtracting the two differences from the left-hand side will give the 

differential d e () = e ( ; )P  − e ( ; P) : 

 

( ) ( )p p r

rd d e + e  = − do ( ) ( )pe  , 

  
( )

( ) ( ) ( )
p

q p r q

rq

q

e
e e e

x


  


 + 


 = − o ( ; ) ( )pe  . 

 

Here, one can eliminate the o and obtain the known equations for determining  when one 

expresses the fact that o ( ; ) is skew-symmetric with respect to  and . One eliminates the  

and calculates o by making use of the fact that p

r q  is symmetric with respect to r and q or: 

 

( , )p    = ( ) ( )p r q

r q e e   

is symmetric in  and  : 

 

( ) ( )
( ) ( )

p p
q q

q q

e e
e e

x x

 
 

 
 − 

 
 = {o ( ; ) – o ( ; )} ( )pe     (10) 

or 
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o ( ; ) + o ( ; ) = [e (), e ()] () .       (11) 

 

If one performs the three cyclic permutations of    on that equation and adds the equations that 

arise in that way with the signs + − + then one will get: 

 

2 o ( ; ) = [e (), e ()] () − [e (), e ()] () + [e (), e ()] () . 

 

o ( ; ) is then, in fact, determined uniquely. The expression that is found satisfies all conditions 

because it is skew-symmetric in  and  as is obvious with no further discussion. 

 In particular, for what follows, we will need the abbreviation: 

 

o ( ; ) = [e (), e ()] () = 
( ) ( )

( ) ( )
p p

q

p

p q

e e
e e

x x

 
 

 
− 

 
 . 

Since: 

− 
1

 


 
  

 
 = 




 = ( ) ( )q

qe e    , 

that will give: 

o ( ; ) = 
( )p

p

e

x








 .           (12) 

 

 

 § 3. Action quantity of matter. – Not only can the covariant derivative of a vector or tensor 

field be calculated with the help of parallel displacement, but also that of the -field. Let a (P), 

( )a P   [a = 1, 2] be the components relative to the local axis-cross e () at P ( P  , resp.). The 

difference ( )a P   − a (P) = da is the ordinary differential. On the other hand, we carry the axis-

cross e () from P to P   by parallel displacement: Let e() ; a   be the components of  at P   

relative to the axis-cross e() there . a and a   depend upon only the choice of the axis-cross e 

() at P. They have nothing to do with the local axis-cross at P  . Under a rotation of the axis-cross 

at P, the a   will transform just like the a , and similarly, the differences a = a   − a . They 

are the components of the covariant differential  of . e() emerges from the local axis-cross 

e () = e ( ; )P  at P   by the infinitesimal rotation d  that was determined in § 2. The 

corresponding infinitesimal transformation: 

 

dE = 1
2

 do ( )  A ( ) 

 

takes ( )a P   to a  , i.e.,  ( )P  −  is equal to dE  . If one now adds d = ( )P   −  (P) then 

one will get: 

 = d + dE   .     (13) 
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Everything depends linearly upon the displacement PP . It will be written: 

 

 = p (dx)p =  () v () ,  dE = Ep (dx)p = E () v () . 

 

We then find that: 

 

p = 
p

p

E
x


 

+   

  or  () = ( ) ( )p

p

e E
x

  
 

+   

. 

In that, we have: 

E (a) = 1
2

 o ( ;  ) A ( ) . 

 

 If    is a quantity with the same transformation law as  then: 

 

( )S     

 

will be the components of a vector relative to the local axis-cross. Hence: 

 

( )v   = ( )S     = ( ) ( )S v       

 

will be a linear map v → v  of the vector space at P that is independent of the axis-cross. As a 

result, its trace: 

( ) ( )S   
 

will be a scalar, and the equation: 

i  m = ( ) ( )S   
         (14) 

 

will define a scalar density m whose integral: 

 

dxm   (dx = dx0 dx1 dx2 dx3) 

 

can find employment as an action quantity. 

 In order to arrive at an explicit expression for m, we must calculate: 

 

S () E () = 1
2

 S () A ( )  o ( ; ) .   (15) 

From (7) and (4), one gets that: 

 

S () A ( ) = 1
2  S ()  [sum over   , but not  !] 

and 

S () A ( ) = 1
2  S () , 
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when  is an even permutation of the indices 0123. The terms of the first and second kind then 

contribute the following multiple of S () to (15): 

 

1
2

 o ( ; ) = 
1 ( )

2

p

px









e
 

or 

o ( ; ) + o ( ; ) + o ( ; ) = 
2

i
  () , 

 

resp. From (11), when  is an even permutation of 0123, one will have: 

 

 i  ()  = [e (), e ()]() + … + (cycl. permutation of ) 

 

 = 
( )

( ) ( )
p

q

p

q

e
e e

x


 


+


 .     (16) 

 

The sum extends over the six permutations of  with alternating sign (and naturally over p and 

q, in addition). With those notations, one will have: 

 

m = 
1 1 ( ) 1

( ) ( ) ( ) ( ) ( )
2 4

p
p

p p

a
a S S s

i x x


       



 
  

+  +     

e
e .  (17) 

 

The second part of that is equal to: 

1
( ), ( ), , ( )

4

p
q

p

q

e
e e s

i x
  






 

 

(summed over p and q). Each term is a determinant of four rows that one will obtain from the row 

that was written out when one sets  = 0, 1, 2, 3, in succession: 

 

s () = ( )S  
 .     (18) 

 It is not the action integral: 

dxh            (19) 

 

that is meaningful in the laws of nature, but only its variation. Thus, it is not necessary for h to be 

real, but it will suffice that the difference h  – h is a divergence. In that case, we say that h is real 

in practice. We must test how that works in regard to m. ( )pe   is real for  = 1, 2, 3 and pure 

imaginary for  = 0. Hence, ( )pe  S () is a Hermitian matrix. Similarly,  () is real for  = 1, 

2, 3 and pure imaginary for  = 0. Hence,  () S () is also Hermitian. As a result: 
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m  = − 
1 1 ( ) 1

( ) ( ) ( )
2 4

p
p

p p

S s
i x x

 
      






  
+  +     

e
S , 

 

( )i −m m  = 
( )

( )
p

p p

p p p

S
x x x

  
    


   

+ + 
  

e
S S  

 

= ( )p

px
 


S  = 

p

px





s
 . 

m is then, in fact, real in practice. 

 We will return to the special theory of relativity when we set: 

 
0 (0)e  = − i , 1(1)e  = 

2 (2)e  = 3 (3)e  = 1 , 

 

and all remaining ( )pe   = 0 . 

 

 

 § 4. Energy. – Let (19) be the action integral for matter in the broader sense (viz., matter + 

electric field), which is described by the  and the electromagnetic potential fp . The laws of nature 

say that the variation is: 

dx h  = 0 

 

when the  and fp are subject to arbitrary infinitesimal variations that vanish outside of a finite 

region of the world. The variation of  gives the material equations in the narrow sense, while the 

variation of the fp gives the electromagnetic equations. Based upon that natural law, when one also 

subjects the ( )pe  , which were fixed up to now, to an analogous infinitesimal variation, an 

equation will come about: 

dx h  = ( ) ( )p

p e dx    t ,    (20) 

 

by which the tensor density of energy tp () is defined. 

 (20) must vanish as a result of the invariance of the action quantity, when the variation ( )pe   

is produced in such a way that: 

 

1. for a fixed coordinate system xp, the local axis-cross e () suffers an infinitesimal rotation, 

or 

 

2. for a fixed axis-cross, the coordinates xp will be subject to an infinitesimal transformation. 

 

The first process is described by the equations: 
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( )pe  = ( ) ( )po e   . 

 

The o ( ) in this is a skew-symmetric (infinitesimal) matrix that depends arbitrarily upon 

position, and the vanishing of (20) says that: 

 

t (, ) = ( ) ( )p

p e t  

 

is symmetric in  and . The symmetry of the energy tensor is thus equivalent to the first invariance 

property. However, the symmetry law is not fulfilled identically, but is a consequence of the 

material and electromagnetic laws, since for a fixed -field, the components of  would indeed 

change under the rotation of the axis-cross! 

 The calculation of the variation ( )pe   that is produced by the second process is somewhat 

more tedious. However, the arguments are familiar from the theory of relativity in its previous 

analytical conception (*). The point P with the coordinates xp will have the coordinates: 

 

px  = xp + xp ,  xp = ( )p x  

 

in the transformed coordinate system. The point that has the same coordinates xp in the new 

coordinate system that P had in the old one will be denoted by P  ; it has the coordinates xp –  xp 

in the old system. The vector t at P will possess the components: 

 

p q

q

x
t

x





 = 

p
q

p

q

t t
x


+ 


 

 

in the new coordinate system. In particular, the changes that the components ( )pe   of the fixed 

vector e () at the fixed point P undergo will be: 

 

( )pe   = ( )
p

q

q

e
x








 . 

 

On the other hand, the difference between the vector e () at P   and P is given by: 

 

( )pde   = − 
( )p

q

q

e

x








 . 

 

Hence, the variation that is generated by the coordinate transformation for fixed coordinate values 

xp will be: 

 
 (*) Cf., say, H. Weyl, Raum, Zeit, Materie, 5th ed., pp. 233, et seq., Berlin 1923 (cited at RZM). 
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( )pe   = 
( )

( )
p p

q q

q q

e
e

x x

 
 

 
 − 

 
. 

 

The p  in that are arbitrary functions that vanish outside of a finite region of the world. If we 

substitute that in (20) then we will get: 

 

0 = 
( )

( )

q p
p p

q

q q

e
dx

x x


 

   
+ 

   

t
t  

 

by a partial integration. The quasi-conservation law of energy and impulse is then given here in 

the form: 

( )
( )

q p
p

q

q q

e

x x




 
+

 

t
t  = 0 .          (21) 

 

Due to the second term, it is only an actual conservation law in special relativity. In the general 

theory, it will first become such a thing when the energy of the gravitational field is added to it. 

 However, in the special theory of relativity, integrating with d = dx1 dx2 dx3 over the spatial 

cross-section: 

x0 = t = const.      (22) 

 

will yield the temporally-constant components of the impulse (J1, J2, J3) and energy (− J0): 

 

Jp = 
0

p d t  . 

 

With the help of symmetry, one will further find the divergence equations: 

 

  
2 3 3 2( )q q

q

x x
x


−


t t  = 0 , …, 

  
0 1 1 0( )q q

q

x x
x


+


t t  = 0 , … 

 

The three equations of the first kind show that the impulse moment (M1, M2, M3) is temporally 

constant: 

M1 = 
0 0

2 3 3 2( )x x d− t t , …, 

 

while the equations of the second kind include the theorem of the inertia of energy. 
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 We calculate the energy density for the action quantity m of matter that was exhibited above. 

We shall treat the two parts into which m seems to be decomposed according to (17) separately. 

For the first part, we will get: 

dx  m  = ( ) ( )p

pu dx    e  

after a partial integration, with: 

i up () = 
1 ( ( ) )

( )
2p p

S
S

x x

   
 


  

−
 

 

  = 
1

( ) ( )
2 p p

S S
x x

 
   




  
−    

. 

 

The part of the energy that arises from this is then: 

 

tp () = up () – ep ()  u, q

pt  = q q

p p−u u , 

 

where u means an abbreviation for ( ) ( )p

pe  u . Those formulas are generally correct for non-

constant ( )pe  , as well. In the second part, however, we restrict ourselves to special relativity, for 

the sake of simplicity. In that case, we will have: 

 

dx  m  = 
1 ( ( ))

( ), ( ), , ( )
4

p
q

p

q

e
e e s dx

i x

 
  



  

  = − 
1 ( )

( ), ( ), ( ),
4

q

p p

q

s
e e e dx

i x


   



  

 tp (0)  = − 

1,2,3

1 ( )
( ), ( ),

4

q

p

q

s
e e

i x



 

=




. 

 
0

pt  arises from this upon multiplication by – i ; therefore, 0

0t  = 0 and: 

 

0

1t  = 
2 3

1 (3) (2)

4

s s

x x

  
− 

  
 .     (23) 

 

 We combine both parts in order to determine the total energy, impulse, and impulse moment. 

From: 

0

0t  = − 
3

1

1

2

p p

p p p

S S
i x x

 
 




=

  
−    

  , 

we will get: 
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− J0 = − 0

0 d t  = 
3

1

1 p

p p

S d
i x


 

=


 


  

 

after a partial integration that is applied to the subtrahend. That leads one to regard the operator: 

 
3

1

1 p

p p

S
i x=




  

 

as a representative of the energy of a free particle. Furthermore, one will have: 

 

  J1 = 
0

1 d t   = 
1 1

1

2
d

i x x

 
  


  

− 
  

  

  = 
1

1
d

i x


  

 . 

 

The term (23) yields no contribution to the integral. The impulse will be represented by the 

operator: 

1 2 3

1
, ,

i x x x

   
 

   
 , 

 

as it must be, according to Schrödinger. From the complete expression of: 

 
0 0

2 3 3 2x x−t t  , 

one will ultimately get: 

M1 = 1
2 3 2

3 2

1
(1)x x s d

i x x

 
 

    
− +  

    
  

 

with a suitable partial integration. Consistent with known formulas, M1 is then represented by the 

operator: 

1
2 3 2

3 2

1
(1)x x S

i x x

   
− + 

  
 . 

 

 Once one has inserted spin into the theory from the outset, it must naturally once more come 

to light here. However, it is still quite surprising and instructive how that comes about. The 

fundamental Ansätze of quantum theory will then have a less fundamental character than one 

would have probably assumed originally. They are coupled with special action quantity m. On the 

other hand, that connection confirms the irreplaceability of m in its role as the action of matter. 

Only the general theory of relativity, which leads us to an arbitrary definition of energy by its free 
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variability of the ( )pe  , will allow us to close the circle of quantum theory in the way that was 

depicted. 

 

 

 § 5. Gravitation. – We once more take up our transcription of Einstein’s classical theory of 

gravitation and next determine the Riemann curvature tensor (*). Draw the line elements d and 

 through the point P to Pd and P . The line element  is shifted to Pd and d to P in some way 

such that they meet at a common corner P  of an infinitesimal “parallelogram” that lies opposite 

to P. The axis-cross e () at P is shifted to P , in one case, along the path 
dP P P , and in the other 

case, along the path P P P

 . The two normal axis-crosses at P  that one obtains in that way 

emerge from each other by an infinitesimal rotation: 

 

Ppq (dx)p (x)q = 1
2

 Ppq (x)pq , 

where: 

(x)pq = (dx)p (x)q − (x)p (dx)q 

 

are the components of the surface element that is spanned by dx and x, and Ppq is skew-symmetric 

with respect to p and q. Ppq is a skew-symmetric matrix || rpq ( ) || ; it is the Riemann curvature 

tensor. 

 The rotation that creates the axis-cross e* () from the local axis-cross e () at P  by parallel 

displacement to P  along the first path is: 

 

(1 + d ) (1 +   (Pd)) 

 

with a notation that is easy to understand. The difference between that expression and the one that 

emerges from it by switching d and  is: 

 

= {d ( ) –  (d )} + (d     –    d ) . 

Now: 

d  = p (dx)p, 

 

 (d ) = 
p

p p p p

p

x dx dx
x

 
 

+ 


 . 

 

Because the parallelogram closes,  dxp = d xp . Hence, one will finally have: 

 

Ppq = 
q p

p qx x

  
−    

 + (p q − q p) . 

 
 (*) Cf., RZM, pp. 119, et seq. 
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The scalar curvature: 

r = ( ) ( ) ( )p q

pqe e r     

 

gets a contribution from the first, differentiated, component of: 

 

( )
( ( ) ( ) ( ) ( ))

pq p q p

q

o
e e e e

x

 
   


−


. 

 

When one neglects a complete divergence, it will contribute the two terms to r = r /  : 

 

− 
( )

2 ( , )
q

q

o
x


  





e
 

and 

1 ( ) ( )
( ) ( ) ( )

p p
q q

p

q q

e e
o e e

x x

 
   



   
− 

   

. 

 

From (12), the first one is equal to: 

− 2 o ( ;  ) o ( ;  ) , 

 

and from (10), the second one is equal to: 

 

2 o ( ;  )  o ( ;  ) . 

 

The result is the following expression for the action density g of gravitation: 

 

 g = o ( ;  )  o ( ;  ) + o ( ;  )  o ( ;  ) .  (24) 

 

The integral dx g  is not actually invariant, but only in practice, so g differs from the scalar density 

r by a divergence. 

 Varying the ( )pe   in the total action integral: 

 

( ) dx+ g h  

 

implies the gravitational equations ( is a numerical constant). 

 One obtains the gravitational energy q

pv  from g when one performs an infinitesimal 

displacement in coordinate space (*): 

 
 (*) Cf., RZM, pp. 272, et seq. 
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px  = xp + p ,  p  = const. 

 

The variation that is produced in that way is: 

 

 e () = − 
( ) p

px









e
. 

 

g is a function of ( )pe   and the derivatives ( )p

qe   = 
( )p

p

e

x




. Let the total differential be denoted 

by: 

 g = ( ) ( ) ( ) ( )p q p

p p qe e     +g g  . 

 

For the variation that is produced by the infinitesimal translation in coordinate space, one must 

have: 

p

p

dx dx
x

 


 + 
 
g

g  = 0 .     (25) 

 

The integral extends over an arbitrary region in the world. 

 

dx  g  = 
( )( ) ( )( )

( ) ( )

q pq
pp p

p

q q

e
e dx dx

x x

  
  

 
−  +    

 
gg

g  . 

 

From the gravitational equations, the bracket in the first integral is equal to  tp (), while the 

integral itself is equal to: 

( )
( )

p
p

q

q

e
dx

x


  




 t . 

One introduces: 

q

pv  = 
( )

( )
r

q q

p r

p

e

x


 


− 


g g  . 

Equation (25) says that the integral of: 

 

( )
( )

q
q p

p q

p

e

x


  

 
−   

v t  

 

that is extended over an arbitrary region in the world is zero. The integrand must vanish 

everywhere then. Since the 
p  are arbitrary constants, the factors of 

p  are individually zero. (21) 

will then be converted into the pure divergence equation: 
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( )q

p q

qx

 +



v t
= 0 , 

and /q

p v  proves to be the gravitational energy. 

 In order to be able to formulate an actual differential conservation law of the impulse moment 

in the general theory of relativity along with that, one must specialize the coordinates in such a 

way that the cogredient rotation of axis-crosses will take the form of an orthogonal transformation. 

That is certainly possible, but I shall not go into the details of that here. 

 

 

 § 6. Electric field. – We now come to the critical part of the theory. In my opinion, the origin 

and necessity of the electromagnetic field is based upon the following fact: In reality, the 

components 1, 2 are not determined uniquely by the axis-cross, but only to the extent that they 

can still be multiplied by an arbitrary “gauge factor” 
ie 

 of absolute value 1. The transformation 

that the  experience under the influence of a rotation of the axis-cross is determined only up to 

such a factor. In the special theory of relativity, one must regard that gauge factor as a constant, 

because we then have a single axis-cross that is not coupled with a point. Things are different in 

the general theory of relativity: Every point has its own axis-cross and therefore its own arbitrary 

gauge factor, as well, in such a way that when one abandons the rigid coupling of the axis-crosses 

at different points, the gauge factor will necessarily become an arbitrary function of position. 

However, the infinitesimal linear transformation dE of , which corresponds to the infinitesimal 

rotation d , will not be established completely either, but dE can be increased by an arbitrary 

pure imaginary multiple i  df of the unit matrix. In order to establish the covariant differential d 

of  uniquely, in addition to the metric in the neighborhood of the point P, we will need one such 

df for every line element PP  = (dx) that starts from P. In order for  to depend upon dx linearly, 

as before: 

df = fp (dx)p 

 

must be a linear form in the components of the line element. If we replace  with 
ie    then we 

must, at the same time, replace df with df – d, which would emerge from the formula for the 

covariant differential. 

 That has the consequence that the term: 

 

1


 f () s () = 

1
( ) ( )f S   



  = p

pf   S     (26) 

 

gets added to the action density m. Gauge invariance prevails, in the sense that the action quantity 

will remain unchanged when one replaces: 

 

 with 
ie   ,  fp with fp − 

px




 , 
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and one understands  to mean an arbitrary function of position. From experiments, the 

electromagnetic potential acts upon matter in precisely the way that is described by (26). We are 

therefore justified in identifying the quantities fp that were introduced here with that potential. The 

proof will be complete when we show that, conversely, the fp-field will also be affected by the 

same laws of matter that are true for the electromagnetic potential field, according to experiments. 

 

fpq = 
q p

p q

f f

x x

 
−

 
 

 

is a gauge-invariant skew-symmetric tensor, and: 

 

l = 1
4

pq

pqf f       (27) 

 

is the scalar density that is characteristic of Maxwell’s theory. Upon variation, the Ansatz: 

 

h = m + a l       (28) 

 

(a is a numerical constant) will imply the Maxwell equations, with: 

 

− sp = − 
p S            (29) 

 

as the density of the electric four-current. 

 Gauge invariance is closely related to the conservation law for electricity. Since h is gauge-

invariant, dx h  must vanish identically when the  and fp are varied according to: 

 

  = i    ,  fp = − 
px




 

 

for fixed ( )pe  ;  is an arbitrary function of position. That implies a relation between the material 

equations and the electromagnetic ones that is fulfilled identically. If we know that the material 

equations (in the narrow sense) are valid then it will follow that: 

 

dx h  = 0 

 

when only the fp are varied according to the equation  fp = −  / xp . On the other hand, the same 

thing will follow from the electromagnetic equations for the infinitesimal variation  = i    of 

the  alone. When h = m + a l, we will get: 
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dx  h  = p

p

dx
x


  

 
 S  = 

p

p

dx
x





s

 

 

in both cases. We find that an analogous state of affairs prevails for the conservation laws for 

energy-impulse and impulse-moment. They couple the material equations in the broader sense 

with the gravitational equations and correspond to invariance under coordinate transformations 

(arbitrary independent rotations of the local axis-crosses at the various world-points, resp.). 

 From: 
p

px





s
 = 0 ,      (30) 

 

one gets that the flux of the vector density sp through a three-dimensional cross-section of the 

world, in particular, through a cross-section (22): 

 

l = 0 d s ,      (31) 

 

is independent of the position of the cross-section (of t, resp.). Not only that integral, but also the 

individual integral element, has an invariant meaning. At any rate, the sign depends upon which 

sense of direction is counted as a positive traversal of the three-dimensional section. In order to be 

able to speak of s0 d as a spatial probability density, the Hermitian form: 

 
0 ( ) ( )e S             (32) 

 

in 1, 2 must be definite. One easily finds that this is the case when (22) is actually a spatial 

cross-section at P, so when the line elements that lie in it and start from P are space-like. In order 

for (32) to take the positive sign, the cross-sections x0 = const. must be arranged in increasing x0, 

in which the directions of the future that are indicated by the vector e (0) / i follow in succession. 

The sign of the flux is also fixed by those natural restrictions in the coordinate system, and the 

invariant (31) will be normalized by the condition: 

 

l  0 d s  = 1      (33) 

 

in the usual way. The constant a, which combines m and l with each other, is a real number equal 

to 2/ch e  then (i.e., inverse fine-structure constant). 

 We treat 1, 2, fp, ( )pe   as the quantities that must be varied independently of each other. 

The energy density q

pt  that arises from m must be increased by: 

 

( )q q r

p p rf f−s s  
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due to the extension term (26). In the special theory of relativity, that leads one to associate energy 

with the operator: 

H = 
3

1

1p

p

p p

S f
i x=

 
+   

  , 

since its value is: 

H d     . 

 

Of course, the material equations will then read: 

 

1
p

p

f
i x


 

+   

 + H  = 0 and not  
0

1
H

i x





+


 = 0 , 

 

as has been assumed up to now in quantum mechanics. Naturally, the electromagnetic energy must 

be added to it, for which the classical Maxwellian expressions will retain their validity. 

 As far as physical dimensions are concerned, in general relativity, it is natural to regard the 

coordinates xp as real numbers. The quantities that appear are not only invariant under changes of 

yardsticks, but also under arbitrary transformations of the xp . If all e () are converted into ( )b e  

upon multiplying by a constant b then if the normalization (33) is to be preserved, at the same time, 

 must be replaced with 3/2b  . m and l will not be changed in that way, so they are real numbers. 

By contrast, g takes on the factor 21/ b , such that  will be the square of a length d.  is not identical 

to the Einstein gravitational constant but will arise from it upon multiplying by 2h / c. d lies far 

below the atomic scale and is ~ 10−32 cm. Gravitation will be meaningful for only astronomical 

problems here. 

 If we overlook the gravitational term then the field equations will not contain any dimensional 

atomic constant. There is no place in the two-component theory for an action quantity like the term 

in Dirac’s theory, which carries mass as a factor (*). However, one knows how mass can be 

introduced on the basis of the conservation laws. One assumes that in the “empty environment” of 

the particle, the q

pt  will vanish, and the ( )pe   will assume the constant values of special relativity 

outside of a certain world-tube whose cross-section x0 = const. of finite extent. The: 

 

Jp = 
01p

q p d


 
+ 

 
 t v  

 

will then be the components of a temporally-constant four-vector in the surrounding environment 

that is not influenced by the arbitrariness in the coordinate system and the local axis-cross. The 

normal coordinate system itself can be established more precisely by the condition that the impulse 

 
 (*) Proc. Roy. Soc. (A) 117, 610. 
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(J1, J2, J3) vanishes. – J0 is then the invariant, and at the same time constant, mass of the particle. 

It must now be demanded that this mass must have a value m that is given once and for all. 

 Along with the theory of the electromagnetic field that was discussed here, and which I 

consider to be correct, since it arises so naturally from the arbitrariness of the gauge factor  and 

thus allows one to understand the connection between the gauge invariance that exists 

experimentally and the conservation law for electricity, there is yet another one that couples 

electricity with gravitation that presents itself. The term (26) has the same form as the second part 

of m, namely, formula (17);  () plays the same role in the term (26) that f () plays in the second 

part of m. One might then expect that matter and gravitation [viz.,  and ( )pe  ] would already 

suffice to explain electromagnetic phenomena by themselves when one appeals to the quantities 

( )   as electromagnetic potentials. Those quantities depend upon the ( )pe   and their first 

derivatives in such a way that invariance under arbitrary coordinate transformations will exist. 

However, as far as rotations of the axis-crosses are concerned, the  () will transform like the 

components of a fixed vector in the axis-cross only when the axis-crosses are subject to the same 

rotation at all points. If one ignores that matter field and observes only the connection between 

electricity and gravitation then one will arrive at a theory of electricity that has precisely the same 

type that Einstein recently attempted. At any rate, teleparallelism was only an illusion here. 

 I have convinced myself that one will not arrive at the Maxwell equation by that perhaps 

initially tempting Ansatz. Furthermore, gauge invariance remains entirely enigmatic. The 

electromagnetic potential itself has physical meaning, and not merely the field strengths. 

Therefore, I believe that this idea will lead to a wrong turn, and that we must rather trust in the 

wisdom of gauge invariance: Electricity is a phenomenon that accompanies the wave-field of 

matter, and not gravitation. 

 

 Palmer Physical Laboratory, Princeton University, 19 April 1929. 
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