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According to RIEMANN ), geometry is based upon the following two facts:

1. Space is a three-dimensional continyuso the manifold of its points can be
represented by the system of values for three coordirgtesxs in a continuous way.

2. (Pythagorean Theorém The square of the distand&’ between two infinitely-
close points:

(1) P = (X, X, Xa) and P =(qa+dx,x+dx,x+dx)

is (with the use of arbitrary coordinates) a quadratimfor the relative coordinates :

2) ds’ = Z 0y dx dx (Qxi = Gki)-

We can express the second fact briefly by saying: Sgaaenetric continuum. In the
spirit of modern local action physics, we assume ttatPythagorean Theorem is strictly
valid only at infinity.

The special theory of relativity leads to the insigtat time gets added to the three
spatial coordinates as a fourth coordinagg (vith the same status as the others, so the
stage on which material events play out — \ize world— is thena four-dimensional,
metric continuum. The quadratic form (2) that the world-metric establisfseesot
positive-definite, as in the case of three-dimensispatial geometry, but has an index of
inertia 3. RIEMANN already expressed the thought thashibuld be regarded as
something physically real, since it reveals itself g-,ein the centrifugal forces — as an
agency that exerts real effects upon matter, and tbedrdingly, one must assume that
matter reacts to it, whereas up to now, all geometatsphilosophers have been of the
opinion that the metric of space is intrinsic to ijapendently of the material content
that fills it up. In our own time, EINSTEIN (indepesatly of RIEMANN) has erected
the grandiose edifice of his general theory of relgtivipon those ideas, which
RIEMANN could not have possibly followed through on. rFBINSTEIN, the

() “Uber die Hypothesen welche der Geometry zugrunde liggdath. Werkg(2" ed.), Leipzig, 1892,
no. XIlI, pp. 272.
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phenomena ofravitationalso enter into the calculation of the world-metaiod the laws
by which matter acts upon the metric are nothing but the @& gravitation; the in (2)
define the components of the gravitational potential.ei&&s the gravitational potential
consists of an invariamfuadraticdifferential form, theelectromagnetic phenomemaise
from a four-potential whose componemgscombine into an invariarinear differential
form 2. @ dx . However, both realms of phenomena — viz., gravitagiod electricity —
have been completely isolated from each other, upwo no

From some recent presentations of LEVI-CIVITA, (HESSENBERG %, and the
author {), it has emerged with crystal clarity that a natucalstruction of RIEMANNian
geometry that should be used as a basic concept is fthiae anfinitesimal parallel
displacement of a vector. FfandP" are any two points that are connected by a curve
then one can displace a vector that is giveP albng that curve fror® to P". However,
that vector translation frof to P* is not integrable, generally speaking; i.e., the veator
P" to which one will arrive will depend upon the path alortgjoh the displacement was
carried out. Integrability is found only in Euclidian (&witationless”) geometry. One
has now obtained one last distance-geometric elemetitei RIEMANNian geometry
that was characterized above, and as far as | canigbeno factual basis. It is only the
coincidental genesis of this geometry from surface rih¢loat seems to be at fault.
Namely, the quadratic form (2) makes it possible to not ooiypare the lengths of two
vectors at the same point, but also at any two padnatisare separated from each other.
However, a true local geometry allows one to know only a princgldrénslating a
length from a point to an infinitely-close grend one must then assume from the outset
that the problem of translating a length from one panan infinitely-close point is
integrable, just as the problem of the translation iodction has been found to be
integrable. When one ignores the aforementioned inst@mgly, a geometry will come
about that will, surprisingly, explainot only the gravitational phenomena, but also the
electromagnetic field.Both arise from the same source in that theory tharges, and
in fact one cannot separate gravitation and electricity from each other arbirainl
general In that theoryall physical quantities have a world-geometric meaning: In
particular, the effective quantities appear in them as pure numberstifioutset. They
lead to an essentially uniquely-determined world-law; indeed, theyn allow one to
grasp why the world is four-dimensional, in a certain sedse&ould now like to sketch
out the construction of the corrected RIEMANNian geawynevithout any ulterior
physical motives; the physical application then folloant it by themselves.

In a certain coordinate system, the relative coatdmdx of a pointP' that is
infinitely close to a poinP [see (1)] are the components of thBnitesimal displacement

PP . The transition from one coordinate system to asmoih expressed by continuous
transformation rules:

X = X (X X%heer X) (=12 ..0n

that establish the connection between the coordinatée same point in one system and
the other. The linear transformation formulas:

') “Nozioni di parallelismo...,” Rend. del Circ. Matem.Rialermo43 (1917).

()
() “Vektorielle Begriindung der Differentialgeometrie,” Magnn. 78(1917).
() Raum, Zeit, MaterieBerlin, 1918. § 14.
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(3) dx = zaik dx

then exist between the componeaits(dx’, resp.) of the same infinitesimal displacement
of the pointP, in which ai are the values of the derivativég /9%’ at the pointP. A

(contravariantyectory at the poinf hasn numbersé "for its components relative to any
coordinate system that transform under the transiiioanother coordinate system in

precisely the same way (3) as the components of amt@simal displacement. | refer to
the totality of vectors at the poiRtas thevector spacatP. It is:
1. Linear or affine

That is, the multiplication of a vector Btby a number and the addition of two such
vectors will always produce a vectorRat

2. Metric.

A scalar product of any two vectarsindy with the component&' andn ' :
th=y&=>9,&n
ik

is associated with the symmetric bilinear form that mgdoto (2) in an invariant way.
However, with our way of looking at thingthis form is only defined up to a positive
proportionality factor that remains arbitrary. If the manifold of spatial points is
represented by the coordinateshen the metric at the poiRtwill be established only by
the ratios of thegyx . Only the ratios of thgx have an immediate, intuitive, physical
meaning, as well. Namely, for a given starting p&inthe equation:

2 G dx dx=0

ik
is satisfied by those infinitely-close world-poir®s through which a light signal that is
emitted atP will go. For the purpose of analytical representatios must:

1. Choose a well-defined coordinate system.
2. Fix the arbitrary proportionality factor that is endowed with at each poiat

The formulas that come about must correspondinglyeriant in two ways:
1. They must benvariant under arbitrary coordinate transformatisn
2. The must remain unchanged when mmaces the gwith A gy, in whichA is an

arbitrary continuous function of position.

The appearance of this second invariance property is chaséictof our theory.
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If P, P" are any two points, and if any vectoatP is associated with a vectpratP’
in such a way that generallyr goes toar andy + 1y goes tar +1y (a is an arbitrary

number), and the vector O Rtis the only one that corresponds to t[le vector® Hoen
an affine odinear mapof the vector space &to the vector space Bt will be effected.

In particular, that map will ba similarity when the scalar produgt O" of the image
vectors aP’ is proportional to that of andy at P for all pairs of vectors, n. (Only this
notion of asimilarity has any objective sense in our opinion; up to now, theyreade
it possible to present the sharper notion obagruence What we mean by thearallel
displacement of a vectat the pointP to a neighboring poin®" will be established by
the following two axiomatic requirements:

1. A similarity of the vector space at the poltto the vector space at the
neighboring poinf" will be implemented by the parallel displacement aftoes atP to
P.

2. If Py, P, are two points that are closeRpand if the infinitesimal vectoPP, atP

goes to BB, at P1 by parallel displacement, bLHTF; goes toRPR,, at P, by parallel
displacement theB;,, P,1 must coincide (commutativity).

The part of the first requirement that states thaal@rdisplacement is an affine
transplantation of the vector spaceRato one atP' can be expressed analytically as
follows: Under displacement, the vectratP = (x;, X, ..., X,) goes to a vector:

& +dé’ at P = (X1 + dxg, Xo +dXq, ..., X +dX,)

whose components depend linearly ugdn

(4) de'=->"dy &' .

The second requirement teaches us thatljfieare linear differential forms:
dy, = 2, M dx,

whose coefficients possess the symmetry property:

(5) r=r..

If two vectorsé', n' atP gotoé' +d&', n' +dn' atP by parallel displacement then the
requirement of similarity that is posed in 1, which egesrfrom the affinity, states that:
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Z(gik + dgk)(fi + )(’7k + d7k) must be proportional ti Oix & ’7k-

If we let 1 +dgdenote the proportionality factor that deviates infigitétle from 1
and define the lowering of an index in the usual way bydhaula:

a = zgik a
k
then that will yield:
(6) dgk — [dpi + dyk) = gik d.

It emerges from this thalpis a linear differential form:
(7) do=Y g dy .

k
If that form is known then equation (6), or:

00.
Fike + Tiir = P _ Ok @ ,
%

together with the symmetry condition (5), will yield tipeantitied”. The intrinsic metric
connection of space then depends upon not onlyqgtlagratic form (2) (which is
determined only up to an arbitrary proportionality factbuy, also upon a linear forrv).

If we replacegik with A gk without changing the coordinate system then the quantities
will not change, whiledgx will take on the factorl, anddgk will go to A dgk + gk dA.
Equation (6) will then teach us théggoes to:

d¢+d)l—)I =dp+dinA.

Therefore, in the linear fornqu dx , it is not perhaps a proportionality factor that

remains undetermined, which must be fixed by an arbitrarycehof unit of
measurement, but rather, the arbitrariness that tdswed with consists of aadditive
total differential For the analytical presentation of the geomeiey forms:

(8) ik dx dxc, @ dx
are equivalent to:
9) A i dx dx, @ dx +dIn A,

in which A is an arbitrary positive function of positionTherefore, it is the skew-
symmetric tensor with the components:
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og 0
(10) Fik = % _%%

that has an invariant meaninge., the form:
Fi d% o« = 3 Fik AXi ,

which depends bilinearly upon two arbitrary displacemeértand & at the pointP, or
even better, upon the surface element that is spannédbbg two displacements, and
whose components are:

DXy = dX I —dXc O

The special case of the theory, up to now, in whichattgtrarily-chosen unit of
length at a starting point can be translated by paraiplatement to all points of space
in a manner that is independent of path, exists whemjithean be fixed absolutely in

such a way that they vanish. Thel™ _ are nothing but the CHRISTOFFEL three-index

symbols then. The necessary and sufficient invagantition for that case to present
itself then consists of the tendgk vanishing identically.

It is therefore quite natural to interprgtas thefour-potentialin the world-geometry,
so the tensoF will then be theslectromagnetic field The absence of an electromagnetic
field is then the necessary condition for the preseabry of EINSTEIN, which yields
only gravitational phenomena, to be valid. If one ptzéhat viewpoint then one will see
that it is in the nature of the electric quantitied thair characterization by numbers in a
certain coordinate system does not depend upon the erbehoice of a unit of
measurement. In order to address units of measurementlian@hsion, one must
completely re-orient oneself in this theory. Up tovnone spoke of a quantity, e.g., as a
tensor of degree 2 (of rank 2) when a single value @ffiel( an arbitrary choice of unit
of measurememwas made in any coordinate system) determined a matnxrobersay
that defined the coefficients of an invariant bilinéam of two arbitrary infinitesimal
displacements:

(11) ai d% K .

Here, we speak of a tensor when the comporentse determined uniquely when one
bases them upon a coordinate system aftelk making a well-defined choice of the
proportionality factor that is contained in thg gand indeed, in such a way that the form
(11) remains invariant under coordinate transformationswaine replaces thrg with A

O , but theay go to A° ax . We then say that the tensor masght e or also, when we
ascribe the dimension “length I to the line elemends that it has dimension®.
Absolutely invariant tensors only have weight O; thadfteinsor with the componerftg

is of that type. From (10), it satisfies the firgstem of MAXWELL'’s equations:

aFkI +aFIi +6Fik
ox 0x  0X%

=0.
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Once one has established the concept of parallel despkent, geometry and tensor
calculus can be developed with no effort.

a) Geodetic lines.If a pointP and a vector at it are given then the geodetic line that
goes throughP in the direction of that vector will arise in suchway that one
consistently displaces the vector parallel to itgelts own direction. With the use of a
suitable parameter, the differential equation for the geodetic line walhd:

2
d_>§+rirsd_>§% =0
dr dr dr

(Naturally, it cannot be characterized as the linshoirtest length here, since the concept
of the length of the curve has no sense.)

b) Tensor calculus.In order to, e.g., derive a tensor field of rank 2 flgovariant
tensor field of rank 1 and weight 0 with componefntBy differentiation, we take an
arbitrary vectoré' at the pointP as an aid, define the invariafté' and its infinitely-
small change when one goes from the pBintith the coordinateg; to the neighboring
point P" with the coordinates + dx , while displacing the vectaf parallel to itself under
that transition. One will get:

of. . of. i
—&dx + f df'=| - f |£d
axkg >Q< rdg [axk ik rjg )&

for that change. The quantities in parentheses orrigi-hand side are then the
components of a tensor field of rank 2 and weight O ighatefined by the field in a
completely invariant way.

c) Curvature. In order to construct the analogue of the RIEMANNianvature
tensor, one recalls the infinitely-small parallelagrdigure that was used above and

consists of the pointB, P1, P, andP1; = Py; . If one displaces a vecter= (¢') at P

parallel to itself toP; and from there, t®.2, and another time, tB,, and from there to
P,1 then sinceP;, andP,; coincide, it will make sense to define the differeAgeof the

two vectors that one obtains at that point. Onegyeil
(12) A§'=R, &

for its components, in whiclR‘j are independent of the displaced vegtdout linearly-
dependent upon the surface element that is spanned lwdhﬁsplacementsP—F; = (dx),
PR = (d):

R, = Ry, dxcdx = 1R Axq .
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The curvature component%‘jkI , Which depend upon only the locationRfhave the two
symmetry properties:

1. Their signs change when one switches the lasinvoesk andl.

2. If one performs the three cyclic permutationsjkbfand adds the associated
components then that will yield O.

If we lower the index then will getRj, which are the components of a covariant
tensor of rank 4 and weight 0. Even without calculatione can reach a simple
conclusion thaR splits into two summands in a natural way:

i i i i 1 I = J

(13) R =Pw-39 K éﬂk:{o i#j
of which, the first oné® is skew-symmetric in not only the indickls but also in and
J. While the equation&y = O characterize our space as one with no electroshiagn
field, — i.e., as one in which the problem of translation agté is integrable- as would
emerge from (13)Pj‘kI = 0 are the invariant conditions for no gravitationaldito exist
in it; i.e., for the problem of the translation ofetition to be integrable. Only Euclidian
space is devoid of both electricity and gravitation.

The simplest invariant of a linear map such as (12), lwagsociates every vector

with a vectordy, is its “trace”:

Lri,
n I
Here, from (13), it will take the form:

- 2 Fik dx e,

which we have encountered already. The simplest imtaofaa tensor like- $ Fi is the
square of its magnitude: _
L=1FF*.

Since the tensdf has weight OL is obviously an invariant of weight — 2. dfis minus
the determinant djix then:

dw= /g dx dx dx dx = /g dx

will be the volume of an infinitely-small volume atent, and it is known that
MAXWELL'’s theory will arise from the electrical quatyt of action that is equal to the
integrall L dwof that simplest invariant when it is taken overmabitrary world-domain,

and indeed, in the sense that for arbitrary variatafrihie gix and ¢ that vanish on the
boundary of the world-domain, one will have:
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5'[Lda):'[(8i5¢(+'r”‘5g() dw,
in which:
ci= 1 a(/g F)
Jo o oo

gives the left-hand side of the inhomogeneous MAX\WEquations (on whose right-
hand side, one finds the components of the foureat), and theélx define the energy-
impulse tensor of the electromagnetic field. Sihas an invariant of weight — 2, but the
volume element is one of weight 2 inn-dimensional geometry, the integfdl deowill
make sense only when the dimension s 4. The possibility of arriving at Maxwell’s
theory, with our interpretation, is then linked itimensiomd. However, in the four-
dimensional world, the electromagnetic quantity aztion will be a pure number.
Therefore, no matter how large the quantity ofaactl turns out to be in the traditional
mass units of the CGS system, admittedly, it canfits¢ ascertained only when a
calculation has been performed on an observatidheophysical problem to be tested —
e.g., the electron — on the basis of our theory.

Going over to the geometry of physics, from thedelmf MIE’s theory b we must
assume that all of the legitimacy of nature regtsnuon well-defined integral invariant,
namely, thequantity of action:

[W dew=[ 207 dx @ =W,g),

in such a way thathe real world is distinguished from all possibuf-dimensional
metric space by the fact that any quantity of actlmat is contained in any world-domain
will assume an extremal valdar any variations of the potentiadg, @ that vanish on the
boundary of the world-domain in questiolV, the world-density of action, must be an
invariant of weight — 2.The quantity of action is a pure humber in any cadence, our
theory gives an account, from the outset, of tleengdtic structure of the world, which
takes on a fundamental meaning in the current wialpaking at things: namely, the
guantum of action. The simplest and most naturesladz that we can make dfreads:

(14) W= Rijkl R = |RF.
From (13), that will also yield:
W=|P[+4L.

(At worst, the factor 4 that the second [electfitatmL includes when it is added to the
first one can still be doubtful here.) Howevereewithout specializing the quantity of
action further, we can draw some general conclssiiam the action principle. Namely,
we will show: In the same waythat the investigations of HILBERT, LORENTZ,
EINSTEIN, KLEIN, and the authof) connected théour conservation laws of matter

() Ann. Phys. (LeipzigB7, 39, 40 (1912-13).
Cf., also WEYL,Raum, Zeit, MaterieBerlin, 1918, § 25.
() HILBERT, “Die Grundlagen der Physik,” I. Comm. Gétiadhr., 20 Nov. 1915.
H. A. LORENTZ, in four articles in the Versl. K. Akan Wetensch., Amsterdam, 1915-16.
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(viz., the energy-impulse tensor) with thevariance of the quantity of action under
coordinate transformationsvhich contained four arbitrary functioriee new “yardstick
invariance][viz., the transition from (8) to (9that appears here is linked with the law of
conservation of electricitywhich brings in a fifth arbitrary function. Theply and
manner by which the latter is joined with the energy-ilsgyrinciple seems to be one of
the strongest general arguments in favor of the thihatyis proposed here, to the extent
that one can speak of its confirmation at all in pusplgculative terms.

For an arbitrary variation that vanishes on the boynddrthe world-domain in
guestion, we set:

(15) 5j 2 dx = j (0% dg, +w' dg) dx DIAED)IY

The laws of nature will then read: _ _
(16) 0% = 0, ' = 0.

We can refer to the first one as the law of thevigmtional field, while the second one is
that of the electromagnetic field. The quantitiés, w that are introduced by way of:

W', = gW,, w'=g w

are the mixed (contravariant, resp.) components teihsor of rank 2 (1, resp.) of weight
— 2. Five extra equations are included in theesysbf equations (16), according to the
invariance properties. That is expressed in the following invariant identities that
exist between their left-hand sides:

(17) ™ < gy,
ox
0",

(18) -5 =1F, n'.

The first one results from yardstick-invarianceanely, if we assume an infinitely-small
function of positiondp for In A in the transition from (8) to (9) then we will gdte
variations:

(S

dj]ik:gik 5[), %:M
ox

(15) must vanish for them. When one exploits theaiiance of the quantity of action
under coordinate transformations by an infinitelyadl deformation of the world-
continuum t), one will get the identities:

A. EINSTEIN, Berl. Ber. 1916. pp. 1111-1116.
F. KLEIN, Gott. Nachr. 25 January 1918.
H. WEYL, Ann. Phys. (Leipzigp4 (1917), 121-125.
() WEYL, Ann. Phys. (Leipzigh4 (1917), 121-125. F. KLEIN, Gétt. Nachr. Session on 25 Jan.. 1918
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020" i .
k_E%gnfS +1 aﬂm_pikm' =0,
ox 2 0% 2| 0x%

which will be converted into (18) when is replaced wgth2™ according todw' / 9x;
using (17). From the laws of gravitation alone, one dyregets that:

o'

(19) .

01

and from the laws of the electromagnetic field almme gets that one must have:

o',

(20) ox

—re90° = 0.
In MAXWELL's theory, w' has the form:

o = 6(\/a_gi|:ik) — g (si - \/Eé),

in whichs means the four-current. Since the first part sassiquation (19) identically
here, that will yield the law of conservation of etexuty:

1 0G98)_,
Jo o o

Similarly, in EINSTEIN’s theory,25', consists of two terms, the first of which
satisfies equation (20) identically, and the second ofhwvisithe mixed componenis,

of the energy-impulse tensor, multiplied kg . Hence, equations (20) lead to the four

conservation laws of matter. An entirely analogatisaton will be true in our theory
when we choose the Ansatz (14) for the quantity of actidhe five conservation
principles are “eliminated” by the field laws; i.e., yifellow from them in two ways, and
therefore exhibit the fact that five of them are stlpeus.

For example, for the Ansatz (14), MAXWELL'’s equati@ad:

1 6(\/EF”‘):§-
Ja o o |

i1 OR
sis==| Rg+—|.
is 4[ ¢g+a)J

(21) and the current
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R refers to the invariant of weight — 1 that arisemer‘jk, when one first contracts

k, and thg andl. If R means the RIEMANN curvature invariant that is constaiéiem
only theg"‘ then calculation will give:

. 3 0(Wg¢) 3,
R=R - =277+~ :
5 o 2(44¢)

In the static case, where all spatial componenth®felectromagnetic potential vanish,
and all quantities are independent of tixgefrom (21), one must have:

R=R + 3@ ¢°= const.

However, one can also arriveRt= const. =t 1 in full generality in a world-domain in
which R # 0 by suitably fixing the arbitrary unit of lengtbxcept that one must expect
that there are surfaces with= 0 for time-varying states, which would obviouglpy a
certain singular role. One should not &ses the action densityR( appears, as such, in
EINSTEIN’s theory of gravitation), since it doestritave weight — 2. That has the
consequence that our theory will probably lead t&AXWELL's electromagnetic
equations, but not to EINSTEIN’s gravitational egpms; fourth-order differential
equations enter in their place. However, it idaict, also very unlikely that EINSTEIN’s
gravitational equations are strictly incorrect, asmgbve all, due to the fact that the
gravitational constant that occurs in them fallssale the scope of the usual constants of
nature, such that the gravitational radius of tharge and mass of an electron, for
instance, has a completely different order of mamtei (namely, 13 [10*°, resp.] times
smaller) than the radius of the electron itsBIf (

My only intent here was to develop briefly the gen foundations of theory.
Naturally, the problem arises of inferring its piocgd consequences, based upon the
special Ansatz (14), and to compare it with expents, and in particular, to examine
whether the existence of electrons and the petidmrof the up-to-now unexplained
processes in the atom can be derived from it. Rtmmmathematical standpoint, that
problem is exceptionally complicated, since obtagniapproximate solutions by
restricting to the linear terms is excluded from &ince neglecting terms of higher order
in the interior of the electron is certainly notiéted, the linear equations that arise by
such an oversight can essentially possess onlgdlion 0. | shall reserve the task of
returning to all of these things more thoroughhatmther occasion.

Addendum. EINSTEIN has remarked about the foregoing work:

“If light rays are the single means of ascertanithe metric behavior in the
neighborhood of a world-point empirically then actta will generally remain
undetermined in the distands (as well as in thgy). However, that indeterminacy will
not be present when one appeals to results of mezasuts that are obtained from

() Cf., WEYL, “Zur Gravitationstheorie,” Ann. Phyd.dipzig) 54 (1917), pp. 133.
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(infinitely-small) rigid bodies (yardsticks) and clocksthe definition ofds A timelike
dscan then be measured directly by a unit clock whose vioddncludesds”

“Such a definition of the elementary distart®would then be only illusory if the
concepts of “unit yardstick” and “unit clock” were based updargely false assumption.
That would be the case if the length of a unit yardstick period of a unit clock, resp.)
depended upon its history. If that were true in nature tihere could be no chemical
elements with spectral lines of definite frequencies,rather the relative frequencies of
two (spatially-close) atoms of the same kind would gdiyeba different. Since that is
not the case, it seems to me that the basic hypstbéshe theory is sadly untenable,
although its boldness and profundity must fill any read#r wonder.”

Response from the author. | would like to thank EINSTEIN for the fact that has
given me the opportunity to confront directly the objectioat he has raised. If fact, | do
not believe that he is correct. According to the spettieory of relativity, a rigid
yardstick will always have the same rest length whecoihes to rest in a suitable
reference space, and a properly-functioning clock willagbvpossess the same period
under those circumstances, when it is measured in proper (MICHELSON
experiment, DOPPLER effect). However, one cannot iy raeans speak of a clock
measuring proper timeds for an arbitrary turbulent motion (as long as, saye goes
through nothing but equilibrium states in the thermodynamitca gas that is heated
arbitrarily rapidly and non-uniformly). Above all,&his not the case when the clock
(e.g., an atom) is subjected to effect of a strongtyimg electromagnetic field. In the
general theory of relativity, one can then say at ntbist much:A clock in a static
gravitational field will measure the integrdlds in the absence of an electromagnetic
field. How a clock will behave for an arbitrary motion untgle® combined effect of an
arbitrary electromagnetic and gravitational field castfbe learned by developing a
theory of dynamics that is based upon physical lawse 0 this problematic behavior of
yardsticks and clocks, in my bodRaum, Zeit, Materiel have founded the basic
measurement of thgx upon only the observation of the arrival of light sitgn (cf., pp.
181,et seq In that way (in the event that EINSTEIN’s theasycorrect), not only the
ratios of those quantities can, in fact, be determibed,also (with a choice of a fixed
unit of measurement) their absolute values. KRETCHMANMNWed at the same ideas,
independently of me [“Uber die physikalischen Sinne der tRititspostulate, Ann.
Phys. (Leipzigp3 (1917), 755.].

In the theory that was developed here, outside tleeion of the atom, for a suitable
choice of coordinates and the undetermined proportiorfalitgr, the quadratic formis’
reads the same as in the special theory of relathaty good approximation, and to the
same degree of approximation, the linear form is equal o €he case of the absence of
an electromagnetic field (linear form is rigorously = 6¥ is even determined with
complete exactitude by the requirement that is expresseéde parentheses (up to a
constantproportionality factor that, in fact, also remainmdimary for EINSTEIN; the
same thing will occur when only one electromagnetic fisldoresent). The most
plausible assumption that one can make about a clotisthairest in a static field is that
the integral measurels thus-normalized. In my theory, as well as in EINSVE, the
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problem remains of deriving that fact) (from an explicitly-developed theory of
dynamics. However, in any case, an oscillating stireadf well-defined constitution that
is continually at rest in a certain static field wokhave in a uniquely-determined way.
(The influence of any possible turbulent history willichp subside) | do not believe that
my theory will contradict anything in this experiment (whics confirmed by the
existence of chemical elements for the atoms). Oheuld observe that the
mathematically-ideal process of vector displacemeatt tine mathematical construction
of geometry is based upon has nothing to do with thewedtl process of the motion of
a clock whose evolution is determined by the laws of patur

The geometry that was developed here is the true lemahetry, and that must be
emphasized from the mathematical standpoint. It woaldelmarkable if a partial and
inconsistent local geometry with a hidden electromagffietid were true in nature in its
place. However, | might naturally be on the wrongkravith my entire way of looking
at things. Here, we are actually dealing in pure speoulath comparison with
experiment is a self-explanatory demand. Howevertderato do that, the consequences
of the theory must be inferred. | am hoping for asscgavith that difficult problem.

() Whose experimental verification is still partiallcomplete (e.g., redshift of the spectral lines in the
vicinity of large masses).



