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 According to RIEMANN (1), geometry is based upon the following two facts: 
 
 1. Space is a three-dimensional continuum, so the manifold of its points can be 
represented by the system of values for three coordinates x1, x2, x3 in a continuous way. 
 
 2. (Pythagorean Theorem).  The square of the distance ds2 between two infinitely-
close points: 
(1)   P = (x1, x2, x3)  and P′ = (x1 + d x1 , x2 + d x2 , x3 + d x1) 
 
is (with the use of arbitrary coordinates) a quadratic form in the relative coordinates dxi : 
 
(2)      ds2 = ik i k

ik

g dx dx∑    (gki = gki). 

 
We can express the second fact briefly by saying: Space is a metric continuum.  In the 
spirit of modern local action physics, we assume that the Pythagorean Theorem is strictly 
valid only at infinity. 
 The special theory of relativity leads to the insight that time gets added to the three 
spatial coordinates as a fourth coordinate (x0) with the same status as the others, so the 
stage on which material events play out – viz., the world – is then a four-dimensional, 
metric continuum.  The quadratic form (2) that the world-metric establishes is not 
positive-definite, as in the case of three-dimensional spatial geometry, but has an index of 
inertia 3.  RIEMANN already expressed the thought that it should be regarded as 
something physically real, since it reveals itself – e.g., in the centrifugal forces – as an 
agency that exerts real effects upon matter, and that, accordingly, one must assume that 
matter reacts to it, whereas up to now, all geometers and philosophers have been of the 
opinion that the metric of space is intrinsic to it, independently of the material content 
that fills it up.  In our own time, EINSTEIN (independently of RIEMANN) has erected 
the grandiose edifice of his general theory of relativity upon those ideas, which 
RIEMANN could not have possibly followed through on.  For EINSTEIN, the 

                                                
 (1) “Über die Hypothesen welche der Geometry zugrunde liegen,” Math. Werke (2nd ed.), Leipzig, 1892, 
no. XIII, pp. 272.  
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phenomena of gravitation also enter into the calculation of the world-metric, and the laws 
by which matter acts upon the metric are nothing but the laws of gravitation; the gik in (2) 
define the components of the gravitational potential.  Whereas the gravitational potential 
consists of an invariant quadratic differential form, the electromagnetic phenomena arise 
from a four-potential whose components φi combine into an invariant linear differential 
form ∑ φi dxi .  However, both realms of phenomena – viz., gravitation and electricity – 
have been completely isolated from each other, up to now. 
 From some recent presentations of LEVI-CIVITA (1), HESSENBERG (2), and the 
author (3), it has emerged with crystal clarity that a natural construction of RIEMANNian 
geometry that should be used as a basic concept is that of the infinitesimal parallel 
displacement of a vector.  If P and P* are any two points that are connected by a curve 
then one can displace a vector that is given at P along that curve from P to P*.  However, 
that vector translation from P to P* is not integrable, generally speaking; i.e., the vector at 
P* to which one will arrive will depend upon the path along which the displacement was 
carried out.  Integrability is found only in Euclidian (“gravitationless”) geometry.  One 
has now obtained one last distance-geometric element in the RIEMANNian geometry 
that was characterized above, and as far as I can see, with no factual basis.  It is only the 
coincidental genesis of this geometry from surface theory that seems to be at fault.  
Namely, the quadratic form (2) makes it possible to not only compare the lengths of two 
vectors at the same point, but also at any two points that are separated from each other.  
However, a true local geometry allows one to know only a principle for translating a 
length from a point to an infinitely-close one, and one must then assume from the outset 
that the problem of translating a length from one point to an infinitely-close point is 
integrable, just as the problem of the translation of direction has been found to be 
integrable.  When one ignores the aforementioned inconsistency, a geometry will come 
about that will, surprisingly, explain not only the gravitational phenomena, but also the 
electromagnetic field.  Both arise from the same source in that theory that emerges, and 
in fact one cannot separate gravitation and electricity from each other arbitrarily, in 
general.  In that theory, all physical quantities have a world-geometric meaning: In 
particular, the effective quantities appear in them as pure numbers from the outset.  They 
lead to an essentially uniquely-determined world-law; indeed, they even allow one to 
grasp why the world is four-dimensional, in a certain sense.  I would now like to sketch 
out the construction of the corrected RIEMANNian geometry without any ulterior 
physical motives; the physical application then follow from it by themselves. 
 In a certain coordinate system, the relative coordinates dxi of a point P′ that is 
infinitely close to a point P [see (1)] are the components of the infinitesimal displacement 

PP′
����

.  The transition from one coordinate system to another is expressed by continuous 
transformation rules: 

xi = 1 2( , , , )i nx x x x∗ ∗ ∗
…   (i = 1, 2, …, n) 

 
that establish the connection between the coordinates of the same point in one system and 
the other.  The linear transformation formulas: 

                                                
 (1) “Nozioni di parallelismo…,” Rend. del Circ. Matem. di Palermo 43 (1917).  
 (2) “Vektorielle Begründung der Differentialgeometrie,” Math. Ann. 78(1917).  
 (3) Raum, Zeit, Materie, Berlin, 1918. § 14.  
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(3)      dxi = ik k
k

dxα∑  

 
then exist between the components dxi ( idx∗ , resp.) of the same infinitesimal displacement 

of the point P, in which αik are the values of the derivatives /i kx x∗∂ ∂  at the point P.  A 

(contravariant) vector x at the point P has n numbers ξ i for its components relative to any 

coordinate system that transform under the transition to another coordinate system in 
precisely the same way (3) as the components of an infinitesimal displacement.  I refer to 
the totality of vectors at the point P as the vector space at P.  It is: 
 
 1. Linear or affine. 
 
That is, the multiplication of a vector at P by a number and the addition of two such 
vectors will always produce a vector at P. 
 
 2. Metric. 
 
A scalar product of any two vectors x and y with the components ξ i and η i : 
 

x ⋅⋅⋅⋅ y = y ⋅⋅⋅⋅ x = i k
ik

ik

g ξ η∑  

 
is associated with the symmetric bilinear form that belongs to (2) in an invariant way.  
However, with our way of looking at things, this form is only defined up to a positive 
proportionality factor that remains arbitrary.  If the manifold of spatial points is 
represented by the coordinates xi then the metric at the point P will be established only by 
the ratios of the gik .  Only the ratios of the gik have an immediate, intuitive, physical 
meaning, as well.  Namely, for a given starting point P, the equation: 
 

ik i k
ik

g dx dx∑ = 0 

 
is satisfied by those infinitely-close world-points P′ through which a light signal that is 
emitted at P will go.  For the purpose of analytical representation, we must: 
 
 1. Choose a well-defined coordinate system. 
 2. Fix the arbitrary proportionality factor that gik is endowed with at each point P. 
 
The formulas that come about must correspondingly be invariant in two ways: 
 
 1. They must be invariant under arbitrary coordinate transformations. 
 2. The must remain unchanged when one replaces the gik with λ gik , in which λ is an 
arbitrary continuous function of position. 
 
The appearance of this second invariance property is characteristic of our theory. 
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 If P, P* are any two points, and if any vector x at P is associated with a vector x* at P* 

in such a way that generally α x goes to α x* and x + y goes to x* + y* (α is an arbitrary 

number), and the vector 0 at P is the only one that corresponds to the vector 0 at P* then 
an affine or linear map of the vector space at P to the vector space at P* will be effected.  
In particular, that map will be a similarity when the scalar product x* ⋅⋅⋅⋅ y* of the image 

vectors at P* is proportional to that of x and y at P for all pairs of vectors x, y.  (Only this 

notion of a similarity has any objective sense in our opinion; up to now, the theory made 
it possible to present the sharper notion of a congruence.)  What we mean by the parallel 
displacement of a vector at the point P to a neighboring point P′ will be established by 
the following two axiomatic requirements: 
 
 1. A similarity of the vector space at the point P to the vector space at the 
neighboring point P′ will be implemented by the parallel displacement of vectors at P to 
P′. 
 

 2. If P1, P2 are two points that are close to P, and if the infinitesimal vector 2PP
����

 at P 

goes to 1 12PP
�����

 at P1 by parallel displacement, but 1PP
����

 goes to 1 21PP
�����

 at P2 by parallel 

displacement then P12 , P21 must coincide (commutativity). 
 
 The part of the first requirement that states that parallel displacement is an affine 
transplantation of the vector space at P to one at P′ can be expressed analytically as 
follows: Under displacement, the vector ξ i at P = (x1, x2, …, xn) goes to a vector: 
 

ξ i + dξ i  at P′ = (x1 + dx1, x2 + dx1, …, xn + dxn) 
 
whose components depend linearly upon ξ i : 
 
(4)      dξ i = − i r

r
r

dγ ξ∑ . 

 
The second requirement teaches us that the i

rdγ  are linear differential forms: 

 
i
rdγ  = i

rs s
r

dxΓ∑  

 
whose coefficients possess the symmetry property: 
 
(5)      i

srΓ = i
rsΓ . 

 
If two vectors ξ i, η i at P go to ξ i + dξ i, η i + dη i at P′ by parallel displacement then the 
requirement of similarity that is posed in 1, which emerges from the affinity, states that: 
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( )( )( )i i k k
ik ik

ik

g dg d dξ ξ η η+ + +∑   must be proportional to i k
ik

ik

g ξ η∑ . 

 
 If we let 1 + dφ denote the proportionality factor that deviates infinitely little from 1 
and define the lowering of an index in the usual way by the formula: 
 

ai = k
ik

k

g a∑  

then that will yield: 
(6)     dgik – (dγki + dγik) = gik dφ . 
 
It emerges from this that dφ is a linear differential form: 
 
(7)      dφ = i i

k

dxφ∑ . 

 
If that form is known then equation (6), or: 
 

Γi,kr + Γk,ir = ik

r

g

x

∂
∂

 − gik φr , 

 
together with the symmetry condition (5), will yield the quantities Γ.  The intrinsic metric 
connection of space then depends upon not only the quadratic form (2) (which is 
determined only up to an arbitrary proportionality factor), but also upon a linear form (7).  
If we replace gik with λ gik without changing the coordinate system then the quantities 
will not change, while dgik will take on the factor λ, and dgik will go to λ dgik + gik dλ.  
Equation (6) will then teach us that dφ goes to: 
 

dφ + 
dλ
λ

 = dφ + d ln λ . 

 
Therefore, in the linear form i idxφ∑ , it is not perhaps a proportionality factor that 

remains undetermined, which must be fixed by an arbitrary choice of unit of 
measurement, but rather, the arbitrariness that it is endowed with consists of an additive 
total differential.    For the analytical presentation of the geometry, the forms: 
 
(8)      gik dxi dxk , φi dxi 
are equivalent to: 
(9)     λ ⋅⋅⋅⋅ gik dxi dxk , φi dxi + d ln λ, 
 
in which λ is an arbitrary positive function of position.  Therefore, it is the skew-
symmetric tensor with the components: 
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(10)     Fik = i k

k ix x

φ φ∂ ∂−
∂ ∂

 

 
that has an invariant meaning; i.e., the form: 
 

Fik dxi δxk = 1
2 Fik ∆xik , 

 
which depends bilinearly upon two arbitrary displacements dx and δx at the point P, or 
even better, upon the surface element that is spanned by those two displacements, and 
whose components are: 

∆xik = dxi δxk – dxk δxi . 
 

 The special case of the theory, up to now, in which the arbitrarily-chosen unit of 
length at a starting point can be translated by parallel displacement to all points of space 
in a manner that is independent of path, exists when the gik can be fixed absolutely in 
such a way that the φi vanish.  The i

rsΓ  are nothing but the CHRISTOFFEL three-index 

symbols then.  The necessary and sufficient invariant condition for that case to present 
itself then consists of the tensor Fik vanishing identically. 
 It is therefore quite natural to interpret φi as the four-potential in the world-geometry, 
so the tensor F will then be the electromagnetic field.  The absence of an electromagnetic 
field is then the necessary condition for the present theory of EINSTEIN, which yields 
only gravitational phenomena, to be valid.  If one accepts that viewpoint then one will see 
that it is in the nature of the electric quantities that their characterization by numbers in a 
certain coordinate system does not depend upon the arbitrary choice of a unit of 
measurement.  In order to address units of measurement and dimension, one must 
completely re-orient oneself in this theory.  Up to now, one spoke of a quantity, e.g., as a 
tensor of degree 2 (of rank 2) when a single value of it (after an arbitrary choice of unit 
of measurement was made in any coordinate system) determined a matrix of numbers aik 
that defined the coefficients of an invariant bilinear form of two arbitrary infinitesimal 
displacements: 
(11)     aik dxi δxk . 
 
Here, we speak of a tensor when the components aik are determined uniquely when one 
bases them upon a coordinate system and after making a well-defined choice of the 
proportionality factor that is contained in the gik , and indeed, in such a way that the form 
(11) remains invariant under coordinate transformations when one replaces the gik with λ 
gik , but the aik go to λe aik .  We then say that the tensor has weight e, or also, when we 
ascribe the dimension “length = l” to the line element ds, that it has dimension 2el .  
Absolutely invariant tensors only have weight 0; the field tensor with the components Fik 
is of that type.  From (10), it satisfies the first system of MAXWELL’s equations: 
 

kl li ik

i k l

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0. 
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 Once one has established the concept of parallel displacement, geometry and tensor 
calculus can be developed with no effort. 
 
 a) Geodetic lines.  If a point P and a vector at it are given then the geodetic line that 
goes through P in the direction of that vector will arise in such a way that one 
consistently displaces the vector parallel to itself in its own direction.  With the use of a 
suitable parameter τ, the differential equation for the geodetic line will read: 
 

2

2
ii sr
rs

d x dxdx

d d dτ τ τ
+ Γ  = 0. 

 
(Naturally, it cannot be characterized as the line of shortest length here, since the concept 
of the length of the curve has no sense.) 
 
 b) Tensor calculus.  In order to, e.g., derive a tensor field of rank 2 from a covariant 
tensor field of rank 1 and weight 0 with components fi by differentiation, we take an 
arbitrary vector ξ i at the point P as an aid, define the invariant fi ξ i and its infinitely-
small change when one goes from the point P with the coordinates xi to the neighboring 
point P′ with the coordinates xi + dxi , while displacing the vector ξ parallel to itself under 
that transition.  One will get: 
 

i ri
k r

k

f
dx f d

x
ξ ξ∂ +

∂
= r ii

ik r k
k

f
f dx

x
ξ

 ∂ − Γ ∂ 
 

 
for that change.  The quantities in parentheses on the right-hand side are then the 
components of a tensor field of rank 2 and weight 0 that is defined by the field f in a 
completely invariant way. 
 
 c) Curvature.  In order to construct the analogue of the RIEMANNian curvature 
tensor, one recalls the infinitely-small parallelogram figure that was used above and 
consists of the points P, P1, P2, and P12 = P21 .  If one displaces a vector x = (ξ i) at P 

parallel to itself to P1 and from there, to P12 , and another time, to P2, and from there to 
P21 then since P12 and P21 coincide, it will make sense to define the difference ∆x of the 

two vectors that one obtains at that point.  One will get: 
 
(12)     ∆ξ i = i j

jR ξ  

 
for its components, in which i jR  are independent of the displaced vector x, but linearly-

dependent upon the surface element that is spanned by the two displacements 1PP
����

 = (dxi), 

2PP
����

 = (δxi): 
i
jR = i

jklR dxk dxl = 1
2

i
jklR ∆xkl . 
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The curvature components ijklR , which depend upon only the location of P, have the two 

symmetry properties: 
 
 1. Their signs change when one switches the last two indices k and l. 
 
 2. If one performs the three cyclic permutations of jkl and adds the associated 
components then that will yield 0. 
 
 If we lower the index i then will get Rijkl, which are the components of a covariant 
tensor of rank 4 and weight 0.  Even without calculation, one can reach a simple 
conclusion that R splits into two summands in a natural way: 
 

(13)    i
jklR  = 1

2
i i
jkl j klP Fδ−    i

kδ  = 
1

0

i j

i j

=
 ≠

, 

 
of which, the first one Pijkl is skew-symmetric in not only the indices kl, but also in i and 
j.  While the equations Fik = 0 characterize our space as one with no electromagnetic 
field, − i.e., as one in which the problem of translation of length is integrable − as would 
emerge from (13), i

jklP  = 0 are the invariant conditions for no gravitational field to exist 

in it; i.e., for the problem of the translation of direction to be integrable.  Only Euclidian 
space is devoid of both electricity and gravitation. 
 The simplest invariant of a linear map such as (12), which associates every vector x 

with a vector ∆x, is its “trace”: 

1 j
iR

n
. 

Here, from (13), it will take the form: 
− 1

2 Fik dxi δxk , 

 
which we have encountered already.  The simplest invariant of a tensor like − 1

2 Fik is the 

square of its magnitude: 
L = 1

4 Fik F
ik . 

 
Since the tensor F has weight 0, L is obviously an invariant of weight – 2.  If g is minus 
the determinant of gik then: 
 

dω = g dx0 dx1 dx2 dx3 = g dx 

 
will be the volume of an infinitely-small volume element, and it is known that 
MAXWELL’s theory will arise from the electrical quantity of action that is equal to the 
integral ∫ L dω of that simplest invariant when it is taken over an arbitrary world-domain, 
and indeed, in the sense that for arbitrary variations of the gik and φi that vanish on the 
boundary of the world-domain, one will have: 
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L dδ ω∫  = ( )i ik
i ikS T g dδφ δ ω+∫ , 

in which: 

S i = 
( )1 ik

k

g F

xg

∂
∂

 

 
gives the left-hand side of the inhomogeneous MAXWELL equations (on whose right-
hand side, one finds the components of the four-current), and the Tik define the energy-
impulse tensor of the electromagnetic field.  Since L is an invariant of weight – 2, but the 
volume element is one of weight n / 2 in n-dimensional geometry, the integral ∫ L dω will 
make sense only when the dimension is n = 4.  The possibility of arriving at Maxwell’s 
theory, with our interpretation, is then linked with dimension 4.  However, in the four-
dimensional world, the electromagnetic quantity of action will be a pure number.  
Therefore, no matter how large the quantity of action 1 turns out to be in the traditional 
mass units of the CGS system, admittedly, it can be first ascertained only when a 
calculation has been performed on an observation of the physical problem to be tested – 
e.g., the electron – on the basis of our theory. 
 Going over to the geometry of physics, from the model of MIE’s theory (1), we must 
assume that all of the legitimacy of nature rests upon on well-defined integral invariant, 
namely, the quantity of action: 
 

∫ W dω = ∫ W dx  (W = W g ), 

 
in such a way that the real world is distinguished from all possible four-dimensional 
metric space by the fact that any quantity of action that is contained in any world-domain 
will assume an extremal value for any variations of the potentials gik, φi that vanish on the 
boundary of the world-domain in question.  W, the world-density of action, must be an 
invariant of weight – 2.  The quantity of action is a pure number in any case.  Hence, our 
theory gives an account, from the outset, of the atomistic structure of the world, which 
takes on a fundamental meaning in the current way of looking at things: namely, the 
quantum of action.  The simplest and most natural Ansatz that we can make for W reads: 
 
(14)     W = i jkl

jkl iR R  = | R |2. 

From (13), that will also yield: 
W = | P |2 + 4L. 

 
(At worst, the factor 4 that the second [electrical] term L includes when it is added to the 
first one can still be doubtful here.)  However, even without specializing the quantity of 
action further, we can draw some general conclusions from the action principle.  Namely, 
we will show: In the same way that the investigations of HILBERT, LORENTZ, 
EINSTEIN, KLEIN, and the author (2) connected the four conservation laws of matter 
                                                
 (1) Ann. Phys. (Leipzig) 37, 39, 40 (1912-13). 
  Cf., also WEYL, Raum, Zeit, Materie, Berlin, 1918, § 25. 
 (2) HILBERT, “Die Grundlagen der Physik,” I. Comm. Gött. Nachr., 20 Nov. 1915. 
  H. A. LORENTZ, in four articles in the Versl. K. Ak. van Wetensch., Amsterdam, 1915-16. 
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(viz., the energy-impulse tensor) with the invariance of the quantity of action under 
coordinate transformations, which contained four arbitrary functions, the new “yardstick 
invariance [viz., the transition from (8) to (9)] that appears here is linked with the law of 
conservation of electricity, which brings in a fifth arbitrary function.  The type and 
manner by which the latter is joined with the energy-impulse principle seems to be one of 
the strongest general arguments in favor of the theory that is proposed here, to the extent 
that one can speak of its confirmation at all in purely speculative terms. 
 For an arbitrary variation that vanishes on the boundary of the world-domain in 
question, we set: 

(15)    dxδ ∫W  = ( )ik i
ik ig dxδ δφ+∫ W w   (Wki = Wik). 

 
The laws of nature will then read: 
(16)     W

ik = 0, w
i = 0. 

 
We can refer to the first one as the law of the gravitational field, while the second one is 
that of the electromagnetic field.  The quantities i

kW , wi that are introduced by way of: 

 
i
kW  = i

kg W , w
i = g  wi 

 
are the mixed (contravariant, resp.) components of a tensor of rank 2 (1, resp.) of weight 
– 2.  Five extra equations are included in the system of equations (16), according to the 
invariance properties.  That is expressed in the five following invariant identities that 
exist between their left-hand sides: 

(17)     
i

ix

∂
∂
w ≡ i

iW , 

(18)    
i
k s r

kr s
ix

∂
− Γ

∂
W

W ≡ 1
2

i
ikF w . 

 
The first one results from yardstick-invariance.  Namely, if we assume an infinitely-small 
function of position dρ for ln λ in the transition from (8) to (9) then we will get the 
variations: 

δgik = gik δρ, δφi = 
( )

ix

δρ∂
∂

. 

 
(15) must vanish for them.  When one exploits the invariance of the quantity of action 
under coordinate transformations by an infinitely-small deformation of the world-
continuum (1), one will get the identities: 
 

                                                                                                                                            
  A. EINSTEIN, Berl. Ber. 1916. pp. 1111-1116. 
  F. KLEIN,  Gött. Nachr. 25 January 1918. 
  H. WEYL, Ann. Phys. (Leipzig) 54 (1917), 121-125. 
 (1) WEYL, Ann. Phys. (Leipzig) 54 (1917), 121-125.  F. KLEIN, Gött. Nachr. Session on 25 Jan. 1918.  
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1 1

2 2

i i
k rs irs

k ik
i k i

g
F

x x x
φ

 ∂  ∂ ∂− + ⋅ −    ∂ ∂ ∂  

W w
W w ≡ 0, 

 
which will be converted into (18) when is replaced with grs W

rs according to ∂wi / ∂xi 

using (17).  From the laws of gravitation alone, one already gets that: 
 

(19)     
i

ix

∂
∂
w

= 0, 

 
and from the laws of the electromagnetic field alone, one gets that one must have: 
 

(20)    
i
k s r

kr s
ix

∂
− Γ

∂
W

W  = 0. 

 
 In MAXWELL’s theory, wi has the form: 

 

w
i ≡ 

( )ik

i

g F

x

∂
∂

− si  (si = g si), 

 
in which si means the four-current.  Since the first part satisfies equation (19) identically 
here, that will yield the law of conservation of electricity: 
 

( )1 i

i

g s

xg

∂
∂

= 0. 

 
 Similarly, in EINSTEIN’s theory, i

kW  consists of two terms, the first of which 

satisfies equation (20) identically, and the second of which is the mixed components ikT  

of the energy-impulse tensor, multiplied by g .  Hence, equations (20) lead to the four 

conservation laws of matter.  An entirely analogous situation will be true in our theory 
when we choose the Ansatz (14) for the quantity of action.  The five conservation 
principles are “eliminated” by the field laws; i.e., they follow from them in two ways, and 
therefore exhibit the fact that five of them are superfluous. 
 For example, for the Ansatz (14), MAXWELL’s equation read: 
 

( )1 ik

i

g F

xg

∂
∂

= si, 

(21) and the current 

si is = 
1

4 i
i

R
R

x
φ

 ∂+ ∂ 
. 
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 R refers to the invariant of weight – 1 that arises from i
jklR  when one first contracts i, 

k, and the j and l.  If R* means the RIEMANN curvature invariant that is constructed from 
only the gik then calculation will give: 
 

R = R* − 
( )3 3

( )
2

i
i

i
i

g

xg

φ φ φ∂
+

∂
. 

 
In the static case, where all spatial components of the electromagnetic potential vanish, 
and all quantities are independent of time x0, from (21), one must have: 
 

R = R* + 3
2 φ0 φ 0 = const. 

 
However, one can also arrive at R = const. = ± 1 in full generality in a world-domain in 
which R ≠ 0 by suitably fixing the arbitrary unit of length, except that one must expect 
that there are surfaces with R = 0 for time-varying states, which would obviously play a 
certain singular role.  One should not use R as the action density (R* appears, as such, in 
EINSTEIN’s theory of gravitation), since it does not have weight – 2.  That has the 
consequence that our theory will probably lead to MAXWELL’s electromagnetic 
equations, but not to EINSTEIN’s gravitational equations; fourth-order differential 
equations enter in their place.  However, it is, in fact, also very unlikely that EINSTEIN’s 
gravitational equations are strictly incorrect, and above all, due to the fact that the 
gravitational constant that occurs in them falls outside the scope of the usual constants of 
nature, such that the gravitational radius of the charge and mass of an electron, for 
instance, has a completely different order of magnitude (namely, 1020 [1040, resp.] times 
smaller) than the radius of the electron itself (1). 
 My only intent here was to develop briefly the general foundations of theory.  
Naturally, the problem arises of inferring its physical consequences, based upon the 
special Ansatz (14), and to compare it with experiments, and in particular, to examine 
whether the existence of electrons and the peculiarities of the up-to-now unexplained 
processes in the atom can be derived from it.  From the mathematical standpoint, that 
problem is exceptionally complicated, since obtaining approximate solutions by 
restricting to the linear terms is excluded from it.  Since neglecting terms of higher order 
in the interior of the electron is certainly not permitted, the linear equations that arise by 
such an oversight can essentially possess only the solution 0.  I shall reserve the task of 
returning to all of these things more thoroughly to another occasion. 
 
 Addendum.  EINSTEIN has remarked about the foregoing work: 
 
 “If light rays are the single means of ascertaining the metric behavior in the 
neighborhood of a world-point empirically then a factor will generally remain 
undetermined in the distance ds (as well as in the gik).  However, that indeterminacy will 
not be present when one appeals to results of measurements that are obtained from 

                                                
 (1) Cf., WEYL, “Zur Gravitationstheorie,”  Ann. Phys. (Leipzig) 54 (1917), pp. 133. 
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(infinitely-small) rigid bodies (yardsticks) and clocks in the definition of ds.  A timelike 
ds can then be measured directly by a unit clock whose world-line includes ds.” 
 “Such a definition of the elementary distance ds would then be only illusory if the 
concepts of “unit yardstick” and “unit clock” were based upon a largely false assumption.  
That would be the case if the length of a unit yardstick (the period of a unit clock, resp.) 
depended upon its history.  If that were true in nature then there could be no chemical 
elements with spectral lines of definite frequencies, but rather the relative frequencies of 
two (spatially-close) atoms of the same kind would generally be different.  Since that is 
not the case, it seems to me that the basic hypothesis of the theory is sadly untenable, 
although its boldness and profundity must fill any reader with wonder.” 
 
 Response from the author.  I would like to thank EINSTEIN for the fact that he has 
given me the opportunity to confront directly the objection that he has raised.  If fact, I do 
not believe that he is correct.  According to the special theory of relativity, a rigid 
yardstick will always have the same rest length when it comes to rest in a suitable 
reference space, and a properly-functioning clock will always possess the same period 
under those circumstances, when it is measured in proper time (MICHELSON 
experiment, DOPPLER effect).  However, one cannot by any means speak of a clock 
measuring proper time ∫ ds for an arbitrary turbulent motion (as long as, say, one goes 
through nothing but equilibrium states in the thermodynamics of a gas that is heated 
arbitrarily rapidly and non-uniformly).  Above all, that is not the case when the clock 
(e.g., an atom) is subjected to effect of a strongly-varying electromagnetic field.  In the 
general theory of relativity, one can then say at most this much: A clock in a static 
gravitational field will measure the integral ∫ ds in the absence of an electromagnetic 
field.  How a clock will behave for an arbitrary motion under the combined effect of an 
arbitrary electromagnetic and gravitational field can first be learned by developing a 
theory of dynamics that is based upon physical laws.  Due to this problematic behavior of 
yardsticks and clocks, in my book Raum, Zeit, Materie, I have founded the basic 
measurement of the gik upon only the observation of the arrival of light signals. (cf., pp. 
181, et seq.)  In that way (in the event that EINSTEIN’s theory is correct), not only the 
ratios of those quantities can, in fact, be determined, but also (with a choice of a fixed 
unit of measurement) their absolute values.  KRETCHMANN arrived at the same ideas, 
independently of me [“Über die physikalischen Sinne der Relativitätspostulate, Ann. 
Phys. (Leipzig) 53 (1917), 755.]. 
 In the theory that was developed here, outside the interior of the atom, for a suitable 
choice of coordinates and the undetermined proportionality factor, the quadratic form ds2 
reads the same as in the special theory of relativity, to a good approximation, and to the 
same degree of approximation, the linear form is equal to 0.  In the case of the absence of 
an electromagnetic field (linear form is rigorously = 0), ds2 is even determined with 
complete exactitude by the requirement that is expressed in the parentheses (up to a 
constant proportionality factor that, in fact, also remains arbitrary for EINSTEIN; the 
same thing will occur when only one electromagnetic field is present).  The most 
plausible assumption that one can make about a clock that is at rest in a static field is that 
the integral measures ds, thus-normalized.  In my theory, as well as in EINSTEIN’s, the 
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problem remains of deriving that fact (1) from an explicitly-developed theory of 
dynamics.  However, in any case, an oscillating structure of well-defined constitution that 
is continually at rest in a certain static field will behave in a uniquely-determined way.  
(The influence of any possible turbulent history will rapidly subside) I do not believe that 
my theory will contradict anything in this experiment (which is confirmed by the 
existence of chemical elements for the atoms).  One should observe that the 
mathematically-ideal process of vector displacement that the mathematical construction 
of geometry is based upon has nothing to do with the real-world process of the motion of 
a clock whose evolution is determined by the laws of nature. 
 The geometry that was developed here is the true local geometry, and that must be 
emphasized from the mathematical standpoint.  It would be remarkable if a partial and 
inconsistent local geometry with a hidden electromagnetic field were true in nature in its 
place.  However, I might naturally be on the wrong track with my entire way of looking 
at things.  Here, we are actually dealing in pure speculation; a comparison with 
experiment is a self-explanatory demand.  However, in order to do that, the consequences 
of the theory must be inferred.  I am hoping for assistance with that difficult problem. 
 
 

___________ 
 

 

                                                
 (1) Whose experimental verification is still partially incomplete (e.g., redshift of the spectral lines in the 
vicinity of large masses). 


