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On infinitesimal geometry: relationship with
projective and conformal concepts.

(From a letter to F. Klein)
By
H. Weyl in Zirich.

Presented at the session on 28 January 1921.

I. The construction of pure infinitesimal geometry, lakave described most
rigorously in chaps. 3 and 4 of my book “Space, Time, aattévl” may be naturally
carried out in three steps, which are described by tlobmatasesontinuous connection,
affine connection, metri¢). Projectiveandconformalgeometry originate by abstraction
from affine (metric, resp.) geometry. It is charastériof theconformal characteof a
metric space that each point is associated with amtegimal cone of null directions:

(1) gk dx dx=0.

If one changes the metric of the space in such a atythis cone remains unchanged at
each point then the conformal character is presersiach a change can generally be
chosen in such a way that the fundamental quadratic dardx dx is changed linearly,
but otherwise arbitrarily. — It is characteristic oé fprojective characteiof an affinely
connected space that there is a parallel displacetianacts on an arbitradirection at

an arbitrary pointP, whenP itself is infinitesimally displaced in this directionf one
changes the affine connection in such a way that thiallpladisplacement takes
directions to themselves or, what amounts to the same thirggodetic linesto

themselves- then the projective properties of the manifold arealiered. If[", are the

components of the affine connection gng] those of the change in it then the condition

for the projective character to be unaffected during theadite@ is that for arbitrary
guantitiesé one must have that:

(2) [FL]& & is proportional taf.
A simple algebraic consideration shows that thibésdase when and only when:

(3p) [[] has the formd[ ¢, + 3y,

" Translated by D.H. Delphenich.

YIn § 18 of chap. 4, | have formulated the space problemth seems to be the actual basis for this
construction: meanwhile, | have arrived at its solufiothe sense that was presumed therein. [Added in
correction, April 1921.]
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(the ¢4 are thus arbitrary). One thus equates it with the ftarfar the change in the
affine connection, which yields, when the metric of atrimespace is changed while
preserving its conformal character:

(3k) [rirk] :%(dr% +5rk¢i - gik¢r ).

In relativity theory, the projective and conformal deers have an immediate
intuitive meaning. The former, the persistence of wweld-direction of a moving
particle, which singles out a certain “natural” motiolnen it is released from a particular
point, is a unification of inertia and gravitation thanhgtein posed in place of either
notion, for which, however, no suggestive name has gederas of yet. The
infinitesimal cone (1), however, describes the diffeeebetween past and future in the
neighborhood of a world-point; the conformal charactehé cause-and-effect structure
of the universe, through which one may determine whichdapoints can possibly be
causally connected to each other. Therefore, the folgptheorem expresses something
that is also physically meaningful:

Theorem 1. The projective and conformal character of a metric spaeaie
that metric uniquely.

Therefore, if there exist two metrics in the samecegar which the fundamental
guadratic forms agree, whereas the coefficients of fustlamental linear forms differ
by ¢ then the difference between then corresponds to afbm@ections that satisfy
equation (3k). If the projective character is preservedeu the transition from one
metric to another one then (2) must be true, and hatgives:

(g & &) ¢ " is proportional to® .

One need only choose two different directions at a oinvhichgyé & does not vanish
in order to conclude from this thgt; = 0. It follows from this theorem that the world-
metric can be established only by the observation ef‘tlatural” motions of material
particles and their effects, in particular, the radmabf light; measuring sticks and clocks
are not necessary for this.

[l. We now direct our attention to the curvature tenso

a_ OR _ORS
ikl X, ox

and its contractioR ], = Fi . In a metric space one can further construct the tepsb

j + (szri Fnr - I:|ra Fikr )

by yet another contractidh=F'. How can we alter the curvature tensor when we alte

the affine connection (metric, resp.) without affectthg projective (conformal, resp.)
character of the manifold in so doing? In the firdeca brief calculation based on (3p)
yields the following result: if one sets:
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(4p) Wy = [‘Z—Z—r:kwrj— U
and, for an arbitrary system of numbais defines:
(5p) Pl = 07U U+ (Y —d"y)
then the change in the curvat[ig] is determined from:

[Fal+%i =0.
By contraction, it then follows that:

[Fik] + (n Wik —LPik) =0.
If one then defines a tensGi by the equation:
(6p) n Gk -Gy =Fi,

then the tensor of rank four:
(7p) Fa —Gg = proj.Fyg
experiences no change under our process: it depends omythgo@rojective character
of the manifold and we therefore refer to it asphgjective curvature When we ignore
the trivial case of = 1, equation (6p) may always be solved and gives:

(n—l) Q’]+ 1)Gik:n Fk + Fy .
Forn = 2 the projective curvature is identically null, sositnot untiln = 3 that it plays a

role.
| have already discussed tbenformal curvaturé®). One must construct:

(4k) Py = [%‘Fi‘k@j_%@ H+30k (4 4)
X

and for a system of numbaug one generally sets:
(5K) &)iklm:% (Gt Uem + Gkm Ut = Gim U = Gid Uim ), U= U ;

then it follows from (3k) that:
[Fal+®j =0.

! Math. Zeit. Bd2 (1918), pp. 404.
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(The upper indexr precedes the lower ones.) Contraction gives:
[Fi] + {(n—2)Py +gx P} =0.

If one thus defines a tensHii by the equation:

(6k) (- 2)Hik + g H = 2 Fi,

then the conformal curvature is:
(7K) confFZ =FZ -HZ.

Forn> 2, (6k) can be solved:
(n—1)H=F, h-1)-2)Hk=2n0-1)Fk—g«x F .

However, the conformal curvature also vanishesfer3, so it is not untih = 4 that it
plays a role.

Theorem 2. Along with the (affine) total curvatBfe, there is also a projective

curvature and a conformal curvature that may be determined from thectotedture by
means of equation®p), (6p), (7p) ((5k), (6k), (7k), resp.)The total curvature plays a
role from n =2 on up, but the projective curvature first plays a role for 8 and the
conformal curvature, for & 4.

. 1 will use the word “flat” in the Euclidian seas An affinely connected space is
flat the components of the affine connection vanishtidally for a certain choice of
coordinate system. A metric space is flat when and wahign the coefficients of the
fundamental quadratic form are constant and those dlitftamental linear form vanish
for a certain choice of coordinate system and gaugdy tBe second part of this claim
requires a proof. If the components of the affine cotime vanish then it follows from
the equations that link the two fundamental metric fogmdx dx, ¢ dx with the affine
connection that:

00.

(8) G +0k ¢ =0
0x,

From this, one likewise obtains:
%—%: 0
ox, O0X

From this, one can choose a gauge in such a wayd¢hatg; dx vanishes, and it then
follows from (8):gi = const.

Theorem 3. The vanishing of the curvature is mdy @ necessary, but also a
sufficient, condition for a manifold to be flat.
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| will briefly present the proof of this long-known theor@nce more since it is not
only fundamental in what follows, but it is also typicdlthe integrability considerations
that will be further examined. The assumption has theecuesce that a vector can be
parallel displaced in a manner that is entirely indepandf the path, i.e., that the
equations:
©) ==2r,e=0

0x,

posses a solutiod that agrees with an arbitrary previously-given initialued, at the
origin. If we generally set:

i i ou, au i i
uk;l_ul;k:[i__lj+(rlruk_rqu)’

0x 0%
ou, 0 r r
Ui kit — Ui ik :[a_; —a—;:('j +(Muy =Ty ),

for a tensor field;, (ux, resp.), then for vanishing curvature one will have:
(10) Eikn _Eillk: 0,

which might also be true for the functiols One can now satisfy equations (9) by way
of the existence theorem for ordinary differential emums in all circumstances, in such a
way that (9) is true identically xy, X2, ..., Xk , as long as one sets the remaining variables
= 0. On the basis of the identities (10), one thenyessows that they are then already
satisfied identically in all variables. In order toia at the “linear” coordinate system
yi, one must now similarly treat the equations:

0%

a—y'k=5£k)(xl,><2wux1),
whose right-hand sidg,,&,,, ....&,, consists of the those solutions of (9) that agree
with the initial values:
1,0,0,...,0;
0,10,..0;
0,0,0, ..., 1

resp.

It is clear when one should regard a manifoldliasin theprojectivesense, as well
as in theconformalsense. A necessary condition to which this charactayuad is the
vanishing of the projective (conformal, resp.) curvaturenust therefore be true that in
the case of a given tensBj of that type one has:
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(1p) Fi =Gq,  Vviz., =07(G,~G)+(IG -d'G)
and in the other case a tensty must satisfy:
(I k) FikDI{:HiZI’ viz., :%(d(aHil_daHik)-*_%(Hkagil _Hlagk)'

The aforementioned change in the affine connectianf(thdamental linear metric form,
resp.), which converts the manifold into a flat oneéhen determined from the equations:

(Il p) Wik = Gi,
or:
(11 k) ®j = Hig,

resp. A calculation that is most comfortably carrietl io a geodetic coordinate system
(in which alll” vanish at the point in question) immediately yields:

(11) Wi — Wi +(P8 -F2) ¢, =0,

hence, due to (Il p) and (I p):
Wik —Wik =0 .

As a resultGix must also satisfy the same conditions:

(I1'p) Gixi —Gik = 0.

In the conformal case, one finds by precisely the sagwngent that:
(1K) Hiki —Him = 0.

Conditions (I p), (lll p) are, however, not only ne@eygs but also sufficient, for a
manifold to be projectively flat. Under these conditip equations (Il p) then have a
solution [for which theys assume arbitrary given initial values, as wéli] (In fact, when
the integrability condition (lll p) is satisfied, equatiiil), which is true for arbitrary,
teaches us that the differerog = Wi — Gy satisfies the identity:

Dixn — Di +|5iﬁ',¥/,, =0,
or.
(12) Dik = *Dik =0,

in which the left-hand side is analogousDgy — Di , but refers to the expression
constructed from the altered affine connection. Next @an satisfy (Il p) such that this

! This arbitrariness corresponds to the freedom to rhapflat space onto itself by an arbitrary
collineation; in the conformal case, instead of oelitions, one uses the spherical affinities (Lioa\all
theorem).
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equation is true identically ixy, X, ..., X when one sets the remaining variables equal to
zero. The identities (12) then teach us that theyraeewithout restriction. Hence, the
total curvature of the altered affine connection is zemd, &aom theorem 3, the manifold

is flat. One also clearly recognizes the step thatroust take in order to determine those
homogeneous variables for which the equations for any geodsdi linear. — The
conformal problem is completely analogous.

IV. Herr Schouten’j has made the noteworthy discovery that fo> 3 the
integrability condition (Il k) is a result of (Il k). For me,this investigation of Herr
Schouten was, the the first time that someone sdyimamined the projective and
conformal standpoints that | only touched upon in my ean&presentation of
infinitesimal geometry. One has the following analoghi®ahouten’s theorem: For>
2, the integrability condition (lll p) is a consequerafe(l p). We thus arrive at this
result:

Theorem 4. Among the affinely connected manifolds, the projectiaelynts are
characterized: in the case of=n2, by the validity of equation@ll p); in the case e 3,
by the vanishing of the projective curvature. A necessary andisaffcondition for a
metric space to be conformally mapped to a flat space is: foB requationglll k) must
be satisfieqCotton);when n>4, the conformal curvature must vanigbchouten).

| will give the calculations that lead up to this theormrtly, in which, for the sake
of convenience, | employ a geodetic coordinate systemceSix essentially agrees with
Fik, we next compute:
oF, OF

ik _ il

o 0%

SinceFi is, up to an expression that involves the componentkeo&ffine connection
quadratically:
_0 _on
- ox 0%,

a

, y=rg,

one has:

(13) oOF, OF _ 9Ty 9Ty _ 9 [

ox  0Xx 0X

a

ory ory _ _OFy
0x 0% 0x0x, 0x0% OX, -
In this, | then replacE, in the right-hand side with the expression (I p) and wtie
abbreviate:
Gik — Gk = Wk

- hence, from (6 p):

0 oy,

ox 0%
— which yields:

! To appear in Math. Zeit.
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al:ilZ:aykl + aG, _aGrk )
ox, O0x (0% 0% )

however, in the left-hand side, | use (6 p) to replagcwith:

NGk —Gyi=(M-1)Gik+ M -

The result is:
(n-1) 9G, _9G, || _% |-(9G _9G _aMd,
ox ox ) \ox 9x) (ox 0% ) 9x
or:
asp  0-2)[ %99, (% O Ok |
ox 0% ox 0x O0X

However, the second bracket = 0 here. Expression (1#hers valid in an arbitrary
coordinate system when one neglects those termsnvave the components of the
affine connectionquadratically; hence, by differentiation in a geodetic coordinate

system, one has:
(n — 1) %:i{%_%j ,
0% 0x
and therefore:

(16 p) (’l—l){ay"‘+ayk'+ay"j:0_

ox 0% 0%

One thus obtains the desired resultrior 2.
| shall omit the analogous computations in the confolmaaé. By the corresponding
substitutions, one then finds, instead of (15 p):

OH, JH, OH OoH* oH oHS
15k —3 ik _Z 0 o — = I -0 | —— k :O
(151 ¥ )(c’m 6&}{9'{6% 6>sj g"[fw 6>sj}

We may apply the “conservation law” that is well-knmoim gravitation theory:

OF _,0F"

ox 0,

since, from (I k), our space Riemannian; From (I k), intf@lows that the “dilational
curvature” {) F.. vanishes. By the way, this formula also follows fr(ir8), likewise by

! Raum, Zeit, Materiechap. 4, pp. 114. F. d% O is the relative increment that the volume of an

infinitely small “compass” experiences when it goes ardhedsurface element that is spanned by the line
elementsix, .
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contraction, under the considering the fact that hérk) (mplies thatF. is not only
skew-symmetric ikl, but alsoin ai . This gives:

oH OoF aF” oH/’ aH
(-7 -=—-=2-=(-2)
ox  OX 0X, 0X, 6>q
hence:
(16 K) f- 2)[6H aHj
0%  0x,

We have thus reached out goal.

V. Having considered the flat space, we will now treatribxt simplest case, the

“sphere.” IfE(X) :Zixz is the unit quadratic form of inertial index(the firstn—q
i=1

signs are +, the lastare-), A is any number, then | cattdimensional manifold that is

represented through the equation:

X+AEX) =1

in an f + 1)-dimensional flat space with the fundamental mébrio:
%+ E(dx)

a sphere regardless of whether is positive or negative, and whatever value the mierti
index possesses. If we expregm the fundamental metric form in terms»x@f xz, ..., X,
then one understands a sphere (of inertial indeand curvatured) to mean am-
dimensional metric manifold for which one has thatfthmelamental quadratic form:

2
- E(d¥) +)IE (%, dX
1-AE(X)
for any choice of coordinate system, but the lifeam vanishes; the coordinates vary in
a region in which 1 A E(x) > 0. One sees that a distinction between theschs 0 and
A # 0 — which | consider to be completely unjustifiadthe context of an arbitrary real
numberA — is not required here. For the sphere, one has:

(17) Fia =A(3/9; =97 g,) -

A metric spacdr that satisfies such an equation shall be refdored a space witkcalar
curvature The curvaturel itself is a scalar of gauge weight; the requirement thak =
const. therefore has no meaning independently ef gauge. Wheng;, dx is the
fundamental linear form dR&, the invariant gradient of is, moreover, given by:
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0/
(18) & Agi.

This is identically O for the sphere. — We pose the questiow can one characterize the
sphere in an invariant way amongst all other metric spéafeequal inertial indexg) in
the contexts of metric, affine, projective, and confrrgeometry?

Projectively and conformally, spheres are identical with flat manifolds. By means

of:
Y _
(19 p) X; NEYECR (i=1,2,..n)
or:
(19 k) = i=1,2 ..n)

JI-AE(y)

resp., the sphere gets projectively (conformakgpr) mapped onto the flat space with
the fundamental metric forE(dx). Here, everything is therefore carried out byanseof
theorem 4. Thaffinequestion reverts to the metric one due to:

Theorem 5: A metric manifold that can be affinejpped onto a sphere also agrees
with it in the metric context.

Since the manifold must have the same affine cdimrec- hence, the same
curvature F; — as the sphere, its dilatational curvature musisfydt; = 0. It is
therefore a Riemannian space, and we can takentifmental linear form to be = 0 from
now on. Furthermore, | must now distinguish betwde cased = 0 andA £ 0, resp. In
the former case, one gets immediately tat const. (the starred quantities refer to the
manifold in question and the unstarred ones tosthigere), and one may, in general,
assume that the affine map has already been adangeakeg, dx dx = E(dX), by an

additional linear transformation, if needed. |e thtter case, however, the affine map is
also metric-preserving with no further assumptio@e thus concludes: By assumption,
one has:

. _0g, . .
(20) gik,aEa_Xk_r;kgir _r;'i g«r:O :

a

If one then constructs that tensor that has théowaig expression in a geodetic
coordinate system:

ag;;(,a _ ag;(ﬂ
ox, 0%,

then, as one observes in a geodetic coordinateraysith no further assumptions, (20)
gives us the following relationship:
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r

gi*r Fka/] + g:« Fi;r/]: 0.
We substitute (17) into this and drop the facterO:
(9095 * G 9s) (9 9+ Qs 9)=0.

From this, one painlessly concludes tfjgis proportional tagi , and, from (20), one sees

that the proportionality factor must be constant.

As one sees, whether the relationships in the case® andA # 0 are completely
different, nevertheless, the distinctions are alser@vme here; however, this would
necessitate a closer look into continuum analysis¢hvBrouwer and myself would like
to pose in place of the presently untenable Atomisrhus, | shall not bother you for
now, until such time as the demands of continuum arsaba be proved directly from
this theorem in a very beautiful and intuitive way.

Finally: How are the spheres to be invariantly recoghinethemetric context? The
answer that we give for this is: as spaces with s@alarature in which the invariant
gradient of the curvature scalar vanishes, as wellfoAthis, we see (the theorem of F.
Schurf)) that forn > 2 this obviates the second condition. Proof: thetati@nal

curvatureg=;, of a space with a scalar curvature vanishes; it is fdverenecessarily
Riemannian, and we can assume that the fundamergal liorm is = 0 once and for all.
The second requirement then says that for this normajegane hagl = const. Our
claim then immediately reduces to: The sphere isdahly Riemannian space with
constant scalar curvature. This is a theorem thaweB-known and was already
discussed by Riemann. Here, it thus yields to the fotigwthorough proof. A
Riemannian spade of constant scalar curvature satisfies the conditibp} (Il p) that
were given in section Ill, and indeed one has for suspace thaBi = A gk . It follows
that it can be projectively mapped onto the flat spaitle the fundamental metric form
E(dx). We do this, by a linear transformation, in such & it gy dx dx agrees with
E(dx) at the origin, in order to integrate equations (Il phwiite initial valuegs = 0, and
finally, to make the map itself represent the proof @otem 3. Ifx are the linear
coordinates thus obtained (at which point, they will beotksh by y) then the
components of the affine connectionfolhave the form:

(21) Mk =0/ + oY,
i.e., one has:
00
(22) aixlrk ( =i+ Micir ) S0kt Ol + 20k .

However, the condition on the scalar curvature &at A gy reads like:

! Math. Ann. Bd27 (1886), pp. 563.
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(22) Uy e+ A =0.
ox,

At the origin, one has:
(23) gk dx dx =E(dY), ¢dx=0.

For a given constand the differential equations (22)22 )obviously have only one

solutiongi,¢ for these initial values, and it is, as we know, thieese of curvaturd.

A space with scalar curvature always satisfies camd{i p) withGix = A gix. From
the calculations that were carried out\i it follows that forn > 2 we have equation (Il
p), which takes the form here:

04 04 04
24 i =G -=0; S2=0.
( ) g|k axl g|| a)& axl

Theorem 6. For > 2, any metric space with scalar curvature is a sphere; in the
case n= 2, one must add the requirement that the invariant gradient of the scalar
curvature vanishes.

VI. As appropriate as this method of proof is to the spjé produces the
following remarkable fact'):

Theorem 7. The only projectively flat metric space is — wherdithension is
greater than2 —the sphere.

The formulation that this theorem implies has no anadoin the conformal case.
The determination of athetric spaces that areonformally flatis achieved quite simply
from the assumption that one uses the unit quadratic E§dx) and an arbitrary linear
form for the fundamental linear form; in an entiretyrresponding way, one obtains all
affinely connectednanifolds that argrojectively flatby means of an arbitrary linear
form ¢ dx by starting with (21). Here, however, we are asking imetric spaces can
be projectively mapped onto a flat one. Our claim showthats equation (I p) for a
metric space of dimension more than two can be trueib@y = A gk . This allows us
to formulate the fact thahe Cayley metric is the only metfion our sense)hat can be
installed in thgmore than two-dimensionadpace of ordinary projective geometry.

The determination of all projectively flat metric spacebviously produces the
solution to the following differential equation:

00
(25) aixlrk'*'gik G = Oir Uk + O« Y+ 20k

! For Riemannian spaces, this theorem was already provegklnami (for n = 2) in another and
essentially complicated way. Ann. di Matempp. 203; see also, Ann. di Matem., ser. IR\pp. 232; by
Lipschitzin the treatise in Crelles Journal, B, pp. 1, et seq., and by Schur Math. Ann., Bd27, pp.
537-567.
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for the unkown function®i, ¢, gik ( = gki). If we set 24 —¢; =fi, introduce the general
notation:

99 99 _

ox,  ox Pi — P

and understand, as before, th# means the expressi%gl—i—z//.w , then the
X

0 (00.)_0 (30.)_
ox. | 0x ) ox| ax '

when applied to equation (25), gives the following relation:

integrability relation:

(26) @ir Wis* g Wis) = (Gir Wis + Gr Wis) + i (frs —fsi) = 0.
We may assume that for the case in question:
gi=e=%1, gk =0 (i # K);
one then obtains from (26) that can takek = r (sinceg; # 0), and likewise:
Wik +3 (fik — fin) = Ai G -
If one chooses = I, s=k for this then (sincei g« — g # 0) one hasl; = A, hence:
(27) Wik = = A gk —3 (fix — i) -

If one substitutes this in (26) then the first tetig, gives no contribution at all, and what
remains is an equation that, from (26), tells us thatoamereplac&Vy with —3 (fix — fis).

It is satisfied identically fon = 2; however, in general, one obtains, by multiplaatdy
gk and summing ovearandk:

(28) 0—-2) fik—f) =0;

such that in all cases (26) is equivalent to both equa{®ns (28). Whem > 2, it
follows simply that:

(29) Wi = - A0 ,

(30) fixk =i = 0.

Our goal is thus attained; (29) then states that theot&s; is proportional togi .
The knowledge that we obtained from our earlier reshidtsfor this reason a Riemannian
space is necessarily produced and by the use of the ngeingg one will havd = const.
can be easily stated here by the following reasoning: (&2 one concludes, however,
that:
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W — hsi =Pk — Wi =0,

and from (30) thatx — @i = 0 . Thus, one may assume tigat 0. If one uses equation
(29), which will, for the moment, be denoted By, to construct the integrability
relation:

aDik _aDiI —

ox %

and substitutes in it the expressions that one geta fquations (25), (29) for the
derivatives ofgik and ¢ then one arrives at (24). At the origin, we may asthat the
initial values (23) are valid. What now emerges issi@e integration problem as in the
conclusion of the previous section, whose only soludhe sphere of curvature.

Theorem 7 is also valid in the case mf= 2 when we restrict ourselves to
Riemannian spaces. On the contrary, one may introduee otétrics than the Cayley
metric into the ordinary two-dimensional projectiveame when one allows the non-
integrability of the dilatation displacement.




