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Intuitive aspects of the theory of relativity
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Translated by D. H. Delphenich

In order to clarify the physically-intuitive meaninggegneral-relativistic coordinates and the individggl
coefficients in general relativity, it is preferalbéeintroduce general linear coordinates in placalflean
ones in special relativity. In the present treattbat will be done in an elementary way, in which the
intuitive difference between proper and improper reistic coordinate will emerge clearly. In numbers
15, 16, 22, and 23, the properties of two interesting kinds of impropeatieistic coordinates will be
discussed.

A simple Gedanken experiment for the sequential measureshéme g coefficients will be given.
First, one must measure tm,?gik with a “rest” chronometer and ascertain the companantof the
“asymmetry vector” from “light velocity measuremenits'two opposite directions. One then measures the
Vap coefficients of the spatial fundamental form by meaarsisticks “at rest” and ultimately calculates the
remaininggix coefficients, which are expressed simply in terms efémaining quantities.

In that way, one can also do without the measuremietiteospeed of light completely when one
establishes the asymmetry vector from “dynamical ewxpts” (humberd 0 and26).

1. —A large part of the difficulties that an intuitivetginded physicist will encounter
in the study of relativity theory is probably based uponféwt that the discipline was
developed and expanded mainly by mathematicians. Hereentthtive treatment of
many details often suffered in favor of the abstracegdity of the representation, and in
particular, a thorough analysis of the connection betvikersymbols used and actual
measurements has been lacking up to today. The elimnatithat deficiency would
demand a new textbook on relativity that would seem taatke from the current ones.
In this treatise, | will only discuss some questiong thauld be connected with such a
thing.

2. — Ordinarily, the fundamental metric tensgg is first introduced in general
relativity. However, in order to recognize the physiteaning {) of the individualgi

() It is obvious that here we use the expression “ghysheaning” in the older, well-established sense
of “measurable,” “observable,” “intuitive,” and notkdi so many relativity theorists, in connection with th
use of the expression “geometric meaning” in geometry)cdie “absolute” or “invariant” mean
“independent of the choice of coordinates” (relative gra@up of coordinate transformations that is often
not given explicitly). In the latter sense, concefks lelocity, acceleration, energy, and the like would
have no “physical meaning”!
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coefficients, it is advisable to already introduce teasor in special relativity. That will
afford one an excellent opportunity to represent speetivity in general linear
coordinates in such a way that one will avoid the “maadagogical failure” of the
present manner of representation in relativity, andh@ssame time, alter the meaning of
the basic coordinates, in principle, when one goes ti@rspecial theory to the general
one. In order to include this fundamental differencehm notation, as well, in what
follows, we will denote th&alilean coordinates of special theory with large symbols
and the generétinsteinian space-time coordinates (relativistic coordinates) sitfall
ones.

From the physically-intuitive standpoint, we must doptiish three kinds o
coefficients {), according to whether both of the indices, onehefit, or none of them
has a temporal character, resp. The coefficiepts will pertain to our remarks
especially, since they have no analogue in classicaigdhy However, we will see [and
this seldom emerges as sufficiently cleaj (3] that with the general [“non-
orthochronous” )] coordinates, the coefficients;z with two spatial indices also have a
different physical meaning from the corresponding coeffisian geometry (surface
theory), which we will denote by,z in order to distinguish ther)(

Above all, we would like to remark here that the agglbetween thg;s coefficients
and thegi coefficients has only a formal nature, and it mustdgarded as completely
inappropriate from a pedagogical standpoint, as well as &onepistemological one,
when one explains the geometrically-intuitive meaninghefy,s coefficients in surface
theory, and then, with no further assumptions, whengmas over to thgi coefficients
of Einstein's theory (). Indeed, the measurement of length in three-dimerisipeae
and the measurement of the length of an interval infabe-dimensional space-time
continuum are two entirely different processes. Thidérence emerges most clearly for
the g4, coefficients, whose physically-intuitive meaning hashma to do with the
cosines of angles.

3. In the interests of our plan of giving relativity thgothe most intuitive
representation possible, it is probably advisable toyawese all geometric expressions
with their original three-dimensional meanings and tovige the corresponding four-
dimensional concepts with derived names. In what f&owe would always like to
understand a “point” to mean a space-time point theahyanwill always regard a vector

() The indices, k shall assume the values 1, 2, 3, 4, whil@will assume only the values 1, 2, 3.

(®) Asterisks (with no explicit root symbol) shall diresetattention of the reader to points that often are
represented unclearly or completely falsely (evethbymost recognized theoreticians of relativity).

() Since the orthogonality of a time-like and a space-ikection in theMinkowski diagram has
nothing to do with orthogonality in space, intuitively, bpose to call coordinates in which the time axis is
orthogonal in theMinkowski sense to the spatial axes — so, ones for whigh= 0 — “orthochronous”
coordinates. As we will see below, the orthochroniefty coordinate system is a property of the “mutual
calibration” of coordinate chronoscopes (numb@r

() We then se&’ = X g, xx for the fundamental metric form in the four-dimenslospace-time

ik
continuum — i.e., the square of the “interval” — while setg? = ¥ V.s %, %, for the square of the spatial
a.B
distance.
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guantity in the sense of classical physics, etc. We cal the analogous four-
dimensional structures space-time points (event-poiotis);vectors, hypersurfaces, etc.

Obviously, we will also use the word “geometry” in tlsense of “practical
geometry,” or even better, “physical geometry.” Weoadmgly understand “point” to
be the limit of a body that becomes ever smalled aot an abstract “thing,” as in
“mathematical geometry,” etc.

4. — We now place ourselves upon special relativity assa,k@nd we shall assume
that its usual general form of representation is kn¢n We will call the coordinates
that will be used in iGalilean, and we shall denote them with large symily, Z, T.
Those coordinates (or more precisely, their differepdeave an immediate physical
meaning: They can be considered to be the results ddefhed measurements with
normal-unit yardsticks and chronometeis (

We shall now choose four arbitrary, real, single-vaumntinuously-differentiable
functions of theGalilean coordinates and set:

x =f (X, Y,Z T (1)

The single restriction that we shall provisionally impaipon the functiorfs consists of
the demand that equations (1) shall be uniquely solubléanentire domain under
consideration. We will generally call the numbets x., xs, X (°) Einsteinian
coordinates They are quadruples of numbers that are that areiasbh with event-
points in a manner that is one-to-one (in a certaigespiane domain), continuous, and
“smooth” (), but otherwise arbitrary. Other than that, they hawémmediate physical
meaning. They can be first introduced into physical equaiim®nnection with the
coefficients of the fundamental metric tensor.

5. — Here, we have defined tl&@nsteinian coordinates by starting witGalilean
ones. We shall not go into the question here of kdrethey can be “given” in a more
general way, but only remark that the “given” of the diomates in the universe that
surrounds us will, in the final analysis, always lead bédtikectly or indirectly) to

() Mind you, we will not be dealing here with a new foutiata for relativity theory in general linear
coordinates without the use @alilean coordinates then, even if such a foundation might bsilges and
would perhaps even be desirable as a better explanatiamfercaf the main questions.

() Since the word “clock” is used in various senses latiréty theory, | propose to call devices that do
nothing but show the passage of time “chronoscopes,”ewtiie ones that are intended for the
“measurement” of time will be referred to as “chromebens.” A proper relativistic coordinate system will
then be described intuitively as a “reference obsgi@er. Bezugsmolluske “reference mollusk”) with
embedded chronoscopes.” Whether or not the coordifatiesoof the linear systems “tick uniformly” and
differ from the chronometers dBalilean systems only by the “rate of ticking” (and their mutual
calibration), we will call them chronoscopes heracsithe consideration of linear coordinates is typicall
regarded as the first step towards a better understaoiding general-relativistic coordinates.

() We will also often set; =x, X, =, Xs =z, X4 =ct. Cf., footnote 2, pp. 5.
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“individual instructions 1)” that pertain to certain material objects. Howewiose
individual instructions have no fundamental connection wighihdividual instructions
of a normal-unit yardstick or a normal clock (see beloumber9).

6. — The generdtinsteinian coordinates have so little intuitive meaning that weeha
no right to distinguish one of those coordinates asna toordinate and to regard the
other ones as space coordinates. However, theyeldibs be used with that degree of
generality.

If it is possible to associate a “reference obsewitr embedded chronoscopes” with
one of the coordinates then we would like to call the coordinateference observer
coordinates,we will choose the coordinate that is shown by thembscopes to be the
coordinate. It is only when the “mutual calibration” @&tchronoscopes is subject to
certain further restricting conditions that we carl ¢he x4, coordinate aproper
relativistic coordinate(’). We will discuss the difference between theseetliiads of
coordinates in more detail in Part 1l in terms of simpl@mples, in order to formulate
them in general after that in Part Ill.

7. — All three of the coordinate types that we just enameer can also appear in
special relativity asinear coordinateg?). For our purposes, it will suffice to restrict our
consideration to those coordinates. From now on, Wehen assume that the functions
in (1) are linear. As is known, the motion of a fyegloving mass point and any light
signal in a vacuum are expressed by means of linear equatiotise basis of such
coordinates. We will not go further here into the goesbf the extent to which, or in
what sense, that property is characteristic of tlrosedinates. Intuitively, one can refer
to those coordinates as spatially-affine “unacceleraegdtivistic coordinates.

Hence, instead of (1), we can now write (

X=AX+ A Xt Akt Ax
Y= AXt Ao X%t Agxt AuX
Z= At Akt Agxt AyX,
CT=AX* A Xt Agxt Ak

L

To simplify, we have already assumed that the funstiare not only linear, but also
homogeneous, which can always be arranged by a trividlcdhihe coordinate origin.
We shall temporarily assume that the constaptdefine a non-vanishing determinant.

() Cf., H. Weyl, Raum, Zeit, Materie5" ed., pp. 8.

() Cf.,H. Weyl, loc. cit, 4" ed., pp. 160.

() The notations are chosen such that Aecan be considered to be dimensionless constant. Cf.,
footnote 2, pp. 5.
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8. — In order for the physically-intuitive viewpoint to emgerbetter, we would first
like to discuss some special cases of the transfamdt) in as elementary a way as
possible, and only then go on to a more general forrulati

We then start from an arbitrarily-chosen, but fixédjilean system, which we would
like to callG, and introduce new linear coordinate systems by meanmarsfférmation
equations of typel(). We will refer to the new coordinate systems wile same
symbols that we use for the transformation equatioasiéad to them.

9. We can already make the same remarks from our viewpoinégard to the
simplest of all transformation equations:
X =AXx. q—z)

At first, it shall be expressly shown that this equatjas well as equationd.), in
general] should be regarded as the transformation afdbedinatesvith no change in
the physical unit of lengthHence, only a new notation for the points onxaxis will
be introduced by that equation. The physical unit of lengtran “individually
designated” body'); e.g., the normal meter of platinum-iridium that preserved in
Sevres, which has largely nothing to do with the enutiagraf the points along the
axis ¢). It first becomes meaningful for the measurementlesfgths and the
determination of thg,z andgi coefficients.

Nonetheless, coordinate transformations are oéfaired to as changes in the unit of
length (along thex-axis) by mathematicians. In a similar sense, one dffeaks of
different length units in different directions. Shouklat manner of speaking be
maintained, one must distinguish between “physical” andthematical” units of length.
The mathematical unit of length would then be nothingwhat the physicist intuitively
calls the “unit scale along an axis.” The length measeant would be regarded as a
comparison of the physical unit of length with the mathgcal one. If the physicist
speaks roughly of a unit of length then we must, in anytewssume that he means a
physical unit of length in the sense that was given @bov

10.— As is known, it is practical to give the result ahaasurement of length along
the x-axis in the form:
o=y X (2)

() Cf., numbe5.

(®) For that reason, it would be most logical to considextas dimensionless quantities. However, as
is known, dimensions are only agreements. They shaildefined as practically as possible. That
requirement probably best corresponds to endowing all doardinatesq with the dimension of length.
The equatiorx, = ct then keeps its usual sense, and for the concrete ietiipn of special gravitational
fields, such as, e.g., static or stationary field& can, with no further assumptions, idenkfyx,, x; with
certain lengths and, / ¢ with certain time durations. In the final analysisyr way of establishing
dimensions rests upon the agreement that under any chattge unit of length, the enumeration of the
space-time points should also suffer a corresponding change.
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One can briefly explain the physically-geometric meanifighe ji; coefficients as
follows: |/ y;, is the length (in cm) of a scale unitx(= 1) along thex-axis. In that, we

understand length to mean the result of a measurenanistperformed with a normal
yardstick.

In surface theory, as well as in “true” geometry (imich only “spatial” coordinates
come under consideration), above all, the state ofiom of the yardstick is not
mentioned at all, so one can probably think of the measneof length in physical
geometry as nothing but something that is performed by m&fayerdsticks “at rest.”
First of all, “at rest” must mean “at rest relative & Galilean system.” Special
complications will arise for an “accelerated” refare system (i.e., in the absence of
gravitational fields) that shall be discussed in th@séarticle. However, in the second
place — as we shall soon see — even for linear systémng,s coefficients that are
measured by means of yardsticks that are “relativelyest’ (i.e., “co-moving”) are
generally not equal to the correspondipg coefficients 0.

11. — With those remarks, there is no longer anything thawvemts us from
introducing the differential form:

do?=>"y,,dx, dx,, (3)
B

which represents the square of the spatial separabiorexplaining the geometric
meaning of the individuaj,s coefficients. As is known, thg,, correspond to thei: in

(2); for a# B, one havus =4/ ¥,/ V5 COS @, B, where @, /) means the angle between

the x,-axis and thexgaxis. However, to once more stress this fact, onéy ji
coefficients actually affect the usual general manner regresentation for the
geometrically-intuitive meaning of thegi coefficients,” and thus, neither tlogg for
non-orthochronous coordinates nor ¢he andgs4 coefficients (cf., no2 and10).

12. - Similar arguments relate to the transformation:
T =Bt q—t)

For a clock, it corresponds to a new calibration tha@ngks the rate of ticking by a
constant ratio. However, if we imagine two neighbgrclocks — e.g., a chronometer in
the systent and a neighboring-chronoscope — theld will give the ratio of the rates at
which those two clocks tick. The timiethat is shown by the chronometer will also be
called “proper time’r for that chronometer, as well as for the “comovingtfanoscope.

If we set —B? = gysthen we can then write:

d =- 2 dT?=-c?dt? = gas (C d)? = — guq ()2 (4)

That formula can be regarded as a special case of tieeajjiéormula fords’, as long as
the relativistic coordinate systems to which the twacks$ belong are mutually at rest.
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Namely, the equatiordx = 0 =dy = dzwill then follow from the equationdX =0 =dY =
dZ, and conversely.

We then see that we are dealing with just simple sahiere, since a comoving
chronometer will always measure tlggs coefficient (independently of whether the

coordinates are orthochronous or non-orthochronoud)jreleed./ —g,, givesthe time

that is shown by a comoving chronometer (in sea&) ¢brresponds to the time duration
(At = 1) of a tick of the system chronoscop@ne can also say that this root gives the
ratio by which the coordinate chronoscope ticks slovamntthe comoving normal
chronometerj.

13.— We now go on to a discussion of linear transforongtihat act upon a spatial
coordinate = e.gx — and a temporal coordinatat the same time. Speaking intuitively,
we then consider a “line world”; i.e., the “events glothe x-axis” or “the static
existence” in a two-dimensiondinkowski (xt)-diagram (whose use we would like to
avoid here as much as possible, however).

We would like to put the general linear homogeneous fooemation that leads us
from G to the coordinate systexnt in the following form:

X = Alx=w, } L2)

T = B(t- ay.

It is specialized only insofar as the non-vanishing oftkerminanAB (1 —aw) implies

the non-vanishing of;; andAs, . We will see directly that one must restrict dfisolute
values of the coefficient anda as above if one would like to interprets the spatial
coordinate and as the time coordinaté)(

14. First, we consider the following especially simplecsplecase ofl(>):
X=x-wt T=t (w>0). (L)

That has the form of the well-knowsalilei transformation of classical kinematics,
although the interpretation that we shall now give tompletely different. Namely, we
consider (L,) to be the defining equations of new coordinates, witlpmstulating the
fundamental equivalence of the new reference system.clalssical kinematics, one
regards(L,) as:

() Since only linear relativistic coordinates will bensidered in this article, comoving chronometers
will also be moving “without acceleration” or “fallinggether.” The difficulties that occur for time and
length measurements in gravitational fields shall beudised in particular in the second article.

() On the grounds of convenience, one always tBke®, and usuall > 0, as well. We shall also do
that, and in addition, we will consideranda to be positive quantities in any event for concrete @kasn
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1. Areference system that moves with the constdatig w in the direction of the
X-axis relative to th&alilean systenG.

2. AGalilean system.

Here, in the special theory of relativity, 2 is falas we said. However, 1 can only be
asserted when:
|w]|<c, (5)

since no material point can move faster than or eqteslyas light relative to Galilean
system.

15.—If one has:
w>C (6)

then one can still always employ the number-pait in order to characterize the
individual event-points in our line world, but the event= const. can no longer
correspond to successive states of the same mass pbiate can then be no reference
observer in théeinsteinian sense. However, if one would like to further estabilsat
the x-numbers can be regarded as characteristic of the “spaim@s” then one would
come to some entirely remarkable results. Bodiesshtin L, cannot exist at all, and the

light signals would only propagate in one direction, with two different velocitiesv +
c andw — ¢ along thex-axis.

We then arrive at the simplest example of an “mper relativistic coordinate system
without a reference observer” whose use (like thatlloimproper relativistic coordinate
systems, moreover) is possible, in principle, but quiteractical. Both axes would be
space-like in Minkowski diagram.

16.— To complete the picture, we would like to briefly oxglhow things work in the
(3+1)-dimensional case. We consider a linear referergtersythat arises froi@ by the
transformation(L,) when one adds the equations y, Z =z We assume that a flash of

light is generated at any poiRtin the system at any tinte= T. After a certain time\t,
one will find all of the emitted light signals on therface of an ellipsoid (which is just a
sphere in our simple special case). However, whert, we will find the emission point
outside of that ellipsoid! It will be found inside bfonly for proper coordinates when
< ¢, and at the center of the ellipsoid, only for orthoclmus coordinates, and thus, only
for w= 0 for the example that is considered now.

We will soon see that one comes to more remarkaddalts for other types of
improper relativistic coordinates when one would like tal@sh the interpretation od,
X2, X3 @s spatial coordinate ahds the time coordinate (see below, nun#t®r



Weyssenhoff — Intuitive aspects of the theory of reigti 1. 9

17. — We now return to the proper relativistic coordinatgsand assume that the
condition (5) is valid. If we define the “velocity” iime systemnlL, to be the derivative of
the x-coordinate with respect to theoordinate {) then its absolute value will be greater
or smaller than the corresponding velocity in the I&a systen. The (scalar) “speeds
of light” in both directions9), viz., c. andc_ , will be correspondingly equal o+ w and
C — W resp.

We can write the square of the intervallin as follows:

& = X2- @T?= %—ZVEV X c)—(l—gj ( P

(7)
=0y, X +20,, X+ g,( o).
That gives us:
c.—-¢C
Oa1 = _20 -, (8)

which is an equation that clarifies the “physicahse” of that coefficient in the case that
was just considered [cf., numkia4, equation (19)].
One can say the following about the physical megwif the other two coefficients

011 = 1 andgss = - [1—%} : Althought = T, a chronometer that is at restlify does not

show the “time"t. Since it moves in the “synchronous” GalileanteysG, in whichT =

t, it will move slower with the ratio of/ 1-—-: 1. From the general rule (numki),
c

however, it measures the coefficigps , and\/ —g,, =, 1—% :

By contrast, a normal unit yardstick that is atrie L, does not directly measure the

corresponding/ g, , but only,/ j;, . In our case, we see that best when we imagate th
this yardstick moves relative G with the velocityw. Therefore, due to the Lorentz

contraction, the contraction of its ends will cependingly bedAX =,/ 1-—-. However,
C
sinceAx = AX, that yardstick, which rests along tkexis, will cover less than a unit

interval, and indeed/ y;, = 1/,/ 1—\2,22 , while \/g,; =1 €). One clarifies the study of

this important fact most easily by the differenevieeng:; and 41 in non-orthogonal
coordinates in connection with the transformatfaf) (see numbe21).

() The word “velocity” is used with various meaningsifi the theory of relativity.
(®) Cf., number24, last paragraph.

% The given value of/ y;, follows from (7), (27), and (32) by calculation.
11
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Here, we can point out that one can also meagwyg directly with a normal unit

yardstick, but we must give it a velocity in the direction of the-axis in order to do
that. That yardstick is then at restGn so its endpoints will correspondingly gidX =
1, and since the times that are giverGimnd L, agree, we can writ¢ = (AX)* = (Ax)?,

and it will follow from this tha;; = 1, as it should be, from (7).

18.— We direct our attention to another simple spemask of [(;), and indeed to the
transformation:

X=x, T=t—ax (a>0), (L)

which is especially interesting, insofar as it firsty@d a role with the appearance of the
theory of relativity, although it had also been usedassical physics, in principle. One
can characterize that transformation in a physicatlytime way as the “mutual
calibration” of the coordinate chronoscopes without giemntheir state of motion and its
x-direction. We leave one of those chronoscopes -thaggone that is found 2t=x =0
— at rest, while we shift another onex-= x = 1 — while all of the other ones are
proportional to their distance from the first chrorgse One can then cadl the
coefficient of the mutual calibration of the coordinate chronoscapeslso (see number
20) theasymmetry coefficientsf the relativistic coordinate system considered.

It is interesting that all velocities (with the egtien of the velocity 0) experience a
change by the mutual calibration of the coordinate ctsompes, even though neither the
“unit of length along the-axis” nor the ticking rate of the coordinate chrongssowill

change, and the two coordinate syst&@rend L) will be found in a state of relative rest.

In this, we understand the word “velocity” to be theid#ive of thex-coordinate with
respect to thé-coordinate, as in numbéi7 above.

19.— We now assume that:

la] <2, )
C

in which L) is associated with a proper relativistic coordinatéesys The relation:

V
1+aVv

(10)

exists between the absolute value of the veldgily the Galilean systef® and that o¥
in L3, where the plus or minus sign in the denominatorkisrtaccording to whether the

velocity points in the direction of the positive olgaéive x-axis, resp. In particular, the
speeds of light in both directions are:
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c c
c.=

C = , .
1+ac 1-ac

(11)

In this, we see the reason that we had toagt kK 1 above. The complications that arise
when one drops that inequality will be discussed in nur2er

20.—- From (11), we calculate:

c.-¢C
a=——-+—. 12
2c_c, (12)

For that reason, as we remarked before, we caradhk asymmetry coefficierdf the
systemL?, and all the more so, since a similar formula:

V.-V,
a=
2V_v,

(13)

will be true for any two “dynamically equivalentélocitiesv. andv- that correspond to
two equal and opposite velocities in the comovinglil€an systemG, as one easily
calculates from (10). If we then separate — éwgp,identical mass-points that are at rest
in LY — by means of a symmetric agency that acts betwbem - e.g., a

homogeneously-compressed spring that is cut inniliglle — and measure its (scalar)
velocity v; andv- in this reference system then we will have penfed a “dynamical
experiment” for the measurement of the asymmeteffiment a.

If one mutually adjusts the coordinate chronosedpesuch a way that light moves
with the same velocity in bothdirections then that will also imply the same wedtles in
both directions for all “dynamical symmetry expeeimts.” One can introduce that fact as
one of the basic postulates of the theory of natgt(cf., footnote 1, pp. 3).

21.— We can summarize the physically-intuitive intetption for the formula for the
square of the interval ih):

&= (1-c?ad)x*+ 2ca- x (ct) — (ct)? (14)

as follows: From the general rule of numde& a normal clock that is at rest i)
measures/ —gd,, , but on the other hand, it also shows the “timerdmate,” since in the

comoving Galilean systef@, in whichAT = At (for X = x = const.), is likewise at rest;
hencegss =— 1, as it should be, from (14).

A normal unit yardstick that is at rest in a lineaference system always has a “rest
length” of one, regardless of the calibration & ttoordinate chronoscope; the separation
o of its two endpoints is equal to one. Howeveg ifiterval between the two event-
points that correspond to the same time coordihaseonly equal to one when those
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events are simultaneous in the Galilean system in wtheh yardstick is at rest.
Otherwise, a correction that corresponds to the ternf {AT)> would have to be
subtracted from the expression for the square of thevait in Galilean coordinates.

One can clarify the state of affairs in the two cooaté systemd$ andG, which both
have the same reference observer, in an elementargne way. If we lay a yardstick at

rest along the-axis then it will cover a piecgdX = 1 =Ax of that axis, and therefoyg;, =
1; hence, the@; in (14) will be different from one, on the grounds tate given before
).

From (12), the coefficierdss, which is equal t@a in our case, is proportional to the
difference of the speeds of light in both directioas,in the case of,. The general

formulas will be given in numbex4.

22.— If we now assume that:

1

a> (15)

then we will get the simplest example of an “impropéatiéstic coordinate system with
a reference observer.” Such a thing certainly exists ircasg, since it is identical with
the reference observer of the Galilean sysihat is relatively at rest, except that the

coordinate chronoscopes Ifj are mutually calibrated so clumsily that one would arrive

at entirely remarkable results when one would likeirtierpret the given of those
chronometers as “time” in that reference system.

A certain velocity inG would then correspond to an infinite “velocity” id,, and
(which is probably even harder to imagine) many velocitie& would correspond to
opposite “velocities” inL), even though the two reference systé®nand L) are at rest

with respect to each other! In particular, the “e@les” of both light signals that
emanate from a point would prove to be positive. Howewee must not say that both

signals propagate in the same directidn(since they indeed move next to each other in

the comoving systen®), but rather, that one of them moves “into the pasthe
noteworthy sign of its “velocity” does not originate the inversion of thelx in the
numerator, but in thdt in the denominator. That will perhaps become clear&mone
arranges a chronometer in such a way that it movésansipeed that is larger than 4 /

in the negativeX-direction inG. Even though all of the coordinate chronoscopek)in
“‘run forwards,” the evolution of this chronometer, whewaluated by theL)
chronoscopes, will run backwards!

23. — We shall once more consider the corresponding (3irdgrtsional part of an
“improper relativistic coordinate system,” as in numld&; but this time “with a

(") ForaAt =0, we get from(L})) thatAX = Ax, AT = - aAx, S0 = AX* —¢” AT = (1 —¢” &) &, and
from that,gy; = 1 —¢* &.
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reference observer,” and repeat the Gedanken experinsnivas described there. This
time, the light signals that are sent from a p&irt the “time”t to the “time”t + At will
define a hyperboloid of two sheets (with a focuB)af'). The ellipsoid in nol6 can be a
hyperboloid here, since the “speed of light” is infinitédyge in some directions. One
also suggests that only one sheet of the hyperboloid {liz.pne that is closer to the
point P) corresponds to events that are later than the fligsit atP, and the other one, to
events that are earlier. In order to considerighitisignals that are emitted fromat
“time” t, one must consider yet another “time point” with aalen t. The two
hyperboloids together would correspond to one wave frottishemitted fromP and
another one that contracts to it.

The difficulties in the description of the “propagatiaf light in L) for ac > 1 are

obviously connected with the fact that theoordinate parts company with the “main
property” of time that for two causally-connected everitee effect will always
correspond to a larger value of that coordinate thanahsec

24. — We would like to add some words about the genégst{ansformation, since
from now on, that will be only one step towards theegeih(3+1)-dimensional case. We
would now like to exhibit matter in such a way that ambitrary, proper, linear,
relativistic coordinate systeir, is given in our line-world, by which, we can go to*
Galilean systems by means of linear transformationsymé (). Two of them are
coupled ta., in an especially simple way, and they are, in fact:

1. The “comoving Galilean system” or “proper systemhef $ystent,” (which we
would like to callG,) that we obtain when we satequal to zero inLj).

2. The “synchronous Galilean system” — vi@!,— that we likewise get by settiray
equal to zero.

The values of the three remaining coefficientslLis) @re then coupled uniquely with
the threegy coefficients. We shall now give formulas that daa seen to be direct
generalizations of the ones that were discussed alre@dg will preserve their validity
in the general case, as well (numBéy, by replacing the-axis with thex,axis.

For the square of the interval, we get:

" § = (AX)* = (AT)® = gu1 (AX)® + 2 Qa1 AX Act + gua (Act), (16)
wit
G = A*—B? (ca)’, 941:‘A2V;V+520a, —944=BZ—A2§.

We calculate from this that f@ar= 0:

() It is interesting to exhibit the state of affairs irf2a1)-dimensionaMinkowski diagram, or in the
(1+1)-dimensional case, to represent it in rectangglar coordinates, or even better, in rectangular
coordinates.
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w=—+——|, 17
> (17)
and forw = 0:
a:C‘_C+ :V‘_V+ :E ar (18)
2c_c, 2V_v, C—0,

in whichv, andv- mean a pair of “dynamically-equivalent” velociti@s in numbe20.
When we se$ = 0 in (16) and divide by\t)?, we will get a quadratic equation for the
speed of light i, . The two roots of that equation will have opp®signs in a proper
relativistic coordinate system; we set them eqoal tandc- . The positive quantities.
andc- then refer to the scalar speeds of light in the divections of the-axis. We get:

e A c -c
41 — - - - -
“"2c.c “ 7 ov v 12e

4 + V-

(19)

25.— After that elementary discussion, we can nowflyriaddress the general (3+1)-
dimensional case. Equatiorly (mediate the transition from the starting Galilsgatem
G to the linear systerh. In order for a reference observer to exist fpthe points that
are at rest irL must have velocities i® that are smaller thaa We then obtain the
“condition for the reference observer” froi) directly:

A+ A+ N<A, (20)
or, by substituting this in the expression $ar
Qasa < 0. (21)
However, in order foL to be a proper relativistic coordinate systemglhionoscopes
must be correspondingly “mutually calibratedy, (and in fact, in such a way that no

point that moves ifc with a speed that is below or above that of liglwh pass thé-
chronoscopes at constdnt It must then follow frondt = O that:

] (2] 22
AT AT AT

which says nothing but the fact that the fafnmust be positive-definite fakt = 0. As is
known, the conditions for this are:

gll ng

>0, |9as | > 0. (23)
921 92

011> 0,
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The inequalities (21) and (23) together then express thditimon for the L-
coordinates to be proper relativistic coordinates, andeasame time, they also guarantee
thats” will be a nondegenerate quadratic differential form aithindex of inertia of 3. It
is known that the general condition for this, indepetigienf the type of coordinate
system that was used as a basis, is that only one cbésigm occurs in the sequence:

gll ng

21 22

1, 0ou, S [0 71 PR o T I (24)

It is easy to see that it follows from (21) and (23} flgi | < O, but not conversely, so the
first four quantities in (24) will be positive for, e.dour space-like axes (i.e., improper
relativistic coordinates with no reference observar, thhe change of sign must result at
the last step, but then, > 1.

26.— If we then assume thhtis a proper linear relativistic coordinate system witho
observing how it would come about — as in numbér(cf., number24). In order to
briefly recapitulate the physical meaning of thecoefficients in this coordinate system,
we write the expression faf in the following forms that emerge from each other by
elementary algebraic conversions. In that, we djsish between covariant and
contravariant tensor components, and make ugenstein’s summation ruled, S from
1to 3,i, kfrom 1 to 4):

& = g X X = gap X X + 2044 X7 (Ct) + Qua (CB)?, (25)
= Vap X X0+ Qaa (t — 80 X)? = 0% + qua (t — & X7, (25)

= gap (X" — W) = wt) + (944 ~ Qop Wz—szj (ct?, (25)

in which:
Yap=Uap = C 8z ag, (26)
g = Eh , (27)
C—0un
w'=-cg¥ . (28)

Equations (2% and (25) can be interpreted as the way that one can gu frdo a
“comoving Galilean systemG® and a “synchronous Galilean syste@®” (cf., number
24) by means of linear coordinate transformatidis (

We can now summarize the Gedanken experimentsvihid¢ad to the measurement
of the individualgi coefficients as follows: We first place a chronoeneat rest irL; the
time duration (in sec) of a tick of the coordinateonoscopet = 1) that one reads off

of that chronometer will give ug —g,, (cf., numbersl2, 17, and21). We then measure
the speeds of light in the six directions of the&ipee and negative axes and obtain the

1 It is plausible that these two systems are defined orthogonal space transformation.
p Yy ap g p
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components of the “asymmetry vector” from them by medrbke formula (cf., numbers
20 and24):
c,.—¢C
=2+ a9+ (29)
2c,.C,,

We can also perform three “dynamical experimentstdad of them (numbe0 and
24) and use the formula:

V,_—V
g = —a- at 30
ZVH—VH+ ( )

We obtain thay, coefficients fromgss anda, by using the formula [cf., (26) and
number21 and24]:

Qag=—044Cag. (31)

We then measure thg; coefficients of the fundamental spatial form by means of
yardsticks at rest in the known geometric way abio theg,s coefficients from them
using the formula [cf., (26), as well as numl&tsand24]:

Jop = Vap + Qaa € adp. (32)

We can also measure thgs coefficients directly with yardsticks, but we muste
yardsticks that move with the velocity relative toL, instead of ones at rest (cf., number
17, last section).

27.— Allow me to conclude our study with a quotatfoom Felix Klein’s wonderful
lectures on the development of mathematics in tiretdenth Century’). As Klein
said, one can “make the four-dimensional way ofikimg true deductively from the
outset” without having to “discuss the existing esgments and gradually reinterpret their
originally three-dimensional conception,” but immagdly after that, to allude to the
analogy with the Copernican and geocentric worldlei®, he added: “Admittedly, there
still remains the half of astronomy that satisties Copernican picture onig abstracto
and does not endeavor to go into the rigorous ldetéithinking through the geocentric
observations precisely from that standpoint.”

*) Bd. ll, pp. 75.



