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In order to clarify the physically-intuitive meaning of general-relativistic coordinates and the individual gik 
coefficients in general relativity, it is preferable to introduce general linear coordinates in place of Galilean 
ones in special relativity.  In the present treatise, that will be done in an elementary way, in which the 
intuitive difference between proper and improper relativistic coordinate will emerge clearly.  In numbers 
15, 16, 22, and 23, the properties of two interesting kinds of improper relativistic coordinates will be 
discussed. 
 A simple Gedanken experiment for the sequential measurement of the gik coefficients will be given.  
First, one must measure the ikg−  with a “rest” chronometer and ascertain the components aα of the 
“asymmetry vector” from “light velocity measurements” in two opposite directions.  One then measures the 
γαβ coefficients of the spatial fundamental form by means yardsticks “at rest” and ultimately calculates the 
remaining gik coefficients, which are expressed simply in terms of the remaining quantities. 
 In that way, one can also do without the measurement of the speed of light completely when one 
establishes the asymmetry vector from “dynamical experiments” (numbers 10 and 26). 
 
 
 1. – A large part of the difficulties that an intuitively-minded physicist will encounter 
in the study of relativity theory is probably based upon the fact that the discipline was 
developed and expanded mainly by mathematicians.  Hence, the intuitive treatment of 
many details often suffered in favor of the abstract generality of the representation, and in 
particular, a thorough analysis of the connection between the symbols used and actual 
measurements has been lacking up to today.  The elimination of that deficiency would 
demand a new textbook on relativity that would seem to deviate from the current ones.  
In this treatise, I will only discuss some questions that would be connected with such a 
thing. 
 
 
 2. – Ordinarily, the fundamental metric tensor gik is first introduced in general 
relativity.  However, in order to recognize the physical meaning (1) of the individual gik 

                                                
 (1) It is obvious that here we use the expression “physical meaning” in the older, well-established sense 
of “measurable,” “observable,” “intuitive,” and not, like so many relativity theorists, in connection with the 
use of the expression “geometric meaning” in geometry; hence, “absolute” or “invariant” mean 
“independent of the choice of coordinates” (relative to a group of coordinate transformations that is often 
not given explicitly).  In the latter sense, concepts like velocity, acceleration, energy, and the like would 
have no “physical meaning”! 
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coefficients, it is advisable to already introduce that tensor in special relativity.  That will 
afford one an excellent opportunity to represent special relativity in general linear 
coordinates in such a way that one will avoid the “main pedagogical failure” of the 
present manner of representation in relativity, and at the same time, alter the meaning of 
the basic coordinates, in principle, when one goes from the special theory to the general 
one.  In order to include this fundamental difference in the notation, as well, in what 
follows, we will denote the Galilean coordinates of special theory with large symbols 
and the general Einsteinian space-time coordinates (relativistic coordinates) with small 
ones. 
 From the physically-intuitive standpoint, we must distinguish three kinds of gik 
coefficients (1), according to whether both of the indices, one of them, or none of them 
has a temporal character, resp.  The coefficients g4α will pertain to our remarks 
especially, since they have no analogue in classical physics.  However, we will see [and 
this seldom emerges as sufficiently clear (*) (2)] that with the general [“non-
orthochronous” (3)] coordinates, the coefficients gαβ with two spatial indices also have a 
different physical meaning from the corresponding coefficients in geometry (surface 
theory), which we will denote by γαβ in order to distinguish them (4). 
 Above all, we would like to remark here that the analogy between the γαβ coefficients 
and the gik coefficients has only a formal nature, and it must be regarded as completely 
inappropriate from a pedagogical standpoint, as well as from an epistemological one, 
when one explains the geometrically-intuitive meaning of the γαβ coefficients in surface 
theory, and then, with no further assumptions, when one goes over to the gik coefficients 
of Einstein’s theory (*).  Indeed, the measurement of length in three-dimensional space 
and the measurement of the length of an interval in the four-dimensional space-time 
continuum are two entirely different processes.  That difference emerges most clearly for 
the g4α coefficients, whose physically-intuitive meaning has nothing to do with the 
cosines of angles. 
 
 
 3. In the interests of our plan of giving relativity theory the most intuitive 
representation possible, it is probably advisable to always use all geometric expressions 
with their original three-dimensional meanings and to provide the corresponding four-
dimensional concepts with derived names.  In what follows, we would always like to 
understand a “point” to mean a space-time point then, and we will always regard a vector 

                                                
 (1) The indices i, k shall assume the values 1, 2, 3, 4, while α, β will assume only the values 1, 2, 3. 
 (2) Asterisks (with no explicit root symbol) shall direct the attention of the reader to points that often are 
represented unclearly or completely falsely (even by the most recognized theoreticians of relativity). 
 (3) Since the orthogonality of a time-like and a space-like direction in the Minkowski  diagram has 
nothing to do with orthogonality in space, intuitively, I propose to call coordinates in which the time axis is 
orthogonal in the Minkowski  sense to the spatial axes – so, ones for which g4α = 0 – “orthochronous” 
coordinates.  As we will see below, the orthochronicity of a coordinate system is a property of the “mutual 
calibration” of coordinate chronoscopes (number 18). 
 (4) We then set s2 = 

,
ik i k

i k

g x x∑  for the fundamental metric form in the four-dimensional space-time 

continuum – i.e., the square of the “interval” – while we set σ 2 = 
,

x xαβ α β
α β

γ∑ for the square of the spatial 

distance. 
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quantity in the sense of classical physics, etc.  We can call the analogous four-
dimensional structures space-time points (event-points), four-vectors, hypersurfaces, etc. 
 Obviously, we will also use the word “geometry” in the sense of “practical 
geometry,” or even better, “physical geometry.”  We accordingly understand “point” to 
be the limit of a body that becomes ever smaller, and not an abstract “thing,” as in 
“mathematical geometry,” etc. 
 
 

I.  
 

 4. – We now place ourselves upon special relativity as a base, and we shall assume 
that its usual general form of representation is known (1).  We will call the coordinates 
that will be used in it Galilean, and we shall denote them with large symbols X, Y, Z, T.  
Those coordinates (or more precisely, their differences) have an immediate physical 
meaning: They can be considered to be the results of well-defined measurements with 
normal-unit yardsticks and chronometers (2). 
 We shall now choose four arbitrary, real, single-valued, continuously-differentiable 
functions of the Galilean coordinates and set: 
 

xi = fi (X, Y, Z, T).     (1) 
 
The single restriction that we shall provisionally impose upon the functions fi consists of 
the demand that equations (1) shall be uniquely soluble in the entire domain under 
consideration.  We will generally call the numbers x1, x2, x3, x4 (3) Einsteinian 
coordinates.  They are quadruples of numbers that are that are associated with event-
points in a manner that is one-to-one (in a certain space-time domain), continuous, and 
“smooth” (*), but otherwise arbitrary.  Other than that, they have no immediate physical 
meaning.  They can be first introduced into physical equations in connection with the 
coefficients of the fundamental metric tensor. 
 
 
 5. – Here, we have defined the Einsteinian coordinates by starting with Galilean 
ones.  We shall not go into the question here of whether they can be “given” in a more 
general way, but only remark that the “given” of the coordinates in the universe that 
surrounds us will, in the final analysis, always lead back (directly or indirectly) to 

                                                
 (1) Mind you, we will not be dealing here with a new foundation for relativity theory in general linear 
coordinates without the use of Galilean coordinates then, even if such a foundation might be possible, and 
would perhaps even be desirable as a better explanation for some of the main questions. 
 (2) Since the word “clock” is used in various senses in relativity theory, I propose to call devices that do 
nothing but show the passage of time “chronoscopes,” while the ones that are intended for the 
“measurement” of time will be referred to as “chronometers.”  A proper relativistic coordinate system will 
then be described intuitively as a “reference observer (Ger. Bezugsmolluske = “reference mollusk”) with 
embedded chronoscopes.”  Whether or not the coordinate-clocks of the linear systems “tick uniformly” and 
differ from the chronometers of Galilean systems only by the “rate of ticking” (and their mutual 
calibration), we will call them chronoscopes here, since the consideration of linear coordinates is typically 
regarded as the first step towards a better understanding of the general-relativistic coordinates. 
 (3) We will also often set x1 = x, x2 = y, x3 = z, x4 = ct.  Cf., footnote 2, pp. 5. 
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“individual instructions (1)” that pertain to certain material objects.  However, those 
individual instructions have no fundamental connection with the individual instructions 
of a normal-unit yardstick or a normal clock (see below, number 9). 
 
 
 6. – The general Einsteinian coordinates have so little intuitive meaning that we have 
no right to distinguish one of those coordinates as a time coordinate and to regard the 
other ones as space coordinates.  However, they will seldom be used with that degree of 
generality. 
 If it is possible to associate a “reference observer with embedded chronoscopes” with 
one of the coordinates xi then we would like to call the coordinates reference observer 
coordinates; we will choose the coordinate that is shown by the chronoscopes to be the x4 
coordinate.  It is only when the “mutual calibration” of the chronoscopes is subject to 
certain further restricting conditions that we can call the x4 coordinate a proper 
relativistic coordinate (*).  We will discuss the difference between these three kinds of 
coordinates in more detail in Part II in terms of simple examples, in order to formulate 
them in general after that in Part III. 
 
 
 7. – All three of the coordinate types that we just enumerated can also appear in 
special relativity as linear coordinates (2).  For our purposes, it will suffice to restrict our 
consideration to those coordinates.  From now on, we will then assume that the functions 
in (1) are linear.  As is known, the motion of a freely-moving mass point and any light 
signal in a vacuum are expressed by means of linear equations on the basis of such 
coordinates.  We will not go further here into the question of the extent to which, or in 
what sense, that property is characteristic of those coordinates.  Intuitively, one can refer 
to those coordinates as spatially-affine “unaccelerated” relativistic coordinates. 
 Hence, instead of (1), we can now write (3): 
 

11 1 12 2 13 3 14 4

21 1 22 2 23 3 24 4

31 1 32 2 33 3 34 4

41 1 42 2 43 3 44 4

,

,

,

.

X A x A x A x A x

Y A x A x A x A x

Z A x A x A x A x

cT A x A x A x A x

= + + + 
= + + + 
= + + + 
= + + + 

   (L) 

 
To simplify, we have already assumed that the functions are not only linear, but also 
homogeneous, which can always be arranged by a trivial shift of the coordinate origin.  
We shall temporarily assume that the constants Aik define a non-vanishing determinant. 
 
 
 
 

                                                
 (1) Cf., H. Weyl, Raum, Zeit, Materie, 5th ed., pp. 8.  
 (2) Cf., H. Weyl, loc. cit., 4th ed., pp. 160.  
 (3) The notations are chosen such that the Aik can be considered to be dimensionless constant.  Cf., 
footnote 2, pp. 5. 
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II. 
 

 8. – In order for the physically-intuitive viewpoint to emerge better, we would first 
like to discuss some special cases of the transformation (L) in as elementary a way as 
possible, and only then go on to a more general formulation. 
 We then start from an arbitrarily-chosen, but fixed, Galilean system, which we would 
like to call G, and introduce new linear coordinate systems by means of transformation 
equations of type (L).  We will refer to the new coordinate systems with the same 
symbols that we use for the transformation equations that lead to them. 
 
 
 9. We can already make the same remarks from our viewpoint in regard to the 
simplest of all transformation equations: 

X = Ax .     (Lz) 
 
At first, it shall be expressly shown that this equation [as well as equations (L), in 
general] should be regarded as the transformation of the coordinates with no change in 
the physical unit of length.  Hence, only a new notation for the points on the x-axis will 
be introduced by that equation.  The physical unit of length is an “individually 
designated” body (1); e.g., the normal meter of platinum-iridium that is preserved in 
Sèvres, which has largely nothing to do with the enumeration of the points along the x-
axis (2).  It first becomes meaningful for the measurement of lengths and the 
determination of the γαβ and gik coefficients. 
 Nonetheless, coordinate transformations are often referred to as changes in the unit of 
length (along the x-axis) by mathematicians.  In a similar sense, one often speaks of 
different length units in different directions.  Should that manner of speaking be 
maintained, one must distinguish between “physical” and “mathematical” units of length.  
The mathematical unit of length would then be nothing but what the physicist intuitively 
calls the “unit scale along an axis.”  The length measurement would be regarded as a 
comparison of the physical unit of length with the mathematical one.  If the physicist 
speaks roughly of a unit of length then we must, in any event, assume that he means a 
physical unit of length in the sense that was given above. 
 
 
 10. – As is known, it is practical to give the result of a measurement of length along 
the x-axis in the form: 

σ 2 = γ11 x
2.      (2) 

 

                                                
 (1) Cf., number 5.  
 (2) For that reason, it would be most logical to consider the xi as dimensionless quantities.  However, as 
is known, dimensions are only agreements.  They should be defined as practically as possible.  That 
requirement probably best corresponds to endowing all four coordinates xi with the dimension of length.  
The equation x4 = ct then keeps its usual sense, and for the concrete interpretation of special gravitational 
fields, such as, e.g., static or stationary fields, one can, with no further assumptions, identify x1, x2, x3 with 
certain lengths and x4 / c with certain time durations.  In the final analysis, our way of establishing 
dimensions rests upon the agreement that under any change in the unit of length, the enumeration of the 
space-time points should also suffer a corresponding change. 
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One can briefly explain the physically-geometric meaning of the γ11 coefficients as 

follows: 11γ  is the length (in cm) of a scale unit (∆x = 1) along the x-axis.  In that, we 

understand length to mean the result of a measurement that is performed with a normal 
yardstick. 
 In surface theory, as well as in “true” geometry (in which only “spatial” coordinates 
come under consideration), above all, the state of motion of the yardstick is not 
mentioned at all, so one can probably think of the measurement of length in physical 
geometry as nothing but something that is performed by means of yardsticks “at rest.”  
First of all, “at rest” must mean “at rest relative to a Galilean system.”  Special 
complications will arise for an “accelerated” reference system (i.e., in the absence of 
gravitational fields) that shall be discussed in the second article.  However, in the second 
place – as we shall soon see – even for linear systems, the γαβ coefficients that are 
measured by means of yardsticks that are “relatively at rest” (i.e., “co-moving”) are 
generally not equal to the corresponding gαβ coefficients (*). 
 
 
 11. – With those remarks, there is no longer anything that prevents us from 
introducing the differential form: 

dσ 2 = 
,

dx dxαβ α β
α β

γ∑ ,    (3) 

 
which represents the square of the spatial separation, or explaining the geometric 
meaning of the individual γαβ coefficients.  As is known, the γαα correspond to the γ11 in 

(2); for α ≠ β, one has γαβ = αα ββγ γ cos (α, β), where (α, β) means the angle between 

the xα-axis and the xβ-axis.  However, to once more stress this fact, only the γαβ 
coefficients actually affect the usual general manner of representation for the 
geometrically-intuitive meaning of the “gik coefficients,” and thus, neither the gαβ for 
non-orthochronous coordinates nor the g4α and g44 coefficients (cf., nos. 2 and 10). 
 
 
 12. – Similar arguments relate to the transformation: 
 

T = Bt.      (Lt) 
 
For a clock, it corresponds to a new calibration that changes the rate of ticking by a 
constant ratio.  However, if we imagine two neighboring clocks – e.g., a chronometer in 
the system G and a neighboring L-chronoscope – then B will give the ratio of the rates at 
which those two clocks tick.  The time T that is shown by the chronometer will also be 
called “proper time” τ for that chronometer, as well as for the “comoving” chronoscope.  
If we set – B2 = g44 then we can then write: 
 

ds2 = − c2 dT 2 = − c2 dt 2 = − g44 (c dt)2 = − g44 (dx4)2.  (4) 
 
That formula can be regarded as a special case of the general formula for ds2, as long as 
the relativistic coordinate systems to which the two clocks belong are mutually at rest.  
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Namely, the equations dx = 0 = dy = dz will then follow from the equations dX = 0 = dY = 
dZ, and conversely. 
 We then see that we are dealing with just simple ratios here, since a comoving 
chronometer will always measure the g44 coefficient (independently of whether the 

coordinates are orthochronous or non-orthochronous), and indeed 44g− gives the time 

that is shown by a comoving chronometer (in sec) that corresponds to the time duration 
(∆t = 1) of a tick of the system chronoscope.  One can also say that this root gives the 
ratio by which the coordinate chronoscope ticks slower than the comoving normal 
chronometer (1). 
 
 
 13. – We now go on to a discussion of linear transformations that act upon a spatial 
coordinate = e.g., x – and a temporal coordinate t at the same time.  Speaking intuitively, 
we then consider a “line world”; i.e., the “events along the x-axis” or “the static 
existence” in a two-dimensional Minkowski  (xt)-diagram (whose use we would like to 
avoid here as much as possible, however). 
 We would like to put the general linear homogeneous transformation that leads us 
from G to the coordinate system x, t in the following form: 
 

( ),

( ).

X A x wt

T B t ax

= − 
= − 

     (L2) 

 
It is specialized only insofar as the non-vanishing of the determinant AB (1 – aw) implies 
the non-vanishing of A11 and A44 .  We will see directly that one must restrict the absolute 
values of the coefficients w and a as above if one would like to interpret x as the spatial 
coordinate and t as the time coordinate (2). 
 
 
 14. First, we consider the following especially simple special case of (L2): 
 

X = x – wt, T = t (w > 0).    2( )L′  

 
 That has the form of the well-known Galilei transformation of classical kinematics, 
although the interpretation that we shall now give it is completely different.  Namely, we 
consider 2( )L′  to be the defining equations of new coordinates, without postulating the 

fundamental equivalence of the new reference system.  In classical kinematics, one 
regards 2( )L′  as: 

 

                                                
 (1) Since only linear relativistic coordinates will be considered in this article, comoving chronometers 
will also be moving “without acceleration” or “falling together.”  The difficulties that occur for time and 
length measurements in gravitational fields shall be discussed in particular in the second article. 
 (2) On the grounds of convenience, one always takes B > 0, and usually A > 0, as well.  We shall also do 
that, and in addition, we will consider w and a to be positive quantities in any event for concrete examples.  
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 1. A reference system that moves with the constant velocity w in the direction of the 
X-axis relative to the Galilean system G. 
 
 2. A Galilean system. 
 
 Here, in the special theory of relativity, 2 is false, as we said.  However, 1 can only be 
asserted when: 

| w | < c,     (5) 
 
since no material point can move faster than or equally fast as light relative to a Galilean 
system. 
 
 
 15. – If one has: 

w > c      (6) 
 
then one can still always employ the number-pair x, t in order to characterize the 
individual event-points in our line world, but the event x = const. can no longer 
correspond to successive states of the same mass point.  There can then be no reference 
observer in the Einsteinian sense.  However, if one would like to further establish that 
the x-numbers can be regarded as characteristic of the “spatial points” then one would 
come to some entirely remarkable results.  Bodies at rest in 2L′  cannot exist at all, and the 

light signals would only propagate in one direction, but with two different velocities w + 
c and w – c, along the x-axis. 
 We then arrive at the simplest example of an “improper relativistic coordinate system 
without a reference observer” whose use (like that of all improper relativistic coordinate 
systems, moreover) is possible, in principle, but quite impractical.  Both axes would be 
space-like in a Minkowski  diagram. 
 
 
 16. – To complete the picture, we would like to briefly outline how things work in the 
(3+1)-dimensional case.  We consider a linear reference system that arises from G by the 
transformation 2( )L′  when one adds the equations Y = y, Z = z.  We assume that a flash of 

light is generated at any point P in the system at any time t = T.  After a certain time ∆t, 
one will find all of the emitted light signals on the surface of an ellipsoid (which is just a 
sphere in our simple special case).  However, when w > c, we will find the emission point 
outside of that ellipsoid!  It will be found inside of it only for proper coordinates when w 
< c, and at the center of the ellipsoid, only for orthochronous coordinates, and thus, only 
for w = 0 for the example that is considered now. 
 We will soon see that one comes to more remarkable results for other types of 
improper relativistic coordinates when one would like to establish the interpretation of x1, 
x2, x3 as spatial coordinate and t as the time coordinate (see below, number 22). 
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 17. – We now return to the proper relativistic coordinates 2L′  and assume that the 

condition (5) is valid.  If we define the “velocity” in the system 2L′  to be the derivative of 

the x-coordinate with respect to the t-coordinate (1) then its absolute value will be greater 
or smaller than the corresponding velocity in the Galilean system G.  The (scalar) “speeds 
of light” in both directions (2), viz., c+ and c− , will be correspondingly equal to c + w and 
c – w, resp. 
 We can write the square of the interval in 2L′  as follows: 

 
2

2 2 2 2 2 2
2

2 2
11 41 44

2 ( ) 1 ( )

2 ( ) ( ) .

w w
s X c T x x ct ct

c c

g x g x ct g ct

 
= − = − − −  

 
= + + 

   (7) 

That gives us: 

g41 = 
2

c c

c
− +−

,      (8) 

 
which is an equation that clarifies the “physical sense” of that coefficient in the case that 
was just considered [cf., number 24, equation (19)]. 
 One can say the following about the physical meaning of the other two coefficients 

g11 = 1 and g44 = − 
2

21
w

c

 
− 

 
: Although t = T, a chronometer that is at rest in 2L′  does not 

show the “time” t.  Since it moves in the “synchronous” Galilean system G, in which T = 

t, it will move slower with the ratio of 
2

2
1

w

c
− : 1.  From the general rule (number 12), 

however, it measures the coefficient g44 , and 44g−  =
2

2
1

w

c
− . 

 By contrast, a normal unit yardstick that is at rest in 2L′  does not directly measure the 

corresponding 11g , but only 11γ .  In our case, we see that best when we imagine that 

this yardstick moves relative to G with the velocity w.  Therefore, due to the Lorentz 

contraction, the contraction of its ends will correspondingly be ∆X = 
2

2
1

w

c
− .  However, 

since ∆x = ∆X, that yardstick, which rests along the x-axis, will cover less than a unit 

interval, and indeed 11γ = 
2

21 1
w
c

− , while 11g  = 1 (3).  One clarifies the study of 

this important fact most easily by the difference between g11 and γ11 in non-orthogonal 
coordinates in connection with the transformation 0

2( )L (see number 21). 

                                                
 (1) The word “velocity” is used with various meanings (*) in the theory of relativity. 
 (2) Cf., number 24, last paragraph. 

 (3) The given value of 11γ  follows from (7), (27), and (32) by calculation.  
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 Here, we can point out that one can also measure 11g  directly with a normal unit 

yardstick, but we must give it a velocity w in the direction of the x-axis in order to do 
that.  That yardstick is then at rest in G, so its endpoints will correspondingly give ∆X = 
1, and since the times that are given in G and 2L′  agree, we can write s2 = (∆X)2 = (∆x)2, 

and it will follow from this that g11 = 1, as it should be, from (7). 
 
 
 18. – We direct our attention to another simple special case of (L2), and indeed to the 
transformation: 

X = x, T = t – ax (a > 0) ,   0
2( )L  

 
which is especially interesting, insofar as it first played a role with the appearance of the 
theory of relativity, although it had also been used in classical physics, in principle.  One 
can characterize that transformation in a physically-intuitive way as the “mutual 
calibration” of the coordinate chronoscopes without changing their state of motion and its 
x-direction.  We leave one of those chronoscopes – e.g., the one that is found at X = x = 0 
– at rest, while we shift another one – X = x = 1 – while all of the other ones are 
proportional to their distance from the first chronoscope.  One can then call a the 
coefficient of the mutual calibration of the coordinate chronoscopes, or also (see number 
20) the asymmetry coefficients of the relativistic coordinate system considered. 
 It is interesting that all velocities (with the exception of the velocity 0) experience a 
change by the mutual calibration of the coordinate chronoscopes, even though neither the 
“unit of length along the x-axis” nor the ticking rate of the coordinate chronoscopes will 
change, and the two coordinate systems G and 0

2L  will be found in a state of relative rest.  

In this, we understand the word “velocity” to be the derivative of the x-coordinate with 
respect to the t-coordinate, as in number 17 above. 
 
 
 19. – We now assume that: 

| a | < 
1

c
,     (9) 

 
in which 0

2L  is associated with a proper relativistic coordinate system.  The relation: 

 

v = 
1

V

aV±
     (10) 

 
exists between the absolute value of the velocity V in the Galilean system G and that of v 
in 0

2L , where the plus or minus sign in the denominator is taken according to whether the 

velocity points in the direction of the positive or negative x-axis, resp.  In particular, the 
speeds of light in both directions are: 
 



Weyssenhoff – Intuitive aspects of the theory of relativity. 1. 11 

c+ = 
1

c

ac+
, c− = 

1

c

ac−
.    (11) 

 
In this, we see the reason that we had to set | a | c < 1 above.  The complications that arise 
when one drops that inequality will be discussed in number 22. 
 
 
 20. − From (11), we calculate: 

a = 
2

c c

c c
− +

− +

−
.     (12) 

 
For that reason, as we remarked before, we can call a the asymmetry coefficient of the 
system 0

2L , and all the more so, since a similar formula: 

 

a = 
2

v v

v v
− +

− +

−
     (13) 

 
will be true for any two “dynamically equivalent” velocities v+ and v− that correspond to 
two equal and opposite velocities in the comoving Galilean system G, as one easily 
calculates from (10).  If we then separate – e.g., two identical mass-points that are at rest 
in 0

2L  – by means of a symmetric agency that acts between them − e.g., a 

homogeneously-compressed spring that is cut in the middle – and measure its (scalar) 
velocity v+ and v−  in this reference system then we will have performed a “dynamical 
experiment” for the measurement of the asymmetry coefficient a. 
 If one mutually adjusts the coordinate chronoscopes in such a way that light moves 
with the same velocity in both x directions then that will also imply the same velocities in 
both directions for all “dynamical symmetry experiments.”  One can introduce that fact as 
one of the basic postulates of the theory of relativity (cf., footnote 1, pp. 3). 
 
 
 21. – We can summarize the physically-intuitive interpretation for the formula for the 
square of the interval in 02L : 

 
s2 = (1 – c2 a2) x2 + 2ca · x (ct) – (ct)2    (14) 

 
as follows:  From the general rule of number 12, a normal clock that is at rest in 02L  

measures 44g− , but on the other hand, it also shows the “time coordinate,” since in the 

comoving Galilean system G, in which ∆T = ∆t (for X = x = const.), is likewise at rest; 
hence, g44 = − 1, as it should be, from (14). 
 A normal unit yardstick that is at rest in a linear reference system always has a “rest 
length” of one, regardless of the calibration of the coordinate chronoscope; the separation 
σ of its two endpoints is equal to one.  However, the interval between the two event-
points that correspond to the same time coordinate t is only equal to one when those 
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events are simultaneous in the Galilean system in which the yardstick is at rest.  
Otherwise, a correction that corresponds to the term – c2 (∆T)2 would have to be 
subtracted from the expression for the square of the interval in Galilean coordinates.  
One can clarify the state of affairs in the two coordinate systems 02L  and G, which both 

have the same reference observer, in an elementary intuitive way.  If we lay a yardstick at 
rest along the x-axis then it will cover a piece ∆X = 1 = ∆x of that axis, and therefore γ11 = 
1; hence, the g11 in (14) will be different from one, on the grounds that were given before 
(1). 
 From (12), the coefficient g44, which is equal to ca in our case, is proportional to the 
difference of the speeds of light in both directions, as in the case of 2L′ .  The general 

formulas will be given in number 24. 
 
 
 22. – If we now assume that: 

a > 
1

c
      (15) 

 
then we will get the simplest example of an “improper relativistic coordinate system with 
a reference observer.”  Such a thing certainly exists in our case, since it is identical with 
the reference observer of the Galilean system G that is relatively at rest, except that the 
coordinate chronoscopes in 0

2L  are mutually calibrated so clumsily that one would arrive 

at entirely remarkable results when one would like to interpret the given of those 
chronometers as “time” in that reference system. 
 A certain velocity in G would then correspond to an infinite “velocity” in 02L , and 

(which is probably even harder to imagine) many velocities in G would correspond to 
opposite “velocities” in 0

2L , even though the two reference systems G and 0
2L  are at rest 

with respect to each other!  In particular, the “velocities” of both light signals that 
emanate from a point would prove to be positive.  However, one must not say that both 
signals propagate in the same direction 0

2L  (since they indeed move next to each other in 

the comoving system G), but rather, that one of them moves “into the past.”  The 
noteworthy sign of its “velocity” does not originate in the inversion of the dx in the 
numerator, but in the dt in the denominator.  That will perhaps become clearer when one 
arranges a chronometer in such a way that it moves with a speed that is larger than 1 / a 
in the negative X-direction in G.  Even though all of the coordinate chronoscopes in 0

2L  

“run forwards,” the evolution of this chronometer, when evaluated by the 0
2L  

chronoscopes, will run backwards! 
 
 
 23. – We shall once more consider the corresponding (3+1)-dimensional part of an 
“improper relativistic coordinate system,” as in number 16, but this time “with a 

                                                
 (1) For ∆t = 0, we get from 0

2
)(L  that ∆X = ∆x, ∆T = − a ∆x, so s2 = ∆X2 – c2 ∆T2 = (1 – c2 a2) ∆x2, and 

from that, g11 = 1 – c2 a2. 
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reference observer,” and repeat the Gedanken experiment that was described there.  This 
time, the light signals that are sent from a point P at the “time” t to the “time” t + ∆t will 
define a hyperboloid of two sheets (with a focus at P) (1).  The ellipsoid in no. 16 can be a 
hyperboloid here, since the “speed of light” is infinitely large in some directions.  One 
also suggests that only one sheet of the hyperboloid (viz., the one that is closer to the 
point P) corresponds to events that are later than the light flash at P, and the other one, to 
events that are earlier.  In order to consider all light signals that are emitted from P at 
“time” t, one must consider yet another “time point” with a smaller t.  The two 
hyperboloids together would correspond to one wave front that is emitted from P and 
another one that contracts to it. 
 The difficulties in the description of the “propagation” of light in 0

2L  for ac > 1 are 

obviously connected with the fact that the t-coordinate parts company with the “main 
property” of time that for two causally-connected events, the effect will always 
correspond to a larger value of that coordinate than the cause. 
 
 
 24. – We would like to add some words about the general (L2)-transformation, since 
from now on, that will be only one step towards the general (3+1)-dimensional case.  We 
would now like to exhibit matter in such a way that an arbitrary, proper, linear, 
relativistic coordinate system L2 is given in our line-world, by which, we can go to  ∞1 
Galilean systems by means of linear transformations of type (L2).  Two of them are 
coupled to L2 in an especially simple way, and they are, in fact: 
 
 1. The “comoving Galilean system” or “proper system of the system L2” (which we 
would like to call G2) that we obtain when we set w equal to zero in (L2). 
 
 2. The “synchronous Galilean system” – viz., G′ − that we likewise get by setting a 
equal to zero. 
 
 The values of the three remaining coefficients in (L2) are then coupled uniquely with 
the three gik coefficients.  We shall now give formulas that can be seen to be direct 
generalizations of the ones that were discussed already.  One will preserve their validity 
in the general case, as well (number 26), by replacing the x-axis with the xα-axis. 
 For the square of the interval, we get: 
 

s2 = (∆X)2 – c2 (∆T)2 = g11 (∆x)2 + 2 g41 ∆x ∆ct + g44 (∆ct)2,  (16) 
with 

g11 = A2 – B2 (ca)2,  g41 = − A2 
w

c
+ B2 ca,  − g44 = B2 − A2 

2

2

w

c
. 

 
We calculate from this that for a = 0: 

                                                
 (1) It is interesting to exhibit the state of affairs in a (2+1)-dimensional Minkowski  diagram, or in the 
(1+1)-dimensional case, to represent it in rectangular X, T coordinates, or even better, in rectangular x, t 
coordinates. 



Weyssenhoff – Intuitive aspects of the theory of relativity. 1. 14 

w = 
2

c c+ −−
,     (17) 

and for w = 0: 

a = 
2

c c

c c
− +

− +

−
 = 

2

v v

v v
− +

− +

−
 = 41

44

1 g

c g−
,    (18) 

 
in which v+ and v− mean a pair of “dynamically-equivalent” velocities, as in number 20. 
 When we set s = 0 in (16) and divide by (∆t)2, we will get a quadratic equation for the 
speed of light in L2 .  The two roots of that equation will have opposite signs in a proper 
relativistic coordinate system; we set them equal to c+ and c− .  The positive quantities c+ 
and c− then refer to the scalar speeds of light in the two directions of the x-axis.  We get: 
 

g41 = 44 2

c c
g c

c c
+ −

+ −

−
= 44 2

v v
g c

v v
+ −

+ −

−
 = 11 2

c c
g

c
− +−

.   (19) 

 
 

III.  
 

 25. – After that elementary discussion, we can now briefly address the general (3+1)-
dimensional case.  Equations (L) mediate the transition from the starting Galilean system 
G to the linear system L.  In order for a reference observer to exist for it, the points that 
are at rest in L must have velocities in G that are smaller than c.  We then obtain the 
“condition for the reference observer” from (L) directly: 
 

2 2 2
14 24 34A A A+ + < 2

44A ,      (20) 

 
or, by substituting this in the expression for s2: 
 

g44 < 0.      (21) 
 
 However, in order for L to be a proper relativistic coordinate system, its chronoscopes 
must be correspondingly “mutually calibrated” (*), and in fact, in such a way that no 
point that moves in G with a speed that is below or above that of light can pass the L-
chronoscopes at constant t .  It must then follow from ∆t = 0 that: 
 

2 2 2
X Y Z

T T T

∆ ∆ ∆     + +     ∆ ∆ ∆     
< c2,    (22) 

 
which says nothing but the fact that the form s2 must be positive-definite for ∆t = 0.  As is 
known, the conditions for this are: 
 

g11 > 0,  11 12

21 22

g g

g g
> 0, | gαβ | > 0.   (23) 
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 The inequalities (21) and (23) together then express the condition for the L-
coordinates to be proper relativistic coordinates, and at the same time, they also guarantee 
that s2 will be a nondegenerate quadratic differential form with an index of inertia of 3.  It 
is known that the general condition for this, independently of the type of coordinate 
system that was used as a basis, is that only one change of sign occurs in the sequence: 
 

1,      g11 ,      
11 12

21 22

g g

g g
,      | gαβ |,      | gik | .   (24) 

 
It is easy to see that it follows from (21) and (23) that | gik | < 0, but not conversely, so the 
first four quantities in (24) will be positive for, e.g., four space-like axes (i.e., improper 
relativistic coordinates with no reference observer), and the change of sign must result at 
the last step, but then g44 > 1. 
 
 
 26. – If we then assume that L is a proper linear relativistic coordinate system without 
observing how it would come about – as in number 24 (cf., number 24).  In order to 
briefly recapitulate the physical meaning of the gik coefficients in this coordinate system, 
we write the expression for s2 in the following forms that emerge from each other by 
elementary algebraic conversions.  In that, we distinguish between covariant and 
contravariant tensor components, and make use of Einstein’s summation rule (α, β from 
1 to 3, i, k from 1 to 4): 
 

s2 = gik x
i xk = gαβ x

α xβ + 2g4α xα (ct) + g44 (ct)2,       (25) 
= γαβ x

α xβ + g44 (t – aα xα)2 = σ 2 + g44 (t – aα xα)2,  (250) 

 = gαβ (x
α − wα t) (xβ − wβ t) + 44 2

w w
g g

c

α β

αβ
 

− 
 

(ct)2,   (251) 

in which: 
γαβ = gαβ − c2 aα aβ ,      (26) 

aα = 4

44

1 g

c g
α

−
,                (27) 

wα = − c gαβ g4β .      (28) 
 
 Equations (250) and (251) can be interpreted as the way that one can go from L to a 
“comoving Galilean system” G0 and a “synchronous Galilean system” G′ (cf., number 
24) by means of linear coordinate transformations (1). 
 We can now summarize the Gedanken experiments that will lead to the measurement 
of the individual gik coefficients as follows: We first place a chronometer at rest in L; the 
time duration (in sec) of a tick of the coordinate chronoscope (∆t = 1) that one reads off 

of that chronometer will give us 44g− (cf., numbers 12, 17, and 21).  We then measure 

the speeds of light in the six directions of the positive and negative axes and obtain the 

                                                
 (1) It is plausible that these two systems are defined up to an orthogonal space transformation.  
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components of the “asymmetry vector” from them by means of the formula (cf., numbers 
20 and 24): 

aα = 
2

c c

c c
α α

α α

− +

− +

−
.     (29) 

 
We can also perform three “dynamical experiments” instead of them (numbers 20 and 
24) and use the formula: 

aα = 
2

v v

v v
α α

α α

− +

− +

−
.     (30) 

 
 We obtain the g4α coefficients from g44 and aα by using the formula [cf., (26) and 
numbers 21 and 24]: 

g4α = − g44 c aα .     (31) 
 
 We then measure the γαβ coefficients of the fundamental spatial form σ 2 by means of 
yardsticks at rest in the known geometric way and obtain the gαβ coefficients from them 
using the formula [cf., (26), as well as numbers 21 and 24]: 
 

gαβ = γαβ + g44 c
2 aα aβ .    (32) 

 
 We can also measure the gαβ coefficients directly with yardsticks, but we must use 
yardsticks that move with the velocity wα relative to L, instead of ones at rest (cf., number 
17, last section). 
 
 
 27. – Allow me to conclude our study with a quotation from Felix Klein ’s wonderful 
lectures on the development of mathematics in the Nineteenth Century (1).  As Klein  
said, one can “make the four-dimensional way of thinking true deductively from the 
outset” without having to “discuss the existing experiments and gradually reinterpret their 
originally three-dimensional conception,” but immediately after that, to allude to the 
analogy with the Copernican and geocentric world-models, he added: “Admittedly, there 
still remains the half of astronomy that satisfies the Copernican picture only in abstracto 
and does not endeavor to go into the rigorous details of thinking through the geocentric 
observations precisely from that standpoint.” 
 
 

___________ 
 

                                                
 (1) Bd. II, pp. 75.  


