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 The basic assumptions pertaining to space-time measurements in gravitational fields will be discussed 
by means of yardsticks and chronometers, and it will be shown that – contrary to a very widespread opinion 
– the “rigidity” of the yardsticks does not need to be assumed, and that an arbitrarily-moving clock does not 
generally show its “proper time.”  The elastic properties of the materials that the yardstick and clocks are 
composed of first play a role for the “measurements of the second kind” by means of a measuring device 
that is at rest in the gravitational field. 
 Occasionally, the possibility of defining the gravitational field, as distinct from the metric field, will be 
mentioned, and the condition for the “irrotationality” of a gravitational field will be given. 
 
 
 1. – In the first part (1), I discussed the role of linear (hence, non-Galilean, in general) 
coordinates and the physical meanings of the individual gik coefficients in special 
relativity from the standpoint of an intuitively-minded physicist.  That mainly happened 
in order to ease the intuitive comprehension of the connection between special and 
general relativity, since the simplest transition from general to local geodetic space-time 
coordinates leads directly to (approximate) linear coordinates and not to (approximate) 
Galilean coordinates. 
 In the present article, we shall mainly discuss the ways by which space-time 
measurements in gravitational fields will differ from those in Galilean domains.  In it, we 
shall generally understand space-time measurements to mean the various kinds of length 
and time measurements and the measurements of the gik coefficients that are connected 
with them, and regard the intuitive physical meanings of those measurements in special 
relativity, as in A I, as being sufficiently clarified. 
 It should be remarked expressly here that, just as in A I, we are not proposing to 
either criticize relativity theory or attempt to axiomatize it, but merely to raise some 
points that are often represented in a manner that is either not sufficiently clear, 
imprecise, or completely false. 
 Even those – like Carathéodory, Reichenbach, Robb, Weyl, et al. – who cared to 
embark upon that axiomatization, based upon the foundation of “light geometry” could 
not help but introduce assumptions about the behavior of bodies in gravitational fields in 

                                                
 (1) “Anschauliches zur Relativitätstheorie. I. Lineare Koordinate und gik-Koeffizienten in der speziellen 
Relativitätstheorie,” Zeit. Phys. 95 (1935), 391-408.  Cited as A I in what follows. 
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order to encompass all of relativity theory.   They were then also obliged to address their 
place among the questions that will be discussed below. 
 
 
 2. Measuring with soft rubber yardsticks. – For the moment, we base ourselves 
upon the foundations of special relativity and, in particular, direct our attention to the fact 
that a reference system that is fixed on the Earth can no longer be considered to be a 
Galilean system as in pre-relativistic mechanics – with a gravitational field that acts in it 
– and that relativistic measurements in a true Galilean system (an “Einsteinian elevator” 
that falls freely without drag, a Moon rocket that moves freely without rotation, the center 
of the Earth) can take on a much simpler form than they do in our laboratories on Earth. 
 Since no perturbing influence of a gravitational field makes itself known, one does 
not need either “rigid” or “almost rigid” yardsticks in order to carry out length 
measurements in such a system.  Any unforced, rotationless, freely-suspended body can 
be employed as a yardstick.  Indeed, since any unforced fluid mass will assume a 
spherical form when it is at rest in a Galilean system, one can also use such spheres for 
length measurements, in principle! 
 One can eliminate a flaw in the current manner of representation with that obvious 
remark that consists of the fact that one uses “rigid” – if not also “infinitely small” 
yardsticks in order to base geometry, and then proves that a “rigid” body is impossible 
according to the laws of relativity.  The degree of “rigidity” of the “yardstick” first plays 
a role for certain relativistic measurements in a gravitational field, as we will explain 
below. 
 It should be pointed out briefly here that one might probably conclude from the 
“equivalence of all Galilean systems” that equal bodies that move the same way relative 
to two Galilean systems must behave the same in all respects, although it by no means 
follows from this that two yardsticks that are made from different materials and have the 
same length at rest next to each other in a Galilean system will also remain that way for 
arbitrary common motions.  In contrast, we have grounds for believing that this is not so.  
For the foundation of the theory, it is, in principle, unimportant that this difference is 
negligibly small in many cases.  If one therefore often introduces the explicit assumption 
that “two line segments (that are defined by any two points that are marked out on a solid 
body) that can be made to overlap at one point in time can be made to overlap always and 
everywhere” then one must probably understand that to mean that both line segments can 
be compared only in a “free Galilean system at rest.” 
 
 
 3. Concept of the gravitational field. – It is known that different gravitational 
fields can arise in one and the same relativistic domain according to the coordinate 
system that is used as a basis.  However, in order to be able to assume the viewpoint of an 
intuitively-minded physicist, it is advisable to not refer to any relativistic coordinate 
transformation as a change in the gravitational field, but merely the ones that can be 
regarded as a transition to a new reference observer (1). 

                                                
 (1) We assume that such a thing is present, since we would like to restrict ourselves to the consideration 
of merely proper relativistic coordinates in the present treatise. 
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 Since a relativistic domain with a well-defined metric can also be referred to as a 
metric field, I propose to clarify that a gravitational field is a metric field with a well-
defined reference observer.  In it, one can perform arbitrary coordinate transformations of 
the form: 
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[with the well-known restriction that under coordinate transformations, a true relativistic 
coordinate system should go to another such system (1)].  Speaking intuitively, one can 
cover the points of the reference observer with arbitrary “curvilinear spatial coordinates” 
and also calibrate the “coordinate chronoscopes” that are embedded in it in a largely 
arbitrary way.  However, their “mutual calibration” must satisfy certain inequalities, in 
addition to the obvious conditions of continuity and “smoothness,” if one is to ensure that 
the Einsteinian coordinate system that now arises will remain a true relativistic 
coordinate system (2). 
 In the four-dimensional Minkowski  diagram, a gravitational field in the sense above 
is nothing but a relativistic domain with a given metric and a given congruence of 
everywhere time-like lines.  I have treated the physical and invariant-theoretic problem 
that this implies on another occasion (3). 
 We will refer to a point with constant xα coordinates (α = 1, 2, 3) as being at rest in a 
gravitational field; by contrast, we will speak of points that are instantaneously at rest 
when their velocities vanish relative to the reference observer (without the higher 
derivatives of the spatial coordinates with respect to x4 needing to vanish).  In the former 
case, the world-lines of the point considered will coincide with the lines of the given 
congruence, while in the latter, they will only contact them. 
 
 
 4. Transforming away the gravitational field. – Now, as is known, the transition 
from special to general relativity is accomplished in such a way that one distinguishes a 
special class of coordinate systems in the neighborhood of any event-point P0 .  In 
Riemannian geometry, one calls those coordinate systems “geodetic at P0”.  In physics 
(and in a certain approximation that we would not like to make more precise here), they 
take on the role of the inertial systems of special relativity, and will be called “local 
inertial systems.” 
 Intuitively, the transition to a local inertial system will be referred to as transforming 
away the gravitational field, although one often exhibits the realization of such a 
transition simply when one says that a freely-falling, sufficiently-small box will realize 
such a system, as long as that box does not rotate, in general.  We once more reiterate that 
if one wishes to obtain a local inertial system then it will not suffice to release a box that 
is at rest in a gravitational field suddenly, but without any jerk, but one must generally 
apply a correctly-chosen rotational impulse when one releases it, in general.  If the box 

                                                
 (1) Cf., e.g., A I, § 4 and 25.  
 (2) Cf., e.g., A I, § 18 to 23 and 25. 
 (3)  “Metrisches Feld und Gravitationsfeld,” Bull. Acad. Polon. Sci. et Lett. (1937), 252-159.  Cited as 
MG in what follows. 
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already falls freely then one can establish by correspondingly-chosen experiments 
whether it does or does not rotate relative to the class of all local inertial systems that 
correspond to the sufficiently-small relativistic domain considered, but there is no general 
process of releasing the box without rotation (or throwing it).  The old problem of 
absolute rotation once more appears here in new clothing! 
 The aforementioned angular velocity by which a sufficiently-small box that is 
initially in a gravitational field at rest and then released without jerk will begin to rotate 
(1) is nothing but the angular velocity of a “particle” in the reference observer relative to a 
local inertial system.  It amounts to (2): 
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 As an example, we appeal to a disc that rotates uniformly relative to a Galilean 
system, and which determines a unique gravitational field in the sense that was defined 
above when regarded as a reference observer (and indeed independently of the calibration 
of the coordinate chronoscopes on the disc).  It is clear that an arbitrarily-small body that 
is initially fixed on the disc and then set free suddenly will fly away along a circular 
tangent and rotate about its center of mass with the angular velocity of the disc.  The 
gravitational field on the disc is just a “gravitational vortex field,” in which ωαβ ≠ 0. 
 Let us remark here, by the way, that a “particle” in the reference observer that relates 
to the local inertial system, in addition to a collective acceleration (3) (which can vanish 
for certain – viz., neutral – fields, such as in the Einstein or Lemaître universe) and a 
collective rotation, will suffer a deformation in general (4), which will, however, vanish 
in all stationary gravitational fields (5).  The process of releasing the box will be further 
complicated by their presence.  Nonetheless, those complications are only concomitant to 
the special Gedanken experiments that are used to “generate” the local inertial systems.  
However, in the main definition of the transition to a local inertial system, such an 
experiment is not necessary with no further conditions.  The transforming away of the 
gravitational field indeed rests, in the final analysis, upon a change of reference observer, 
relative to which we describe phenomena.  The new reference observer will be 
determined by a rotationless, freely-suspended, unforced body without that body needing 
to be initially at rest in the given gravitational field. 
                                                
 (1) As far as what will happen later is concerned, that depends not only upon the gravitational field in all 
of the domain that it describes, but also on the distribution of mass in its interior.  It is easy to construct an 
example in which a box that falls freely in a static field (in which ωαβ always vanishes) will take on an ever 
larger angular velocity. 
 (2) MG.  Equation (17).  
 (3) MG.  Equation (11).  
 (4) MG.  Equation (16). 
 (5) As is known, one calls a gravitational field stationary when one can define a relativistic coordinate 
system with gik coefficients that are independent of x4.  A stationary field is static when one has g4α = 0 in 
that coordinate system, as well. 
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 One can also think of the transforming away of the gravitational field as being 
performed in such a way that the new reference observer is defined by freely-moving 
points.  In the event that these points are thought of as initially at rest in the given 
gravitational field, one must distribute them with (infinitely-small) velocities that are 
chosen according to the manner of release in order to compensate for the aforementioned 
rotational motion, as well as any deformation velocity that might be present.  The 
aforementioned common acceleration will then be cancelled automatically.  The 
distribution of a common translational velocity (relative to the local inertial system) will 
be unaffected. 
 
 
 5. Space-time measurements of the first and second kind. – Already in § 2, we 
have confirmed the difference in principle between making relativistic measurements in a 
Galilean system and a gravitational field.  In order to exhibit the difficulties in making 
precise measurements in a gravitational field intuitively, we can imagine either measuring 
lengths in a laboratory on the Earth in which we have, however, only yardsticks and 
apparatuses made of soft rubber to work with or making length measurements with 
ordinary metal yardsticks in gravitational fields that are much more intensive than that of 
the Earth (e.g., like the ones that many stars produce), or ones that we can produce 
artificially, say, by means of a centrifuge. 
 In particular, direct your attention to the fact that saying that a body is “at rest in a 
gravitational field” will mean nothing precise as long as one knows nothing more specific 
about the way that its state was established.  So, for example, a suspended yardstick and 
an identical one that is erected close to it will exhibit a different length when one is 
precise.  (One should also confer the statements at the end of § 2.) 
 Previously, it was believed that all of those difficulties would go away when one 
assumed the existence of an “absolutely rigid body.”  However, such an assumption finds 
no support in experiments, since all bodies are more or less compressible and bendable.  
Moreover, an “absolutely-rigid body” cannot be approximated with arbitrary precision by 
passing to the limit of ever larger elastic constants, since such a passage will, in principle, 
be impracticable in relativity theory, due the existence of the upper limit on the speed of 
signals. 
 One also tries to compel the “rigidity” of the yardstick by reducing its dimensions, 
since obviously all of the effects that were mentioned here and at the end of § 2 will 
become all the smaller when one chooses smaller yardsticks (and clocks).  Now it is 
plausible that such a passage to the limit is something fundamentally different from the 
ones for which the definition of the local inertial system plays a role and which are, in 
fact, inevitable for the foundation of general relativity.  Whether a relativistic domain can 
been chosen to be sufficiently small that one can cover it with a coordinate system that is 
practically equivalent to a Galilean system will depend upon its curvature field.  One can 
obviously move any solid body, no matter how small, in it in such a violent way that it 
cannot be considered to be “rigid” for that motion. 
 Although the latter passage to the limit (or one that is equivalent to it) must certainly 
play a role for any precise founding of the relativistic theory of elasticity, we do not need 
to consider it further here, since, in principle, neither an “absolutely rigid body” of finite 
dimensions nor an “infinitely small” one is necessary for the founding of relativistic 
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measurements in a gravitational field.  In order to clarify that as briefly and succinctly as 
possible, we will need to distinguish between two types of relativistic measurements in 
gravitational fields. 
 Primarily, only measurements of the first kind play a role in the fundamental basis for 
relativistic measurements, and they are the ones that are performed by means of 
“absolutely unaccelerated” (i.e., rotationless in a local inertial system), freely-suspended 
yardsticks and clocks.  Hence, e.g., a length measurement of the first kind will be 
performed by an observer that lives in a (stationary) gravitational field when he throws a 
normal meter stick upwards without rotation in such a way that it comes to rest along the 
line segment to be measured (which is at rest in the gravitational field) and must then fall 
back again.  The body that serves as yardstick is then by no means established in that 
way.  It remains in a given gravitational field only momentarily, but during a finite time 
interval in a local inertial system (1).  Time measurements of the first kind will be 
discussed in the next paragraph. 
 Now, one might justifiably object that, in reality, measurements of the first kind can 
never be performed and are possible only as Gedanken experiments.  For that reason, one 
must also consider measurements of the second kind by means of yardsticks that are at 
rest in gravitational fields.  The elastic properties of the yardstick and the construction of 
the clocks first play a role for them, so their precise theory can first be constructed upon 
the basis of the relativistic theory of elasticity.  In practice, it is the business of the 
experimental physicist to consider the corresponding corrections for the influence of the 
gravitational field on his measuring devices.  Those corrections can be made negligibly 
small, in general, due to the existence of “practically rigid bodies.”  However, it is, in 
principle, definitive that measurements of the first kind, for which the elastic properties 
of the measuring bodies play no role, will suffice for the definition of the concept of 
space-time in metric fields (see § 7, as well). 
 
 
 6. Proper time measurements. – It is often assumed (and even frequently raised to 
an axiom!) that an arbitrarily-moving (rotationless?) clock will yield its proper time; i.e.: 
the integral: 
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when it is taken over the world-line of the clock from the event-point A to the event-point 
B.  However, there is no reference point in experiments for making that statement for 
arbitrary accelerations and clocks that are rotating arbitrarily fast (relative to the local 
inertial system).  In contrast, for a sufficiently large acceleration, any clock will certainly 
stand still or even go to pieces!  One might imagine throwing a Nardin chronometer out 
of a window! 
 Nonetheless, one cannot deny that the integral (3) possesses an invariant meaning.  
However, it can generally be evaluated, not by one clock, but by an infinitude of them, in 

                                                
 (1) It is interesting to point out that the possibility of performing such Gedanken experiments is implied 
by the rapid damping of elastic oscillations in measuring bodies, and thus, in the final analysis, by the 
validity of the second law of thermodynamics.  
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such a way that each of those clocks is a rest in a local inertial system, while the world-
line contacts the world-line AB.  Something similar is true in thermodynamics, where the 
integral that determines the increase in entropy must be calculated along a “quasi-static” 
path, in which perhaps one takes a large number of heat reservoirs whose temperatures, in 
turn, differ by only an infinitely-small amount and by which the bodies in question are 
brought into thermal contact with each other! 
 Although the process of evaluating the integral (3) might seem rather artificial, at 
first, it is still realized with high precision in nature, and to some extent automatically.  
Namely, if we observe a luminous gas that is at rest in a gravitational field then any 
luminous gas molecule will play the role of a freely-falling clock.  Those clocks are, in 
fact, not “momentarily at rest” in a gravitational field, but the influence of their irregular 
motions, which expresses itself in the line breadths, is easily estimated, and will possibly 
need to be considered. 
 
 
 7. Space-time measurements in a gravitational field. – In summary, we can 
describe the measuring-out of a gravitational field intuitively as follows: One measures 
the three-dimensional fundamental spatial tensor: 
 

γαβ = gαβ − 4 4

44

g g

g
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(cf., A I, § 26) in the usual geometric way by means of rotationless, freely-falling bodies 
that are instantaneously at rest and determine the “rest lengths” and “rest angles” in the 
gravitational field of a body at rest.  The coefficient g44 will be measured by a 
rotationless, free-falling chronometer that is instantaneously at rest in such a way that the 
time duration of an advance of the neighboring coordinate chronoscope by ε that one 

reads from that chronometer will be 44gε − ; hence, ε must be chosen to be sufficiently 

small. 
 One will get the values of the coefficients g4α, which are proportional to the 
difference between the speeds of light in two opposite directions of the xα parameter line, 
just as one does in the linear coordinate systems, from measuring the speed of light [A I, 
equations (29) and (31)] or by means of “dynamical experiments” (A I, § 20 and 26).  
Ultimately, one can calculate the gαβ coefficients from (4). 
 Obviously, this model simplifies noticeably in “irrotational gravitational fields” (1) 
and orthochronous relativistic coordinates. 
 
 Krakow, Institute for Theoretical Physics of the Jagellonian University. 

                                                
 (1) I call a gravitational field irrotational when (2) vanishes for it.  As was shown in MG, the vanishing 
of (2) is a necessary and sufficient condition for the possibility of introducing everywhere-orthochronous 
relativistic coordinates in a gravitational field. 


