“Anschauliches zur Relativitatstheorie. Il. Raumzessungen in Gravitationalsfeldern,” Zeit. Phi®7
(1937), 64-72.

Intuitive aspects of the theory of relativity

Il. Space-time measurements in gravitational fields.
By Jan von Weyssenhofin Krakow.
(Received on 18 May 1937)

Translated by D. H. Delphenich

The basic assumptions pertaining to space-time measntem gravitational fields will be discussed
by means of yardsticks and chronometers, and it wilhbess that — contrary to a very widespread opinion
— the “rigidity” of the yardsticks does not need to beiassd, and that an arbitrarily-moving clock does not
generally show its “proper time.” The elastic properté the materials that the yardstick and clocks are
composed of first play a role for the “measurements efsgcond kind” by means of a measuring device
that is at rest in the gravitational field.

Occasionally, the possibility of defining the gratidaal field, as distinct from the metric field, wile
mentioned, and the condition for the “irrotationdliv§ a gravitational field will be given.

1. — In the first part®), | discussed the role of linear (hence, non-Galil@aggneral)
coordinates and the physical meanings of the individyalcoefficients in special
relativity from the standpoint of an intuitively-mindeflysicist. That mainly happened
in order to ease the intuitive comprehension of theneotion between special and
general relativity, since the simplest transition frgemeral to local geodetic space-time
coordinates leads directly to (approximate) linear cooréand not to (approximate)
Galilean coordinates.

In the present article, we shall mainly discuss weys by which space-time
measurements in gravitational fields will differ frahose inGalilean domains. In it, we
shall generally understand space-time measurements tothe&arious kinds of length
and time measurements and the measurements gi tbeefficients that are connected
with them, and regard the intuitive physical meaningsho$¢ measurements in special
relativity, as in A |, as being sufficiently clarifie

It should be remarked expressly here that, just as inwelare not proposing to
either criticize relativity theory or attempt to amatize it, but merely to raise some
points that are often represented in a manner thafttherenot sufficiently clear,
imprecise, or completely false.

Even those — lik€arathéodory, Reichenbach, Robb, Weylet al. — who cared to
embark upon that axiomatization, based upon the foundafidight geometry” could
not help but introduce assumptions about the behavioodiéb in gravitational fields in

() “Anschauliches zur Relativitatstheorie. |. Line&m®ordinate undy-Koeffizienten in der speziellen
Relativitatstheorie,” Zeit. Phy95 (1935), 391-408. Cited as A | in what follows.
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order to encompass all of relativity theory. Theyewven also obliged to address their
place among the questions that will be discussed below.

2. Measuring with soft rubber yardsticks. — For the moment, we base ourselves
upon the foundations of special relativity and, in paréicudirect our attention to the fact
that a reference system that is fixed on the Earthncatonger be considered to be a
Galilean system as in pre-relativistic mechanics — witravitational field that acts in it
— and that relativistic measurements in a true Galifgstem (an “Einsteinian elevator”
that falls freely without drag, a Moon rocket that mefreely without rotation, the center
of the Earth) can take omauch ssmpler form than they do in our laboratories on Earth.

Since no perturbing influence of a gravitational field esmkself known, one does
not need either “rigid” or “almost rigid” yardsticks inorder to carry out length
measurements in such a system. Any unforced, rotatiofiless;-suspended body can
be employed as a yardstick. Indeed, since any unforced fhass will assume a
spherical form when it is at rest in a Galilean systene can also use such spheres for
length measurements, in principle!

One can eliminate a flaw in the current manner of sgpr&tion with that obvious
remark that consists of the fact that one uses “rigidf not also “infinitely small”
yardsticks in order to base geometry, and then provésathagid” body is impossible
according to the laws of relativity. The degree ofittity” of the “yardstick” first plays
a role for certain relativistic measurements in a gaseihal field, as we will explain
below.

It should be pointed out briefly here that one mighibpbly conclude from the
“equivalence of all Galilean systems” that equal bodiesniwve the same way relative
to two Galilean systems must behave the same insgdeots, although it by no means
follows from this that two yardsticks that are macdnf different materials and have the
same length at rest next to each other in a Galdgatem will also remain that way for
arbitrary common motions. In contrast, we have grodimdbelieving that this is not so.
For the foundation of the theory, it is, in principl@important that this difference is
negligibly small in many cases. If one thereforeonfintroduces the explicit assumption
that “two line segments (that are defined by any twatgdhat are marked out on a solid
body) that can be made to overlap at one point in temebe made to overlap always and
everywhere” then one must probably understand that &m ittt both line segments can
be compared only in a “free Galilean system at rest.”

3. Concept of the gravitational field.— It is known that different gravitational
fields can arise in one and the same relativistic doraasording to the coordinate
system that is used as a basis. However, in order &ble to assume the viewpoint of an
intuitively-minded physicist, it is advisable to not refer dny relativistic coordinate
transformation as a change in the gravitational field, roately the ones that can be
regarded as a transition to a new reference obséjver (

() We assume that such a thing is present, since we woul likstrict ourselves to the consideration
of merely proper relativistic coordinates in the presetise.
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Since a relativistic domain with a well-defined metrie @dso be referred to as a
metric field, | propose to clarify that gravitational field is a metric field with a well-
defined reference observer. In it, one can performraripitoordinate transformations of
the form:

a — a' 2 3

PR N CEE L ®

XT =X (X, X5,X%),
[with the well-known restriction that under coordin&t@nsformations, a true relativistic
coordinate system should go to another such syst@m $peaking intuitively, one can
cover the points of the reference observer with @ntyit“curvilinear spatial coordinates”
and also calibrate the “coordinate chronoscopes” @hatembedded in it in a largely
arbitrary way. However, their “mutual calibration” musatisfy certain inequalities, in
addition to the obvious conditions of continuity and ég&tihness,” if one is to ensure that
the Einsteinian coordinate system that now arises will remain a treltivistic
coordinate systenf)

In the four-dimensionallinkowski diagram, a gravitational field in the sense above
is nothing but a relativistic domain with a given metrimdaa given congruence of
everywhere time-like lines. | have treated the physacal invariant-theoretic problem
that this implies on another occasidh (

We will refer to a point with constarf coordinatesdq = 1, 2, 3) as beingt restina
gravitational field; by contrast, we will speak of points that ametantaneoudly at rest
when their velocities vanish relative to the referewteserver (without the higher
derivatives of the spatial coordinates with respeacf tteeding to vanish). In the former
case, the world-lines of the point considered will calacwith the lines of the given
congruence, while in the latter, they will only conttmm.

4. Transforming away the gravitational field. — Now, as is known, the transition
from special to general relativity is accomplished in sachkay that one distinguishes a
special class of coordinate systems in the neighbdrlgdoany event-poinP; . In
Riemannian geometry, one calls those coordinate systems “geoalef¢’. In physics
(and in a certain approximation that we would not like skenmore precise here), they
take on the role of the inertial systems of speciktikgty, and will be called “local
inertial systems.”

Intuitively, the transition to a local inertial sgst will be referred to as transforming
away the gravitational field, although one often exhibite tealization of such a
transition simply when one says that a freely4figlli sufficiently-small box will realize
such a system, as long as that box does not rotatenénae We once more reiterate that
if one wishes to obtain a local inertial system thewilit not suffice to release a box that
is at rest in a gravitational field suddenly, but withooy gerk, but one must generally
apply a correctly-chosen rotational impulse when @heases it, in general. If the box

() Cf,e.g., Al §4and25.

() Cf,e.g, Al §18to 23 and 25.

() “Metrisches Feld und Gravitationsfeld,” Bull. Acadl®h. Sci. et Lett. (1937), 252-159. Cited as
MG in what follows.
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already falls freely then one can establish by cooedingly-chosen experiments
whether it does or does not rotate relative to thesct# all local inertial systems that
correspond to the sufficiently-small relativistic domaonsidered, but there is no general
process of releasing the box without rotation (or thmgwit). The old problem of
absolute rotation once more appears here in new clothing!

The aforementioned angular velocity by which a suffidtjesmall box that is
initially in a gravitational field at rest and then reded without jerk will begin to rotate
(*) is nothing but the angular velocity of a “particle’tive reference observer relative to a
local inertial system. It amounts 0):(

1 ¢ |03 da 0a, da
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in which:
a,=3%  (g,8=1,2 13)
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As an example, we appeal to a disc that rotaté®romy relative to a Galilean
system, and which determines a unique gravitatiied in the sense that was defined
above when regarded as a reference observer (deddnndependently of the calibration
of the coordinate chronoscopes on the disc). dteiar that an arbitrarily-small body that
is initially fixed on the disc and then set freeddenly will fly away along a circular
tangent and rotate about its center of mass wihatigular velocity of the disc. The
gravitational field on the disc is just a “gravitatal vortex field,” in whicheayz# 0.

Let us remark here, by the way, that a “partictethe reference observer that relates
to the local inertial system, in addition to a eotive acceleratior?®) (which can vanish
for certain — viz., neutral — fields, such as ie Einstein or Lemaitre universe) and a
collective rotation, will suffer a deformation ireeral ), which will, however, vanish
in all stationary gravitational fieldS)( The process of releasing the box will be furthe
complicated by their presence. Nonetheless, tbosglications are only concomitant to
the special Gedanken experiments that are usegeteetate” the local inertial systems.
However, in the main definition of the transitioo & local inertial system, such an
experiment is not necessary with no further coodgi The transforming away of the
gravitational field indeed rests, in the final ars&d, upon a change of reference observer,
relative to which we describe phenomena. The neference observer will be
determined by a rotationless, freely-suspendedyraedl body without that body needing
to be initially at rest in the given gravitatiorfegld.

() As far as what will happen later is concerned, that depestdsnly upon the gravitational field in all
of the domain that it describes, but also on the Higfion of mass in its interior. It is easy to constran
example in which a box that falls freely in a stateddi(in whicha,z always vanishes) will take on an ever
larger angular velocity.

() MG. Equation (17).

() MG. Equation (11).

() MG. Equation (16).

() As is known, one calls a gravitational fied@tionary when one can define a relativistic coordinate
system withg; coefficients that are independent@f A stationary field istatic when one hag,, = 0 in
that coordinate system, as well.
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One can also think of the transforming away of the tatwnal field as being
performed in such a way that the new reference obsesvaefined by freely-moving
points. In the event that these points are thoughtsohitially at rest in the given
gravitational field, one must distribute them with (intiely-small) velocities that are
chosen according to the manner of release in ordempensate for the aforementioned
rotational motion, as well as any deformation veloditgt might be present. The
aforementioned common acceleration will then be céagtebutomatically. The
distribution of a common translational velocity (tela to the local inertial system) will
be unaffected.

5. Space-time measurements of the first and second kind.Already in 8§ 2, we
have confirmed the difference in principle between makatgfivistic measurements in a
Galilean system and a gravitational field. In ordeexbibit the difficulties in making
precise measurements in a gravitational field intuitively,can imagine either measuring
lengths in a laboratory on the Earth in which we hawsydver, only yardsticks and
apparatuses made of soft rubber to work with or makingttemeasurements with
ordinary metal yardsticks in gravitational fields that rmech more intensive than that of
the Earth (e.g., like the ones that many stars prodocepnes that we can produce
artificially, say, by means of a centrifuge.

In particular, direct your attention to the factttbaying that a body is “at rest in a
gravitational field” will mean nothing precise as longoag knows nothing more specific
about the way that its state was established. S@&xtmnple, a suspended yardstick and
an identical one that is erected close to it will exhéidifferent length when one is
precise. (One should also confer the statemente atrtd of § 2.)

Previously, it was believed that all of those diffitees would go away when one
assumed the existence of an “absolutely rigid body.” éi@n, such an assumption finds
no support in experiments, since all bodies are moressrdompressible and bendable.
Moreover, an “absolutely-rigid body” cannot be approxadatith arbitrary precision by
passing to the limit of ever larger elastic constasit&e such a passage will, in principle,
be impracticable in relativity theory, due the existenicthe upper limit on the speed of
signals.

One also tries to compel the “rigidity” of the yatids by reducing its dimensions,
since obviously all of the effects that were menttbhere and at the end of § 2 will
become all the smaller when one chooses smallelsteks (and clocks). Now it is
plausible that such a passage to the limit is somethingaimentally different from the
ones for which the definition of the local inertial gstplays a role and which are, in
fact, inevitable for the foundation of general relayiviéwhether a relativistic domain can
been chosen to be sufficiently small that one careich with a coordinate system that is
practically equivalent to a Galilean system will depapdn its curvature field. One can
obviously move any solid body, no matter how smalit im such a violent way that it
cannot be considered to be “rigid” for that motion.

Although the latter passage to the limit (or one thagisivalent to it) must certainly
play a role for any precise founding of the relativistieory of elasticity, we do not need
to consider it further here, since, in principle, neither‘absolutely rigid body” of finite
dimensions nor an “infinitely small” one is necesséy the founding of relativistic



Weyssenhoff — Intuitive aspects of the theory of reiatill. 6

measurements in a gravitational field. In order toifgldhat as briefly and succinctly as
possible, we will need to distinguish between two typeeeltivistic measurements in
gravitational fields.

Primarily, onlymeasurements of the first kind play a role in the fundamental basis for
relativistic measurements, and they are the ones dhatperformed by means of
“absolutely unaccelerated” (i.e., rotationless in a lavattial system), freely-suspended
yardsticks and clocks. Hence, e.g., a length measureatfetite first kind will be
performed by an observer that lives in a (stationargyitational field when he throws a
normal meter stick upwards without rotation in such a thay it comes to rest along the
line segment to be measured (which is at rest in thetgtiavial field) and must then fall
back again. The body that serves as yardstick is thamhyeans established in that
way. It remains in a given gravitational field only monaeity, but during a finite time
interval in a local inertial systent)( Time measurements of the first kind will be
discussed in the next paragraph.

Now, one might justifiably object that, in realityjeasurements of the first kind can
never be performed and are possible only as Gedanken expistink@r that reason, one
must also considameasurements of the second kind by means of yardsticks that are at
rest in gravitational fields. The elastic propertieshef yardstick and the construction of
the clocks first play a role for them, so their prediseory can first be constructed upon
the basis of the relativistic theory of elasticityn practice, it is the business of the
experimental physicist to consider the corresponding dwrscfor the influence of the
gravitational field on his measuring devices. Those ctores can be made negligibly
small, in general, due to the existence of “practicadyd bodies.” However, it is, in
principle, definitive that measurements of the firstdkifor which the elastic properties
of the measuring bodies play no role, will suffice the definition of the concept of
space-time in metric fields (see 8 7, as well).

6. Proper time measurements= It is often assumed (and even frequently raised to
an axiom!) that an arbitrarily-moving (rotationless?) klaall yield its proper time; i.e.:
the integral:

[ Car (drz :—izdszj, 3)
A C

when it is taken over the world-line of the clockrh the event-poinA to the event-point
B. However, there is no reference point in expentmdor making that statement for
arbitrary accelerations and clocks that are ragatirbitrarily fast (relative to the local
inertial system). In contrast, for a sufficienidyge acceleration, any clock will certainly
stand still or even go to pieces! One might imagimrowing a Nardin chronometer out
of a window!

Nonetheless, one cannot deny that the integrapg3sesses an invariant meaning.
However, it can generally be evaluated, nobhg clock, but byan infinitude of them, in

() ltis interesting to point out that the possibility offoeming such Gedanken experiments is implied
by the rapid damping of elastic oscillations in meagubodies, and thus, in the final analysis, by the
validity of the second law of thermodynamics.
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such a way that each of those clocks is a rest ina iloertial system, while the world-
line contacts the world-linAB. Something similar is true in thermodynamics, where the
integral that determines the increase in entropy mustloelated along a “quasi-static”
path, in which perhaps one takes a large number of ésetvoirs whose temperatures, in
turn, differ by only an infinitely-small amount and by whithe bodies in question are
brought into thermal contact with each other!

Although the process of evaluating the integral (3) mggem rather artificial, at
first, it is still realized with high precision in nagjrand to some extent automatically.
Namely, if we observe a luminous gas that is at irest gravitational field then any
luminous gas molecule will play the role of a fre@lling clock. Those clocks are, in
fact, not “momentarily at rest” in a gravitationallfiebut the influence of their irregular
motions, which expresses itself in the line breadthsasily estimated, and will possibly
need to be considered.

7. Space-time measurements in a gravitational field= In summary, we can
describe the measuring-out of a gravitational field intuiias follows: One measures
the three-dimensional fundamental spatial tensor:

0., 9
Vap = Qap— ——t (4)

44

(cf., A1, 8 26) in the usual geometric way by means tdtionless, freely-falling bodies

that are instantaneously at rest and determine the lénegths” and “rest angles” in the
gravitational field of a body at rest. The coefficiemi; will be measured by a

rotationless, free-falling chronometer that is instardasly at rest in such a way that the
time duration of an advance of the neighboring coordinhtenoscope by that one

reads from that chronometer will &g/ —g,, ; hence £ must be chosen to be sufficiently

small.

One will get the values of the coefficients,, which are proportional to the
difference between the speeds of light in two oppabitetions of thex” parameter line,
just as one does in the linear coordinate systems, freasuming the speed of light [A I,
equations (29) and (31)] or by means of “dynamical expersihdit |, 8§ 20 and 26).
Ultimately, one can calculate tlygs coefficients from (4).

Obviously, this model simplifies noticeably in “irrotatangravitational fields” ¥)
and orthochronous relativistic coordinates.

Krakow, Institute for Theoretical Physics of the Jagelloniauversity.

() | call a gravitational field irrotational when (2avishes for it. As was shown in MG, the vanishing
of (2) is a necessary and sufficient condition for thesgility of introducing everywhere-orthochronous
relativistic coordinates in a gravitational field.



