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1. — In order to make the concepts of “metric field” and “gational field” more
precise, and in that way, to hopefully meet up with tlegvpoint of an intuitively-minded
physicist, we define anetric field here to be a space-time domain with a well-defined
metric and agravitational field to be a metric field with a well-defined reference
observer. Inthat sense, a disc that is rotatiragivel to aGalilean system will determine
a gravitational field, and indeed independently of the caldwaof the coordinate
chronoscopes. Dropping &insteinian elevator corresponds to a transition from one
gravitational field to another.

It is inevitable that no definition of the concept ofgaavitational field” can satisfy
all of the nuances that the various authors will gweghat concept. The one that is
proposed here has the advantage that it at least teadswell-defined physical and
mathematical statement of the problem.

Speaking four-dimensionally, a gravitational field, witle tefinition that was given
above, is equivalent to a space-time domain with a defihred metric and a well-
defined congruence of everywhere-timelike world-lines. it_eé stressed expressly here
that we are dealing with a distinguished line congruenienee, a direction field — and
by no means with a distinguisheettor field.

2. — In a given gravitational field, we can perform an arbtraoordinate
transformation of the form:

ga,:ga,(gl, 52, 53), (l a)

V=Y (Y 8% 85 &Y. (1 b)

Here and in what follows, the Greek indices shall romfil to 3 and Latin ones from 1
to 4. Since we would like to consider nothing but propecespiane coordinate systems
with the fourth axis as the time axis, the four functiams(l) must satisfy certain
conditions, in addition to the usual regularity comais that are expressed as inequalities
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(*). We shall not write out those inequalities heiieges we will make no explicit use of
them.

Equations (1) differ from the most general proper sp@aoe-tcoordinate
transformations by the lack &t in (1 a).

3. — In order to find the characteristic tensors of the tatwnal field, we shall
pursue a physically intuitive path here, and first pose tbkelgm of ascertaining the state
of motion in the given reference observer of fieoordinate syster8 in a sufficiently-
small space-time domain relative to a local inertystesm. To that end, we consider an
arbitrary space-time poinP, and assume, for the sake of simplicity, that §ts
coordinates vanish.

The known equation$)

5i:Xi_£{i}ka| )

(in which, the curly brackets meadhristoffel three-index symbolsit the point Po)
mediate the transition betweé&hand a locally-geodetig'-coordinate systemh at Po,
whose axis directions & coincide with those d. _

In what follows, we shall consider the (as well as thef') to be first-order
infinitesimals and then neglect the terms or order ethesnd higher. In that
approximation, the curvatures of the space-time continsuthe neighborhood o
will play no role, and it is one of the basic asstions of general theory of relativity that
(in this approximation) one can consider xheoordinates to be “linear coordinates”; i.e.,
affine coordinates in Galilean systemY). We can go further from these coordinates to
ordinary Lorentzian coordinates by a suitably-chosen linear substitution, thet
arbitrariness of the clarity that is present in théofving arguments would probably
suffer as a result. _

The equations are easily solved for thevith the desired approximation, since one
must only simple replacg with &', and conversely. If we make partial use of that
freedom and single out the spatial indicesf, y= 1, 2, 3), and especially the temporal
index 4, in the double summation then we will get:

a_ ga E a a ¢p a B4 } a| a,a
x'=£& +2{,8y}55 +{4’8}5x +2{44}xx. 3)

4. — Those equations can be regarded as the equations ohnodtthe reference
observer in Lagrangian form (with the ‘tagrangian coordinates” é“ which
characterize the individual particles of the referertzsenver), in the event that can be

() Cf., e.g., Jan voWeyssenhoff, “Anschauliches zur Relativitatstheorie, |I” ZeRhys.95 (1935),
391. Cited as A | in what follows.

() Cf., e.g.L.P. Eisenhart, Riemannian Geometry, Princeton, 1921, pp. 91 (18.13).

) Al § 7;H. Weyl, Raum, Zeit, Materie, 4" ed., pp. 160.
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regarded as “time.” However, thxecoordinates (as well as thg -coordinates) are not
“orthochronous” {), in general. It is only when we have changed the rhaoalirations
of the coordinate chronoscopes such that this orthookity () is attained that we can
regard the givens of the chronoscopes as being propdrtriame.” The L-observer
will then remain unchanged.

One can represent that transition computationallyoiswis: In L, one will have

C)):

2
F=guX X=0%+ 944(X4+%X0j ) 4)
44
in which:
= YapXOXF (5)
and
04, 9
Vap=Qap— ——L. (6)
44
If we now set:

ct= \ T Y [X t— gM j (7)
g44
then we will have

f=0?-2t (8)
and the coordinatgxl, X%, %2, X* will obviously represent the desired orthochronous
coordinate systerh with the same reference observerLasn that,t gives the time

directly in seconds.
We can now convert equations (3) as follows:

— za E By 4 a g4y y a g4V Y 2
_5 +2{ﬁ }5 5 { } L\’ 44 9445J {44}[\/ 44 g44<(} . (9)

These are three equations of the form:

x7=x7 (&4 &2, &% 1), (10)

which can obviously be regarded as the equations of matibagrangian form for the
Sreference observer relative o in a sufficiently-small neighborhood of the poifif =
0 and during a sufficiently-small time-interval.

A Al §2.

() The four-dimensional geometrical interpretation of {friocess raises no special difficulties.

() Cf.,e.q., Al egs. (25), (26), and (27).

() Here, as in what follows, thg, (as well as the three-index symbols) mean the valfi¢sose
guantities aP, . They must then be held constant for the furthiéréntiations that one must perform.
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5. — We will get:

a__C Ja
=—_ 11
4 Oas {4 4} )

from this by a double partial differential with respect,tavhich is the “acceleration of
the reference observer” (of the poff = 0 of the reference observer) relative to the local
inertial systent.”.

We obtain the velocity components as linear funetiasf the “Lagrangian
coordinates’é “ from (9) by a single differentiation with respectttand from them, we
get the “deformation tensor of the reference obserggrby using the general formula:

s 0 X7 0T &
€ =308 V3% B
ox” ot o0& ot ox

(12)
In our case, we haves” /ox* = d;, and an easy calculation will yield:

v _ C a _% a
W[{w} 944{44}} )

By contraction, that will give the “dilatation velidy of the reference observer”:

c 0
v = —In , 14
N Jy (14)

in which ymeans the three-dimensional determinant ofy4ge In the derivation of this
formula we have made use of the known formula:

Ll = ol =2,

whereg = | gi |, as well as the easily-verified relatigs gas ¥

In order to decompose the deformation tensor (it3y its symmetric and
antisymmetric parts'), we must first lower the upper index, which meste about as a
result of the three-dimensional fundamental spaéiasor (6). After some conversions,
we will then get:

Eap = Vop E3, (15)

1 ¢ 0y
T S 2B
3 (Eap + €pa) 2 =g, o

(16)

() Cf.,Weyl, loc. cit., 5" ed., pp. 42.
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1 ¢ |0a; o9a oa da,
= 1 (Eap— Epa) = = £ _Ta f-a , 17
Wap = 5 (Eap~ Epa) 2 \/ 0., {axa ox? (aa ot P oaxt j} (17)

in which we have set:

ay = % ) (18)
944

The latter bivector is especially interesting,csint gives the angular velocity of the
reference observer relative to the local inertystemL .

6. — We have thus arrived at various expressionsateatiefined by thgix and their
first derivatives and that behave like the compdsmen three-dimensional tensors under
the transformation (1) — i.e., with the introduatiof new coordinates without changing
the reference observer. We would now like to distabthat state of affairs
computationally. As is known, the general transfation equations of the contravariant
and covariant four-vectors read:

a'=A'd, a=Aa, (19)
in which:
. OX poxX
= — = . 20
A PV A PV (20)
In our special case:
A=A =0, (21)
and for that reason, we will also have:
ALTAY = 1. (22)

The transformation formulas (19) will then assuime following forms:

a”=A"a", ar=Aa,+A a, (23)
a* =A'a” + Afa’, ar=Ala,. (23)

All other four-dimensional tensors transform likes tcorrespondingly-chosen products of
such vectors.

It next transpires that the nig&” components of the four-dimensiomgi tensor only
transform amongst each other, and in fact, like ¢benponents of a spatial tensor,
according to the formula:

9" = AT g™ (25)

We have not yet encountered this “spatial tenstarigathe physically-intuitive path, but
it represents nothing but the doubly-contravariforin of the “fundamental spatial
tensor”y,s, as a simple calculation will yield:
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9% yy=9; . (26)

The tensor properties of thgsz are obvious from (23), (24) directly.
In order to verify the tensor properties of (11) and (&) ,must direct our attention
to the transformation formulas for the three-indexisgls:

"l DLy 0 (27)
iK' =AAA i k A o

As is known, the last term has the effect of sayingtthia symbol does not define a four-
dimensional tensor. However, in our case, that tesith vanish especially for the
Christoffel symbols that appear in (11) and (13).

7. — As is known, in a metric field, one can alwaysadethe space-time coordinates
in such a way thals, vanishes for the entire field. However, the referesfzzerver must
change, in general. It is easy to givenecessary and sufficient condition for the
possibility of introducing everywhere-orthochronous coordinates into a given
gravitational field.

To that end, we consider the following transformati@nmulas, in which the
conditions (21) have already been considered:

Oaa = A:’Ajlgd,’a’ + A:'Ang ' (28)
O4s = M’Afgu- (29)

If we now demand thals, = 0 then when we divide the first equation by the secoied o
and consider (18) and (20), we will obtain:

ox* ox*
0 _aaw: 0. (30)

That is a system of three partial differential equaio four variables. In order for it to
possess a hon-constant solution, it mustdoeplete (*). One must then have:

0 0 0 0
— - =0. 1
(6x" % ax“j(axﬂ % ax“j (31)

The calculation of this operator implies the desiredd@wmon, which one can give in the
form:

CWhp = 0. (32)

) See, e.gl.. P. Eisenhart, Continuous Groups of Transformations, 1933. Theorem (2.1).
p
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We then see, e.g., that it is impossible to introdweeygvhere-orthochronous space-
time coordinates on a rotating disc (relative t&Gailean system) — viz., the disc is
considered to be the reference observer. In other witridsimpossible to calibrate the
clocks on the disc in such a way that all light sigmalsrun symmetrically; i.e., with the
same velocities in opposite directions.

8. — The characteristic tensors of the gravitational falolw one to sort those fields
into various types. Of particular interest are, egrayitational fields with vanishing®.
One can call them, sageutral when they “point in no direction.” Free mass-poiats
rest will remain at rest in them, or — speaking four-disienally — the world-lines of
points at rest are geodetic. In recent times, theaegravitational fields have played the
role of “cosmological backgrounds.” Mewton’s theory of gravitation, a “neutral” field
was identical with a “vanishing” field — i.e., withGalilean system — which is obviously
not the case here in the general theory of relativity.

When ay,s vanishes, we can speak ofiarotational field (the fields of gravitational
vortices have still not been investigated very muchi, iarthe same way, we can speak
of adilatation-free field when e, =0, etc.

I would like to thankl. Lubanski for his help in checking the calculations.




