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1. – Foundations of the theory. 

 

 1. Foreword. – The recent theory of electrodynamics that is advocated by Maxwell, by its 

distinction between ether and matter in the interior of a body that is perceptible to the sense reverts 

to the opinions of the older schools to such a degree that the former distinction no longer exists. 

The electrical particles of the old theory are, in turn, justified. However, we have learned how to 

follow their interactions through the intermediary of the medium between them. Hence, the great 

problem was solved that was indeed formulated many times before Maxwell, although it resisted 

all attempts at solution. Moreover, Maxwell’s contribution no longer seems to be an overthrow of 

the previous theories, as much as an advance in their natural order of development. 

 H. A. Lorentz was the first to successfully evaluate the distinction between ether and matter 

in Maxwell’s theory, and in that way he drew attention to the way that it approached the older 

theories from the outset, which then presents itself. In the belief that in the interests of science, not 

enough weight can be placed upon that, I would like to attempt to lay another brick towards the 

union of the old and new theories. 

 For the notations, I shall refer to my contribution to the Festschrift für die Feier der Enthüllung 

des Gauss-Weber-Denkmals in Göttingen, 1899 (1). I shall also refer to it for a more detailed 

treatment. 

 

 2. – I shall use the terms ether and matter in a way that is entirely similar to that of H. A. 

Lorentz. Since I have already spoken of that on several occasions, fewer words will suffice here. 

 The optical behavior of streaming currents and similar phenomena show that the motion of 

matter that is perceptible to the senses is not itself carried along in the interior of light waves. As 

H. A. Lorentz showed, the aberration of light leads to the same conclusion. When we, with 

Maxwell, regard light as an electrodynamical process, we will be compelled to assume that there 

is a carrier of electrodynamical phenomena in the interior of matter that does not participate in the 

motions that are perceptible to the senses. In order to clothe that fact in words conveniently, we 

 
 (1) Published by B. G. Teubner, Leipzig.  
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shall distinguish between ether and matter. Speculating on their mutual relationship is not 

necessary for the immediate purpose of electrodynamics. Thus, we can postpone, for example, a 

discussion of whether we are dealing with different materials or the same material in different 

states. Matter and ether are only images that we see from our mortal standpoint in nature. The 

further advance in science of deciding what they correspond to in reality is yet to be achieved. 

 Whereas matter confronts us with a multitude of variations in its type, aggregation, and motion, 

for the representation of our experiences, the assumption will suffice that ether fills up all of the 

universe that is accessible to us with no noticeable gaps and no noticeable motions, and everywhere 

with the same extremely-simple properties. That is also true of the region that matter occupies, 

such that it seems to be completely saturated by the ether without displacing it noticeably. 

 A single constant will suffice to characterize the electrodynamical properties of the ether, 

namely, the speed of light V in the absence of matter. One must employ directed quantities, namely, 

vectors, in order to describe electrodynamical processes. 

 

 

 3. – We would like to start with optics in free ether. Very different physical meanings for 

vectors can come under consideration in that way. If K is one such vector then we can assume that 

the oscillation equation for one component K that is parallel to the arbitrary direction  is: 
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 In that way, the following condition will express the transversality of the oscillations and the 

assumption that excitations are also possible: 
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 A certain second vector H can be associated with every chosen vector K that has a reciprocal 

relationship with it. We get H by the defining equations: 
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 Along with, (1) and (2), they give the analogue to (3): 
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and as an analogue to (1): 
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 Hertz derived the formal system (2), (3), (4), (5), as a replacement for (1) and (2) [(4) and (6), 

resp.] from Maxwell’s theory in 1884. 

 A third system comes under consideration in electrodynamics that is more advantageous than 

the second one in many cases and is more closely connected to Maxwell’s. The vector potential 

of one of the vectors K and H is employed in it. We would like to choose H and denote the potential 

by , and then set: 
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  will still be undetermined by that. From the above, one must consider the value of: 
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to remain arbitrary. We shall reserve the right to make a suitable convention later. 

 The Ansatz (7) fulfills (4), and due to (3), it will imply that: 
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along with two similar equations. The entire system shows that V K can differ from the vector 

( / ,x t−  − y / t, − z / t) only by a vector part that possesses a scalar potential. If we denote 

that by  then we must set: 
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in which  means an arbitrary direction. Now the system (3) is also fulfilled with that. What 

remains are (2) and (5), and (2) yields: 
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 It follows from (5) that for an arbitrary direction  : 
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 In regard to the indeterminacy in , we now add the convention that: 
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 The replacement for (2) and (5) then follows that: 
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 (9), (10), (11), in conjunction with (7) and (8), represent the promised system of Maxwell 

equations. As we know it is not symmetric. That initially seems to be a drawback (which can be 

easily remedied, moreover), but in reality it is not, because due to the place of the theory of optics 

in the theory of electrodynamics, we will find ourselves in a position to accommodate precisely 

the asymmetry between electric and magnetic phenomena that exists according to experiments. 

 Maxwell did not employ the simplified relation (9). Namely, to him,  was not merely an 

auxiliary mathematical quantity, as it is for us, but a function of the state with special meaning, 

and therefore he had to leave the value of: 
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undetermined, although “not related to any physical phenomenon.” In an interesting paper that was 

cited in Section 12 of Levi-Civita (1897) (†), (9) was given as a consequence of hypothetical 

assumptions on  and . 

 

 

 4. Electric charge. – From Maxwell’s theory, the electric and magnetic excitation in the free 

ether can be represented by one vector from the pair of K and H of optics. Since we must consider 

the asymmetry that was just touched upon, the electric force will be denoted by K and the magnetic 

force by H in our case. 

 For a space in which equations (2) and (4) are fulfilled everywhere, one has the following rules 

for any closed surface: 
0

d K  = 0 ,  

0

d H  = 0 , 

in which d means a surface element and  is its normal. The index 0 is intended to recall that one 

is dealing with a closed surface. Indeed, if the surface itself lies in free ether, but it encloses matter, 

then (2) and (4) will be useless, and from (3) and (5), one can only conclude that the surface integral 

is independent of time. (2) and (4) likewise imply that all surfaces that enclose the same matter 

must also have the same values for their integrals. Experience teaches that non-zero values can 

appear for only the electric excitation, but not for the magnetic excitation. 

 We accordingly set: 
0

d K  = 4 e , 

0

d H  = 0 . 

The quantity e, which should be referred to the outward-pointing normal, depends upon the only 

the matter that is enclosed, but not upon the special form of the enclosing surface. It is called the 

total amount of electricity that is contained in matter. 

 If two bodies come into temporal contact then experiments show that they will often exhibit 

different charges from before. From the theorems that we just derived, the sum of the changes 

must survive the contact, so one body must have taken on just as much charge as the other one 

lost. The law of conservation of electricity then seems to be a consequence of (5). 

 From electrolysis, one can conclude that the electric charge goes back to the molecular 

structure of matter, since the individual atoms or groups of atoms can assume only a well-defined 

positive or negative charge or a whole-number multiple of it. 

 

 

 5. What does a change in charge mean now? – Until recently, that question raised special 

difficulties in electrodynamics. In 1895, H. A. Lorentz wrote (1): 

 

 “Therefore, if the assumption of that transition or exchange of ion charges 

(which is, of course, a very mysterious process) is the requisite extension of any 

 
 (†) Translator: The citation to this paper in in a footnote on pp. 11. 

 (1) Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten Körpern, pp. 6 and 7. Leiden 

1895. 
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theory that assumes a migration of electricity by ions then a sustained electric 

current can also never consist of a convection alone… Giese is of the opinion that 

an actual convection cannot come into play at all in metals. However, since it does 

not seem possible that “jumps” of charges are included in the theory, I hope that I 

might be excused for ignoring such processes completely, for my own part, and 

imagining that a current in a metal wire is simply a motion of charged particles.” 

 

  I had to take a similar approach in my own theoretical work in electrodynamics. The only 

alternative that seemed satisfactory to me was one that Helmholtz, among others, referred to in 

1881 in a talk at a conference that was held in honor of Faraday: We must regard electricity as 

having exactly the same constitution as matter, that is, we must also ascribe well-defined 

unvarying atoms to it. 

 Of course, we cannot regard electrical atoms as imponderable, in the sense of the older 

intuitions, because as a result of the electrodynamical processes that are connected with the motion 

of the ether, it will have a kinetic energy, so a mass, in the sense of mechanics. If we then 

contemplate the part that electrical particles play in the structure of perceptible matter then they 

will appear to be just such a thing. “That offers the enticing prospect of unifying matter and 

electricity into a higher viewpoint.” When I wrote that in an outline of a theory of electrodynamics 

in 1894, the purely-hypothetical character of the statement clearly emerged. It was only in the 

Spring of 1896 that I was able to give the widely-separated numbers 10−7 and 1 as the limits on the 

atomic weight of the special electrical atoms that are exchanged in the transfer of molecular 

charges. However, since that time, I have quickly become more certain of that fact. Zeeman’s 

discovery came about in the same year, and its explanation by H. A. Lorentz that suggested that 

one might assume that the atomic weight of the special electrical atoms was about 1/1000. In that 

Winter, my own investigations with cathode rays led me to the conclusion that they consisted of 

special electrical atoms and that their atomic weight was between 1/2000 and 1/4000 (1). 

 It is well-known that a great number of works would appear later that established that result 

and extended it in many directions. The numerical values for both phenomena were determined 

more precisely and approached each other. 

 

 

 6. Electron theory of electrodynamics. – If we combine everything together then we can 

assert the following with great confidence: 

 The charge of any material particle is peculiar to it for all time, so it never changes. 

 In order to make the actual sense of that hypothesis more precise, one must recall that we 

recognize the “amount of electricity” as a measure of the electrodynamical interconnection with 

the ether. It then emerges immediately that nothing further can be said besides the fact that the 

electrodynamical interconnection with the ether with any material particle (to the extent that it can 

be measured by the “amount of electricity”) is something that characterizes it for all time. 

 An electrical conduction current is always to be regarded as a flow of material particles then. 

That has been known for a long time for electrolytic conduction. What is new is that we must also 

 
 (1) E. Wiechert, Phys.-ökonom. Ges. zu Königsberg i Pr. 38 (1897), 7 January.  
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assume something similar for metallic conduction. If there are only special negative electrical 

atoms, and not also positive atoms of a similar type, then the motion would result in only the 

negative direction of the electrical current. 

 As H. A. Lorentz first showed, it is possible to regard the electrodynamical processes as 

nothing but consequences of the motions of electrical particles. It might be likely that the actual 

phenomena are not exhausted in that way, but in any event, we tentatively have the right to make 

that simplifying assumption in the implementation of our theory. 

 With that, we have returned to the basic picture of the old theory. The only difference is that 

we no longer regard the electrical fluid as imponderable, but as material. Stoney (1874) gave the 

name of electron to the smallest molecular charge. Since we shall place it at the center of our 

theory, we can also call it the electron theory of electrodynamics. 

 

 

 7. Field equations. – For the free ether, we assume (Section 3): 

 

xK

t




 = − 

yz
HH

V
y z

 
− 

  
 ,  xH

t




 = − 

yz
KK

V
y z

 
− 

  
 , 

yK

t




 = − x z

H H
V

z x

  
− 

  
 ,  

yH

t




 = − x z

K K
V

z x

  
− 

  
 , 

zK

t




 = − 

y x
H H

V
x y

 
− 

  
 ,  zH

t




 = − 

y x
K K

V
x y

 
− 

  
 , 

yx z
KK K

x y z

 
+ +

  
 = 0 ,  

yx z
HH H

x y z

 
+ +

  
 = 0 . 

 

 Those equations do not change for material systems, because we must take the electrons into 

account. However, it is not necessary to make further hypotheses, due to our assumption that the 

ether also penetrates matter and has the same properties, which will take the system that was 

written down to: 
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in which  denotes the electrical current, and  denotes the electrical density, and the following 

consequence will emerge from the foregoing equations: 

 

(16)     − 
t




 = 

yx z

x y z

  
+ +

  
. 

 

That system combines all of the experimental laws regarding the electric and magnetic field 

excitations. K, H, ,  represent mean values inside of matter, which would correspond to the 

assumption of a molecular constitution. 

  is the sum of a series of different physical processes: viz., convection, conduction current, 

dielectric polarization, and magnetization. 

 Hertz (and Heaviside) appealed to the system of equations (12) to (16). In Maxwell’s manner 

of representation, using the notations of Section 3, we will get: 
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 The last equation formulates the law of conservation of electricity. The relation: 
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appears as a consequence of (19), (20), (20), (21) here. 

 The system (17) to (21) is completely equivalent to the system (12) to (15), so that fundamental 

system can be taken to be that of the field excitations. 

 

 

 8. Effect of the ether on matter. – Up to now, we have observed only the excitation of the 

ether, such that the foundations of the theory of electrodynamics are still not complete. What is 

lacking is to establish the effect of the ether on matter. H. A. Lorentz was the first to show that 

the following two hypotheses will suffice for that: 

 

 An electrical particle of charge e experiences a mechanical force || K of intensity e K due to 

the electric excitation of the ether independently of its motion. 

 

 An electrical particle of charge e that moves with a velocity v experiences a mechanical force 

⊥ v and ⊥ H of intensity e v H sin (v, H) / V due to the magnetic excitation of the ether. 

 

 

 9. Concluding remarks. – The circle of fundamental hypotheses for a theory of 

electrodynamics is now complete. Given the wealth of phenomena that they embrace, there are 

very few of them, and all of them are either closely linked with experiments or chosen from the 

simplest possible ones: viz., the law of light motion in free ether, Maxwell’s assumptions, the fact 

that magnetic and electric excitations come into play in that way, the assumption of a carrier of 

those excitations that is omnipresent, everywhere at rest, and has the same behavior everywhere, 

which we call the “ether,” the idea that the interactions between ether and matter are coupled to 

just electrical particles and their motion, and finally, the two laws of the previous section. 

 Up to now, electrodynamical energy was still not considered. That was done intentionally in 

order to show that it does not need to be considered when one is establishing the basic concepts. 

However, when one applies the principle of energy, that will imply that the energy must be ascribed 

to the electrodynamically-excited ether, and that one must satisfy the requirements of the principles 

most simply by means of Maxwell’s energy formula and Poynting’s concept of the energy current. 
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II. – Elementary laws. 

 

 10. Formulation of the problem. – It is characteristic of the theory being developed that it 

assumes a propagation of electrodynamical excitations with the speed of light in the free ether. 

That suggests that it must be possible to represent the respective excitation at any location as a 

consequence of processes that take place at every location in space and go back so far in time that 

they correspond to that speed of propagation. Furthermore, since we assume that all excitations of 

the ether have their origin in electrical particles, we will suspect that it must also be possible, in 

the sense of the old theory, to relate the definitive processes to those electrical particles alone. 

 Similar problems in the theory of elasticity, as well as optics, have been treated many times 

before, and we will easily reach our goal when we make use of the methods that were developed 

in those theories. In what follows, I would like to go down the path along which Beltrami 

formulated Huygens’s principle analytically. 

 

 

 11. Elementary laws of space elements. – It would not be expedient to appeal to the equations 

for K and H directly, because the separation of both vectors leads to inconvenient auxiliary 

conditions. In such cases, one cares to introduce suitable auxiliary quantities. In our case, that was 

already done with  and , so with no further assumptions, we can exploit the system: 
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for the determination of  and . 

 Beltrami (1) employed the following mathematical lemma: If U is a function of the coordinates 

x, y, z, and r then one will have: 
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for an arbitrary point (0), in which r is understood to mean the distance from (0), the first integral 

refers to an arbitrary surface that surrounds the point (0), and the second one refers to the space 

that it encloses. n means the inward-pointing normal. In the differentiation with respect to r, one 

must regard x, y, z as constants, while in the differentiations with respect to n, x, y, z, one must 

 
 (1) E. Beltrami, Rend. Accad. Lincei (5) 4 (1895), pp. 51. W. Voigt gave a German presentation in Compendium 

der theoretische Physik, v. 2, Leipzig, 1896, pp. 776. 
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regard r as constant. In our case, we imagine that the surface is pushed out to infinity and assume 

that the associated integral can then be set equal to zero. What will then remain is: 

 

4 U0 = 
2 2 2 2
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 We set r = (t0 – t) V in that, where t0 is regarded as a constant and t is regarded as variable, 

such that U will go to a function of x, y, z, and t, and we obtain: 
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 If we apply that theorem to  and  then, with the use of the differential equations (19) and 

(20), that will immediately give: 
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with which, the following statement can be made: One will get the value of  and  for any 

location (0) and any time t0 by summing the components: 

 

d

r


       and      

d

r V


 

 

over all volume elements d. In that, r means the distance from the volume element to (0) and the 

values of  ( , resp.) are chosen to be the ones that go back to a distant time when an excitation 

that is emitted with the speed of light would have arrived at (0) at precisely time t0 . The potential 

components of the individual volume elements then seem to spread out with the speed of light. 

 The laws (23) and (24), along with formulas (17), (18), for the determination of K and H, and 

the law of conservation of electricity (21), give us a new representation of the field equations that 

replaces local action with forces-at-a-distance according to the model of the old theories. 

 

 

 12. Historical remarks. – In 1858, Riemann (1) already sought to exploit formula (19) in 

electrodynamics, along with the law (23) that it is linked with, which was derived here with the 

use of a lemma by Beltrami. However, since he considered only the electric force (but not the 

 
 (1) B. Riemann, Pogg. Ann. 131 (1867), pp. 237.  
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magnetic one), his process remained fruitless. (23) and (24), or corresponding theorems, were later 

exploited by Poincaré (1) (1891), and to the greatest extent by H. A. Lorentz (2) (1892 and 1895). 

In 1897, Levi-Civita (3) showed that one would arrive at the Hertz-Heaviside formulas when 

formulas similar to (23) and (24) were assumed in Helmholtz’s theory. 

 

 

 13. Elementary laws of electrons. – Only one last step remains for us: We must resolve the 

electrodynamical effect of matter into the contributions from the individual electrons using the 

process of W. Weber. With that, we then come to the actual subject of the present article. 

 At first, we can suspect that, in connection with (23) and (24) for an isolated electron of charge 

i =  d  and velocity v, we can simply set: 
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r V


= −

 
 
 

, 

 

and in fact, that was assumed for  in the time of Riemann. However, that path leads to 

contradictions with the fundamental assumptions of our theory, such as for example, in the 

treatment of any of the problems in Part III will show directly, so it is impassable. That is based in 

the fact that it is not permissible to pass to the limit of a point-like body, even before formulas (23) 

and (24) are applied. Indeed, those formulas are valid for spatially-distributed electricity, so that 

would demand that the passage to the limit would have to be first carried out after they have been 

applied. That amounts to the same thing as saying that the formulas (23) and (24) can be applied 

to only infinitely-small, but not point-like, bodies. 

 In that way, it shall be assumed that the body that we would like to call an “electron” is 

symmetric in all directions and exhibits no rotations. In the other cases, mean values would have 

to be taken. 

 Let (1) be the position of the center of the body at the earlier time t1, from which an excitation 

was emitted with the speed of light V and came to precisely the point (0) at time t0. If the distance 

(0)-(1) is then denoted by r1 then that will make: 

t1 = t0 − 1r

V
. 

 

 Due to the assumed infinitely-small extent of the electron, in the application of (23): 

 

0t t=  = 
0 /t t r V

d

r


 = − , 

 

 
 (1) H. Poincaré, C. R. Acad. Sci. Paris 113 (1891), pp. 515.  

 (2) H. A. Lorentz, La théorie éléctromagnétique de Maxwell, etc., Leiden, 1892, and also Arch. Néerl. 25 (1892), 

pp. 363. Versuch einer Theorie, etc., Leiden, 1895.   

 (3) T. Levi-Civita, Nuovo Cimento (4) 6 (1897), pp. 93. 
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the only times t and distances r that will come under consideration are the ones that lie infinitely 

close to t1 and r1, resp. The intersecting spherical surfaces can be regarded as planes at the scale of 

the electron. r – r1 is its distance from (1). In the integration, each plane is associated with a certain 

section through the electron. We ask how its distance R from the center is connected with r – r1 . 

If v is the velocity of the electron then its center will lie at a distance of (t – t1) v cos (v, r) from the 

plane through (1) at time t. It will follow immediately from this that: 

 

R = r – r1 – (t – t1) v cos (v, r) , 

 

and therefore, since r = (t0 – t) V, r1 = (t0 – t1) V : 

 

R = 1( ) 1 cos ( , )
v

r r v r
V

 
− + 

 
 . 

 

 In the integration that defines , and for every section r = const., the value of  is chosen to 

be the one that belongs to R, so the integration can be carried out as if the electron were at rest 

with its center at (1), assuming that we imagine that its dimensions are varied in the ratio: 

 

| R | : | r – r1 | = 1 cos ( , )
v

v r
V

+  : 1 

 

without changing the -value that is parallel to r1. The symbol | | should suggest that the absolute 

value is taken. The variation of the denominator r does not come under consideration for infinitely-

small dimensions, so we will then get: 

 

0t t=  = 

0 /

1

1 cos ( , )
t t r V

d
v

r v r
V

 

= −

 
 
 
 + 
 

  

= 

0 /

1

1 cos ( , )
t t r V

v
r v r

V



= −

 
 
 
 + 
 

. 

 

 Things take a similar form for  , in which we set i v in place of d  , and we will then get 

the following pair of equations as the elementary law for an isolated electron: 
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0t t=  = 

0 /

1

1 cos ( , )
t t r V

v
r v r

V



= −

 
 
 
 + 
 

, 

(25) 

  
0

( )t t =  = 

0 /

/

1 cos ( , )
t t r V

v V

v
r v r

V



= −

 
 
 
 + 
 

. 

 

 In the definition of cos (v, r), r is taken to be the direction that leads from (0) to the electron, 

so v cos (v, r) means the component of v that points away from (0). 

 Just as was expected, the condition t = t0 – (r/V) means that in the determination of  ( , 

resp.) the previous location of the electron was chosen from which an excitation that spread out 

with the speed of light V would arrive at the point in question at the time t0 . If there are possibly 

more such places then  ( , resp.) will be set equal to the sum of the individual contributions. 

 As long as v is smaller than the speed of light V, 1 + v cos (v, r) / V can only be positive. 

Negative values are also possible when v > V. In such a case, the condition that the absolute value 

shall be true will be applicable: One then substitutes − [1 + v cos (v, r) / V] . 

 If arbitrarily-many electrons are present in the field then one must add up the contributions to 

 and  that are determined by (25) and (26). With the addition of: 

 

K = − 
1

V t






−

 
   and H = − 

 

 

 
− 

  
, 

 

in which , ,  means an arbitrary cyclic permutation of x, y, z, x, …, we will get a representation 

of the field excitation that hearkens back to the spirit of W. Weber’s thoughts on isolated electrical 

particles. 

 It is a characteristic feature of the theory that we regard electrons as point-like. In cases where 

that is not allowed, we must resolve the electron into volume elements and replace  with  d. 

 

 

III. – Some applications of the elementary laws of electrons. 

 

 14. Linear stationary or semi-stationary currents. – In order to show the usefulness of the 

elementary law (25), (26) of electrons, some applications of it shall now be given. We first turn to 

the classical problem of the older theories that is suggested by linear currents. 

 Let the current be stationary and let its conductor be at rest. In order to define  and  for the 

point (0), our problem is to sum the contributions that the elementary law gives over all electrons. 

We imagine that we construct two spherical surfaces r and r – dr around (0) that cut out the line 
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element d from the current conductor, and in order to apply the elementary law, we delimit the 

time-element between: 

t = t0 − 
r

V
 and t + dt = t0 − 

r dr

V

−
, 

which has the length: 

dt = 
dr

V
. 

 

Which electrons come under consideration for dt? Since we cannot assume everywhere-equal 

velocity, we shall next consider those groups of them whose velocities are parallel to d and lie 

between v and v + dv. Let d be the linear density of their electricity, so d d is the amount of 

electricity that they imply for d. An electron that is found on the spherical surface r at time t and 

at the endpoint dc is shifted to: 

v dt = 
v

dr
V

 = 
v

V
 cos (v, r) dl 

 

at time t + dt. In the summation, not only will the electrons along a segment d belong to dt (dr 

and d, resp.), but also all of the ones along a segment: 

 

d + v dt = 1 cos ( , )
v

d v r
V


 

+ 
 

 , 

 

and d accordingly gives the contribution to : 

 

d = 

1 cos ( , )

1 cos ( , )

v
d v r

V
d

v
r v r

V





 
+ 

 

 
+ 

 

  = 
d d

r

 
 = 

de

r
, 

 

if de means the amount of electricity that is found along the respective d. Thus, the formula of 

electrostatics for : 

 = 
de

r  

is also true for stationary linear currents. 

 In order to define , we must imagine that the electrons with velocities that lie between v and 

v + dv contribute di = v d to the current strength, which contributes: 
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1 cos ( , )
cos ( , )

1 cos ( , )

v
d d v r

v vV

v V
v v r

V

 


 
+ 

 

 
+ 

 

 = 
cos ( , )di d r

V r

 
 

to v . 

 That will give the contribution: 

d v = 
cos( , )i d r

V r

 
  

 

for d, and the known formula for the total system of currents: 

 

v = 
cos( , )i d r

V r

 
 , 

 

which gives the distribution of magnetic force, and in conjunction with the second law of Section 

8 on the mechanical effect of the magnetically-excited ether, it will also represent the 

ponderomotive forces between current systems that correspond to experiments. 

 If the current varies very slowly, so it is semi-stationary, then our formulas for  and  will 

still be valid approximately. By means of: 

 

K = − 
1

V t






−

 
, 

 

we will then get the induced electromotive force from the second term on the right. If we integrate 

over a closed ring then that will immediately give Neumann’s formula, which is a sign that our 

calculations also lead to correct results here. For the induction in moving bodies, according to the 

second law in Section 8, there will be a component that is due to the motion in the magnetic field, 

which likewise corresponds to experiment. 

 

 

 15. Elementary law for volume elements. – For material systems of currents, the elementary 

law of electrons must lead back to the same starting point, namely, the elementary law for volume 

elements that was given Section 11. One can easily verify that this is actually the case when one 

arranges the electrons in the summation of their contributions to  and  for the spatial point (0) 

and time t0 according to the distances r and time t that occur in the calculation, similar to what was 

done in the previous section. 

 Once more: 

t = t0 − 
r

V
, t + dt = t0 − 

r dr

V

−
, dt = 

dr

V
 

 

might belong together. Let vr be the velocity component that points forward at (0). We next direct 

our investigation to the electrons for which vr lies between vr and vr + dvr ; let the spatial density 
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of its electricity be d. The layer that is found at the distance r at time t has attained a distance at 

time t + dt that is greater by: 

vr dt = rv
dr

V
 = 

v

V
 cos (v, r) dr . 

 

For dr, dt, an electron layer of density: 

 

dr + 
v

V
 cos (v, r) dr = 1 cos ( , )

v
v r dr

V

 
+ 

 
 

 

will then enter into the calculation. Its contribution to  is: 

 

d  = 

1 cos ( , )

1 cos ( , )

v
d v r

V
d dr

v
r v r

V





 
+ 

 

 
+ 

 

  = 
d

d dr
r


 , 

 

when d denotes a surface element. If we integrate over  and r then it will follow that: 

 

0t t=  = 
0 /t t r V

d

r


 = −  , 

 

that is, the previous formula. Similarly, that will give a contribution of: 

 

d   = 

1 cos ( , )

1 cos ( , )

v
d v v r

V
d dr

v
rV v r

V





 
+ 

 

 
+ 

 

  = 
vd

d dr
r V


  

to  . 

 Now let d v be the contribution from the selected group of electrons to d . If we make use 

of that and integrate over  and r then the law that we are still lacking will follow: 

 

0
( )t t = = 

0 /t t r V

vd

r V



= −

 
 
 

 . 
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 16. An isolated electron in uniform rectilinear motion. (1). – Let v be the velocity. We refer 

everything to a coordinate system whose z-axis is || v, and whose origin lies at the location of the 

electron at the time t0 for which we seek the distribution of  and . That will then give the 

distribution of electrodynamical excitations relative to the electron. 

 A very simple calculation will show that for the space point (0), the position (1) of the electron 

that must be considered is the one for which r has the value: 

 
1

2 2
2 2 2

2 2
( ) 1 1

v v v
z x y z

V V V

−    
 + + − + −   
     

, 

and 

1 cos ( , )
v

r v r
V

 
+ 

 
 

will have the value: 

2
2 2 2

2
( ) 1

v
x y z

V

 
+ − + 

 
 . 

We will then get: 

 = 
2

2 2 2

2
( ) 1

v
x y z

V



 
+ − + 

 

 , 

 = 
2

2 2 2

2
( ) 1

v

V v
x y z

V

 

 
+ − + 

 

 . 

 When that is combined with: 

 

K = − 
1

V t






−

 
,  H = − 

 

 

 
− 

  
,  , ,  = …, x, y, z, x, y, …, 

 

that will, in fact, imply the known distribution of field excitations when one observes that due to 

the fact that we have assumed a moving coordinate system, we have to replace: 

 

t




 with − V

z




. 

 

 

 
 (1) The same problem for a superluminal velocity was likewise treated in the Jubilee volume for H. A. Lorentz 

(pp. 652) and by my distinguished Göttingen colleague Th. Des Coudres (Zusatz 7, III, 1901) along a path that 

corresponded completely to the one that was followed here. 
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 17. Oscillating electron. – In conclusion, we might consider the case that is of interest in 

optics, in which an electron performs sinusoidal oscillations. Since oscillations of the most general 

type can be resolved into linear oscillations in that theory, we can then confine ourselves to 

investigating linear oscillations. 

 The origin of the coordinate system might be laid at the center of oscillation with the z-axis 

parallel to the line of oscillation. We can then write: 

 

 = Z sin 2 
t

T
, 

 

in which  is the respective z-coordinate of the electron, Z is the greatest deflection, and T is the 

period. The emitted light has the wavelength  = V T. 

 Let  be the distance from the point (0) to the coordinate origin so to the center of oscillation. 

We restrict ourselves to the case in which Z proves to be infinitely-small compared to  and . We 

must then replace: 

1

1 cos ( , )
v

r v r
V

 
+ 

 

 with 
2

1
1

z v z

V



  

 
+ + 

 
 

and 

t = t0 − 
r

V
 with t = t0 − 

V


 = t = t0 − R




 

 

in the right-hand sides of formulas (25), (26), and when we write t in place of t0 in the final formula, 

we will get: 

 = 
1 2

sin 2 cos 2
Z z t t

T T

    
 

      

    
+ − + −    

    
 , 

 

x = 0 ,  y = 0 ,  z =  
2

cos 2
Z t

T

  


  

 
− 

 
 . 

 

 Those formulas yield a well-known case of the radiation from a luminous point. 

 Poynting’s law will give information about the radiated energy most simply. If we apply it to 

a very large sphere then it will follow that: 

 

− 
dE

dt
 = 

42 2 2

3

e Z
V





 
 
 

, 

 

in which – dE denotes the energy loss from the oscillating system during dt. 

 That is connected with an interesting consequence in regard to the damping of the oscillation 

of an electron that results from the action of a central force that is proportional to the distance. In 

order for the theorems that were derived to be approximately valid, we must assume that the 
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damping is only very small. If m means the effective mass and k  means the restoring force then, 

except for the negligible influence of damping, one must set: 

 
2

2

d
m

dt


 = − k  , 

from which it follows that: 

k

m
 = 

2
2

T

 
 
 

, 

and that the energy of oscillation is: 

E = 21
2
k Z  = 

2

21
2

2
Z m

T

 
 
 

. 

 

 In conjunction with our formula for – dE / dt, that will give the value: 

 

 = 2
E

dE

dt

 = 
2

2

3

4

m V

  
   

 

for the relaxation time, that is, the time it takes for the amplitude to drop down to 1/2.828… times 

its original value, and the value: 

w =  V = 
2 2

2

3

4

m V

  
   

 

for the length of the path that the light travels during the relaxation time. 

 We would like to apply that formula for the case of emission of light with one spectral line. 

We set  equal to around 1/20000.  / m might be assumed to have the value 4  1017, which roughly 

corresponds to the Zeeman phenomenon and cathode rays.  is known only imprecisely. According 

to whether one sets the number of molecules in a cubic centimeter of gas at 0o C and normal 

pressure equal to: 

N = 1019 or N = 1020 

 

(which might characterize the limits that one defines), that will give: 

 

 = 13  10−19 or  = 1.3  10−10, 

 

respectively, and we will get: 

w = 3 m or w = 30 m, 

resp. 

 We can compare that with our observations of interference for large path differences. The give 

about 1/2 meter for the greatest path difference for which interference can be recognized. 
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 We must conclude from that, in addition to the decline in the oscillations that results from the 

emission of light, other perturbing causes will be in effect that can prove to be stronger. If we set: 

 

w > 0.5 m, 

 

which would correspond to observations, then it will follow that: 

 

 < 80  10−10,  N > 191
6
10 . 
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