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Elementary electrodynamical laws
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(From the Archives Néerlanaises, livre jubilaire, dédié a H. A. Lorentz, 1900, pp. 549)

Translated by D. H. Delphenich

1. — Foundations of the theory.

1. Foreword. — The recent theory of electrodynamics that is advocated by Maxwell, by its
distinction between ether and matter in the interior of a body that is perceptible to the sense reverts
to the opinions of the older schools to such a degree that the former distinction no longer exists.
The electrical particles of the old theory are, in turn, justified. However, we have learned how to
follow their interactions through the intermediary of the medium between them. Hence, the great
problem was solved that was indeed formulated many times before Maxwell, although it resisted
all attempts at solution. Moreover, Maxwell’s contribution no longer seems to be an overthrow of
the previous theories, as much as an advance in their natural order of development.

H. A. Lorentz was the first to successfully evaluate the distinction between ether and matter
in Maxwell’s theory, and in that way he drew attention to the way that it approached the older
theories from the outset, which then presents itself. In the belief that in the interests of science, not
enough weight can be placed upon that, | would like to attempt to lay another brick towards the
union of the old and new theories.

For the notations, | shall refer to my contribution to the Festschrift fir die Feier der Enthiillung
des Gauss-Weber-Denkmals in Goéttingen, 1899 (). I shall also refer to it for a more detailed
treatment.

2. — | shall use the terms ether and matter in a way that is entirely similar to that of H. A.
Lorentz. Since I have already spoken of that on several occasions, fewer words will suffice here.

The optical behavior of streaming currents and similar phenomena show that the motion of
matter that is perceptible to the senses is not itself carried along in the interior of light waves. As
H. A. Lorentz showed, the aberration of light leads to the same conclusion. When we, with
Maxwell, regard light as an electrodynamical process, we will be compelled to assume that there
is a carrier of electrodynamical phenomena in the interior of matter that does not participate in the
motions that are perceptible to the senses. In order to clothe that fact in words conveniently, we

() Published by B. G. Teubner, Leipzig.
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shall distinguish between ether and matter. Speculating on their mutual relationship is not
necessary for the immediate purpose of electrodynamics. Thus, we can postpone, for example, a
discussion of whether we are dealing with different materials or the same material in different
states. Matter and ether are only images that we see from our mortal standpoint in nature. The
further advance in science of deciding what they correspond to in reality is yet to be achieved.

Whereas matter confronts us with a multitude of variations in its type, aggregation, and motion,
for the representation of our experiences, the assumption will suffice that ether fills up all of the
universe that is accessible to us with no noticeable gaps and no noticeable motions, and everywhere
with the same extremely-simple properties. That is also true of the region that matter occupies,
such that it seems to be completely saturated by the ether without displacing it noticeably.

A single constant will suffice to characterize the electrodynamical properties of the ether,
namely, the speed of light V in the absence of matter. One must employ directed quantities, namely,
vectors, in order to describe electrodynamical processes.

3. — We would like to start with optics in free ether. Very different physical meanings for
vectors can come under consideration in that way. If K is one such vector then we can assume that
the oscillation equation for one component K, that is parallel to the arbitrary direction vis:

O’°K, _ . ,.[0°K, 0K, %K,
ot? '

1 L=V + +
@) ox> oy oz’

In that way, the following condition will express the transversality of the oscillations and the
assumption that excitations are also possible:

@) oK, N oK, N oK, _ 0.
ox oy oz

A certain second vector H can be associated with every chosen vector K that has a reciprocal
relationship with it. We get H by the defining equations:

oH, _\ (oK, K,
ot oy ox )
oH

@) v _y [OK 3K, |
ot 0z OX
oH, _\ oK, K,
ot ox oy )
oH
4) GHX+ y+6HZ:O.

ox oy o
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Along with, (1) and (2), they give the analogue to (3):

oK, oH, OH,
o oy ox )
) 6Ky:_v oH, ©oH,
ot oz OoX
K, __y 0H, oH,
ot ox oy )

and as an analogue to (1):

O°H, _ . ,,(0°H, &°H, &°H,
8'[2 + + .

6 Y=V
©) x> oy? 0z°

Hertz derived the formal system (2), (3), (4), (5), as a replacement for (1) and (2) [(4) and (6),
resp.] from Maxwell’s theory in 1884.

A third system comes under consideration in electrodynamics that is more advantageous than
the second one in many cases and is more closely connected to Maxwell’s. The vector potential
of one of the vectors K and H is employed in it. We would like to choose H and denote the potential
by I', and then set:

or or
(7) He=— | Lo S|, Hv:—(arx‘arzj’ P Yy
oy oz oz oOXx ox oy

I will still be undetermined by that. From the above, one must consider the value of:

or, oI, aor
+ +
ox oy oz

4

to remain arbitrary. We shall reserve the right to make a suitable convention later.
The Ansatz (7) fulfills (4), and due to (3), it will imply that:

o’r, O, oK, oK
- X4 =V z _ Y ,
oyot ozot oy oz
along with two similar equations. The entire system shows that V K can differ from the vector

(-or, lot,—aryl ot,—or,/ ot) only by a vector part that possesses a scalar potential. If we denote
that by @ then we must set:

®) Kv=- T=-2 2,
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in which v means an arbitrary direction. Now the system (3) is also fulfilled with that. What
remains are (2) and (5), and (2) yields:

D D D 1a£arx ar, arzj_
+ + =0.

o val x oy | a

It follows from (5) that for an arbitrary direction v:

2 2 2 2 al"
aerVz[arv o, arvj_vi{acpw(aru y+arz]]

2 2 T2 T2 T
ot OX oy 0z ov| ot oXx oy oz

In regard to the indeterminacy in I", we now add the convention that:

=0.

oD [arx ar, arzj
+

9) —+V +
ot ox oy oz

The replacement for (2) and (5) then follows that:

PR oD *d 0D
(10) =V ottt |

ot ox:  oy* oz

2 2 2 2
(12) 61} =V? 81“2V+6F2V+6F2V :

ot OX oy oz

(9), (10), (11), in conjunction with (7) and (8), represent the promised system of Maxwell
equations. As we know it is not symmetric. That initially seems to be a drawback (which can be
easily remedied, moreover), but in reality it is not, because due to the place of the theory of optics
in the theory of electrodynamics, we will find ourselves in a position to accommodate precisely
the asymmetry between electric and magnetic phenomena that exists according to experiments.

Maxwell did not employ the simplified relation (9). Namely, to him, I" was not merely an
auxiliary mathematical quantity, as it is for us, but a function of the state with special meaning,
and therefore he had to leave the value of:

or, or, or,
+ +
x oy o
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undetermined, although “not related to any physical phenomenon.” In an interesting paper that was
cited in Section 12 of Levi-Civita (1897) (%), (9) was given as a consequence of hypothetical
assumptions on ® and I".

4. Electric charge. — From Maxwell’s theory, the electric and magnetic excitation in the free
ether can be represented by one vector from the pair of K and H of optics. Since we must consider
the asymmetry that was just touched upon, the electric force will be denoted by K and the magnetic
force by H in our case.

For a space in which equations (2) and (4) are fulfilled everywhere, one has the following rules
for any closed surface:

0 0
jdGszo, jdGHV =0,

in which do-means a surface element and v is its normal. The index ° is intended to recall that one
is dealing with a closed surface. Indeed, if the surface itself lies in free ether, but it encloses matter,
then (2) and (4) will be useless, and from (3) and (5), one can only conclude that the surface integral
is independent of time. (2) and (4) likewise imply that all surfaces that enclose the same matter
must also have the same values for their integrals. Experience teaches that non-zero values can
appear for only the electric excitation, but not for the magnetic excitation.

We accordingly set:

TdJKV =4re, jldaHv =0.

The quantity e, which should be referred to the outward-pointing normal, depends upon the only
the matter that is enclosed, but not upon the special form of the enclosing surface. It is called the
total amount of electricity that is contained in matter.

If two bodies come into temporal contact then experiments show that they will often exhibit
different charges from before. From the theorems that we just derived, the sum of the changes
must survive the contact, so one body must have taken on just as much charge as the other one
lost. The law of conservation of electricity then seems to be a consequence of (5).

From electrolysis, one can conclude that the electric charge goes back to the molecular
structure of matter, since the individual atoms or groups of atoms can assume only a well-defined
positive or negative charge or a whole-number multiple of it.

5. What does a change in charge mean now? — Until recently, that question raised special
difficulties in electrodynamics. In 1895, H. A. Lorentz wrote (*):

“Therefore, if the assumption of that transition or exchange of ion charges
(which is, of course, a very mysterious process) is the requisite extension of any

() Translator: The citation to this paper in in a footnote on pp. 11.
() Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten Kérpern, pp. 6 and 7. Leiden
1895.
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theory that assumes a migration of electricity by ions then a sustained electric
current can also never consist of a convection alone... Giese is of the opinion that
an actual convection cannot come into play at all in metals. However, since it does
not seem possible that “jumps” of charges are included in the theory, I hope that I
might be excused for ignoring such processes completely, for my own part, and
imagining that a current in a metal wire is simply a motion of charged particles.”

| had to take a similar approach in my own theoretical work in electrodynamics. The only
alternative that seemed satisfactory to me was one that Helmholtz, among others, referred to in
1881 in a talk at a conference that was held in honor of Faraday: We must regard electricity as
having exactly the same constitution as matter, that is, we must also ascribe well-defined
unvarying atoms to it.

Of course, we cannot regard electrical atoms as imponderable, in the sense of the older
intuitions, because as a result of the electrodynamical processes that are connected with the motion
of the ether, it will have a kinetic energy, so a mass, in the sense of mechanics. If we then
contemplate the part that electrical particles play in the structure of perceptible matter then they
will appear to be just such a thing. “That offers the enticing prospect of unifying matter and
electricity into a higher viewpoint.” When I wrote that in an outline of a theory of electrodynamics
in 1894, the purely-hypothetical character of the statement clearly emerged. It was only in the
Spring of 1896 that | was able to give the widely-separated numbers 10-" and 1 as the limits on the
atomic weight of the special electrical atoms that are exchanged in the transfer of molecular
charges. However, since that time, | have quickly become more certain of that fact. Zeeman’s
discovery came about in the same year, and its explanation by H. A. Lorentz that suggested that
one might assume that the atomic weight of the special electrical atoms was about 1/1000. In that
Winter, my own investigations with cathode rays led me to the conclusion that they consisted of
special electrical atoms and that their atomic weight was between 1/2000 and 1/4000 (%).

It is well-known that a great number of works would appear later that established that result
and extended it in many directions. The numerical values for both phenomena were determined
more precisely and approached each other.

6. Electron theory of electrodynamics. — If we combine everything together then we can
assert the following with great confidence:

The charge of any material particle is peculiar to it for all time, so it never changes.

In order to make the actual sense of that hypothesis more precise, one must recall that we
recognize the “amount of electricity” as a measure of the electrodynamical interconnection with
the ether. It then emerges immediately that nothing further can be said besides the fact that the
electrodynamical interconnection with the ether with any material particle (to the extent that it can
be measured by the “amount of electricity”) is something that characterizes it for all time.

An electrical conduction current is always to be regarded as a flow of material particles then.
That has been known for a long time for electrolytic conduction. What is new is that we must also

() E. Wiechert, Phys.-6konom. Ges. zu Konigsberg i Pr. 38 (1897), 7 January.
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assume something similar for metallic conduction. If there are only special negative electrical
atoms, and not also positive atoms of a similar type, then the motion would result in only the
negative direction of the electrical current.

As H. A. Lorentz first showed, it is possible to regard the electrodynamical processes as
nothing but consequences of the motions of electrical particles. It might be likely that the actual
phenomena are not exhausted in that way, but in any event, we tentatively have the right to make
that simplifying assumption in the implementation of our theory.

With that, we have returned to the basic picture of the old theory. The only difference is that
we no longer regard the electrical fluid as imponderable, but as material. Stoney (1874) gave the
name of electron to the smallest molecular charge. Since we shall place it at the center of our
theory, we can also call it the electron theory of electrodynamics.

7. Field equations. — For the free ether, we assume (Section 3):

K, __\[oH, _oH, oH, __\[oK, K,
ot oy oz )’ ot oy oz )
oK, __y[%H. _oH, oH, __y[ KoK,
ot oz ox )’ ot oz ox )’
K, __y oH, oH, H, _ oK, oK,
ot ox oy )’ ot ox oy )’
oK oH
K, . y+6KZZO’ oH, OH, oH, _,
ox oy oz OX oy oz

Those equations do not change for material systems, because we must take the electrons into
account. However, it is not necessary to make further hypotheses, due to our assumption that the

ether also penetrates matter and has the same properties, which will take the system that was
written down to:

oH
K, __yfoH M),
ot oy oz
oK oH,£ oH
12 —L=_V x T X | Ay,
(12) at [az ox )T
oH
%:—V v N, ~4ry,,
ot OX oy
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oH, (oK, K,
ot oy oz )
oH
13) M, (oK K, |
ot oz OX
oH, _ oK, oK,
ot ox oy )’
oK
(14) K, +— 4 K, _ Ar y,
ox oy oz
oH
(15) oH, , oH,  oH, 0.
ox oy oz

in which y denotes the electrical current, and y denotes the electrical density, and the following
consequence will emerge from the foregoing equations:

0
(16) _8_;(:5;/X+ 7y+8yzl
ot ox oy @&

That system combines all of the experimental laws regarding the electric and magnetic field
excitations. K, H, 7, y represent mean values inside of matter, which would correspond to the
assumption of a molecular constitution.

y is the sum of a series of different physical processes: viz., convection, conduction current,
dielectric polarization, and magnetization.

Hertz (and Heaviside) appealed to the system of equations (12) to (16). In Maxwell’s manner
of representation, using the notations of Section 3, we will get:

or, or o, or or, or
(17) HX=— Z__y, Hy:_( X _ zj, Hz:_ Ty Yy ,
oy oz 0z  OX oX oy
(18) K= o®_1al,
ov V ot
2 2 2 2
(19) 0P _yz| 0L 0D OO vy,
ot o o ez
2 2 2 2
(20) arzv =V? 81“ZV+8F2V+81“2V +4zVy,,
at o2 o a
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0
(21) _8_;(:5;/X+ yy+8yz.
ot ox oy @&

The last equation formulates the law of conservation of electricity. The relation:

(22) a#()+V (

+
ot ox oy o

or
or, or, o, j “o
appears as a consequence of (19), (20), (20), (21) here.
The system (17) to (21) is completely equivalent to the system (12) to (15), so that fundamental
system can be taken to be that of the field excitations.

8. Effect of the ether on matter. — Up to now, we have observed only the excitation of the
ether, such that the foundations of the theory of electrodynamics are still not complete. What is
lacking is to establish the effect of the ether on matter. H. A. Lorentz was the first to show that
the following two hypotheses will suffice for that:

An electrical particle of charge e experiences a mechanical force || K of intensity e K due to
the electric excitation of the ether independently of its motion.

An electrical particle of charge e that moves with a velocity v experiences a mechanical force
L vand L H of intensity e v H sin (v, H) / V due to the magnetic excitation of the ether.

9. Concluding remarks. — The circle of fundamental hypotheses for a theory of
electrodynamics is now complete. Given the wealth of phenomena that they embrace, there are
very few of them, and all of them are either closely linked with experiments or chosen from the
simplest possible ones: viz., the law of light motion in free ether, Maxwell’s assumptions, the fact
that magnetic and electric excitations come into play in that way, the assumption of a carrier of
those excitations that is omnipresent, everywhere at rest, and has the same behavior everywhere,
which we call the “ether,” the idea that the interactions between ether and matter are coupled to
just electrical particles and their motion, and finally, the two laws of the previous section.

Up to now, electrodynamical energy was still not considered. That was done intentionally in
order to show that it does not need to be considered when one is establishing the basic concepts.
However, when one applies the principle of energy, that will imply that the energy must be ascribed
to the electrodynamically-excited ether, and that one must satisfy the requirements of the principles
most simply by means of Maxwell’s energy formula and Poynting’s concept of the energy current.
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Il. — Elementary laws.

10. Formulation of the problem. — It is characteristic of the theory being developed that it
assumes a propagation of electrodynamical excitations with the speed of light in the free ether.
That suggests that it must be possible to represent the respective excitation at any location as a
consequence of processes that take place at every location in space and go back so far in time that
they correspond to that speed of propagation. Furthermore, since we assume that all excitations of
the ether have their origin in electrical particles, we will suspect that it must also be possible, in
the sense of the old theory, to relate the definitive processes to those electrical particles alone.

Similar problems in the theory of elasticity, as well as optics, have been treated many times
before, and we will easily reach our goal when we make use of the methods that were developed
in those theories. In what follows, | would like to go down the path along which Beltrami
formulated Huygens’s principle analytically.

11. Elementary laws of space elements. — It would not be expedient to appeal to the equations
for K and H directly, because the separation of both vectors leads to inconvenient auxiliary
conditions. In such cases, one cares to introduce suitable auxiliary quantities. In our case, that was
already done with I" and ®, so with no further assumptions, we can exploit the system:

2 2 2 2

(19) 8? =V?2 8?+8(£)+8§) +47V %y,
ot X oy oz
2 2 2 2

(20) 61} =V? 61"2V+81“2V+6F2V +4zv2 e
ot OX oy oz V

for the determination of ® and T'.
Beltrami () employed the following mathematical lemma: If U is a function of the coordinates
X, Y, Z, and r then one will have:

2, 2, 2, 2
4rUp= [do gigjcos(n,r)—lﬁ B g e
or\r r on r | or ox® oy° oz

for an arbitrary point (0), in which r is understood to mean the distance from (0), the first integral
refers to an arbitrary surface that surrounds the point (0), and the second one refers to the space
that it encloses. n means the inward-pointing normal. In the differentiation with respect to r, one
must regard X, y, z as constants, while in the differentiations with respect to n, X, y, z, one must

() E. Beltrami, Rend. Accad. Lincei (5) 4 (1895), pp. 51. W. Voigt gave a German presentation in Compendium
der theoretische Physik, v. 2, Leipzig, 1896, pp. 776.
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regard r as constant. In our case, we imagine that the surface is pushed out to infinity and assume
that the associated integral can then be set equal to zero. What will then remain is:

2 2 2 2
4EU0:J~d_a){8U_(6U+6U+8U]]

r|or® (ox* oy* oz’

We set r = (to — t) V in that, where to is regarded as a constant and t is regarded as variable,
such that U will go to a function of x, y, z, and t, and we obtain:

deo!| 10U (U oU oU
47Z(Uo)t:tO = I_ { ( + + ]} :
t=ty—r/V

rviarz (o o2 o

If we apply that theorem to @ and Iy then, with the use of the differential equations (19) and
(20), that will immediately give:

do
(23) th:to = J.Tlt:to—rN '
(24) T),. = '[ d_w(Lj
v r\v t=ty—r/V ’

with which, the following statement can be made: One will get the value of @ and Iy for any
location (0) and any time to by summing the components:

do doy,
r r v

over all volume elements dw. In that, r means the distance from the volume element to (0) and the
values of y (v, resp.) are chosen to be the ones that go back to a distant time when an excitation
that is emitted with the speed of light would have arrived at (0) at precisely time to . The potential
components of the individual volume elements then seem to spread out with the speed of light.
The laws (23) and (24), along with formulas (17), (18), for the determination of K and H, and
the law of conservation of electricity (21), give us a new representation of the field equations that
replaces local action with forces-at-a-distance according to the model of the old theories.

12. Historical remarks. — In 1858, Riemann (%) already sought to exploit formula (19) in
electrodynamics, along with the law (23) that it is linked with, which was derived here with the
use of a lemma by Beltrami. However, since he considered only the electric force (but not the

() B. Riemann, Pogg. Ann. 131 (1867), pp. 237.
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magnetic one), his process remained fruitless. (23) and (24), or corresponding theorems, were later
exploited by Poincaré (*) (1891), and to the greatest extent by H. A. Lorentz (%) (1892 and 1895).
In 1897, Levi-Civita (°) showed that one would arrive at the Hertz-Heaviside formulas when
formulas similar to (23) and (24) were assumed in Helmholtz’s theory.

13. Elementary laws of electrons. — Only one last step remains for us: We must resolve the
electrodynamical effect of matter into the contributions from the individual electrons using the
process of W. Weber. With that, we then come to the actual subject of the present article.

At first, we can suspect that, in connection with (23) and (24) for an isolated electron of charge
i =] dw y and velocity v, we can simply set:

o =1 r:,(lv_vj ’

o r:t:t(,—r/V ( V)t7t0 rv t=ty—r/V

and in fact, that was assumed for @ in the time of Riemann. However, that path leads to
contradictions with the fundamental assumptions of our theory, such as for example, in the
treatment of any of the problems in Part 111 will show directly, so it is impassable. That is based in
the fact that it is not permissible to pass to the limit of a point-like body, even before formulas (23)
and (24) are applied. Indeed, those formulas are valid for spatially-distributed electricity, so that
would demand that the passage to the limit would have to be first carried out after they have been
applied. That amounts to the same thing as saying that the formulas (23) and (24) can be applied
to only infinitely-small, but not point-like, bodies.

In that way, it shall be assumed that the body that we would like to call an “electron” is
symmetric in all directions and exhibits no rotations. In the other cases, mean values would have
to be taken.

Let (1) be the position of the center of the body at the earlier time t1, from which an excitation
was emitted with the speed of light V and came to precisely the point (0) at time to. If the distance
(0)-(2) is then denoted by r1 then that will make:

I
t1=tg— L.
Vv
Due to the assumed infinitely-small extent of the electron, in the application of (23):

do
O, = IT Ki=ty-riv

() H. Poincaré, C. R. Acad. Sci. Paris 113 (1891), pp. 515.

(® H.A. Lorentz, La théorie éléctromagnétique de Maxwell, etc., Leiden, 1892, and also Arch. Néerl. 25 (1892),
pp. 363. Versuch einer Theorie, etc., Leiden, 1895.

(® T. Levi-Civita, Nuovo Cimento (4) 6 (1897), pp. 93.
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the only times t and distances r that will come under consideration are the ones that lie infinitely
close to t1 and ry, resp. The intersecting spherical surfaces can be regarded as planes at the scale of
the electron. r —ry is its distance from (1). In the integration, each plane is associated with a certain
section through the electron. We ask how its distance R from the center is connected with r —ry .
If v is the velocity of the electron then its center will lie at a distance of (t — t1) v cos (v, r) from the
plane through (1) at time t. It will follow immediately from this that:

R=r—ri—(t—t)vcos(v,r),

and therefore, sincer = (to—t) V, ri = (to—t1) V :
v
R= (r—rl)[1+\7cos(v, r)} .

In the integration that defines ®, and for every section r = const., the value of y is chosen to
be the one that belongs to R, so the integration can be carried out as if the electron were at rest
with its center at (1), assuming that we imagine that its dimensions are varied in the ratio:

IR|:|r—r1]|= 1

Y,
1+—cos(v,r
;cos(vn)

without changing the y-value that is parallel to r1. The symbol | | should suggest that the absolute
value is taken. The variation of the denominator r does not come under consideration for infinitely-
small dimensions, so we will then get:

ORI ! Ida);(

t=t, v
r{1+—cos(v,r)
\Y

t=ty—-r/ivV

1

|
~

r

v
1+—cos(v,r
y cosn)

t=ty—r/V

Things take a similar form for I"y, in which we set i vy in place of dw yv, and we will then get
the following pair of equations as the elementary law for an isolated electron:
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®t=t0 =1 Vv 1 ’
ri{l+—cos(v,r)
Vv t=ty—r/v
(25)
v, IV
Ty, =1 -

r

v
1+—cos(v,r
y cosvn

t=ty—r/V

In the definition of cos (v, r), r is taken to be the direction that leads from (0) to the electron,
so v cos (v, r) means the component of v that points away from (0).

Just as was expected, the condition t = to — (r/V) means that in the determination of @ (T,
resp.) the previous location of the electron was chosen from which an excitation that spread out
with the speed of light V would arrive at the point in question at the time to . If there are possibly
more such places then @ (I"y, resp.) will be set equal to the sum of the individual contributions.

As long as v is smaller than the speed of light V, 1 + v cos (v, r) / V can only be positive.
Negative values are also possible when v > V. In such a case, the condition that the absolute value
shall be true will be applicable: One then substitutes — [1 + v cos (v, r) / V] .

If arbitrarily-many electrons are present in the field then one must add up the contributions to
® and I'y that are determined by (25) and (26). With the addition of:

or
op_10L, and H,=- —“—@,
04  Ou

in which 4, &, vmeans an arbitrary cyclic permutation of x, y, z, X, ..., we will get a representation
of the field excitation that hearkens back to the spirit of W. Weber’s thoughts on isolated electrical
particles.

It is a characteristic feature of the theory that we regard electrons as point-like. In cases where
that is not allowed, we must resolve the electron into volume elements and replace : with y dw.

I11. — Some applications of the elementary laws of electrons.

14. Linear stationary or semi-stationary currents. — In order to show the usefulness of the
elementary law (25), (26) of electrons, some applications of it shall now be given. We first turn to
the classical problem of the older theories that is suggested by linear currents.

Let the current be stationary and let its conductor be at rest. In order to define ® and I" for the
point (0), our problem is to sum the contributions that the elementary law gives over all electrons.
We imagine that we construct two spherical surfaces r and r — dr around (0) that cut out the line
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element dA from the current conductor, and in order to apply the elementary law, we delimit the
time-element between:

t=to— = and t+dt=to— =9
V Vv
which has the length:
dt = g
\

Which electrons come under consideration for dt? Since we cannot assume everywhere-equal
velocity, we shall next consider those groups of them whose velocities are parallel to dA and lie
between v and v + dv. Let dy be the linear density of their electricity, so dy dA4 is the amount of
electricity that they imply for dA. An electron that is found on the spherical surface r at time t and
at the endpoint dc is shifted to:

vdt= \%dr = — cos (v, r) dl

<|<

at time t + dt. In the summation, not only will the electrons along a segment dA belong to dt (dr
and dA, resp.), but also all of the ones along a segment:

dAi+vdt= d/l{l+\¥cos(v, r)} ,

and dA accordingly gives the contribution to ®:

v
dxl{1+cos(v,r)} dald
4P = jd}( V _ _[ X _ de

r [1+Vcos(v, r)} r r
\Y

if de means the amount of electricity that is found along the respective dA. Thus, the formula of
electrostatics for @:

de
o= .[_
r
is also true for stationary linear currents.

In order to define I', we must imagine that the electrons with velocities that lie between v and
v + dv contribute di = v dy to the current strength, which contributes:
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\'
1+—
d;(d/l[ +y cos(v,r)} veos(v,v) _ didAcos(Lr)

V Vr

v [1+\\//cos (v, r)}

toly.
That will give the contribution:
dT, = i dAcos(4,r)
V r

for d4, and the known formula for the total system of currents:

_ ¢ 1 dAcos(4,r)
L= 5=

which gives the distribution of magnetic force, and in conjunction with the second law of Section
8 on the mechanical effect of the magnetically-excited ether, it will also represent the
ponderomotive forces between current systems that correspond to experiments.

If the current varies very slowly, so it is semi-stationary, then our formulas for ® and I" will
still be valid approximately. By means of:

we will then get the induced electromotive force from the second term on the right. If we integrate
over a closed ring then that will immediately give Neumann’s formula, which is a sign that our
calculations also lead to correct results here. For the induction in moving bodies, according to the
second law in Section 8, there will be a component that is due to the motion in the magnetic field,
which likewise corresponds to experiment.

15. Elementary law for volume elements. — For material systems of currents, the elementary
law of electrons must lead back to the same starting point, namely, the elementary law for volume
elements that was given Section 11. One can easily verify that this is actually the case when one
arranges the electrons in the summation of their contributions to ® and I'", for the spatial point (0)
and time to according to the distances r and time t that occur in the calculation, similar to what was
done in the previous section.

Once more:

r—dr dr

t=to— -, t+dt=to- Codt=
v Y Y

might belong together. Let v be the velocity component that points forward at (0). We next direct
our investigation to the electrons for which v, lies between vy and vr + dv ; let the spatial density
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of its electricity be dy. The layer that is found at the distance r at time t has attained a distance at
time t + dt that is greater by:

vr dt = l//—“dr = — cos (v, r)dr.

v
V
For dr, dt, an electron layer of density:

dr+ 2 cos (v, r)dr= [1+1cos(v, r)} dr
V \Y

will then enter into the calculation. Its contribution to @ is:

d;([1+\\/lcos(v, r)} q
do= [dodr =IdadrTZ,

r [1+\\//cos(v, r)}

when do denotes a surface element. If we integrate over y and r then it will follow that:

do
th:tO = J.th:to—rN '

that is, the previous formula. Similarly, that will give a contribution of:

v
dyv, [1+cos (v, r)}
dr, = [dodr v = [dodr 2%
v r v
rv [1+Vcos(v, r)}

tol'v.
Now let dy v, be the contribution from the selected group of electrons to dy.. If we make use
of that and integrate over yand r then the law that we are still lacking will follow:

_rdo (v,
(Fv)t:to - IT (Vl=torlv .
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16. An isolated electron in uniform rectilinear motion. (}). — Let v be the velocity. We refer
everything to a coordinate system whose z-axis is || v, and whose origin lies at the location of the
electron at the time to for which we seek the distribution of ® and I'. That will then give the
distribution of electrodynamical excitations relative to the electron.

A very simple calculation will show that for the space point (0), the position (1) of the electron
that must be considered is the one for which r has the value:

v . v2 ) v
[\72+\/(x +y )[1—\7}& }[1—\7J :

r {1+\%cos(v, r)}

\/(xz + yz)(l—\\;—zzj+ 7° .

and

will have the value:

We will then get:

o= ,
V2
\/(x2+y2)(1—v2]+ z°
r=2 !
V V2
(x2+y2)(1—\/2]+ 7°
When that is combined with:
od 1or or, or
KV__E_VEV, Hv:_(a; _a_;]1 ﬂqﬂl V:---,X,y,Z,X,y,---,

that will, in fact, imply the known distribution of field excitations when one observes that due to
the fact that we have assumed a moving coordinate system, we have to replace:

ar, with -V or, .
ot 0z

() The same problem for a superluminal velocity was likewise treated in the Jubilee volume for H. A. Lorentz
(pp. 652) and by my distinguished Géttingen colleague Th. Des Coudres (Zusatz 7, 111, 1901) along a path that
corresponded completely to the one that was followed here.
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17. Oscillating electron. — In conclusion, we might consider the case that is of interest in
optics, in which an electron performs sinusoidal oscillations. Since oscillations of the most general
type can be resolved into linear oscillations in that theory, we can then confine ourselves to
investigating linear oscillations.

The origin of the coordinate system might be laid at the center of oscillation with the z-axis
parallel to the line of oscillation. We can then write:

. t
=7Zsin2xr —,
d T

in which £'is the respective z-coordinate of the electron, Z is the greatest deflection, and T is the
period. The emitted light has the wavelength A=V T.

Let p be the distance from the point (0) to the coordinate origin so to the center of oscillation.
We restrict ourselves to the case in which Z proves to be infinitely-small compared to A and p. We

must then replace:
! with i[1+§—22+\\//—Zj
r {1+\\//cos(v, r)} P P P

and

r .
t=to— — with t=to—
V

<|w
I
I
&
|
Py
>

in the right-hand sides of formulas (25), (26), and when we write t in place of to in the final formula,

we will get:
b= i+EE isin27r[£—£j+2—7zcos 27{1—3] ,
L pplp T 2 A T A
rx:O, FyZO, Fz: ZZ—”COSZﬂ'(l—BJ.
p A T A

Those formulas yield a well-known case of the radiation from a luminous point.
Poynting’s law will give information about the radiated energy most simply. If we apply it to
a very large sphere then it will follow that:

in which — dE denotes the energy loss from the oscillating system during dt.

That is connected with an interesting consequence in regard to the damping of the oscillation
of an electron that results from the action of a central force that is proportional to the distance. In
order for the theorems that were derived to be approximately valid, we must assume that the
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damping is only very small. If m means the effective mass and k {'means the restoring force then,
except for the negligible influence of damping, one must set:

d?¢
m =—k <,
dt? J
from which it follows that:
k_ (Z_ﬂj
m T )’

and that the energy of oscillation is:

for the relaxation time, that is, the time it takes for the amplitude to drop down to 1/2.828... times
its original value, and the value:
3 m A*V?

w=7V= >
A 1 1

for the length of the path that the light travels during the relaxation time.

We would like to apply that formula for the case of emission of light with one spectral line.
We set A equal to around 1/20000. / m might be assumed to have the value 4 - 10*', which roughly
corresponds to the Zeeman phenomenon and cathode rays. ¢ is known only imprecisely. According
to whether one sets the number of molecules in a cubic centimeter of gas at 0° C and normal
pressure equal to:

N =10%° or N = 10%°

(which might characterize the limits that one defines), that will give:
1=13-10"° or 1=1.3-1071,

respectively, and we will get:
w=3m or w =30 m,
resp.
We can compare that with our observations of interference for large path differences. The give
about 1/2 meter for the greatest path difference for which interference can be recognized.
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We must conclude from that, in addition to the decline in the oscillations that results from the
emission of light, other perturbing causes will be in effect that can prove to be stronger. If we set:

w>0.5m,
which would correspond to observations, then it will follow that:
1<80-10719, N> 1107,
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