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 Increasing the number of wave functions  will account for the difference between positive and negative electrons 

(1). 
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be the two-rowed Pauli matrices. If we set: 

 

P  (1, 2, 3, i)      (2) 

then, as is known: 

  P        (2) 

 

will represent the radiation vector. However, it is the four-rowed Dirac matrices: 
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that are definitive for the electron, and with their help, we can construct the nine matrices: 

 

a b  (a, b = 1, 2, 3) .     (4) 

 
 (1) According to Rutherford, there also exists a positive electron with the same mass as the usual (negative) 

electron.  
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In total, there are then sixteen distinct matrices present. In fact, if we set: 

 

J  (1 1 , 2 1 , 3 1 , i )     (4) 

then: 

  J        (5) 

 

will represent the four-current. If we further write: 

 

S  (1 , 2 , 3 , i 1)      (6) 

then: 

  S        (6) 

 

can be interpreted as the four-spin. We also set: 

 

M  (1 3 , 2 3 , 3 3 , − i 1 2 , − i 2 2 , − i 3 2)   (7) 

and remark that: 

  M        (7) 

 

represents the tensor of the magnetization and polarization. Finally: 

 

  3       (8) 

is the proper mass density and: 

  2       (9) 

is the proper charge density. 

 If we set: 

1 = 3 , 2 = 4     (10) 

 

then the quantities (7), (8), (9) will vanish, and we will get: 

 

J = S = 2  P .     (11) 

 

 Dirac’s theory, which probably subsumes Pauli’s theory, only makes it possible to describe 

negative electrons, but yields no explanation for the positive proton. In order to obtain a consistent 

theory of matter, we must increase the number of wave functions. 

 

 

 § 2. – We now construct the eight-rowed matrices: 
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They will then produce the 54 matrices: 

 

a b , a b , a b , a b c (a, b, c = 1, 2, 3) .   (13) 

 

We will then have 64 distinct matrices in total. We now set: 

 

J−  (1 1 , 2 1 , 3 1 , i ) .    (14) 

The quantity: 

  J−       (14) 

 

represents the four-current of the (−)-electrons. We also write: 

 

J+ = J−  1      (15) 

and can regard the quantity: 

  J+       (15) 

 

as the four-current of the (+)-electrons. If we further set: 

 

1 = 5 , 2 = 6 , 3 = 7 , 4 = 8   (16) 

 

then it will follow that: 

J− = J+ = 2 J ,      (17) 

 

in which J has the meaning that it gets from formula (5). When we set: 
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we will have the following four-vectors and tensors: 
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  S− ,   S+ ,   M− ,   M+ ,   (18) 

 

as well as the invariants: 

 

  3 ,   2 ,    3 1 ,    2 1 .   (19) 

 

 

 § 3. – We now construct the four-vectors: 
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J J

S S
     (20) 

the tensors: 

  M−2  ,   M−3  ,     (21) 

and the invariants: 

 

  3 2 ,   2 2 ,   3 3 ,   2 3 .   (22) 

 

 For (16), all of the quantities (20), (21), (22) will vanish. However, then cannot, unfortunately, 

be interpreted physically on the basis of our knowledge up to now. They certainly owe their 

existence to the difference between both types of electrons. It is possible that they are connected 

with the presence of magnetic currents and charges. 

 If both (+) and (−)-electrons are present at the same time then the unified wave equations will 

read: 

3

2

2

h i e

i x hc
 

 
   



 
+ 

 
+ m c v5  = 0 ,   (23) 

in which: 

  (1 1, 2 1, 3 1, i 1) ,  v5 = 3 .   (24) 

 

___________ 
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 A reinterpretation of the tensors that arise from our eight-component wave mechanics (1) is proposed that will 

yield a unified representation of the various electrical particles. In conjunction with a previous paper (2), a covariant 

form of the wave equations will then be given. 

 

 

 § 1. – Now that it has been established experimentally (Anderson, et al) that there exist 

electrons whose ratio of rest mass to charge proves to have the opposite sign to the usual electrons, 

it is clear that Dirac’s wave equation, which yields the aforementioned difference, in addition to 

the spin, describes the correct distribution of electrically-charged matter. We would now like to 

show that the eight-component extension of the equations produces the distribution of protons, 

along with that of electrons, since they can be written in a microscopic form. We would now like 

to set: 

1 = 1 1 ,  2 = 2 1 , 3 = 3 1 , 4 = i , 5 = 3 .  (1) 

 

We can then interpret the quantity: 

 

−
3 ke   

   (k = 1, 2, 3, 4)     (2) 

 

as the four-current of the total electricity and the quantity: 

 

−
3 5e           (3) 

 

as the proper electrical density. We now consider the fourth component of (2), which will read: 

 

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8( )i e                       − − − − + + + +    (4) 

 

 
 (1) R. Zaycoff, Zeit. Phys. 83 (1933), 338; cf., formulas (1), (3), (12), (13), (23), (24).  

 (2) R. Zaycoff, Zeit. Phys. 82 (1933), 267. Cited as I in what follows. 
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when it is written out. 

 It represents the electric charge density, multiplied by i (1) and can be either negative or 

positive. The distribution of electrons, as well as protons, is then given by it. In a similar way, we 

can convince ourselves that (2) and (3) are applicable to both type of electricity. 

 By means of a “gauge transformation” of the electromagnetic four-potential  : 

 

  =  −   ,     I, (27) 

 

the wave functions  can be transformed as follows: 

 

s   = ia

s e   ,  t   = ia

t e  −   (s = 1, 2, 3, 4, t = 5, 6, 7, 8),  (5) 

 

in which a represents a positive constant that is proportional to e. The quantities (2), (3) are thus 

gauge invariant. 

 We further set: 

s1 = 1 , s2 = 2 , s3 = 3 , s4 = i 1   (6) 

 

and interpret the quantities: 

4
k

h
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  (k = 1, 2, 3, 4)     (7) 

 

as the components of the four-spin of electricity. They are gauge invariant. The real parts of the 

quantities: 
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  (8) 

 

in which 1, 2, 3 mean the first three matrices, are gauge invariant and represent the mechanical 

impulse (mechanical energy, resp.) of the electrons and protons. Finally: 

 

0 5b    ,      (9) 

 

in which b0 means a quantity (2) with the dimension of mass, can be regarded to be a proper mass 

density, which is likewise gauge invariant. 

 

 

 

 (1) The fourth coordinate 
4

x  was taken to be imaginary.  

 (2) Which will be explained later.  
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 § 2. – If we set: 

 23 = 1 1 ,  31 = 2 3 ,  12 = 3 3 , 

(10) 

 41 = − i 1 2 , 42 = − i 2 2 , 43 = − i 3 2 

 

then the quantities (1): 

k l  

   (k   l )     (11) 

 

play the role of a mechanical dipole moment tensor. Likewise: 

 

k  

      (12) 

 

can be interpreted as the mechanical four-current. The quantities (11) and (12) are gauge invariant. 

However, they always occur in physical laws multiplied by a very small factor, which explains 

why they are neglected. 

 The following quantities: 

 

3 ks  

 ,  
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  , 
2   , 

3 2       (13) 

 

are also gauge invariant, but they do not appear anywhere. 

 Now, the quantities: 
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 (14) 

 

are no longer gauge invariant, and therefore be dropped from consideration (2). When one neglects 

gravitation, the unified wave equations will now read (3): 
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  = 0 .   (15) 

 

 In fact, such a variability in the rest mass exists as a result of the packing effect between 

electrons and protons. In all situations where only electrons are present, one can set: 

 

5 = 6 = 7 = 8 = 0 , b0 – b 3  = m−,     (16) 

 

and in all situations where there are only protons: 

 
 (1) In general, the primed Latin symbols shall run from 1 to 4 and the unprimed ones from 1 to 5.  

 (2) Our previous interpretation did not account for gauge invariance.  

 (3) b0 and b are certain constants, and  is a function.  
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1 = 2 = 3 = 4 = 0 , b0 – b 3  = m+.     (17) 

 

Equations (15) then have a microscopic character. 

 

 

 § 3. – Formula I, (17) can be replaced with the more general one: 

 

hm /  = 
m mh f n f

    + ,     (18) 

 

in which the quantity f is antisymmetric in all indices. Along with the formula: 

 

f = ,  – ,   ,      (19) 

the formula: 

f = 
,g

         (20) 

also appears here, in which: 

 = i g ,      (21) 

 

according to whether the indices , , ,  represents an even (odd, resp.) permutation of the 

number sequence 1 2 3 4, and  represents a scalar. 

 The right-hand side of the expression for km in the Appendix to I also has the quantity: 

 

k mh h f 

         (22) 

 

added to it. Instead of I, (26), we have: 

 

G = R f f f f 

 − − .      (23) 

 

 Moreover, the four-rowed matrices k that apply to all formulas I, (30), …, (69) must be 

replaced with the eight-rowed ones k . In formulas (45), (48), (67), (70), the constant  is replaced 

with the matrix: 

  − a 3 . 

 

We will then have, e.g., instead of I, (45): 
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 § 4. – In place of I, (54), we will have: 

 



Zaycoff – On the extension of wave mechanics (Second communication). 9 
 

M = / 0 3

1
( )r r r rh n b b

i



        + − ,   (25) 

 

in which the / are determined from (24), and  is the function in (20). 

 The covariant unified wave equations now read: 

 

/ 0 3{ ( ) }r r rh i n b b

    + − = 0 .    (26) 

 

 Correspondingly, the terms: 

N  , L   

 

will enter into the integral on the right-hand sides of I, (58), (59). It then follows from this that 

along with the field equations I, (60), (61), (62), one also has the further field equation: 

 

F  N – L = 0,      (27) 

 

from which the distribution function  can be determined. 

 We then have 41 field equations, between which 15 identities exist. However, that will describe 

all of physical reality, i.e., the gravitational field, the electromagnetic field, the mass distribution, 

and the matter field of the electrons and protons. 

 Finally, instead of I, (77), we have the following equations: 

 

/ ,( )r rM h f M N 

   + +   = 0 .    (28) 

 

 It shows that in addition to the Lorentz ponderomotive force: 

 

f M 

 , 

the Poincaré pressure force: 

,  N 

is also present. 

 

___________ 

 


