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On a general form of the Dirac equation 
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________ 

 
 

A general theory of the wave-mechanical electron will be presented. 
 
 

Historical overview 
 

 The equations of Einstein’s theory of teleparallelism are locally bein-invariant; i.e., 
they admit the group of proper orthogonal bein-transformations: 
 

mhα′  = ϑmr hαr 

 
with constant rotational coefficients ϑmr (

1).  Now, in the year 1916, Einstein’s theory of 
gravitation had a truly bein-invariant form; i.e., its equations admitted the group of bein-
transformations above, but with position-dependent rotational coefficients ϑmr (x

1, x2, …) 
(2).  They will then be occasionally represented by the truly bein-invariant quantities: 
 

gαβ = hαm hβm . 
 
The Dirac wave equation is the relativistic generalization of Schrödinger’s (3).  W. 
Pauli and W. Heisenberg (4) have developed Dirac ’s method of second quantization 
upon only the basis of the Dirac and Maxwell equations.  Now, H. Weyl (5) gave a 
general-relativistic two-component representation of the wave equation, but only the 
massless one, that is proper bein-invariant.  He showed that the proper bein-
transformations are equivalent to the continuous spin-transformations of the wave 
functions ψ.  H. Weyl remained based in the previous theory of gravitation, but added the 
further requirement of gauge-invariance, which is linked with the re-gauging of ψ by: 
 

ψ′ = ψ eiα, 
 

                                                
 (1) Cf., R. Weitzenböck, Berl. Ber. 26 (1928).  
 (2) Cf., T. Levi-Civita , ibidem, 9 (1929). 
 (3) Cf., Dirac’s new insights, as well, Proc. Roy. Soc. (A) 126 (1930), 360, in which the “negative” 
states play the important role precisely in the interaction between matter and radiation.  
 (4) W. Pauli and W. Heisenberg, Zeit. Phys. 56 (1929), 1; 59 (1930), 168. 
 (5) H. Weyl, Zeit. Phys. 56 (1929), 330.  
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in order give a basis for the existence of the electromagnetic four-potential fa .  V. Fock 
(1) adapted Weyl’s idea on the basis of the four-component Dirac theory.  In recent 
times, that way of thinking made it possible for L. Rosenfeld (2) to apply the method of 
second quantization to the three known groups of phenomena: viz., gravitation (hα m), 
electromagnetism (fα), and the matter field (ψ).  Shortly after that, the author (3) showed 
the connection between the Weyl-Fock results and Kaluza’s notion of a Riemannian R5 
that is cylindrical in the fifth dimension.  He introduced a cylindrical bein-lattice in 
Kaluza’s R5 and considered the evolution of matter waves in it, when the five-
dimensional wave-functions ω must depend upon the fifth coordinate simply-
periodically, in any event.  The theory that was developed there was valid only in the case 
of a single body.  For the many-body problem, according to the method of second 
quantization, we must consider all field-variables to be non-commuting q-quantities, not 
commuting c-quantities.  It is, in fact, possible to construct a more highly “quantized” 
theory, in which complete relativistically-symmetric commutation relations represent a 
continuous image of the Heisenberg uncertainty relations. 
 
 
 § 1. – Let a Riemannian R5 be given that is rigorously cylindrical with respect to x0 
(4).  The last coordinate is only an auxiliary quantity, since it does not enter into the 
metric quantities, and only the wave function ω depends upon it in a simply-periodic 
way.  Let a cylindrical grid of beins be embedded in this R5 .  If we denote the covariant 
bein-components by hα′ m′ and the contravariant ones by mhα ′

′  then we will have (5): 

 

(1)    0 00
0 0

0

, , 1,

, , 1.
m m

m m m m

h h h f h

h h h f h
α α α α

α α

= = − =
 = = =

 

 It follows that: 
 
(2)      | hα′ m′ | = | hα m | = 1. 
 
 If we set: 

(3)      mh
x

ρ
ρ

′
′ ′

∂
∂

 = 
m

d

ds
 

then it will follow from (1) that: 
 

                                                
 (1) V. Fock, Zeit. Phys. 57 (1929), 261; Comptes rendus 189 (1929), 25. 
 (2) L. Rosenfeld, Ann. Phys. (Leipzig) [5] 5 (1929), 113.  
 (3) R. Zaycoff, Zeit. Phys. 61 (1930), 395.  However, that paper deviated from the present one not only 
in its notations, but also in its essential content. 
 (4) We denote the fifth dimension by x0.  The coordinates x1, x2, x3, x0 are real, but x4 is imaginary. 
 (5) The primed (unprimed, resp.) symbols run through 1, 2, 3, 4, 0 (1, 2, 3, 4, resp.).  In what follows, 
only the non-vanishing quantities will be given. 
  We can obtain the corresponding bein-components of a quantity from the usual coordinates by 

contracting over the Greek indices with 
m

hρ , hρ m , and conversely (by contracting over the Latin indices). 
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(3′)    
m

d

ds
= 0mh f

x x
ρ

ρρ
∂ ∂ + ∂ ∂ 

,  
m

d

ds
= 

0x

∂
∂

. 

 
For the components of the “torsion”: 

(4)      ∆k′ l′ m′ = hρ′ m′ l k

k l

dh dh

ds ds

ρ ρ′ ′
′ ′

′ ′

 
− 

 
, 

we have (1): 
 
(4′)      ∆k l m = ∆k l m , ∆k l 0 = fkl . 
 
For the quantities that are constructed from them: 
 

(5)     1
2

,

{ },

,

k k r r

k l m k l m k m l l m k

k l m k l m l m k k m lS

′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

 Λ = Λ
 Π = Λ + Λ + Λ
 = Λ + Λ + Λ

 

we will have: 

(5′)     1
0 0 2

0

,

, ,

, .

k k

klm klm km k m km

klm klm kl kl

f

S S S f

Λ = Λ
 Π = Π Π = Π =
 = =

 

 
The curvature of the cylindrical Riemannian R5 is further given by: 
 

(6)     ρ = 2 r

r

d

ds
′

′

Λ
 − Λr′  Λr′  – 1

2 Πk′  l′  r′  Λ k′  l′  r′ , 

or when written out: 
 
(6′)      ρ = R – 1

2  fkm fkm , 

 
in which R means the curvature of the R4 that is embedded in R5 . 
 The following coordinate transformations: 
 
(7)  xα = 1 2 3 4( , , , )x x x x xα , 

(7′)  x0 = 0 1 2 3 4( , , , )x x x x xλ+  
 
are compatible with the choice (1) of bein-components.  It follows from: 
 

                                                
 (1) We have set: 

fαβ = 
f f

x x

β α
α β

∂ ∂
−

∂ ∂
. 
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(8)     mhα ′ ′  = 
x

x

ρ

α

′

′
∂
∂

 or mhα ′
′  = m

x
h

x

α
ρ

ρ

′
′
′′

∂
∂

, 

 
in connection with (1) and (7), (7′): 
 

(8′)     mhα  = m

x
h

x

ρ

ρα
∂
∂

, fα = 
x

f
x x

ρ

ρα ρ
λ∂ ∂ − ∂ ∂ 

. 

 
 Furthermore, with the choice (1) of bein-components, the following proper bein-
transformations: 

(9)    
or ,m m r r m m r m

m r n r r m r n m n

h h h hα α
α αϑ ϑ

ϑ ϑ ϑ ϑ ε

′ ′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ = =
 = =

 

 
will be compatible with the conditions for the rotational coefficients (1): 
 

(9′)     
0 0 00

,

0, 1,
mr nr rm rn mn

m m

ϑ ϑ ϑ ϑ ε
ϑ ϑ ϑ

= =
 = = =

 

or, when written out (2): 
 
(9″)    mhα′ = ϑm r hα r , fα′  = fα . 

 
 
 § 2. – We now choose the quantities (which are four in number): 
 

(10)    

0

0

1 2 3 4

1 2 3 4

( , , , ) ,

( , , , )

ia x

i a x

x x x x e

x x x x e

ω ψ

ω ψ −

 =


= ɶ ɶ

 

 
to be our wave-functions, in which: 

(11)     a = − 
0 0

c

h k

π
(± e0). 

 
 The ψ-functions have the dimensions [l−3/2].  In this, h0 is Planck’s action constant 
and ± e0 is the elementary charge of the proton (electron, resp.). 
 We have written h0 , e0 in order to avoid confusion with the quantities | hα m | = h (the 
basis for the natural logarithm, resp.). 
                                                
 (1) ϑm r are functions of x1, x2, x3, x4. 
 (2) If we base things on a rational system of units then we would like to make the following physical 
identifications: 
 gαβ = 2 / c2 : gravitational potential (indeed, the latter has the dimensions [l 2 t−2]. 

 fα   = (2 / c2) 
0

k ⋅⋅⋅⋅ ϕα , where ϕα means the “electromagnetic potential,” c means the speed of light in 

vacuo, and k0 means Newton’s gravitational constant. 
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 ψ, ψɶ  are invariant under the xα-transformations (7).  By contrast, ψ, ψɶ  experience 
the following transformations: 
 
(12)    ψ  = ψ ei a λ, ψɶ  = ψɶ  e− i a λ, 
 
under x0-transformations (7′), such that it will follow from (7), (7′), (10), (12) that: 
 

(13)     
,

;

ω ω
ω ω

=
 = ɶ ɶ

 

 
i.e., ω, ωɶ  behave like five-dimensional invariants. 
 ω, ωɶ  experience the continuous spin transformations (1): 
 
(14)    ω′ = P ω, ω ′ɶ = Pω +

ɶ , | P (s, t) | = 1 
 
under the proper bein-transformations (9).  If the spin matrices are, say (2): 
 

(15) 

1 2 3

4 0

0 0 0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 1
, , ,

0 1 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 1 0 0

,

0 0 0 1 0 0 0

0 0 0 0 1 0 0
,

0 0 0 0 0 1 0

0 0 0 0 0 0 1

i

i

i

i

i

i
i

i

i

γ γ γ

γ ε γ

 −     
      −      = = =
      −
      −     




   
   
   = = =
   −
    −   

 

 
then P (s, t) will have the following form: 
 

                                                
 (1) P+ (s, t) = ( , )P s tɶ . 
 (2) We can define the matrix: 

γ = 

0 0 0

0 0 0

0 0 0

0 0 0

i

i

i

i

 −
 − 
 
 
  

 

from the relation: 
1

2
γ1 γ2 γ3 γ4 = γ . 
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(16)    ( , ) ,P s t

α β γ δ
β α δ γ
γ δ α β
δ γ β α

  −
  −  =  −   −  

ɶ

ɶ ɶ

⌢
ɶ

 

with the conditions: 

(16′)    
1,

0,

α α β β γ γ δ δ
α γ γ α β δ δ β

 + − − =


− + − =

ɶ ɶɶ ɶ

ɶ ɶɶ ɶ
 

 

and we can then represent the coefficients ϑmr are quadratic functions of the α, αɶ , β, βɶ , 
γ, γɶ , δ, δɶ .  It follows from somecalculation that: 
 
(17)     P+γm′ P = ϑm′ r′ γr′ , 
 
or when written out: 
 
(17′)    P+γm P = ϑm r γr , P+γ0 P = γ0 . 
 
One has, in addition: 
 
(17″)      P+γ P = γ . 
 
With that, the four-vector: 

Jm = ψɶ γm ψ 
will transform as follows: 
 
(18)     mJ′  = ϑmr Jr 

 
under the proper bein-transformations, and the quantities: 
 

J0 = ψɶ γ0 ψ, J = ψɶ γ ψ 
 
will be proper bein-invariants.  One will have: 
 
(19)     Jm Jm = − 2

0J − J 2 

 
identically. 
 The identities also follow: 
 

(20)   
2

2 ,

0, .
m n n m m n n m m n

m m m m

γ γ γ γ γ γ γ γ ε ε
γ γ γ γ γ γ γ γ γ ε

+ + + +
′ ′ ′ ′ ′ ′ ′ ′ ′ ′
+ +

′ ′ ′ ′

 + ≡ + ≡ ⋅
 + ≡ + ≡ ≡

 

 



Zaycoff – A general form for the Dirac equation. 7 

 In addition to the proper bein-invariant vector Jm and the proper bein-invariant J0, J, 
we also have the following proper bein-invariant tensors: 
 
 Jklm = k l miψ γ γ γ ψ+

ɶ  (k ≠ l ≠ m), 

 
 Jkl   = 0k liψ γ γ γ ψ+

ɶ  (k ≠ l), 

 
which are antisymmetric in all indices. 
 
 
 § 3. – We define the components of the Riemann derivatives of the quantities Jm′ in 
the bein-directions: 
 

(21)    Dl′ Jm′ = m

l

dJ

ds
′

′

 − Πk′ l′ m′  Jk′ , 

 
and it will then follow with some calculation that: 
 

(22)    

1
4

1
4

,

.

l k l m k r
l

l k l m k r
l

d
D

ds

d
D

ds

ωω γ γ ω

ωω ω γ γ

+
′ ′ ′ ′ ′ ′

′

+
′ ′ ′ ′ ′ ′

′

 = + Π


 = − Π


ɶ
ɶ ɶ

 

 
We define the divergence Dl′ Jl′ from (22) (1): 
 

(23)    Dl′ Jl′  = l

l

dJ

ds
′

′

− Λl′ J l′ = δρ J ρ. 

 We set (2): 
 
(24)    M = − { iωɶ γl′ Dl′ ω + b J0}. 
 
It follows from: 

J l′ = ωɶ γl′ ω 
and (23), (24) that: 
 
(25)     M − Mɶ  = − i δρ J ρ. 

                                                
 (1) δρ means the Riemann derivative with respect to xρ.  
 (2) The constant b is equal to b = a – µ, where a is determined from (11) and: 
  

µ = 0

0

2 m c

h

π
. 

m0 is the rest mass of the particle. 
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The functions ρ and M are not only ordinary invariants, but they are also gauge-invariant 
and proper bein-invariant. 
 Some calculation will initially yield: 
 

(24′)  M = − 02 24l r r k l r k l r
l

d i i
i S b

ds

ωω γ ω γ ω ω γ γ γ ω ω γ ω+
′ ′ ′ ′ ′ ′ ′ ′ ′

′

+ ∆ + −ɶ ɶ ɶ ɶ  

and further: 
 

(24″)  M = − 0

1 1

2 24 8m m kl r klm m m km km

d i
i J S J a f J f J J

dx
ρ

ρ
ψψ γ µ+ ∆ + − + +ɶ . 

 
Finally, let the following auxiliary formulas be given: 
 

(26)   

, ,

, ,

.

m m m m

klm mlk

h h

x x

ρ
α β βα ρ

α αα α

δ δ
ψ ψδ ψ δ ψ

 = Π = −Λ
 ∂ ∂ = = ∂ ∂

Π = − Π

ɶ
ɶ  

 
 
 § 4. – We now choose the density: 
 
(27)      H = k M h 
 
to be the Lagrange function, where: 
 

(28)      k = − 0

2

h c

π
. 

 
 The variation of ψ and ψɶ  yields the wave equations (1): 
 

(29′)  

0 0

1

2

0,
24 8

m m

klm k l m km k m

i
X i i a f

k x

i i
S f

ρ
ρρ ψ γ ψ γ

ψ γ γ γ ψ γ γ γ µψ γ+ +

 ∂ = − − Λ  ∂ 

 + + + =


ɶ ɶ

ɶ ɶ ɶ

 

 

(29″)  

0 0

1

2

0.
24 8

m m

klm k l m km k m

i
X i i a f

k x

i i
S f

ρ
ρργ ψ γ ψ

γ γ γ ψ γ γ γ ψ µ γ ψ+ +

 ∂ = − + + Λ  ∂ 

 + + + =


ɶ

 

 

                                                
 (1) δψ and δψɶ  vanish on the boundary of the domain of integration.  
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Under an infinitesimal shift in the space-time continuum (1): 
 

δ xa = ξ a, 
we will have: 

(30)   

{ },

( ),

, .

m m a

a

h h

f f f
x

x x

ρ ρ κ
α ρ ακ

κ κ
α ακ κ

κ κ
κ κ

δ δ ξ ξ

δ ξ ξ

ψ ψδψ ξ δψ ξ


 = − + Π
 ∂ = − ∂

∂ ∂ = − = − ∂ ∂

⋯

ɶ
ɶ

 

 
By contrast, under an infinitesimal gauge-transformation: 
 

(31)   
0, ,

, ,

m a a
h f

x
i a i a

α
λδ δ

δψ λψ δψ λψ

∂ = =
∂

 = − = ɶ ɶ

 

 
Finally, under an infinitesimal proper bein-transformation (2): 
 

(32)  

1 1
4 4

, ,

0, , ,

where

, .

m mr r mr rm

kr k r kr k r

h h

f p p

p p

α α

α

δ ω ω ω
δ δψ ψ δψ ψ

ω γ γ ω γ γ

+

+ + +

= − = −
 = = − = −


 = = −

ɶ ɶ

 

 
 Since we have: 

(33)   { },m mX h X f X X hdxρ ρ
ρ ρδ δ δψ δψ+ + +∫ ɶɶ  ≡ 0, 

 
regardless of whether we substitute the variations (30), (31), or (32) in (33), the identities 
will follow: 

(34)  ,X X f X f X X X
x x

ρ ρκ ρ ρ
ρ α ρακ αρ α ρ α α

ψ ψδ δ ∂ ∂− Π − + − −
∂ ∂

ɶ
ɶ ≡ 0, 

 
(35)    δρ X

ρ + i a {X ψ − Xψ ɶɶ } ≡ 0, 
 

(36)  Xαβ – Xβα − { }1
4 ( ) ( )X Xα β β α α β β αγ γ γ γ ψ ψ γ γ γ γ+ + + +− − − ɶɶ  ≡ 0. 

 

                                                
 (1) ξ a are the components of the infinitesimal shift vector here. 
 (2) The following identity relations are fulfilled: 
 p+ γm + γm p = ωmr γr , 
 p+ γ0 + γ0 p  = 0, 
 p+ γ  + γ p    = 0 . 
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One has: 
 

(37)  ( ){ }
{ }

1 1 1
4 2 6

1 1
04 2

{ }
2 m m m m

i
X k ia f ia f h h g

x x

J J g J S

J f g J f g J

ρ ρ
αβ ρ ρ α β αβρ ρ

ρ ρµ κρµ
ρ α β α βρµ ρµβ αβ κρµ

κ κρ
α βκ αβ κρ αβ

ψ γ ψ ψ γ ψ ε

δ

µ

⋅

⋅
⋅

⋅

   ∂ ∂    = − ⋅ − + − − ⋅ −      ∂ ∂    
 + + Λ − Λ −


+ − − 


ɶ ɶ

 

and 
 
(38)     Xα = k ⋅⋅⋅⋅ [a Jα + δρ J

αρ]. 
 
 
 § 5. – From (29′) and (29″), one has: 
 
(29)     X = 0,  Xɶ = 0. 
 
 It first follows from (29) and (36) that: 
 
(39)      Xαβ = Xβα , 
 
such that the 16 components Xαβ will be reduced to only ten components on the basis of 
equations (29). 
 It will then follow from (29) and (35) that: 
 
(40)      δρ X

ρ = 0, 
 
and if one recalls (38) then that equation will imply that: 
 
(40′)      δρ J ρ = 0. 
 
 Since we know that: 
 
(41)     X y + Xψ ɶɶ  ≡ k ⋅⋅⋅⋅ [2M + i δρ J ρ], 
 
it will follow from (29), (40), (41) that: 
 
(42)      M = 0. 
 
Finally, it will follow from (26), (29), (34), (39), (40) that: 
 
(43)     X ρ

ρ αδ ⋅  − fαρ X ρ = 0. 
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Summary 
 

We have derived the following laws of matter by means of nothing but identity relations 
on the basis of the general Dirac equation: The symmetry of the energy-stress tensor Xαβ 
[equation (39)].  The conservation of the current vector Xα [equation (40) or (40′)].  The 
equations of motion (43). 
 

(Received on 12 October 1930) 
 

_________ 
 


