"Über eine allgemeine Form der Diracschen Gleichung," Ann. Phys. (Leipzig) 7 (1930), 650-660.

On a general form of the Dirac equation

By Raschco ZAYCOFF

Translated by D. H. Delphenich

A general theory of the wave-mechanical electron will be presented.

Historical overview

The equations of **Einstein**'s theory of teleparallelism are locally bein-invariant; i.e., they admit the group of proper orthogonal bein-transformations:

$$h'_{\alpha m} = \vartheta_{mr} h_{\alpha m}$$

with constant rotational coefficients ϑ_{mr} (¹). Now, in the year 1916, **Einstein**'s theory of gravitation had a truly bein-invariant form; i.e., its equations admitted the group of bein-transformations above, but with position-dependent rotational coefficients ϑ_{mr} ($x^1, x^2, ...$) (²). They will then be occasionally represented by the truly bein-invariant quantities:

$$g_{\alpha\beta} = h_{\alpha m} h_{\beta m}$$
.

The **Dirac** wave equation is the relativistic generalization of **Schrödinger**'s (³). **W. Pauli** and **W. Heisenberg** (⁴) have developed **Dirac**'s method of second quantization upon only the basis of the **Dirac** and **Maxwell** equations. Now, **H. Weyl** (⁵) gave a general-relativistic two-component representation of the wave equation, but only the massless one, that is proper bein-invariant. He showed that the proper beintransformations are equivalent to the continuous spin-transformations of the wave functions ψ . **H. Weyl** remained based in the previous theory of gravitation, but added the further requirement of gauge-invariance, which is linked with the re-gauging of ψ by:

$$\psi' = \psi e^{i\alpha},$$

^{(&}lt;sup>1</sup>) Cf., **R. Weitzenböck**, Berl. Ber. **26** (1928).

⁽²⁾ Cf., **T. Levi-Civita**, *ibidem*, **9** (1929).

^{(&}lt;sup>3</sup>) Cf., **Dirac**'s new insights, as well, Proc. Roy. Soc. (A) **126** (1930), 360, in which the "negative" states play the important role precisely in the interaction between matter and radiation.

^{(&}lt;sup>4</sup>) **W. Pauli** and **W. Heisenberg**, Zeit. Phys. **56** (1929), 1; **59** (1930), 168.

^{(&}lt;sup>5</sup>) **H. Weyl**, Zeit. Phys. **56** (1929), 330.

in order give a basis for the existence of the electromagnetic four-potential f_a . V. Fock (¹) adapted Weyl's idea on the basis of the four-component Dirac theory. In recent times, that way of thinking made it possible for L. Rosenfeld (²) to apply the method of second quantization to the three known groups of phenomena: viz., gravitation ($h_{\alpha m}$), electromagnetism (f_{α}), and the matter field (ψ). Shortly after that, the author (³) showed the connection between the Weyl-Fock results and Kaluza's notion of a Riemannian R_5 that is cylindrical in the fifth dimension. He introduced a cylindrical bein-lattice in Kaluza's R_5 and considered the evolution of matter waves in it, when the five-dimensional wave-functions ω must depend upon the fifth coordinate simply-periodically, in any event. The theory that was developed there was valid only in the case of a single body. For the many-body problem, according to the method of second quantization, we must consider all field-variables to be non-commuting q-quantities, not commuting c-quantities. It is, in fact, possible to construct a more highly "quantized" theory, in which complete relativistically-symmetric commutation relations represent a continuous image of the Heisenberg uncertainty relations.

§ 1. – Let a **Riemannian** R_5 be given that is rigorously cylindrical with respect to x^0 (⁴). The last coordinate is only an auxiliary quantity, since it does not enter into the metric quantities, and only the wave function ω depends upon it in a simply-periodic way. Let a cylindrical grid of beins be embedded in this R_5 . If we denote the covariant bein-components by $h_{\alpha'm'}$ and the contravariant ones by $h_{m'}^{\alpha'}$ then we will have (⁵):

(1)
$$\begin{cases} h_{\alpha m} = h_{\alpha m}, & h_{\alpha 0} = -f_{\alpha}, & h_{00} = 1, \\ h_{m}^{\alpha} = h_{m}^{\alpha}, & h_{m}^{0} = -f_{m}, & h_{0}^{0} = 1. \end{cases}$$

It follows that:

(2)
$$|h_{\alpha' m'}| = |h_{\alpha m}| = 1.$$

If we set:

(3)
$$h_{m'}^{\rho'}\frac{\partial}{\partial x^{\rho'}} = \frac{d}{ds_{\rho'}}$$

then it will follow from (1) that:

^{(&}lt;sup>1</sup>) **V. Fock**, Zeit. Phys. **57** (1929), 261; Comptes rendus **189** (1929), 25.

^{(&}lt;sup>2</sup>) **L. Rosenfeld**, Ann. Phys. (Leipzig) [5] **5** (1929), 113.

^{(&}lt;sup>3</sup>) **R. Zaycoff**, Zeit. Phys. **61** (1930), 395. However, that paper deviated from the present one not only in its notations, but also in its essential content.

^{(&}lt;sup>4</sup>) We denote the fifth dimension by x^0 . The coordinates x_1, x_2, x_3, x_0 are real, but x_4 is imaginary.

^{(&}lt;sup>5</sup>) The primed (unprimed, resp.) symbols run through 1, 2, 3, 4, 0 (1, 2, 3, 4, resp.). In what follows, only the non-vanishing quantities will be given.

We can obtain the corresponding bein-components of a quantity from the usual coordinates by contracting over the Greek indices with h_m^{ρ} , $h_{\rho m}$, and conversely (by contracting over the Latin indices).

(3')
$$\frac{d}{ds_m} = h_m^{\rho} \left(\frac{\partial}{\partial x^{\rho}} + f_{\rho} \frac{\partial}{\partial x^0} \right), \qquad \frac{d}{ds_m} = \frac{\partial}{\partial x^0}.$$

For the components of the "torsion":

(4)
$$\Delta_{k'\,l'\,m'} = h_{\rho'm'} \left(\frac{dh_{l'}^{\rho'}}{ds_{k'}} - \frac{dh_{k'}^{\rho'}}{ds_{l'}} \right),$$

we have $(^1)$:

(4')
$$\Delta_{k \, l \, m} = \Delta_{k \, l \, m}, \quad \Delta_{k \, l \, 0} = f_{k l}.$$

For the quantities that are constructed from them:

(5)
$$\begin{cases} \Lambda_{k'} = \Lambda_{k'r'r'}, \\ \Pi_{k'l'm'} = \frac{1}{2} \{\Lambda_{k'l'm'} + \Lambda_{k'm'l'} + \Lambda_{l'm'k'} \}, \\ S_{k'l'm'} = \Lambda_{k'l'm'} + \Lambda_{l'm'k'} + \Lambda_{k'm'l'}, \end{cases}$$

we will have:

(5')
$$\begin{cases} \Lambda_{k} = \Lambda_{k}, \\ \Pi_{klm} = \Pi_{klm}, \quad \Pi_{0km} = \Pi_{k0m} = \frac{1}{2} f_{km}, \\ S_{klm} = S_{klm}, \quad S_{kl0} = f_{kl}. \end{cases}$$

The curvature of the cylindrical **Riemannian** R_5 is further given by:

(6)
$$\rho = 2 \frac{d\Lambda_{r'}}{ds_{r'}} - \Lambda_{r'} \Lambda_{r'} - \frac{1}{2} \prod_{k' l' r'} \Lambda_{k' l' r'},$$

or when written out:

(6')
$$\rho = R - \frac{1}{2} f_{km} f_{km}$$

in which R means the curvature of the R_4 that is embedded in R_5 .

The following coordinate transformations:

(7)
$$x^{\alpha} = x^{\alpha}(\overline{x}^1, \overline{x}^2, \overline{x}^3, \overline{x}^4),$$

(7')
$$x^{0} = \overline{x}^{0} + \lambda(\overline{x}^{1}, \overline{x}^{2}, \overline{x}^{3}, \overline{x}^{4})$$

are compatible with the choice (1) of bein-components. It follows from:

 $(^{1})$ We have set:

$$f_{\alpha\beta} = \frac{\partial f_{\beta}}{\partial x^{\alpha}} - \frac{\partial f_{\alpha}}{\partial x^{\beta}}.$$

(8)
$$\overline{h}_{\alpha'm'} = \frac{\partial x^{\rho'}}{\partial \overline{x}^{\alpha'}} \quad \text{or} \qquad h_{m'}^{\alpha'} = \frac{\partial \overline{x}^{\alpha'}}{\partial x^{\rho'}} h_{m'}^{\rho'},$$

in connection with (1) and (7), (7'):

(8')
$$\overline{h}_{\alpha m} = \frac{\partial x^{\rho}}{\partial \overline{x}^{\alpha}} h_{\rho m}, \qquad f_{\alpha} = \frac{\partial x^{\rho}}{\partial \overline{x}^{\alpha}} \bigg(f_{\rho} - \frac{\partial \lambda}{\partial x^{\rho}} \bigg).$$

Furthermore, with the choice (1) of bein-components, the following proper beintransformations:

(9)
$$\begin{cases} h'_{\alpha'm'} = \vartheta_{m'r'} h_{\alpha'r'} \text{ or } h'^{\alpha'}_{m'} = \vartheta_{m'r'} h^{\alpha'}_{m'}, \\ \vartheta_{m'r'} \vartheta_{n'r'} = \vartheta_{r'm'} \vartheta_{r'n'} = \varepsilon_{m'n'} \end{cases}$$

will be compatible with the conditions for the rotational coefficients (¹):

(9')
$$\begin{cases} \vartheta_{mr} \vartheta_{nr} = \vartheta_{rm} \vartheta_{rm} = \mathcal{E}_{mn}, \\ \vartheta_{m0} = \vartheta_{0m} = 0, \quad \vartheta_{00} = 1, \end{cases}$$

or, when written out $(^2)$:

(9")
$$h'_{\alpha m} = \vartheta_{m r} h_{\alpha r}, \qquad f'_{\alpha} = f_{\alpha}.$$

§ 2. – We now choose the quantities (which are four in number):

(10)
$$\begin{cases} \omega = \psi(x^1, x^2, x^3, x^4) e^{iax^0}, \\ \tilde{\omega} = \tilde{\psi}(x^1, x^2, x^3, x^4) e^{-iax^0} \end{cases}$$

to be our wave-functions, in which:

(11)
$$a = -\frac{\pi c}{h_0 \sqrt{k_0}} (\pm e_0)$$

The ψ -functions have the dimensions $[l^{-3/2}]$. In this, h_0 is **Planck**'s action constant and $\pm e_0$ is the elementary charge of the proton (electron, resp.).

We have written h_0 , e_0 in order to avoid confusion with the quantities $|h_{\alpha m}| = h$ (the basis for the natural logarithm, resp.).

⁽¹⁾ $\vartheta_{m\,r}$ are functions of x^1, x^2, x^3, x^4 . (2) If we base things on a rational system of units then we would like to make the following physical identifications:

gravitational potential (indeed, the latter has the dimensions $[l^2 t^{-2}]$. $g_{\alpha\beta} = 2 / c^2$:

 $f_{\alpha} = (2/c^2) \sqrt{k_0} \cdot \varphi_{\alpha}$, where φ_{α} means the "electromagnetic potential," c means the speed of light in *vacuo*, and k_0 means Newton's gravitational constant.

 ψ , $\tilde{\psi}$ are invariant under the x^{α} -transformations (7). By contrast, ψ , $\tilde{\psi}$ experience the following transformations:

(12)
$$\overline{\psi} = \psi e^{i a \lambda}, \quad \overline{\tilde{\psi}} = \tilde{\psi} e^{-i a \lambda},$$

under x^0 -transformations (7'), such that it will follow from (7), (7'), (10), (12) that:

(13)
$$\begin{cases} \overline{\omega} = \omega, \\ \overline{\tilde{\omega}} = \tilde{\omega}; \end{cases}$$

i.e., ω , $\tilde{\omega}$ behave like five-dimensional invariants.

 ω , $\tilde{\omega}$ experience the continuous spin transformations (¹):

(14)
$$\omega' = P \,\omega, \qquad \tilde{\omega}' = \tilde{\omega} P^+, \qquad |P(s,t)| = 1$$

under the proper bein-transformations (9). If the spin matrices are, say $(^2)$:

$$(15) \quad \begin{cases} \gamma_{1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad \gamma_{2} = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{bmatrix}, \quad \gamma_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \\ \gamma_{4} = i\varepsilon = \begin{bmatrix} i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & i \end{bmatrix}, \quad \gamma_{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

then P(s, t) will have the following form:

(1) $P^+(s, t) = \tilde{P}(s, t)$.

(²) We can define the matrix:

$$\gamma = \begin{bmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{bmatrix}^{-1} \chi \chi \chi \chi \chi \chi = \chi$$

from the relation:

 $\frac{1}{2} \gamma_1 \gamma_2 \gamma_3 \gamma_4 = \gamma.$

(16)
$$\begin{cases} P(s,t) = \begin{bmatrix} \alpha & -\tilde{\beta} & \gamma & \bar{\delta} \\ \beta & \tilde{\alpha} & \delta & -\tilde{\gamma} \\ \gamma & \bar{\delta} & \alpha & -\bar{\beta} \\ \delta & -\bar{\gamma} & \beta & \tilde{\alpha} \end{bmatrix}, \end{cases}$$

with the conditions:

(16')
$$\begin{cases} \tilde{\alpha}\alpha + \tilde{\beta}\beta - \tilde{\gamma}\gamma - \tilde{\delta}\delta = 1, \\ \tilde{\alpha}\gamma - \tilde{\gamma}\alpha + \tilde{\beta}\delta - \tilde{\delta}\beta = 0, \end{cases}$$

and we can then represent the coefficients ϑ_{mr} are quadratic functions of the α , $\tilde{\alpha}$, β , $\tilde{\beta}$, γ , $\tilde{\gamma}$, δ , $\tilde{\delta}$. It follows from some calculation that:

(17)
$$P^+ \gamma_{m'} P = \vartheta_{m'r'} \gamma_{r'},$$

or when written out:

(17')
$$P^+ \gamma_m P = \vartheta_m r \gamma_r, \qquad P^+ \gamma_0 P = \gamma_0 r$$

One has, in addition:

$$(17'') P^+ \gamma P = \gamma$$

With that, the four-vector:

$$J_m = ilde{\psi} \ \gamma_m \ \psi$$

will transform as follows:

(18)
$$J'_m = \vartheta_{mr} J_r$$

under the proper bein-transformations, and the quantities:

$$J_0 = \tilde{\psi} \gamma_0 \psi, \quad J = \tilde{\psi} \gamma \psi$$

will be proper bein-invariants. One will have:

(19)
$$J_m J_m = -J_0^2 - J^2$$

identically.

The identities also follow:

(20)
$$\begin{cases} \gamma_{m'}^{+} \gamma_{n'} + \gamma_{n'}^{+} \gamma_{m'} \equiv \gamma_{m'} \gamma_{n'}^{+} + \gamma_{n'} \gamma_{m'}^{+} \equiv 2\varepsilon_{m'n'} \cdot \varepsilon, \\ \gamma_{m'}^{+} \gamma + \gamma \gamma_{m'} \equiv \gamma_{m'} \gamma + \gamma \gamma_{m'}^{+} \equiv 0, \quad \gamma^{2} \equiv \varepsilon. \end{cases}$$

In addition to the proper bein-invariant vector J_m and the proper bein-invariant J_0 , J, we also have the following proper bein-invariant tensors:

$$\begin{split} J_{klm} &= i \,\tilde{\psi} \,\gamma_k \,\gamma_l^+ \,\gamma_m \,\psi \quad (k \neq l \neq m), \\ J_{kl} &= i \,\tilde{\psi} \,\gamma_k \,\gamma_l^+ \,\gamma_0 \,\psi \quad (k \neq l), \end{split}$$

which are antisymmetric in all indices.

§ 3. – We define the components of the Riemann derivatives of the quantities $J_{m'}$ in the bein-directions:

(21)
$$D_{l'}J_{m'} = \frac{dJ_{m'}}{ds_{l'}} - \prod_{k'l'm'} J_{k'},$$

and it will then follow with some calculation that:

(22)
$$\begin{cases} D_{l'} \omega = \frac{d\omega}{ds_{l'}} + \frac{1}{4} \prod_{k'l'm'} \gamma_{k'}^{+} \gamma_{r'} \omega, \\ D_{l'} \tilde{\omega} = \frac{d\tilde{\omega}}{ds_{l'}} - \frac{1}{4} \tilde{\omega} \prod_{k'l'm'} \gamma_{k'} \gamma_{r'}^{+}. \end{cases}$$

We define the divergence $D_{l'}J_{l'}$ from (22) (¹):

(23)
$$D_{l'}J_{l'} = \frac{d\overline{J}_{l'}}{ds_{l'}} - \Lambda_{l'}J_{l'} = \delta_{\rho}J^{\rho}.$$

We set $(^2)$:

(24)
$$M = -\{i\tilde{\omega} \gamma_{l'} D_{l'} \omega + b J_0\}.$$

It follows from:

$$J_{l'} = \tilde{\omega} \gamma_{l'} \omega$$

and (23), (24) that:

(25)
$$M - \tilde{M} = -i \,\delta_{\rho} J^{\rho}.$$

$$\mu = \frac{2\pi m_{\scriptscriptstyle 0} c}{h_{\scriptscriptstyle 0}} \, .$$

 m_0 is the rest mass of the particle.

^{(&}lt;sup>1</sup>) δ_{ρ} means the **Riemann** derivative with respect to x^{ρ} . (²) The constant *b* is equal to $b = a - \mu$, where *a* is determined from (11) and:

The functions ρ and M are not only ordinary invariants, but they are also gauge-invariant and proper bein-invariant.

Some calculation will initially yield:

(24')
$$M = -i\,\tilde{\omega}\gamma_{l'}\frac{d\omega}{ds_{l'}} + \frac{i}{2}\Delta_{r'}\,\tilde{\omega}\gamma_{r'}\,\omega + \frac{i}{24}S_{k'l'r'}\,\tilde{\omega}\gamma_{k'}\,\gamma_{l'}^{+}\gamma_{r'}\,\omega - b\,\tilde{\omega}\gamma_{0}\,\omega$$

and further:

(24")
$$M = -i\tilde{\psi}\gamma^{\rho}\frac{d\psi}{dx^{\rho}} + \frac{i}{2}\Delta_{m}J_{m} + \frac{1}{24}S_{klr}J_{klm} - af_{m}J_{m} + \frac{1}{8}f_{km}J_{km} + \mu J_{0}.$$

Finally, let the following auxiliary formulas be given:

(26)
$$\begin{cases} \delta_{\alpha} h_{\beta m} = \Pi_{\beta \alpha m}, \quad \delta_{\rho} h_{m}^{\rho} = -\Lambda_{m}, \\ \delta_{\alpha} \psi = \frac{\partial \psi}{\partial x^{\alpha}}, \quad \delta_{\alpha} \tilde{\psi} = \frac{\partial \tilde{\psi}}{\partial x^{\alpha}}, \\ \Pi_{klm} = -\Pi_{mlk}. \end{cases}$$

§ 4. – We now choose the density:

(27) H = k M h

to be the Lagrange function, where:

$$k = -\frac{h_0 c}{2\pi}.$$

The variation of ψ and $\tilde{\psi}$ yields the wave equations (¹):

(29')
$$\begin{cases} \frac{1}{k}X = i\left(\frac{\partial}{\partial x^{\rho}} - iaf_{\rho}\right)\tilde{\psi}\gamma^{\rho} - \frac{i}{2}\Lambda_{m}\tilde{\psi}\gamma_{m} \\ + \frac{i}{24}S_{klm}\tilde{\psi}\gamma_{k}\gamma_{l}^{+}\gamma_{m} + \frac{i}{8}f_{km}\tilde{\psi}\gamma_{k}\gamma_{m}^{+}\gamma_{0} + \mu\tilde{\psi}\gamma_{0} = 0, \end{cases}$$
$$\begin{cases} \frac{1}{k}\tilde{X} = -i\gamma^{\rho}\left(\frac{\partial}{\partial x^{\rho}} + iaf_{\rho}\right)\psi + \frac{i}{2}\Lambda_{m}\gamma_{m}\psi \\ + \frac{i}{24}S_{klm}\gamma_{k}\gamma_{l}^{+}\gamma_{m}\psi + \frac{i}{8}f_{km}\gamma_{k}\gamma_{m}^{+}\gamma_{0}\psi + \mu\gamma_{0}\psi = 0. \end{cases}$$

^{(&}lt;sup>1</sup>) $\delta \psi$ and $\delta \tilde{\psi}$ vanish on the boundary of the domain of integration.

Under an infinitesimal shift in the space-time continuum (¹):

$$\delta x^a = \xi^a$$
,

we will have:

(30)
$$\begin{cases} \delta h_{\alpha m} = -h_{\rho m} \{ \delta_a \, \xi^{\rho} + \Pi^{\dots \rho}_{\alpha \kappa} \xi^{\kappa} \}, \\ \delta f_{\alpha} = f_{\alpha \kappa} \xi^{\kappa} - \frac{\partial}{\partial x^a} (f_{\kappa} \xi^{\kappa}), \\ \delta \psi = -\frac{\partial \psi}{\partial x^{\kappa}} \xi^{\kappa}, \quad \delta \tilde{\psi} = -\frac{\partial \tilde{\psi}}{\partial x^{\kappa}} \xi^{\kappa}. \end{cases}$$

By contrast, under an infinitesimal gauge-transformation:

(31)
$$\begin{cases} \delta h_{\alpha m} = 0, \qquad \delta f_a = \frac{\partial \lambda}{\partial x^a}, \\ \delta \psi = -i \, a \lambda \psi, \quad \delta \tilde{\psi} = i \, a \, \lambda \tilde{\psi}, \end{cases}$$

Finally, under an infinitesimal proper bein-transformation (²):

(32)
$$\begin{cases} \delta h_{\alpha m} = -\omega_{mr} h_{\alpha r}, \quad \omega_{mr} = -\omega_{rm}, \\ \delta f_{\alpha} = 0, \quad \delta \psi = -p \psi, \quad \delta \tilde{\psi} = -\tilde{\psi} p^{+}, \\ \text{where} \\ p = \frac{1}{4} \omega_{kr} \gamma_{k}^{+} \gamma_{r}, \quad p^{+} = -\frac{1}{4} \omega_{kr} \gamma_{k} \gamma_{r}^{+}. \end{cases}$$

Since we have:

(33)
$$\int \left\{ X_{,m}^{\rho} \,\delta h_{\rho m} + X^{\rho} \,\delta f_{\rho} + X \,\delta \psi + \delta \tilde{\psi} \,\tilde{X} \right\} h \, dx \equiv 0,$$

regardless of whether we substitute the variations (30), (31), or (32) in (33), the identities will follow:

(34)
$$\delta_{\rho}X^{\rho}_{,\alpha} - X^{\rho\kappa}\Pi_{\rho\alpha\kappa} - f_{\alpha\rho}X^{\rho} + f_{\alpha}\delta_{\rho}X^{\rho} - X\frac{\partial\psi}{\partial x^{\alpha}} - \frac{\partial\tilde{\psi}}{\partial x^{\alpha}}\tilde{X} \equiv 0,$$

(35)
$$\delta_{\rho} X^{\rho} + i a \{ X \psi - \tilde{\psi} \tilde{X} \} \equiv 0,$$

(36)
$$X_{\alpha\beta} - X_{\beta\alpha} - \frac{1}{4} \Big\{ X(\gamma_{\alpha}^{+} \gamma_{\beta} - \gamma_{\beta}^{+} \gamma_{\alpha}) \psi - \tilde{\psi}(\gamma_{\alpha} \gamma_{\beta}^{+} - \gamma_{\beta} \gamma_{\alpha}^{+}) \tilde{X} \Big\} \equiv 0.$$

(1) ξ^a are the components of the infinitesimal shift vector here. (2) The following identity relations are fulfilled:

$$\begin{aligned} p^+ & \gamma_m + \gamma_m \, p = \omega_{mr} \, \gamma_r \,, \\ p^+ & \gamma_h + \gamma_h \, p = 0, \\ p^+ & \gamma + \gamma p = 0 \,. \end{aligned}$$

One has:

$$(37) \begin{cases} X_{\alpha\beta} = -k \cdot \left[-\frac{i}{2} \left\{ \tilde{\psi} \, \gamma_m \left(\frac{\partial}{\partial x^{\rho}} + ia \, f_\rho \right) \psi - \left(\frac{\partial}{\partial x^{\rho}} - ia \, f_\rho \right) \tilde{\psi} \, \gamma_m \psi \right\} \cdot \left\{ h_{\alpha m} \varepsilon_{\beta}^{\cdot \rho} - h_m^{\rho} \, g_{\alpha \beta} \right\} \\ + \frac{1}{4} \left\{ \delta_{\rho} J_{\alpha\beta}^{\ \rho} + J_{\alpha}^{\cdot \rho\mu} \left(\Lambda_{\beta\rho\mu} - \frac{1}{2} \Lambda_{\rho\mu\beta} \right) - \frac{1}{6} \, g_{\alpha\beta} J^{\kappa\rho\mu} S_{\kappa\rho\mu} \right\} \\ + \frac{1}{4} \left\{ J_{\alpha}^{\cdot \kappa} f_{\beta\kappa} - \frac{1}{2} \, g_{\alpha\beta} \, J^{\kappa\rho} f_{\kappa\rho} \right\} - \mu g_{\alpha\beta} J_0 \end{bmatrix}$$

and

(38)
$$X^{\alpha} = k \cdot [a J^{\alpha} + \delta_{\rho} J^{\alpha \rho}].$$

§ 5. – From (29') and (29"), one has:

It first follows from (29) and (36) that:

$$(39) X_{\alpha\beta} = X_{\beta\alpha},$$

such that the 16 components $X_{\alpha\beta}$ will be reduced to only ten components on the basis of equations (29).

It will then follow from (29) and (35) that:

(40)
$$\delta_{\rho} X^{\rho} = 0,$$

and if one recalls (38) then that equation will imply that:

$$(40') \qquad \qquad \delta_{\rho} J^{\rho} = 0.$$

Since we know that:

(41)
$$X y + \tilde{\psi} \tilde{X} \equiv k \cdot [2M + i \delta_{\rho} J^{\rho}],$$

it will follow from (29), (40), (41) that:

$$(42) M=0.$$

Finally, it will follow from (26), (29), (34), (39), (40) that:

(43)
$$\delta_{\rho} X_{\alpha}^{\ \rho} - f_{\alpha \rho} X^{\ \rho} = 0.$$

Summary

We have derived the following laws of matter by means of nothing but identity relations on the basis of the general **Dirac** equation: The symmetry of the energy-stress tensor $X_{\alpha\beta}$ [equation (39)]. The conservation of the current vector X^{α} [equation (40) or (40')]. The equations of motion (43).

(Received on 12 October 1930)