On a general form of the Dirac equation

By Raschco ZAYCOFF

Translated by D. H. Delphenich

A general theory of the wave-mechanical electron will be presented.

Historical overview

The equations of Einstein's theory of teleparallelism are locally bein-invariant; i.e., they admit the group of proper orthogonal bein-transformations:

$$
h_{\alpha m}^{\prime}=\vartheta_{m r} h_{\alpha r}
$$

with constant rotational coefficients $\vartheta_{m r}\left({ }^{1}\right)$. Now, in the year 1916, Einstein's theory of gravitation had a truly bein-invariant form; i.e., its equations admitted the group of beintransformations above, but with position-dependent rotational coefficients $\vartheta_{m r}\left(x^{1}, x^{2}, \ldots\right)$ $\left({ }^{2}\right)$. They will then be occasionally represented by the truly bein-invariant quantities:

$$
g_{\alpha \beta}=h_{\alpha m} h_{\beta m} .
$$

The Dirac wave equation is the relativistic generalization of Schrödinger's (${ }^{3}$). W. Pauli and W. Heisenberg (${ }^{4}$) have developed Dirac's method of second quantization upon only the basis of the Dirac and Maxwell equations. Now, H. Weyl (${ }^{5}$) gave a general-relativistic two-component representation of the wave equation, but only the massless one, that is proper bein-invariant. He showed that the proper beintransformations are equivalent to the continuous spin-transformations of the wave functions $\psi . \mathbf{H}$. Weyl remained based in the previous theory of gravitation, but added the further requirement of gauge-invariance, which is linked with the re-gauging of ψ by:

$$
\psi^{\prime}=\psi e^{i \alpha}
$$

[^0]in order give a basis for the existence of the electromagnetic four-potential f_{a}. V. Fock $\left({ }^{1}\right)$ adapted Weyl's idea on the basis of the four-component Dirac theory. In recent times, that way of thinking made it possible for L. Rosenfeld (${ }^{2}$) to apply the method of second quantization to the three known groups of phenomena: viz., gravitation $\left(h_{\alpha m}\right)$, electromagnetism $\left(f_{\alpha}\right)$, and the matter field (ψ). Shortly after that, the author $\left(^{3}\right)$ showed the connection between the Weyl-Fock results and Kaluza's notion of a Riemannian R_{5} that is cylindrical in the fifth dimension. He introduced a cylindrical bein-lattice in Kaluza's R_{5} and considered the evolution of matter waves in it, when the fivedimensional wave-functions ω must depend upon the fifth coordinate simplyperiodically, in any event. The theory that was developed there was valid only in the case of a single body. For the many-body problem, according to the method of second quantization, we must consider all field-variables to be non-commuting q-quantities, not commuting c-quantities. It is, in fact, possible to construct a more highly "quantized" theory, in which complete relativistically-symmetric commutation relations represent a continuous image of the Heisenberg uncertainty relations.
§ 1. - Let a Riemannian R_{5} be given that is rigorously cylindrical with respect to x^{0} $\left({ }^{4}\right)$. The last coordinate is only an auxiliary quantity, since it does not enter into the metric quantities, and only the wave function ω depends upon it in a simply-periodic way. Let a cylindrical grid of beins be embedded in this R_{5}. If we denote the covariant bein-components by $h_{\alpha^{\prime} m^{\prime}}$ and the contravariant ones by $h_{m^{\prime}}^{\alpha^{\prime}}$ then we will have $\left({ }^{5}\right)$:
\[

\left\{$$
\begin{array}{lll}
h_{\alpha m}=h_{\alpha m}, & h_{\alpha 0}=-f_{\alpha}, & h_{00}=1, \tag{1}\\
h_{m}^{\alpha}=h_{m}^{\alpha}, & h_{m}^{0}=f_{m}, & h_{0}^{0}=1 .
\end{array}
$$\right.
\]

It follows that:

$$
\begin{equation*}
\left|h_{\alpha^{\prime} m^{\prime}}\right|=\left|h_{\alpha m}\right|=1 . \tag{2}
\end{equation*}
$$

If we set:

$$
\begin{equation*}
h_{m^{\prime}}^{\rho^{\prime}} \frac{\partial}{\partial x^{\rho^{\prime}}}=\frac{d}{d s_{m}} \tag{3}
\end{equation*}
$$

then it will follow from (1) that:

[^1]\[

$$
\begin{equation*}
\frac{d}{d s_{m}}=h_{m}^{\rho}\left(\frac{\partial}{\partial x^{\rho}}+f_{\rho} \frac{\partial}{\partial x^{0}}\right), \quad \frac{d}{d s_{m}}=\frac{\partial}{\partial x^{0}} . \tag{3'}
\end{equation*}
$$

\]

For the components of the "torsion":

$$
\begin{equation*}
\Delta_{k^{\prime} l^{\prime} m^{\prime}}=h_{\rho^{\prime} m^{\prime}}\left(\frac{d h_{l^{\prime}}^{\rho^{\prime}}}{d s_{k^{\prime}}}-\frac{d h_{k^{\prime}}^{\rho^{\prime}}}{d s_{l^{\prime}}}\right), \tag{4}
\end{equation*}
$$

we have (${ }^{1}$):

$$
\Delta_{k l m}=\Delta_{k l m}, \quad \Delta_{k l 0}=f_{k l} .
$$

For the quantities that are constructed from them:

$$
\left\{\begin{align*}
\Lambda_{k^{\prime}} & =\Lambda_{k^{\prime} r^{\prime} r^{\prime}}, \tag{5}\\
\Pi_{k^{\prime} l^{\prime} m^{\prime}} & =\frac{1}{2}\left\{\Lambda_{k^{\prime} l^{\prime} m^{\prime}}+\Lambda_{k^{\prime} m^{\prime} l^{\prime}}+\Lambda_{l^{\prime} m^{\prime} k^{\prime}}\right\} \\
S_{k^{\prime} l^{\prime} m^{\prime}} & =\Lambda_{k^{\prime} l^{\prime} m^{\prime}}+\Lambda_{l^{\prime} m^{\prime} k^{\prime}}+\Lambda_{k^{\prime} m^{\prime} l^{\prime}},
\end{align*}\right.
$$

we will have:

$$
\left\{\begin{array}{c}
\Lambda_{k}=\Lambda_{k}, \tag{5'}\\
\Pi_{k l m}=\Pi_{k l m}, \quad \Pi_{0 k m}=\Pi_{k 0 m}=\frac{1}{2} f_{k m}, \\
S_{k l m}=S_{k l m}, \quad S_{k l 0}=f_{k l} .
\end{array}\right.
$$

The curvature of the cylindrical Riemannian R_{5} is further given by:

$$
\begin{equation*}
\rho=2 \frac{d \Lambda_{r^{\prime}}}{d s_{r^{\prime}}}-\Lambda_{r^{\prime}} \Lambda_{r^{\prime}}-\frac{1}{2} \Pi_{k^{\prime} l^{\prime} r^{\prime}} \Lambda_{k^{\prime} l^{\prime} r^{\prime}}, \tag{6}
\end{equation*}
$$

or when written out:

$$
\begin{equation*}
\rho=R-\frac{1}{2} f_{k m} f_{k m}, \tag{6'}
\end{equation*}
$$

in which R means the curvature of the R_{4} that is embedded in R_{5}.
The following coordinate transformations:

$$
\begin{align*}
& x^{\alpha}=x^{\alpha}\left(\bar{x}^{1}, \bar{x}^{2}, \bar{x}^{3}, \bar{x}^{4}\right), \tag{7}\\
& x^{0}=\bar{x}^{0}+\lambda\left(\bar{x}^{1}, \bar{x}^{2}, \bar{x}^{3}, \bar{x}^{4}\right) \tag{7’}
\end{align*}
$$

are compatible with the choice (1) of bein-components. It follows from:

[^2]\[

$$
\begin{equation*}
\bar{h}_{\alpha^{\prime} m^{\prime}}=\frac{\partial x^{\rho^{\prime}}}{\partial \bar{x}^{\alpha^{\prime}}} \quad \text { or } \quad h_{m^{\prime}}^{\alpha^{\prime}}=\frac{\partial \bar{x}^{\alpha^{\prime}}}{\partial x^{\rho^{\rho^{\prime}}}} h_{m^{\prime}}^{\rho^{\prime}}, \tag{8}
\end{equation*}
$$

\]

in connection with (1) and (7), (7'):

$$
\begin{equation*}
\bar{h}_{\alpha m}=\frac{\partial x^{\rho}}{\partial \bar{x}^{\alpha}} h_{\rho m}, \quad f_{\alpha}=\frac{\partial x^{\rho}}{\partial \bar{x}^{\alpha}}\left(f_{\rho}-\frac{\partial \lambda}{\partial x^{\rho}}\right) . \tag{8'}
\end{equation*}
$$

Furthermore, with the choice (1) of bein-components, the following proper beintransformations:

$$
\left\{\begin{array}{c}
h_{\alpha^{\prime} m^{\prime}}^{\prime}=\vartheta_{m^{\prime} r^{\prime}} h_{\alpha^{\prime} r^{\prime}} \quad \text { or } \quad h_{m^{\prime}}^{\prime \alpha^{\prime}}=\vartheta_{m^{\prime} r^{\prime}} h_{m^{\prime}}^{\alpha^{\prime}}, \tag{9}\\
\vartheta_{m^{\prime} r^{\prime}} \vartheta_{n^{\prime} r^{\prime}}=\vartheta_{r^{\prime} m^{\prime}} \vartheta_{r^{\prime} n^{\prime}}=\varepsilon_{m^{\prime} n^{\prime}}
\end{array}\right.
$$

will be compatible with the conditions for the rotational coefficients $\left({ }^{1}\right)$:

$$
\left\{\begin{array}{l}
\vartheta_{m r} \vartheta_{n r}=\vartheta_{r m} \vartheta_{r n}=\varepsilon_{m n}, \tag{9'}\\
\vartheta_{m 0}=\vartheta_{0 m}=0, \quad \vartheta_{00}=1,
\end{array}\right.
$$

or, when written out $\left({ }^{2}\right)$:

$$
\begin{equation*}
h_{\alpha m}^{\prime}=\vartheta_{m r} h_{\alpha r}, \quad f_{\alpha}^{\prime}=f_{\alpha} . \tag{9"}
\end{equation*}
$$

§ 2. - We now choose the quantities (which are four in number):

$$
\left\{\begin{array}{l}
\omega=\psi\left(x^{1}, x^{2}, x^{3}, x^{4}\right) e^{i a x^{0}} \tag{10}\\
\tilde{\omega}=\tilde{\psi}\left(x^{1}, x^{2}, x^{3}, x^{4}\right) e^{-i a x^{0}}
\end{array}\right.
$$

to be our wave-functions, in which:

$$
\begin{equation*}
a=-\frac{\pi c}{h_{0} \sqrt{k_{0}}}\left(\pm e_{0}\right) . \tag{11}
\end{equation*}
$$

The ψ-functions have the dimensions $\left[l^{-3 / 2}\right]$. In this, h_{0} is Planck's action constant and $\pm e_{0}$ is the elementary charge of the proton (electron, resp.).

We have written h_{0}, e_{0} in order to avoid confusion with the quantities $\left|h_{\alpha m}\right|=h$ (the basis for the natural logarithm, resp.).

[^3]$\psi, \tilde{\psi}$ are invariant under the x^{α}-transformations (7). By contrast, $\psi, \tilde{\psi}$ experience the following transformations:
\[

$$
\begin{equation*}
\bar{\psi}=\psi e^{i a \lambda}, \quad \overline{\tilde{\psi}}=\tilde{\psi} e^{-i a \lambda} \tag{12}
\end{equation*}
$$

\]

under x^{0}-transformations (7^{\prime}), such that it will follow from (7), (7'), (10), (12) that:

$$
\left\{\begin{array}{l}
\bar{\omega}=\omega, \tag{13}\\
\overline{\tilde{\omega}}=\tilde{\omega} ;
\end{array}\right.
$$

i.e., $\omega, \tilde{\omega}$ behave like five-dimensional invariants.
$\omega, \tilde{\omega}$ experience the continuous spin transformations $\left({ }^{1}\right)$:

$$
\begin{equation*}
\omega^{\prime}=P \omega, \quad \tilde{\omega}^{\prime}=\tilde{\omega} P^{+}, \quad|P(s, t)|=1 \tag{14}
\end{equation*}
$$

under the proper bein-transformations (9). If the spin matrices are, say $\left({ }^{2}\right)$:

$$
\left\{\begin{array}{c}
\gamma_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \quad \gamma_{2}=\left[\begin{array}{rrrr}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right], \quad \gamma_{3}=\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \tag{15}\\
\gamma_{4}=i \varepsilon=\left[\begin{array}{llll}
i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & i & 0 \\
0 & 0 & 0 & i
\end{array}\right], \quad \gamma_{0}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
\end{array}\right.
$$

then $P(s, t)$ will have the following form:
($\left.{ }^{1}\right) P^{+}(s, t)=\tilde{P}(s, t)$.
$\left.{ }^{(}{ }^{2}\right)$ We can define the matrix:

$$
\gamma=\left[\begin{array}{rrrr}
0 & 0 & -i & 0 \\
0 & 0 & 0 & -i \\
i & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right]
$$

from the relation:

$$
\frac{1}{2} \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}=\gamma .
$$

$$
P(s, t)=\left[\begin{array}{rrrr}
\alpha & -\tilde{\beta} & \gamma & \bar{\delta} \tag{16}\\
\beta & \tilde{\alpha} & \delta & -\tilde{\gamma} \\
\gamma & \bar{\delta} & \alpha & -\bar{\beta} \\
\delta & -\hat{\gamma} & \beta & \tilde{\alpha}
\end{array}\right]
$$

with the conditions:

$$
\left\{\begin{array}{l}
\tilde{\alpha} \alpha+\tilde{\beta} \beta-\tilde{\gamma} \gamma-\tilde{\delta} \delta=1 \\
\tilde{\alpha} \gamma-\tilde{\gamma} \alpha+\tilde{\beta} \delta-\tilde{\delta} \beta=0
\end{array}\right.
$$

and we can then represent the coefficients $\vartheta_{m r}$ are quadratic functions of the $\alpha, \tilde{\alpha}, \beta, \tilde{\beta}$, $\gamma, \tilde{\gamma}, \delta, \tilde{\delta}$. It follows from somecalculation that:

$$
\begin{equation*}
P^{+} \gamma_{m^{\prime}} P=\vartheta_{m^{\prime} r^{\prime}} \gamma_{r^{\prime}}^{\prime} \tag{17}
\end{equation*}
$$

or when written out:

$$
\begin{equation*}
P^{+} \gamma_{m} P=\vartheta_{m r} \gamma_{r}, \quad P^{+} \gamma_{0} P=\gamma_{0} . \tag{17'}
\end{equation*}
$$

One has, in addition:

$$
\begin{equation*}
P^{+} \gamma P=\gamma . \tag{17"}
\end{equation*}
$$

With that, the four-vector:

$$
J_{m}=\tilde{\psi} \gamma_{m} \psi
$$

will transform as follows:

$$
\begin{equation*}
J_{m}^{\prime}=\vartheta_{m r} J_{r} \tag{18}
\end{equation*}
$$

under the proper bein-transformations, and the quantities:

$$
J_{0}=\tilde{\psi} \gamma_{0} \psi, \quad J=\tilde{\psi} \gamma \psi
$$

will be proper bein-invariants. One will have:

$$
\begin{equation*}
J_{m} J_{m}=-J_{0}^{2}-J^{2} \tag{19}
\end{equation*}
$$

identically.
The identities also follow:

$$
\left\{\begin{array}{c}
\gamma_{m^{\prime}}^{+} \gamma_{n^{\prime}}+\gamma_{n^{\prime}}^{+} \gamma_{m^{\prime}} \equiv \gamma_{m^{\prime}} \gamma_{n^{\prime}}^{+}+\gamma_{n^{\prime}} \gamma_{m^{\prime}} \equiv 2 \varepsilon_{m^{\prime} n^{\prime}} \cdot \varepsilon, \tag{20}\\
\gamma_{m^{\prime}}^{+} \gamma+\gamma \gamma_{m^{\prime}} \equiv \gamma_{m^{\prime}} \gamma+\gamma \gamma_{m^{\prime}}^{+} \equiv 0, \quad \gamma^{2} \equiv \varepsilon .
\end{array}\right.
$$

In addition to the proper bein-invariant vector J_{m} and the proper bein-invariant J_{0}, J, we also have the following proper bein-invariant tensors:

$$
\begin{array}{ll}
J_{k l m}=i \tilde{\psi} \gamma_{k} \gamma_{l}^{+} \gamma_{m} \psi & (k \neq l \neq m), \\
J_{k l}=i \tilde{\psi} \gamma_{k} \gamma_{l}^{+} \gamma_{0} \psi & (k \neq l),
\end{array}
$$

which are antisymmetric in all indices.
§ 3. - We define the components of the Riemann derivatives of the quantities $J_{m^{\prime}}$ in the bein-directions:

$$
\begin{equation*}
D_{l^{\prime}} J_{m^{\prime}}=\frac{d J_{m^{\prime}}}{d s_{l^{\prime}}}-\Pi_{k^{\prime} l^{\prime} m^{\prime}} J_{k^{\prime}} \tag{21}
\end{equation*}
$$

and it will then follow with some calculation that:

$$
\left\{\begin{array}{l}
D_{l^{\prime}} \omega=\frac{d \omega}{d s_{l^{\prime}}}+\frac{1}{4} \Pi_{k^{\prime} l^{\prime} m^{\prime}} \gamma_{k^{\prime}}^{+} \gamma_{r^{\prime}} \omega \tag{22}\\
D_{l^{\prime}} \tilde{\omega}=\frac{d \tilde{\omega}}{d s_{l^{\prime}}}-\frac{1}{4} \tilde{\omega} \Pi_{k^{\prime} l^{\prime} m^{\prime}} \gamma_{k^{\prime}} \gamma_{r^{\prime}}^{+}
\end{array}\right.
$$

We define the divergence $D_{l^{\prime}} J_{l^{\prime}}$ from (22) ${ }^{1}$):

$$
\begin{equation*}
D_{l^{\prime}} J_{l^{\prime}}=\frac{d \bar{J}_{l^{\prime}}}{d s_{l^{\prime}}}-\Lambda_{l^{\prime}} J_{l^{\prime}}=\delta_{\rho} J^{\rho} . \tag{23}
\end{equation*}
$$

We set $\left(^{2}\right)$:

$$
\begin{equation*}
M=-\left\{i \tilde{\omega} \gamma_{l^{\prime}} D_{l^{\prime}} \omega+b J_{0}\right\} . \tag{24}
\end{equation*}
$$

It follows from:

$$
J_{l^{\prime}}=\tilde{\omega} \gamma_{l^{\prime}} \omega
$$

and (23), (24) that:

$$
\begin{equation*}
M-\tilde{M}=-i \delta_{\rho} J^{\rho} . \tag{25}
\end{equation*}
$$

(${ }^{1}$) δ_{ρ} means the Riemann derivative with respect to x^{ρ}.
$\left(^{2}\right)$ The constant b is equal to $b=a-\mu$, where a is determined from (11) and:

$$
\mu=\frac{2 \pi m_{0} c}{h_{0}}
$$

m_{0} is the rest mass of the particle.

The functions ρ and M are not only ordinary invariants, but they are also gauge-invariant and proper bein-invariant.

Some calculation will initially yield:

$$
M=-i \tilde{\omega} \gamma_{l^{\prime}} \frac{d \omega}{d s_{l^{\prime}}}+\frac{i}{2} \Delta_{r^{\prime}} \tilde{\omega} \gamma_{r^{\prime}} \omega+\frac{i}{24} S_{k^{\prime} l^{\prime} r^{\prime}} \tilde{\omega} \gamma_{k^{\prime}} \gamma_{l^{\prime}}^{+} \gamma_{r^{\prime}} \omega-b \tilde{\omega} \gamma_{0} \omega
$$

and further:

$$
\begin{equation*}
M=-i \tilde{\psi} \gamma^{\rho} \frac{d \psi}{d x^{\rho}}+\frac{i}{2} \Delta_{m} J_{m}+\frac{1}{24} S_{k l r} J_{k l m}-a f_{m} J_{m}+\frac{1}{8} f_{k m} J_{k m}+\mu J_{0} \tag{24"}
\end{equation*}
$$

Finally, let the following auxiliary formulas be given:

$$
\left\{\begin{array}{rlrl}
\delta_{\alpha} h_{\beta m} & =\Pi_{\beta \alpha m}, & \delta_{\rho} h_{m}^{\rho}=-\Lambda_{m}, \tag{26}\\
\delta_{\alpha} \psi & =\frac{\partial \psi}{\partial x^{\alpha}}, & \delta_{\alpha} \tilde{\psi}=\frac{\partial \tilde{\psi}}{\partial x^{\alpha}}, \\
\Pi_{k l m} & =-\Pi_{m l k} . & &
\end{array}\right.
$$

§ 4. - We now choose the density:

$$
\begin{equation*}
H=k M h \tag{27}
\end{equation*}
$$

to be the Lagrange function, where:

$$
\begin{equation*}
k=-\frac{h_{0} c}{2 \pi} . \tag{28}
\end{equation*}
$$

The variation of ψ and $\tilde{\psi}$ yields the wave equations $\left({ }^{1}\right)$:
$\left(29^{\prime}\right) \quad\left\{\begin{aligned} \frac{1}{k} X & =i\left(\frac{\partial}{\partial x^{\rho}}-i a f_{\rho}\right) \tilde{\psi} \gamma^{\rho}-\frac{i}{2} \Lambda_{m} \tilde{\psi} \gamma_{m} \\ & +\frac{i}{24} S_{k l m} \tilde{\psi} \gamma_{k} \gamma_{l}^{+} \gamma_{m}+\frac{i}{8} f_{k m} \tilde{\psi} \gamma_{k} \gamma_{m}^{+} \gamma_{0}+\mu \tilde{\psi} \gamma_{0}=0,\end{aligned}\right.$
$\left(29^{\prime \prime}\right) \quad\left\{\begin{aligned} \frac{1}{k} \tilde{X} & =-i \gamma^{\rho}\left(\frac{\partial}{\partial x^{\rho}}+i a f_{\rho}\right) \psi+\frac{i}{2} \Lambda_{m} \gamma_{m} \psi \\ & +\frac{i}{24} S_{k l m} \gamma_{k} \gamma_{l}^{+} \gamma_{m} \psi+\frac{i}{8} f_{k m} \gamma_{k} \gamma_{m}^{+} \gamma_{0} \psi+\mu \gamma_{0} \psi=0 .\end{aligned}\right.$
$\left({ }^{1}\right) \delta \psi$ and $\delta \tilde{\psi}$ vanish on the boundary of the domain of integration.

Under an infinitesimal shift in the space-time continuum $\left({ }^{1}\right)$:

$$
\delta x^{a}=\xi^{a},
$$

we will have:

$$
\begin{align*}
\delta h_{\alpha m} & =-h_{\rho m}\left\{\delta_{a} \xi^{\rho}+\Pi_{\alpha \kappa}^{\cdots \rho} \xi^{\kappa}\right\}, \\
\delta f_{\alpha} & =f_{\alpha \kappa} \xi^{\kappa}-\frac{\partial}{\partial x^{a}}\left(f_{\kappa} \xi^{\kappa}\right), \tag{30}\\
\delta \psi & =-\frac{\partial \psi}{\partial x^{\kappa}} \xi^{\kappa}, \quad \delta \tilde{\psi}=-\frac{\partial \tilde{\psi}}{\partial x^{\kappa}} \xi^{\kappa} .
\end{align*}
$$

By contrast, under an infinitesimal gauge-transformation:

$$
\left\{\begin{align*}
\delta h_{\alpha m} & =0, & \delta f_{a}=\frac{\partial \lambda}{\partial x^{a}} \tag{31}\\
\delta \psi & =-i a \lambda \psi, & \delta \tilde{\psi}=i a \lambda \tilde{\psi}
\end{align*}\right.
$$

Finally, under an infinitesimal proper bein-transformation $\left({ }^{2}\right)$:

$$
\begin{align*}
& \delta h_{\alpha m}=-\omega_{m r} h_{\alpha r}, \quad \omega_{m r}=-\omega_{r m}, \\
& \delta f_{\alpha}=0, \quad \delta \psi=-p \psi, \quad \delta \tilde{\psi}=-\tilde{\psi} p^{+} \tag{32}
\end{align*}
$$

where

$$
p=\frac{1}{4} \omega_{k r} \gamma_{k}^{+} \gamma_{r}, \quad p^{+}=-\frac{1}{4} \omega_{k r} \gamma_{k} \gamma_{r}^{+} .
$$

Since we have:

$$
\begin{equation*}
\int\left\{X_{, m}^{\rho} \delta h_{\rho m}+X^{\rho} \delta f_{\rho}+X \delta \psi+\delta \tilde{\psi} \tilde{X}\right\} h d x \equiv 0 \tag{33}
\end{equation*}
$$

regardless of whether we substitute the variations (30), (31), or (32) in (33), the identities will follow:

$$
\begin{gather*}
\delta_{\rho} X_{, \alpha}^{\rho}-X^{\rho \kappa} \Pi_{\rho \alpha \kappa}-f_{\alpha \rho} X^{\rho}+f_{\alpha} \delta_{\rho} X^{\rho}-X \frac{\partial \psi}{\partial x^{\alpha}}-\frac{\partial \tilde{\psi}}{\partial x^{\alpha}} \tilde{X} \equiv 0 \tag{34}\\
\delta_{\rho} X^{\rho}+i a\{X \psi-\tilde{\psi} \tilde{X}\} \equiv 0 \tag{35}\\
X_{\alpha \beta}-X_{\beta \alpha}-\frac{1}{4}\left\{X\left(\gamma_{\alpha}^{+} \gamma_{\beta}-\gamma_{\beta}^{+} \gamma_{\alpha}\right) \psi-\tilde{\psi}\left(\gamma_{\alpha} \gamma_{\beta}^{+}-\gamma_{\beta} \gamma_{\alpha}^{+}\right) \tilde{X}\right\} \equiv 0 . \tag{36}
\end{gather*}
$$

$\left({ }^{1}\right) \quad \xi^{a}$ are the components of the infinitesimal shift vector here.
$\left({ }^{2}\right)$ The following identity relations are fulfilled:

$$
\begin{aligned}
& p^{+} \gamma_{m}+\gamma_{m} p=\omega_{m r} \gamma_{r}, \\
& p^{+} \gamma_{0}+\gamma_{0} p=0 \\
& p^{+} \gamma+\gamma p=0
\end{aligned}
$$

One has:

$$
\begin{align*}
X_{\alpha \beta} & =-k \cdot\left[-\frac{i}{2}\left\{\tilde{\psi} \gamma_{m}\left(\frac{\partial}{\partial x^{\rho}}+i a f_{\rho}\right) \psi-\left(\frac{\partial}{\partial x^{\rho}}-i a f_{\rho}\right) \tilde{\psi} \gamma_{m} \psi\right\} \cdot\left\{h_{\alpha m} \varepsilon_{\beta}^{\cdot \rho}-h_{m}^{\rho} g_{\alpha \beta}\right\}\right. \\
& +\frac{1}{4}\left\{\delta_{\rho} J_{\alpha \cdot \beta}^{\rho}+J_{\alpha}^{\cdot \rho \mu}\left(\Lambda_{\beta \rho \mu}-\frac{1}{2} \Lambda_{\rho \mu \beta}\right)-\frac{1}{6} g_{\alpha \beta} J^{\kappa \rho \mu} S_{\kappa \rho \mu}\right\} \tag{37}\\
& \left.+\frac{1}{4}\left\{J_{\alpha}^{\cdot \kappa} f_{\beta \kappa}-\frac{1}{2} g_{\alpha \beta} J^{\kappa \rho} f_{\kappa \rho}\right\}-\mu g_{\alpha \beta} J_{0}\right]
\end{align*}
$$

and

$$
\begin{equation*}
X^{\alpha}=k \cdot\left[a J^{\alpha}+\delta_{\rho} J^{\alpha \rho}\right] . \tag{38}
\end{equation*}
$$

§ 5. - From (29') and (29"), one has:

$$
\begin{equation*}
X=0, \quad \tilde{X}=0 \tag{29}
\end{equation*}
$$

It first follows from (29) and (36) that:

$$
\begin{equation*}
X_{\alpha \beta}=X_{\beta \alpha}, \tag{39}
\end{equation*}
$$

such that the 16 components $X_{\alpha \beta}$ will be reduced to only ten components on the basis of equations (29).

It will then follow from (29) and (35) that:

$$
\begin{equation*}
\delta_{\rho} X^{\rho}=0 \tag{40}
\end{equation*}
$$

and if one recalls (38) then that equation will imply that:

$$
\delta_{\rho} J^{\rho}=0
$$

Since we know that:

$$
\begin{equation*}
X y+\tilde{\psi} \tilde{X} \equiv k \cdot\left[2 M+i \delta_{\rho} J^{\rho}\right] \tag{41}
\end{equation*}
$$

it will follow from (29), (40), (41) that:

$$
\begin{equation*}
M=0 . \tag{42}
\end{equation*}
$$

Finally, it will follow from (26), (29), (34), (39), (40) that:

$$
\begin{equation*}
\delta_{\rho} X_{\alpha}^{\cdot \rho}-f_{\alpha \rho} X^{\rho}=0 . \tag{43}
\end{equation*}
$$

Summary

We have derived the following laws of matter by means of nothing but identity relations on the basis of the general Dirac equation: The symmetry of the energy-stress tensor $X_{\alpha \beta}$ [equation (39)]. The conservation of the current vector X^{α} [equation (40) or (40')]. The equations of motion (43).

[^0]: $\left.{ }^{1}\right)^{2}$ Cf., R. Weitzenböck, Berl. Ber. 26 (1928).
 $\left(^{2}\right)$ Cf., T. Levi-Civita, ibidem, 9 (1929).
 $\left({ }^{3}\right)$ Cf., Dirac's new insights, as well, Proc. Roy. Soc. (A) 126 (1930), 360, in which the "negative" states play the important role precisely in the interaction between matter and radiation.
 $\left.{ }^{4}{ }^{4}\right)$ W. Pauli and W. Heisenberg, Zeit. Phys. 56 (1929), 1; 59 (1930), 168.
 $\left(^{5}\right)$ H. Weyl, Zeit. Phys. 56 (1929), 330.

[^1]: ${ }^{1}$) V. Fock, Zeit. Phys. 57 (1929), 261; Comptes rendus 189 (1929), 25.
 ${ }^{2}$) L. Rosenfeld, Ann. Phys. (Leipzig) [5] 5 (1929), 113.
 $\left(^{3}\right)$ R. Zaycoff, Zeit. Phys. 61 (1930), 395. However, that paper deviated from the present one not only in its notations, but also in its essential content.
 $\left({ }^{4}\right)$ We denote the fifth dimension by x^{0}. The coordinates $x_{1}, x_{2}, x_{3}, x_{0}$ are real, but x_{4} is imaginary.
 $\left({ }^{5}\right)$ The primed (unprimed, resp.) symbols run through $1,2,3,4,0(1,2,3,4$, resp.). In what follows, only the non-vanishing quantities will be given.

 We can obtain the corresponding bein-components of a quantity from the usual coordinates by contracting over the Greek indices with $h_{m}^{\rho}, h_{\rho m}$, and conversely (by contracting over the Latin indices).

[^2]: $\left.{ }^{1}{ }^{1}\right)$ We have set:

 $$
 f_{\alpha \beta}=\frac{\partial f_{\beta}}{\partial x^{\alpha}}-\frac{\partial f_{\alpha}}{\partial x^{\beta}} .
 $$

[^3]: (1) $\vartheta_{m r}$ are functions of $x^{1}, x^{2}, x^{3}, x^{4}$.
 (${ }^{2}$) If we base things on a rational system of units then we would like to make the following physical identifications:
 $g_{\alpha \beta}=2 / c^{2}: \quad$ gravitational potential (indeed, the latter has the dimensions $\left[l^{2} t^{-2}\right]$.
 $f_{\alpha}=\left(2 / c^{2}\right) \sqrt{k_{0}} \cdot \varphi_{\alpha}$, where φ_{α} means the "electromagnetic potential," c means the speed of light in vacuo, and k_{0} means Newton's gravitational constant.

