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On a general form of the Dirac equation
By Raschco ZAYCOFF

Translated by D. H. Delphenich

A general theory of the wave-mechanical electron vélpresented.

Historical overview

The equations oEinstein’s theory of teleparallelism are locally bein-invariang.,
they admit the group of proper orthogonal bein-transfaonst

N, = 9 har

with constant rotational coefficient®, (*). Now, in the year 191@&instein’s theory of
gravitation had a truly bein-invariant form; i.e., its equadi admitted the group of bein-
transformations above, but with position-dependent ro@ticmefficientsd, (x, 3, ...)
(®). They will then be occasionally represented by tthly bein-invariant quantities:

The Dirac wave equation is the relativistic generalizationSzhrédingers (3). W.
Pauli and W. Heisenberg (‘) have develope®irac’s method of second quantization
upon only the basis of thBirac and Maxwell equations. NowH. Weyl (°) gave a
general-relativistic two-component representation of wave equation, but only the
massless one, that is proper bein-invariant. He shothatl the proper bein-
transformations are equivalent to the continuous spimsformations of the wave
functionsy. H. Weyl remained based in the previous theory of gravitation, daegcthe
further requirement of gauge-invariance, which is linked vhighre-gauging of by:

l//': wé'a’

() Cf.,R. Weitzenbock Berl. Ber.26 (1928).

(®) Cf.,T. Levi-Civita, ibidem 9 (1929).

() Cf., Dirac’s new insights, as well, Proc. Roy. Soc. (6 (1930), 360, in which the “negative”
states play the important role precisely in the axtton between matter and radiation.

() W. Pauli andW. Heisenberg Zeit. Phys56 (1929), 1559 (1930), 168.

() H.Weyl, Zeit. Phys56 (1929), 330.
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in order give a basis for the existence of the eletignetic four-potentidl, . V. Fock

() adaptedWeyl's idea on the basis of the four-compon®itac theory. In recent
times, that way of thinking made it possible ForRosenfeld (%) to apply the method of
second quantization to the three known groups of phenomenagravitation Qg m),
electromagnetisnif), and the matter fieldg). Shortly after that, the authot) Ghowed
the connection between thiéeyl-Fock results andKaluza’s notion of aRiemannian Rs
that is cylindrical in the fifth dimension. He introddca cylindrical bein-lattice in
Kaluza's Rs and considered the evolution of matter waves in it, nwhige five-
dimensional wave-functionsw must depend upon the fifth coordinate simply-
periodically, in any event. The theory that was dgved there was valid only in the case
of a single body. For the many-body problem, accordsnghe method of second
guantization, we must consider all field-variables tabe-commutingy-quantities, not
commutingc-quantities. It is, in fact, possible to construct arenbighly “quantized”
theory, in which complete relativistically-symmetrionsmutation relations represent a
continuous image of thdeisenberguncertainty relations.

§ 1.— Let aRiemannian Rs be given that is rigorously cylindrical with respectdo
(*). The last coordinate is only an auxiliary quantitycsirt does not enter into the
metric quantities, and only the wave functiandepends upon it in a simply-periodic
way. Let a cylindrical grid of beins be embedded in ®is If we denote the covariant

bein-components by, and the contravariant ones h§ then we will have?):

(1)

It follows that:

Mo =M o=~ 60 R =1,
{ h=h, M= f, =1

(2) Iha’rr{ | = Ihaml = l
If we set:
.0 d
3 A
3) i ox” ds,

then it will follow from (1) that:

() V. Fock, Zeit. Phys57 (1929), 261; Comptes rendii89 (1929), 25.

() L. Rosenfeld Ann. Phys. (Leipzig) [5p (1929), 113.

() R. Zaycoff, Zeit. Phys61 (1930), 395. However, that paper deviated from the presemtabromly
in its notations, but also in its essential content.

(4) We denote the fifth dimension IxS’/ The coordinates, X,, X3, Xo are real, bux, is imaginary.

() The primed (unprimed, resp.) symbols run through 1, 2, @,(&, 2, 3, 4, resp.). In what follows,
only the non-vanishing quantities will be given.

We can obtain the corresponding bein-components of atijuérom the usual coordinates by

contracting over the Greek indices with, h,, , and conversely (by contracting over the Latin insice
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@) i:hng(i”pio) I
ds, ox” ox ds, Ox
For the components of the “torsion™:
d  dif
(4) D v mi =hpr {i——mgj
ds, ds
we have {):
4) Dcim=Dim, Dxio =T .
For the quantities that are constructed from them:
/\k’ :/\k’r’r”
(5) rlk’l’m’:%{/\Kl’m+/\km1+/\1m¥}1
Serm = Neras PN TN\ g
we will have:
N =N\,
(5') I_Iklm:rlklm’ I_IOkm:rIIOm:%fkm
SKlm = Sdm’ $I0 = III'

The curvature of the cylindricliemannian Rs is further given by:

dA .
(6) p:2d$r _Ar’/\r’_%nk’l’r’/\k’l’r’,
or when written out:
(6) ,OZR—% fkm fm

in whichR means the curvature of tRg that is embedded Rs .
The following coordinate transformations:

(7) x7 = xU(X, %, %, XY,
(7) XX = X0+ A(XE, X3, %, XY

are compatible with the choice (1) of bein-compdserit follows from:

() We have set:
— afﬁ _ afu
X X
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= ox” . XY,
8 h, = - or 7 =——h?,
in connection with (1) and (7),'§7
= ox” Ox” 04
8 h =——nh , foa= f ——1|.
( ) am X ‘om a X ( P axpj

Furthermore, with the choice (1) of bein-componeths, following proper bein-
transformations:

(9) { Wy =T Ny OF m":ﬂmrﬁ}g’

79m’ r 79n’ r = 79r’m’ 79r’ n = gm i}
will be compatible with the conditions for the rio@al coefficients {):

(9)

or, when written out’}:

79mr 79“[' = ﬁrm 79”’] = ‘gmn’
79m0 = 790m =0, 7900 =1,

9" h;m = Fmrhar, f

§ 2.— We now choose the quantities (which are fourumber):

(10) w=P (X, X%, 3, X éfx 0
=g (X, X%, 3, X e

to be our wave-functions, in which:

(11) a=-_"°

Jk

The ¢+functions have the dimensions®?]. In this, ho is Planck’s action constant
andz* g is the elementary charge of the proton (electresp.).

We have writtering , & in order to avoid confusion with the quantitids, |, | =h (the
basis for the natural logarithm, resp.).

(£ €n).

() I, are functions of*, %, X2, x*.
(® If we base things on a rational system of units thenmauld like to make the following physical
identifications:

Uap=2/C°: gravitational potential (indeed, the latter has theedisions [ t™].

f, =16 4 k, O@., whereg, means the “electromagnetic potential,ieans the speed of light
vacuq andk, means Newton’s gravitational constant.
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¢, ¢ are invariant under thef-transformations (7). By contrast, (¢ experience
the following transformations:

(12) lp :wéa/l, lﬁ :lﬁ e—ia/l,

undend-transformations (7, such that it will follow from (7), (7, (10), (12) that:

(13) {

i.e., w @ behave like five-dimensional invariants.
@ ¢ experience the continuous spin transformatiohns (

—w,

S &

:d);

(14) W=Pw  @=&P, |P@h]|=1

under the proper bein-transformations (9). If the smatrices are, say)(

0001 0 0 0 - 0 0 1
oo 10 o o |0 0 o0-
"Tlot1o00 "Tlo4 0 o 1 00 0
1000 i 00 0-10

(15) :

i 00O 10 0

0i 00 01 0
VeZ18% 0 0 i o 7o 0 -1

0 0 0 i 00 O0-

thenP (s, t) will have the following form:

") P st)=P(s 9.
() We can define the matrix:

o — O O
- O O O
o O o
o O

from the relation:
SUBBK=Y.
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S Q™
<t M

(16) P(s 9=

Y x ®™W RV

4
o
a —
B

<
QN

with the conditions:
(16) aa+fp-yy-00=L
ay-ya+p36-905=0,

and we can then represent the coefficiehisare quadratic functions of the @, 8, 3,
¥, 7,6 J. It follows from somecalculation that:

(17) P P=mr Yo,
or when written out:
(17) P ¥ P="25n: ¥, Pl P=.

One has, in addition:

a7 P yP=y.
With that, the four-vector:

In=0 My
will transform as follows:
(18) Jr,n = 79m|' Jr

under the proper bein-transformations, and the tijiem
bo=0ry I=¢yy

will be proper bein-invariants. One will have:

(19) Indn=-32-17

identically.
The identities also follow:

(20) { Vi VitV Vi SVaV otV oV n= 26 o[£,

Vi VYVViEVaVtVVu=0, Y =¢.
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In addition to the proper bein-invariant veciagrand the proper bein-invariadg, J,
we also have the following proper bein-invariant tensors:

JIm=1@y V v k£l£m),

J =@y vy  kZl),

which are antisymmetric in all indices.

8 3.— We define the components of the Riemann derivativéseofjuantitiesly in
the bein-directions:

dJ
(21) Didm = — = Mgrm Je,s
ds.

and it will then follow with some calculation that:

dw .
D w= ds M Ve Ve @,
(22) -
~_do | . "
D, a)—_s_za)nk’l’m' Y Ve

We define the divergend®- J from (22) {):

dJ.

(23) Dy J- :d—sll—/\wJV:épJp.
We set J):
(24) M=-{iwou D w+b k}
It follows from:
Jir=oy w
and (23), (24) that:
(25) M-M =-id,J"

A J, means th&®iemann derivative with respect tf.
(® The constarth is equal td = a —x, wherea is determined from (11) and:

2mrm, ¢
H= -
h,

My is the rest mass of the particle.
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The functionso andM are not only ordinary invariants, but they are also gaongiant
and proper bein-invariant.
Some calculation will initially yield:

(24) M =- icbyl,g—:)+—;Ar, oy, w+§sm.r, oy 'y w-bay, w

and further:

24") T L S sk, Jo—af J+st 3 +ud.
a2 247K ki g ko

Finally, let the following auxiliary formulas bevgn:

5a hﬂm = PLam? 5p hﬁ’l = _/\ m
oy oy
26 oW = , O =——,
(26) W =5 7 Wz
Mg =~ T e
8 4.— We now choose the density:
(27) H=kMh
to be the Lagrange function, where:
(28) k=-1bC
2T

The variation ofyand¢ yields the wave equation$:(

1 ( J0 . j i
=X =i|—-iaf, gy’ —=N\, @y
P p m m
(29) k _ax | 2
| " | +
+§13m¢7yk 17 ym+§ feal@ V' Vo + UD Y, =0,
% =-=iy (—66 +iaf jw+l2/\mym¢/
(29" :
i " | +
+§13m Y Vol +§ fnV YV Vo + 1y, =0.

() dwanddy vanish on the boundary of the domain of integration.
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Under an infinitesimal shift in the space-time continu@m

X2 =¢&3,
we will have:
oh,,=-h,{5,6”+N72&%,
(30) of,=f,& - aa (f.&9),
1)
_ W o 0P,
W= s W=t

By contrast, under an infinitesimal gauge-transformation:

04
oh,, =0, of,= ,
(31) am a axa

oy =-ialy, oP=ialAy,
Finally, under an infinitesimal proper bein-trarmsfation ¢):

Jham:_wmrhar’ a) :_a)

mr rm?’

(32) of, =0, odW=-py, Y=-gp,
where

=1WN Y P ETUKY

Since we have:
(33) j{xyg;ahpm+ X° 3t + Xay+ap X hdb=0,

regardless of whether we substitute the variat{@03, (31), or (32) in (33), the identities
will follow:

y oy _oy <,_
(35) HX+ia{Xy-@X}=0,
(36) Xap—Xga= H{ X v = Vs V)W =0, V=V, Vi) X} =0.

() &2 are the components of the infinitesimal shift vetiere.
(2) The following identity relations are fulfilled:
P ot WP = e
P )+ Kp =0,
p'y+yp =0.
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One has:
¥ =] 0 ity 9 _in >
apf — E lf’Vm 67 1a 0 [/I 67 1a o ¢’Vm¢’ Eﬂhvmgﬂ rﬁ]glﬂ}

(37) +%{ 5/1‘]0/%5 +3,7 (/\ﬂpﬂ _%Apﬂﬂ) =% U J# 5/);1}

+%{Jam fﬂK _% gaﬂ ‘]Kp t(p} _,U glﬂ ‘])]

and

(38) X?=ka ¥ + & 3%

8 5.— From (29 and (29), one has:

(29) X =0, X

I
o

It first follows from (29) and (36) that:
(39) Xap=Xpa
such that the 16 componentss will be reduced to only ten components on the basis of
equations (29).
It will then follow from (29) and (35) that:
(40) & X°=0,
and if one recalls (38) then that equation will implyttha
(40) 5J°=0.
Since we know that:
(41) Xy+@X =kQ2M +i 3,37,
it will follow from (29), (40), (41) that:
(42) M =0.

Finally, it will follow from (26), (29), (34), (39), (40) tha
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Summary

We have derived the following laws of matter by meansothing but identity relations
on the basis of the genefirac equation: The symmetry of the energy-stress teXger

[equation (39)]. The conservation of the current ve¥fbfequation (40) or (4)]. The
equations of motion (43).

(Received on 12 October 1930)



