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The impulse-energy theorem in Dirac’s quantum theory of the electron 
 

By. H. Tetrode in Amsterdam† 
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Various expressions for the impulse-energy theorem can be chosen that become identical for a free 
electron.  The most natural choice is a certain asymmetric tensor.  The force on a unit volume is the 
classical Lorentzian one, with no additional force for a magnetic polarization of the electron. 
 
 The differential equations of the Dirac theory * read: 
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In this equation we have set p0 = ip4 and A0 = iA4 , and we have: 
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If one introduces x4 = ict then the differential equations above read: 
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In this equation, the γµ are four four-rowed matrices that satisfy the equations: 
 

2
µγ = 1,  γµ γν =  − γν γµ  (µ ≠ ν); µ, ν = 1, 2, 3, 4. (3) 

 
They are understood to multiply with each other in a well-known way; one has, e.g.: 
 

(γ1γ2)r = 
p
∑ (γ1)rp (γ2)ps . 

 
Furthermore, there are four quantities ψ, i.e., the ψ in (1) and (2), with an index 
understood to be omitted, along with the implied summation over this index.  Hence, one 
has, e.g.: 

                                                
 † Translated by D. H. Delphenich 
 
 * P. A. M. Dirac, Proc. Roy. Soc. (A) 117, 610, 1928; 118, 351, 1928. 
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(γ4 ψ)r = 
p
∑ (γ4)rp ψp . 

 
We therefore have four differential equations for the four quantities ψ.  Moreover, if − e 
is the charge of the electron and m is its mass then: 
 

ϕ4 = − A4, ϕk = − Ak  (k = 1, 2, 3) 
 
are the components of the four-potential of the electromagnetic field.  This field is then 
regarded as given, i.e., as originating in an arbitrary configuration of given charges and 
currents (possibly at infinity).  The charge of the electron itself is then not to be regarded 
as a source in the calculations. 
 With the correct components of the four-potential, (2) reads: 
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We free up the differential quotients with respect to the time coordinate from the matrix 
γ4 when we multiply by γ4 : 
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In this expression, we then replace the matrices γ4 , γ4γk by their transposes4γɶ ,�4 kγ γ : 

 
( )rsµγɶ = (γµ)sr , 

 
and also the virtual matrices ∂/∂xµ with their transposes − ∂/∂xµ , so we obtain four new 
differential equations: 
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for four new quantities ω. 
 Since: 

�
4 kγ γ ≡ 4kγ γɶ ɶ = − 4kγ γɶ ɶ , 

 
we obtain, when we multiply (6) by − 4γɶ : 
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 If we set ψ  =γ4χ then we get: 
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These four-dimensional symmetric equations (7) and (8) for ω and χ go over to each 
other under transposition, just as (5) and (6) do. 
 We construct: 

0 = ω Gχ −χ Gɶ ω  ≡ ( )
2
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π
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In this, one has ωχ = r r

r

ω χ∑ , etc., and one must take into account the identity: 

ωαχɶ ≡ χ α ω ,      (10) 
 

for any matrix α in the group of γµ , and one also must naturally replace, e.g., χ with 
∂χ /∂xµ .  The quantities: 

Pµ = − ie ωγµχ      (11) 
 

define, for an appropriate normalization of ω, χ, the components of the four-current, and 
(9) is the conservation law for electricity.  Namely, one can, by a canonical 
transformation: 

γµ → S γµ S−1,  χ → S χ, ω → ω S−1 ≡ 1S ω−ɶ , 
 
arrive at the fact that the γµ are Hermitian: 
 

(γµ)rs =( )rsµγ , 

 
where the overbar means the complex conjugate *.  The same is true for the matrices iγµγν 
(µ ≠ ν), and therefore equations (5) and (6) for ω and χ are complex conjugates of each 
other (if x4 and ϕ4 are pure imaginary), so they admit complex-conjugate solutions, as 
well.  Correspondingly, if one chooses ω =ψ  (= 4γ χ ) then ω and ψ refer to the same 

“state,” for which P4/i becomes real and negative, and P1, P2, P3 become real, as one 
must have. 
 The foregoing was essentially already discovered by Dirac, up to the four-
dimensional symmetric notation.  We now go further and construct from (7), (8), and (9): 
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 * Proved by P. Jordan and E. Wigner, ZS. f. Phys. 47, 631, 1928, appendix at the end.  
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By a simple computation, this yields, taking (10) into account: 
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where: 
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χ ωωγ γ χ
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+ ie ϕλ ω γµ χ .   (13) 

 
 Since the right-hand side of (12) represents the Lorentz four-force on a unit volume 
that originates in the electromagnetic field, we can regard the Tλµ as the components of 
the impulse-energy tensor of the electron; it is then generally asymmetric.  Just as we did 
before for the four-current, we show that if the ω and χ refer to the same “state” then the 
T4k, Tk4 (k = 1, 2, 3) are pure imaginary, while the remaining Tλµ are real, as it must be.  
We further emphasize that the force on the unit volume is the classical Lorentz one, and 
that there are no arbitrary additional forces, as one might expect for an electron with a 
magnetic moment. 
 One can also consider other quantities to represent the impulse-energy tensor, as we 
would now like to show.  Instead of (13), one can also write: 
 

Tλµ = 
2 2

4

hc ie ie

x hc x hcµ λ µ λ
λ λ

π πωγ ϕ χ χγ ϕ ω
π
    ∂ ∂ + + − +    ∂ ∂     

. (14) 

 
It now follows from (8), upon multiplication by γλ , that: 
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and from (7), upon multiplication byλγɶ : 
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Substitution of these equations into (14) gives: 
 

 
2

( )T
c λµ λ µ≠  = 

2 2

h ie h ie

x c x cµ λ ν ν µ λ ν ν
µ ν λ ν ν

ωγ γ γ ϕ χ χγ γ γ ϕ ω
π π≠ ≠

    ∂ ∂ − + + − +    ∂ ∂     
∑ ɶ ɶ ɶ  

2 2

h ie h ie

x c x cµ λ ν µ µ λ ν µ
µ µ

ωγ γ γ ϕ χ χγ γ γ ϕ ω
π π

   ∂ ∂− + − − +      ∂ ∂   
ɶ ɶ ɶ  

+ mcω γµ γλ χ + mc χ µ λγ γɶ ɶ ω . 

 



H. Tetrode.  The impulse-energy theorem in Dirac’s quantum theory, etc.                     5 

Taking into account the identities: 
 

µ λγ γɶ ɶ =�λ µγ γ ,  µ λ νγ γ γɶ ɶ ɶ = �ν λ µγ γ γ , 
 
the relations (3) and the identities (10) simplify this expression to: 
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However, from (14) one has: 
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Subtracting this from (15) yields: 
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and from this it follows that: 
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Therefore, the divergence of the anti-symmetric tensor with the components Tλµ – Tµλ 
vanishes, and one can, when one multiplies these components by an arbitrary real 
number, add them to the tensor that is defined by (13) without altering the conservation 
law (12).  In particular, one can choose the impulse-energy tensor to be, not the T in (13), 
but the transposed tensor T′ with the components Tλµ′ = Tµλ .  However, the original tensor 

(13) seems to be the most natural one to me.  With this choice, one then has that, e.g., c/i 
T41 is the x1-component of the energy current, and this is in agreement with the meaning 

of the operators that appear in it: Indeed, it means that the operator 
42
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applied to χ, gives the energy, and, from (11), icγ1 gives the current velocity (in the sense 
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of statistical mean).  Likewise, the impulse density 1/ic T14 also gets the correct form in 
this way (on this, compare the statement on the energy density at the conclusion of this 
article).  For a free electron (ϕµ = 0) with a given magnitude and direction for its velocity 
the two tensors T and T′  become identical.  One then sets: 

χr = 

2
k x
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ra e
µ µ

µ

π
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, 

 
in this case, where ar , kµ are constants and the products kµ xµ are all real.  Since ω can be 
taken to be complex conjugate to γ4χ, one has: 
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with constants br .  One thus has: 
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and instead of (7), (8), we have: 
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From this, it follows that: 
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from which the symmetry of the tensor T follows. 
 In classical electrodynamics, the right-hand side of (12) can be expressed as the 
divergence of the impulse-energy tensor of the electromagnetic field.  As usual, this is, 
however, impossible here, which was already the case in the earlier relativistic 
generalization of the Schrödinger theory that was presented by Gordon and others, 
because the four-current P of our electron is not the source of the field that acts on it, and 
is therefore not connected with that field through the Maxwell equations.  Our system of 
electron + electromagnetic field is therefore not to be regarded as a closed one since there 
is no proper tensor whose divergence vanishes (naturally, the tensor T′ – T does not come 
into consideration), which the conservation of energy and momentum would guarantee.  
One must consider the interaction of the electron with whatever particles generate the 
given field.  However, the presentation of a relativistic quantum mechanics for many 
electrons (after eliminating the field quantities) encounters difficulties that are connected 
with the introduction of retarded potentials *. 
 Just as in the earlier “relativistic Schrödinger equation,” a gradient is physically 
trivial in the four-potential.  If one replaces ϕµ with ϕµ + ∂S / ∂xµ (where S is a scalar), χ 

with 
2 ie

S
hce
π

χ
−

, and ω with
2 ie

S
hce
π

ω
+

 then all expressions and equations remain unchanged. 
 On the physical meaning of the tensor T, we make the following remark: The 

operator
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applied to ω.  For that reason: 
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is the real (see above) energy density, since ωγ4χ is the probability density.  Furthermore, 
ϕ4/i is the electrostatic potential and – e is the charge of the electron.  Thus, ieϕ4 is its 
potential energy in a static field, and ieϕ4ωγ4χ is the corresponding energy density.  
When this is subtracted from (18) it gives the energy density of “matter” – T44, which 
would thus make it the density of “kinetic” energy when one understands this term to 

mean “rest energy” mc2, which classically means the expression 
2

2

21

mc

v

c
−

.  One then 

observes that the mass of the electron does not enter into this impulse-energy explicitly. 
 
 

_____________ 
 

                                                
 * Cf., H. Tetrode, ZS. f. Phys. 10, 317, 1922, where this question was discussed on the basis of classical 
mechanics, and, in principle, by W. Schottky, Die Naturw. 9, 492 and 506, 1921. 


