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The impulse-energy theorem in Dirac’s quantum theory othe electron

By. H. Tetrode in Amsterdarm
(Received on 4 June 1928)
Various expressions for the impulse-energy theorem canhbsen that become identical for a free

electron. The most natural choice is a certain astmentensor. The force on a unit volume is the
classical Lorentzian one, with no additional forcedanagnetic polarization of the electron.

The differential equations of the Dirac theomgad:

& e
{'ZV;I(P;:+_A&IJ+”‘C}¢’ =0. (1)
=1 c
In this equation we have s@i=ips andAy =iA4, and we have:
ih 0 ih 0
- iy = k=1, 2,3).
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If one introducesy =ict then the differential equations above read:

{ y{%a% gAAJ S (Eﬁg,&jm}w 0. @
In this equation, the, are four four-rowed matrices that satisfy the ¢iqua:
vi=1, ViV = = Vol (U# V); uv=1,23,4. ?3)
They are understood to multiply with each othea wwell-known way; one has, e.g.:

A =D (W (J)ps -

Furthermore, there are four quantitigs i.e., the ¢ in (1) and (2), with an index
understood to be omitted, along with the impliechmation over this index. Hence, one
has, e.g.:

" Translated by D. H. Delphenich

* P. A. M. Dirac, Proc. Roy. Soc. (A)17, 610, 1928118 351, 1928.
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W= (oo h-

We therefore have four differential equations for finér quantitiesy. Moreover, if- e
is the charge of the electron amds its mass then:

Pa=—As,  h=—A k=1,2,3)

are the components of the four-potential of the edataignetic field. This field is then
regarded as given, i.e., as originating in an arbitranfigoration of given charges and
currents (possibly at infinity). The charge of the etacttself is then not to be regarded
as a source in the calculations.

With the correct components of the four-potentialré2ds:

h a  ie i
{V4(5767+c¢4j zyk(5767+c¢4j+mc}w 0. (4)

We free up the differential quotients with resptecthe time coordinate from the matrix
ya when we multiply by :

h o i
- ——+— E — + =0. 5
{ (2776x4 ¢4j V4Vk(2ﬂax C¢4j ymnc }l/’ (5)
In this expression, we then replace the matrjges . by their transposgs, ;Zy/k :

(7)== Wds

and also the virtual matric@$ox, with their transposes d/dx, , so we obtain four new
differential equations:

{_(_Li*' ¢4j ZVM( %Taix+le¢4j+y4 } =0 (6)

27T 0X, c
for four new quantitiesu
Since:

A A/ A

we obtain, when we multiply (6) byy,:

onlSh[ g ren oo 0
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If we sety =)y then we get:

{zyﬂ{567+'c¢ J })(:0- (8)

These four-dimensional symmetric equations (7) and (8xJand y go over to each
other under transposition, just as (5) and (6) do.
We construct:

- h <« 0
O=wGYy—YGw=s—) —(w . 9
X=X Zﬂ; aX#( V.. X) 9)

In this, one has:y(:Za)r)(r , etc., and one must take into account the identity
r

WX = X a w, (10)

for any matrixa in the group ofy, , and one also must naturally replace, eygwith
0x/0x, . The quantities:

Pu=—ie ayx (12)

define, for an appropriate normalizationaf y, the components of the four-current, and
(9) is the conservation law for electricity. Namelone can, by a canonical
transformation:

Vu - Sy SH X - Sx w- wS'= S'w,

arrive at the fact that thg, are Hermitian:

(Vidrs :m’

where the overbar means the complex conjugafithe same is true for the matricesy,
(1 # v), and therefore equations (5) and (6) foand y are complex conjugates of each
other (if x, and ¢, are pure imaginary), so they admit complex-corj@igalutions, as
well. Correspondingly, if one chooses=¢ (= y,x) thenwand ¢ refer to the same
“state,” for whichP4/i becomes real and negative, &g P,, P; become real, as one
must have.

The foregoing was essentially already discovergd Cbrac, up to the four-
dimensional symmetric notation. We now go furtéwed construct from (7), (8), and (9):

0 :E[wi_GTWJGX+E(Xi_a_XJGw+ie@Za%(a)yﬂ)().

207 ox, 0x, 70X,

" Proved by P. Jordan and E. Wigner, ZS. f. PAYs631, 1928, appendix at the end.
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By a simple computation, this yields, taking (10) into account

T 9
-y ﬂﬂzzpﬂ(%— ¢ﬂj, (12)

70X, 7 ox, 0x,
where:
hc 0 ow

= ﬂaT_GTVijHe@ WYu X - (13)
A A

Since the right-hand side of (12) represents the Lprenir-force on a unit volume
that originates in the electromagnetic field, we oegard theT,, as the components of
the impulse-energy tensor of the electron; it isitenerally asymmetric. Just as we did
before for the four-current, we show that if dseand y refer to the same “state” then the
Ta, Tuia (K =1, 2, 3) are pure imaginary, while the remaining are real, as it must be.
We further emphasize that the force on the unit voligribe classical Lorentz one, and
that there are no arbitrary additional forces, as oightnexpect for an electron with a
magnetic moment.

One can also consider other quantities to representrpulse-energy tensor, as we
would now like to show. Instead of (13), one can alstewr

hc J0 2rie _ 0 2rie
Tiw=—Lwy,| —+— + -—+¢ |w;. 14
M 477{ yﬂ(axﬂ e %j){ )(y;,[ ox " he %j } (14)

It now follows from (8), upon multiplication by, that:

hc( 0 2me h 0 ie
— | —+— = - —_—+— +Mmcyi x,
271( ox ' he %j){ ;# ym(zﬂ ox, C%j){ X

and from (7), upon multiplication b :

hc 0 2rme L h 0 e -
—| -+, |w= - ——+—¢, |lw+mcy, x,
271( o he %j V;ym[ 2%, C%j X

Substitution of these equations into (14) gives:

2 h o e h o e
=T, (A£ ) =- w) —_—t + XV V.V ———+—9¢ |w
C /1;1( /'l) ﬂ;){ yﬂy/]yv[ZﬂaXV C¢VJX nyy/]yv[ 2776)(V C¢Vj }
VL S PU IOV S UL P I
VubaV, 2mox, ¢ s 2mox, ¢

tmewy p x+mex .y, w.
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Taking into account the identities:

V=V V7,2 ViV

the relations (3) and the identities (10) simplify thipression to:

2 h 0
=T, A£ )= “om K(Wpyﬂ/u)()
A£VEU
h o ie h o
+o, | —— +— + ¥y | ————+ 15
J/{Zﬂaxﬂ c¢"j)( )(y{ 217 0X,, c¢j (15)

However, from (14) one has:

2 h 6 ie h 0
—T = +w + XV ——+

Subtracting this from (15) yields:

2 h 0
—(Tw-Ty) A2@)=-— ) —(@.yiVx), (16)
C 277/1¢v¢;1 axu
and from this it follows that:
23 0 0
= —(T, -T.))=) —(T, -T
C;axﬂ(ﬂp ;M) l;axﬂ(/tu ;M)
S > i (W, Y, ¥, X)
27T jilmer OX, 0%, - 1Y
_ h 02
= D ——— (WXt XVYY,0)= 0. (17)

47T/l¢v¢;1¢/1 a a)ﬂ,

Therefore, the divergence of the anti-symmetricsoerwith the components,, — T,
vanishes, and one can, when one multiplies thesepapnents by an arbitrary real
number, add them to the tensor that is defined1BY yithout altering the conservation
law (12). In particular, one can choose the imgudrergy tensor to be, not then (13),
but the transposed tensbfwith the components, , = T,, . However, the original tensor
(13) seems to be the most natural one to me. ihghchoice, one then has that, edj.,
T41 IS thex;-component of the energy current, and this is mre@igent with the meaning

of the operators that appear in it: Indeed, it rsetmat the operator%ai, when
7T 0X,

applied toy, gives the energy, and, from (11Qy gives the current velocity (in the sense
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of statistical mean). Likewise, the impulse densiig T{, also gets the correct form in
this way (on this, compare the statement on the graegsity at the conclusion of this
article). For a free electrog/ = 0) with a given magnitude and direction for its eélp
the two tensor3 andT’ become identical. One then sets:
szuxu
X=ae *

in this case, whera; , k, are constants and the products,, are all real. Sincevcan be
taken to be complex conjugatejlgy, one has:

2,
w=be *
with constant®, . One thus has:
%%:ik,,)( and %gfz—ikﬂaz
and instead of (7), (8), we have:
Yigk,w=ma Dy k,x=mcy.
“ 7

From this, it follows that:

U D EDWAADEIC. WA AR
u u

. h ox _. _
and since— y, == =1iky)ix , one has:
2" 0x,

h ox
-——mey, 2=k, (2k -y w k
o naxv (2kr ax ; VieYa KuX)

=2k kiax = k> xpp ko =2k k ay+imck, x 7, w
U

=2k, Ky ay +imc k, x ya w= 2k, ky ayy + mea)yﬂa—)(
2 0x,
Thus, one has:

and likewise:
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from which the symmetry of the tensbfollows.

In classical electrodynamics, the right-hand side(1&f) can be expressed as the
divergence of the impulse-energy tensor of the electgmetic field. As usual, this is,
however, impossible here, which was already the caséhen earlier relativistic
generalization of the Schrédinger theory that wasemtesl by Gordon and others,
because the four-curreRtof our electron is not the source of the field thas an it, and
is therefore not connected with that field throughMsxwell equations. Our system of
electron + electromagnetic field is therefore ndbeéaegarded as a closed one since there
IS no proper tensor whose divergence vanishes (natutalyenso '— T does not come
into consideration), which the conservation of eneagg momentum would guarantee.
One must consider the interaction of the electrom wihatever particles generate the
given field. However, the presentation of a relatiwiguantum mechanics for many
electrons (after eliminating the field quantities) encetsntifficulties that are connected
with the introduction of retarded potentials

Just as in the earlier “relativistic Schrédinger equdti@angradient is physically
trivial in the four-potential. If one replacés with ¢, + dS/ 0x, (whereSis a scalar)y

2mie 2mie
with e "y, andwwith e ' ¢ then all expressions and equations remain unchanged.
On the physical meaning of the tensbr we make the following remark: The

operato&mi, when applied toy, represents the energy, just as Whg%iis

27T 0X, 27T 0X,
applied tow For that reason:
hc Yy OJdw
_ w % 18
4n( Va ax, ox, V4)(j (18)

is the real (see above) energy density, stagg is the probability density. Furthermore,
@4/i is the electrostatic potential ande-s the charge of the electron. Thusp, is its
potential energy in a static field, amégscysy is the corresponding energy density.
When this is subtracted from (18) it gives the ggeiensity of “matter” T4, which

would thus make it the density of “kinetic” energynen one understands this term to
. : . mc?
mean ‘rest energyinc®, which classically means the express =. One then
v
1-—

CZ

observes that the mass of the electron does net iahd this impulse-energy explicitly.

*

Cf., H. Tetrode, ZS. f. Phy40, 317, 1922, where this question was discussed on the batissital
mechanics, and, in principle, by W. Schottky, Die Nati@w92 and 506, 1921.



