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On thetheory of surface transfor mations.
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Translated by D. H. Delphenich

Any transformation that converts any surface into sagesurface, and conversely,
the latter surface, in turn, into the former, is adimary (Lie) contact transformation. |
proved that in my treatise in volume IX of these Asndh volumes Xl and XllIlI of these
Annals, | discussed a certain class of transformatibat lead from a surface to infinitely
many families of surfaces, namely, the class thasistsof those surface transformations
that are based in three equations of the form:

X=FzxV,pa ... ),
Y = Fy( )
Z=Fy )-

Any transformation that belongs to this class is attarzed by the fact that it
converts any surface in the domaiq ¥, 2) into just one surface INX( Y, Z), while a
surface in the latter domain will be converted intonitély many surfaces in the former.
Later on, in volume XVII of these Annals, | discusshose transformations that convert
any surface in the domains {, 2), (X, Y, 2) into first-order partial differential equations.
They are given by three equations:

(@) Fy(
Fs(

)=0

) =0.

Among them, there are some that include the penutimransformations, which |
treated quite laboriously in volume XI of these Annd)s(il. A., Bd. XVII, pp. 308).
Transformations that are determined by more than thregi@gsianz, X, y, p, 9, Z, X, Y,
P, Q will not be, in general, surface transformations fer éntire domains(y, 2), (X, Y,

Z). If the number of equations that the transformatietermines is four then there will
exist broadly inclusive families of surfaces for whicle ttransformation becomes a

(") Translator: In all of what follows, we will use thebreviation “M. A.” for Mathematische Annalen,
instead of “d. A.” (diese Annalen), which the author used.
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surface transformation (M. A., Bd. XVII, pp. 313). A s@dd¢ransformation of this type
is expressed by the four equations:

X=x Y=y, f(Z,zxy,p,q,P,Q =0, ¢ zxvVy,pqP, Q) =0.

The problem of determining surfaces that are transforntedother surfaces by this
transformation is equivalent to the problem of determitinggsolutions:

z=Fxy), p=F&, qg=F(y),
Z=d(xy), P=d'(x), Q=d"(y)

of f = 0,¢ = 0. The discussions in nos. 5 and 6 of my treatis®liime XVII of these
Annals related to the resolution of this problem. Herewyill again go into the
characterization of these families of surfaces, g also consider some special cases
of the equation§=0, ¢ = 0.

In the realm in which a transformation that is deiret by four equations between
ZXVY,pa ZXY,P, Qbecomes a surface transformation, there is, in gem@esmngle-
valued surface transformation. However, there aresceswhich it becomes infinitely-
valued, either in such a way that it converts any suifao@e domainx, y, 2), (X, Y, 2)
of the realm in question into a certain surface in dtieer one, while converting any
surface of the latter domain into infinitely many in tleemer, or in such a way that it
transforms any surface of the domain into infinitely mangfaces. Lie commented upon
a transformation with the latter character in atise on surfaces of constant curvature (in
Archiv fir Mathematik und Naturwissenschaft, Bd. 5, Craisfi, 1880). He was led to
it by his study of a method that had recently been gyeBianchi for generating new
surfaces of constant curvature from a given one. In exdimm with my general
theorems, | have sought to briefly summarize somhisftheory of Bianchi and Lie at
the end of the present treatise.

The third paragraph is concerned with some special sutfaosformations of the

category @).

§1.

Someremarkson thefigurethat isdefined analytically by two equations
inz Z,x Y, and thefirst derivatives of z, Z with respect to x, y.

1. Two surface elements that hazex, y, p, 9 (Z, X, ¥, p, (, resp.) for their
parameters shall, in the event that the parameter v@duesx, y, p, g, p', q') satisfy the
two equations:

1) { f(zZ,xy%npaqhp 6=0,

9( ) =0,

be called twocorrespondingelements of this system of equations. Infinitely many
surface elements can be added to two arbitrarily-choseesponding elements of the
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system that are infinitely close to them (are unitéth them, resp.), and define mutually
corresponding elements of the system (1), moreoveamea¥, if X, y, p, @), (Z, X, V, P/,
g') are the parameters of the first two elements,dandZ, dp, dg, dp, dq are set equal
to any values that satisfy the equations:

) dz=p dxt g dy dZ=p dx+qgdy, df=0, d¢ =0,

then ¢ + dz x + dx, ..., q + dg) become parameters of two elements of the stated kind,
precisely. Each such totality of two corresponding pafranited elements belongs to
one- and in generabnly one— system of values for,(s, t, r’, s, t') that simultaneously
associates a soluti@x= F(x, y), Z = ®(x, y) of (1) with a system of values for the second
derivatives ofF and®. This system of values is the one that satisfiesfalowing six
equations:
o { dp=rdx+sdy dp= rdx 'sdy [ i, =0,

dg=sdx+ tdy dg= 'sdx 'tdy [ ,8],, =0,

of which the last two provide the conditions for anyuesl ofr, s, t, r', S, t' to produce a
solution of (1), at all. However, one must concluaserfithis thaione can always lay one

— and in general, only one — surface pai=Z(x, y), Z = ®(x, y) that represents a
solution of (1) through any two strips whose surface elements define mutually
corresponding elements of the sys{ém

The agreement between this theorem and the theorgop.o291 of my treatise in
vol. XVII of these Annals is obvious. There, it saidittla simply-infinite family of
integrals:Z = ®(x, y) goes through any strip of elements &, vy, p’, ). Now, as one
sees from (1) and equatiorey,(there are simply-infinitely many strips of elemefzsx,

Y, p, q) that correspond to the elemerts X, y, p', d') of a given strip. From what we just
said, any one of these® strips, when combined with the given one, must determine a
surface pairz = F(X, y), Z = ®(x, y) that defines a solution of (1). Therefore, in to#al,
simply-infinite family of integral surfaces = ®(x, y) that go through the given strips of
elements %, X, ¥y, P, ) gets added to the given strips, as was previously remdnked
myself in the cited place.

We can also formulate the developments here thusompletely-determined pair of
surfaces that define a solution ¢f) will go through any pair of curves that are
represented by three equations=#Z(x), Z = #(X), y = ¢AX). Namely, equations (2),
together with the first two of equationa)( determine the parameteps g, p', g of
mutually corresponding surface elements that, from tmegbing, define strips that
determine the surfaces of the pair in question unambigualshg with the two curves.

If we regardz, Z, X, y as the coordinates of the points in a (four-dimensismEreR,
(M. A., Bd. XVII, pp. 289) then we can also sa@y:completely-determined integrafl 2

of (1) goes through an.

2. However, there are mutually-corresponding pairs oedrélements of (1) that are
associated with infinitely many systems of valuesrp§,(t, r', s, t'), in the above sense.
The two elementsz(x, y, p, Q), (Z, X VY, p’, ) of the two pairs are, indeed, to be chosen
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from the elements of (1) completely arbitrarily. N&yn one can determine the ratibs

dy, dp, dgin such a way that the sheaf of¢, t) that is expressed by the equations of the
first column of p), which are completely associated with the equatip@]},y = 0, and

at the same time, the sheaf of §, t') that satisfy the equations of the next column in
equations If) — these equations being applied to the elenent ¢z, ..., d + dq) that
corresponds to the element{dz ..., q + dg) — are completely included in the equation
[f, #dlxp= 0. Ultimately, the following quadratic equation musttiue fordy/ dx

@ (d_yj 0f 0p_ofog) _dy(of og of og ot ag _of ¢
dx) (dp dp Opdp dxlopop 0dop opdp 0P p
. (i%_ﬂ%j _o,
oq' dq 0qod
and an equation must exist betwekgn dx, dq/ dxthat comes about fronfi, [#],xy = O by
eliminatingr, s, t by means oflf) and considering of the last equation dty/ dx to be
written down in (2).

Each of theseo' possible systems of values fip/ dx, dq/ dx, together with a value
for dy/ dxin (2), determines a surface element dz x + dx, ..., q + dqg) that defines a
pair with the elementz(x, y, p, q) that determines! systems of values for,(s, t, r', S,

t'), in conjunction with its corresponding pairs, in thanner that was set down in the
previous number.

We thus see thébr any surface-pair z F(x, y), Z = ®(x, y) that defines a solution of
(1), there are two families of mutually-corresponding strip-pairs, along hyhtbis
surfalce pair contacts infinitely many other surface-pairs that likewefine solutions of
1). O)

One pp. 290, 291 of M. A., Bd. XVII, | showed that the swedt = O(X, y) [or z=
F(x, y)] that define a part of the solutions of (1) must satigfo linear, third-order partial
differential equations as integrals, and whose firsivdBves also reduce to only three.
The integral surfaces of such pairs of third-order padifferential equations are
comprised of any two families of characteristics (M. Bd. XVII, pages 91-94). Those
of the aforementioned contact strips that lie onsiiidacez = ®(x, y) [or z=F(x, y)] will
define the characteristics of any pair of third-order equatiprecisely. However, the
characteristics of this pair of equations that belong4} will be strips along which first-
order contact of the integral surfaces is already plessi

If we regardz, Z, x, y as point coordinates Ry then we must conclude from what we
just developed thatvo families ofM. lie on any integralM? of (1), along which, aM 2

of infinitely many other integraM; of the same pair of equatio(i) will contact. | call

G FzZ=F(xy), Z = P(x Yy); 2= FYx, y), Z = dY(x, y) define two such contacting pairs, and the two
surfacesz = F(x, y), z= F(x, y) osculate along their contact curve, moreover, thernvibesurfaces =
D(x, y), Z = dY(x, y) must also osculate along their contact curves. Thealue of ¢, s, t) that satisfies
the equationf[ @],y = O will correspond to a single value of, §, t') by means of three of the equations
that are defined by setting the first derivative$ afid¢ in (1) with respect tg, y equal to zero.
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theseM., along with their sheaf ob' tangent planes, characteristic strigs ¢r more
briefly, the characteristics of (1), as well as tie themselves.One can lay, not just
one, as through any1?, buteo™ integral- M? of (1) through any characteristic.

The characteristics are the oM with that property.

3. On pp. 296 of M. A., Bd. XVII, | proved that the most gehetuationx — x(y, p,
a, p', q) = 0 that haso® integral- M? in common with (1) is defined by a linear, second-
order partial differential equation. It follows frornig that, in general, there is oard
only oneequationx — x(y, p, 9, p', ) = 0 that, first of all, will be satisfied by those
systems of values ok(y, p, q, p', ) that will be separate from any two equations (in
addition tof = 0, ¢ = 0) between these quantities, and secondly, wifgadn arbitrary
relation between the differential quotientsxdbr y) for this same system of values. One
can arrive at this theorem in another way, which | @wdikle to give here. From it, one
can then reason conversely that the equationcfonust be a second-order partial
differential equation.

If we would like to apply equations (10) in M. A., Bd. XYfp. 291, namely:

[f, Alp=0, [& Y 20=0, [f]l2p=0,

to thewo* systems of special values af £, x, y, p, q, p’, ) that are in question here then
we would have to first introduce certain valuesyofor the ratios of the differential
guotients that are determined in the following ways the functiorx — x(y, p, 9, p’, ),
which is free ofz, Z, and which we will think of as being eliminated everywhbye
means of equations (1). If we write the two arbitraryagigus inx, y, p, g, p', g’ that are
added to (1) in the form:

x-F(p,q,p,q9)=0, y-®(.ap.q)=0

then the values in question of:
oy .oy 0y 0y

dy ox ' 9aq ox
ie.:
[6)4 o0X
' o

will be determined uniquely by the assumed linear wmwlabetween these differential
guotients and through the following equations (M. A., Bd. Xyp. 413):

X ., OX
o) ~ — = 0.

X o
Y% oq

1 a I aX T J
F(p)- —®(@E-—=0,..F()-
oy op

() Two infinitely—neighborinng0 will define a strip on anyM;’ that goes through them.
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From the equations (10), M. A., Bd. XVII, we then comeatwell-defined system of
values of (', s, t') for any system of values of,(Z, x, y, p, 0, p’, ) that we spoke of,
and then, from the first derivatives bf 0, ¢ = 0, to a likewise completely determined
system of values of (s, t).

The values of the differentials nfZ, p, g, p', g that are represented by:

pdx+qgdy=dz ...,rdx+sdy=dp, ...,s dy+t dx=dq

will satisfy the equationdf = 0,d¢ = 0,d¢ = 0 identically on the basis of equations (10)
above (M. A., Bd. XVII). Due to the expressions o/ op, etc. — i.e.gy / 0x, etc. —

that are given by the equatioi{p) —g-; d'(p) - g—: =0, etc., the two equations:

dx-F)=0, dly—-®)=0

will give only one new equation. This equation, which wellgiedain, gives a well-
defined value fody/dxin terms ofz, Z, X, y, p, 0, p', 4. Corresponding to these values

of dy / dx and the values o@ (:r +s$lj, dq (: s’+fﬂj that follow from
dx dx dx dx

them, thex* elementsZ Z, x, y, p, g, P, q) that fulfill the equations:
f=0, ¢=0,x=F, y=0®

will be associated witko® completely-determined?. From no. 1, any of thes&? will
determine an integrald. that is common td = 0, ¢ = 0, and which will also be an

integral of an equatiog=x — y = 0 with the property stated above. We then have, in
total, 0o® M7 that satisfy equations (1) and a certain equagfon x — y = 0 with the
aforementioned property that is so determined that @ lddongs to it as an integral.

Thus, as we previously stated briefly, the equation O will be determined completely
by the stated conditions.

4. Equationgy=x- x(v, p, d, P', d) = 0 of this character define precisely the totality
of all integrals of a second-order partial differengguation. In M. A., Bd. XVII, |
explained how one could present this equation, and in addd¢anfirm the existence of
intermediary integrals, each of which is expressedrimgef two involutory, first-order
partial differential equations. In this no., | wiletat the case of a first integral of this
linear, second-order partial differential equationgathat is expressed in terms of a first-
order partial differential equation — vi£,= 0.

We first consider a simply-infinite family of solutis¢Ax, y, p, g, p’, q, A) = 0 () of
the first-order partial differential equatio® = O. Its enveloping structure
(Umhallungsgebildeis calledW = 0. This equation is also a solution @f= 0, and

() The quantitieg, Z shall be thought of as having been eliminated using (1).
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therefore haso® integral-M? in common with (1), like any solution of this equatio@n
any M, that satisfies (1) and the equatipf = ¢(x, v, p, q, P, 4, A°) = 0 as an integral,
a strip will be distinguished by the equatigh? = ¢/° + dA /(1% = 0. It also belongs to
the equatio¥ = 0, because it envelops the equatigQd) = 0. The elements)(of the
strip:
P oy o¥ ow

will be proportional to:

ay’ ay° oy’

ox  ady 7 aq

;!

resp. Therefore, systems of valuesmfs(t, r', s, t') that are determined BY = 0, In
conjunction with (1), will be associated with the edants of the strip, and indeed the

same thing will be true fog/° = 0, in conjunction with (1). As a result, an integha
that is common to (1) and = 0 (M. A., Bd., XVII, nos. 6, 7) must go through the
aforementioned strip. This must be considered to beferaditM, from the previous
one, because otherwisé = 0 would have the same¢’ integral-M_, in common with (1)

as = 0. If we were to choose another familycof solutions¢ = 0 that, in fact,
included the two equationg® = 0, ¢ ™ = 0 then we would find another solutig = 0
as an enveloping structure to the latter ones. We wiheld also find a new, third,

integral-M? of (1) — namely, an integra¥d? that is common to (1) and” = 0 — that
would go through the strip in question. In this way, we geae thaio” integral-M? of

(1) will go through any stripand the strip will therefore (no. 2) be a characéc of (1)
(**).

() | briefly refer to theM;’-eIementsz( Z, %Y p g p,q) that are connected with SOI’TMlo as

elements of a strip that starts on thé .

(") We see more as follows: Because the strip that iscumsidered is a characteristic of (1), the first
derivatives of (1) must be satisfied by of the systems of values af €, t, r', 8, t') that are associated
with the elements of the strip by its equatiahzs=r dx + sdy dg=s dx+tdy, dp =r' dx+s dy,dq =S
dx + t' dy, namely, by the unique corresponding system of values, af,(t') through the sheaf of (s, t)
that is determined by the first two equations, combinidid tive individual systems of values §, t) of this
sheaf by means of the derivatives of equations (1), wieidhce to three mutually-independent equations,
on the basis off[ ¢],y = 0. The elemenk(Z, x,y, p, g, p', d) of the strip belongs to the equatigf = 0,
and it therefore suffices to apply one of the equations:

dl//(l) o dl//(l) 0

dx dy

in whichr', s, t' are replaced with their values in terms,dé, t that are provided by the first derivatives of
(1), as was just mentioned, in order to obtain a systemalues of [, s, t, r', s, t') that simultaneously

satisfies equations (1) ant#f” = 0. However, from nos. 6, 7, M. A., Bd. XVII, an igtel -Mf of (1) and
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A complete solution o2 = 0 has five arbitrary constants. It is therefdréhe form:

wx v, p, a9 p,d, A1, A2, ..., 4s) =0,

and can be, in particular, linear in thef Q = 0 is a linear, first-order partial differential
equation. | will now consider an equatign(A’,A7,...,A2) = 0 that is included in the

complete solution that was written down, along with @fl of its infinitely-close
equations in the same family that contain one andaime ®lementy, p, g, p’, d):

(©) WAL A AD+AAY A+ dAY AN+ +dAg' (1)) =0,

and along with it, an integrald of (1) and ¢/(A2,1;,...,A2) = 0, that likewise
possesses the same elemeqty( p, g, P, ). From the previous discussion, any
intersection between this integrily and any equatiorc) must define a characteristic.
Only two strips start from the elemeat €, x, y, p, g, p', ) that run through the integral-
M? and are associated with equations (1) as characterighcs.2) All of equationsd)
must yield the same characteristics. Thus, if twdhe$é equations — say:

WAL A2, AD)+dA Y A0+ +dA W (A D) = 0,
W( YHAAY'( )+ +dAJY( ) =0,

produce different characteristics then the equation:

+d)llo+,ud)l1'¢/,()l0)+m+d)l§+yd)lg
1

0 30 0
YA Ay, AL) 1+ 1 T

W'K) =0

will yield a third strip of that type, and thereéor® strips — corresponding to the"
values ofy— will start from g Z, x, y, p, 9, p', ), which all lie on the same integral-
M7, and would be characteristics of (1), which is asgible for an arbitrary elemerz, (

Z, X%V, p q p, q) of (1) (). Therefore, one ultimately has: One and the same
characteristic of (1) will be expressed by the ¢igns:

¢/ = 0 must then be able to go through any strip. If wegamin the same way with the other equations
of the first (arbitrarily selected) simply-infiniterfaly of solutions:

Uuxy,pa,p,q,4)=0

then we will conclude that the aforementioned integﬂil-of Y = 0 must define an osculating enveloping
structure obo" integral-M_ of thew' enveloping solutiong() = 0 of ¥ = 0.

() In fact, | omit the case in which one HasF(Z, z x, y, #) in equations (1), or the case in which the
two equationg = 0, ¢ = 0 simultaneously lagg, g orp', d'.
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YA A7, A9) =0, YA A+ (A)) dA,+--+y'(A2) dAg = 0,

where three of the ratiogﬁ, d, : dA, : dA, are arbitrary. Since the stated equations
dA, dA;, dA; dA;
define a characteristic @ = 0, one can also sayhe characteristics a2 = 0 will now
be characteristics ofl).
It follows from this, moreover, that of the eleme® Z, x,y, p, q, p’, ) of (1), only
onecharacteristic series of elementsZ4, x, y, p, q, p’, ) emerges fo = 0. We then

consider any integra¥® = 0 ofQ = 0, an integraM; of (1) andy® = 0, and any strip of

this integralM? that does not define a characteristic of (1). We legno” other

solutions¢’ = 0 of Q = 0 through these strips. From the foregoing, thesatgion of
any M7 and any solutiony’ = 0 that is infinitely close tey® = 0 must consist completely

of characteristics of (1) anf = 0. The stated strip is also contained in the same
intersection. However, it is not a characteristigp for the systems of equations (1).
Therefore, all of the characteristics@f= 0 that go through the elemert %, x, y, p, q,

p', ) of the strip and lie on th#1) must, at the same time, belong to the latter equation

¢’ =0, and this to all equationg’= 0. We further consider any element4, x, vy, p, g,

p', q) of the strip and a solutiogr”= 0 that includes this element, but not other elements
of the strip, and which is infinitely close t° = 0. ¢” = 0 must also include the
characteristics o = 0 that lie onM? and start fromz Z, x, y, p, g, p', ). An integral-

M7 of (1) andy” = 0 goes through any characteristic @f £ 0 and) (1) 0. When we
reason in the same way as before with ti$, we will see that all of the solutions= 0

of Q = 0 that possess the specified elemert (X, y, p, g, p'’, d) will contain one and the
same characteristic of (1) atd= 0 in common.We thus find that for every elemént
Z,XY,p q p,d) there is only one sequence of eleménts, X, y, p, g, p'’, g) that is a
characteristic sequence 1) and Q = 0.

| have been able to omit the case in which infinitelyyniategralM? of (1) andy°

= 0 go through the element, Z, X, y, p, 4, pP’, d). This can therefore not enter into
consideration for an arbitrary element of (1) and &itrary integraly® = 0 ofQ = 0. In
fact, those equationg = 0 that have such a special relationship with a particylstem
(1) thateo! values ofr, s, t would be associated with any elementz( x, y, p, g, p', o) of
(1), andy = 0 will satisfyat least twdfirst-order partial differential equations.

However, if the characteristic strips@f= 0 that start from any eleme ¢, X, y, p,
g, p', q) of (1) are linked to one and the same sequence of elefaez, x,y, p, q, P, q)
that is therefore determined by five equations in:

ZZ,%Y,p,0QPpP,]": W=C, ¢ =C/, ---,WV:C'V

() See the beginning of the third note of this number.
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then any equatio® = O will be a linear, first-order partial differential equationOne
can then lay a completely-determined integral: Fupaff, ..., ¢/¥) = 0 ofQ = 0 through
an arbitrary quadruply-infinite manifold that is represdrig (1) and:

FzZ,xy,pap. . d)=0, ®(zZ xyp0ap,.qd)=0.

Now, the characteristics that start from the elam@enz, x, y, p, g, p’, ) and are
common to (1) an@ = 0 obey the equations:

r+ms=y s+mt=vy, r'=as+b, s=as+b, t=a's+b",

so we will have completely-determined valueg of, ..., t', dy : dx when we substitute
these values far, s, t, r', s, t' and substitute the valudg=p dx+q dy, dZ =p' dx+
dy,dp=rdx+sdy...,dg =s dx+t' dy in the equationdF = 0,d® = 0. Given the
values ofr, s, ..., t' above, the differentials of (1) will be fulfilled idacally. By
applying the values of, s, ..., t' that we have now obtained, we determine a certain
integral strip of (1) at every elemem £, X, y, p, 9, p', d) of our four-fold manifold: (1)
andF = 0,® = 0, all of whose elements belong to the aforemaatidour-fold manifold.
Thus, this four-fold manifold is decomposed into a compjetetermined family ofo®
integral strips of (1). The?® integral-M? of (1) that, from no. 1, go through these strips

also satisfy the equation Fungt(y’, ..., ¢/¥) = 0, of which it was assumed that it was an
integral ofQ = 0 and that it generated all characteristicQ &f 0.

We can recognize the possibility expressing such a thing by a linear, first-order
partial differential equatiorthat is a first integral of the second-order partiiecential
equation forg. A second-order partial differential equatiorRgof the form:

Fx,y,p,qr,s1)=0

is a special case of a system of equations (1) (MB@A. XVII, no. 32). Ifit is related to

a third-order equation in such a way that for any elergemt p, g, r, s, t) of the second-
order equation there exists a characteristic that igremmnto that equation and the third-
order equation then these characteristics will defirmysatem with precisely the same
behavior as system of characteristicstof= 0 above. Those second and third-order
equations that are derived from a pair of equatigisy, p, q,r, s, t) = 0,f2(x, vy, p, Q. I,

s, t) = 0 with common characteristics amd common integral surfaces by means of a
surface transformation:

X=Fi(xVy,pqr,st), Y=FxX,V¥,pqr,st),
P=Fsxy,pqr,st, Q=Fix, ¥, p.qQ 1, St

(see M. A., Bd. XIlII, pp. 76) will define a special systefrihat type.

5. What is the image of the equati@n= 0 in the space ok(y, 2? Any elementZ
Z, %Y, pq P, q) of (1) shall be associated with a characteristievhy ofQ = 0, so, as
we remarked previously, the same element will also becisted with a certain simply-
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infinite family (i.e., sheaf) of values of,(s, t, r', s, t'). p’, g will be determined as
functions ofz, Z, x, y, p, q by equations (1). Therefore, any surface elenemt ¥, p, q)
will be associated with a simply-infinite family ofngple sheaves ofr( s, t) that
correspond to the values Bfby means of2 = 0. The totality of all of these families of
values for (, s, t) that are found on the” surface elements of the spagey( 2) will be
represented by an equatib(z, x, y, p, g, 1, S, t) = 0. Wher, s, t are interpreted as point
coordinates in a spa€¥, it will represent a line surface in this space.s haw the image
of Q =0.

Moreover, this second-order partial differential ecurefi = 0 must haveo” integral
surfaces in common with the two linear, third-order pbhdifferential equations for
which one part = F(x, y) of the solutions of (1) will be common integrals, utls a way
that o’ characteristics that are common to all three equsitiaill start from any surface
element. If two elementsz(x, y, p, g, r, S, t) are united into two infinitely-close
characteristics then the latter will themselves beedrin their entire extent.

6. The partz = F(x, y) of the solutions of (1) does not always have to dedine
system of two third-order partial differential equatio®r example, if the quanti/ is
absent from the two equations (1) then the integrals ef sbcond-order partial
differential equation f[ @#],xy = 0, from which one imagines that, g have been
eliminated by using (1), will represent that part of thaismhs of (1), precisely. One
now haso! functionsz: [ (p dx+ g dy) = Z that correspond to any integeat F(x, y).

If Z, as well ag, is missing from both equations (1) then the parf(x, y), as well
as the parZ = ®(x, y), of the solutions of (1) will be integrals of seconder partial
differential equations- namely, the equation$, [#],xy = O, [, #l.xp = 0 — which have',

g eliminated by using (1) in the in the first case, pnd, in the second. Every solution
of (1) thus has the formz:= F(x, y) + an arb. constz = ®(x, y) + an arb. const.

§2.

On thetransformation of certain families of surfaces
that isbased upon thetwo equations (1).

7. Each of the two equatiozs= F(X, y), Z = ®(x, y) that defines a solution of (1) will
be, in general, represented by two linear, third-order palifi@rential equations. The
two equations of a solution represent two surface irspaeesx, y, 2), (X, y, Z), resp. A
one-to-one correspondence exists between them (M. A., )8/II, no. 22), and
furthermore, a one-to-one correspondence exists betlweegldmentsz( x, y, p, g, I, S,

), Z,x vy, p,d,r,s,t)of the two mutually-corresponding surfaces, namely, tbae
makes any system of values & X, y, p, g, r, S, t) correspond to the system of values of
Z,xy,p,.q,r,s,t)that results by elimination from (1), p].xy = 0, and any three of

the equationsﬂz 0, iz 0, d¢ = 0, %z 0. As a result, there now exists a
dx dy dx dy

transformation of the space, {/, 2 to the spacex(y, Z) that is a surface transformation
for certain pairs of linear, third-order partial diffatial equations, and under which,
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second-order contact remains preserved, in addition. . 1A.MBd. IX (), | proved that
there is no special second-order contact transformétiat is a surface transformation of
all of the space ofx(y, 2. In the same article, | also remarked that therend
transformation that takes all integral surfaces of ghdm-order partial differential
equation (), in turn, into surfaces, and verified the basis fiat in the case of a second-
order partial differential equatiofo€. cit, pp. 312, no. 10). However, we have now seen
that such transformations can come about for systéssveral differential equations. |
would now like to seek to explain this situation moreolighly.

We first consideone partial differential equation of orden — viz.,F = 0 -, and we
assume that there is a transformation that takesntbgral surfaces of it, in turn, to
surfaces — in particular, it takes integral surfaces tinat bontact of orden at a point to
surfaces with contact of orden — so we see the following: I€ means an arbitrary
integral surface, an@, any point on it, and one lefs, p. denote the values of first
differential quotients o, and p,, , those of the second, ..., whilg,, , (ki kz, ..., ki

=1 or 2) denote those of ordethat belong tdC at the poinp then one has determined a
system of values of,, , by means of then + 3 equations:

5pklk2.‘_km = pklkz.‘.Knl ax+ n&kz"'an dy, — = 0’ = 0’

if one denotes the values of th&' differential quotients of by Pk T O P that

belong to the pointx(+ dx, y + dy) of an integral surfac€' that is infinitely close tcC,
and has a contact of ordar— 1 with it at the stated point ¢ dx, y + dy). This system of
values of tn + 1)" differential quotients of belongs to an integral surfa@ of F = 0
that possesses a contact of ontlexith C at the poinp and withC' at the pointX + dx, y
+ dy). Now, the assumed transformation takes our threlacasC, C', C" to three
surfaced’, I'", I'", of which the latter has a contact of ordewith the first two infinitely-

() Seealso M. A., Bd. XI, pp. 213.

(") M. A, Bd. IX, pp. 306. (In regard to the transformasiaf first-order partial differential equations,
see 8§ 5 of the cited article, especially.) — For two-dsieral spaces, things take on a different form. For
example, we consider the system of equations (M. A., B, ¥p. 297):

dz dz dz dz
f (22 x%%) =0, 2, x32 92 -9
O(Z’ X X' xj ¢°(Z Xdx dxj

When we eliminate the quantitizsdz/ dx from these equations and the equatfengh)] x dz ax = 0, we will

get a second-order equation #r We will get a second second-order equation that isgaation forz
from [fo, @olz'xdz1ax = 0, by eliminatingZ, dZ / dx by means of, = 0, ¢o = 0. A one-to-one correspondence
exists between any two integral curves of the sameiegaat = ®(x), z= F(x), which collectively define

a solution offy = 0, ¢ = 0, and this is the case especially for the elements (1Z / dx), (z x, dz/ dx) of

the two second-order equations. Thus, here we havensfanmation that is not a transformation of
arbitrary curves in the plane, (X) into curves, but which takes all integral curves of dme of the
aforementioned second-order equations to integral curvseddther second-order equation in a single-
valued way. (Cf., M. A,, Bd. IX, pp. 300.) However, this slaeot actually characterize all contact
transformations, since we are only concerned wighothintegral curves of second-order equations, no two
of which will contact each other, in general.
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close surface$, I'" at two infinitely-close points. However, any two mfely-close
surfaced’, " must then have a contact of oraer— 1 with each other, such that the
assumed transformation converts any two infinitely-clasegral surface€, C' of F = 0
that have a contact of order— 1 into two similar surfacds, I''.

One can now construct two integral surfaceB ef0 that are infinitely close to each
other of second order and have contact of onder2 with each other, and then a third
integral surface that is infinitely close to the fita®o of second order and has contact of
orderm — 1 with them at two infinitely-close points. Thisdse to the fact that the
equationsop,, . . = Pk 29X+ B, dY, F =0 can be satisfied for all infinitely

small values ofop,, . Dby values ofp,, , . From the remarks that we just made,

these three surfaces will be converted into threeswiaces of that type. Therefore, our
transformation must convert any two integral surfatted are infinitely close to each
other of second order and possess contact of andel at some point into two similar
surfaces. When we pursue the same line of reasoning funtéewill ultimately come to
the theorem that any two integral surfacef ef0 that possess first-order contact and are
infinitely close of ordem — 1 will be converted into just such surfaces by mearbkeof
aforementioned transformation.

However, in M. A., Bd. IX, | proved that for the swés of an infinite system that
fills all of space at least four times, if any twotbhém that are infinitely close and have
first-order contact are converted into similar surfady a transformation then that
transformation will be an ordinary (i.e., Lie) cocttaransformation that is a surface
transformation for all of space)( Indeed, | have not especially emphasized the idga th
when the contacting surfaces are infinitely close raeor, one will arrive first-hand at
pairs of surfaces by my proof that are infinitely cleseorderr — 1 and contact each
other, and that one will then go from the latter ptrpairs of surfaces that are infinitely
close of order — 2 and contact each other, etc. However, this isegplinatory when

() 1 shall take this opportunity to fill a hole in theyament that was carried out on pp. 311 of M. A,,
Bd. IX. It was proved there that two families of suei(z, xi, ..., X, A1, ..., Aw2) = 0, 4(Z, X, ..., X,

A1 ..., Ani2) = O that are associated with each other in such alvedyahy two surfacdél) = 0,f(A +dA) =

0 that contact each other will correspond to two lilkewéontacting surface®A) = 0, ¢(A + dA) = 0O that
are complete solutions (whezgx, z, x are now arbitrary constants) of one and the sarsedider partial
differential equatior®®(Ay, Az, ..., Ao, 78, ..., TFw2) = 0. However, in order to conclude from this that the
surfaced = 0, ¢ = 0 must be related to each other in the same waytttbg are for an ordinary contact
transformation, it is perhaps easiest to employ theviatlg argument: Ararbitrary equationU(z, x, ...,

X,) = O corresponds to a certain integébln of ® = O that is generated by" characteristics of this
equation. The sanid,.; is an enveloping structure &f integralsg = 0. The values of the constaris (

X) that are valid for them are determined by an equaf{gn x ,, ..., X, ) = 0. The surface elements X,

p), (Z, X, p") of U =0,V =0 correspond to each other in a one-to-one wag, afiat we just proved, and
for that reasonany twoof the united surface elements X, p) must correspond to two likewise united
surface elementZ (X, p'). Therefore, etc.

[Previously, | applied another argument instead of ¢his that is completely similar to the one on pp.
300 of the cited article. Namely, if one considers ami{rary) surface inz x) to be the enveloping
structure of all the families of surfaces 0 that have stationary contact with it then it iseulear that the
corresponding surfaces= 0 will envelope a surface i (x') whose surface elements will correspond to
the surface elements of the surfacezjix)]
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one (M. A, Bd. IX, pp. 310) considers systems of surfabas are infinitely close to
each other, instead of systems that fill up all space.

For that reason, the assumed transformation ofp#ngal differential equation of
orderm, F = 0, can be nothing but an ordinary contact transfaiomahat encompasses
all surfaces in space and under which first-order contélatemain invariant.

8. However, if we consider a systemtafo partial differential equations of orden,
F =0, ® = 0, whose first derivatives reduce to only three mutuatlependent
equations, and we assume that a transformation exatsates albe® common integral
surfaces of the two equations to surfaces that haveaadoof orderm — in particular,
integral surfaces — to surfaces with contact of ondénen we will first find that whe @
means an integral surfaces, ), a point on it, andC' is an integral surface that is
infinitely close toC and has contact of order— 1 with it at the pointx(+ dx, y + dy),
one can always determine valuesmf . that fulfill the following equations:

5pklk2.4.|§n = pklkz.ukn]_ dX+ g(lkz.“knz dyl

d_F:O, d_F:O, d_q):o, dCD:

- 0’
dx dy dx dy

so often thatp,, , +Jp,, ., — which means the value of té" differential quotient

of z that is associated with the point € dx, y + dy) of the integral surfac€ - then
consolidates the last four of the equations that wewuste down into a single new
equation. Consequently, in this case, our transformatiost also convert any two
infinitely-close integral surfaceS, C' that have contact of order— 1 into new surfaces
of that sort.

If C, C' now refer to infinitely-close integral surfaces thassess contact of order
— 2 at the point + dx, y + dy) then if a third integral surface should exist thattaotsC
at the pointX, y) andC' at the pointX + dx, y + dy) to orderm— 1 then one must be able

to determine the values ofi + 1 quantitiesp,, . that satisfy then + 2 equations

0P,k .= Pugyk g OXF Py o dy, F = 0,® = 0. However, that is impossible for

general values ofp, dx, dy. Now, it can happen, as in the case of a common\farhi

first integrals (with an arbitrary constant) Bf= 0, ® = 0, that a complete family of
integral surfaces can be split intd groups of surfaces such that éethat belong to an
integral surfaceC’ that is included in the same group@svill satisfy the relation that
results from the equations that were written down aldmy the elimination ofpklkz_ukn.

Our transformation then takes any two integral surfa¢eme and the same group that
are infinitely close of second-order and have contacrdérm — 2 with each other to
two surfaces that likewise have contact of omer 2. However, such a distribution of
the surfaces of a complete family of integral surfadess not necessarily exist for all
systems as it does for the one that is definedFby 0, ® = 0. Therefore, our
transformation does not necessarily need to take thauhited elements(x, y, p1, ...,

Pt ) @0z, oy P TOP. ) OfCat & y) (C at k+dxy+dx), resp.)



Béacklund — On the theory of surface transformations. 15

() to likewise united elements of that kind)( Our transformation then needs even less
to be an ordinary (i.e., Lie) contact transformation.

The number of arbitrary constants of a complete mwludf the systenkF =0,® =0
must be reducible to a number that is less than the numhlfiest, second, ..., up tan(—
1)" differential quotients of, increased by 2. One then has the following theorem:

If, of the surfaces of two k-fold infinite systems, any twitases of one system that
are infinitely-close to each other and have contact of order r with eétter(k = 2 +the
number of first, second,., up to " differential quotients of)zare converted into two

() These elements are united because they can beumtedton one and the same surface, if not also
an integral surface.

(") We can explain the fact that, in general, there akist ao integral surfaces that have contact of
orderm— 1 with C' at the pointX + dx, y + dy) and withC at any pointX + d'x, y + d'y) by an example.
Let two linear, third-order partial differential equatiobe given whose first derivatives consolidate tcethre
mutually-independent equations, in which case, the giventieqaacannot necessarily be brought into the
form:

u+Bv+Cw+E=0,
v+Bw+ Cw+E =0,
(whereB, C, E, E' are functions of, X, ¥, p, q, I, S, t)

The condition for the following equations:
a =udx+vdy,
s =vdx+wdy,
a =w dx+ wdy,
u+Bv+Cw+E=0
v+Bw+Cw+E =0

to exist together is then expressed by the equation:

or—-drdxdy 0 O
0s-ds 0 dxdyO
ot—dt 0 0 dx dy|=0,
0 1BCO
0 0 1BC

if dr, ds dt mean any values aFf, &, & that are possible for the existence of those equatiblosvever,
after dropping the common fact@ d¥ — B dx dy+ dy?, the condition equation will assume the simple
form:

a —dr +B(&s—dg + C(&—dt) =0,

which is an equation that is independendfdy.

This proves that whe@, C' are two infinitely-close integral surfaces that cohtt the pointX+ dx y
+dy), and ( +dr, s+ ds t + dt) means the second differential quotienzat any pointi(+ &, s+ s, t +
a) of the surfac&’ that is associated with the same point, the relatiqquestion can be satisfied only for
or special surfac€'. It follows further from this that there is, in genenab integral surface that has
second-order contact with at the pointX + dx, y + dy) and withC at any infinitely-close point. Any two
infinitely-close integral surfaceS, C' that contact each other will thus not be converted aontacting
surfaces by a second-order contact transformation thaergmnthe integral surfaces of the third-order
partial differential equation.
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surfaces with just the same properties in the other system bytsmm#ormation then
that transformation will certainly be an ordinary (i.e., Lie) contaahsformation.

The proof of this theorem is completely analogous &pioof of the theorem that
was cited above in M. A., Bd. IX, pp. 311.
We especially direct our attention to the case oftiwrd-order equations:

[£.1f.01],,=0,  [#1f.4]],,=0

(M. A, Bd. XVII, pp. 290). As we remarked abowveg have a transformation for which
second-order contact is preserved, and which tddeestegral surfaces of the equations
to other surfaces. Now, this transformation issdeined completely as a solution of (1)
by the equatiox’ =x, y' =y, together with the equatioas= F(x, y, A, 1, v, p), Z = ®(X,

Y, A, 4, v, p). However, any two fourfold-infinite families surfaces are of a general
sort, and two contacting surfaces of the fandly F(x, y, A, & v, p) thus do not
correspond to two contacting surfaces of the ofdenily, as it would have to be if the
transformation were a contact transformation.

9. Moreover, this easily resolves the question of tiwbeit is possible that the two
third-order partial differential equations:

[f.06.01],,=0.  [lf.01],,=0

will admit a common first integral with any arbityaconstants. Should that be the case,
then, from the previous discussion, the transfoionahat we are dealing with between
these equations and the following two:

[t1f.2],, =0, [#lf.4]],, =0

would have to be such that any two infinitely-clposentacting, common integral surfaces
of one of the first integrals of the first two etjaas would have to be converted into two
contacting, common, integral surfaces of the lasi.t Otherwise, the latter equations
must also possess a common first integral withtramyi constants, corresponding to the
integrals of that kind that were previously assurfedthe first two equations, so the
transformation in question must be an ordinary acntransformation. Now, two of the
equations that are valid for this transformatioadréhusx =x, y' =y, and therefore there
must be a third equation for the transformationthaf form:Z = F(z, x, y). This shows
that the two equations (1) must now be able torbadht into the form:

f(Z,z x,y) =0, #Z,zxY,p,qp,q)=0.
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However, one will then havd,[@],xy = %(¢’(p’)+3—;¢’(q’), and the quantities s, t

will thus be missing from the equatioh §f].xy = 0. The equationff ’[f’¢]]z’xd: 0,

[¢5,[f,¢]]z,er = 0 cannot give rise to any third-order equatiten. Therefore, the two

third-order partial differential equations in quést cannot have a common first integral
with any arbitrary constants.

10. A single-valued transformation between the twacss X, Y, 2), (X, ¥, Z) will
then be determined by equations (1) only when teag to two pairs of third-order
partial differential equations irx(y, 2) [(X, Y, Z), resp.]. If one of the systems (1) that
were considered in no. 6 is present then the toamsition will take on a different form.
It cannot be a single-valued transformation, ieither takes any integral surface of a
certain second-order partial differential equatfoiz., [f, ¢],xy = 0) to a simply-infinite
family of integral surfaces of a system of two dharder partial differential equations
(viz., | f,[f,¢]]m =0,[a.[ f,¢5]]z,er = 0) that takes any of the latter surfaces tortae

surface of the form, or it takes any integral stefaf a certain second-order partial
differential equation (viz.,f[ @]xy = 0) tooo! corresponding integral surfaces of another
second-order partial differential equation (vit, d].x, = 0), and vice versa. Now, in the
event that the variablg is missing from equations (1), one will also hakat for any
element ¢ X, y, p, g, I, S t) that satisfies the equatiof, [§],xy = O there areo!
corresponding elementg (X, y, p', ), each of which has a certain system of values for
(r', s, t'); by contrast, each elememt, &, y, p', d, r', S, t') corresponds to a single system
of values forg, x, v, p, g, 1, S, t) (or some system of values of them). In the thatz, as
well asz, is missing from (1), every eleme X, y, p, , I, S, t) of a second-order partial
differential equationf| @],xy = 0 will correspond teo' elementsZ, x, v, p, d, r', s, t)
of another second-order partial differential equatf, ¢]..p = 0, and conversely, every
element?,x, vy, p,d,r,s,t) of the latter equation will correspond«d elementsZ x,
Y, p, Q. 1, S t) of the former.

The transformation that is now based in equatf@hss, in the vicinity in which it is a
surface transformation, a multi-valued (viz., int@ly-valued) surface transformation. A
generalization of this shall be treated in no. 15.

§3.
Derivation of some special systems of second-order partial differential equations.

11. In no. 23 of my treatise in M. A., Bd. XVII, tleurface transformation that was
defined by the three general equations:
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Fzxy.paz Xy pog=0
(3) Fz( ):O,
Fs( ):O,

and in no. 24 the special case was treated in whichahsférmation converted any strip
of a given fourfold-infinite family into a simply-infite family of surfaces. However, the
transformation can also be so arranged that it conaestsintegral strip of the pair of
equations:

f(zxy pg=G
(4) { e
¢( ) - C ’
whereC, C' denote arbitrary constants, into a family of surfacéke integral strips of
(4) are represented by the equations:

5) dz—p dx — q dy= O, %dx+% dy=0 P+ qy=0.

y dx dy

An arbitrary surface elemert, &, y, p, g) determines, first of all, certain values@f
C' in (4), and theno! directions @y : dx), each of which provides a sheaf of$ t), in
conjunction with the stated element, and on the bafs{§). Their equations have the
formr dx+s dy= g dx s dx+tdy= vdx whereu dx v dxitself depends upodx, dy.
This sheaf gives rise to a surface elemenrt|§ dz+qdy, x +dx, ...,p+xdx q+v dxy
that belongs to an integral strip of (4) that staxef(z, x,y, p, ). If one now introduces
the valuegy, v for dp/ dx, dq/ dx, which take the fornar + S dy/ dx relative tody : dx
into the condition equation for the involution of the tdust-order partial differential
equations that correspond to the strip [M. A., Bd. XVII, @7, eq. (19)]:

dF, dE dF
d_;[FZ’ Fal vy +T;[ F, FJ ikp+Tj([ FiF] =0,

and demands that they must be independent of the spalktiab ofdy : dxthenF,, F;, F3

will fulfill two equations. F; can be chosen arbitrarily, arféh, Fs will then be
determined by any two equations, so the transformationi3yomvert all integral strips
of the system (4), (5) into families of surfaces.

If we ask how the figure im’ that consists of any family of surfaces is constituted
then we will need to visualize only the following from.rigd, M. A., Bd. XVII: Any
element £, x, y, p, ) corresponds to a family @b’ strips inr' that might be briefly
denoted byS. Just aso” integral-strips of (4) start from any surface elemant, o
surfaces of our family of surfacesrinwill go through any strif8. o' sheaves (5) of(

s, t) belong to any surface elementrirthat lead to just as many surface elements of
integral strips that are united with the element. Gmwadingly, any stri8 is united
with o' other such strips. If we further remark that everyfaser element inr’
corresponds teo’ surface elements in among which, only one of them will satisfy the
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equationsd = Co, ¢ = C, — if Co, C, denote (any) well-defined values of the arbitrary

parameterE, C' in (4) — then we will see that® stripsS, corresponding to the different
values ofC, C', will go through an arbitrary elemerd,(X, ¥, p', ). The figure that is
composed of those sheaves ©f §, t') that belong tdS will thus be expressed by two
equations:

6) { F(Z,% ¥, B, 4,8 1= G

( )=C.

Here, C, C' are the same as they were in (4), because, as eadglremarkedgy®
surfaces that correspond to the integral of the equatienS,, ¢ = C;, and which are

therefore integral surfaces of our figure (6), will gootigh any stri that corresponds
to an element of = Cy, ¢ = C,, so any striS will become a common characteristic of
the two second-order equations in (6).

We arrive at equations (6) simply, as follows: By eh#ntiating (3), while regarding
Z X, Y, p, g as constants, and then eliminatah, dy, one will arrive at two equations in
zZxXY,pazX,y,p,d,r,s,t'. When we eliminatg, x, y, p, g from these two
equations, equations (3) and (4), we will obtain the equa®)ns question.From what
we just discussed, these two second-order partial differential equatibhie coupled to
each other in such a way that a strip that starts at every elefdert vy, p’, d,r', s, t')
will, at the same time, define a characteristic of an equatiends and an equatiop =
C,. These strips will be associated witff common integral surfaces of #Cp, ® =

C,. Of the first derivatives of F an@l with respect to'xy’, one of them will therefore be

an algebraic consequence of the other one. Furthermore, any charactetlsti are
precisely the strips'Sbove, will be first-contact contact strips, such that there will be
»® common integral surfaces of #C, ® = C' - in which G C' refer to completely
arbitrary constants — that possess first-order contact along a strip T™e common
integral surfaces df = Co, ® = C, will be associated with families ef' surfaces such

that each family will correspond to an integral strig(a x, y, p, @) =Co, #(z X, ¥, p, Q)
= C,.

12. The three equations:
F(ZX %% B B Z%%%Bp PFO

(7) Fy( )=0,
Fs( ):O

of a manifold transformation of a four-dimensional spaae loe related to each other in
such a way that they define a transformation that ceswvany integral strip (viz.,
integralil;) of the system:
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F(z %, % % R B B)= G

9( )=C,
8
® w( )=C",
X( )=C"

into a doubly-infinite integral family that is commontt@o involutory, first-order partial
differential equations. One then has to satisfy only partial differential equations for
Fi, F2, F3. One arrives at these equations as follows: The tondor the two first-
order partial differential equations that define a strifpeanvolutory has a similar form
to equation (19) in M. A., Bd. XVII, pp. 307. One now menaplacesixs, dpi, dp, dps
with their values that one derives from (1) in terrhgbq, dx% [settingdz=p; dx; + p, dX%

+ ps dxg], and then sets the individual coefficientsdef, dx equal to zero. One thus has
the two desired equations fdét;, F,, Fs . The figure inr' — i.e., in the space of
(X, %, %, 2) — that consists of those families of surfaces that ttwrsespond to the

system (8) can be characterized as follows: Any serddementZ x, p) corresponds to a
family of «? M, (') whose envelopes generate all of thelsdrom certain (characteristic)
Mi . (See M. A, Bd. XI, pp. 430.) Since an arbitrary surfatsment £, X, p')
corresponds to a certain surface elemenx,(p), and one findso! directions @x, dx,
dxs) for integral strips of the same equatidrs Co, etc., in that element, aryl, that
corresponds to an elemeunt X, p) and contains the elemer, (X, p') must lie on some
Ms, along witheo! infinitely-closeM, . Now, any elementz( X, p') that goes through
thoseM; that correspond to the elemenrt X, p) will be associated with a family o6
systems of values op, , and since, as we just remarked, 8ywill lie on anMs, along
! infinitely-close M, , all of thesew” values of |, but only these, must be
associated with the figure i that corresponds to the systémCo, 9= C;, ¢ =C;, x¥
= C, . For that reason, this figure must be defined algebiynibg four second-order
partial differential equations. We are given those eslof p, that are associated with

one of theM, that corresponds to the elementx p) as one of its surface elements by
the following equations:

OF ,(0F , ,OF |ox  ,OF  OF 0%,
ox, (afplazja)fpz 2 ag('d” 'd“agj

LR 0% 0%
ap,z ( p22 leaXyzj 6[‘.{3( d32 ‘5316){2} ’

{5 e

with o

() TheseM, manifolds are defined by amy united surface elementz,(x, p').
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, OF X, X,
apz [ p23 p21 6)(;} ad?'( p’33 Fj31 )gj

!

When we ellmlnat(-:‘ai 6X1
0%,
values of p, that correspond to the elementX, p) by way ofM, and include one and
the same element (X, p') that will be associated with the latter elemens aAresult, by
eliminatingz, x, p from these four equations mxi, Xz, X3, P1, P2, P3, Z, X » -+, Prys Pios
, P;; one simply determines those equations in (7) and (8)défame the figure in’

that corresponds to the system (8). These equations befoumsecond-order partial
differential equations foz:

, we will obtain four equations that are valid for thos

F(Z, %o By ) =C,

®( )=C,
W )=C",
=( )=C",

in which one understands, C', C", C'" to means the arbitrary constants that were
previously introduced into (8).

m

Any four equations = Cyp, ® = C;, W = C;, = = C; possesso” common
characteristics M and unboundedly many common intermediate integrals, each of which
is expressed by two involutory, first-order partial differentiajuations These
intermediate integrals correspond to the integral stri@sy four equations (8):= Co, ¢
=C,,¢y=C,,x=C/.

13. Finally, we consider a transformation that isetietined by four equations:

F(ZX %% R RzX%% PR pPro0

F,( ) =0,
©) Fs( )=0,
F4( )_O

and takes any integrak; of the system of equations:

f(z %, % % R, B B)=GC
(10) #( y=C,
W( )y=C"

to an involutory pair of first-order partial differentiajuations irr’. The condition for
this is expressed by three equation&inF,, F3, F4 . One arrives at these equations as
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follows: One poses the condition for the two firstker partial differential equations that
correspond to all, to be involutory. This condition has a similar fotanequation (26)

in M. A., Bd. XVII, pp. 312. One replaces tlcggi, etc., that enter into the symbols (12)
X

2

with their values in terms mgi Z_Xi from (10), and then expresses the idea that the
X, 0%

equation in question should be independentgéi, g—xi The figure inr' that
X 0%

corresponds to the system (10) will be comprised of tise¢hat correspond to the

integralM, of (10) by way of (9). An arbitrary surface elemedt &, p') will be

associated witko® [bo® systems of values o}, by way of thisMs . Our figure will then
encompass onlg® of thew® systems of values of (X, p, p; ) of the spac& that are
associated with an arbitrarg (X, p'). One finds them to be determined more precisely

by four second-order partial differential equatiohs= 0,® =C, W = C', = = C" that
possess ang” involutory pairs of equations that correspondhe integral-M of (10)
as common intermediate integrals.

§4.

On thetransformation that isbased upon four equationsinz x,y,p, 0, Z, p', .-

14. A transformation that is defined by four equations:

F(zxypgz Xy pg=0
Fy( )
Fs( )
Fu( )

0
(D) 0,
0

is, In general, a surface transformation only for daserdomain that is determined by
two third-order partial differential equation. | proved thrspp. 313 of M. A., Bd. XVII.
In some situations, this domain can be more restrickémlvever, before | go into that, |
would like to reproduce briefly my earlier proof of the trezn that | mentioned in a
somewhat modified form.

We first think of the transformation (11) as having bleerught into the form:

X=f(Z,zxypaq,
y' = f,( ),
P = ( ),
q =o,( )

(12)
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by solving forx, y', p', , and then representing any pair of mutually-corresponding
surfacesz = F(X, y), Z = ®(X, y) in terms ofz, Z, x, y — perhaps ag = F(x, y), Z =
®(x,y). | will denote the differential quotien®'(x), ®'(y) by 77 k<. One then has:

dx dx

(13) —p—+d y K=p—+d— dy
dx dy dy’

where

X _df o, of, Of Of, of, _di df
dx dx odx 9z ap aq 9z  dx o7’
dy _df, o, ot of, of, of, _df, of,
dx dx ox oz 0Jdp 0q 02 dx 62
%:%:%+ af1+s%+t%+/(il :ﬂ+/(%
dy dy ody 9z odp 0q 0z dy 0%’
dy _df, ot of, o, o, of, _df o,

dy dy dy 9z adp a4q 9z dy 97

Equations (13) will then go to the following ones:

rer1-0.58-0,95] -0 500,90,
a4

o={1-0.3-0.52)-0.50 9.5 =0

and the determination of the surface-pai= F(X, y), Z = ®(X, y) will be equivalent to
the determination of the solutiors= F(x, y), Z = ®(x, y) of the system of equatiofis
0,¢=0.

For the presentation of these solutions, we proceedlgxscwe did in no. 5 of the
treatise in M. A., Bd. XVII, pp. 285, in regard to the preagan of solutions to a system
of two equations iz, X, y, p, 0, Z, p', . We must satisfy the equatioi §],xy = O with
the solutions in question. This equation will be freehefthird differential quotients,

v, w, v of z, due to the special form of the present equations (14)ahon tor, s, t. For
that reason, the two equations:

[f’[f’¢]]z’xn:0’ [¢’[f’¢]]z'xn:0

will only be third-order partial differential equans relative toz, and an elimination of

Z, 1t x from equations (14), along with the equatici(g)]-,~ = O, and the equations that
we just wrote down, will then lead to two third-erdpartial differential equations for the
determination of the equatioas= F(x, y). These third-order equations behave in such a
way that their first derivatives with respectxpy will reduce to only three mutually-
independent equations. [This comes about in timesaay as it did for the similar
theorem that relates to equations (7) on pp. 29M.0A., Bd. XVII.] However, any
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third-order equation will admib® common integral surfaces for that very reason. All o
the integrals belong to our system of equations (14) as onhep&(X, y) of the solutions
z=F(x, y), Z = d(x y). By eliminatingz, 7z x from the three equatioris= 0, ¢ = 0O,
[f(#)]zy= = 0, any of the integrats= F(x, y) will yield the equatiorz = ®(x, y), which,
together withz = F(x, y), will define a solution of (14). All pairs of equatiosisch az =
F(x, y), Z = (X, y') will represent two surfaces that will be converted g#ch other by
the transformation (12). Any surfaces will correspondach other in a one-to-one way.
There will then exist a one-to-one relationship betweereteamentsz x,y, p, g, 1, S, 1),
Z,x,y,p,q,r, s, t)themselves. For that reason, not only must thacest = F(X,

y) satisfy two third-order partial differential equatipress we showed, but also the
corresponding surfaces= ®(x, y') must belong to two partial differential equations that
are likewise of third order. The aforementioned refabetween the elements X, v, p,
arst,Zx,y,p,q,r,s,t)is to be thought of as being given by a second-order
contact transformation that takes any two pairs oflitbnder equations to each other.
However, it is not a first-order contact transformatiso it is not an ordinary (i.e., Lie)
contact transformation (from no. 8).

However, it would be a first-order contact transfatiorain the event that one of the
pairs of third-order equations admitted a first integn#th\&rbitrary constants (cf., no. 8),
but in such a case the transformation (12) — which wouwd e a contact
transformation, precisely — would take any surface to amface, and nothing more
could be said of the system of partial differential empmat that defined the surface,
which could again be transformed into surfaces (cf.9ho.

15. If Z were missing from equations (12) th&nwould also be missing from
equations (14) and the equatidnd],,~.= 0. The determination of the equatiasF(X,
y) would then be accomplished by means of a second-ordéal ghiferential equation
that one would obtain by eliminatirrg y from the aforementioned equations (14) and the
equation f, @l = 0. Any of the integral surfaces of this second-ordetigbar
differential equation would correspond to an involutory pair first-order partial
differential equations im" by way of (12), or to their integral surfacés= ®(x, y', C).
Moreover, any elementz(x, y, p, @, r, S, t) of any second-order partial differential
equation would correspond to a family ®f elements %, X, y, p', ¢, r', S, t). By
contrast, one of the latter elements would not neambtrespond teo! of the former. In
general, a surfaceé = ®(x, y') will correspond to only one surfaze= F(x, y). The
surfacesz = ®(x, y') would generally satisfy a system of two third-order péarti
differential equations. However, if not ordywere missing from equations (12), but also
z, then one would not only have a second-order partiaéréiftial equation for the
surfacexz = F(X, y), but also a second-order partial differential equabonhe surfaceg
=®d(X,y). Any elementf x,y,p,q, 1, ¢t [(Z,X,Y,p,d,r,s,t) resp.] of one of
these second-order equations would correspond to an emtitg ¢ «* elements of that
kind for the other equation. Any integral surface F(x, y) would correspond teo*
integral surfaces, and each of the latter surfaces: td the former.

16. If Z is missing from our transformation equation then orleoltain the surfaces
in r' that correspond to an integral surface F(x, 2 of the relevant second-order
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equation by mere quadratures. Namely, one introduces ltes¥gx, y), F'(x), F"(y) for

z, p, g, resp., and then obtains, after eliminatiqy: p' = ¢a(X, Y), d = ¢»(X, y), and
from these equations, one obtains the equation of thespmnding family of surfaces by
performing the quadrature:

z =] (n(x, y) dx + (X, y) dy) .

17. However, in general, if the transformation (11) @t any surface = f(x, y) of
the domairr into o surfaces in the domaitithen the latter surfaces wiilbt be obtained
by mere quadratures. Namely, on the one hand, if orstitsibsz =f(x, y), p=1'(X), q
=f'(y) in (11) and eliminateg, y then one will have two first-order partial differexiti
equations:

(15) Az x,y,p.q) =0, B(z,x,y,p.q)=0

that correspond to the surfaze f(x, y) and will be involutory from the assumptions that
were made. Their common integral surfaces can be dehgt€, C', C", ..., for the
moment. Every elemeng,(x, y, p, q) of the surfacez = f(x, y) will correspond toxo®
elementsZ, X, Y, p', ), one of which lies o€, another, oi', etc. The latter elements
can now be regarded as mutually-corresponding elemeie curface, C', C", etc.
Two infinitely-close elements of the surfaze= f(x, y) will correspond too® pairs of
united elementsz(, X, y, p', '), one of which lies oi€, another, orC', etc. For that
reason, any two united elements of (15) must correspord pairs of united elements of
the same equations (15). An infinitesimal contact transdtion of the system of
equations (15) into itself, which can be regarded as a comtasformation, precisely,
must then come about as follows: When one differesti'equations (11) and then
considers the quantitiesx, y, p, q to be constants, one will obtad®', dy', &, &', & as
proportional to certain well-defined functionsfx, y, p', d,z X ¥, P, 0 Z X Y, p, 0,

p', g will be eliminated by means of the equatiansf(x,y), p=f' (X),g=f"' (y). One
thus gets the transformation in question as being exprégsequations of the form:

X =¢yYynA, o =eyB, Z=e¢C, P =YD, A =¢yE,

whereA', B, ..., E' mean completely-determined functionsxafy’, Z that are derived
from (11) andz = f(x, y), ¢ is a stilll-unknown function of the same quantitiesd &

means an infinitely small constant. However, one tbadeterminey in the following

way. The transformation in question shall be determinedAM.Bd. XV, pp. 51) by
means of a functiof:

(16) =Yy Ap+Bq-C),

and one must have:

0> 90 0> 90
= —+p — , - —+q—|.
® (ax' pazj 4 (ay azj

The two equations:
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0P 0P 0P 0P
—+p— =-yD, —+9— =-yEFE,
ox P 0Z v oy’ g 0z v

in which one thinks op’, g as being replaced with their values from (15) or (11), bl
two first-order partial differential equations fgr If @wwere used instead of lag then
these equations would assume the form:

ow ow ow

(17)

whereu, v, w, U, V', W would be completely-determined functionsxgfy’, Z. These two
equations must have a solutiamin common, so, from the next-to-last discussiam, a
infinitesimal point transformation of the equatiqii®) that is characterized by (16) must
exist, and such a transformation will always gwa the formw = @(X, y, Z) + an arb.
funct. of ¢, if @ = C means the equation of the family of integral stetaof (15).

For that reason, if the first of the equations) (& riefly denoted byA(c) = 1 and the
second one bB(w@) = 1, then of the three equations:

A@=1 B(@=1 - AB@) -BA@) =0,

the last one will always be fulfilled along withetlfirst two.
One then obtains a value @f and then a value fap, by means of the formular =
log ¢, first, by integrating a differential equation {lwone arbitrary parameter):

a(x,y) dx+ Ax,y) dy=0.

The determination of an infinitesimal contact sfammation that takes the integral
family of our involutory, first-order partial diffential equations to itself is therefore, in
general, fraught with the same difficulties as tegermination of the integral family
itself. Our question is also in no way essentidifferent from that of the determination
of the solutions of any two involutory, first-ordeartial differential equation, since one
can always write down two equations:

Fizxy,Z,X,y,p,q)=0, Folz x, y,Z,X,¥,p,q)=0

arbitrarily that will make up a system (11), pretys together with the given partial
differential equations.

18. From M. A., Bd. XVII, pp. 312, equation (26), thevolutivity condition for the
two first-order partial differential equations thatrrespond to a surfaae= f(x, y) by
means of (11), reads as follows:
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(3, 4) Fu, Folzxp + (4, 2) F1, Falzxp + (2, 3) F1, Falzxp
+ (1, 2) Fs Falzxp + (1, 3) Fa, Folzxp + (1, 4) F2, Fslzxp =0,

where Fm, Fnlzxp IS the ordinary involution sign, andn( n) is written, more briefly,
instead of:

dF, dF, dF, dF,

dx dy dy dx

(mn=1,2, 3, 4). Ifthe transformation (11) is of fbem:

X=1f(zxypo,

y' = f,( ),
18
(18) p = f( ),
q = f,( )

then any condition equation will assume the simplenfo
(1, 3) + (2, 4) = 0.
It becomes a second-order partial differential eqnatio
(19) Ar+Bs+Ct+D(it —-s) +E=0,

whereA, B, ..., E are functions ok, y, z p, g. This is the most general second-order
equation of that formmsowhenA, B, ..., E are given, and might also be functionsxoy,

Z p, g, one will have only four equations for the determinatbfour functionsf;, fo, fs,

f4 whose known terms ak / E, B/ E, C/ E, D/ E. The surface system in that
corresponds to the integral surfaces of that second-pedtgal differential equation will
be given by two third-order partial differential equationsoge first derivatives with
respect ta<, y' are algebraic consequences of each otlAera result, from numbédr6,
the integral system of this pair of equations Wil obtained by solving a second-order
partial differential equatiorf19) and carrying out the quadrature.

19. If z is missing from the functions f in equati¢h8) then z will also be missing
from the functions AB, ..., E in equation(19), and instead of the aforementioned pair of
third-order equations, one will have, as was remarked inlhpa partial differential
equation of the same form as (19). In particular, lithe identical to equation (19) when
the system of equations (18) remains unchanged under a peomuatiathe primed and
unprimed symbols. Any equation (19) will then be distingushg the fact that any
integral surface of it will be transformed int®' other integral surfaces of it.
Consequently, the integral surfaces of the equationaniéinge themselves into pairs of
o' surfaces, where the two families of one pair aratedlto each other in such a way
that they go to each other under the given transfoomatinsofar as it defines a surface
transformation, the transformation will be a sirgdued transformation between
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systems of valuex(y, p, @), X, Y, p', 0), just as it is betweerx,(y, p, g, r, S, t), (X, Y,
p,q,r,s,t), etc.

20. | must also mention another case in which the sesfdalfill a second-order
partial differential equation, and for which a transfotiora (11) becomes a surface
transformation. It relates to the theory of surfaoéconstant curvature, as was recently
developed by Bianchi and Lie)( Bianchi's and Lie’s theories owe their originsth®
theorem that surface of curvature centers (viz., theaesurface) of any surface whose
principal radii of curvature at a point possess a constidference that is independent of
the position of the point will be a surface of constamvature, or, more precisely, will
consist of two surfaces of the same constant curvatNoav, the connection between a
surfacez = f(x, y), p =f'(X), g =f '(y) and the most general surfate= ¢(xX, y), p' = @
"(X), g = ¢'(y) is expressed by the equations:

(X=X p+(Yy-yYa(z- =0,
(20) (X=X p+(Yy-yYq-(z- =0,
1+ pp +qd =0,

which, together with the given ones, can define a cestrdace (any surface). Those
equations then say only that the points of the two swsfasd(x, y), Z = ¢(X, y') can be
so arranged that they will be contact points of a comtaagent to the two surfaces, and
that the tangent planes of the two surfaces at any polinbe perpendicular to each
other. Any two associated points will be the two centérprincipal curvature of a point
of a surface that has the two surfazed(x, y), Z = ¢(X, y') for its central surface.
Equations (20) represent a surface transformatipn If we add the equation:

(21) @—x')2+<y—y)2+<z—f)2:%

to them then (20), (21) will express the conditiontfer surface paz =f(x, y), Z = ¢(X,
y') to define the central surface of a surface for whiehdifference of the principal radii
of curvature at a point will be constant and equal toal[p—-¢J = 1 /a]. The four
equations (20), (21) will be of the form (11). In order twognize for which surfaces m
= (X, Y, 2) they will define a surface transformation, we musit fpresent the form of the
involution equation that was written down at the beginmwihgo. 18 that is valid for the
present case. One has to set:

[F2, Folzxp = 0, Fi Folzxy = 1 +p° + [F1, Falzxp = 0,

() Lie: “Zur Theorie der Flachen constanter Krimmungrttv for Mathematik og Naturvidenskab,
Bdd. 4, 5 (Hefte 3). Christiania, 1879, 1880. | mostly know onfi\B@nchi’'s investigations from the
work of Lie. The following transformation (20), (21) iged by Lie as the analytical expression of
Bianchi's transformation of the surfaces of constamvature.

(") The equations that express the connection betweenfaxesiand its central surface determine a
surface transformation of the kind that | discussed ii\M.Bd. XI, , pp. 199, § 3.
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2
[Fa, Falzxp = 0, [F2, Fa]zxp = - g, [F3, Falzxp = 0,
2,0=204*+PA+p 2+q? u
p-p
(1,3) =— (- (L +p *+q y%{%,

and the condition equation in question will then asstimadollowing form:
(22) n-s+a’(l+p°+q?)?=0.

It is independent of, X, ¥, p', d'. All of its integral surfaces will therefore bera@rted
into families ofeo! surfaces by the transformations (20), (21), and sinceysters of
transformation equations is symmetric in the primed and imepr symbols, the
transformed surfaces must fulfill the same equation §22) However, they represent

1
the most general surfaces of constant curvatFls,l%F?: - &% For that reason, the surfaces

of this constant curvature go to each other under theftnanation (20), (21), which was
to be concluded from the theorem that was cited abulset, exactly.

Therefore, it follows(no. 17) that one has to determine the' surfaces that
correspond to a given surface of constant curvatua@in such a way that each of them
defines a central surface of a surfgge-p’= 1 /a with the given surface by integrating
an ordinary differential equation in two variablésnd one arbitrary parameter)in the
same way, one obtains new surfaces of constant cueyatte., from each of these'
surfaces,such that one must be able to derive infinitely ynaorfaces of constant
curvature besides the originab® surfaces from a surface of constant curvature by
repeated integration of differential equationsivotvariables ()

A strip inr will be converted by any transformation (11) i strips inr' that are
common integrals of the those three first-order padiféerential equations that arise by
eliminatingx, y, z, p, g from (11) and the equations of the given strip. A stfia surface
of constant curvature & will thus be taken teo® strips by means of the transformation
(20), (21) that lie on one of the' surfaces that correspond to the given surface. As a
result, anycharacteristicof (22) will be converted inteo' other characteristicsof the
same equation. These others are obtained from theofiesby mere elimination in the
event that theseo' surfaces are known ones that correspond to one ofotheer
characteristics that lie on a surface of constantature.

Now, the characteristics of (22) are the principalgéant curves to the integral
surfaces of the equation. Consequenflgom a surface of constant curvature whose
principal tangent curves are known, one derivesther surfaces of the same constant
curvature with their principal tangent curves by thforementioned operations.

() According to Lie (see the papers cited above), one abtdirsurfaces of constant curvature from a
given surface in this way. If the geodetic curves ofgilien surface are known then, according to Bianchi
and Lie, one will obtain the new surfaces by mere quacs
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21. I would not like to leave a consequence of the foregantouched that concerns
the determination of the geodetic curves of a surface op$taat curvature. As we
showed above, one can deriwé other surfaces of the same constant curvature from a
surface of constant curvature. | shall choose oneevhtarbitrarily. Along with the first
surface, it defines the central surface of a familypafallel surfaces. It will be
determined by two involutory, first-order partial differahtequations. However, an
infinitesimal contact transformation is known foetimtegrals of these equations, namely,
the parallel transformation. For that reason, arggiral surface will be obtained by mere
quadratures. Corresponding to té surfaces that will be derived from the original
surface of constant curvature by the transformation (21), one obtainso? surfaces
(o —p’=1/4a) in this way that possess the first surface as a fratls central surface.
They define a complete solution of the first-order phdilferential equation that defines
the most general surface for which any surface of constavature will define a part of
the central surface. Now, however, the followingotieen is true: If the normals to a
doubly-infinite family of surfaces define a line complerdaf f(x, y, z, A) = O represents
o' of these surfaces, and they are not parallel surfalces, the characteristics of the
first-order partial differential equation that has #esumed doubly-infinite family of
surface for its integrals that lie on these surfadgdde determined by the equations:

f(xy,z 4) =0, F01” + I (001° + [F'(21° = CIf ' (X%

whereC is an arbitrary constant)(

() | have borrowed this theorem from my treatise onesphcomplexes in the Jahresschrift der
Universitat Lund, v. IX. However, since it was omgiwen provisionally without proof there, here | will
write down the proof. Lef(x, y, z A, 4) = O be the equation of a family ef surfaces whose normals
belong to a given line complex, and fetu be chosen such that for constarany equation will represent a
family of parallel surfaces. The parallel surfaces #na infinitely close to a surfa¢g, v, z, A, 1) = 0 will
be obtained by eliminating y, zfromf(x, y, z, A, 1) = 0 and using the equations:

f'(x
X =X+¢& () ,

JIFOIZ+Lf(91 %+ (3 °
Joyte f'(y)
JIEOOIZ +L (9174 (3 2

f'(2)

JEOOIZ +L (9174 (3 2

Z=z+¢

or
X=X -& . f'(x)2 =
J[f(X)] +H (Y] H 2
fr
y=y-¢ 2 (y)z 2
J[f(X)] +H f(Y]1 " H 4
f'(2)

JEOOZ+ f(91°H (12

2=7Z-¢
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Moreover, we further know that the characteristms the first-order partial
differential equation whose integral surfaces havevargsurface as part of their central
surfaces, such that the normals to any surfaces d@lhaahe given surfaces and will then
define a special line complex, will be curvature curveshe integral surfaces. They will
thus be obtained in the aforementioned way from thegmal surfaces of the first-order
partial differential equations by differentiation aranéation.

As a result, one derives from the initially-obtairfathily of «® surfaceso - =1/

a, the one family of curvature curves on them, by purédglaaic operations. One
further obtains the-? geodetic curves of the initially-chosen surface of mtsturvature
from it, and by likewise algebraic operationsThe geodetic curves of a surface of
constant negative curvature can thus be found by integrating a differential @guati

F (x, y%(j =an arb. constant (and subsequent quadratures).
[l would like to thank Lie for a casual remark the geodetic curves of the surfaces

of constant curvature that | have been able tolowkrdue to a misconception that
permeates this manuscript.]

One therefore expresses any parallel surface by thé@gua

foe[H 1+ F(9° 4 F( )2 =0,

if the prime on the symbols y, zis omitted. On the other hand, the equation of thialigh surface is of
the form:

f+duf'(y) =0.
Therefore:

At () =~ (917 +[ (7 1032

The characteristics of the first-order partial diffefal equation that have our doubly-infinite family of
surfaces for a complete system of integrals will berdeted by the equation:

f'(h) +ef'(W) = 0.

C is an arbitrary constant, here. Nowf i) were replaced with its value above then this equation would
assume the form:

VOO L O FU 7 =C ),

with which the theorem in question is proved.



