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 Any transformation that converts any surface into a certain surface, and conversely, 
the latter surface, in turn, into the former, is an ordinary (Lie) contact transformation.  I 
proved that in my treatise in volume IX of these Annals.  In volumes XI and XIII of these 
Annals, I discussed a certain class of transformations that lead from a surface to infinitely 
many families of surfaces, namely, the class that consists of those surface transformations 
that are based in three equations of the form: 
 
 X = F(z, x, y, p, q, … ), 
 Y = F1(   ), 
 Z = F2(   ). 
 
 Any transformation that belongs to this class is characterized by the fact that it 
converts any surface in the domain (x, y, z) into just one surface in (X, Y, Z), while a 
surface in the latter domain will be converted into infinitely many surfaces in the former.  
Later on, in volume XVII of these Annals, I discussed those transformations that convert 
any surface in the domains (x, y, z), (X, Y, Z) into first-order partial differential equations.  
They are given by three equations: 
 

(α) 
1

2

3

( , , , , , , , , , ) 0,

( ) 0,

( ) 0.

F z x y p q Z X Y P Q

F

F

=
 =
 =

 

 
 Among them, there are some that include the penultimate transformations, which I 
treated quite laboriously in volume XI of these Annals (†) (M. A., Bd. XVII, pp. 308).  
Transformations that are determined by more than three equations in z, x, y, p, q, Z, X, Y, 
P, Q will not be, in general, surface transformations for the entire domains (x, y, z), (X, Y, 
Z).  If the number of equations that the transformation determines is four then there will 
exist broadly inclusive families of surfaces for which the transformation becomes a 

                                                
 (†) Translator: In all of what follows, we will use the abbreviation “M. A.” for Mathematische Annalen, 
instead of “d. A.” (diese Annalen), which the author used. 
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surface transformation (M. A., Bd. XVII, pp. 313).  A special transformation of this type 
is expressed by the four equations: 
 

X = x, Y = y, f(Z, z, x, y, p, q, P, Q) = 0, ϕ(Z, z, x, y, p, q, P, Q) = 0. 
 

 The problem of determining surfaces that are transformed into other surfaces by this 
transformation is equivalent to the problem of determining the solutions: 
 
 z  = F(x, y), p  = F′(x), q  = F″(y), 
 Z = Φ(x, y), P = Φ′(x), Q = Φ″(y) 
 
of f = 0, ϕ = 0.  The discussions in nos. 5 and 6 of my treatise in volume XVII of these 
Annals related to the resolution of this problem.  Here, I will again go into the 
characterization of these families of surfaces, and thus also consider some special cases 
of the equations f = 0, ϕ = 0. 
 In the realm in which a transformation that is determined by four equations between 
z, x, y, p, q¸ Z, X, Y, P, Q becomes a surface transformation, there is, in general, a single-
valued surface transformation.  However, there are cases in which it becomes infinitely-
valued, either in such a way that it converts any surface in one domain (x, y, z), (X, Y, Z) 
of the realm in question into a certain surface in the other one, while converting any 
surface of the latter domain into infinitely many in the former, or in such a way that it 
transforms any surface of the domain into infinitely many surfaces.  Lie commented upon 
a transformation with the latter character in a treatise on surfaces of constant curvature (in 
Archiv für Mathematik und Naturwissenschaft, Bd. 5, Christiania, 1880).  He was led to 
it by his study of a method that had recently been given by Bianchi for generating new 
surfaces of constant curvature from a given one.  In connection with my general 
theorems, I have sought to briefly summarize some of this theory of Bianchi and Lie at 
the end of the present treatise. 
 The third paragraph is concerned with some special surface transformations of the 
category (α). 
 
 

§ 1. 
 

Some remarks on the figure that is defined analytically by two equations 
in z, z′, x, y, and the first derivatives of z, z′ with respect to x, y. 

 
 1.  Two surface elements that have z, x, y, p, q (z′, x, y, p′, q′, resp.) for their 
parameters shall, in the event that the parameter values (z′, z, x, y, p, q, p′, q′) satisfy the 
two equations: 

(1)     
( , , , , , , , ) 0,

( ) 0,

f z z x y p q p q

ϕ
′ ′ ′ =

 =
 

 
be called two corresponding elements of this system of equations.  Infinitely many 
surface elements can be added to two arbitrarily-chosen corresponding elements of the 
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system that are infinitely close to them (are united with them, resp.), and define mutually 
corresponding elements of the system (1), moreover.  Namely, if (z, x, y, p, q), (z′, x, y, p′, 
q′) are the parameters of the first two elements, and dz, dz′, dp, dq, dp′, dq′ are set equal 
to any values that satisfy the equations: 
 
(a)   dz = p dx+ q dy, dz′ = p′ dx + q′ dy, df = 0,  dϕ = 0, 
 
then (z + dz, x + dx, …, q + dq) become parameters of two elements of the stated kind, 
precisely.  Each such totality of two corresponding pairs of united elements belongs to 
one − and in general, only one – system of values for (r, s, t, r′, s′, t′) that simultaneously 
associates a solution z = F(x, y), z′ = Φ(x, y) of (1) with a system of values for the second 
derivatives of F and Φ.  This system of values is the one that satisfies the following six 
equations: 

(b)   
, , [ , ] 0,

, , [ , ] 0,
zxy

z xy

dp r dx s dy dp r dx s dy f

dq s dx t dy dq s dx t dy f

ϕ
ϕ ′ ′

′ ′ ′= + = + =
 ′ ′ ′= + = + =

 

 
of which the last two provide the conditions for any values of r, s, t, r′, s′, t′ to produce a 
solution of (1), at all.  However, one must conclude from this that one can always lay one 
– and in general, only one – surface pair z = F(x, y), z′ = Φ(x, y) that represents a 
solution of (1) through any two strips whose surface elements define mutually 
corresponding elements of the system (1), 
 The agreement between this theorem and the theorem on pp. 291 of my treatise in 
vol. XVII of these Annals is obvious.  There, it said that a simply-infinite family of 
integrals: z′ = Φ(x, y) goes through any strip of elements (z′, x, y, p′, q′).  Now, as one 
sees from (1) and equations (a), there are simply-infinitely many strips of elements (z, x, 
y, p, q) that correspond to the elements (z′, x, y, p′, q′) of a given strip.  From what we just 
said, any one of these ∞1 strips, when combined with the given one, must determine a 
surface pair z = F(x, y), z′ = Φ(x, y) that defines a solution of (1).  Therefore, in total, a 
simply-infinite family of integral surfaces z′ = Φ(x, y) that go through the given strips of 
elements (z′, x, y, p′, q′) gets added to the given strips, as was previously remarked by 
myself in the cited place. 
 We can also formulate the developments here thus: A completely-determined pair of 
surfaces that define a solution of (1) will go through any pair of curves that are 
represented by three equations z = f(x), z′ = ϕ(x), y = ψ(x).  Namely, equations (2), 
together with the first two of equations (a), determine the parameters p, q, p′, q′ of 
mutually corresponding surface elements that, from the foregoing, define strips that 
determine the surfaces of the pair in question unambiguously, along with the two curves. 
 If we regard z, z′, x, y as the coordinates of the points in a (four-dimensional) space R4 
(M. A., Bd. XVII, pp. 289) then we can also say: A completely-determined integral 0

2M  

of (1) goes through any 0
1M . 

 
 2.  However, there are mutually-corresponding pairs of united elements of (1) that are 
associated with infinitely many systems of values of (r, s, t, r′, s′, t′), in the above sense.  
The two elements (z, x, y, p, q), (z′, x, y, p′, q′) of the two pairs are, indeed, to be chosen 



Bäcklund – On the theory of surface transformations. 4 

from the elements of (1) completely arbitrarily.  Namely, one can determine the ratios dx, 
dy, dp, dq in such a way that the sheaf of (r, s, t) that is expressed by the equations of the 
first column of (b), which are completely associated with the equation [f, ϕ]z′xp′ = 0, and 
at the same time, the sheaf of (r′, s′, t′) that satisfy the equations of the next column in 
equations (b) – these equations being applied to the element (z′ + dz′, …, q′ + dq′) that 
corresponds to the element (z + dz, …, q + dq) – are completely included in the equation 
[f, ϕ]zxp = 0.  Ultimately, the following quadratic equation must be true for dy / dx: 
 

(2)  
2

dy f f

dx p p p p

ϕ ϕ ∂ ∂ ∂ ∂  −   ′ ′∂ ∂ ∂ ∂   
 − 

dy f f f f

dx p p q p p p q p

ϕ ϕ ϕ ϕ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − − ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

+ 
f f

q q q q

ϕ ϕ ∂ ∂ ∂ ∂− ′ ′∂ ∂ ∂ ∂ 
 = 0, 

 
and an equation must exist between dp / dx, dq / dx that comes about from [f, ϕ]z′xp′ = 0 by 
eliminating r, s, t by means of (b) and considering of the last equation for dy / dx to be 
written down in (2). 
 Each of these ∞1 possible systems of values for dp / dx, dq / dx, together with a value 
for dy / dx in (2), determines a surface element (z + dz, x + dx, …, q + dq) that defines a 
pair with the element (z, x, y, p, q) that determines ∞1 systems of values for (r, s, t, r′, s′, 
t′), in conjunction with its corresponding pairs, in the manner that was set down in the 
previous number. 
 We thus see that for any surface-pair z = F(x, y), z′ = Φ(x, y) that defines a solution of 
(1), there are two families of mutually-corresponding strip-pairs, along which, this 
surface pair contacts infinitely many other surface-pairs that likewise define solutions of 
(1). (1) 
 One pp. 290, 291 of M. A., Bd. XVII, I showed that the surfaces z′ = Φ(x, y) [or z = 
F(x, y)] that define a part of the solutions of (1) must satisfy two linear, third-order partial 
differential equations as integrals, and whose first derivatives also reduce to only three.  
The integral surfaces of such pairs of third-order partial differential equations are 
comprised of any two families of characteristics (M. A., Bd. XVII, pages 91-94).  Those 
of the aforementioned contact strips that lie on the surface z′ = Φ(x, y) [or z = F(x, y)] will 
define the characteristics of any pair of third-order equations, precisely.  However, the 
characteristics of this pair of equations that belongs to (1) will be strips along which first-
order contact of the integral surfaces is already possible. 
 If we regard z, z′, x, y as point coordinates in R4 then we must conclude from what we 
just developed that two families of 0

1M  lie on any integral 0
2M  of (1), along which, a 0

2M  

of infinitely many other integral- 0
2M  of the same pair of equations (1) will contact.  I call 

                                                
 (1) If z = F(x, y), z′ = Φ(x, y); z = F(1)(x, y), z′ = Φ(1)(x, y) define two such contacting pairs, and the two 
surfaces z = F(x, y), z = F(1)(x, y) osculate along their contact curve, moreover, then the two surfaces z′ = 
Φ(x, y), z′ = Φ(1)(x, y) must also osculate along their contact curves.  Then, a value of (r, s, t) that satisfies 
the equation [f, ϕ]z′xp′ = 0 will correspond to a single value of (r′, s′, t′) by means of three of the equations 
that are defined by setting the first derivatives of f and ϕ in (1) with respect to x, y equal to zero. 
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these 0
1M , along with their sheaf of ∞1 tangent planes, characteristic strips (*), or more 

briefly, the characteristics of (1), as well as the 01M  themselves.  One can lay, not just 

one, as through any 0
1M , but ∞∞  integral- 0

2 M  of (1) through any characteristic. 

 The characteristics are the only 01M  with that property. 

 
 3.  On pp. 296 of M. A., Bd. XVII, I proved that the most general equation x – χ(y, p, 
q, p′, q′) = 0 that has  ∞3 integral- 0

2 M  in common with (1) is defined by a linear, second-

order partial differential equation.  It follows from this that, in general, there is one and 
only one equation x – χ(y, p, q, p′, q′) = 0 that, first of all, will be satisfied by those 
systems of values of (x, y, p, q, p′, q′) that will be separate from any two equations (in 
addition to f = 0, ϕ  = 0) between these quantities, and secondly, will satisfy an arbitrary 
relation between the differential quotients of x (or χ) for this same system of values.  One 
can arrive at this theorem in another way, which I would like to give here.  From it, one 
can then reason conversely that the equation for c must be a second-order partial 
differential equation. 
 If we would like to apply equations (10) in M. A., Bd. XVII, pp. 291, namely: 
 

[f, ϕ]zxp = 0, [ϕ, ψ]  zxp = 0, [ψ, f]  zxp = 0, 
 
to the ∞4 systems of special values of (z, z′, x, y, p, q, p′, q′) that are in question here then 
we would have to first introduce certain values of ψ for the ratios of the differential 
quotients that are determined in the following way: y is the function x – χ(y, p, q, p′, q′), 
which is free of z, z′, and which we will think of as being eliminated everywhere by 
means of equations (1).  If we write the two arbitrary equations in x, y, p, q, p′, q′ that are 
added to (1) in the form: 
 

x – F(p, q, p′, q′) = 0,  y – Φ(p, q, p′, q′) = 0 
 
then the values in question of: 

−
y

ψ∂
∂

: 
x

ψ∂
∂

, …, −
q

ψ∂
∂

: 
x

ψ∂
∂

, 

i.e.: 
x

y

∂
∂

, …, 
x

q

∂
∂

, 

 
will be determined uniquely by the assumed linear relation between these differential 
quotients and through the following equations (M. A., Bd. XVII, pp. 413): 
 

F′(p) − 
x

y

∂
∂

Φ′(p) − 
x

p

∂
∂

= 0, …, F′(q′) − 
x

y

∂
∂

Φ′(q′) − 
x

q

∂
′∂
= 0. 

                                                
 (*) Two infinitely-neighboring 0

1
M  will define a strip on any  0

2
M  that goes through them. 
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 From the equations (10), M. A., Bd. XVII, we then come to a well-defined system of 
values of (r′, s′, t′) for any system of values of (z, z′, x, y, p, q, p′, q′) that we spoke of, 
and then, from the first derivatives of f = 0, ϕ = 0, to a likewise completely determined 
system of values of (r, s, t). 
 The values of the differentials of z, z′, p, q, p′, q′ that are represented by: 
 

p dx + q dy = dz, …, r dx + s dy = dp, …, s′ dy + t′ dx = dq′ 
 
will satisfy the equations df = 0, dϕ = 0, dψ = 0 identically on the basis of equations (10) 
above (M. A., Bd. XVII).  Due to the expressions for ∂x / ∂p, etc. – i.e., ∂ψ / ∂x, etc. – 

that are given by the equations F′(p) − x

y

∂
∂

Φ′(p) − 
x

p

∂
∂

= 0, etc., the two equations: 

 
d(x − F) = 0, d(y – Φ) = 0 

 
will give only one new equation.  This equation, which we shall retain, gives a well-
defined value for dy / dx in terms of z, z′, x, y, p, q, p′, q′.  Corresponding to these values 

of dy / dx and the values of 
dp

dx
 

dy
r s

dx
 = + 
 

, …, 
dq

dx

′
 

dy
s t

dx
 ′ ′= + 
 

 that follow from 

them, the ∞4 elements (z, z′, x, y, p, q, p′, q′) that fulfill the equations: 
 

f = 0, ϕ = 0, x = F, y = Φ 
 
will be associated with ∞3 completely-determined 0

1M .  From no. 1, any of these0
1M  will 

determine an integral- 0
2M  that is common to f = 0, ϕ = 0, and which will also be an 

integral of an equation ψ = x − χ = 0 with the property stated above.  We then have, in 
total, ∞3 0

2M  that satisfy equations (1) and a certain equation ψ = x – χ = 0 with the 

aforementioned property that is so determined that it also belongs to it as an integral.  
Thus, as we previously stated briefly, the equation ψ = 0 will be determined completely 
by the stated conditions. 
 
 4.  Equations ψ ≡ x − χ(y, p, q, p′, q′) = 0 of this character define precisely the totality 
of all integrals of a second-order partial differential equation.  In M. A., Bd. XVII, I 
explained how one could present this equation, and in addition, confirm the existence of 
intermediary integrals, each of which is expressed in terms of two involutory, first-order 
partial differential equations.  In this no., I will treat the case of a first integral of this 
linear, second-order partial differential equation for ψ that is expressed in terms of a first-
order partial differential equation – viz., Ω = 0. 
 We first consider a simply-infinite family of solutions ψ(x, y, p, q, p′, q′, λ) = 0 (*) of 
the first-order partial differential equation Ω = 0.  Its enveloping structure 
(Umhüllungsgebilde) is called Ψ = 0.  This equation is also a solution of Ω = 0, and 

                                                
 (*) The quantities z, z′ shall be thought of as having been eliminated using (1).  
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therefore has ∞3 integral- 0
2M  in common with (1), like any solution of this equation.  On 

any 0
2M  that satisfies (1) and the equation ψ 0 ≡ ψ(x, y, p, q, p′, q′, λ0) = 0 as an integral, 

a strip will be distinguished by the equation ψ(1) ≡ ψ 0 + dλ ψ′(λ0) = 0.  It also belongs to 
the equation Ψ = 0, because it envelops the equations ψ(λ) = 0.  The elements (*) of the 
strip: 

x

∂Ψ
∂

, 
y

∂Ψ
∂

, …, 
q

∂Ψ
′∂
 

will be proportional to: 
0

x

ψ∂
∂

, 
0

y

ψ∂
∂

, …, 
0

q

ψ∂
′∂

, 

 
resp.  Therefore, systems of values of (r, s, t, r′, s′, t′) that are determined by Ψ = 0, in 
conjunction with (1), will be associated with the elements of the strip, and indeed the 
same thing will be true for ψ 0 = 0, in conjunction with (1).  As a result, an integral- 0

2M  

that is common to (1) and Ψ = 0 (M. A., Bd., XVII, nos. 6, 7) must go through the 
aforementioned strip.  This must be considered to be a different 0

2M  from the previous 

one, because otherwise Ψ = 0 would have the same ∞3 integral- 0
2M  in common with (1) 

as ψ 0 = 0.  If we were to choose another family of ∞1 solutions ψ = 0 that, in fact, 
included the two equations ψ 0 = 0, ψ (1) = 0 then we would find another solution Ψ′ = 0 
as an enveloping structure to the latter ones.  We would then also find a new, third, 
integral- 0

2M  of (1) – namely, an integral- 0
2M  that is common to (1) and Ψ′ = 0 – that 

would go through the strip in question.  In this way, we recognize that ∞∞ integral- 0
2M  of 

(1) will go through any strip, and the strip will therefore (no. 2) be a characteristic of (1) 
(** ). 

                                                
 (*) I briefly refer to the 0

2
M -elements (z, z′, x, y, p, q, p′, q′) that are connected with some 0

1
M  as 

elements of a strip that starts on that 0

1
M . 

 (** ) We see more as follows: Because the strip that is now considered is a characteristic of (1), the first 
derivatives of (1) must be satisfied by ∞1 of the systems of values of (r, s, t, r′, s′, t′) that are associated 
with the elements of the strip by its equations: dp = r dx + s dy, dq = s dx + t dy, dp′ = r′ dx + s′ dy, dq′ = s′ 
dx + t′ dy, namely, by the unique corresponding system of values of (r′, s′, t′) through the sheaf of (r, s, t) 
that is determined by the first two equations, combined with the individual systems of values (r, s, t) of this 
sheaf by means of the derivatives of equations (1), which reduce to three mutually-independent equations, 
on the basis of [f, ϕ]z′xp′ = 0.  The element (z, z′, x, y, p, q, p′, q′) of the strip belongs to the equation ψ(1) = 0, 
and it therefore suffices to apply one of the equations: 
 

(1)d

dx

ψ
= 0, 

(1)
d

dy

ψ
= 0, 

 
in which r′, s′, t′ are replaced with their values in terms of r, s, t that are provided by the first derivatives of 
(1), as was just mentioned, in order to obtain a system of values of (r, s, t, r′, s′, t′) that simultaneously 

satisfies equations (1) and ψ(1) = 0.  However, from nos. 6, 7, M. A., Bd. XVII, an integral - 0

2
M  of (1) and 
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 A complete solution of Ω = 0 has five arbitrary constants.  It is therefore of the form: 
 

ψ(x, y, p, q, p′, q′, λ1, λ2, …, λ5) = 0, 
 
and can be, in particular, linear in the λ if Ω = 0 is a linear, first-order partial differential 
equation.  I will now consider an equation 0 0 0

1 2 5( , , , )ψ λ λ λ…  = 0 that is included in the 

complete solution that was written down, along with all ∞3 of its infinitely-close 
equations in the same family that contain one and the same element (x, y, p, q, p′, q′): 
 
(c)   0 0 0 0 0 0

1 2 5 1 1 2 2 5 5( , , , ) ( ) ( ) ( )d d dψ λ λ λ λψ λ λ ψ λ λ ψ λ′ ′ ′+ + + +… ⋯  = 0, 

 
and along with it, an integral- 0

2M  of (1) and 0 0 0
1 2 5( , , , )ψ λ λ λ…  = 0, that likewise 

possesses the same element (x, y, p, q, p′, q′).  From the previous discussion, any 
intersection between this integral-02M  and any equation (c) must define a characteristic.  

Only two strips start from the element (z, z′, x, y, p, q, p′, q′) that run through the integral-
0
2M  and are associated with equations (1) as characteristics.  (No. 2)  All of equations (c) 

must yield the same characteristics.  Thus, if two of these equations – say: 
 
 0 0 0 0 0 0 0

1 2 5 1 1 5 5( , , , ) ( ) ( )d dψ λ λ λ λ ψ λ λ ψ λ′ ′+ + +… ⋯  = 0, 

 0 0
1 5( ) ( ) ( )d dψ λ ψ λ ψ′ ′+ + +⋯  = 0, 

 
produce different characteristics then the equation: 
 

00
0 0 0 0 05 51 1

1 2 5 1 5( , , , ) ( ) ( )
1 1

d dd d λ µ λλ µ λψ λ λ λ ψ λ ψ λ
µ µ

′′ ++ ′ ′+ + +
+ +

… ⋯  = 0 

 
will yield a third strip of that type, and therefore ∞1 strips – corresponding to the ∞1 
values of µ −  will start from (z, z′, x, y, p, q, p′, q′), which all lie on the same integral-

0
2M , and would be characteristics of (1), which is impossible for an arbitrary element (z, 

z′, x, y, p, q, p′, q′) of (1) (*).  Therefore, one ultimately has: One and the same 
characteristic of (1) will be expressed by the equations: 
 

                                                                                                                                            
ψ(1) = 0 must then be able to go through any strip.  If we proceed in the same way with the other equations 
of the first (arbitrarily selected) simply-infinite family of solutions: 
 

ψ(x, y, p, q, p′, q′, λ) = 0 
 

then we will conclude that the aforementioned integral-0

2
M  of Ψ = 0 must define an osculating enveloping 

structure of ∞1 integral- 0

2
M  of the ∞1 enveloping solutions ψ(λ) = 0 of Ψ = 0. 

 
 (*) In fact, I omit the case in which one has f = F(z′, z, x, y, ϕ) in equations (1), or the case in which the 
two equations f = 0, ϕ = 0 simultaneously lack p, q or p′, q′. 
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0 0 0
1 2 5( , , , )ψ λ λ λ…  = 0,  0 0 0

1 1 2 2 5 5( ) ( ) ( )d d dψ λ λ ψ λ λ ψ λ λ′ ′ ′+ + +⋯  = 0, 

 

where three of the ratios 1

5

d

d

λ
λ

, 2

5

d

d

λ
λ

, 3

5

d

d

λ
λ

, 4

5

d

d

λ
λ

 are arbitrary.  Since the stated equations 

define a characteristic of Ω = 0, one can also say: The characteristics of Ω = 0 will now 
be characteristics of (1). 
 It follows from this, moreover, that of the elements (z, z′, x, y, p, q, p′, q′) of (1), only 
one characteristic series of elements (z, z′, x, y, p, q, p′, q′) emerges for Ω = 0.  We then 
consider any integral ψ 0 = 0 of Ω = 0, an integral- 0

2M  of (1) and ψ 0 = 0, and any strip of 

this integral- 0
2M  that does not define a characteristic of (1).  We can lay ∞∞ other 

solutions ψ′ = 0 of Ω = 0 through these strips.  From the foregoing, the intersection of 
any 0

2M  and any solution ψ′ = 0 that is infinitely close to ψ 0 = 0 must consist completely 

of characteristics of (1) and Ω = 0.  The stated strip is also contained in the same 
intersection.  However, it is not a characteristic strip for the systems of equations (1).  
Therefore, all of the characteristics of Ω = 0 that go through the element (z, z′, x, y, p, q, 
p′, q′) of the strip and lie on the 0

2M  must, at the same time, belong to the latter equation 

ψ′ = 0, and this to all equations ψ′ = 0.  We further consider any element (z, z′, x, y, p, q, 
p′, q′) of the strip and a solution ψ″ = 0 that includes this element, but not other elements 
of the strip, and which is infinitely close to ψ 0 = 0.  ψ″ = 0 must also include the 
characteristics of Ω = 0 that lie on 0

2M  and start from (z, z′, x, y, p, q, p′, q′).  An integral-
0
2M  of (1) and ψ″ = 0 goes through any characteristic of (Ω = 0 and) (1) (*).  When we 

reason in the same way as before with this 0
2M , we will see that all of the solutions ψ = 0 

of Ω = 0 that possess the specified element (z, z′, x, y, p, q, p′, q′) will contain one and the 
same characteristic of (1) and Ω = 0 in common.  We thus find that for every element (z, 
z′, x, y, p, q, p′, q′) there is only one sequence of elements (z, z′, x, y, p, q, p′, q′) that is a 
characteristic sequence for [(1) and] Ω = 0. 
 I have been able to omit the case in which infinitely many integral- 0

2M  of (1) and ψ 0 
= 0 go through the element (z, z′, x, y, p, q, p′, q′).  This can therefore not enter into 
consideration for an arbitrary element of (1) and an arbitrary integral ψ 0 = 0 of Ω = 0.  In 
fact, those equations ψ = 0 that have such a special relationship with a particular system 
(1) that ∞1 values of r, s, t would be associated with any element (z, z′, x, y, p, q, p′, q′) of 
(1), and ψ = 0 will satisfy at least two first-order partial differential equations. 
 However, if the characteristic strips of Ω = 0 that start from any element (z, z′, x, y, p, 
q, p′, q′) of (1) are linked to one and the same sequence of elements (z, z′, x, y, p, q, p′, q′) 
that is therefore determined by five equations in: 
 

z, z′, x, y, p, q, p′, q′:   ψ = C,  ψ′  = C′, …, ψIV = CIV 
 

                                                
 (*) See the beginning of the third note of this number.  
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then any equation Ω = 0 will be a linear, first-order partial differential equation.  One 
can then lay a completely-determined integral: Funct(ψ, ψ′, …, ψIV) = 0 of Ω = 0 through 
an arbitrary quadruply-infinite manifold that is represented by (1) and: 
 

F(z, z′, x, y, p, q, p′, q′) = 0, Φ( z, z′, x, y, p, q, p′, q′) = 0. 
 
Now, the characteristics that start from the element (z, z′, x, y, p, q, p′, q′) and are 
common to (1) and Ω = 0 obey the equations: 
 

r + ms = µ,  s + mt = ν, r′ = as + b, s′ = a′s + b′, t′ = a″s + b″, 
 

so we will have completely-determined values of r, s, …, t′, dy : dx when we substitute 
these values for r, s, t, r′, s′, t′ and substitute the values dz = p dx + q dy, dz′ = p′ dx + q′ 
dy, dp = r dx + s dy, …, dq′ = s′ dx + t′ dy  in the equations dF = 0, dΦ = 0.  Given the 
values of r, s, …, t′ above, the differentials of (1) will be fulfilled identically.  By 
applying the values of r, s, …, t′ that we have now obtained, we determine a certain 
integral strip of (1) at every element (z, z′, x, y, p, q, p′, q′) of our four-fold manifold: (1) 
and F = 0, Φ = 0, all of whose elements belong to the aforementioned four-fold manifold.  
Thus, this four-fold manifold is decomposed into a completely-determined family of ∞3 
integral strips of (1).  The ∞3 integral- 0

2M  of (1) that, from no. 1, go through these strips 

also satisfy the equation Funct(ψ, ψ′, …, ψIV) = 0, of which it was assumed that it was an 
integral of Ω = 0 and that it generated all characteristics of Ω = 0. 
 We can recognize the possibility of expressing such a thing by a linear, first-order 
partial differential equation that is a first integral of the second-order partial differential 
equation for ψ.  A second-order partial differential equation in R3 of the form: 
 

F(x, y, p, q, r, s, t) = 0 
 

is a special case of a system of equations (1) (M. A., Bd. XVII, no. 32).  If it is related to 
a third-order equation in such a way that for any element (x, y, p, q, r, s, t) of the second-
order equation there exists a characteristic that is common to that equation and the third-
order equation then these characteristics will define a system with precisely the same 
behavior as system of characteristics of Ω = 0 above.  Those second and third-order 
equations that are derived from a pair of equations f1(x, y, p, q, r, s, t) = 0, f2(x, y, p, q, r, 
s, t) = 0 with common characteristics and ∞∞ common integral surfaces by means of a 
surface transformation: 
 
 X = F1(x, y, p, q, r, s, t), Y = F2(x, y, p, q, r, s, t), 
 P = F3(x, y, p, q, r, s, t), Q = F4(x, y, p, q, r, s, t) 
 
(see M. A., Bd. XIII, pp. 76) will define a special system of that type. 
 
 5.  What is the image of the equation Ω = 0 in the space of (x, y, z)?  Any element (z, 
z′, x, y, p, q, p′, q′) of (1) shall be associated with a characteristic by way of Ω = 0, so, as 
we remarked previously, the same element will also be associated with a certain simply-
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infinite family (i.e., sheaf) of values of (r, s, t, r′, s′, t′).  p′, q′ will be determined as 
functions of z, z′, x, y, p, q by equations (1).  Therefore, any surface element (z, x, y, p, q) 
will be associated with a simply-infinite family of simple sheaves of (r, s, t) that 
correspond to the values of z′ by means of Ω = 0.  The totality of all of these families of 
values for (r, s, t) that are found on the ∞5 surface elements of the space (x, y, z) will be 
represented by an equation F(z, x, y, p, q, r, s, t) = 0.  When r, s, t are interpreted as point 
coordinates in a space R′, it will represent a line surface in this space.  It is now the image 
of Ω = 0. 
 Moreover, this second-order partial differential equation F = 0 must have ∞∞ integral 
surfaces in common with the two linear, third-order partial differential equations for 
which one part z = F(x, y) of the solutions of (1) will be common integrals, in such a way 
that ∞1 characteristics that are common to all three equations will start from any surface 
element.  If two elements (z, x, y, p, q, r, s, t) are united into two infinitely-close 
characteristics then the latter will themselves be united in their entire extent. 
 
 6.  The part z = F(x, y) of the solutions of (1) does not always have to define a 
system of two third-order partial differential equations.  For example, if the quantity z′ is 
absent from the two equations (1) then the integrals of the second-order partial 
differential equation [f, ϕ]z′xp′ = 0, from which one imagines that p′, q′ have been 
eliminated by using (1), will represent that part of the solutions of (1), precisely.  One 
now has ∞1 functions z′:  ∫ (p′ dx + q′ dy) = z′ that correspond to any integral z = F(x, y). 
 If z′, as well as z, is missing from both equations (1) then the part z = F(x, y), as well 
as the part z′ = Φ(x, y), of the solutions of (1) will be integrals of second-order partial 
differential equations − namely, the equations [f, ϕ]z′xp′ = 0, [f, ϕ]zxp = 0 – which have p′, 
q′ eliminated by using (1) in the in the first case, and p, q, in the second.  Every solution 
of (1) thus has the form: z = F(x, y) + an arb. const., z′ = Φ(x, y) + an arb. const. 
 
 

§ 2. 
 

On the transformation of certain families of surfaces 
that is based upon the two equations (1). 

 
 7.  Each of the two equations z = F(x, y), z′ = Φ(x, y) that defines a solution of (1) will 
be, in general, represented by two linear, third-order partial differential equations.  The 
two equations of a solution represent two surface in the spaces (x, y, z), (x, y, z′), resp.  A 
one-to-one correspondence exists between them (M. A., Bd. XVII, no. 22), and 
furthermore, a one-to-one correspondence exists between the elements (z, x, y, p, q, r, s, 
t), (z′, x, y, p′, q′, r′, s′, t′) of the two mutually-corresponding surfaces, namely, one that 
makes any system of values of  (z, x, y, p, q, r, s, t) correspond to the system of values of 
(z′, x, y, p′, q′, r′, s′, t′) that results by elimination from (1), [f, ϕ]z′xp′ = 0, and any three of 

the equations 
df

dx
= 0, 

df

dy
= 0, 

d

dx

ϕ
 = 0, 

d

dy

ϕ
= 0.  As a result, there now exists a 

transformation of the space (x, y, z) to the space (x, y, z′) that is a surface transformation 
for certain pairs of linear, third-order partial differential equations, and under which, 
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second-order contact remains preserved, in addition.  In M. A., Bd. IX (*), I proved that 
there is no special second-order contact transformation that is a surface transformation of 
all of the space of (x, y, z).  In the same article, I also remarked that there is no 
transformation that takes all integral surfaces of a higher-order partial differential 
equation (** ), in turn, into surfaces, and verified the basis for that in the case of a second-
order partial differential equation (loc. cit., pp. 312, no. 10).  However, we have now seen 
that such transformations can come about for systems of several differential equations.  I 
would now like to seek to explain this situation more thoroughly. 
 We first consider one partial differential equation of order m – viz., F = 0 −, and we 
assume that there is a transformation that takes the integral surfaces of it, in turn, to 
surfaces – in particular, it takes integral surfaces that have contact of order m at a point to 
surfaces with contact of order m – so we see the following: If C means an arbitrary 
integral surface, and p, any point on it, and one lets p1, p2 denote the values of first 
differential quotients of z, and 

1 2k kp , those of the second, …, while 
1 2 nk k kp
⋯

 (k1, k2, …, kn 

= 1 or 2) denote those of order n that belong to C at the point p then one has determined a 
system of values of 

1 2 1mk k kp
+⋯

 by means of the m + 3 equations: 

 

1 2 mk k kpδ
⋯

 = 
1 2 1 21 2m mk k k k k kp dx p dy+
⋯ ⋯

,  
dF

dx
 = 0, 

dF

dy
 = 0, 

 
if one denotes the values of the mth differential quotients of z by 

1 2 1 2m mk k k k k kp pδ+
⋯ ⋯

 that 

belong to the point (x + dx, y + dy) of an integral surface C′ that is infinitely close to C, 
and has a contact of order m – 1 with it at the stated point (x + dx, y + dy).  This system of 
values of (m + 1)th differential quotients of z belongs to an integral surface C″ of F = 0 
that possesses a contact of order m with C at the point p and with C′ at the point (x + dx, y 
+ dy).  Now, the assumed transformation takes our three surfaces C, C′, C″ to three 
surfaces Γ, Γ′, Γ″, of which the latter has a contact of order m with the first two infinitely-

                                                
 (*) See also M. A., Bd. XI, pp. 213.  
 (** ) M. A., Bd. IX, pp. 306. (In regard to the transformations of first-order partial differential equations, 
see § 5 of the cited article, especially.) – For two-dimensional spaces, things take on a different form.  For 
example, we consider the system of equations (M. A., Bd. XVII, pp. 297): 
 

0 , , , ,
dz dz

z z x
dx dx

f
′ ′ 

 
  = 0, 0 , , , ,

dz dz
z z x

dx dx
ϕ ′ ′ 

 
  = 0. 

 
When we eliminate the quantities z, dz / dx from these equations and the equation [f0, ϕ0]zx dz / dx = 0, we will 
get a second-order equation for z′.  We will get a second second-order equation that is an equation for z 
from [f0, ϕ0]z′ x dz′ / dx = 0, by eliminating z′, dz′ / dx by means of f0 = 0, ϕ0 = 0.  A one-to-one correspondence 
exists between any two integral curves of the same equations z′ = Φ(x), z = F(x), which collectively define 
a solution of f0 = 0, ϕ0 = 0, and this is the case especially for the elements (z′, x, dz′ / dx), (z, x, dz / dx) of 
the two second-order equations.  Thus, here we have a transformation that is not a transformation of 
arbitrary curves in the plane (z, x) into curves, but which takes all integral curves of the one of the 
aforementioned second-order equations to integral curves of the other second-order equation in a single-
valued way. (Cf., M. A., Bd. IX, pp. 300.)  However, this does not actually characterize all contact 
transformations, since we are only concerned with the ∞2 integral curves of second-order equations, no two 
of which will contact each other, in general.  
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close surfaces Γ, Γ′ at two infinitely-close points.  However, any two infinitely-close 
surfaces Γ, Γ′ must then have a contact of order m – 1 with each other, such that the 
assumed transformation converts any two infinitely-close integral surfaces C, C′ of F = 0 
that have a contact of order m – 1 into two similar surfaces Γ, Γ′. 
 One can now construct two integral surfaces of F = 0 that are infinitely close to each 
other of second order and have contact of order m – 2 with each other, and then a third 
integral surface that is infinitely close to the first two of second order and has contact of 
order m – 1 with them at two infinitely-close points.  This is due to the fact that the 
equations 

1 2 1mk k kpδ
−⋯

 = 
1 2 1 1 2 11 2m mk k k k k kp dx p dy

− −
+

⋯ ⋯

, F = 0 can be satisfied for all infinitely 

small values of 
1 2 1mk k kpδ

−⋯

 by values of 
1 2 mk k kp
⋯

.  From the remarks that we just made, 

these three surfaces will be converted into three new surfaces of that type.  Therefore, our 
transformation must convert any two integral surfaces that are infinitely close to each 
other of second order and possess contact of order m – 2 at some point into two similar 
surfaces.  When we pursue the same line of reasoning further, we will ultimately come to 
the theorem that any two integral surfaces of F = 0 that possess first-order contact and are 
infinitely close of order m – 1 will be converted into just such surfaces by means of the 
aforementioned transformation. 
 However, in M. A., Bd. IX, I proved that for the surfaces of an infinite system that 
fills all of space at least four times, if any two of them that are infinitely close and have 
first-order contact are converted into similar surfaces by a transformation then that 
transformation will be an ordinary (i.e., Lie) contact transformation that is a surface 
transformation for all of space (*).  Indeed, I have not especially emphasized the idea that 
when the contacting surfaces are infinitely close of order r, one will arrive first-hand at 
pairs of surfaces by my proof that are infinitely close of order r – 1 and contact each 
other, and that one will then go from the latter pairs to pairs of surfaces that are infinitely 
close of order r – 2 and contact each other, etc.  However, this is self-explanatory when 

                                                
 (*) I shall take this opportunity to fill a hole in the argument that was carried out on pp. 311 of M. A., 

Bd. IX.  It was proved there that two families of surfaces f(z, x1, …, xn, λ1, …, λn+2) = 0, ϕ(z′, 
1

x′ ,, …, 
n

x′ , 

λ1, …, λn+2) = 0 that are associated with each other in such a way that any two surfaces f(λ) = 0, f(λ + dλ) = 
0 that contact each other will correspond to two likewise contacting surfaces ϕ(λ) = 0, ϕ(λ + dλ) = 0 that 
are complete solutions (where z, x, z, x are now arbitrary constants) of one and the same first-order partial 
differential equation Φ(λ1, λ2, …, λn+2, π1, …, πm+2) = 0.  However, in order to conclude from this that the 
surfaces f = 0, ϕ = 0 must be related to each other in the same way that they are for an ordinary contact 
transformation, it is perhaps easiest to employ the following argument: An arbitrary equation U(z, x1, …, 
xn) = 0 corresponds to a certain integral-Mn+1 of Φ = 0 that is generated by ∞n characteristics of this 
equation.  The same Mn+1 is an enveloping structure of ∞n integrals ϕ = 0.  The values of the constants (z′, 
x′) that are valid for them are determined by an equation V(z′, 

1
x′ ,, …, 

n
x′ ) = 0.  The surface elements (z, x, 

p), (z′, x′, p′) of U = 0, V = 0 correspond to each other in a one-to-one way, after what we just proved, and 
for that reason, any two of the united surface elements (z, x, p) must correspond to two likewise united 
surface elements (z′, x′, p′).  Therefore, etc. 
 [Previously, I applied another argument instead of this one that is completely similar to the one on pp. 
300 of the cited article.  Namely, if one considers an (arbitrary) surface in (z, x) to be the enveloping 
structure of all the families of surfaces f = 0 that have stationary contact with it then it is quite clear that the 
corresponding surfaces ϕ = 0 will envelope a surface in (z′, x′) whose surface elements will correspond to 
the surface elements of the surface in (z, x).] 
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one (M. A., Bd. IX, pp. 310) considers systems of surfaces that are infinitely close to 
each other, instead of systems that fill up all space. 
 For that reason, the assumed transformation of the partial differential equation of 
order m, F = 0, can be nothing but an ordinary contact transformation that encompasses 
all surfaces in space and under which first-order contact will remain invariant. 
 
 8.  However, if we consider a system of two partial differential equations of order m, 
F = 0, Φ = 0, whose first derivatives reduce to only three mutually-independent 
equations, and we assume that a transformation exists that takes all ∞∞ common integral 
surfaces of the two equations to surfaces that have contact of order m – in particular, 
integral surfaces – to surfaces with contact of order m then we will first find that when C 
means an integral surface, (x, y), a point on it, and C′ is an integral surface that is 
infinitely close to C and has contact of order m – 1 with it at the point (x + dx, y + dy), 
one can always determine values of 

1 2 1mk k kp
+⋯

 that fulfill the following equations: 

 

1 2 mk k kpδ
⋯

 = 
1 2 1 21 2m mk k k k k kp dx p dy+
⋯ ⋯

, 

 
dF

dx
 = 0, 

dF

dy
 = 0, 

d

dx

Φ
 = 0, 

d

dy

Φ
 = 0, 

 
so often that 

1 2 1 2m mk k k k k kp pδ+
⋯ ⋯

 − which means the value of the mth differential quotient 

of z that is associated with the point (x + dx, y + dy) of the integral surface C′ − then 
consolidates the last four of the equations that we just wrote down into a single new 
equation.  Consequently, in this case, our transformation must also convert any two 
infinitely-close integral surfaces C, C′ that have contact of order m – 1 into new surfaces 
of that sort. 
 If C, C′ now refer to infinitely-close integral surfaces that possess contact of order m 
– 2 at the point (x + dx, y + dy) then if a third integral surface should exist that contacts C 
at the point (x, y) and C′ at the point (x + dx, y + dy) to order m – 1 then one must be able 
to determine the values of m + 1 quantities 

1 2 mk k kp
⋯

 that satisfy the m + 2 equations 

1 2 1mk k kpδ
−⋯

= 
1 2 1 1 2 11 2m mk k k k k kp dx p dy

− −
+

⋯ ⋯

, F = 0, Φ = 0.  However, that is impossible for 

general values of δp, dx, dy.  Now, it can happen, as in the case of a common family of 
first integrals (with an arbitrary constant) of F = 0, Φ = 0, that a complete family of 
integral surfaces can be split into ∞1 groups of surfaces such that the δp that belong to an 
integral surface C′ that is included in the same group as C will satisfy the relation that 
results from the equations that were written down above by the elimination of 

1 2 mk k kp
⋯

.  

Our transformation then takes any two integral surfaces of one and the same group that 
are infinitely close of second-order and have contact of order m – 2 with each other to 
two surfaces that likewise have contact of order m – 2.  However, such a distribution of 
the surfaces of a complete family of integral surfaces does not necessarily exist for all 
systems as it does for the one that is defined by F = 0, Φ = 0.  Therefore, our 
transformation does not necessarily need to take the two united elements (z, x, y, p1, …, 

1 2 1m
pλ λ λ −⋯

), (z + dz1, …, 
1 2 1 1 2 1m mk k k k k kp pδ

− −
+

⋯ ⋯

) of C at (x, y) (C′ at (x + dx, y + dx), resp.) 
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(*) to likewise united elements of that kind (** ).  Our transformation then needs even less 
to be an ordinary (i.e., Lie) contact transformation. 
 The number of arbitrary constants of a complete solution of the system F = 0, Φ = 0 
must be reducible to a number that is less than the number of first, second, …, up to (m – 
1)th differential quotients of z, increased by 2.  One then has the following theorem: 
 
 If, of the surfaces of two k-fold infinite systems, any two surfaces of one system that 
are infinitely-close to each other and have contact of order r with each other (k = 2 + the 
number of first, second, ..., up to rth differential quotients of z) are converted into two 

                                                
 (*) These elements are united because they can be constructed on one and the same surface, if not also 
an integral surface.  
 (** ) We can explain the fact that, in general, there also exist no integral surfaces that have contact of 
order m − 1 with C′ at the point (x + dx, y + dy) and with C at any point (x + d′x, y + d′y) by an example.  
Let two linear, third-order partial differential equations be given whose first derivatives consolidate to three 
mutually-independent equations, in which case, the given equations cannot necessarily be brought into the 
form: 
 u + Bv + Cw + E = 0, 
 v + Bw + Cϖ + E′ = 0, 

(where B, C, E, E′ are functions of z, x, y, p, q, r, s, t) 
 

The condition for the following equations: 
 δr = u dx + v dy, 
 δs = v dx + w dy, 
 δt = w dx + ϖ dy, 
 u + Bv + Cw + E = 0 
 v + Bw + Cϖ + E′ = 0 
 
to exist together is then expressed by the equation: 
 

0 0

0 0

0 0

0 1 0

0 0 1

r dr dx dy

s ds dx dy

t dt dx dy

B C

B C

δ
δ
δ

−
−
− = 0, 

 
if dr, ds, dt mean any values of δr, δs, δt that are possible for the existence of those equations.  However, 
after dropping the common factor C dx2 – B dx dy + dy2, the condition equation will assume the simple 
form: 

δr – dr + B(δs – ds) + C(δt – dt) = 0, 
 

which is an equation that is independent of dx, dy. 
 This proves that when C, C′ are two infinitely-close integral surfaces that contact at the point (x + dx, y 
+ dy), and (r + dr, s + ds, t + dt) means the second differential quotient of z at any point (r + δr, s + δs, t + 
δt) of the surface C′ that is associated with the same point, the relation in question can be satisfied only for 
or special surface C′.  It follows further from this that there is, in general, no integral surface that has 
second-order contact with C′ at the point (x + dx, y + dy) and with C at any infinitely-close point.  Any two 
infinitely-close integral surfaces C, C′ that contact each other will thus not be converted into contacting 
surfaces by a second-order contact transformation that concerns the integral surfaces of the third-order 
partial differential equation. 
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surfaces with just the same properties in the other system by some transformation then 
that transformation will certainly be an ordinary (i.e., Lie) contact transformation. 
 
 The proof of this theorem is completely analogous to the proof of the theorem that 
was cited above in M. A., Bd. IX, pp. 311. 
 We especially direct our attention to the case of two third-order equations: 
 

[ ],[ , ]
zxp

f f ϕ  = 0, [ ],[ , ]
zxp

fϕ ϕ  = 0 

 
(M. A., Bd. XVII, pp. 290).  As we remarked above, we have a transformation for which 
second-order contact is preserved, and which takes the integral surfaces of the equations 
to other surfaces.  Now, this transformation is determined completely as a solution of (1) 
by the equation x′ = x, y′ = y, together with the equations z = F(x, y, λ, µ, ν, ρ), z′ = Φ(x, 
y, λ, µ, ν, ρ).  However, any two fourfold-infinite families of surfaces are of a general 
sort, and two contacting surfaces of the family z = F(x, y, λ, µ, ν, ρ) thus do not 
correspond to two contacting surfaces of the other family, as it would have to be if the 
transformation were a contact transformation. 
 
 9. Moreover, this easily resolves the question of whether it is possible that the two 
third-order partial differential equations: 
 

[ ],[ , ]
zxp

f f ϕ  = 0, [ ],[ , ]
zxp

fϕ ϕ  = 0 

 
will admit a common first integral with any arbitrary constants.  Should that be the case, 
then, from the previous discussion, the transformation that we are dealing with between 
these equations and the following two: 
 

 [ ],[ , ]
z xp

f f ϕ ′ ′  = 0, [ ],[ , ]
z xp

fϕ ϕ ′ ′  = 0 

 
would have to be such that any two infinitely-close, contacting, common integral surfaces 
of one of the first integrals of the first two equations would have to be converted into two 
contacting, common, integral surfaces of the last two.  Otherwise, the latter equations 
must also possess a common first integral with arbitrary constants, corresponding to the 
integrals of that kind that were previously assumed for the first two equations, so the 
transformation in question must be an ordinary contact transformation.  Now, two of the 
equations that are valid for this transformation read thus: x′ = x, y′ = y, and therefore there 
must be a third equation for the transformation of the form: z′ = F(z, x, y).  This shows 
that the two equations (1) must now be able to be brought into the form: 
 

f(z′, z, x, y) = 0, ϕ(z′, z, x, y, p, q, p′, q′) = 0. 
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However, one will then have [f, ϕ]z′xp′ = ( ) ( )
df df

p q
dx dy

ϕ ϕ′ ′ ′ ′+ , and the quantities r, s, t 

will thus be missing from the equation [f, ϕ]z′xp′ = 0.  The equations [ ],[ , ]
z xp

f f ϕ ′ ′ = 0, 

[ ],[ , ]
z xp

fϕ ϕ ′ ′  = 0 cannot give rise to any third-order equations then.  Therefore, the two 

third-order partial differential equations in question cannot have a common first integral 
with any arbitrary constants. 
 
 10.  A single-valued transformation between the two spaces (x, y, z), (x, y, z′) will 
then be determined by equations (1) only when they lead to two pairs of third-order 
partial differential equations in (x, y, z) [(x, y, z′), resp.].  If one of the systems (1) that 
were considered in no. 6 is present then the transformation will take on a different form.  
It cannot be a single-valued transformation, if it either takes any integral surface of a 
certain second-order partial differential equation (viz., [f, ϕ]z′xp′ = 0) to a simply-infinite 
family of integral surfaces of a system of two third-order partial differential equations 
(viz., [ ],[ , ]

z xp
f f ϕ ′ ′ = 0, [ ],[ , ]

z xp
fϕ ϕ ′ ′  = 0) that takes any of the latter surfaces to a certain 

surface of the form, or it takes any integral surface of a certain second-order partial 
differential equation (viz., [f, ϕ]z′xp′ = 0) to ∞1 corresponding integral surfaces of another 
second-order partial differential equation (viz., [f, ϕ]zxp = 0), and vice versa.  Now, in the 
event that the variable z′ is missing from equations (1), one will also have that for any 
element (z, x, y, p, q, r, s, t) that satisfies the equation [f, ϕ]z′xp′ = 0 there are ∞1  
corresponding elements (z′, x, y, p′, q′), each of which has a certain system of values for 
(r′, s′, t′); by contrast, each element (z′, x, y, p′, q′, r′, s′, t′) corresponds to a single system 
of values for (z, x, y, p, q, r, s, t) (or some system of values of them).  In the case that z, as 
well as z′, is missing from (1), every element (z, x, y, p, q, r, s, t) of a second-order partial 
differential equation [f, ϕ]z′xp′ = 0 will correspond to ∞1 elements (z′, x, y, p′, q′, r′, s′, t′) 
of another second-order partial differential equation [f, ϕ]zxp = 0, and conversely, every 
element (z′, x, y, p′, q′, r′, s′, t′) of the latter equation will correspond to ∞1 elements (z, x, 
y, p, q, r, s, t) of the former. 
 The transformation that is now based in equations (1) is, in the vicinity in which it is a 
surface transformation, a multi-valued (viz., infinitely-valued) surface transformation.  A 
generalization of this shall be treated in no. 15. 
 
 

§ 3. 
 

Derivation of some special systems of second-order partial differential equations. 
 

 11.  In no. 23 of my treatise in M. A., Bd. XVII, the surface transformation that was 
defined by the three general equations: 
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(3)     
1

2

3

( , , , , , , , , , ) 0,

( ) 0,

( ) 0,

F z x y p q z x y p q

F

F

′ ′ ′ ′ ′ =
 =
 =

 

 
and in no. 24 the special case was treated in which the transformation converted any strip 
of a given fourfold-infinite family into a simply-infinite family of surfaces.  However, the 
transformation can also be so arranged that it converts any integral strip of the pair of 
equations: 

(4)     
( , , , , ) ,

( ) ,

f z x y p q C

Cϕ
=

 ′=
 

 
where C, C′ denote arbitrary constants, into a family of surfaces.  The integral strips of 
(4) are represented by the equations: 
 

(5)   dz – p dx – q dy = 0, 
df df

dx dy
dx dy

+  = 0, 
d d

dx dy
dx dy

ϕ ϕ+  = 0. 

 
 An arbitrary surface element (z, x, y, p, q) determines, first of all, certain values of C, 
C′ in (4), and then ∞1 directions (dy : dx), each of which provides a sheaf of (r, s, t), in 
conjunction with the stated element, and on the basis of (5).  Their equations have the 
form r dx + s dy = µ dx, s dx + t dy = ν dx, where µ dx, ν dx itself depends upon dx, dy.  
This sheaf gives rise to a surface element (z + p dz + q dy, x + dx, …, p + µ dx, q + v dx) 
that belongs to an integral strip of (4) that starts from (z, x¸y, p, q).  If one now introduces 
the values µ, ν for dp / dx, dq / dx, which take the form α + β dy / dx relative to dy : dx 
into the condition equation for the involution of the two first-order partial differential 
equations that correspond to the strip [M. A., Bd. XVII, pp. 307, eq. (19)]: 
 

31 2
2 3 3 1 1 2[ , ] [ , ] [ , ]z x p z x p z x p

dFdF dF
F F F F F F

dx dx dx
′ ′ ′ ′ ′ ′ ′ ′ ′+ +  = 0, 

 
and demands that they must be independent of the special values of dy : dx then F1, F2, F3 
will fulfill two equations.  F1 can be chosen arbitrarily, and F2, F3 will then be 
determined by any two equations, so the transformation (3) will convert all integral strips 
of the system (4), (5) into families of surfaces. 
 If we ask how the figure in r′ that consists of any family of surfaces is constituted 
then we will need to visualize only the following from no. 24, M. A., Bd. XVII: Any 
element (z, x, y, p, q) corresponds to a family of ∞1 strips in r′ that might be briefly 
denoted by S′.  Just as ∞∞ integral-strips of (4) start from any surface element in r, ∞∞ 
surfaces of our family of surfaces in r′ will go through any strip S′.  ∞1 sheaves (5) of (r, 
s, t) belong to any surface element in r that lead to just as many surface elements of 
integral strips that are united with the element.  Correspondingly, any strip S′ is united 
with ∞1 other such strips.  If we further remark that every surface element in r′ 
corresponds to ∞1 surface elements in r, among which, only one of them will satisfy the 
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equations f = C0, ϕ  = 0C′  − if C0, 0C′  denote (any) well-defined values of the arbitrary 

parameters C, C′ in (4) – then we will see that ∞2 strips S′, corresponding to the different 
values of C, C′, will go through an arbitrary element (z′, x′, y′, p′, q′).  The figure that is 
composed of those sheaves of (r′, s′, t′) that belong to S′ will thus be expressed by two 
equations: 

(6)     
( , , , , , , , ) ,

( ) .

F z x y p q r s t C

C

′ ′ ′ ′ ′ ′ ′ ′ =
 ′Φ =

 

 
Here, C, C′ are the same as they were in (4), because, as we already remarked, ∞∞ 
surfaces that correspond to the integral of the equations f = C0, ϕ = 0C′ , and which are 

therefore integral surfaces of our figure (6), will go through any strip S′ that corresponds 
to an element of f = C0, ϕ = 0C′ , so any strip S′ will become a common characteristic of 

the two second-order equations in (6). 
 We arrive at equations (6) simply, as follows: By differentiating (3), while regarding 
z, x, y, p, q as constants, and then eliminating dx′, dy′, one will arrive at two equations in 
z, x, y, p, q, z′, x′, y′, p′, q′, r′, s′, t′.  When we eliminate z, x, y, p, q from these two 
equations, equations (3) and (4), we will obtain the equations (6) in question.  From what 
we just discussed, these two second-order partial differential equations will be coupled to 
each other in such a way that a strip that starts at every element (z′, x′, y′, p′, q′, r′, s′, t′) 
will, at the same time, define a characteristic of an equation F = C0 and an equation Φ = 

0C′ .  These strips will be associated with ∞∞ common integral surfaces of F = C0 , Φ = 

0C′ .  Of the first derivatives of F and Φ with respect to x′, y′, one of them will therefore be 

an algebraic consequence of the other one.  Furthermore, any characteristics that are 
precisely the strips S′ above, will be first-contact contact strips, such that there will be 
∞∞ common integral surfaces of F = C , Φ = C′ − in which C, C′ refer to completely 
arbitrary constants – that possess first-order contact along a strip S′.  The common 
integral surfaces of F = C0 , Φ = 0C′  will be associated with families of ∞1 surfaces such 

that each family will correspond to an integral strip of f(z, x, y, p, q) = C0 , ϕ(z, x, y, p, q) 
= 0C′ . 

 
 12.  The three equations: 
 

(7)  
1 1 2 3 1 2 3 1 2 3 1 2 3

2

3

( , , , , , , , , , , , , , ) 0,

( ) 0,

( ) 0

F z x x x p p p z x x x p p p

F

F

′ ′ ′ ′ ′ ′ ′ =
 =
 =

 

 
of a manifold transformation of a four-dimensional space can be related to each other in 
such a way that they define a transformation that converts any integral strip (viz., 
integral-M1) of the system: 
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(8)    

1 2 3 1 2 3( , , , , , , ) ,

( ) ,

( ) ,

( )

f z x x x p p p C

C

C

C

ϕ
ψ
χ

=
 ′=
 ′′=
 ′′′=

 

 
into a doubly-infinite integral family that is common to two involutory, first-order partial 
differential equations.  One then has to satisfy only two partial differential equations for 
F1, F2, F3 .  One arrives at these equations as follows: The condition for the two first-
order partial differential equations that define a strip to be involutory has a similar form 
to equation (19) in M. A., Bd. XVII, pp. 307.  One now merely replaces dx3, dp1, dp2, dp5 
with their values that one derives from (1) in terms of dx1, dx2 [setting dz = p1 dx1 + p2 dx2 
+ p3 dx3], and then sets the individual coefficients of dx1, dx2 equal to zero.  One thus has 
the two desired equations for F1, F2, F3 .  The figure in r′ − i.e., in the space of 

1 2 3( , , , )x x x z′ ′ ′ ′  − that consists of those families of surfaces that thus correspond to the 

system (8) can be characterized as follows: Any surface element (z, x, p) corresponds to a 
family of ∞2 M2 (

*) whose envelopes generate all of these M2 from certain (characteristic) 
M1 .  (See M. A., Bd. XI, pp. 430.)  Since an arbitrary surface element (z′, x′, p′) 
corresponds to a certain surface element (z, x, p), and one finds ∞1 directions (dx1, dx2, 
dx3) for integral strips of the same equations f = C0, etc., in that element, any M2 that 
corresponds to an element (z, x, p) and contains the element (z′, x′, p′) must lie on some 
M3, along with ∞1 infinitely-close M2 .  Now, any element (z′, x′, p′) that goes through 
those M2 that correspond to the element (z, x, p) will be associated with a family of ∞2 
systems of values of ikp′ , and since, as we just remarked, any M2 will lie on an M3, along 

with ∞1 infinitely-close M2 , all of these ∞2 values of ikp′ , but only these, must be 

associated with the figure in r′ that corresponds to the system f = C0 , ϕ = 0C′ , ψ = 0C′′ , χ 

= 0C′′′ .  For that reason, this figure must be defined algebraically by four second-order 

partial differential equations.  We are given those values of ikp′  that are associated with 

one of the M2 that corresponds to the element (z, x, p) as one of its surface elements by 
the following equations: 
 

  1 1
1 2 12 11

2 1 2 1 2

i i i i iF F F F Fx x
p p p p

x x z x z p x

   ′ ′∂ ∂ ∂ ∂ ∂∂ ∂′ ′ ′ ′+ + + + +   ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂   
  

     + 1 1
22 21 32 31

2 2 3 2

i iF Fx x
p p p p

p x p x

   ′ ′∂ ∂∂ ∂′ ′ ′ ′+ + +   ′ ′ ′ ′∂ ∂ ∂ ∂   
 = 0, 

 

  1 1
1 3 13 11

3 1 3 1 3

i i i i iF F F F Fx x
p p p p

x x z x z p x

   ′ ′∂ ∂ ∂ ∂ ∂∂ ∂′ ′ ′ ′+ + + + +  ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂   
  

                                                
 (*) These M2 manifolds are defined by any ∞2 united surface elements (z′, x′, p′). 
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     + 1 1
23 21 33 31

2 3 3 3

i iF Fx x
p p p p

p x p x

   ′ ′∂ ∂∂ ∂′ ′ ′ ′+ + +   ′ ′ ′ ′∂ ∂ ∂ ∂   
 = 0. 

 

 When we eliminate 1

2

x

x

′∂
′∂

, 1

3

x

x

′∂
′∂

, we will obtain four equations that are valid for those 

values of ikp′  that correspond to the element (z, x, p) by way of M2 and include one and 

the same element (z′, x′, p′) that will be associated with the latter element.  As a result, by 
eliminating z, x, p from these four equations in z, x1, x2, x3, p1, p2, p3, z′, 1x′ , …, 11p′ , 12p′ , 

…, 33p′  one simply determines those equations in (7) and (8) that define the figure in r′ 
that corresponds to the system (8).  These equations become four second-order partial 
differential equations for z′: 
 1( , , , , , , )i ikF z x p p′ ′ ′ ′… … …  = C, 

 Φ(       ) = C′, 
 Ψ(       ) = C″, 
 Ξ(       ) = C′″, 
 
in which one understands C, C′, C″, C′″ to means the arbitrary constants that were 
previously introduced into (8). 
 
 Any four equations F = C0, Φ = 0C′ , Ψ = 0C′′ , Ξ = 0C′′′  possess ∞∞ common 

characteristics M2 and unboundedly many common intermediate integrals, each of which 
is expressed by two involutory, first-order partial differential equations.  These 
intermediate integrals correspond to the integral strips of any four equations (8): f = C0, ϕ 
= 0C′ , ψ = 0C′′ , χ = 0C′′′ . 

 
 13.  Finally, we consider a transformation that is determined by four equations: 
 

(9)   

1 1 2 3 1 2 3 1 2 3 1 2 3

2

3

4

( , , , , , , , , , , , , , ) 0,

( ) 0,

( ) 0,

( ) 0

F z x x x p p p z x x x p p p

F

F

F

′ ′ ′ ′ ′ ′ ′ =
 =
 =
 =

 

 
and takes any integral-M2 of the system of equations: 
 

(10)    
1 2 3 1 2 3( , , , , , , ) ,

( ) ,

( )

f z x x x p p p C

C

C

ϕ
ψ

=
 ′=
 ′′=

 

 
to an involutory pair of first-order partial differential equations in r′.  The condition for 
this is expressed by three equations in F1, F2, F3, F4 .  One arrives at these equations as 
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follows: One poses the condition for the two first-order partial differential equations that 
correspond to an M2 to be involutory.  This condition has a similar form to equation (26) 

in M. A., Bd. XVII, pp. 312.  One replaces the 1

2

p

x

∂
∂

, etc., that enter into the symbols (12) 

with their values in terms of 1

2

x

x

∂
∂

, 1

3

x

x

∂
∂

 from (10), and then expresses the idea that the 

equation in question should be independent of 1

2

x

x

∂
∂

, 1

3

x

x

∂
∂

.  The figure in r′ that 

corresponds to the system (10) will be comprised of those M2 that correspond to the 
integral-M2 of (10) by way of (9).  An arbitrary surface element (z′, x′, p′) will be 
associated with ∞3 ⋅⋅⋅⋅ ∞2 systems of values of ikp′  by way of this M3 .  Our figure will then 

encompass only ∞5 of the ∞6 systems of values of (z′, x′, p′, ikp′ ) of the space R′ that are 

associated with an arbitrary (z′, x′, p′).  One finds them to be determined more precisely 
by four second-order partial differential equations F = 0, Φ = C, Ψ = C′, Ξ = C″ that 
possess any ∞∞  involutory pairs of equations that correspond to the integral-M2 of (10) 
as common intermediate integrals. 
 
 

§ 4. 
 

On the transformation that is based upon four equations in z, x, y, p, q, z′, p′, q′. 
 

 14.  A transformation that is defined by four equations: 
 

(11)    

1

2

3

4

( , , , , , , , , , ) 0,

( ) 0,

( ) 0,

( ) 0

F z x y p q z x y p q

F

F

F

′ ′ ′ ′ ′ =
 =
 =
 =

 

 
is, in general, a surface transformation only for a certain domain that is determined by 
two third-order partial differential equation.  I proved this on pp. 313 of M. A., Bd. XVII.  
In some situations, this domain can be more restricted.  However, before I go into that, I 
would like to reproduce briefly my earlier proof of the theorem that I mentioned in a 
somewhat modified form. 
 We first think of the transformation (11) as having been brought into the form: 
 

(12)    

1

2

1

2

( , , , , , ),

( ),

( ),

( )

x f z z x y p q

y f

p

q

ϕ
ϕ

′ ′=
 ′ =
 ′ =
 ′ =
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by solving for x′, y′, p′, q′, and then representing any pair of mutually-corresponding 
surfaces z = F(x, y), z′ = Φ(x′, y′) in terms of z, z′, x, y − perhaps as z = F(x, y), z′ = 

( , )x yΦ .  I will denote the differential quotients ( )x′Φ , ( )y′Φ  by π, κ.  One then has: 
 

(13)  π = 
dx dy

p q
dx dx

′ ′′ ′+ ,  κ = 
dx dy

p q
dy dy

′ ′′ ′+ , 

where 

 
dx

dx

′
= 1df

dx
 = 1 1 1 1 1f f f f f

p r s
x z p q z

π∂ ∂ ∂ ∂ ∂+ + + +
′∂ ∂ ∂ ∂ ∂
  = 1 1d f f

dx z
π′ ∂+

′∂
, 

 
dy

dx

′
= 2df

dx
 = 2 2 2 2 2f f f f f

p r s
x z p q z

π∂ ∂ ∂ ∂ ∂+ + + +
′∂ ∂ ∂ ∂ ∂
 = 2 2d f f

dx z
π′ ∂+

′∂
, 

 
dx

dy

′
= 1df

dy
 = 1 1 1 1 1f f f f f

q s t
y z p q z

κ∂ ∂ ∂ ∂ ∂+ + + +
′∂ ∂ ∂ ∂ ∂
  = 1 1d f f

dy z
κ′ ∂+

′∂
, 

 
dy

dy

′
= 2df

dy
 = 2 2 2 2 2f f f f f

q s t
y z p q z

κ∂ ∂ ∂ ∂ ∂+ + + +
′∂ ∂ ∂ ∂ ∂
  = 2 2d f f

dy z
κ′ ∂+

′∂
. 

 
 Equations (13) will then go to the following ones: 
 

(14)  

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 0,

1 0,

f f d f d f
f

z z dx dx

f f d f d f

z z dy dy

π ϕ ϕ ϕ ϕ

ϕ κ ϕ ϕ ϕ ϕ

′ ′ ∂ ∂ ≡ − − − − =  ′ ′∂ ∂ 
 ′ ′∂ ∂  ≡ − − − − =  ′ ′∂ ∂ 

 

 
and the determination of the surface-pair: z = F(x, y), z′ = Φ(x′, y′) will be equivalent to 
the determination of the solutions: z = F(x, y), z′ = ( , )x yΦ  of the system of equations f = 

0, ϕ = 0. 
 For the presentation of these solutions, we proceed exactly as we did in no. 5 of the 
treatise in M. A., Bd. XVII, pp. 285, in regard to the presentation of solutions to a system 
of two equations in z, x, y, p, q, z′, p′, q′.  We must satisfy the equation [f, ϕ]z′xp′ = 0 with 
the solutions in question.  This equation will be free of the third differential quotients u, 
v, w, v of z, due to the special form of the present equations (14) in relation to r, s, t.  For 
that reason, the two equations: 
 

[ ],[ , ]
z

f f
χπ

ϕ ′  = 0, [ ],[ , ]
z

f
χπ

ϕ ϕ ′  = 0 

 
will only be third-order partial differential equations relative to z, and an elimination of 
z′, π, χ from equations (14), along with the equations [f(ϕ)]z′χπ  = 0, and the equations that 
we just wrote down, will then lead to two third-order partial differential equations for the 
determination of the equations z = F(x, y).  These third-order equations behave in such a 
way that their first derivatives with respect to x, y will reduce to only three mutually-
independent equations.  [This comes about in the same way as it did for the similar 
theorem that relates to equations (7) on pp. 290 of M. A., Bd. XVII.]  However, any 
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third-order equation will admit ∞∞ common integral surfaces for that very reason.  All of 
the integrals belong to our system of equations (14) as one part z = F(x, y) of the solutions 
z = F(x, y), z′ = Φ(x, y).  By eliminating z′, π, χ from the three equations f = 0, ϕ = 0, 
[f(ϕ)]z′χπ  = 0,  any of the integrals z = F(x, y) will yield the equation z′ = ( , )x yΦ , which, 
together with z = F(x, y), will define a solution of (14).  All pairs of equations such as z = 
F(x, y), z′ = Φ(x′, y′) will represent two surfaces that will be converted into each other by 
the transformation (12).  Any surfaces will correspond to each other in a one-to-one way.  
There will then exist a one-to-one relationship between the elements (z, x, y, p, q, r, s, t), 
(z′, x′, y′, p′, q′, r′, s′, t′) themselves.  For that reason, not only must the surfaces z = F(x, 
y) satisfy two third-order partial differential equations, as we showed, but also the 
corresponding surfaces z′ = Φ(x′, y′) must belong to two partial differential equations that 
are likewise of third order.  The aforementioned relation between the elements (z, x, y, p, 
q, r, s, t), (z′, x′, y′, p′, q′, r′, s′, t′) is to be thought of as being given by a second-order 
contact transformation that takes any two pairs of third-order equations to each other.  
However, it is not a first-order contact transformation, so it is not an ordinary (i.e., Lie) 
contact transformation (from no. 8). 
 However, it would be a first-order contact transformation in the event that one of the 
pairs of third-order equations admitted a first integral with arbitrary constants (cf., no. 8), 
but in such a case the transformation (12) – which would now be a contact 
transformation, precisely – would take any surface to any surface, and nothing more 
could be said of the system of partial differential equations that defined the surface, 
which could again be transformed into surfaces (cf., no. 9). 
 
 15.  If z′ were missing from equations (12) then z′ would also be missing from 
equations (14) and the equation [f, ϕ]z′χπ = 0.  The determination of the equations z = F(x, 
y) would then be accomplished by means of a second-order partial differential equation 
that one would obtain by eliminating π, χ from the aforementioned equations (14) and the 
equation [f, ϕ]z′χπ = 0.  Any of the integral surfaces of this second-order partial 
differential equation would correspond to an involutory pair of first-order partial 
differential equations in r′ by way of (12), or to their integral surfaces z′ = Φ(x′, y′, C).  
Moreover, any element (z, x, y, p, q, r, s, t) of any second-order partial differential 
equation would correspond to a family of ∞1 elements (z′, x′, y′, p′, q′, r′, s′, t′).  By 
contrast, one of the latter elements would not need to correspond to ∞1 of the former.  In 
general, a surface z′ = Φ(x′, y′) will correspond to only one surface z = F(x, y).  The 
surfaces z′ = Φ(x′, y′) would generally satisfy a system of two third-order partial 
differential equations.  However, if not only z′ were missing from equations (12), but also 
z, then one would not only have a second-order partial differential equation for the 
surfaces z = F(x, y), but also a second-order partial differential equation for the surfaces z′ 
= Φ(x′, y′).  Any element (z, x, y, p, q, r, s, t) [(z′, x′, y′, p′, q′, r′, s′, t′), resp.] of one of 
these second-order equations would correspond to an entire family of ∞1 elements of that 
kind for the other equation.  Any integral surface z = F(x, y) would correspond to ∞1 
integral surfaces, and each of the latter surfaces, to ∞1 of the former. 
 
 16.  If z′ is missing from our transformation equation then one will obtain the surfaces 
in r′ that correspond to an integral surface z = F(x, z) of the relevant second-order 
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equation by mere quadratures.  Namely, one introduces the values F(x, y), F′(x), F″(y) for 
z, p, q, resp., and then obtains, after eliminating x, y: p′ = ψ1(x′, y′), q′ = ψ2(x′, y′), and 
from these equations, one obtains the equation of the corresponding family of surfaces by 
performing the quadrature: 

z′ = ∫ (ψ1(x′, y′) dx′ + ψ2(x′, y′) dy′) . 
 

 17.  However, in general, if the transformation (11) converts any surface z = f(x, y) of 
the domain r into ∞1 surfaces in the domain r′ then the latter surfaces will not be obtained 
by mere quadratures.  Namely, on the one hand, if one substitutes z = f(x, y), p = f ′(x), q 
= f ′(y) in (11) and eliminates x, y then one will have two first-order partial differential 
equations: 
(15)   A(z′, x′, y′, p′, q′) = 0,  B(z′, x′, y′, p′, q′) = 0 
 
that correspond to the surface z = f(x, y) and will be involutory from the assumptions that 
were made.  Their common integral surfaces can be denoted by C, C′, C″, …, for the 
moment.  Every element (z, x, y, p, q) of the surface z = f(x, y) will correspond to ∞1 
elements (z′, x′, y′, p′, q′), one of which lies on C, another, on C′, etc.  The latter elements 
can now be regarded as mutually-corresponding elements of the surfaces C, C′, C″, etc.  
Two infinitely-close elements of the surface z = f(x, y) will correspond to ∞1 pairs of 
united elements (z′, x′, y′, p′, q′), one of which lies on C, another, on C′, etc.  For that 
reason, any two united elements of (15) must correspond to ∞1 pairs of united elements of 
the same equations (15).  An infinitesimal contact transformation of the system of 
equations (15) into itself, which can be regarded as a contact transformation, precisely, 
must then come about as follows: When one differentiates equations (11) and then 
considers the quantities z, x, y, p, q to be constants, one will obtain δx′, δy′, δz′, δp′, δq′ as 
proportional to certain well-defined functions of z′, x′, y′, p′, q′, z, x, y, p, q.  z, x, y, p, q, 
p′, q′ will be eliminated by means of the equations z = f(x, y), p = f ′ (x), q = f ′ (y).  One 
thus gets the transformation in question as being expressed by equations of the form: 
 

δx′ = εψ A′,    δy′ = εψ B′,    δz′ = εψ C′,    δp′ = εψ D,    δq′ = εψ E′, 
 
where A′, B′, …, E′ mean completely-determined functions of x′, y′, z′ that are derived 
from (11) and z = f(x, y), ψ is a still-unknown function of the same quantities, and ε 
means an infinitely small constant.  However, one has to determine ψ in the following 
way: The transformation in question shall be determined (M. A., Bd. XV, pp. 51) by 
means of a function Φ: 
(16)    Φ = ψ(A′ p′ + B′ q′ – C′), 
and one must have: 
 

δp′ = − ε p
x z

∂Φ ∂Φ ′+ ′ ′∂ ∂ 
, δq′ = − ε q

y z

 ∂Φ ∂Φ′+ ′ ′∂ ∂ 
. 

 
 The two equations: 
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p
x z

∂Φ ∂Φ′+
′ ′∂ ∂

 = − ψ D′, q
y z

∂Φ ∂Φ′+
′ ′∂ ∂

 = − ψ E′, 

 
in which one thinks of p′, q′ as being replaced with their values from (15) or (11), will be 
two first-order partial differential equations for ψ.  If ϖ were used instead of log ψ then 
these equations would assume the form: 
 

(17)   

1,

1,

u v w
x y z

u v w
x y z

ϖ ϖ ϖ

ϖ ϖ ϖ

∂ ∂ ∂ + + = ′ ′ ′∂ ∂ ∂
 ∂ ∂ ∂ ′ ′ ′+ + =
 ′ ′ ′∂ ∂ ∂

 

 
where u, v, w, u′, v′, w′ would be completely-determined functions of x′, y′, z′.  These two 
equations must have a solution ϖ in common, so, from the next-to-last discussion, an 
infinitesimal point transformation of the equations (15) that is characterized by (16) must 
exist, and such a transformation will always give v in the form ϖ = ϖ(x′, y′, z′) + an arb. 
funct. of ϕ, if ϕ = C means the equation of the family of integral surfaces of (15). 
 For that reason, if the first of the equations (17) is briefly denoted by A(ϖ) = 1 and the 
second one by B(ϖ) = 1, then of the three equations: 
 

A(ϖ) = 1, B(ϖ) = 1, A(B(ϖ)) – B(A(ϖ)) = 0, 
 

the last one will always be fulfilled along with the first two. 
 One then obtains a value of ϖ, and then a value for ψ, by means of the formula ϖ = 
log ψ, first, by integrating a differential equation (with one arbitrary parameter): 
 

α(x, y) dx + β(x, y) dy = 0. 
 
 The determination of an infinitesimal contact transformation that takes the integral 
family of our involutory, first-order partial differential equations to itself is therefore, in 
general, fraught with the same difficulties as the determination of the integral family 
itself.  Our question is also in no way essentially different from that of the determination 
of the solutions of any two involutory, first-order partial differential equation, since one 
can always write down two equations: 
 

F1(z, x, y, z′, x′, y′, p′, q′) = 0,   F2(z, x, y, z′, x′, y′, p′, q′) = 0 
 
arbitrarily that will make up a system (11), precisely, together with the given partial 
differential equations. 
 
 18.  From M. A., Bd. XVII, pp. 312, equation (26), the involutivity condition for the 
two first-order partial differential equations that correspond to a surface z = f(x, y) by 
means of (11), reads as follows: 
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 (3, 4) [F1, F2]z′x′p′ + (4, 2) [F1, F3]z′x′p′  + (2, 3) [F1, F4]z′x′p′ 
 + (1, 2) [F3, F4]z′x′p′ + (1, 3) [F4, F2]z′x′p′  + (1, 4) [F2, F3]z′x′p′  = 0, 
 
where [Fm, Fn]z′x′p′ is the ordinary involution sign, and (m, n) is written, more briefly, 
instead of: 

m n m ndF dF dF dF

dx dy dy dx
−  

 
(m, n = 1, 2, 3, 4).  If the transformation (11) is of the form: 
 

(18)   

1

2

3

4

( , , , , ),

( ),

( ),

( )

x f z x y p q

y f

p f

q f

′ =
 ′ =
 ′ =
 ′ =

 

 
then any condition equation will assume the simpler form: 
 

(1, 3) + (2, 4) = 0. 
 

 It becomes a second-order partial differential equation: 
 
(19)   A r + B s + C t + D(rt – s2) + E = 0, 
 
where A, B, …, E are functions of x, y, z, p, q.  This is the most general second-order 
equation of that form, so when A, B, …, E are given, and might also be functions of x, y, 
z, p, q, one will have only four equations for the determination of four functions f1, f2, f3, 
f4 whose known terms are A / E, B / E, C / E, D / E.  The surface system in r′ that 
corresponds to the integral surfaces of that second-order partial differential equation will 
be given by two third-order partial differential equations whose first derivatives with 
respect to x′, y′ are algebraic consequences of each other.  As a result, from number 16, 
the integral system of this pair of equations will be obtained by solving a second-order 
partial differential equation (19) and carrying out the quadrature. 
 
 19.  If z is missing from the functions f in equations (18) then z will also be missing 
from the functions A, B, …, E in equation (19), and instead of the aforementioned pair of 
third-order equations, one will have, as was remarked in no. 15, a partial differential 
equation of the same form as (19).  In particular, it will be identical to equation (19) when 
the system of equations (18) remains unchanged under a permutation of the primed and 
unprimed symbols.  Any equation (19) will then be distinguished by the fact that any 
integral surface of it will be transformed into ∞1 other integral surfaces of it.  
Consequently, the integral surfaces of the equation will arrange themselves into pairs of 
∞1 surfaces, where the two families of one pair are related to each other in such a way 
that they go to each other under the given transformation.  Insofar as it defines a surface 
transformation, the transformation will be a single-valued transformation between 
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systems of values (x, y, p, q), (x′, y′, p′, q′), just as it is between (x, y, p, q, r, s, t), (x′, y′, 
p′, q′, r′, s′, t′), etc. 
 
 20.  I must also mention another case in which the surfaces fulfill a second-order 
partial differential equation, and for which a transformation (11) becomes a surface 
transformation.  It relates to the theory of surfaces of constant curvature, as was recently 
developed by Bianchi and Lie (*).  Bianchi’s and Lie’s theories owe their origins to the 
theorem that surface of curvature centers (viz., the central surface) of any surface whose 
principal radii of curvature at a point possess a constant difference that is independent of 
the position of the point will be a surface of constant curvature, or, more precisely, will 
consist of two surfaces of the same constant curvature.  Now, the connection between a 
surface z = f(x, y), p = f ′(x), q = f ′(y) and the most general surface z′ = ϕ(x′, y′), p′ = ϕ 
′(x), q′ = ϕ ′(y) is expressed by the equations: 
 

(20)  

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

1 0,

x x p y y q z z

x x p y y q z z

pp qq

′ ′ ′− + − − − =
 ′ ′ ′ ′ ′− + − − − =
 ′ ′+ + =

 

 
which, together with the given ones, can define a central surface (any surface).  Those 
equations then say only that the points of the two surfaces z = f(x, y), z′ = ϕ(x′, y′) can be 
so arranged that they will be contact points of a common tangent to the two surfaces, and 
that the tangent planes of the two surfaces at any point will be perpendicular to each 
other.  Any two associated points will be the two centers of principal curvature of a point 
of a surface that has the two surfaces z = f(x, y), z′ = ϕ(x′, y′) for its central surface. 
 Equations (20) represent a surface transformation (** ).  If we add the equation: 
 

(21)   (x − x′)2 + (y − y′)2 + (z − z′)2 = 
2

1

α
 

 
to them then (20), (21) will express the condition for the surface pair z = f(x, y), z′ = ϕ(x′, 
y′) to define the central surface of a surface for which the difference of the principal radii 
of curvature at a point will be constant and equal to 1 / α [ρ − ρ′ = 1 / α].  The four 
equations (20), (21) will be of the form (11).  In order to recognize for which surfaces in r 
= (x, y, z) they will define a surface transformation, we must first present the form of the 
involution equation that was written down at the beginning of no. 18 that is valid for the 
present case.  One has to set: 
 

[F2, F2]z′x′p′ = 0, [F1, F2]z′x′p′ = 1 + p2 + q2, [F1, F4]z′x′p′ = 0, 

                                                
 (*) Lie: “Zur Theorie der Flächen constanter Krümmung,” Archiv for Mathematik og Naturvidenskab, 
Bdd. 4, 5 (Hefte 3).  Christiania, 1879, 1880.   I mostly know only of Bianchi’s investigations from the 
work of Lie.  The following transformation (20), (21) is cited by Lie as the analytical expression of 
Bianchi’s transformation of the surfaces of constant curvature. 
 (** ) The equations that express the connection between a surface and its central surface determine a 
surface transformation of the kind that I discussed in M. A. , Bd. XI, , pp. 199, § 3.  
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[F1, F3]z′x′p′ = 0, [F2, F4]z′x′p′ = − 
2

2

a
, [F3, F4]z′x′p′ = 0, 

(2, 4) = 2 (1 + p2 + q2)(1 + p′ 2 + q′ 2) y y

p p

′ −
′ −

, 

(1, 3) = − (rt – s2) (1 + p′ 2 + q′ 2) y y

p p

′ −
′ −

, 

 
and the condition equation in question will then assume the following form: 
 
(22)    rt – s2 + a2 (1 + p2 + q2)2 = 0. 
 
It is independent of z′, x′, y′, p′, q′.  All of its integral surfaces will therefore be converted 
into families of ∞1 surfaces by the transformations (20), (21), and since the system of 
transformation equations is symmetric in the primed and unprimed symbols, the 
transformed surfaces must fulfill the same equation (22) in r′.  However, they represent 

the most general surfaces of constant curvature 
1

R R′
= − a2.  For that reason, the surfaces 

of this constant curvature go to each other under the transformation (20), (21), which was 
to be concluded from the theorem that was cited at the outset, exactly. 
 Therefore, it follows (no. 17) that one has to determine the ∞1 surfaces that 
correspond to a given surface of constant curvature – a2 in such a way that each of them 
defines a central surface of a surface ρ − ρ′ = 1 / a with the given surface by integrating 
an ordinary differential equation in two variables (and one arbitrary parameter).  In the 
same way, one obtains new surfaces of constant curvature, etc., from each of these ∞1 
surfaces, such that one must be able to derive infinitely many surfaces of constant 
curvature besides the original ∞1 surfaces from a surface of constant curvature by 
repeated integration of differential equations in two variables. (*) 
 A strip in r will be converted by any transformation (11) into ∞1 strips in r′ that are 
common integrals of the those three first-order partial differential equations that arise by 
eliminating x, y, z, p, q from (11) and the equations of the given strip.  A strip of a surface 
of constant curvature – a2 will thus be taken to ∞1 strips by means of the transformation 
(20), (21) that lie on one of the ∞1 surfaces that correspond to the given surface.  As a 
result, any characteristic of (22) will be converted into ∞1 other characteristics of the 
same equation.  These others are obtained from the first one by mere elimination in the 
event that these ∞1 surfaces are known ones that correspond to one of the former 
characteristics that lie on a surface of constant curvature. 
 Now, the characteristics of (22) are the principal tangent curves to the integral 
surfaces of the equation.  Consequently: From a surface of constant curvature whose 
principal tangent curves are known, one derives ∞ other surfaces of the same constant 
curvature with their principal tangent curves by the aforementioned operations. 
 

                                                
 (*) According to Lie (see the papers cited above), one obtains ∞∞ surfaces of constant curvature from a 
given surface in this way.   If the geodetic curves of the given surface are known then, according to Bianchi 
and Lie, one will obtain the new surfaces by mere quadratures. 
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 21.  I would not like to leave a consequence of the foregoing untouched that concerns 
the determination of the geodetic curves of a surface of constant curvature.  As we 
showed above, one can derive ∞1 other surfaces of the same constant curvature from a 
surface of constant curvature.  I shall choose one of them arbitrarily.  Along with the first 
surface, it defines the central surface of a family of parallel surfaces.  It will be 
determined by two involutory, first-order partial differential equations.  However, an 
infinitesimal contact transformation is known for the integrals of these equations, namely, 
the parallel transformation.  For that reason, any integral surface will be obtained by mere 
quadratures.  Corresponding to the ∞1 surfaces that will be derived from the original 
surface of constant curvature by the transformation (20), (21), one obtains ∞2 surfaces 
(ρ − ρ′ = 1 / a) in this way that possess the first surface as a shell for its central surface.  
They define a complete solution of the first-order partial differential equation that defines 
the most general surface for which any surface of constant curvature will define a part of 
the central surface.  Now, however, the following theorem is true: If the normals to a 
doubly-infinite family of surfaces define a line complex, and if f(x, y, z, λ) = 0 represents 
∞1 of these surfaces, and they are not parallel surfaces, then the characteristics of the 
first-order partial differential equation that has the assumed doubly-infinite family of 
surface for its integrals that lie on these surfaces will be determined by the equations: 
 

f(x, y, z, λ) = 0, [f ′(x)]2 + [f ′(y)]2 + [f ′(z)]2 = C[f ′(x)]2, 
 
where C is an arbitrary constant (*). 

                                                
 (*) I have borrowed this theorem from my treatise on sphere complexes in the Jahresschrift der 
Universität Lund, v. IX.  However, since it was only given provisionally without proof there, here I will 
write down the proof.   Let f(x, y, z, λ, µ) = 0 be the equation of a family of ∞2 surfaces whose normals 
belong to a given line complex, and let λ, µ be chosen such that for constant λ any equation will represent a 
family of parallel surfaces.  The parallel surfaces that are infinitely close to a surface f(x, y, z, λ, µ) = 0 will 
be obtained by eliminating x, y, z from f(x, y, z, λ, µ) = 0 and using the equations: 
 

 x′ = x + ε 
2 2 2

( )

[ ( )] [ ( )] [ ( )]

f x

f x f y f z

′

+ +
, 

 y′ = y + ε 
2 2 2

( )

[ ( )] [ ( )] [ ( )]

f y

f x f y f z

′

+ +
, 

 z′ = z + ε 
2 2 2

( )

[ ( )] [ ( )] [ ( )]

f z

f x f y f z

′

+ +
, 

or 

 x = x′ − ε 
2 2 2

( )

[ ( )] [ ( )] [ ( )]

f x

f x f y f z

′

+ +
, 

 y = y′ − ε 
2 2 2

( )

[ ( )] [ ( )] [ ( )]

f y

f x f y f z

′

+ +
, 

 z = z′ − ε 
2 2 2

( )

[ ( )] [ ( )] [ ( )]

f z

f x f y f z

′

+ +
. 
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 Moreover, we further know that the characteristics of the first-order partial 
differential equation whose integral surfaces have a given surface as part of their central 
surfaces, such that the normals to any surfaces all contact the given surfaces and will then 
define a special line complex, will be curvature curves on the integral surfaces.  They will 
thus be obtained in the aforementioned way from the integral surfaces of the first-order 
partial differential equations by differentiation and elimination. 
 As a result, one derives from the initially-obtained family of ∞1 surfaces ρ − ρ′ = 1 / 
a, the one family of curvature curves on them, by purely algebraic operations.  One 
further obtains the ∞2 geodetic curves of the initially-chosen surface of constant curvature 
from it, and by likewise algebraic operations.  The geodetic curves of a surface of 
constant negative curvature can thus be found by integrating a differential equation  

, ,
dy

F x y
dx

 
 
 

 = an arb. constant (and subsequent quadratures). 

 
 [I would like to thank Lie for a casual remark on the geodetic curves of the surfaces 
of constant curvature that I have been able to overlook due to a misconception that 
permeates this manuscript.] 
 
 

_________ 
 

 

                                                                                                                                            
One therefore expresses any parallel surface by the equation: 
 

f – ε 2 2 2[ ( )] [ ( )] [ ( )]f x f y f z′ ′ ′+ +  = 0, 
 
if the prime on the symbols x, y, z is omitted.  On the other hand, the equation of this parallel surface is of 
the form: 

f + dµ f ′(µ) = 0. 
Therefore: 

dµ f ′(µ) = – ε 2 2 2[ ( )] [ ( )] [ ( )]f x f y f z′ ′ ′+ + . 
 
 The characteristics of the first-order partial differential equation that have our doubly-infinite family of 
surfaces for a complete system of integrals will be determined by the equation: 
 

f ′(λ) + ε f ′(µ) = 0. 
 
C is an arbitrary constant, here.  Now, if f ′(µ) were replaced with its value above then this equation would 
assume the form: 

2 2 2[ ( )] [ ( )] [ ( )]f x f y f z′ ′ ′+ +  = C f ′(λ), 
 
with which the theorem in question is proved. 


