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 To me, the general theorems of Euler and Monge on the theory of surfaces seem to be 
the most beautiful propositions that are known to geometry, because they are the most 
general.  Those simple, elegant laws on the curvature of surfaces, which were proved 
independently of the particular definition of the surface that one is addressing, are, at the 
same time, eminently suited to the task of making the true spirit of the very fertile method 
of infinitesimals and the law of continuity comprehensible when it is transported from 
analysis to geometry.  However, in order to exhibit the nature of those beautiful theorems 
more clearly, I believe that it is useful to present them in a manner that is somewhat 
different from the one that one usually adopts. 
 Both theorems express a general property of the normals to the same surface and can 
be stated without one having to introduce the surface itself or its sections by different 
planes.  However, although the one is different from the other, the first proposition – viz., 
that of Euler, which tells us that the sum of the curvatures of two normal sections that are 
perpendicular to each other will be constant – is a true identity.  It result solely from the 
law of continuity, and cannot by any means serve to characterize the normals to a surface.  
If (as is quite simple) one makes the words surface and plane sections disappear from its 
statement then one will obtain a theorem that applies to lines that are situated in space in 
an arbitrary manner, provided that their directions are expressed by continuous functions. 
 On the contrary, Monge’s theorem (viz., the existence of two perpendicular directions 
along which two normals will meet) is essentially particular to the lines that are normal to 
a surface, and there exists no corresponding proposition for straight lines that are 
distributed randomly in space. 
 As I see it, that beautiful theorem of Monge suffices to characterize surfaces 
completely, so it is the most general property.  However, one can generalize it, as well, 
and make it more suited to the applications.  Indeed, I was led to the following theorem, 
of which, that of Monge is obviously only a special case: 
 
 If one draws a normal AZ through an arbitrary point A on a surface, and one then 
makes two perpendicular lines pass through the surface, along which one takes infinitely-
small lengths that are equal to AB, AC then the normal to the point B will make an angle 
with the plane ZAB that is equal to the one that the normal at the point C makes with the 
plane ZAC.  I will add that the two normals are either both inside of the dihedral angle 
BAC or both outside of that angle. 
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 In this paper, I shall also give a proposition that can be considered to be the 
complement of that of Euler, and which, when combined with it, will characterize the law 
of variation of the normals to a surface around a given point in the most complete 
manner. 
 Indeed, Euler showed the law of variation for the curvature of normal sections; i.e., 
upon adopting the symbols that were employed in the statement of the preceding 
theorem, the manner by which the projection of the normal at the point B onto the plane 
ZAB is inclined towards the principal normal ZA.  However, in order to know the position 
of that normal at each point, it will not suffice to be able to determine its projection onto 
a known plane, since one must also know the angle that it forms with that projection.  
That angle is subject to a very simple law of variation that is expressed by the following 
theorem: 
 
 If AZ is the normal to a surface at an arbitrary point A, and AP, AQ denote the 
directions of the two lines of curvature at that point, and if one take an infinitely-small 
length AB in a direction AB on the surface then the normal at the point B thus-obtained 
will make an angle with the plane ZAB that is expressed by the following formula: 
 

1 1

2

AB

R r
 − 
 

 sin 2α, 

 
in which R and r denote the two radii of curvature that corresponds to the lines AP, AQ 
and the angle BAQ. 
 
 The first of the two theorems that we stated is an immediate consequence of the 
second. 
 These new properties of surfaces express the necessary condition for lines to be 
normal to a series of surfaces in a very convenient form.  As I see it, it will suffice that 
the property that is expressed by the first of my new theorems is verified for two 
perpendicular directions that are taken by starting from each point of space.  That being 
the case, it will necessarily be true for all other directions. 
 That simple definition of the normal to a surface has allowed me to prove 
geometrically some beautiful results that Sturm was led to by analysis. 
 The first of these two theorems of Dupin relates to orthogonal surfaces.  It consists of 
saying that three series of orthogonal surfaces will always intersect along their lines of 
curvature.  I shall give a very simple proof of this, which had been conjectured up to now. 
 The second application of the results that are obtained in this article relates to optics. 
 Malus has proved that light rays that start from the same point and reflect from an 
arbitrary surface will remain normal to the same series of surface after their reflection.  
Dupin generalized Malus’s proposition by applying it to not only rays that start from the 
same point, but to rays that are directed in an arbitrary manner.  Provided that they are 
normal to the same surface, they will preserve that property after having been reflected or 
refracted in an arbitrary manner, and for whatever surface separates the media.  I shall 
give geometric proofs of all those theorems, and I shall even point out the most general 
law of refraction that can arise from them. 
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 Sturm, who addressed the same question, gave some general formulas that permit one 
to calculate the radii of curvature and the position of the principal sections of the normal 
surface to the refracted rays, provided that one knows analogous elements for either the 
normal surface to the incident rays or for the separation surface of the media.  I arrived 
geometrically at some formulas that are analogous to those of Sturm, and which will 
fulfill the same purpose. 
 

I. 
 

 1. Let A be a point that is taken on a surface, and let AZ be the direction of the 
normal at that point.  Take the z-axis to be that line A, and take the x and y axes to be 
perpendicular that are chosen at random in the tangent plane.  If the equation of the 
surface is: 

z = ϕ (x, y) 
 

then the angles that normals make with the three axes will be cosines that are 
proportional to the quantities: 
 

dz

dx
 = p, 

dz

dy
= q,  and 1, 

 
respectively, and one can represent them by: 
 

λp,  λq, λ, 
 
resp.  If one starts at the point A and takes two infinitely-small lengths AB, AC along the 
X and Y axes, resp., then the points B and C thus-obtained can be considered to be on the 
surface, and it is easy to calculate the cosines of the angles that the normals at those two 
points will form with the axes. 
 The angles that relate to the normal at the point B will have the cosines: 
 

d p

dx

λ⋅ ⋅⋅⋅⋅ AB, 
d q

dx

λ⋅ ⋅⋅⋅⋅ AB, 1, 

 
and the ones that define the normal to the point C have the cosines: 
 

d p

dy

λ⋅ ⋅⋅⋅⋅ AC, 
d q

dy

λ⋅ ⋅⋅⋅⋅ AC, 1. 

 
Upon remarking that p and q are zero for the points considered then those cosines will 
become: 

dp

dx
λ ⋅⋅⋅⋅ AB, 

dq

dx
λ ⋅⋅⋅⋅ AB, 1 

for the point B and: 
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dp

dy
λ ⋅⋅⋅⋅ AC, 

dq

dy
λ ⋅⋅⋅⋅ AC, 1 

 
for the point C.  However, as one knows, one has: 
 

dp

dy
 = 

dq

dx
. 

 
Hence, if AB is equal to AC, which conforms to our hypothesis, then the angle that the 
normal at B makes with the y-axis will be the same as the one that the normal at C makes 
with the x-axis, or, what amounts to the same thing: 
 
 The normal at B is inclined in the ZAB plane by the same quantity as the normal C is 
inclined in the plane ZAC. 
 
 

 2.  Since the cosines 
dp

dy
λ ⋅⋅⋅⋅ AC, 

dq

dx
λ ⋅⋅⋅⋅ AB are equal and have the same sign, it will 

result that the two normals are either both inside the dihedral angle BAC or both outside 
of that angle; i.e., one of the two of them will be skew to the normal section that passes 
through its point of departure, while the second one will be perpendicular, and 
conversely.  Hence, by virtue of the law of continuity, one can conclude that there must 
necessarily exist an intermediate direction to AB and AC, such that the corresponding 
normal is in the normal plane that is drawn through that direction.  If the direction AD 
enjoys that property then our theorem will show that the same thing must be true for the 
perpendicular direction AD′, and in turn, that there must exist two mutually-perpendicular 
lines at each point of the surface such that the normals that are infinitely-close to the 
point considered and drawn in the direction of those two lines will meet the original 
normal. 
 
 
 3. The cosines of the angles that the normal to the point B make with the X-axis and 
the normal at the point C makes with the Y-axis can be considered to be equal (up to 
second-order infinitesimals) to the angles that the projections of those normals onto the 
planes ZAB, ZAC define with the Z-axis.  That is, when those cosines are divided by the 
infinitely-small lengths AB, AC can be considered as representing curvatures of the 
normal sections ZAB, ZAC. 
 Upon calling the curvatures 1 / R, 1 / r, one will then have: 
 

1

R
 = 

d p

dx

λ⋅
,  

1

r
 = 

d p

dy

λ⋅
. 

 
 
 4.  Now suppose that, without changing the Z-axis, one takes the X and Y axes to be 
new lines AX′, AY′, which are mutually-perpendicular and located in the tangent plane.  If 
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α denotes the angle between the axes XX′ then one will have the following transformation 
formulas: 
 x = y′ sin α  + x′ cos α, x′ = x cos α – y sin α, 
 y = y′ cos α − x′ sin α, y′ = y cos α + x sin α, 
 
and in turn, upon letting p′, q′, λ′ denote the quantities that we called p, q, λ in the old 
system of axes: 
 

 p′ = 
dz

dx′
= 

dz dx dz dy

dx dx dy dx
⋅ + ⋅

′ ′
 = p cos α – q sin α, 

 

 q′ = 
dz

dy′
= 

dz dx dz dy

dx dy dy dy
⋅ + ⋅

′ ′
 = p sin α + q cos α, 

 
 λ′2 = (p′2 + q′2 + 1)−1 = (p2 + q2 + 1)−1 = λ2. 
 
It results from this that upon letting R′, r′ denote the radii of curvature of the normal 
sections that were drawn through the x′ and y′ axes, one will have: 
 

 
1

R′
 = 

d p

dx

λ′ ′⋅
′

 = cos α 
d p

dx

λ⋅
′

 − sin α 
d p

dx

λ⋅
′

 

 

  = cos α 
d p dx d p dy

dx dx dy dx

λ λ ⋅ ⋅+ ′ ′ 
 − sin α 

d q dx d q dy

dx dx dy dx

λ λ ⋅ ⋅+ ′ ′ 
 

 

  = cos α 
1

cos sin
d p

R dy

λα α ⋅+ 
 

 − sin α 
1

cos sin
d q

dx r

λ α α⋅ − 
 

. 

 
One will similarly find that: 
 

 
1

r ′
 = 

d p

dx

λ′ ′⋅
′

 = sin α 
d p

dy

λ⋅
′

 + cos α 
d q

dy

λ⋅
′

 

 

  = sin α 
1

sin cos
d p

r dy

λα α ⋅+ 
 

 + cos α 
1

sin cos
d q

dx R

λ α α⋅ + 
 

. 

 
Upon adding them, one will get: 

1 1

R r
+

′ ′
 = 

1 1

R r
+ . 

 
If one supposes that the original x and y axes are in the direction of the lines of curvature, 
whose existence was proved above, then one will have: 
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d p

dy

λ⋅
 = 0, 

d q

dx

λ⋅
= 0, 

and in turn: 

 
1

R′
 = 

1

R
cos2 α + 

1

r
 sin2 α, 

 

 
1

r ′
 = 

1

R
sin2 α + 

1

r
 cos2 α. 

 
These are the known formulas that give the curvatures of the normal sections. 
 
 
 5.  Now, study the law of variation of the angle that is defined by the normal at a 
point and the let us section through AZ that is drawn through that point.  As we have seen, 
that angle has the same value for two points that are equidistant from A and taken in two 
rectangular directions, and it will be represented by: 
 

AB ⋅⋅⋅⋅
d p

dy

λ⋅
 or 

d q

dx

λ⋅ ⋅⋅⋅⋅ AC,  resp. 

 
If we look for the values for the points that are located at an equal distance on the x′ and 
y′ axes then we must calculate: 

AB ⋅⋅⋅⋅
d p

dy

λ ′⋅
′

. 

Now, since p′ = 0, one will have: 
 

 
d p

dy

λ ′⋅
′

 = 
d dp

p
dy dy

λ λ ′′ +
′ ′

 = 
dp

dy
λ ′

′
= λ cos α 

dp

dy′
– λ sin α dq

dy′
 

 

  = λ cos α sin cos
dp dp

dx dy
α α 

+ 
 

– λ sin α cos sin
dq dq

dy dx
α α 

+ 
 

. 

 
If one then takes AX and AY to be the directions of the lines of curvature in such a way 
that one has: 

dp

dy
 = 0, 

dq

dx
 = 0 

then one will have: 
 

d p

dy

λ ′⋅
′

 = cos α sin α 
dp dq

dx dy
λ λ 

− 
 

 = 1
2 sin 2α 

1 1

R r
 − 
 

, 

 
in such a way that the desired angle will have the very simple expression: 
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1
2  AB ⋅⋅⋅⋅ sin 2α ⋅⋅⋅⋅ 

1 1

R r
 − 
 

, 

 
which says that the normal to the surface, which is situated in the plane of the section for 
principal sections, is inclined in that section for points that are infinitely close to A 
according to a law that is independent of the nature of the surface considered.  The 
maximum will exist for the direction that inclined at 45 degrees in those principal 
sections; it will be proportional to the difference between the curvatures of the surface. 
 
 

II. 
 

 1. The preceding formulas exhibit a very simple law by which the positions of the 
normals to a given surface will vary around a point.  However, lines in space that are 
chosen at random will not generally be normal to the same surface, and their law of 
variation will not be subject to all of the conditions of the preceding paragraph.  Among 
those conditions, we shall look for the ones that we can consider to be sufficient to 
characterize the normals to a surface. 
 Let X, Y, Z be the functions of three variables x, y, z that represent the cosines of the 
angles that a line that starts at a point whose coordinates are x, y, z defines with the three 
rectangular axes to which that point is referred, in such a way that a line will correspond 
to each point in space.  The condition for there to exist a series of surfaces that are normal 
to all of those lines is the same as the condition of integrability for the total differential 
equation: 
(1)  X dx + Y dy + Z dz = 0. 
 
Now, as one knows, that integrability condition is expressed by the equation: 
 

(2)  0 = 
dY dZ dZ dX dX dY

X Y Z
dz dy dx dz dy dx

    − + − + −    
    

. 

 
That identity must persist no matter what change of variables is performed in equation 
(1).  For example, if one changes the axes in such a manner as to make the z-axis parallel 
to the direction of the line that corresponds to the point in space whose coordinates are α, 
β, γ then equation (1) will take the form: 
 
(3)  X1 dx1 + Y1 dy1 + Z1 dz1 = 0, 
 
in which x1, y1, z1 are the coordinates of the points in space when referred to the new 
axes, and X1, Y1, Z1 are the cosines of the angles between the corresponding lines and 
those axes.  One must then have: 
 

(2)  0 = 1 1 1 1 1 1
1 1 1

1 1 1 1 1 1

dY dZ dZ dX dX dY
X Y Z

dz dy dx dz dy dx

     
− + − + −     
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identically.  For the particular point whose coordinates are α, β, γ in the old system, the 
quantities X1, Y1 will obviously become equal to zero, and Z1 will become unity.  As a 
result, that equation will become: 

(5)      1

1

dX

dy
= 1

1

dY

dx
, 

 
and for each point in space one can define a condition that is analogous to equation (5) 
for conveniently-chosen axes.  We shall see that if that condition is satisfied for all points 
in space then equation (2) will be satisfied identically, and as a result equation (1) will be 
integrable. 
 Indeed, consider the difference: 

1

1

dX

dy
− 1

1

dY

dx
, 

 
which, by hypothesis, is annulled for the points whose coordinates are α, β, γ in the old 
system of axes.  We seek to express that difference in the old system of axes. 
 If a, b, c, a′, b′, c′, a″, b″, c″ denote the cosines of the angles that the old axes define 
with the new ones then one will have: 
 
 x1 =  ax + by + cz, y1 =  a′x + b′y + c′z, z1 = a″x + b″y + c″z, 
 X1 = aX + bY + cZ, Y1 = a′X + b′Y + c′Z, Z1 = a″X + b″Y + c″Z, 
 
and in turn: 
 

 1

1

dY

dx
= 

,

dX dX dX
aa ba ca

dx dy dz

dY dY dY
ab bb cb

dx dy dz

dZ dZ dX
ac bc cc

dx dy dz

′ ′ ′+ + 

′ ′ ′+ + + 



′ ′ ′+ + + 


 1

1

dX

dy
= 

,

dX dX dX
aa b a c a

dx dy dz

dY dY dY
ba bb bc

dx dy dz

dZ dZ dX
ca cb cc

dx dy dz

′ ′ ′+ + 

′ ′ ′+ + + 



′ ′ ′+ + + 


 

 

1

1

dY

dx
− 1

1

dX

dy
 = (ba′ – ab′) dX dY

dy dx

 
− 

 
+ (ca′ – c′a) 

dX dZ

dz dx
 − 
 

+ (cb′ – bc′) dY dZ

dz dy

 
− 

 
. 

 
If one remarks that a′b – b′a, ca′ – c′a, cb′ – bc′ are equal to c″, b″, a″, resp., then that 
equation will become: 
 

1

1

dY

dx
− 1

1

dX

dy
 = c″ dX dY

dy dx

 
− 

 
+ b″ dX dZ

dz dx
 − 
 

+ a″ dY dZ

dz dy

 
− 

 
. 
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 The left-hand side is annulled for the point whose coordinates are α, β, γ , so the same 
thing must be true for the right-hand side, which is identical to it.  However, a″, b″, c″ are 
proportional to the values Z, Y, X, resp., take at that point.  Hence, one will have: 
 

(6)    0 = Z
dX dY

dy dx

 
− 

 
+ Y

dX dZ

dz dx
 − 
 

+ X 
dY dZ

dz dy

 
− 

 
. 

 
Thus, if equation (5) is satisfied for all points in space then the same thing will be true for 
equation (6), and equation (1) will be integrable. 
 
 
 2.  The theorem that was involved with equation (5) is susceptible to a very simple 
geometric interpretation.  Since that equation is true at each point as long as one takes the 
Z-axis to be parallel to the line that corresponds to the point considered, the cosines X and 
Y will be annulled for that point, in such a way that if, upon taking it to be the starting 
point, one draws two infinitely-small lengths that are parallel to the x and y axes, resp., 
then if one lets σ denote the common value of the two lengths then the angle that is 
defined by the line that corresponds to the extremity of the former one and the Y-axis then 
one will have: 

σ 
dY

dx
 

 
for its cosine, and the angle that is defined by the line that corresponds to the extremity of 
the second length and the X-axis will have: 
 

σ 
dX

dy
 

 
for its cosine.  From equation (5), those two angles must be equal, and conversely if that 
is true for all points in space then equation (1) must be integrable.  We then have the 
following theorem: 
 
 In order for lines whose directions are given as functions of the coordinates of their 
starting points to be normal to a series of surfaces, it is necessary and sufficient that 
upon taking a point A in space and the line AZ that corresponds to that point, and then 
drawing two infinitely-small lengths from the starting point A that are equal to AB, AC 
and perpendicular to AZ, the line that corresponds to the point B will make an angle with 
the plane ZAB that is equal to the one that the line that starts from the point C will make 
with the plane ZAC. 
 
Therefore, it will suffice, for example, that there shall exist two perpendicular directions 
at each point for which those angles are annulled; i.e., such that the normals to the points 
C and D are in the planes ZAB, ZAC. 
 It is, moreover, very easy to verify that if the condition is fulfilled for two directions 
AB, AC then the same thing will be true for two other arbitrary directions that are 
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perpendicular to each other.  However, in any case, in order to prove that the lines are 
normal to the same surface, it will suffice to see that there exist two directions at each 
point in space that are perpendicular to the line that corresponds to it, and for which the 
condition is fulfilled. 
 
 

III. 
 

 As an application, I will show how one can use the preceding results to prove the 
beautiful theorem of Dupin on orthogonal surfaces. 
 Consider three series of orthogonal surfaces, and let AX, AY, AZ be the tangents at a 
point A to the curves of intersection of the surfaces that pass through it.  Let M, N, P be 
three points that are taken from the three directions AX, AY, AZ, respectively, at equal, 
infinitely-small distances from the point A.  Upon considering the normals to the surfaces 
that cut along AX at the point M and calling the angles that they form with the axes α, β, 
γ, α′, β′, γ′, one will have: 
 

cos α  cos α′ + cos β cos β′ + cos γ cos γ′ = 0. 
 
However, α, α′ differ from a right angle by only infinitely little, and β, γ are infinitely-
small, so upon neglecting second-order infinitesimals, that equation will become: 
 
(1)      cos β′ + cos γ = 0. 
 
Similarly, upon letting α1, β1, γ1, 1α ′ , 1β ′ , 1γ ′  denote the angle that the axes form with the 

normals to the surfaces that intersect along AN, one will have: 
 
(2)      cos γ1 + cos 1α ′  = 0. 

 
Finally, upon letting α2, β2, γ2, 2α ′ , 2β ′ , 2γ ′  denote the angles that axes define with the 

normals that are drawn the point p to the two surfaces that pass through that point, one 
will have: 
(3)      cos α2 + cos 2β ′  = 0. 

 
However, from a theorem that we stated above: 
 
(4)   cos β′ = cos 1α ′ , cos γ = cos α2,  cos γ2 = cos 2β ′ , 

 
so it will result that upon appending equations (1) and (2), we will have: 
 
(5)     cos β′ + cos α2 + cos 2β ′  = 0, 

which will give: 
cos β′  = 0, 
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when it is combined with equation (3).  One will similarly have: 
 

cos γ = 0, cos γ1 = 0, 
 
which will prove that the normals at the point M, N, P to each of the surfaces that cross at 
A will be situated in planes that pass through those points and the normal that 
corresponds to A.  It will result from this that the points M, N, P are on the lines of 
curvature of the three surfaces, which is Dupin’s theorem. 
 We should remark that we made use of the fact that the three surfaces must pass 
through A in our proof.  We have actually proved the following theorem then, which has 
Dupin’s theorem as an immediate consequence: 
 
 If three surfaces intersect in such a manner that they are normal at all points where 
they meet then the curves of intersection will be tangent to the lines of curvature that are 
drawn through the common point of the three surfaces on each of those three surfaces. 
 
 

IV. 
 

 Malus proved that light rays that start from a point and reflect from an arbitrary 
surface will remain normal to that surface after reflection.  Dupin generalized that 
theorem by showing that light rays that are directed normal to the same surface can be 
reflected or refracted upon traversing an arbitrary surface without losing the property of 
being normal to the same surface. 
 More recently, Sturm has reprised the proof of that theorem and used analysis to 
arrive at an expression for the radii of curvature and the position of the lines of curvature 
of the surface that is normal to the refracted rays as functions of the corresponding 
elements of the surface that is normal to the incident rays. 
 All of those results can be deduced geometrically from the theorems that were proved 
in this paper. 

 A 

B 

C 

C′ 

α 

A′ 

B′ 

 
Figure 1. 
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 We first remark that if the light rays are normal to the same surface then they will be, 
at the same time, normal to an infinitude of surfaces that one can obtain by drawing a 
constant length on each ray by starting with the original normal surface.  Indeed, let (Fig. 
1) AZ be the normal at a point of a surface, and let AB, AC be the directions of the lines of 
curvature at the point A.  Draw normals to the point B and C, which will be in the planes 
ZAB, ZAC, respectively, and if one takes an arbitrary point A′ on AZ then I say that the 
sheaf of light rays around the point A′ will satisfy the necessary and sufficient condition 
for them to all be normal to the same surface that passes through A′.  Indeed, if one takes 
two elements A′B′, A′C′ that are perpendicular to A′Z and situated in the planes ZAB, 
ZAC, resp., then the rays that correspond to the points B′, C′ will be BB′, CC′, precisely.  
They will then both meet the normal A′Z, and consequently, from our theorem, all of the 
light rays will be normal to the same surface around the point A′. 
 It is obvious that the normals AA′, BB′, which are found between the two surfaces, 
will differ by only second-order infinitesimals, and that as a result, the portions that are 
intercepted along two normals at a finite distance along the same line of curvature will be 
rigorously equal to each other, and since one can always pass from one arbitrary point to 
another arbitrary point on the same surface by advancing along two lines of curvature 
successively, it will result that the two surfaces will intercept equal portions of all the 
normals between them. 

 

Y1 X1 

N1 

A 

N 

X 

Y 
B 

B′ 

C 

C′ 

N″ 

Y″ 

X″ 

D 

Y′ 

X′ 

N′ 

P 

 
Figure 2. 
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 From that, in order to prove that the rays that are normal to the same surface will 
preserve that property after having been refracted in an arbitrary manner, it will suffice to 
prove that the condition that we gave as necessary and sufficient will be fulfilled for 
some point on each ray.  We choose the point that is situated on the surface that separates 
the two media:  Let (Fig. 2): 
 
  AN be the normal to the separation surface, 
  AX be the incident ray, 
  AY be the refracted ray, 
  x be the angle XAN, 
  y be the angle YAN, 

  l be the index of refraction 
sin

sin

x

y
. 

 
 Draw an infinitely-small length AP along a line that is normal to the three lines AN, 
AX, AY, which will be in the same plane, from the known law of refraction.  Let PN′, PX′, 
PY′ be three lines that correspond to AN, AX, AY, which are drawn through the point P, 
which can be considered to belong to the separation surface.  If we project those lines 
PN′, PX′, PY′ onto a plane that is perpendicular to AP then the angle that they make 
between them will change only by second-order infinitesimals, and consequently, the 
ratio of the two sines will remain equal to l. 
 Let α be the inclination of the projection of PX′ onto a parallel to AX, or, in other 
words, the inclination of PX′ above the plane PAX. 
 Let b be the inclination of the projection of PY′ onto a plane that is parallel to AY; i.e., 
the inclination of Y′ above the plane PAY. 
 Finally, let γ be the angle that projection of PN′ makes with a parallel to AN; i.e., the 
inclination of PN′ above the plane PAN; one must have: 
 

sin( )

sin( )

x

y

α γ
β γ

+ −
+ −

 = 
sin

sin

x

y
 = l ; 

 
hence, one infers, upon remarking that α – γ and β – γ are infinitely small, that: 
 

( )cos

( )cos

x

y

α γ
β γ

−
−

 = l, β = 
( )cos cos

cos

x l y

l y

α γ γ− +
. 

 
 As one sees, these formulas allow one to calculate β in terms of α and γ, which are 
assumed to be known.  From our theorem, in order for the rays AY to be normal to the 
same surface, it is necessary and sufficient that upon taking a length AY1 = AP in the 
plane that is perpendicular to AY and normal to AP, the angle that the ray YY″, which 
passes through the point Y1, makes with the plane YAY1 will be equal to the angle β that 
was calculated above.  We then look for the value of that new angle, which we denote by 
β′. 
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 Draw three lines AN1, AX1, AY1 through the point A in the plane of the lines AN, AX, 
AY that are perpendicular to them, respectively.  Let AN1 have a length that that is equal 
to AP.  The point N1 can be considered to be situated on the separation surface of the two 
media.  Let N1N″ be the normal at that point, and let N1X″, N1Y″ be the incident and 
refracted rays that correspond to them.  Those rays will make infinitely-small angles with 
the plane of the lines AX1, AY1, AN1, and can consequently be regarded as meeting the 
lines AX1, AY1 at m and n, resp., up to second-order infinitesimals. 
 Cut the three lines N1N″, N1X″, N1Y″ with a plane so that BCD represents the trace of 
the lines AX, AY on that plane, which are perpendicular to the projection of N1N″.  
Suppose, to fix ideas, that the length N1B is equal to unity, so that plane will be cut by the 
lines N1N″, N1X″, N1Y″ at points whose rabattement around BD as a hinge [†] will be 
represented by B′, C′, D′.  Let γ1 be the angle that is defined by the line N1N″ and the 
plane XAN, while β1, α1 are the angles that Y1Y″, X1X″ make with that plane, resp.  One 
will obviously have: 
 

BB′ = γ1 ,      CC′ = 1

cosx

α
,      DD′ = 1

cosy

β
. 

 
However, the points B′, C′, D′ are in a straight line, since the lines on which they are 
found are in the same plane; consequently, one will have: 
 

BB DD

BB CC

′ ′−
′ ′−

 = 
BD

BC
 = 

tan

tan

y

x
 = 

cos

cos

x

l y
, 

and as a result: 

1
1

1
1

cos

cos

y

x

βγ

αγ

−

−
 = 

cos

cos

x

l y
. 

 
However, from our theorem, and since, by hypothesis, the lines N, X are normal to the 
same surface, one will have γ1 = γ .  Moreover, the angle α1 that is defined by the normal 
at m to the plane XAm is equal to: 
 

α × 
Am

AP
 = α cos x, so 1

cosx

α
 = α, 

and as a result: 

1

cosy

β
= 

( )cos cos

cos

x l y

l y

α γ γ− +
, so 1

cosy

β
= β. 

 

                                                
 [†] Translator: Rabattement around a line (viz., the “hinge”) is a technique from descriptive geometry 
that involves rotating a certain plane around a line until it coincides with another plane, thus taking points 
of one plane to points of the other one. 
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That is precisely what must be true in order for the lines Y to be normal to the same 
surface, since α, α1 are the angles that two normals that are drawn in two perpendicular 
directions, but at distances from the point A whose ratio is cos y, make with the 
corresponding planes.  Consequently, if one takes equal lengths along AY and AP then the 
refracted rays that correspond to the points thus-obtained will make equal angles with the 
planes XAX1, XAP; those rays will then be normal to the same surface. 
 Recall the equation: 

β = γ + 
( )cos

cos

x

l y

α γ−
. 

  
Let θ be the angle between the line AP and one of the lines of curvature of the surface 
that is normal to the incident ray AX.  Let ω be the angle between that same line AP and 
the line of the curvature of the surface that is normal to AY.  Finally, let u be the angle 
that it defines with the line of curvature of the separation surface that is normal to AN. 
 If R, r, R′, r′, R″, r″ are the radii of curvature of those three surfaces then we will 
have: 

 α = 1
2 sin 2θ ⋅⋅⋅⋅ AP 

1 1

R r
 − 
 

, 

 

 β = 1
2 sin 2ω ⋅⋅⋅⋅ AP 

1 1

R r
 − ′ ′ 

, 

 

 γ = 1
2 sin 2u ⋅⋅⋅⋅ AP 

1 1

R r
 − ′′ ′′ 

, 

and in turn: 
 

(a) 
1 1

R r
 − ′ ′ 

sin 2ω = 
1 1

R r
 − ′′ ′′ 

 sin 2u + 
cos 1 1 1 1

sin 2 sin 2
cos

x
u

l y R r R r
θ    − − −    ′′ ′′    

. 

 
This is a first relation between the elements that relate to the curvatures of the surface that 
is normal to the refracted rays.  One can easily find two other ones, and as a result, 
determine the three quantities R′, r′, and ω.  Once more, consider three normals (Fig. 3) 
AN, AX, AY that are drawn from the point A to three surfaces.  As before, draw the normal 
AP, and at the point P, which can be considered to be found on each of the three surfaces, 
draw the normals PN, PX, PY, which must be found in the same plane and must satisfy 
the condition: 

sin

sin

X P N

Y PN

′ ′ ′
′ ′

 = l. 

 
It is easy to see that the curvatures of the normal sections that are made to the three 
surfaces along AP are equal to the angles that are formed by the lines PN′, PX′, PY′ and a 
plane that is perpendicular to AP, divided by the length AP.  Let αn , αx , αy be those 
angles, and let 1 / ρn, 1 / ρx, 1 / ρy be the curvatures of the sections, so one will have: 
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1

nρ
 = n

AP

α
, 

1

xρ
 = x

AP

α
, 

1

yρ
 = y

AP

α
. 

 
 

P 

B 
B′ 

N′ 

X′ 
C 

C′ 

A 

N Y′ D 

D′ 

X 

Y 

1N′  

1X ′  

1Y′  

x 

y p N″ 
X″ Y″ 

n 

q 

 
Figure 3. 

 
We seek a relation between αn , αx , αy .  In order to do that, we consider three projections 
of the lines AN′, AX′, AY′ onto the plane that is perpendicular to AP.  Let 1PX′ , 1PY′ , 

1PN′  be those projections.  Imagine a plane BCD that is drawn perpendicular to the plane 

of those lines and along a line BD that is normal to 1PN′ .  With BD as a hinge, rabatt the 

points where the lines PN′, PX′, PY′ pierce that plane.  Let B′, C′, D′ be those 
rabattements, which will be in a straight line.  We will obviously have: 
 

BB DD

BB CC

′ ′−
′ ′−

= 
DB

BC
= 

tan

tan

y

x
 = 

cos

cos

x

l y
. 

However: 

BB′ = αn , CC′ = 
cos

x

x

α
, DD′ = 

cos
y

y

α
, 

so 

cos

cos

y
n

x
n

y

x

α
α

αα

−

−
= 

cos

cos

x

l y
, 
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so one can infer that: 
αx = αn cos x – l αn cos y + l αy , 

and as a result: 

(b)     
1

xρ
= 

1

nρ
 cos x − 

cos

n y

l y l

ρ ρ
+ . 

However, one has: 

 
1

xρ
= 

1

R
sin2 θ + 

1

r
cos2 θ, 

 

 
1

yρ
= 

1

R′
sin2 ω + 

1

r ′
cos2 ω, 

 

 
1

nρ
= 

1

R′′
sin2 u + 

1

r ′′
cos2 u, 

 
which will transform equation (b) into the following one: 
 

(c) 
2 2sin cos

R r

θ θ+  = 

= cos x 
2 2sin cosu u

R r

 
+ ′′ ′′ 

 − cos y 
2 2sin cosu u

R r

 
+ ′′ ′′ 

+ l 
2 2sin cos

R r

ω ω 
+ ′ ′ 

. 

 
In order to find a third relation between those quantities R′, r′, and ω, we draw three lines 
AN″, AX″, AY″ through the point A in the plane of the three normals AN, AX, AY that are 
perpendicular to those normals.  Draw the normal N″ n to the separation surface through 
the point N″ that is situated on the perpendicular to AN at an infinitely-small distance 
AN″, and the incident and refracted rays N″ x, N″ y, resp.  Those rays can be considered to 
meet the lines AX″, AY″ at p and q, and it is easy to see that if nα ′ , xα ′ , yα ′  denote the 

angles that the projection of the three lines N″ n, N″ x, N″ y define with the corresponding 
lines that pass through the point A then one will have, upon denoting the radii of 
curvature of the normal sections that were made in the three surfaces by the plane XANY 
by nρ ′ , xρ ′ , yρ ′ : 

1

nρ′
 = n

AN

α ′
′′

, 
1

xρ′
 = 

cos
x

AN x

α ′
′′

, 
1

yρ′
 = 

cos
y

AN y

α ′
′′

. 

 
However, since one of the three lines N″ n, N″ x, N″ y is normal to the separation surface 
of the media, and the other two are directed along the incident and refracted rays, one 
must have: 

sin( )

sin( )
x n

y n

x

y

α α
α α

′ ′+ −
′ ′+ −

 = l, 
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from which, one will infer, upon remarking that 
sin

sin

x

y
= l: 

( )cos

( )cos
x n

y n

x

y

α α
α α

′ ′−
′ ′−

 = l, 

 

α′ x = 
( )cos cos

cos
y x nl y x

y

α α α′ ′ ′− +
, 

so 

(d)    
cos

x

x

ρ′
 = 

cos 1 1
cos

cos
y x n

y
l x

x

ρ ρ ρ
 

− +  ′ ′ ′  . 

 
However, from a known formula: 
 

1

xρ′
= 

2 2cos sin

R r

θ θ+ ,  
1

yρ′
= 

2 2cos sin

R r

ω ω+
′ ′

, 
1

nρ′
= 

2 2cos sinu u

R r
+

′′ ′′
, 

 
in such a way that the formula (d) becomes: 
 

(e)   cos2 x 
2 2cos sin

R r

θ θ 
+ 

 
= (l – cos x) 

2 2cos sinu u

R r

 
+ ′′ ′′ 

+ l cos y 
2 2cos sin

R r

ω ω 
+ ′ ′ 

. 

 
The three formulas (a), (c), (e) allow one to calculate the quantities R′, r′, ω as functions 
of R, r, R″, r″, θ, and u. 
 
 

V. 
 

 One can easily find all of the laws of refraction that can exist from Dupin’s theorem.  
Suppose that the refracted ray always remains in the plane that passes through incident 
ray and the normal to the separation surface, and y = ϕ (x) represents the relation that 
exists between the two angles of incidence and refraction.  Upon recalling Fig. 2 and 
making absolutely the same argument, while replacing the relation y = ϕ (x) with just the 
equation: 

sin

sin

x

y
 = l, 

one will find that: 
 y + β – γ = ϕ (x + α − γ), 
 β – γ = (α − γ) ϕ′ (x), 
 β = γ + (α − γ) ϕ′ (x). 
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One will likewise find, by means of the constructions that were employed above and 
upon adopting the same notations that: 
 

1

cosy

β
= γ + (α − γ) tan

tan

y

x
. 

 
In order for the lines Y to be normal to the same surface, it is necessary and sufficient that 
one must have: 

β = 1

cosy

β
; 

i.e.: 

γ 
tan

1
tan

y

x
 − 
 

 + α 
tan

tan

y

x
= γ [1 – ϕ′ (x)] + α ϕ′ (x). 

 
That equation must be true for any quantities α, γ, which are obviously mutually-
independent, so it will be necessary that one must have: 
 

ϕ′ (x) = 
tan

tan

y

x
; 

the integral is: 
ϕ (x) = arc sin C sin x 

or 
sin ( )

sin

x

x

ϕ
= C. 

 
The law of nature is, consequently, the only one that Dupin’s theorem will permit to be 
exact in full generality. 
 

__________ 
 
 
 

 
 
 
 

 
 
 


