“Mémoire sur la théorie des surfaces,” J. Math. peteppl.9 (1844), 133-154.

Memoir on the theory of surfaces

By J. BERTRAND

Translated by D. H. Delphenich

To me, the general theorems of Euler and Monge othdwy of surfaces seem to be
the most beautiful propositions that are known to gegmeecause they are the most
general. Those simple, elegant laws on the curvatuseiréaces, which were proved
independently of the particular definition of the surftit& one is addressing, are, at the
same time, eminently suited to the task of making tne spirit of the very fertile method
of infinitesimals and the law of continuity comprebiate when it is transported from
analysis to geometry. However, in order to exhibitrthrire of those beautiful theorems
more clearly, | believe that it is useful to presdregm in a manner that is somewhat
different from the one that one usually adopts.

Both theorems express a general property of the normé#te tsame surface and can
be stated without one having to introduce the surfacH# a@sets sections by different
planes. However, although the one is different froendther, the first proposition — viz.,
that of Euler, which tells us that the sum of the ctunes of two normal sections that are
perpendicular to each other will be constant — is aitiem.tity. It result solely from the
law of continuity, and cannot by any means serve toacharze the normals to a surface.
If (as is quite simple) one makes the wosdsfaceandplane sectionslisappear from its
statement then one will obtain a theorem that applidiges that are situated in space in
an arbitrary manner, provided that their directions apeessed by continuous functions.

On the contrary, Monge’s theorem (viz., the existesfd®vo perpendicular directions
along which two normals will meet) is essentially gautar to the lines that are normal to
a surface, and there exists no corresponding propositio straight lines that are
distributed randomly in space.

As | see it, that beautiful theorem of Monge suBficew characterize surfaces
completely, so it is the most general property. Hawewne can generalize it, as well,
and make it more suited to the applications. Indeadsl led to the following theorem,
of which, that of Monge is obviously only a special case:

If one draws a normal AZ through an arbitrary point A on a surface, and ome the
makes two perpendicular lines pass through the surface, along which on@nfakesy-
small lengths that are equal to AB, AC then the normal to the poinit Biake an angle
with the plane ZAB that is equal to the one that the normal at the ponak€s with the
plane ZAC. 1 will add that the two normals are either both insidinefdihedral angle
BAC or both outside of that angle.
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In this paper, | shall also give a proposition that cancbmesidered to be the
complement of that of Euler, and which, when combingt ity will characterize the law
of variation of the normals to a surface around a gpeimt in the most complete
manner.

Indeed, Euler showed the law of variation for the atuxe of normal sections; i.e.,
upon adopting the symbols that were employed in theerstit of the preceding
theorem, the manner by which the projection of the nbatthe pointB onto the plane
ZABis inclined towards the principal norm&\. However, in order to know the position
of that normal at each point, it will not sufficebe able to determine its projection onto
a known plane, since one must also know the angteittfiarms with that projection.
That angle is subject to a very simple law of variatioat is expressed by the following
theorem:

If AZ is the normal to a surface at an arbitrary point A, and AP, AQotiethe
directions of the two lines of curvature at that point, and if one takefantely-small
length AB in a direction AB on the surface then the normal at the pamisBobtained
will make an angle with the plane ZAB that is expressed by the ifadléarmula:

E(i—}j Sin 20',
2\R

in which R and r denote the two radii of curvattinat corresponds to the lines AP, AQ
and the angle BAQ.

The first of the two theorems that we stated isiramediate consequence of the
second.

These new properties of surfaces express the sagesondition for lines to be
normal to a series of surfaces in a very converfemmh. As | see it, it will suffice that
the property that is expressed by the first of neyvrtheorems is verified for two
perpendicular directions that are taken by startiogh each point of space. That being
the case, it will necessarily be true for all otbgections.

That simple definition of the normal to a surfabas allowed me to prove
geometrically some beautiful results that Sturm lgdgo by analysis.

The first of these two theorems of Dupin relatestthogonal surfaces. It consists of
saying that three series of orthogonal surfacesalilays intersect along their lines of
curvature. | shall give a very simple proof osthivhich had been conjectured up to now.

The second application of the results that arainétl in this article relates to optics.

Malus has proved that light rays that start frdma same point and reflect from an
arbitrary surface will remain normal to the samdeseof surface after their reflection.
Dupin generalized Malus’s proposition by applyitigoi not only rays that start from the
same point, but to rays that are directed in aitrarip manner. Provided that they are
normal to the same surface, they will preserve phaperty after having been reflected or
refracted in an arbitrary manner, and for whatesteface separates the media. | shall
give geometric proofs of all those theorems, astdll even point out the most general
law of refraction that can arise from them.
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Sturm, who addressed the same question, gave some denerds that permit one
to calculate the radii of curvature and the positiorhefgrincipal sections of the normal
surface to the refracted rays, provided that one knomakgous elements for either the
normal surface to the incident rays or for the separaurface of the media. | arrived
geometrically at some formulas that are analogous deetlof Sturm, and which will
fulfill the same purpose.

1. Let A be a point that is taken on a surface, andAétbe the direction of the
normal at that point. Take tleaxis to be that liné\, and take thet andy axes to be
perpendicular that are chosen at random in the tandané.p If the equation of the
surface is:

z=¢(xy)

then the angles that normals make with the threes ax#l be cosines that are
proportional to the quantities:

dz _ d—Zz (o} and 1,
dx dy

respectively, and one can represent them by:
Ap,  Ag, A

resp. If one starts at the poistand takes two infinitely-small lengti#eB, AC along the
X andY axes, resp., then the poif@sandC thus-obtained can be considered to be on the
surface, and it is easy to calculate the cosineBeb&hgles that the normals at those two
points will form with the axes.

The angles that relate to the normal at the @intll have the cosines:

didp g dHAg
dx dx

and the ones that define the normal to the pBin&ve the cosines:

AP e 9 o
dy dy

Upon remarking thap andq are zero for the points considered then those cosuie
become:
A dp CAB, A dq CAB, 1
dx dx
for the pointB and:
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for the pointC. However, as one knows, one has:

dp _dq
dy dx’

Hence, ifAB is equal toAC, which conforms to our hypothesis, then the angle ttiet
normal atB makes with theg-axis will be the same as the one that the norm@lrabkes
with thex-axis, or, what amounts to the same thing:

The normal at B is inclined in the ZAB plane by the same quantity astimal C is
inclined in the plane ZAC.

2. Since the cosineﬂz—s OAC, )l% OAB are equal and have the same sign, it will
result that the two normals are either both insidedihedral angIl8AC or both outside

of that angle; i.e., one of the two of them will fleew to the normal section that passes
through its point of departure, while the second one wdl gerpendicular, and
conversely. Hence, by virtue of the law of continudge can conclude that there must
necessarily exist an intermediate directionA® and AC, such that the corresponding
normal is in the normal plane that is drawn througit threction. If the directiodD
enjoys that property then our theorem will show thatdame thing must be true for the
perpendicular directioAD’, and in turn, that there must exist two mutually-perpeustaliic
lines at each point of the surface such that the ngrthatt are infinitely-close to the
point considered and drawn in the direction of those tneslwill meet the original
normal.

3. The cosines of the angles that the normal to thet Bomake with theX-axis and
the normal at the poinf€ makes with they-axis can be considered to be equal (up to
second-order infinitesimals) to the angles that theeptmns of those normals onto the
planesZAB, ZAC define with theZz-axis. That is, when those cosines are divided by the
infinitely-small lengthsAB, AC can be considered as representing curvatures of the
normal sectionZAB, ZAC.

Upon calling the curvatures R/ 1 /r, one will then have:

1 _dp 1_dip
R dx r dy

4. Now suppose that, without changing #axis, one takes th€ andY axes to be
new linesAX’, AY’, which are mutually-perpendicular and located in the tainglane. If
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a denotes the angle between the ax®sthen one will have the following transformation
formulas:

X =y’sina +Xx cosa, X =xcosa-ysina,

y =y’cosa-X sina, Yy =ycosa+xsina,

and in turn, upon letting’, ', A" denote the quantities that we callgdy, A in the old
system of axes:

_Uz_dzpdx, A2 dy _ o osa—gsing,

dX dx dX dy dk

q = - dz_ d—ZE}% dzgﬂy =psina +qcosa,

dy dx dy dy dy
AIZ — (p:2 + q:2 + 1)—1 — (p2 + q2 + 1)—1 :/]2.

It results from this that upon letting’, r " denote the radii of curvature of the normal
sections that were drawn through the@ndy' axes, one will have:

i:dm’p’: didp . dOp
R dx

dmpg§+mmpﬂﬂ_sMa(qu£B+m]qg%

= cosa
( dx dx dy dk dx dX dy dk

_ 1 diip . (dD’lq 1 . j
= cosa | —cosa + siy | —sina cosa —= sin |.
R dy dx r

One will similarly find that:

r_l, :dDﬂ—p :Sinadmp +Cosaw

dx dy dy

(A p [(Aq

dy

. (1 . d j (d . 1 j
=sSiha | —Ssiha + cosxy | + cosa sma+—Rcom .
r

Upon adding them, one will get:

W__lH
po

= |k

1
—+
R’

If one supposes that the originahndy axes are in the direction of the lines of curvatur
whose existence was proved above, then one wié:hav
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and in turn:
1
R r

st a + 1 co¢ a.
r

1_1
r'

poll

These are the known formulas that give the curvatdrgeeamormal sections.

5. Now, study the law of variation of the angle thatdefined by the normal at a
point and the let us section througyi that is drawn through that point. As we have seen,
that angle has the same value for two points tleaequidistant frorA and taken in two
rectangular directions, and it will be represented by:

ABw or qumc, resp.
dy dx

If we look for the values for the points that are ledaat an equal distance on theind
y' axes then we must calculate:
m U
s AP

dy
Now, sincep’ = 0, one will have:
didp = p’ﬂwld—ld = )ld—pz)l cosa@—)l sinaﬂ
dy dy  dy dy dy dy
=Acosa @sina+ﬂ3com —Asinag %COSO'+EI sing |.
dx dy dy dx

If one then take#& X andAY to be the directions of the lines of curvature in sackhay
that one has:

then one will have:

OIDIJ:cosasina )l@— 49 :%sinm(i——lj,
dy dx dy R r

in such a way that the desired angle will have the senple expression:
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4 AB[&in ME(%——S

which says that the normal to the surface, whicditisated in the plane of the section for
principal sections, is inclined in that section fooints that are infinitely close ta
according to a law that is independent of the matfrthe surface considered. The
maximum will exist for the direction that inclineat 45 degrees in those principal
sections; it will be proportional to the differenoetween the curvatures of the surface.

1. The preceding formulas exhibit a very simple lagwihich the positions of the
normals to a given surface will vary around a poiktowever, lines in space that are
chosen at random will not generally be normal te shme surface, and their law of
variation will not be subject to all of the condits of the preceding paragraph. Among
those conditions, we shall look for the ones that ean consider to be sufficient to
characterize the normals to a surface.

Let X, Y, Z be the functions of three variabbesy, z that represent the cosines of the
angles that a line that starts at a point whoseduoates are, y, z defines with the three
rectangular axes to which that point is referradsuch a way that a line will correspond
to each point in space. The condition for therexist a series of surfaces that are normal
to all of those lines is the same as the conditibmtegrability for the total differential
equation:

(1) X dx+Y dy+Z dz=0.

Now, as one knows, that integrability conditioreipressed by the equation:

) 0= xdY dz Y(dz d><J + 7@ dxX d

dz dy dx dz dy Cdy
That identity must persist no matter what changeaoiables is performed in equation
(1). For example, if one changes the axes in sucianner as to make th@xis parallel

to the direction of the line that corresponds ® phint in space whose coordinates @re
S, ythen equation (1) will take the form:

©)) Xidx +Yidy +2Z; dz =0,
in which xi, y1, z1 are the coordinates of the points in space whésresl to the new

axes, andXy, Y1, Z; are the cosines of the angles between the comdsmplines and
those axes. One must then have:

e T )
dz dy dx dz dy d
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identically. For the particular point whose coordinaesa, S, yin the old system, the
guantitiesXi, Y1 will obviously become equal to zero, aBdwill become unity. As a
result, that equation will become:

(5) % = ﬂ ,
dy, dx

and for each point in space one can define a conditmnighanalogous to equation (5)
for conveniently-chosen axes. We shall see that tfabadition is satisfied for all points
in space then equation (2) will be satisfied identicalhyd as a result equation (1) will be
integrable.
Indeed, consider the difference:
dX, dy,

dy, dx

which, by hypothesis, is annulled for the points whosedinates arer, £, yin the old
system of axes. We seek to express that differertte iold system of axes.

If a, b, c a,b,c,a’ b’ c" denote the cosines of the angles that the old axesedef
with the new ones then one will have:

Xy = ax+by+cz y,=ax+by+cz z =a'x+b'y+c'z
Xp=aX+bY+cZ Y,=aX+byY+cZ Zy=a'X+b"Y+C"Z,
and in turn:

aa 3% 1 g X1 g I aa X 1 gal s ¢

dx dy dz dx dy dz
av _ +ab’ﬂ+ bbﬂ+ cbﬁ dXx, _ +ba’ﬂ+ bbﬂ+ béiY
dx dx dy dz dy, dx dy dz
+ac’£+bdd—z+ CC%, +ca’d—z+cbd—z+ CC%,

dx dy dz dx dy dz

D9 —an) [ PRIy e - ca) (d—x—d—zj+(cb'—bd) dv_dzy
dx dy dy dx dz dx dz dy

If one remarks tha#'b — Ba, cd — ca, db’' — b¢ are equal ta”, b", a", resp., then that
equation will become:

dy, dX, _ ,(dX dY ,,(dx dzj L(dY dzZ
—A-—1 =" —-—|+b"| ——— |+&" | ———|.
dx dy dy dx dz dx dz dy
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The left-hand side is annulled for the point whose coatds arer, 5, y, so the same
thing must be true for the right-hand side, which is idahto it. Howevera’, b", ¢’ are
proportional to the valueg Y, X, resp., take at that point. Hence, one will have:

(6) 0= d_x_d_Y +Y(d_x—d_zj+x ﬂ_d_z )
dy dx dz dx dz dy

Thus, if equation (5) is satisfied for all points in sp#ten the same thing will be true for
equation (6), and equation (1) will be integrable.

2. The theorem that was involved with equation (5) is ejtsiole to a very simple
geometric interpretation. Since that equation is trieaeah point as long as one takes the
Z-axis to be parallel to the line that corresponds tqthet considered, the cosingsand
Y will be annulled for that point, in such a way thatupon taking it to be the starting
point, one draws two infinitely-small lengths that areaplal to thex andy axes, resp.,
then if one letso denote the common value of the two lengths then tgdeathat is
defined by the line that corresponds to the extremity ofdhmer one and thg-axis then
one will have:

dy

0'_
dx

for its cosine, and the angle that is defined by thethaécorresponds to the extremity of
the second length and tKeaxis will have:

dX
0’ —_—
dy

for its cosine. From equation (5), those two angled mmeiequal, and conversely if that
is true for all points in space then equation (1) mustnbegrable. We then have the
following theorem:

In order for lines whose directions are given asdiions of the coordinates of their
starting points to be normal to a series of surkade is necessary and sufficient that
upon taking a point A in space and the line AZ t@tesponds to that point, and then
drawing two infinitely-small lengths from the stag point A that are equal to ARC
and perpendicular to AZ, the line that correspotalthe point B will make an angle with
the plane ZAB that is equal to the one that the thmat starts from the point C will make
with the plane ZAC.

Therefore, it will suffice, for example, that theskall exist two perpendicular directions
at each point for which those angles are annulleq;sueh that the normals to the points
C andD are in the planedAB, ZAC.

It is, moreover, very easy to verify that if thendition is fulfilled for two directions
AB, AC then the same thing will be true for two other arbitramgdions that are
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perpendicular to each other. However, in any caserder to prove that the lines are
normal to the same surface, it will suffice to skat tthere exist two directions at each
point in space that are perpendicular to the line thaesponds to it, and for which the
condition is fulfilled.

As an application, | will show how one can use piheceding results to prove the
beautiful theorem of Dupin on orthogonal surfaces.

Consider three series of orthogonal surfaces, antiX{eAY, AZ be the tangents at a
point A to the curves of intersection of the surfaces thas gasugh it. LeM, N, P be
three points that are taken from the three directhddsAY, AZ, respectively, at equal,
infinitely-small distances from the poiAt Upon considering the normals to the surfaces
that cut alongAX at the pointM and calling the angles that they form with the axeg,

v, a’, B, v, one will have:

cosa cosa’+ cospcosf’+ cosycosy =0.

However, a, a’ differ from a right angle by only infinitely littleand £, y are infinitely-
small, so upon neglecting second-order infinitesimhég, équation will become:

1) cosB’+ cosy= 0.

Similarly, upon lettingai, Bi, i, a;, B, ¥, denote the angle that the axes form with the
normals to the surfaces that intersect aldhfjone will have:

(2) cosyi+ cosa; = 0.

Finally, upon lettingas, 2, 5, a,, B,, V, denote the angles that axes define with the
normals that are drawn the pomto the two surfaces that pass through that point, one

will have:

3) cosm,+ cos B, = 0.

However, from a theorem that we stated above:

(4) cosp’= cosay, COSy= COSQy, COSJs = COS 3,
so it will result that upon appending equations (1) andw@)will have:
(5) cosB’+ cosax+ cos B, =0,

which will give:
cosf’ =0,
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when it is combined with equation (3). One will simyahnkave:
cosy=0, cosy =0,

which will prove that the normals at the povif N, P to each of the surfaces that cross at
A will be situated in planes that pass through those aamd the normal that
corresponds ta. It will result from this that the pointsl, N, P are on the lines of
curvature of the three surfaces, which is Dupin’s theorem

We should remark that we made use of the fact thathitee surfaces must pass
throughA in our proof. We have actually proved the following theotben, which has
Dupin’s theorem as an immediate consequence:

If three surfaces intersect in such a manner that they are normal poiats where
they meet then the curves of intersection will be tangent tangeeof curvature that are
drawn through the common point of the three surfaces on each of thoseutiiaees

V.

Malus proved that light rays that start from a pant reflect from an arbitrary
surface will remain normal to that surface after wtiten. Dupin generalized that
theorem by showing that light rays that are directednabto the same surface can be
reflected or refracted upon traversing an arbitrary sunfatteout losing the property of
being normal to the same surface.

More recently, Sturm has reprised the proof of thabréra and used analysis to
arrive at an expression for the radii of curvature &edposition of the lines of curvature
of the surface that is normal to the refracted rayduactions of the corresponding
elements of the surface that is normal to the incideys.

All of those results can be deduced geometrically fitmartheorems that were proved
in this paper.

Figure 1.
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We first remark that if the light rays are norn@the same surface then they will be,
at the same time, normal to an infinitude of surfab@$ one can obtain by drawing a
constant length on each ray by starting with the waignormal surface. Indeed, let (Fig.
1) AZ be the normal at a point of a surface, and\BtAC be the directions of the lines of
curvature at the poik. Draw normals to the poild andC, which will be in the planes
ZAB, ZAC, respectively, and if one takes an arbitrary péinobn AZ then | say that the
sheaf of light rays around the poiit will satisfy the necessary and sufficient condition
for them to all be normal to the same surface thatgzagrougl®’. Indeed, if one takes
two elementsA’B’, A'C' that are perpendicular t&Z and situated in the plan@AB,
ZAC, resp., then the rays that correspond to the pBintS' will be BB, CC, precisely.
They will then both meet the norm&lZ, and consequently, from our theorem, all of the
light rays will be normal to the same surface aroungthet A'.

It is obvious that the normalsA, BB, which are found between the two surfaces,
will differ by only second-order infinitesimals, and thataresult, the portions that are
intercepted along two normals at a finite distanoagthe same line of curvature will be
rigorously equal to each other, and since one can alwagsfigan one arbitrary point to
another arbitrary point on the same surface by advaradong two lines of curvature
successively, it will result that the two surfacesl witercept equal portions of all the
normals between them.

N/

Figure 2.
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From that, in order to prove that the rays that amenal to the same surface will
preserve that property after having been refracted imanaay manner, it will suffice to
prove that the condition that we gave as necessarysaffidient will be fulfilled for
some point on each ray. We choose the point thausted on the surface that separates
the two media: Let (Fig. 2):

AN  be the normal to the separation surface,
AX  be the incident ray,

AY  be the refracted ray,

X be the anglXAN,

y be the angléd AN

) . sinx
| be the index of refractlmcsf_—.
siny

Draw an infinitely-small lengtiAP along a line that is normal to the three liddg
AX;, AY, which will be in the same plane, from the knowaw lof refraction. LePN’, PX/,
PY’ be three lines that correspondAbl, AX, AY, which are drawn through the poiRt
which can be considered to belong to the separatimface. If we project those lines
PN’, PX’, PY" onto a plane that is perpendicular A® then the angle that they make
between them will change only by second-order it&@simals, and consequently, the
ratio of the two sines will remain equallto

Let a be the inclination of the projection &X’ onto a parallel tAX, or, in other
words, the inclination oPX”above the planBAX.

Let b be the inclination of the projection Bff” onto a plane that is parallel £, i.e.,
the inclination ofY”above the planBAY.

Finally, let ybe the angle that projection BN’ makes with a parallel tAN; i.e., the
inclination ofPN”above the planBAN, one must have:

sin(x+a-y) _ sinx

sinly+8-y) siny =1

hence, one infers, upon remarking that yandS— yare infinitely small, that:

(a - y)cosx _ B= (a-y)cosx+ |y cosyy
(B-y)cosy | cosy '

As one sees, these formulas allow one to calclateterms ofa and y; which are
assumed to be known. From our theorem, in ordethi® raysAY to be normal to the
same surface, it is necessary and sufficient thanuaking a lengtiAY; = AP in the
plane that is perpendicular Y and normal toAP, the angle that the rayY”, which
passes through the poivit, makes with the plan€AY will be equal to the anglg that
was calculated above. We then look for the valudat new angle, which we denote by

e
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Draw three linesAN;, AX;, AY; through the poinA in the plane of the line&N, AX,

AY that are perpendicular to them, respectively. Alét have a length that that is equal
to AP. The pointN; can be considered to be situated on the separationewfféiee two
media. LetN;N” be the normal at that point, and M£X” N;Y” be the incident and
refracted rays that correspond to them. Those rdysnake infinitely-small angles with

the plane of the linedX;, AY;, ANy, and can consequently be regarded as meeting the
linesAX;, AY; atmandn, resp., up to second-order infinitesimals.

Cut the three lineBl;N” N:X” N1Y” with a plane so th&CD represents the trace of
the linesAX, AY on that plane, which are perpendicular to the projectd N;N”.
Suppose, to fix ideas, that the lendB is equal to unity, so that plane will be cut by the
lines N;:N”, N;X” NiY” at points whose rabattement aroBid as a hinge T will be
represented b, C’, D’ Let )4 be the angle that is defined by the IINeN” and the
planeXAN while B, a1 are the angles thatY”, X;X” make with that plane, resp. One
will obviously have:

BB'=y, CC'=-% ., pp=t.
COSX cosy

However, the point8’, C’, D’ are in a straight line, since the lines on whiclyt are
found are in the same plane; consequently, onéhanié:

BB'-DD _ BD _ tany _ cosx
BB-CC BC tanx lcosy’

and as a result:

v - B
' cosy _ cOsX
A | cosy
' cosx

However, from our theorem, and since, by hypothdhes linesN, X are normal to the
same surface, one will haye= y. Moreover, the angle; that is defined by the normal
atmto the planeXAmis equal to:

Am _ a, _
ax — =acosX, SO =aq,
AP COSX
and as a result:
- X+ |
B _ (a-ycosxtlycoy B _p
cosy | cosy cosy

[l Translator: Rabattement around a line (viz., thinge”) is a technique from descriptive geometry
that involves rotating a certain plane around a lin#l it coincides with another plane, thus taking points
of one plane to points of the other one.
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That is precisely what must be true in order for theslY to be normal to the same
surface, sincer, oy are the angles that two normals that are drawwangerpendicular
directions, but at distances from the poiktwhose ratio is coy, make with the
corresponding planes. Consequently, if one takes ezpgthis alond\Y andAP then the
refracted rays that correspond to the points thus-obtarikeohake equal angles with the
planesXAX;, XAP, those rays will then be normal to the same surface.

Recall the equation:

B=y+ (a y)cosx.
| cosy

Let &be the angle between the liad and one of the lines of curvature of the surface
that is normal to the incident r&yX. Let wbe the angle between that same kieand
the line of the curvature of the surface that iswad to AY. Finally, letu be the angle
that it defines with the line of curvature of tlegparation surface that is normal&bl.

If R, r, R, r, R” r” are the radii of curvature of those three surfabes we will
have:

a = 3sin 20CAP (%——ﬂ

B = 3sin 2wAP (%——1},

!

1 1
=isin2AP| =-—|,
y 2 (Rn rnj

and in turn:

1 1). 1 1) . COSX 1 1) . 1 1) .
——— 2w=| —-—|sind+ ——= - —-—— 2.
@ (R’ r,jsm (R” r"j | cosy K R rjsm ( R l”j l }

This is a first relation between the elements takte to the curvatures of the surface that
is normal to the refracted rays. One can easilg fwo other ones, and as a result,
determine the three quantiti®s r’, andaww Once more, consider three normals (Fig. 3)
AN, AX, AYthat are drawn from the poiAtto three surfaces. As before, draw the normal
AP, and at the poirf, which can be considered to be found on eacheofittee surfaces,
draw the normal®N, PX, PY, which must be found in the same plane and musfga
the condition:

sinX"P'N' _ |
sinY' PN

It is easy to see that the curvatures of the nosmations that are made to the three
surfaces alon@\P are equal to the angles that are formed by tleskN’, PX’, PY and a
plane that is perpendicular &P, divided by the lengtiAP. Let an, oy, ay be those
angles, and let 14, 1 /0, 1/p, be the curvatures of the sections, so one wilehav



Bertrand — Memoir on the theory of surfaces. 16

Figure 3.

We seek a relation between, ax, ay. In order to do that, we consider three projextio
of the linesAN’, AX’, AY’ onto the plane that is perpendicularAB. Let PX/, PY/,

PN; be those projections. Imagine a pl&@D that is drawn perpendicular to the plane
of those lines and along a liB® that is normal toPN; . WithBD as a hinge, rabatt the

points where the line®N’, PX’ PY’ pierce that plane. LeB’, C’, D’ be those
rabattements, which will be in a straight line. Wi obviously have:

However:

SO

BB'- DD _ DB _ tany _ coOsx
BB-CC BC tanx lcosy

7 7 ax ’ ay
BB =a,, CC’= , DD’= :
COSX cosy
a. - ay
n
CoSy _ COSX
a, lcosy’
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S0 one can infer that:
ax = an cosx —| an cosy +1 ay,
and as a result:

(b) 1 1 COSX — | cosy +I_.

p. P P P

However, one has:

1oLsire+tcogg
b R r
i:i,sinza)+£,co§ag
p, R r
i:i"sir12u+i"co§u,
b, R r

which will transform equatiorb into the following one:

sinzé?+ cos 8 _
R r

_ sinfu  cosu sinfu  cosu sifw  codw
= cosx| ==+ - cosy + +1 + :

(©)

" r." R" r." R’ r.'

In order to find a third relation between thosergu®sR’, r, andw we draw three lines
AN” AX” AY”through the poinA in the plane of the three norm&isl, AX; AY that are
perpendicular to those normals. Draw the norNiah to the separation surface through
the pointN” that is situated on the perpendicularAN at an infinitely-small distance
AN” and the incident and refracted r&/4x, N”y, resp. Those rays can be considered to
meet the lineAX”, AY”atp andq, and it is easy to see thatdf, a;, a, denote the

angles that the projection of the three lihnga, N”x, N”y define with the corresponding
lines that pass through the poiAtthen one will have, upon denoting the radii of
curvature of the normal sections that were madéarthree surfaces by the plaxaNY
by o,, £, P,

i1_a 1_ a4  1__a

n X

1
— y

P, AN"" p. AN'cosx’  p, AN'cosy

However, since one of the three lifésn, N”x, N”y is normal to the separation surface

of the media, and the other two are directed altegincident and refracted rays, one
must have:

sinx+a, -a,) _
sinly+a, —a,)
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. - : Sinx
from which, one will infer, upon remarking tha_{—: I
siny

(a,—a;)cosx _ |
(a, —a;)cosy

_I(a, —a))cosy +a;, cos

a’x ,
cosy
SO
I(C;’Sy_ p%} p'lcosx
COSX " n
(d) — = ! .
you COSX

However, from a known formula:

1 _ cos?é’+ sirf@ 1 _ co§w+ sifw 1 _ co§u+sirfu

0. R ro’ P, R ro o =4 o

in such a way that the formuld)(becomes:

cos 8 sind)_ cosu sirfu coSw sifw
(e codx ot = (I — cosx) —+ +1 cosy + .

I n U !
r r

The three formulasaj, (c), (€) allow one to calculate the quantities r’; was functions
of R r, R r” & andu.

V.

One can easily find all of the laws of refractitwat can exist from Dupin’s theorem.
Suppose that the refracted ray always remainsdmthane that passes through incident
ray and the normal to the separation surface,yandp (x) represents the relation that
exists between the two angles of incidence andicedm. Upon recalling Fig. 2 and
making absolutely the same argument, while repéathe relatiory = ¢ (x) with just the
equation:

sinx |
siny
one will find that:
ytB-y=¢x+a-y,
B-y =(@-)¢’(X),
B=y +t(@-)¢'(X.
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One will likewise find, by means of the constructionst th@re employed above and
upon adopting the same notations that:

tan
By @y Y
cosy tanx

In order for the line¥ to be normal to the same surface, it is necessaysufficient that
one must have:

cosy

y[l—tzg’x’jwtaﬂ: YIL—¢' (] + a ¢’ ().

That equation must be true for any quantit@s);, which are obviously mutually-
independent, so it will be necessary that one mang:

p'(0) = o
tanx
the integral is:
@ (X) = arc sinC sinx
or

sing (x) _ C

sinXx

The law of nature is, consequently, the only ora Bupin’s theorem will permit to be
exact in full generality.



