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 It will be shown here that: In Riemann’s space, in which the arc length is described by a 
quadratic differential form: 
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 , 

 
one can introduce a moving n-bein for any curve and linearly combine the invariant derivatives of 
those n vectors with respect to arc length from the n vectors themselves.  The generalization of the 
Frenet formulas that is obtained in that way looks just like the special formulas for Euclid’s space, 
and all of the calculation that goes into Riemann’s metric in the general case will involve only 
slightly more work that it does for the special Euclidian case. 
 In order for me to be brief, I would like to keep to the notations that H. Weyl used in his 
wonderful book Raum – Zeit – Materie (Berlin, 1918), and in particular, I shall drop the summation 
sign, following a suggestion by A. Einstein.  Let the basic quadratic form be assumed to be, say, 
positive-definite.  Along our spatial curve xi = xi (s), we next call upon the contacting unit vectors: 
 

(1)      i = idx
ds

, i k
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For an arbitrary vector field i , one can then derive the tensors [cf., Weyl, pp. 104 (I), called 
“extension” by A. Einstein]: 
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and then derive the vectors: 
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from them by “contracting” along our curve xi (s).  The vectors i  along the curve xi (s) still appear 
on the right-hand side of this.  We have then found an invariant differential process  that makes 
it possible to derive a new family of vectors ( )i s  from any given one ( )i s  along xi (s): 
 

(4)      i  = 
i

k rk rd
ids


 

 
  
 

. 

 
Moreover, one can also arrive at the invariant derivative (4) when one starts from the “parallel 
displacement” along a curve xi (s) in Riemann space that was described by Levi-Civita (1).  
Namely, if s and s + ds = s + s are two neighboring points along the curve then [cf., Weyl, pp. 
100 (35)]: 
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will be the vector that arises by parallel translation from s to s + ds.  However, one will then have: 
 

(4*)   ( ) ( )i is ds s s
ds
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 = i . 

 
 That -process shall be repeatedly applied to the tangent vectors i  = (1)

i : 
 
(5)     (1)

i = (2)
i   ( 1)

i
k  = ( )

i
k  

 
(I put the subscripts in parentheses here, since they have nothing to do with the other superscripts 
and subscripts.)  In that way, one will find a moving n-bein ( )

i
k along the curve xi (s) that is 

invariant under coordinate transformations, but which does not consist of orthogonal unit vectors.  
However, we would like to assume that our curve is “generic” in the sense that the n vectors ( )

i
k  

are not linearly dependent.One convinces oneself that this is immesdiately possible in Euclidian 
space when the xi define a Cartesian axis-cross.  In that case, the Christoffel symbols will all be 
zero, and the -process will reduce to derivation with respect to arc length. 
 We can now derive an orthogonal n-bein of unit vectors  from the n-bein  by the 
orthogonalization process of E. Schmidt (2).  To that end, let the “inner product” of the vectors 

( )
i
p , ( )

i
q  be denoted by (p, q): 

 
(6)      ( ) ( )

i i
ik p qg   = (p, q) 

 
 

 (1) T. Levi-Civita, “Nozione di parallelism in una varietà quanlunque…,” Rendiconti di Palermo 42 (1917).  
 (2) One might confer, say, G. Kowalewski’s Determinantentheorie, Leipzig, 1909, pp. 423-426.  
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and the determinant by: 
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From our assumption (viz., ds2 > 0, and therefore | gik | > 0), that determinant D(p) will be positive: 
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2
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ik rg   > 0 (i, k = 1, 2, …, n ; r = 1, 2, …, p). 

 
The desired normalized orthogonal system of  will then be implied by the formulas: 
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, (p = 1, 2, …, n ; D0 = 1). 

 
(One can then take the roots to be, say, all positive in that way.) 

 
In fact, one immediately confirms the orthogonality: 
 
(10)   ( ) ( )

i k
ik p qg   = 0,  and therefore ( ) ( )

i k
ik p qg    = 0 

 
for p > q.  Moreover, on the grounds of orthogonality, one has the normalization: 
 
(11)     ( ) ( )

i k
ik p pg    = 1, 

 
in which one replaces all ( )

i
q , q < p in the first factor with zeroes when defining the inner product. 

 The  now define the moving orthogonal n-bein of our curve xi (s).  As a normalized orthogonal 
system, the  are linearly independent, and we can then express their invariant derivatives  as 
linear combinations of the  : 
 
(12)    ( )

i
p = ( ) ( )

i
pq q  , (pq) = ( ) ( )( )i k

ik p qg   . 
 
That is what the desired Frenet formulas will look like, and our problem is to calculate the 
coefficients , which will be invariants (“curvatures”) of our curve xi (s), since everything was 
calculated in an invariant way. 
 I will next show: Since the  define a normalized orthogonal system, the matrix of the  will 
be skew-symmetric.  Namely, if: 
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(13)     ( ) ( )
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 The left-hand side expands to: 
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Since [Weyl, pp. 99 (31), pp. 98 (29)]: 
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if further follows that: 
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i k

ik p q
d g
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and equation (13) will then reduce to our assertion: 
 
(15)     (pq) + (qp) = 0. 
 
 Moreover: One can easily see from the way that the vectors  were constructed that: 
 
(16)     (pq) = 0 for p < q + 1. 
 
 In fact, (p) is a linear combination of the (1) , (2) , … (p) , and therefore the invariant derivative 
(p) will depend upon only (1) , (2) , … (p+1) , or what amounts to the same thing, (1) , … (p+1). 
 From (15), (16) the matrix of  will then have the form: 
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and the Frenet formulas (12) will read: 
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We only have to calculate the n – 1 “curvatures” 1 :  then. 
 In order to determine the derivatives  from (9), we first note that when one replaces the  in 
(14) with the , it will then follow that: 
 

(19)    d
ds

(p, q) = (p + 1, q) + (p, q + 1) . 

 
 Moreover, the definition (4) of  implies the rule for calculation: 
 

(20)     i = i id
ds
       . 

 
Therefore, when the -process is applied to (9), that will give: 
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when one first differentiates the first “factor” with respect to the rows and the differentiates the 
second one with respect to the columns.  Upon taking the inner product with: 
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one will observe that one can replace all (q) , q < p + 1 on the right-hand side of (21) with zeroes, 
due to their orthogonality to (p+1) .  One will then find the desired result: 
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 One can employ the covariant coordinates i instead of the contravariant coordinates i 
throughout.  The formula: 

(23)     i = ki
r

i kd
rds


 

 
  
 

 

 
[cf., Weyl, pp. 101 (36)] will enter in place of (4), and the Frenet formulas (18) will remain valid 
when one switches the upper symbols i, k with the lower ones. 
 The formulas (22) also provide the curvatures of a curve in Euclid’s space when one employs 
an arbitrary curvilinear coordinate system. 
 In conclusion, I would like to add some references.  If one specializes our formulas to a 
Cartesian axis-cross in Euclid’s space and one lets n   then one will obtain the result that G. 
Kowalewski got [“Les formules de Frenet dans l’espace fonctionnel,” C. R. Acad. Sci. Paris 151 
(1910), 1338-1340].  If one specializes our formulas to non-Euclidian space then one will get the 
Frenet formulas for non-Euclidian space geometry that were first given for n = 3 by L. Bianchi 
[“Sulle superficie a curvature nulla in geometrica ellittica,” Annali di Matematica (2) 24 (1896), 
92-129, esp., pp. 101].   G. Kowalewski presented the Frenet formulas in non-Euclidian space 
for arbitrary n [“Zur Differentialgeometrie…,” Sitzungsberichte Wien, Math. Nat. Klasse 120 
(1911), Sec. II.a.1, pp. 531-542.]  Cf., also the dissertation of E. Stranski that was suggested by 
G. Pick [“Zur Infinitesimal geometrie der Kurven in elliptische Räume,” ibidem, 121 (1912), Sec. 
II.a.1, pp. 813-827].  At the suggestion of C. Carathéodory, P. Finsler has investigated the 
geometry of curves in Rn with the metric that is induced by an arbitrary variational problem [“Über 
Kurven und Flächen in allgemeinen Räumen,” Dissertation, Göttingen, 1918]. 
 
 Tübingen in May 1919. 
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