On optical ray systems

(By M. Blasendorff)

Translated by D. H. Delphenich

Let a first and second medium be separated by a surface whose equation is:

$$
\begin{equation*}
f_{12}\left(x_{12}, y_{12}, z_{12}\right)=0, \tag{1}
\end{equation*}
$$

where $x_{s} y, z$ mean the rectangular coordinates of a point of the surface.
Let the wave surface of the first medium be given by the equation:

$$
\begin{equation*}
f_{1}\left(\rho_{1} \xi_{1}, \rho_{1} \eta_{1}, \rho_{1} \zeta_{1}\right)=0 \tag{2}
\end{equation*}
$$

and the second one by the equation:

$$
\begin{equation*}
f_{2}\left(\rho_{2} \xi_{2}, \rho_{2} \eta_{2}, \rho_{2} \zeta_{2}\right)=0 \tag{3}
\end{equation*}
$$

In these expressions, ρ_{1} and ρ_{2} mean the guiding rays, and $\xi_{1}, \eta_{1}, \zeta_{1}$ and $\xi_{2}, \eta_{2}, \zeta_{2}$ mean the cosines of their directions, such that with the assumption of a certain unit of time, ρ_{1} and ρ_{2} will give the velocity that light has in their directions in the medium in question directly.

A light ray that starts from the point $\left(x_{01}, y_{01}, z_{01}\right)$ in the first medium with the direction $\left(\xi_{1}, \eta_{1}, \zeta_{1}\right)$ meets the separation surface at the point $\left(x_{02}, y_{02}, z_{02}\right)$, and one draws the segment r_{1} between them. The refracted ray then has the direction $\left(\xi_{2}, \eta_{2}, \zeta_{2}\right)$, and one draws the segment r_{2} in the second medium up to the point $\left(x_{23}, y_{23}, z_{23}\right)$. One will then have the equations:

$$
\begin{array}{lll}
x_{12}=x_{01}+r_{1} \xi_{1}, & y_{12}=y_{01}+r_{1} \eta_{1}, & z_{12}=z_{01}+r_{1} \zeta_{1}, \\
x_{23}=x_{12}+r_{2} \xi_{2}, & y_{23}=y_{12}+r_{2} \eta_{2}, & z_{23}=z_{12}+r_{2} \zeta_{2} . \tag{5}
\end{array}
$$

It follows from the principle of fastest arrival time that:

$$
\left\{\begin{array}{c}
\frac{A_{1}}{\sum A_{1} \rho_{1} \xi_{1}}-\frac{A_{2}}{\sum A_{2} \rho_{2} \xi_{2}}=\mu A_{12}, \frac{B_{1}}{\sum A_{1} \rho_{1} \xi_{1}}-\frac{B_{2}}{\sum A_{2} \rho_{2} \xi_{2}}=\mu B_{12} \tag{6}\\
\frac{C_{1}}{\sum A_{1} \rho_{1} \xi_{1}}-\frac{C_{2}}{\sum A_{2} \rho_{2} \xi_{2}}=\mu C_{12}
\end{array}\right.
$$

Now and later, the Σ sign means that the summands that are written down are added to two other summands that have the same meaning for the z and z axes that the term
written down has for the x axis. M is andetermined factor, and the following equations are valid for the quantities A, B, C :

$$
\begin{equation*}
\sum A_{1} d\left(\rho_{1} \xi_{1}\right)=0, \quad \sum A_{2} d\left(\rho_{2} \xi_{2}\right)=0, \quad \sum A_{12} d x_{12}=0 . \tag{7}
\end{equation*}
$$

Equations (6) are also true for reflections, except that the wave surface in the first medium is also to be regarded as the wave surface for the second medium. If the quantities $x_{01}, y_{01}, z_{01}, \xi_{1}, \eta_{1}, \zeta_{1}$ are functions of two independent variables u, v, by which, a ray system is defined in the first medium, then one can calculate the determining data of the second ray system that arises from this as functions of u, v with the help of equations (1)-(7). The derivation of these functions yields that the ray in the second system that belongs to a pair of values (u, v) will correspond to the ray in the first system that belongs to the same pair of values (u, v) in such a way that it arises from this refraction.

If one adds equations (6), multiplied by $d x_{12}, d y_{12}, d z_{12}$, in turn, then brings the second term on the left-hand side to the right-hand side, and considers equations (7), then one will obtain:

$$
\begin{equation*}
\frac{\sum A_{1} d x_{12}}{\sum A_{1} \rho_{1} \xi_{1}}=\frac{\sum A_{1} d x_{12}}{\sum A_{2} \rho_{2} \xi_{2}} . \tag{8}
\end{equation*}
$$

It follows from equations (4) that:

$$
\begin{equation*}
\sum A_{1} d x_{12}=\sum A_{1} d x_{01}+\sum A_{1} d\left(r_{1} \xi_{1}\right) . \tag{9}
\end{equation*}
$$

Now, one has:

$$
\sum A_{1} d\left(r_{1} \xi_{1}\right)=\sum A_{1} d\left(\frac{r_{1}}{\rho_{1}} \cdot \rho_{1} \xi_{1}\right)=d\left(\frac{r_{1}}{\rho_{1}}\right) \sum A_{1} \rho_{1} \xi_{1}+\frac{r_{1}}{\rho_{1}} \sum A_{1} d\left(\rho_{1} \xi_{1}\right)
$$

or, due to the first of equations (7):

$$
\sum A_{1} d\left(r_{1} \xi_{1}\right)=d\left(\frac{r_{1}}{\rho_{1}}\right) \cdot \sum A_{1} \rho_{1} \xi_{1} .
$$

Therefore, equation (9) can be written:

$$
\begin{equation*}
\frac{\sum A_{1} d x_{12}}{\sum A_{1} \rho_{1} \xi_{1}}=\frac{\sum A_{1} d x_{01}}{\sum A_{1} \rho_{1} \xi_{1}}+d\left(\frac{r_{1}}{\rho_{1}}\right) . \tag{10}
\end{equation*}
$$

With the use of (10), (8) becomes:

$$
\begin{equation*}
\frac{\sum A_{1} d x_{01}}{\sum A_{1} \rho_{1} \xi_{1}}+d\left(\frac{r_{1}}{\rho_{1}}\right)=\frac{\sum A_{2} d x_{12}}{\sum A_{2} \rho_{2} \xi_{2}} . \tag{11}
\end{equation*}
$$

If the surface $\left(x_{23}, y_{23}, z_{23}\right)$ is the separating surface between the second medium and a third one then one will obtain an equation that is similar to equation (11) between the determining data of the second ray system and the third one that arises from it by refraction, and so forth.

If n media are present, and the rays of the $n^{\text {th }}$ ray system in the $n^{\text {th }}$ medium draw the segment r_{n} to the surface $\left(x_{n, n+1}, y_{n, n+1}, z_{n, n+1}\right)$, where r_{n} can be chosen to be an arbitrary function of u, v, then n equations of the form of equation (11) will be true. If one adds them then one will obtain:

$$
\begin{equation*}
\frac{\sum A_{1} d x_{01}}{\sum A_{1} \rho_{1} \xi_{1}}+\sum_{s=1}^{n} d\left(\frac{r_{s}}{\rho_{s}}\right)=\frac{\sum A_{n} d x_{n, n+1}}{\sum A_{n} \rho_{n} \xi_{n}} . \tag{12}
\end{equation*}
$$

This equation expresses the relations that exist between two ray systems, one of which emerges from the other one by the various reflections and refractions in media with arbitrary wave surfaces. It will also still be valid when n becomes infinitely large - i.e., when the light goes through inhomogeneous media. One can then think of every inhomogeneous medium as decomposed into infinitely small strips, and regard each of these components as a homogeneous medium.

If the first ray system consists of rays that start from a luminous point, and one takes that point to be the starting point of the rays then one will have $d x_{01}=d y_{01}=d z_{01}=0$, and equation (12) will read:

$$
\begin{equation*}
\frac{\sum A_{n} d x_{n, n+1}}{\sum A_{n} \rho_{n} \xi_{n}}=d\left(\sum_{s=1}^{n} \frac{r_{s}}{\rho_{s}}\right) . \tag{13}
\end{equation*}
$$

If one then determines r_{n} such that the right-hand side of this equation vanishes, so:

$$
\begin{equation*}
\sum_{s=1}^{n} \frac{r_{s}}{\rho_{s}}=c \tag{14}
\end{equation*}
$$

where c means the integration constant, then one will get:

$$
\begin{equation*}
\sum A_{n} d x_{n, n+1}=0 . \tag{15}
\end{equation*}
$$

However, r_{s} / ρ_{s} gives the time that it takes a light ray to traverse the $s^{\text {th }}$ medium, and therefore the surfaces $\left(x_{n, n+1}, y_{n, n+1}, z_{n, n+1}\right)$, which are determined by equation (14), are obtained from their definitions in such a way that all of the rays of the ray system that emanate from luminous points at the same time will meet each of these surfaces at the same time, or that a light motion has propagated from a luminous point in the last medium at one point in time for an arbitrary time duration to a certain surface that is defined by equation (14). Therefore, this surface will be given the name of "wave surface," in the Kirchhoff-Helmholtz sense. However, in order to avoid confusion with the surface that is referred to as the "wave surface of a medium," I would like to call the surfaces that are defined by equation (14) surfaces of equal arrival time, where "equal" is taken to have the sense of "simultaneous."

Now, (15) says that the cosines of the directions of the normals to these surfaces are proportional to A_{n}, B_{n}, C_{n}, so they are equal to the cosines of the directions of the normals to the wave surface in the $n^{\text {th }}$ medium. We thus have the theorem:
I. For optical ray systems, the rays are inclined with respect to the surfaces of equal arrival time in all directions in the same way as the guiding rays of the wave surface of the ray system (which are parallel to them) are inclined with respect to it.

This immediately yields the following theorem:
II. For optical ray systems whose wave surface is a sphere, the rays of the system are normal to the surface of equal arrival time.
III. The necessary and sufficient condition for a ray system to be optically representable in an isotropic medium is that its rays be normals to a surface.

Equation (13) will always be fulfilled then. The first of the aforementioned theorems is an analogue of the Malus-Dupin theorem for optical ray systems in media with arbitrary wave surfaces. The third one is an extension of the same theorem, insofar as the media that light must traverse before it comes back to an isotropic medium can be not just isotropic or crystalline, but media with completely arbitrary wave surfaces.

As a result of equation (13), $\frac{\sum A_{n} d x_{n, n+1}}{\sum A_{n} \rho_{n} \xi_{n}}$ will be the complete differential of a function of u, v when the $n^{\text {th }}$ ray system is representable as an optical one, and this condition is also sufficient, since when it is fulfilled, a refracting surface can always be determined in such a way that all of the conditions will be satisfied. As I showed in my dissertation (${ }^{*}$), this agrees with the content of the theorem that Kummer (${ }^{* *}$) stated without proof, and which reads:

Any infinitely-thin optical ray bundle inside of a homogeneous, transparent medium has the property that its two focal planes will cut out two curves from the wave surface of light that belongs to this medium,(whose center can be chosen to lie on the axis of the ray bundle) that will intersect in conjugate directions. Any ray bundle that has this property is also actually optically representable.

We understand the term "conjugate directions" of the wave surface to mean the directions of two conjugate diameters that are attached to the point of the wave surface in question to two infinitely-small Dupin conic sections - viz., the indicatrix - which will be ellipses or hyperbolas according to whether the surface is convex-concave or concaveconvex at that place, resp.

[^0]
[^0]: (*) "Ueber die Beziehnungen zwischen zwei allgemeinen Strahlensystemen, von welchen das eine durch die verschiedensten Reflexionen und Brechungen in Medien mit beliebiger Wellenfläche aus dem anderen hervorgegangen ist, und die hieraus für optisch darstellbare Strahlensysteme sich ergebenden Folgerungen," Inaugural-Dissertation, Berlin, 1883.
 (${ }^{\prime \prime}$) Monatsberichte der Königlichen Preuss. Akademie der Wissenschaften zu Berlin, from the year 1860, pp. 470.

