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FOREWORD

This little book treats the propagation of waves in gtrect sense. Propagation in the
larger sense will be the subject of a much more extenaek that will be prepared for
this collection in collaboration with M. Taniuti.

G. B.



INTRODUCTION

A field is composed of a set of a certain numbieof (real) functions o + 1
variables (n space variables, one time variable) tratsalutions of a first order (or
reducing to that order) partial differential equationse @lvens of a solution may or may
not correspond with the givens of physical quantities;tushanportant is that they fix a
state

The notion of a wave is completely as general as dha field, and since that
generality is not without some damage to the comprehemdithe term, it is important
that it be well defined. Avavewill be a perturbation that propagates from a perturbed
state into an unperturbed one. This definition implies éRistence of a boundary
between these two stateswave surfaceypon the traversing of which there will exist
discontinuities in the variables of the field itsedihé then starts, more especially, with
shock wavesor their derivatives. The wave realizes the pas$age one state to the
other. The second state is still also called a waiech can lead to confusion, and
explains the ultimate acceptance of the abuse of landgbhageakes a wave synonymous
with a field. However, if one may not conceive ovave without a (pre-existing) field
then one can just as well imagine a field without aenv@r example, a constant field).

The problem that is posed is the following one: giveerdam field that defines the
unperturbed state at each place and epoch, a perturimtogated at a certain instant
(the initial instant) in a certain region; determine thme evolution of that perturbation.
Since that evolution obviously depends upon the field equative are thus led to make
hypotheses concerning the form of those equations. Wefdhe suppose that they
constitute dyperbolic quasi-linear systeof first order partial differential equations, and
to discard the possibility of shock wavariori we assume that the discontinuities are
of first order when one crosses the wave surface.

The problem of the study of the discontinuity thentsplas Lichnerowicz has
remarked on the subject of the Einstein equatiofid],([op. cit), into two distinct
problems: the problem of initial conditions and the probdémvolution.

At the initial instant the discontinuity in the nornfgd the wave surface) derivative
resolves into a (vectorial) sum of discontinuitieach of them then propagates according
to a particular mode and a certain velocity. We spehét one is led to distinguish two
types of velocity: the velocity normal to the wavefaoe and the radial velocity.

Once one has introduced the initial distribution, howtld®waves propagate? The
discontinuities might never disappear. They midbit,revenge, become infinite. This
singularity has meaning when a certain prodgetof two functions of space and time is
annulled. The annihilation ¢b is essentially related to the nonlinear charactehef t
field, and one sees, by comparison with the study ofdimensional fluid flow, that it
corresponds to the appearance of shocks. It is therahtdwsay that the singularity that
was described above manifests the birth of shocks. Here®, which is not attributed
to the nonlinearity becomes the expressiohn#ar shocksas opposed to the preceding
ones that one qualified with the termanlinear

Nonlinear shockmight not exist when the system of field equatimsompletely
exceptiongl and, similarly, there are linear shocks in this systehen the system has
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commuting matrices This last peculiarity obviously depends on the number of
independent variables. Wher= 1, it is clear that all of the systems have commuting
matrices, and one understands why these linear shockd) are closely connected with
the geometry of the wave surface, never accompany mplames in systems with two
independent variables.

With that, one proceeds to account for the phenomextaatk produced on the wave
front. It is therefore permissible to confirm thatcantinuous solution of the field
equations might not exist beyond the critical instantrwiiee ha$® = 0. If we must
give a concrete example, we cite that of a horaloplane plate that quickly breaks off
and falls through the air under the action of its prapeight: the critical time does not
exceed 28 seconds.

As an example of a linear shock, we briefly examing timé caustics of optics here,
and furthermore, only in general relativity, noting that aaralogous phenomenon is
produced that is, nevertheless, quite difficult to intetpr

Nonlinear shocks will be apparent in the theory of magngirodynamics and
completely exceptional electrodynamical systems the¢ determined by partial
differential equations.

Jean-Louis Destouches was the origin of this work. Wigh to acknowledge the
interesting discussions and the amity that he affordedTesAndré Lichnerowicz, who
did us the honor of taking an interest in our reseanchsaipporting us, we express our
gratitude. We thank Y. Choquet-Bruhat in particular foe ihformation that was
provided by some of her work.

We express our amicable respect for professor T. Tambtise cited memoir has
served us well.

We would like to recognize professors C. Mgller, L. Rdskel, and H. Wergeland,
for various contributions.

Guy BOILLAT.



BOOK ONE

GENERAL THEORY

1. Fields, field equations, and waves.A field will be represented by a column
vectoru(x?) with N components that are functionsrof 1 independent variableg and
subject to the system of N partial differential equations

(1.1) AU) ug = f(u, XA (@, B=0,1,2 ..n).

In the general case, in which the matricésdepend on the field, such a system is
calledquasi-linear;in the contrary case, it is qualified semi-linear or similarlylinear,
if, moreover, the vectdrthat appears in the right-hand side possesses a cantagcter
relative tou. We suppose, to simplify, that the matrice$ do not depend on the
coordinates explicitly.

We make the hypothesis that the functiois continuous, whereas its first derivatives
are continuous on one side and the other of the wawe #od tend to two different
limits; i.e.,u will be function that is of class piecewisé. C

We introduce the wave surface by its Cartesian equation:

(1.2) ¢(xa) =0,
as well as the new variables:
(1.3) ¢ =p(x), &' = E'(XY; L g0C (=12 ..0).

We make use of the following symbol for the jump:

(1.4) [] :()¢:+0 _()¢:—0 '

perturbed stat  Unperturbed stat
which permits us to write, from the classical argumémiadamard [1]:

(1.5) ul =0, [ug] = 0, [ugl =T

With these definitions, the problem that one posedesstudy of the propagation of

waves as the study ofas a function of the coordinates. We denote theevat the field
in the unperturbed state hy:

(1.6) A% (U )ug, = f(Uo, XP); uod C-.

If we express the derivatives with the aid of the nawables:
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(17) Ua:U¢¢a+ u{i [i,,
substitute in (1.1), and compute the jump then we obtain:
(1.8) Af gat=0.

In order for this linear homogeneous system in the compsmém to admit a non-null
solution it is necessary that the determinant:

(1.9) D(A9s) =0
for the valuau = ug of the field.

2. Normal velocity, radial velocity. Among the variableg®, one of them®, which
we also denote bty plays the role of time, whereas the other oti¢is= 1, 2, ...,n) are
space variables. In that space, the wave front wiltdpresented by a (hyper) surface
S(t) of dimensiom — 1 that moves in the course of time, and at each powbhbioh there
will be a normal velocitylii that is defined at each instant by the formulae:

2.1) p=-b - D0¢

|0¢ | |0¢ |

which is derived from (1.2). The condition (1.9yrbe further translated into:
D(AN' =A% = 0.

The matrix A is regular; otherwise, there would exist infinitave velocities, which is
unacceptable from a physical point of view. Theref nothing prevents us from taking:

(2.2) R=1,
the identity matrix, which gives:
(2.3) D(A'n' = AI) = 0.

We are thenceforth assured that (2.2) is certaedlized; if necessary, one multiplies the
system (1.1) by the matrix {*.
To each proper valud®(u, i), which is a possibly multiple root of the charaistic

polynomial (2.3), there correspond the right propectorsl® (u,ii)and left proper
vectord? (u,A) of the matrix A = A“n*, which are defined by (*):

(*) and denoted by the initials of the Latin wowksxter(right), laevus(left).
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—_20nd» =
(2.4) (A, AT d7=0,
VA, =291 =0,
in which the index | can on take as many integer valuelseas are linearly independent
proper values for the valu&’ in question. We say that the system (1.1yiserbolicif
the proper values of Aare real and the proper vectors of this matrix forbasis for the
space of components of or, in other words, if there exist N linearly independaoper
vectors [2]. The hyperbolicity conditions will besasned to be satisfied in what follows.
We introduce the quantities:

(2.5) YU, o) = ¢+ Do | A,

By virtue of (2.1), the velocity = A will satisfy the relation:
(2.6) O (u, ¢a) =0,

on the wave front, which is the partial differential egprathat the characteristic surface
(1.2) satisfies. _

Classical theory introduced taracteristic linesor rays C* (of equation (2.6)) for
the solution of such equations. They breharacteristicsof the system (1.1), with the
differential system:

dx _ayy dg, _ oy

(2.7) ki , ,
do 09, do ox”
in which one finds a parameter (or, more particularly, denoted bg), which is
identified with time along the curveC as well as displaying the equation that was
written.

Before proceeding, it is useful to specify the varioeanings of the differentiation
symbols that we use. We summarize them in the flacmu

oy oy
oY(xf,¢)=—-~¢p + :
(X 9,) 2, Do pw
We return to the expression (2.7). Taking into accoumtrémark that was made

. 0 .
concerning the parametgrone sees that tl%ew—oform the components of a velocity, the
i

radial velocityA :

(2.8) AO- :M,
09,

which, from (2.5), is derived directly fronf’:
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o ) () ()
(2.9) /\">(u,ﬁ):)|<'>ﬁ+a{ - ﬁda{ n.
on on

One will note that:

(2.10) AD =20,

3. First expressions. The following equality results from the defining formulae
(2.4):
(A=) dO = (A0 - 2)d®,

which, when multiplied by the modulus of the gradienppfl¢ |, and considering (2.1,
5), leads to:

(3.1 A g dD= A0 g0

and an analogous expression:

(3.1) 1A, =20 |0

for the left vectors. From this, one deduces te#-known property:
(3.2) IV@®=o0, 0O¢) =3,

which we cite, for the sake of reference.
We multiply the equality (1.8) by the proper vedtfthat corresponds to the proper

valueA!”, and obtain:
IDAG ¢ = {1 Gu= 0,

and then reconsider the surfa¢é-Swhere ) is a given value — that satisfies (2.6):

1P G = 0, O () # (i),

namely:
(3.3) " = 7d),

in which ther#(x?) are the functions to be determined. Therefmreelongs to the vector
subspace that is generated by the right vectorts atea associated with the mode of
propagation that is envisioned. In order to abiatevthe notation, when it will create no
ambiguity, we will drop the upper indey.(

In the perturbed neighborhood of S, we may write:
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(3.4) U =uo+ ¢ m+O(¢),

where O(¢%) denotes the terms of order greater than or equal doirivthe principal
infinitesimal ¢ (Landau’s notation). If one substitutes in (1.1) amdtiplies byl then
one gets:

(3.5) |, A%Ugg +1, A% TL+p1, A%, T+ O(4) =h, *)

upon setting:
(3.6) h.=I, 3.

We introduce the gradient operator in the space of comp®oéu, namely:

:(0 A aj
out 'au*’ TouM )’

and calculate — to second order — the various tématsappear in (3.5) by using (3.4):

[ A%,, =||,0A3U0a +PO( A gTU o+,

&) | A%, =01, Ot= g Oy @I, G+,

keeping (2.6) in mind, and:
h,:h’O +¢|:|h’0 gt+---

If one refers to (3.5), taking (1.6) into accouwantd one derives with respectg¢dhen one
sees that the following relation will be satisfieal S:

(3.8) O(1, A7) T, +(O¢g’ Ol , G+l A0, m=0h, [

If we appeal to (3.3), we will have:
a a a ad|0 a
(3.9) l,0Ag0, =1 ,Agd, 9,71 + AG W%ﬁ T+l Ao g, .
B

First of all, consider the first term of the righnd side. Derive (3.1) with respecigg

() .
(3.10) Pl + APy S0 0WT Gy g 99

09, 09, 09,

Hence:

(*) Upon considering3.1 )and (2.6), one sees why the terms of order two contritniténg in (3.4).
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0)
(311) IeradI :aw I|' |1
09,
and:
" ds
(3.12) Il,oAOdloaanJ =d—ll,o Ei,o,
o

because, from (2.7):
0)
(3.13) i:%aa
do 09,

denotes the derivative along the characteristic lifie C

We pass on to the second term of (3.9). Deriving (3.10)regpect tapz gives:

2 2,1,() @) 0
(3.14) pr 00, pp 0y 0% 00 0yY od, | oy od

g,  og, 08,00, 09,08, 09, 09, 09, 04,

As a consequence:

ad ,
(3.15) | oAG — BT =1
"7 0g, 2

F
00,00,

od, dg,
94, do

¢aﬁ||,om[+ #I

As for the last term of (3.9) and the first term oB{[3they are not, in general, susceptible
to being given simpler expressions.
These various results permit us to write (3.8) as\ialio

20 od,
(3.16) i Io{lai e 49,

do 204,00, 94, do
+7H{ O0(1,A%),d o +1,A§0d , }uos =0, [t

+Og® Enjl o O+ 77

4. The differential system at the discontinuities. Consider a point M() on a
curve & at the instanp; which was found afl (x7) at the initial instant, and lef(x")
ben quantities that are constant along that curve.tW¥a have:

dd _oyd i _

= 0.
do og, ©

We now differentiate with respect 10
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azwo azwo i awo -
{Mam " 30,00, % an " g, 0170
le.:
d ,_ ([ %y, | 9%, i
4D do 07 [axj6¢k %09, ¢”ja“'

We recall that if a matrix @) satisfies the relation:

then its determinariP(Q) satisfies:

diD(Q) = (Tr M)D(Q),
g

where Tr M denotes the trace of the matrix M. As@asequence, if one introduces:

o= [P,
D(q;)
in such a way tha#= 1 wheno = 0:
2 2
(4.2) Yy ¢ + 6_1//0 =2 d Log &
g0, "' 0X0¢, do

From the constancy af (d = (d)o) and the properties of the functional determinant it
then follows that:

D(d})o _D(q') D(X) _D(X)
D(d)) D(x)D(d) D(%)’

namely:
D(x')
D(%)

Finally, one may rewrite (3.16) in the form:

)k _
{?+[1Loge—ia/\° +|0¢ |0A Otjm
o

@4 1,

do 2 Ox-

o, , od

+0(1,A%), T, — 77 5, Alp, axl” =0h,, Ot
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Since the proper vectors are defined only up to a mubigphe factor, it happens that
this equation is invariant under the replacement of tfteviectorl , with a collinear

vector; the penultimate term of the right-hand sidmiges this invariance.

The discontinuities displace with the radial velg@long the characteristic rays (*).
The systems (2.7) and (4.4), to which we shall add the &gu8li3), permit us to
determine their values. When equations (2.7) are integoat=x] they give:

(4.5) X =g, xi:xi(>{),a),

provided that one is givefl@)o as a function of the,, i.e., the point of the surface wave
S that was M at the initial instant= 0 (**):

(4.6) #°()=0.

Once one has substituted the expressions (4.5Y4M9, all that remains is to solve this
differential system in order to obtaln We immediately remark that this system is not,
in general, linear, and that it may, on the othandy become singular, while any
singularity ofup is then isolated. We shall examine these circantgs at length in the
next sections.

5. The propagation of waves in a constant state- We direct our attention to the
waves that propagate in a region where the fietdmstant. We mark the values the field
takes in this region with an asterisk, values thatn (1.6), must be such that:

(5.1) f(uy, ¥) =0, u,=const.,

in which we have obviously assumed that a soluémists. Important simplifications
then ensue. First of all, singé’ no longer depends upon the coordinates explidily)

shows that thep, are constant along the curve®.C As a result, the relations (4.5)
immediately give:

(5.2) X =g, X =x) +AD (u,,R)o,
X 0 My

in which the normal vectdy (x)to S is calculated by means of (4.6). From this, one
deduces:

(5.3) 0=/D(0d, AQ' +3'),
with:

(*) To use the language of the physicist, we shalltsaythe characteristic rays are the “guiding waves.”

(**) Upon solving (4.5) for the that one substitutes in (4.6) one will find the equafiog) for S¢).
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5]t ifi=]
"o ifi#].

On the other hand, the system (4.4) becomes:

(5.4) {ﬂ+(iloge+ |O¢ |0OA Dtjzf}l o d. =0h, Ot
do do el

Starting with the determinant:
(5.5) AY =D(,,d,),

one introduces the quantitiés: the productA”CF,)equals the determinant that is
obtained by replacing th& tolumn inA®” by that of the elements:

Oh.d, ,
in whichl"takes on all of the same values as I. It is esddntiaotice thatA® is non-

null. Indeed, if L and D denote the matrices thatf@mmed from the left and right proper
vectors ofA\, then, by virtue of (3.2):

(5.6) D(LD) = |‘| AY =D(L)D(R) 2 0,
(i)

since the system (1.1) is hyperbolic (cf. sec. 2). Vdg therefore recall (5.4), which is
solved for the term in braces:

(5.7) ﬂ+(£log€+ |O¢ |OA Enjzf: f. or",
do do

and, after integration, gives the law of propagatbthe discontinuities [3]:

(58) T[:E,
with:

_ 710 e 97
(5.9) ®=1+[4¢]| jo 0AD Th(r) et
(5.10) n=rndy;

in which ther' are (continuous, as well &$) solutions of:

d_’7|: Il - i
(5.11) i 1= T (%) -
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The given of the perturbing field (x)) determines tha,. At the initial instant:

== 00, 0,
and in the perturbed neighborhood gf S
(5.12) u’ =u, + g1 + ...

1€ is solved for its components in the basis of propetors:

(5.19 P(4)=Y Y A =Y Y.

K) K (k)
From this, one deduces:
(5.14) l,. OC=7ml,. M, ,

and from that, tha, are obtained by solving the latter system.

We make two remarks: The degree of the polynoBfia) is less than or equal to
- 1. There exists one relation between the componeafdtsthe radial

velocity AY (X)) since there exists one relation between the variapfeguation (4.6) for
the surface § and theD(9, A{)”) is nullipso facto
When the functiofh in the right-hand side of (1.1) is identically nulletimtegral:

o dr
° g(r)°

which is found in®, involves only elementary functions in the usuade; wheren = 3.
For more numerous variables, one must appeal tellipéic functions ( = 4, 5) and the
hypoelliptic onesrf > 5).

6. Plane waves, translating waves, and parallel wavesin this section we treat
three particularly important cases. When the serfg is a plane:

(6.1) i,=const., AY=const., =1,

and the formulas (5.2) show that S is likewiseamelsurface. We briefly state: the plane
waves remain planes. These various propertieectmdir importance on such waves.

Likewise, the translating waves possess a radiakirg that is constant, but for a
different reason: it does not depend on the noweetior:
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(6.2) AY=AD(u,) = const., 6=1.

From this, it results that S is derived frogldy a simple translation; therefore, the latter
does not suffer any deformation in the course of time.

The parallel waves are characterized by having a corstalar normal velocity:
(6.3) AD=29(u,)= const.,

from which, and (2.9), it ensues that:

(6.4) A= )0n
and (cf. (5.3)):
(6.5) 6’ =D, ny +J').

Now, by virtue of the Rodriguez relation:
dM +R,dR,= 0,
the principle radii of curvature ®f the surface §at the point M are solutions of:
D(RO, Ny +4')=0,
and, as a result, the polynom@&ladmits them as roots. Thus, in ordinary physical space

(n=23):
g2 = (Ao -R)(A"g - RY)

(6.6)
RoR;
or furthermore [4]:
(6.7) 0 =\A?K,0? —2A Q0 +1,

in which we employ the mean curvat@e and the total curvature,K
More especially, if the waves are spherical andhdiusr:

and if they are circular cylindrical:

7. Shocks.— We say that ahockis produced wherm takes on an infinite value; the
field may then be discontinuous in its own righm. reality, one is presented with a very
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rapid variation in intensity by “steps,” by “bumps,” or bfingers of a glove” in a
physical region of negligible thickness. In any evenuations (1.1) cease to be valid in
this region, and must be replaced with other ones. &neady knows how to treat
conservative systems:

(7.1) 3.f7u)=0,

by writing the shock conditions as:
(7.2) AIF° = [F]

which, on the one hand, the field values, and on the dtie wave surface of the shock
must obey [5].

From the mathematical point of view, the problem amouatsonsidering the
discontinuous solutions to (1.1) — theak solutions- and a question of uniqueness is
posed immediately: there might exist an infinitude wéhs solutions that correspond to
the same initial data [2][6]. Remedies (or should say, palliatives?) such as
introducing a viscosity term [7][8] or taking microscopicemomena into consideration
have been proposed.

8. Nonlinear shocks.— These are due to the annullingdafand are absent in linear
fields. They do not exist if the conditions:

(8.1) 0494, # 0,

which assures the continuity of the first derivatioéd®:

(8.2) [0,4"]=0,

are verified. In this case, we say, with Lax, the system (1.1) isxceptionalfor the
wave in question [2]. When it possesses this propertylifaf éhe proper values it is

completely exceptional.From all evidence, such is notably the case for sl
systems, as well as the following one [9]:

(B O
- A2 9)

in which B and C are square matrices of dimenskmasd N —k, respectively, B is
independent of the firét components o, and C is independent of the other ones:

(8.4) B =B ..., U, ), C=C(} ..., u" A).

On the contrary, a system of the type:

(B 0
s A2 2
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in which C is the matrix that one must define and B andeDagbitrary, is exceptional
only with respect to the waves that are determined by C.
Shocks will certainly appear if:

(8.6) 0A9 O < 0.

What does this condition represent? We have:

0 i 1| 0A® ,
(8.7) [abg ZR QZF{W}@: - [F¢ | OAP On,
and (8.6) translates into:
0)
(8.8) {a ';'t '} 0.

The left-hand side is nothing but the relative éax@ion of the perturbed posterior face,
as one calls it, of the wave surface with respet¢hé anterior face; when the accelerated
one catches up with the other one, a shock is pextiu The latter are the local
manifestation here of a global phenomenon of empelormation that has been studied
in detail in aerodynamics for one-dimensional flg®js

9. Linear shocks.— These are due to the annullingdpfind inherit nothing from the
nonlinear character of the field; hence, they arteforeign to the case of linear fields. In
general is annulled on a surfage which is called théocal surfaceand consists af —

1 sheets. Its points are callti or focal points andZ further constitutes the envelope
of characteristic lines ¢

As far as the formal origin of these shocks is eoned, we shall establish the
following proposition [10]: _

Linear shocks are due to the non-commutation ofithrices A Suppose that these
matrices commute between themselves, i.e., thahasefor the valua =u, :

(9.1) AA = ANA Oij=1,2, ...n.
From (3.1) (recall (2.2)), one may then write:

LA“A g = ¢P1,A%) = 1A geA T = ¢PI,A,
namely:

1WAdO =0, 0 G) # ().

Upon multiplying (3.10) on the left bly, by reason of the orthogonality of that vector
with d,, it follows that:
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which translates into:
6d|")

947 — g,
04,

When this latter expression is substituted into (3.183,fmally has:

(1)
(9.2) Ald; = aaﬁ d,

a

which is equivalent to (cf. (2.8)):
(9.3) (A-ADidO= 0.

Thus, the radial velocity, just like the proper vectal®gs not depend an All of the
associated waves of the system are translating wages6) and no linear shock may be
produced.

Conversely, let there be a system (1.1) for which &lthe radial velocities and
associated proper vectors depend only upon the field,(leX Ibe the diagonal matrix that
is formed from thé™ components of these velocities, and let)\Dthe matrix of right
proper vectors. Thanks to (2.10), we have:

A'n; = DK'nD™,
le.:

(9.4) A=DKD

the matrices then commute. We note that one mayrtheNess encounter translating
waves in systems with non-commuting matrices; theva@sted proper vectors will
generally depend an (cf. Alfvén’s waves, book I, sec 3). In summary, sa&y that in
order for linear shocks to be produced it is necessatythieaequalities (9.1) are not
satisfied. One will recall here that there is verpagal principle of physics that asserts
that “for such a phenomenon to be produced, it is negesbat certain symmetry
elements do not exist [11].”

10. Second order discontinuities— This amounts to determining the terms of order
two in the development (3.4). We suppose, to simplifgf the functionf in (1.1) is
identically null, and we consider the propagation in a teonsstate. In the perturbed
neighborhood of S, we thus write:

2
(10.1) u=u,+ ¢n+¢7x+ o(¢d,
in which, obviously:
(10.2) X = [ugg].
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From the equality:
(10.3) IS”A”ua: 0, DEXAOR
we have, to first order:

LAYP T+ gaTt+ ¢ gaX) + O(¢) = 0,

so that furthermore, upon using (3.1, 3):

Pl Al (md, +77d. )+ oL, x+¢L @ 7 +O(4”) = 0.
However:
(10.4) di =dp + 0di(u -U)+ ... =di + ¢ Ody T+ O(H),

and, making use of (3.10), one obtains:

1) _ _ 1 0dp 1 ad, 2 _
P! |J*{x 70d, - 77 5 Zﬁaa[a¢aj}+0(¢) 0.

It finally ensues that:

(10.5) X =7'0d,m+ 71 od,. +1n'6a [ad'ﬂjwdw.

“0¢, 2 ¢,
Because the proper vectors generally depend ofetdeand the normal vectdr, the
second order discontinuities depend on the fidéoones. It remains for us to determine
the functionsy. To do this, one proceeds as in section 3: oitesyr

(10.6) VA%, =0,

upon neglecting only the terms of order greaten tiaa. One has:
(10.7) 1A%, T+, m+§¢2I AKX+l X+ O = 0.

We give the calculation of these various terms euttcomment:

a) I,A%,T
=l,A°(0,7d,. +m9,d.)



GENERAL THEORY 16

= A°7.(d, -¢0d,. ) + 77 {Il.A” %% -4, A0, ([, )n}+ o(#)
B

(cf. (10.4))
[.A%0,Tt

drt 1 d7 1
:(E+§6k/\fﬁjlmmu +¢{(E+Eak/\k#jm(ll g ) m+(OA* OY) B, Tt

1 . 1 : od.) | s )
+2 0[O, @, ) =27 @y Ok Eaa{%j | A%, (704 1§+ O(4)
(cf. (3.14))

b) @O, O

= H{ ¢ Oy [n% SOy Ox + A 0O p+..}
x{l,. @, +40(, G, ) m-gl, O, 1+
= Oy . On+ ¢(AQOy {00, @) n-1,. Od,.
+{ % Ogr O+ O0¢) ' 1. Ot) +O(4)

(cf. (10.4);" denotes the transpose)

0 %¢2I|. e :%4152 .. A%0 X+ O(#)
d) pyp 1, x = * Ay O9l,. X + O(#).

By definition, the second order conditions trareiato:

(10.8) %Il,A”aax + @ M), xH % Og* O+ 10 O@g) 1t +%ak(m/\f)n} I, X

=l A7d,(7 Od, )mt+(OA* 9|. 9,1

w30, [0 o on.

a

=0.

One sees that this system of differential equationthe functiong' is linear. Precisely,
it is of the form:

(10.9) i{di{imgm 20y B‘[j)(' + @Ay M, )#)K'}I” [d,
2| do do

= Iy b(%,0),
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in whichb(x,,0) may be determined by means of the results of section 5.

11. The case of plane waves: We now put ourselves in the case of plane waves
(see sec. 6) with simple proper values. Then:

(11.1) n=rd,, ﬂ:%

(11.2) ®=1+[¢|0M Ouo,

(11.3) X = 770d.d, +9% 5 s xd..
0g,

We then note that, from (3.14):

2
I*Aaad* _1 oy @l 64[/”' ad.

S —=————r |, [d, ; :
0, “ 209,00, og, " op,
and, from the law of propagation:

.

+ (0w, 8, )= 0,
0¢a +(0Oy. [, )
from which, one derives:
640
+27777 Oy, [d, )= 0,
a¢ (. 1d. )=

and one easily obtains, by starting with (10.8):
(11. 4) +3(|:|z//[d) my + {OwOdd + 2d" 0@ ¢Nd} « 77

k
2|:|/\"E1I+Az,lx[—lﬂ D, +16Aak|n:0.
09, ), 209,
Since:

0,71=®0, 11,

(11.5) .
0,7T=®~ (P, , 13, — 20, 11,0, 7,04 [d.0),

integration leads to:

xP°—xo+ 0@ |Lo{0A0d d+ 2d"0(0AT) d}



GENERAL THEORY 18

ad 1 ONK
11.6 +0{| 20N e+ |0¢ |OA F— | 70, 7T, +=—=0, 7T
(11.6) {( |U¢ | leo 209, o}

1, L ON _
+Z D¢ | OA- [ W(%akolono =20, 11,0, 71,)= 0.

If the waves present an exceptional character (cf. 8.1)
(22.7) 0(0A ) d, =d 0(0A7)d, + 0A0d,d,. =0,
and equation (11.6) shows that:

(11.8) X=Xo(X)
when one adds the initial restriction:
(11.9) 7p = const.

then one has the condition:
(11.10) d'0(0A7)d.= 0.

From (8.1), or rather, from:
Oyd=0,

which is equivalent to it, one further deduces upon diffexingy with respect t@:

(11.11) [|]¢|EI)IE—I% =-D0OA*,

k

and (11.6) may be simply written:

k

(11.12) X —Xo+ o] |06 |d"0@A"d* 72+ 0N @, 750, 75 %%%ﬂ} =0.
|



BOOK TWO

APPLICATIONS. EXAMPLES

|. — Classical electromagnetism.

1. The caustics of optics— We make no pretense of great originality in briefly
summarizing the now classical study of luminous wawee, but we have to find an
example that illustrates some of the simplest phenanté linear shocks. Therefore,
starting with the Maxwell equations:

(1.1) H 0.
0,

T!
1

E_

rn1 11 c
1

divH =0,
1.2
(1.2) divE =0,

and introduce delta symbol to denote the first order digugties, the set of which
constitutes the vectaqr, we then find:

-A0H +AxJE =0,

(1.3) ) !
ASE +fixSH =0,

(1.4) ntoH =0,

ABE = 0.

These latter constraints prohibit the existence of tadgial stationary waves, which
permits only the equations (1.3):

OH = 19R,
OE = i?h.

Therefore, if one desires thanot be null, one obtains:

(A2 -1)JE+ BE)=0,
namely:

I
I+
=

(1.9) A

Equations (1.3) show further that:
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OH = +71h,,
OE=r8,

in whichh, ande, are unit vectors that are functions of the point & $ and are such

that they form a directed orthonormal fragg ﬁ),ﬁ) withii. By reason of (1.5), the
surfaces 3f are parallel, and:

(1.6) =—,

in which @ has the expression (6.7), which is annulled on a twetslesurface, the
geometric locus of the centers of curvature of the wawéace & We have already
recognized the caustic, whose brilliance manifests ppearance of linear shocks. One
knows the importance that optics attaches to therdetation of that surface. Given the
experimental evidence, it permits one to calculatgosteriori,the form of the wave
surfaces [12]. On the other hand, the luminous intensiyich is proportional

tovE* + H*, is known from its variation on that of the fiel@he latter will present a
maximum on the focal surface.

Il. — General relativity.

2. Gravitational waves.— When one uses isothermal coordinates that satisfgieéh
Donder conditions:

a 1
the Einstein equations for the external case may tew{13]:
— 1 ap —
(22) RIV_ _Eg aaﬂgpv+ F/fV_ 0’

in which the F, are quadratic forms of the first derivatives of the dediinal potentials
0ap. The latter are continuous, along with their firstiiives, whereas discontinuities
s =[0,,9,,] may exist in the second derivatives [14] upon crossingctiagacteristic

hypersurfaces that satisfy:

(2.3) 9% ¢odp= 0.

The exception relation (I, 8.2) is verified sindedepends only upon theg,sz which
possess continuous first derivatives. (The Einstein systieequations then corresponds
to the type (I, 8.3).) In pseudo-euclidian space:
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(2.4) 9, = NNap= diag(1,-1, -1, -1),
the waves are parallel, and their velocity of propagataqual to that of light in vacuo:
(2.5) A==+l
The system (2.2) is obviously hyperbolic for the values)(2lf we set:
9ap = Nap + hag,
and make the weak field approximation (see, for example {iéh one deduces:

oh

5= 0.

As a consequence, the discontinuities obey a lawighd¢ntical to (1.6), namely [16]:

Top
(2.6) T = 0

In addition, Lichnerowicz has showwop. cit) that ther, are stripped of all physical

significance and that one may always assume that dheynull. Finally, when one
accounts for the restrictions that are expressed by ¢hé)notes that:

Tba =0
2.7) Jm =0
nm =0,

in such a way that the initial discontinuities depend aplgn two arbitrary functions of
the point M.

Physically, the 7z have the effect of creating a discontinuity in theatreé
acceleration of the two particles, which are situateeither side of the wave front. That
discontinuity then varies with their positions; it nsilll if they are aligned along the
normalni, which shows the transverse nature of gravitationaba/i/7].

lll. — Magnetohydrodynamics.

3. The Lundquist equations, Alfvén waves— The Lundquist equations relate the

magnetic field , the fluid velocity, its densityp, and the entropy S, by introducing the
sound velocityc(p, S) and a constapt (the magnetic permeability), according to [18]:
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b +rot(Bx ) = 0

PN o b -
(3.1) u+(uDD)u+;Dp+ﬁ><rotb—0

p+div(pu) =0

S+ @)S= 0.

Outside of the contact surfaces that displace wighflthd, there exist three possible
modes of propagation, which are associated with Alfvéresafast (supersonic) waves,
and slow (subsonic) waves, respectively [19]. (In gdmelativity, the corresponding
velocities have been determined by Choquet-Bruhat [20].)

The Alfvén waves with the velocities:

(3.2) A= Ut Vy,
or:
(3.3) vzl, u, =d A, etc.,
N HP
are transverse waves:
Axb
*VXxn
(3.4) d=
0
0
They are exceptional:
(3.5) A=+ 1% gl
NP 2p

and (I, 8.1) is verified, and since:

(3.6) AN=Uz%V,
they are displaced by translation (see book 163ec
(3.7) =Th.

As far as second order discontinuities are conckrne

(3.8) Odd = 7,
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from which:
O0A0dd=0.

We likewise confirm that one has:
OA @ =0,

and that the plane waves lead to (cf. I, 11.7, 12):

(3.9) X = Xo.

4. Fast and slow waves- They are defined by the velocities:

(4.1) A=uy+w, WZ:%(C2+V21\/Z),

(4.2) A=+’ - 4’V = ( +V)? + 4(V - V2) 2 0,
L

(4.3) /\—u+wniW\/Z(n\4 V),

and the proper vectors:

(4.4) d=

A calculation then gives:

A,y 1 (wv—czﬁ*nj

b JupJA W
oA _
_:n
ou
2 2 2
ﬂ:i 1 2cc —— |w- chf—C B
op A
with:
c>0, c’:$>o.
0p

If is convenient to introduce the quantity:
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(4.5) q(u,n)=—=;

by means of which one easily expresses that [21]:

(4.6) 04 d =-w(g — 1)Q@Q),
with:
_1(c¢  ,.5)9-4a
@ QQ)—Z(Cijq_qZ,
_ 3(v* - ¢?) 1, VP
(4.8) =1 +2CC',0—+502’ 02 —§(1+C—2j .

Thanks to (4.4), it then follows that:
(4.9) [A]=F¢ | Amp(q - 1),

in such a way that if one assumes that one is gaipey in a fluid at regti= 0) in which
there is a constant magnetic fiblthen:

(4.10) IS —% Q).
c' 1
In the case where<c, E,0<E :

2
v 1
§<CI1<CI2< )

the inequalities:

0[V2[ VA,

impose the following domain of variation upgn

For fast waves:
2

0lq[Y,
C

For slow waves:
2

v
O[q[l+.

c
As a result, for the set of shock waves one has:

(4.11) 3'p+ 1[Q[§,
c 2
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and the latter inequalities will change their sens%ybls greater than} :
c

U

Therefore, just as in aerodynamics (where= Ic, Q = 1 +%p) shocks will be

produced if the fluid experiences a compression (seé)t, 8.
(4.12) [p]>0

during the passage of a fast or slow wave. It wilfisaifthat this condition is initially
satisfied.
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IV. — Nonlinear electrodynamics

5. The field equations — The components of the electric field ve&and the

magnetic field vectdr on the axes of an orthonormal frame may be expressednTs
of a world vector ¢®) by the formulae [22]:

H =¢; - ¢, E=¢’ -
(5.1) H =q; -, E =g -
H =¢f - ¢, E'=cf - ¢

in which one has set:
qg =6ﬂq" (xO =t,c=1),

and which have the immediate consequence that:

(5.2) H + rot E= 0,
(5.3) divH = 0.

On the other hand, one knows that the electromaxintl tensor:
(5-4) Faﬂ :aaqﬂ _aﬂqa
permits us to construct two invariants [13][14]:

(5.5) Q ==(H?-E?), R=E[H,

L
N

which will be conveniently expressed in the follogifashion in the rest of this section:

20=q¢'d -d4d-dd-gg+24%,
(5.0) R =& (q?qi( _ng)’

in which we have used the permutation indicagrwhich equals +1 ifjk constitutes an
even permutation of the natural sequence 123f it constitutes an odd permutation, and
0 in all other cases.

If one does not impose the condition of linearitytbe field equations then one may
take the Lagrangian density to be a function oftite quantities Q, R [9]:

(5.7) £ =L(Q, R).

The variational principle:
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(5.8) olcdv=0

translates into the Euler equations [15]:

oL oL
(5.9) 0 — ==
7logs ) oq
One has:
aLa:LQ GQH +lg alj’ aLaEO’
aq; aq; ofop 0q

since one has, upon using the expressions (5.6):

0__ 99 _g OR__OR

o o T aq og
(5.10) aqO q o

—Q.:—é‘iijk, _':_gijkEk'

aq; aq,

Finally, equations (5.9) may be written:

(LooQ +LorR)E +Hix (Cod0 Q4L 0 R)+£ o (B rotH)
(5.11) _(‘CQRQ +£RRR)T—| + Ex Cod Q+L I R) (FI— rotEx C

(5.12) (LogH =~ LogE)OQ + (LogH- L :EXIR +£ divH-£ odivE=0.

(5.2) and (5.11), along with (5.5), constitute ateyn of six partial differential equations

for the components of the vect@dH, which are subject to the constraints (5.3, 12), i
addition.

6. The characteristic equation. — We once more denote the first order
discontinuities byE,dH, as in the first section. Equation (5.2) gives:

(6.1) ASH = AixJE,

from which, if we suppose thdtz O:
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Hxn

50 =[ _ Ej SE.
6.2)

5R:[E:”+HJ5E.

If one multiplies (5.11) byl then one obtains:

({ Loo{H XA = AE) + Lo(E x 11+ AH)} LBE)(H x - AE)
(6.3) +({ Log(H X7 = AE) + Lo(E x 11+ AH)} [FE) (E x N+ AH)
—Lof (#* - 1) OE + (A BE)A}= 0.
As for (5.3) and (5.12), they simply project (6ak)d (6.3) onto the normal to the wave

surface. In revenge, whehis null they provide conditions that are independgf the
ones that one obtains by starting with (5.2, 1)5ec. 7).

If we suppose that the vectdtsH are not collinear then we may write:

(6.4) OE =a'H+a’E+ a’S,

in which we have introduced the Poynting vector:

(6.5) S=Ex H.

When the decomposition (6.4) that was introduced6i8) is successively multiplied
byH, E,S, one obtains three scalar equations that one raagdribe in the form [23]:

(6.6) @Zaj + AG; + ) & =0, (.i=12073).
The various coefficients are symmetric in theiriged, and calculation gives:

011 = RLoo— 2 HRLor + H'Crr— H Lo

2= ER Log— (R + BPHY) Lor + 'R Lrr— RLg
a,=0

0y =E'Log— 2B RLoe+ RL e~ BL,,

a3=0

33 =— SZ[,Q.

(6.7)

Bi1=2 S(R Lor —H*Lep)
Br2== SR Loo— (B + H) Lor + RLrr}
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:313 = (HZEn - RHn)(RCQQ_ HZ‘CQR)_ (E2 H - RE, )(FEQR_ HL RR:

(6.8)
,322 = ZSn (RCQR - EZ‘CQQ )
P = (HEq— RH)(E? Log— RLqR) — (BHn — RE)(E*Lor— RLrR)
B3 =0.
W1 =8 Lee + (H - HY)L,
2= =S Log+ (R = BHn)Lo
(6.9) ylSZSn{(HZEn_RHn)CQR_ (Ean_ RE, LRR_ HTCQ]
Va2 :Si‘CQQ+ (E2 - Eﬁ )CQ
¥63= S{(E*Hn — RE;) Lor— (HEn— RH) Loo — En Lo}
183 = (H'En — RHY)? Lo — 2(HE, — RH)(E®H, — RE) Lor
+ (BHn — RE)? Lrr + (S-S0,
with:
(6.10) $ =S, etc.

The proper values, which are solutions of the charatiteeiguation:
(6.11) D(Xaj + A5 - ) =0,
are roots of a sixth degree polynomial, provideat:th
(6.12) D(ay) =— S'LofS (Lo Lrr—Lar) = (ELao + HLrr — 2RLor — Lo) Lo}
are different from zero. This condition (which expses the regularity of the matriX: A
cf. book I, sec. 2) must be verified in order fdlraf the propagation velocities to be
finite. One thus supposes that:

(6.13) Lo#0.

One confirms that the expression in braces is ydsérictly positive when the following
inequalities are, moreover, simultaneously satisfie

(6.14) Laoo Lrr —LéR >0, Lq(Lrr+ Lrr) < 0.
The characteristic polynomial involves terms of alggree that, under the hypothesis
that the three second derivatives of the Lagrangiamot simultaneously null, disappear

only with S;; one verifies, for example, that the coefficiehtdis equal to:

(6.15) 2 S Lo{(E” + H)(Laq Lrr—Lig) ~ Lo(Lrr + LrA)-
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As a consequence, there exist certain waves that propagjatearious velocities in the
two senses of a direction that is not perpendicoldhé Poynting vector. In this fashion,
the privileged role that this vector plays appears alrealdyis confirmed when one

verifies that a symmetry with respectSeaves the spectrum invariant. In effect,
considering a vector that is symmetric aliammounts to performing the substitution:

Hn - = |_hl En - = Eh
which changes only the quantitigss, (s, Jis, )43 into their opposites. If one develops

the determinant (6.11) in one’s mind then it isygasconfirm its invariance.
Taking into account the identity:

(6.16) $-S-E*H? - H%E*+ 2R B, H, =0,

which results from:
S=-E HxA+HExn+Sn,
as well as from:

(6.17) $=F°H*-R,

which follows immediately from the definition (6,5)hen the determinar®® may be
developed according to:

D =-S5 P(u, 1),

with:
(6.18) PB(u, 1) = wP1 —Po,
(6.19) PBr= SN - 25(E* + HH)A®
+H{E*+ H)(E* + H - E; - H))+ 2(25; - SHA*
- 2S (B + HP - 2(E? + H2)} A
+S-(E+H-E -H) (B, +H),
(6.20) PBo= (N — D{(E*Loo + H Lrr — 2RLor— LN — 2S(Lao + Lrr)A
+H Log+ B Lrr+ 2RLar + Lo — (Laq * Lre) (EZ + H2)}
and:
(6.21) = Foolrr " Lor.

L,

7. Stationary waves.— Up till now, we have assumed thats non-null. Now, the
root A = 0 exists, and we shall show that it is a doubds.r First of all, (6.1) implies that:

(7.1) OE =m
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whereas, referring to (5.11), one obtains:
(7.2) (L@ +LorAR)Hx i+ (LqrdQ + LrrAR) Ex i+ LyfixdH = 0.
From (5.3, 12), it then follows that:

(7.3) AOH=0,
(7.4) @QQ(D + ,CQR(]?)En - (,CQRCD +£RRd?)Hn + lT,CQ: 0.

In all of the cases that one may pose, one hasew of (7.2):

(7.5) OH=a"H+a’E+a’n,

from which it results that:
JQ=a'H*+a’R+a’H -r7E ,
(7.6) Q ' " &,
OR=a"R+a’E* +a’E +mH,.
Consider two cases:

1. $ =0. The vectord xfi, Exfare collinear witls: a® = 0, one of the remaining
coefficients is arbitrary, and the other one maydbduced from equation (7.2). The

setdE,dHdepends on two parameters; the proper valae® is double.
2. $#0. One derives from (7.2) that:

Log0Q + LR =a" L,

(7.7) ,
Lon0Q+LeedR =22 L.

manda® are arbitrary,a” anda® are determined by (7.6, 7). Indeed, one verifies the
system that is composed of these equations isaedtd determinant:

(7.8) S(LooLrr~ L3g) = Lo(H?Lag + ELrr + 2RCor — Lo)

is strictly positive if the inequalities (6.14) dree.
It remains for us to include the constraints (4)3, With (7.6, 7), they form a system

of four homogeneous linear equations for the fmknownsa" ,a® ,a”, 7z and are such
that the determinant:

(Laolrr —L3:){S? — 2Q(EZ — H2) + (E2 +H2)’+ 4R E,Hy}
—LA(H?—H2 +E2)Lqq + 2(R — 2 Hy) Lor + (B2 —E2 + H2) Lrr — Lok

which, thanks to (6.16), is also:
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(Lo Lrr=Lag)(S: + {En(E - E,i)+ Hy(H - H,f)}?)
Lo ot (A= H, Lo +(E E M) Lo’
%o
+(E- Enn)‘CRR + (H-H,f) Lor}* + (En Log = Hn Lor)’
+ (Hh Lrr = BEn LoR)* + (Lo Lrr — L) (B> + H)) + L5

is strictly positive if one accepts (6.14). As a consegee

a'=a’=a’=m=0;

there exist no stationary waves.

8. Propagation at the fundamental velocity— Do there exist waves that propagate

with the fundamental velocity, or, in other wordsn @ne find non-null solution3E of
equation (6.3) for the values:

(8.1) A=+1?
When:
(8.2) »CQQ»CRR —LéR =0

the first two vectors between braces in the rightehside of that equation are collinear; it
suffices to choos&E to be perpendicular to the plane that it determiniésn :

xN) + Log(E,

(8.3) : .
OH = { L, (E ;i X 1) = Log(

IITI

Now suppose that (8.2) is not satisfied. It isntmecessary and sufficient that the
three vectordH xAiF E,Exfi+ H,Aare coplanar, i.e., that the mixed product:

(8.4) (HxAFE,n,Exfi+H)) =255 (H*-H*+ E2 - E?)=0.
From this, one deduces (see 6.16, 17):

(8.5) (H -H2+ B -E2)*- 4
={H-E)-(H; -E)}* + 4(R-EH) = 0.

It is thus necessary that the following are trugd:[2

(8.6) H? - E’= 2Q, EHn =
or.
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®7) H=Q+/Q+R*, El=-Q+/Q°+R’.

Therefore, there exist two directions of propagatlmat are symmetric with respect to the
Poynting vector, which are found in the acute amjléhe dihedral that is formed from

the plane$S, H), (S, E), in which the waves attain the velocity of light is remarkable

that these directions do not depend on the nomlifegan of the Lagrangian.) It then
results that the absolute value of a velocity tisatess than (or greater than) 1 is
everywhere (except possibly in the two indicate@ations) strictly less than (or greater
than) 1. With regard to (8.4), the sense of tispldcement in the two distinguished

directions is the one that mal®sn acute angle. In particular, if R = 0, Q > Onthiee
two directions are situated in the plg8eH), whereas they belong to the pl&8eE)if Q

< 0. If Q = 0 then they make angles witandH that are equal to the ones that these
vectors make between them. They both agree wétisupport cfwhen Q = R = 0.

9. In a direction perpendicular to the Poynting vector.— In such a direction the
characteristic polynomial is quartic; one may teardy the values of the velocity relative
to the velocity of light. One has:

(9.1) $=0

and (6.18-20) gives us the right to wrife‘P3 = 0 in the form:

(9.2)  (Loolrr—Lo) {S°(F -1F + (B + H~-E2 - H)*}
- Lo(F —14(E*Loq + HLrr— 2RLor — L)
+ (1) (B + H-E] - H){(E* + H) (Coolrr ~ Lr)
= Lqo(Lqq + Lrr)} = 0.

If the inequalities (6.14) — which are strict inadjties — are true then the coefficientA5f
—1 is positive and the same is true for the suth@bther terms. (We remark that:

- Lo(E*Lao + HLrr — 2RLoR)

:ﬁ{(éﬁ(yo _H‘CQR)Z +(H£RR_E‘CQR)2 +(E2 +H 2)([' Qcﬁ RR [’ZQQ}

IS positive.) As a consequence:
<1,

in all spatial directions (except for the ones Vdrich equality applies) provided that
exists (see the preceding section). Now, in thesgmt case the discriminant of the

guartic polynomiaf3, namely:
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(9-3) (B + H -E; - H))*{(Loo— Lrr ~ 2QW)” + 4(Lor ~ R}

is never negative. Furthermore, this does not suffi@ssure the reality of the roots; it is
also necessary that the coefficientsidf-4% and the independent term have the same
sign, and that the inequalities (6.14) do not suffice tsfgathese latter conditions for
allE,H,n.

Assume (6.14). The conditions translate into:

(9.4) Y >0,
(9.5) Z>0,
with:

(96)  Y={28-(E+H)E +H-El-H)"} Low
+{2Q(Loo— LrR) + 4RLor + 2Lo— (Loo+ Lrr) (E2 - H)} Lo,

9.7)  Z={2S~(E + H)E + H-E} - H})’} Low
+ {H?Log + ELrr) + 2RCor + Lo — (Loo + Lrr) (E2 - H?)} L.

These inequalities must be satisfied for all dieet in the planef,H). One is then
led to determine the minimany Z, of the functions Y(X), Z(X), which are linear and
guadratic, respectively, in the variable:

(9.8) X =(E2 - H?)

over its domain of variation. This domain is cddted by searching for the extrema of X
when considered as a function gf(r example), on account of the relation:

S —FH2- HE2+ 2R EH, = 0.

(Cf. 6.16; 9.1.) One thus finds that X varies ower segment:
(9.9) %(E2 +H) Q" +R?, %(E2 +H) +JQ* +R*.
From this, one deduces:

(9.10) Yn=-2(Q@ + R)Low
+Lof Log(2Q +/Q° + R? ) + Lrr(—2Q +Q” + R? ) + 4RLqr + 2Lq}
~ Lof Lag + Lrr)(E? + Hz)( Q* + RZ(UJ%} ,

where:
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w

(9.11) o=
LQQ +’CRR

For given Q, R the quantity’E H?> may takes values that are as large as one desires.
One thus assumes:

(9.12) Q%+ R? m+%> 0,
namely:
(9.13) 0<-w< =

2 + R? '
On the other hand, since:
(9.14) E+H >2/Q°+R?,

one will have:

(9.15) Y, > 2V,
(9.16) Y, = -2(Q + R)Low+ LofQ(Loo —Lrr) + 2RLar + Lo}

On thus obtains:

(9.17) Zn=Lof{(Q +Q +R* )Laq + (-Q +/Q" + R* )Lrr + 2RCor + Lo}

and one sees that:

Y1:Zm—2£‘,Q(£QQ+£RR)\/Q2+R2 (\/Q2+R2 (D+% .

Note the sequence of implications:
Zn>0-5Y;>0-5 Y >0.

In summary, the existence of roots is assured yndinection that is perpendicular to
the Poynting vector when one assumes that the atéiga (6.14) are subject to the
condition, besides (9.12), that the following inabify is satisfied:

(9.18) %, > 0.

10. The determination of the velocities for the value®Q = R = 0 — In this
eventuality:

(10.1) E=H=|SES
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and, from (6.16):
(10.2) S(E +H)=5-5,

which justifies the notation:

Ty :S—lz (SA—S)",
2 1 2 2
Po= 2—1f S (8- 8)(Lag + Lrr) + Lol - 1)},
One must find solutions to:
(10.3) (SA—S)* - SW2—1) (S1— $)A(Lao + Lrr) + LA~ 1} = 0.
If one sets:

(A-SY_ ),

10.4
(10.4) —r

then this comes down to solving the equation:
(10.5) apf + S(Cao + LrRU + SLo =0,

a solution that is obtained without undue effort:

10,6 _=SLy (Lo * cRRzi JA (% 0)
2(‘CQQ‘CRR - ‘CQR)

with:

(10.7) A = S{(Lag+ Lrr)* ~ 4Laq Lrr +Lg) }

= S{(Lqo~ LrR)* +4L2:}.
In turn, (10.4) shows tha#l is a root of the trinomial:
(10.8) S+l -2S A+ S-u=0,
in which y takes the values (10.6). In order for the redwbscriminant:
(10.9) HUS - S+ 1)

to be non-negative for any magnitude of S it isessary and sufficient that the same be
true fory. This restriction (or rather, these restrictiolssgquivalent to (6.14).
Finally:



GENERAL THEORY 37

(10.10) J=SSEVHE - SHp)

S +u

When w= 0 this formula is still valid when one makes:

_ TSL _
(10.11) N—Z;:z;n (w=0)

while one finds both of the velocities to be:
A=41.

Of course, this case is susceptible to a geneeatrtrent when one starts with the
expression (6.20) foB..

11. Completely exceptional systems.The system of equations (5.9), in which the
right-hand side is identically null, is conservativThanks to the expression (5.10), when
shocks are present, one may then write the conditio

j{aL}:{aL}n%

oq; | | oqf

as:

(11.1) ALLLE = LoH] =[ LH i+ LE X T,
[£oEn — LrHy] = 0.

This poses the question: What sort of system ispéetely exceptional? Since it is
not impossible to essentially determine the robth® characteristic polynomial, i.e., the
values ofA that are solutions of:

(11.2) B =0,

we proceed in the following fashion: From the d@mumaabove, we deduce that:

OB _
(11.3) 675)1 +0P=0
where:
(11.4) OP =0 u = A X u)

upon specifying that:
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(11.5) P = cu) A,

and that the values dfare all of the values that satisfy (11.2). Therefsee (6.18):

(11.6) g—f&) = 0P1 — wd’P2 —Piow

Starting with (6.1, 4), one obtains, in full generafiyz 0):

(11.7)
A0H =-a'Hxn- &@Exh+ &(H,E- E H)

% qE%) =aR+a’E’
%)lde) =a’S, + a(HR — BH?)

AR =-a'AR +a4(S, —AE?) + a’(H.R — BEH?)

AR =a'(MH? - S) + @R +a(H.E? — ER)

AE,) =a'H,+aE,+a’S,

dH,) =0

A&S) =a'(R - EH,) +a2(E° —-E*+ AS,) + a{A(RH, - H’E,)) — ES}.

It then follows that:

(11.8) ;;23_21 = Loof AH(AE?) - M) — A4S + AH) + R - JEZ+H2)}

+ Lrr{ PAH?) — 200S,) + AE?) — JE2 +H?)}
+ {alogo— 2R —1)Coqr + bLoreH Q
+ {aloor— 2R@* —1)Corr + bLrrrR— 301 —1)LoR} &R,
with:
(11.9) a= B2 -2+ H -E2-H?,
b=HA? - 251+ E*-E?-H?.

The expressions (11.7) provide:

(11.10)  AA(JE) - M) — 2dS) + AHY) + Q - E2 +H?2) = — 3¢ -1)R
(11.11)  AJqHY) - 21dS,) + AE?) —AE2+H?) = 0.

The product 21 that appears i3, is deduced from (11.2) and substituted into (11.9)
which gives:

(11.12) A2 —1la= (N2 -1Y8+ @ P,
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(11.13) @ -1p= (P -1fa+ @ P,
where:
(11.14) a:LQ +2QLgq + 2RCg ’BzﬁQ +2QLor — 2QLgg
LQQ +Leg [,QQ +Len
and we recall that:
(11.15) o @
LQQ + ‘CRR

(11.9-15) then permit us to write (11.8):
_ 2 oa 0B
(11.16) oPo=-(4A _1)2(£QQ + LRrR) %5Q +6—R5R + WP1A Log + LrR)-

We now calculated3;. By adding the identities (11.10, 11) term-by-term, one
obtains:

(11.17)  JE*+H?) :% (N2 —D)AE? + H) — 2A4S,) + (F2 -1)R.
Using that equality, one finds that:
(11.18) 0% = -1 a9 —%(EZ +FHIE + )} - (R -D)a+b) @,
while it is easy to show, using only (6.17), that:
(11.19) %(EZ + H)AE? + H) - d59) = 2RR + 2QX.

Finally, (11.6) becomes:
(11.20) g—‘f& = Po{ @A Log + Lrr) + 200 & — 5}

~ % <17 (Loo + LrR) [g—g 50 +Z_ﬁ5Rj - 20(QR + RR) — afa +H R}

When the system of equations (5.2, 11) is completelyptxeal, the left-hand — and,
as a result, the right-hand — side of (11.20) is idemyicalll for the four characteristic
values that satisfy (11.2). One must then annul thificieats of &Q anddR inside each
pair of braces in (11.20). One thus arrives at the sysfepartial differential equations:
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(11.21) 9T _ e =0,
0Q

(11.22) 9@ _ o
R

(11.23) 99 _oma=o,
0Q

(11.24) 99 _ R =o.
R

To these, one adds:
(11.25) a - =2Q.

There are two cases to consider:
1. w=0. The last two equations may be integrated to:

a = const.

One is then reduced to taking solutions of theesyst

= O,
(11.26) @
a =const. =k

We parenthetically note that(10.11) is equal tols.

2. wz0. (11.21, 22) give:

(11.27) 2(Q k)w=-1
and (11.24) gives:

-R?
11.28 =——+1(Q).
(11.28) = e @

The value ofa that is given by (11.28) must satisfy (11.23).orfrthis, the following
differential equation results:

(11.29) i | _f

dQ Q+k

whose solution:
_k2

f=o 2
2(Q+k)

leads to the system:
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(11.30) {2(Q+k1)w=—1,

2Q+k)a=-(R +k,).
(ki, ko are constants.)
Here, one will have (see (10.6)):

U= Sta ki =k, ).

The Born-Infeld theory uses the Lagrangian [24]:
(11.31) L=(1+20Q-%:

-1 R?2+1 . . )
a=- . Likewise, if one
2(Q+1) 2(Q+1)

considers the solutions for which=R0, starting with the Lagrangian:

which produces an exceptional sys(e:m:

(11.31) L= (1 +2Q¢,

then the system is completely exceptionak=(0, a=-1). This fact has already been
confirmed in the one-dimensional study of that tigethe characteristic curves form two
families of isoclines [9][25].

One likewise verifies that the Heisenberg-Eulerotlie which makes use of the
following Lagrange function [26]:

(11.32) L£=-Q +kQ? +£ kR?,

in which k is a certain positive constant, does not lead tocompletely exceptional
system. One may refer to [27] for the study otdiginuities in the latter theory and to
[28] for the study of shocks.

In conclusion, we note that the Lagrangih31)is the only one (up to a choice of
constant that one obtains by integrating (11.2@petds uniquely on Q in a nonlinear
fashion that leads to a completely exceptionalesydl5].
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