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FOREWORD 
_____ 

 
This little book treats the propagation of waves in the strict sense.  Propagation in the 
larger sense will be the subject of a much more extended work that will be prepared for 
this collection in collaboration with M. Taniuti. 
 
          G. B. 
 
 
 
 
 
 

________ 
 



INTRODUCTION  
_______ 

 
 

A field is composed of a set of a certain number N of (real) functions of n + 1 
variables (n space variables, one time variable) that are solutions of a first order (or 
reducing to that order) partial differential equations.  The givens of a solution may or may 
not correspond with the givens of physical quantities; what is important is that they fix a 
state. 

The notion of a wave is completely as general as that of a field, and since that 
generality is not without some damage to the comprehension of the term, it is important 
that it be well defined.  A wave will be a perturbation that propagates from a perturbed 
state into an unperturbed one.  This definition implies the existence of a boundary 
between these two states: a wave surface, upon the traversing of which there will exist 
discontinuities in the variables of the field itself (one then starts, more especially, with 
shock waves) or their derivatives.  The wave realizes the passage from one state to the 
other.  The second state is still also called a wave, which can lead to confusion, and 
explains the ultimate acceptance of the abuse of language that makes a wave synonymous 
with a field.  However, if one may not conceive of a wave without a (pre-existing) field 
then one can just as well imagine a field without a wave (for example, a constant field). 

The problem that is posed is the following one: given a certain field that defines the 
unperturbed state at each place and epoch, a perturbation is created at a certain instant 
(the initial instant) in a certain region; determine the time evolution of that perturbation.  
Since that evolution obviously depends upon the field equations, we are thus led to make 
hypotheses concerning the form of those equations.  We therefore suppose that they 
constitute a hyperbolic quasi-linear system of first order partial differential equations, and 
to discard the possibility of shock waves a priori we assume that the discontinuities are 
of first order when one crosses the wave surface. 

The problem of the study of the discontinuity then splits, as Lichnerowicz has 
remarked on the subject of the Einstein equations ([14], op. cit.), into two distinct 
problems: the problem of initial conditions and the problem of evolution. 

At the initial instant the discontinuity in the normal (to the wave surface) derivative 
resolves into a (vectorial) sum of discontinuities; each of them then propagates according 
to a particular mode and a certain velocity.  We specify that one is led to distinguish two 
types of velocity: the velocity normal to the wave surface and the radial velocity. 

Once one has introduced the initial distribution, how do the waves propagate?  The 
discontinuities might never disappear.  They might, for revenge, become infinite.  This 
singularity has meaning when a certain product θΦ of two functions of space and time is 
annulled.  The annihilation of Φ is essentially related to the nonlinear character of the 
field, and one sees, by comparison with the study of one-dimensional fluid flow, that it 
corresponds to the appearance of shocks.  It is then natural to say that the singularity that 
was described above manifests the birth of shocks.  Hence, θ = 0, which is not attributed 
to the nonlinearity becomes the expression of linear shocks, as opposed to the preceding 
ones that one qualified with the term nonlinear. 

Nonlinear shock might not exist when the system of field equations is completely 
exceptional, and, similarly, there are linear shocks in this system when the system has 
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commuting matrices.  This last peculiarity obviously depends on the number of 
independent variables.  When n = 1, it is clear that all of the systems have commuting 
matrices, and one understands why these linear shocks, which are closely connected with 
the geometry of the wave surface, never accompany plane waves in systems with two 
independent variables. 

With that, one proceeds to account for the phenomena that are produced on the wave 
front.  It is therefore permissible to confirm that a continuous solution of the field 
equations might not exist beyond the critical instant when one has θΦ = 0.  If we must 
give a concrete example, we cite that of a horizontal plane plate that quickly breaks off 
and falls through the air under the action of its proper weight: the critical time does not 
exceed 28 seconds. 

As an example of a linear shock, we briefly examine only the caustics of optics here, 
and furthermore, only in general relativity, noting that an analogous phenomenon is 
produced that is, nevertheless, quite difficult to interpret. 

Nonlinear shocks will be apparent in the theory of magnetohydrodynamics and 
completely exceptional electrodynamical systems that are determined by partial 
differential equations. 

Jean-Louis Destouches was the origin of this work.  We wish to acknowledge the 
interesting discussions and the amity that he afforded us.  To André Lichnerowicz, who 
did us the honor of taking an interest in our research and supporting us, we express our 
gratitude.  We thank Y. Choquet-Bruhat in particular for the information that was 
provided by some of her work. 

We express our amicable respect for professor T. Taniuti, whose cited memoir has 
served us well. 

We would like to recognize professors C. Møller, L. Rosenfeld, and H. Wergeland, 
for various contributions. 

 
        Guy BOILLAT. 



BOOK ONE  
 

GENERAL THEORY 
_____ 

 
 

1.  Fields, field equations, and waves.- A field will be represented by a column 
vector u(xα) with N components that are functions of n + 1 independent variables xα and 
subject to the system of N partial differential equations: 

 
(1.1)    Aα(u) uα = f(u, xβ)   (α, β = 0, 1, 2, …, n). 
 

In the general case, in which the matrices Aα depend on the field, such a system is 
called quasi-linear; in the contrary case, it is qualified as semi-linear, or similarly linear, 
if, moreover, the vector f that appears in the right-hand side possesses a certain character 
relative to u.  We suppose, to simplify, that the matrices Aα do not depend on the 
coordinates explicitly. 

We make the hypothesis that the function u is continuous, whereas its first derivatives 
are continuous on one side and the other of the wave front and tend to two different 
limits; i.e., u will be function that is of class piecewise C1. 

We introduce the wave surface by its Cartesian equation: 
 

(1.2) ϕ(xα) = 0, 
 
as well as the new variables: 
 
(1.3)   ϕ = ϕ(xα), ξ i = ξ i(xα); ξ i, ϕ ∈ C2 (i = 1, 2, …, n). 
 
We make use of the following symbol for the jump: 
 
(1.4)   [ ] = 0

perturbed state

( )ϕ =+ − 0
unperturbed state

( )ϕ =− , 

 
which permits us to write, from the classical argument of Hadamard [1]: 
 
(1.5)   [u] = 0, [uξi] = 0, [uϕ] = ππππ. 
 
With these definitions, the problem that one poses is the study of the propagation of 
waves as the study of ππππ as a function of the coordinates.  We denote the value of the field 
in the unperturbed state by u0: 
 
(1.6)    0 0 0A ( )α

αu u = f(u0, x
β);  u0∈ C1. 

 
If we express the derivatives with the aid of the new variables: 
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(1.7) uα = uϕ ϕα + i
iξ αξu , 

 
substitute in (1.1), and compute the jump then we obtain: 
 
(1.8)    0Aα ϕα ππππ = 0. 

 
In order for this linear homogeneous system in the components of ππππ to admit a non-null 
solution it is necessary that the determinant: 
 
(1.9)    D(Aαϕα) = 0 

 
for the value u = u0 of the field. 
 

2.  Normal velocity, radial velocity.  Among the variables xα, one of them x0, which 
we also denote by t, plays the role of time, whereas the other ones xi (i = 1, 2, …, n) are 
space variables.  In that space, the wave front will be represented by a (hyper) surface 
S(t) of dimension n – 1 that moves in the course of time, and at each point of which there 
will be a normal velocity nλ � that is defined at each instant by the formulae: 

 

(2.1)    λ = −
| |

tϕ
ϕ∇

, n
�

=
| |

ϕ
ϕ

∇
∇

 

 
which is derived from (1.2).  The condition (1.9) may be further translated into: 
 
     D(Aini – λA0) = 0. 
 
The matrix A0 is regular; otherwise, there would exist infinite wave velocities, which is 
unacceptable from a physical point of view.  Therefore, nothing prevents us from taking: 
 
(2.2)     A0 = I, 
 
the identity matrix, which gives: 
 
(2.3)    D(Aini – λI) = 0. 

 
We are thenceforth assured that (2.2) is certainly realized; if necessary, one multiplies the 
system (1.1) by the matrix (A0)−1. 

To each proper value λ(i)(u, )n
�

, which is a possibly multiple root of the characteristic 

polynomial (2.3), there correspond the right proper vectors ( )
I ( , )i nd u

�
and left proper 

vectors ( )
I ( , )i nl u

�
of the matrix An = Aknk, which are defined by (*): 

                                                
(*) and denoted by the initials of the Latin words dexter (right), laevus (left). 
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(2.4)    
( ) ( )

I
( ) ( )
I

(A I) 0,

(A I) 0,

i i
n

i i
n

λ
λ

− =
− =

d

l
 

 
in which the index I can on take as many integer values as there are linearly independent 
proper values for the value λ(i) in question.  We say that the system (1.1) is hyperbolic if 
the proper values of An are real and the proper vectors of this matrix form a basis for the 
space of components of u, or, in other words, if there exist N linearly independent proper 
vectors [2].  The hyperbolicity conditions will be assumed to be satisfied in what follows. 

We introduce the quantities: 
 

(2.5)    ψ(i)(u, ϕα) = ϕt + |∇ϕ | λ(i). 
 
By virtue of (2.1), the velocity λ = λ(i) will satisfy the relation: 
 
(2.6)     ( )

0
iψ (u, ϕα) = 0, 

 
on the wave front, which is the partial differential equation that the characteristic surface 
(1.2) satisfies. 
 Classical theory introduced the characteristic lines or rays C(i) (of equation (2.6)) for 
the solution of such equations.  They are bicharacteristics of the system (1.1), with the 
differential system: 
 

(2.7)   
( )
0
idx

d

α

α

ψ
σ ϕ

∂
=

∂
,  

( )
0
id

d x
α

α

ϕ ψ
σ

∂
= −

∂
, 

 
in which one finds a parameter σ (or, more particularly, denoted by σ(i)), which is 
identified with time along the curve C(i), as well as displaying the equation that was 
written. 

Before proceeding, it is useful to specify the various meanings of the differentiation 
symbols that we use.  We summarize them in the formula: 

 

( , )xβ
α γψ ϕ∂ =

xγα α
γ

ψ ψϕ
ϕ

∂ ∂+
∂ ∂

. 

 
We return to the expression (2.7).  Taking into account the remark that was made 

concerning the parameter s, one sees that the 0

j

ψ
ϕ

∂
∂

form the components of a velocity, the 

radial velocityΛ
�

: 

(2.8)     Λ(i),  j =
( )i

j

ψ
ϕ

∂
∂

, 

 
which, from (2.5), is derived directly from λ(i): 
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(2.9)    ( ) ( , )i nΛ u
� �

=
( ) ( )

( )
i i

i n n n
n n

λ λλ
 ∂ ∂+ − ⋅ ∂ ∂ 

� � �
� � . 

 
One will note that: 
 

(2.10)     ( )i nΛ ⋅
� �

= λ(i). 
 
 

3.  First expressions.  The following equality results from the defining formulae 
(2.4): 

(Aknk – λI) ( )
I
id = (λ(i) − λ) ( )

I
id , 

 
which, when multiplied by the modulus of the gradient of ϕ, |∇ϕ |, and considering (2.1, 
5), leads to: 
 
(3.1)     Aαϕα

( )
I
id = λ(i) ( )

I
id , 

 
and an analogous expression: 
 
(3.1 )′      ( )

I
il Aαϕα = λ(i) ( )

I
il , 

 
for the left vectors.  From this, one deduces the well-known property: 
 
(3.2)     ( )

J
jl ⋅ ( )

I
id = 0, ∀ (j) ≠ (i), 

 
which we cite, for the sake of reference. 

We multiply the equality (1.8) by the proper vector0
( )

J

jl that corresponds to the proper 

value ( )
0

jλ , and obtain: 

0
( )

0J
Aj αl ϕα  ππππ = 0

( ) ( )
0 J

j jψ l ⋅ ππππ = 0, 

 
and then reconsider the surface S(i) – where (i) is a given value – that satisfies (2.6): 
 

0
( )

J

jl ⋅ ππππ(i) = 0,  ∀ (j) ≠ (i), 

namely: 
 
(3.3)     ππππ(i) = πI

0
( )

I

id , 

 
in which the πI(xα) are the functions to be determined.  Therefore, ππππ belongs to the vector 
subspace that is generated by the right vectors that are associated with the mode of 
propagation that is envisioned.  In order to abbreviate the notation, when it will create no 
ambiguity, we will drop the upper index (i). 

In the perturbed neighborhood of S, we may write: 
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(3.4)    u = u0 + ϕ ππππ + O(ϕ2), 
 
where O(ϕ2) denotes the terms of order greater than or equal to two in the principal 
infinitesimal ϕ (Landau’s notation).  If one substitutes in (1.1) and multiplies by ( )

I
i
′l then 

one gets: 
(3.5)  I′l Aα u0α + I′l Aαϕα  ππππ + I Aα

αϕ ′ ∂l ππππ + O(ϕ2) = Ih ′    (*) 

 
upon setting: 
(3.6)     Ih ′ = I′l ⋅ f. 
 

We introduce the gradient operator in the space of components of u, namely: 
 

∇ =
1 2 N

, , ,
u u u

∂ ∂ ∂ 
 ∂ ∂ ∂ 

⋯ , 

 
and calculate – to second order – the various terms that appear in (3.5) by using (3.4): 
 

(3.7)  
0

0

I 0 0 0 I 0 0I
( ) ( )

I I 0 I

A A ( A ) ,

A ( ) ,i i

α α α
α α α

α
α

ϕ
ϕ ψ ϕ ψ

′ ′′

′ ′ ′

= + +
= ⋅ ⋅ ⋅ +

l u l u l u

l l l

⋯

⋯

∇ π∇ π∇ π∇ π
π π = ∇ π ππ π = ∇ π ππ π = ∇ π ππ π = ∇ π π

 

 
keeping (2.6) in mind, and: 

Ih ′ = 0 0I I
h hϕ′ ′+ ⋅ +⋯∇ π∇ π∇ π∇ π  

 
If one refers to (3.5), taking (1.6) into account, and one derives with respect to ϕ then one 
sees that the following relation will be satisfied on S: 
 
(3.8)  0 0 0

( )
I 0 0 0 0I I I

( A ) ( ) Ai hα α
α αψ′ ′ ′ ′+ ⋅ ⋅ + ∂ = ⋅l u l l∇ π ∇ π π π ∇ π∇ π ∇ π π π ∇ π∇ π ∇ π π π ∇ π∇ π ∇ π π π ∇ π . 

 
If we appeal to (3.3), we will have: 
 

(3.9)  0 0I
Aα

α′ ∂l ππππ =
0

0 0 0 0 0
I I II

0 0 0 0I I I I I
A A Aα α α

α αβ α
β

π ϕ π π
ϕ′ ′ ′

∂
∂ + +

∂
d

l d l l d u∇∇∇∇ . 

 
First of all, consider the first term of the right-hand side.  Derive (3.1) with respect to ϕα: 
 

(3.10)   Aα dI + Aβϕβ I

αϕ
∂
∂

d
=

( )i

α

ψ
ϕ

∂
∂

dI + ψ(i) I

αϕ
∂
∂

d
. 

 
Hence: 

                                                
(* )  Upon considering(3.1 )′ and (2.6), one sees why the terms of order two contribute nothing in (3.4). 
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(3.11)    I′l AαdI =
( )i

α

ψ
ϕ

∂
∂ I′l ⋅dI, 

and: 

(3.12)    0 0
I

0I I
Aα

απ′ ∂l d = 0 0

I

I I

d

d

π
σ ′ ⋅l d , 

 
because, from (2.7): 

(3.13)     
d

dσ
=

( )
0
i

α
α

ψ
ϕ

∂
∂

∂
 

 
denotes the derivative along the characteristic line C(i). 

We pass on to the second term of (3.9).  Deriving (3.10) with respect to ϕβ gives: 
 

(3.14)  Aα I

βϕ
∂
∂

d
+ Aβ I

αϕ
∂
∂

d
+ Aγϕγ

2
I

α βϕ ϕ
∂

∂ ∂
d

=
2 ( )i

α β

ψ
ϕ ϕ
∂

∂ ∂
dI +

( )
I

i

α β

ψ
ϕ ϕ

∂ ∂
∂ ∂

d
+

( )
I

i

β α

ψ
ϕ ϕ

∂ ∂
∂ ∂

d
. 

 
As a consequence: 
 

(3.15)  
0

0
II

0I
Aα

αβ
β

ϕ π
ϕ′

∂
∂
d

l =
2 ( )1

2

i

α β

ψ
ϕ ϕ
∂

∂ ∂
ϕαβ 0I′

l ⋅ππππ + πI
0I′

l
0I d

d
α

α

ϕ
ϕ σ

∂
∂
d

. 

 
As for the last term of (3.9) and the first term of (3.8), they are not, in general, susceptible 
to being given simpler expressions. 

These various results permit us to write (3.8) as follows: 
 

(3.16)  
0

0 0 0 0

2 ( )I
( )0 I
0I I I I

1

2

i
i dd

d d
α

α β α

ψ ϕπ ψ π
σ ϕ ϕ ϕ σ

Ι
′ ′ ′

  ∂∂
+ + ⋅ ⋅ +  ∂ ∂ ∂ 

d
l d l l∇ π π∇ π π∇ π π∇ π π  

    + πI{ 0 0I 0 I 0I I
( A ) Aα α

′ ′+l d l d∇ ∇∇ ∇∇ ∇∇ ∇ } u0α = 0I
h ′∇∇∇∇ ⋅ππππ. 

 
 

4.  The differential system at the discontinuities.  Consider a point M(xα) on a 
curve C(i) at the instant σ, which was found at 0 0M ( )xα at the initial instant, and let qi(xα) 

be n quantities that are constant along that curve.  We then have: 
 

idq

dσ
=

( )
0
i

iqα
α

ψ
ϕ

∂
∂

= 0. 

 
We now differentiate with respect to xj: 
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2 2
0 0 0i i

j jj
q q

x β α α
β α αα

ψ ψ ψϕ
ϕ ϕ ϕϕ

 ∂ ∂ ∂
+ +  ∂ ∂ ∂∂ ∂ 

= 0, 

i.e.: 

(4.1)   
2 2

0 0i i
j lj kj

l kk

d
q q

d x

ψ ψ ϕ
σ ϕ ϕϕ

 ∂ ∂
= − + ∂ ∂∂ ∂ 

. 

 
We recall that if a matrix Q(σ) satisfies the relation: 
 

dQ

dσ
= MQ, 

then its determinant D(Q) satisfies: 

d

dσ
D(Q) = (Tr M)D(Q), 

 
where Tr M denotes the trace of the matrix M.  As a consequence, if one introduces: 
 

θ = 0( )

( )

i
j

i
j

q

q

D

D
, 

in such a way that θ = 1 when σ = 0: 
 

(4.2)   
2 2

0 0
ij i

i j ix

ψ ψϕ
ϕ ϕ ϕ
∂ ∂

+
∂ ∂ ∂ ∂

= 2
d

dσ
Log θ. 

 
From the constancy of qi (qi = (qi)0) and the properties of the functional determinant it 
then follows that: 

0( )

( )

i
j

i
j

q

q

D

D
=

D( ) D( )

D( ) D( )

i i

i i

q x

x q
=

0

D( )

D( )

i

i

x

x
, 

namely: 

θ =
0

D( )

D( )

i

i

x

x
. 

 
Finally, one may rewrite (3.16) in the form: 
 

(4.4) 0

( ),
( )0
0I

1
Log | |

2

i k
i

k

d d

d d x
θ ϕ λ

σ σ′

  ∂Λ + − + ∇ ⋅  ∂   
l

ππππ ∇ π π∇ π π∇ π π∇ π π  

   +
0 0I I I

I 0 0( A ) A
x

α β
α β α

α

π ϕ
ϕ

′
′

∂ ∂
−

∂ ∂
l d

l u∇ π∇ π∇ π∇ π = 0I
h ′ ⋅∇ π∇ π∇ π∇ π . 
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Since the proper vectors are defined only up to a multiplicative factor, it happens that 
this equation is invariant under the replacement of the left vector 0I′

l with a collinear 

vector; the penultimate term of the right-hand side assures this invariance. 
The discontinuities displace with the radial velocity along the characteristic rays (*).  

The systems (2.7) and (4.4), to which we shall add the equality (3.3), permit us to 
determine their values.  When equations (2.7) are integrated once, they give: 

 

(4.5)    x0 = σ,  xi = ( )0 ,i ix x σ , 

 
provided that one is given (∇ϕ)0 as a function of the0

ix , i.e., the point of the surface wave 

S0 that was M0 at the initial instant σ = 0 (**): 
 
(4.6)     0

0( )ixϕ = 0. 
 
Once one has substituted the expressions (4.5) into (4.4), all that remains is to solve this 
differential system in order to obtain ππππ.  We immediately remark that this system is not, 
in general, linear, and that it may, on the other hand, become singular, while any 
singularity of u0 is then isolated.  We shall examine these circumstances at length in the 
next sections. 
 
 

5.  The propagation of waves in a constant state. – We direct our attention to the 
waves that propagate in a region where the field is constant.  We mark the values the field 
takes in this region with an asterisk, values that, from (1.6), must be such that: 

 
(5.1)    f ( ∗u , xa) ≡ 0, ∗u = const., 
 
in which we have obviously assumed that a solution exists.  Important simplifications 
then ensue.  First of all, since( )

*
iψ no longer depends upon the coordinates explicitly, (2.7) 

shows that the ϕα are constant along the curves C(i).  As a result, the relations (4.5) 
immediately give: 
 
(5.2)   x0 = σ,  xj = ( ),

0 *0 * 0( , )j i jx n σ+ Λ u
�

, 

 
in which the normal vector0 0( )in x

�
to S0 is calculated by means of (4.6).  From this, one 

deduces: 

(5.3)    θ =
0

( ),
*0( )i j j

i iσ δ∂ Λ +D , 

with: 

                                                
(*) To use the language of the physicist, we shall say that the characteristic rays are the “guiding waves.” 
 
(**)  Upon solving (4.5) for the0

ix that one substitutes in (4.6) one will find the equation (1.2) for S(t). 
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1 if  

0 if  .
j

i

i j

i j
δ

=
=  ≠

 

 
On the other hand, the system (4.4) becomes: 
 

(5.4)  *

I
I

* I I I
log | |

d d
h

d d

π θ ϕ λ π
σ σ ∗ ∗′ ′

  + + ∇ ⋅ ⋅ = ⋅  
  

l d∇ π ∇ π∇ π ∇ π∇ π ∇ π∇ π ∇ π . 

 
Starting with the determinant: 
(5.5)    ∆(i) = D(lI, I )′d , 

 
one introduces the quantitiesIIf ′′ : the product ∆(i)⋅ I

If ′′ equals the determinant that is 

obtained by replacing the Ith column in ∆(i) by that of the elements: 
 

I Ih ′′ ′d∇∇∇∇ , 

 
in whichI ′′ takes on all of the same values as I.  It is essential to notice that ∆(i) is non-
null.  Indeed, if L and D denote the matrices that are formed from the left and right proper 
vectors of Λn then, by virtue of (3.2): 
 
(5.6)   D(LD) = ( )

( )

i

i

∆∏ = D(L)D(R) ≠ 0, 

 
since the system (1.1) is hyperbolic (cf. sec. 2).  We may therefore recall (5.4), which is 
solved for the term in braces: 
 

(5.7)  
I

I
*log | |

d d

d d

π θ ϕ λ π
σ σ

 + + ∇ ⋅ 
 

∇ π∇ π∇ π∇ π = I I
I *f π ′
′ ⋅ , 

 
and, after integration, gives the law of propagation of the discontinuities [3]: 
 

(5.8)    ππππ =
θΦ
ηηηη

, 

with: 

(5.9)   Φ = 1 + |∇ϕ | ( )
*0

( )
( )

i dσ τλ τ
θ τ

⋅∫ ∇ η∇ η∇ η∇ η , 

(5.10)    ηηηη = ηI dI* ; 
 
in which the ηI are (continuous, as well asII *f ′ ) solutions of: 

 

(5.11)   
Id

d

η
σ

= I I
I *f η ′
′ ⋅ ,  I

0η = I
0 0( )ixπ . 
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The given of the perturbing field0 I
0( )xu determines the I

0π .  At the initial instant: 

 
( )
0S i = ( )

0S j = S0, ∀(i), (j), 

 
and in the perturbed neighborhood of S0: 
 
(5.12)    u0 = *u + ϕ0 ππππ0 + … 

 
ππππ0 is solved for its components in the basis of proper vectors: 
 
(5.13)   0

0( )ixππππ = K ( )
0 K*

( ) K

k

k

π∑∑ d = ( )
0

( )

k

k
∑ππππ . 

 
From this, one deduces: 
 
(5.14)    0

I *′ ⋅l ππππ = I
0 I * I*π ′ ⋅l d , 

 
and from that, the I

0π are obtained by solving the latter system. 

We make two remarks:  The degree of the polynomial θ2(σ) is less than or equal to n 
– 1.  There exists one relation between the components of the radial 

velocity ( )
*0 0( )i ixΛ
�

since there exists one relation between the variables0
ix (equation (4.6) for 

the surface S0) and the
0

( ),
*0( )i j

i∂ ΛD is null ipso facto. 

When the function f in the right-hand side of (1.1) is identically null, the integral: 
 

0 ( )

dσ τ
θ τ∫ , 

 
which is found in Φ, involves only elementary functions in the usual case, where n = 3.  
For more numerous variables, one must appeal to the elliptic functions (n = 4, 5) and the 
hypoelliptic ones (n > 5). 
 
 

6.  Plane waves, translating waves, and parallel waves.  In this section we treat 
three particularly important cases.  When the surface S0 is a plane: 

 

(6.1)   0n
�

= const., ( )
*0
iΛ
�

= const., θ = 1, 
 
and the formulas (5.2) show that S is likewise a plane surface.  We briefly state: the plane 
waves remain planes.  These various properties confer their importance on such waves. 

Likewise, the translating waves possess a radial velocity that is constant, but for a 
different reason: it does not depend on the normal vector: 
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(6.2)   ( )
*
iΛ
�

= ( )
* *( )iΛ u
�

= const., θ = 1. 

 
From this, it results that S is derived from S0 by a simple translation; therefore, the latter 
does not suffer any deformation in the course of time. 

The parallel waves are characterized by having a constant scalar normal velocity: 
 

(6.3)    ( )
*

iλ = ( )
* *( )iλ u = const., 

 
from which, and (2.9), it ensues that: 
 

(6.4)     ( )
*
iΛ
�

= ( )
*

i nλ �
 

and (cf. (5.3)): 
(6.5)    θ2 =

0

( )
* 0( )i j j

i inλ σ δ∂ +D . 

 
Now, by virtue of the Rodriguez relation: 
 

0 0M Rd dn+
� �

= 0, 

 
the principle radii of curvature R0 of the surface S0 at the point M0 are solutions of: 
 

00 0(R )j j
i in δ∂ +D = 0, 

 
and, as a result, the polynomial θ2 admits them as roots.  Thus, in ordinary physical space 
(n = 3): 

(6.6)    θ2 =
( ) 1 ( ) 2
* 0 * 0

1 2
0 0

( R )( R )

R R

i iλ σ λ σ− −
, 

or furthermore [4]: 

(6.7)    θ = 2 2
* 0 * 0K 2 1λ σ λ σ− Ω + , 

 
in which we employ the mean curvature Ω0 and the total curvature K0. 

More especially, if the waves are spherical and of radius r: 
 

θ =
0

r

r
, 

and if they are circular cylindrical: 

θ =
0

r

r
. 

 
 
7.  Shocks. – We say that a shock is produced when ππππ takes on an infinite value; the 

field may then be discontinuous in its own right.  In reality, one is presented with a very 
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rapid variation in intensity by “steps,” by “bumps,” or by “fingers of a glove” in a 
physical region of negligible thickness.  In any event, equations (1.1) cease to be valid in 
this region, and must be replaced with other ones.  One already knows how to treat 
conservative systems: 
(7.1)     ( )α

α∂ f u = 0, 

 
by writing the shock conditions as: 

(7.2)     0| |λ fɶ = [fi] ni, 
 
which, on the one hand, the field values, and on the other, the wave surface of the shock 
must obey [5]. 

From the mathematical point of view, the problem amounts to considering the 
discontinuous solutions to (1.1) – the weak solutions – and a question of uniqueness is 
posed immediately: there might exist an infinitude of such solutions that correspond to 
the same initial data [2][6].  Remedies (or should we say, palliatives?) such as 
introducing a viscosity term [7][8] or taking microscopic phenomena into consideration 
have been proposed. 

 
 
8.  Nonlinear shocks. – These are due to the annulling of Φ, and are absent in linear 

fields.  They do not exist if the conditions: 
 

(8.1)     ∇∇∇∇λ(i)⋅dI ≠ 0, 
 
which assures the continuity of the first derivatives of λ(i): 
 
(8.2)     ( )[ ]i

ϕ λ∂ = 0, 

 
are verified.  In this case, we say, with Lax, that the system (1.1) is exceptional for the 
wave in question [2].  When it possesses this property for all of the proper values it is 
completely exceptional.  From all evidence, such is notably the case for semi-linear 
systems, as well as the following one [9]: 
 

(8.3)     An =
B 0

0 C

 
 
 

, 

 
in which B and C are square matrices of dimensions k and N – k, respectively, B is 
independent of the first k components of u, and C is independent of the other ones: 
 
(8.4)  B = B(uk+1, …, uN, )n

�
,  C = C(u1, …, uk, )n

�
. 

 
On the contrary, a system of the type: 

(8.5)     An =
B 0

D C

 
 
 

, 
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in which C is the matrix that one must define and B and D are arbitrary, is exceptional 
only with respect to the waves that are determined by C. 

Shocks will certainly appear if: 
(8.6)     ( )

*
iλ∇∇∇∇ ⋅ ππππ < 0. 

 
What does this condition represent?  We have: 
 

(8.7)   ( )log | |i

t
λ∂ 

 ∂ 
=

( )

( )
*

1 i

ti

λ ϕ
ϕλ

 ∂
 ∂ 

= − |=ϕ | ( )
*

iλ∇∇∇∇ ⋅ ππππ, 

 
and (8.6) translates into: 

(8.8)     
( )| |i

t

λ ∂
 ∂ 

> 0. 

 
The left-hand side is nothing but the relative acceleration of the perturbed posterior face, 
as one calls it, of the wave surface with respect to the anterior face; when the accelerated 
one catches up with the other one, a shock is produced.  The latter are the local 
manifestation here of a global phenomenon of envelope formation that has been studied 
in detail in aerodynamics for one-dimensional flows [5]. 
 
 

9.  Linear shocks. – These are due to the annulling of θ, and inherit nothing from the 
nonlinear character of the field; hence, they are not foreign to the case of linear fields.  In 
general, θ is annulled on a surface Σ, which is called the focal surface and consists of n –
1 sheets.  Its points are called foci or focal points, and Σ further constitutes the envelope 
of characteristic lines C(i). 

As far as the formal origin of these shocks is concerned, we shall establish the 
following proposition [10]: 

Linear shocks are due to the non-commutation of the matrices Ai.  Suppose that these 
matrices commute between themselves, i.e., that one has, for the value u = *u : 

 
(9.1)   AiA j = AjA i, ∀i, j = 1, 2, …, n. 
 
From (3.1) (recall (2.2)), one may then write: 
 

lJA
αAβϕβdI = ψ(i)lJA

αdI = lJA
βϕβA

αdI = ψ(j)lJA
αdI, 

namely: 
( ) ( )
J IAj iαl d = 0,  ∀ (j) ≠ (i). 

 
Upon multiplying (3.10) on the left by lJ, by reason of the orthogonality of that vector 
with dI, it follows that: 

lJ J

αϕ
∂
∂

d  = 0, 
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which translates into: 
( )
I
i

αϕ
∂
∂
d = ,I ( )

I I
icα ′d . 

 
When this latter expression is substituted into (3.10), one finally has: 
 

(9.2)     AαdJ =
( )i

α

ψ
ϕ

∂
∂

dI, 

which is equivalent to (cf. (2.8)): 
 
(9.3)     (Aj – Λ(i),jI) ( )

I
id = 0. 

 
Thus, the radial velocity, just like the proper vectors, does not depend onn

�
.  All of the 

associated waves of the system are translating waves (sec. 6) and no linear shock may be 
produced. 

Conversely, let there be a system (1.1) for which all of the radial velocities and 
associated proper vectors depend only upon the field, let Ki(u) be the diagonal matrix that 
is formed from the i th components of these velocities, and let D(u) the matrix of right 
proper vectors.  Thanks to (2.10), we have: 

 
Aini = DKiniD

-1, 
i.e.: 
 
(9.4)     Ai = DKiD-1; 
 
the matrices then commute.  We note that one may nevertheless encounter translating 
waves in systems with non-commuting matrices; the associated proper vectors will 
generally depend onn

�
 (cf. Alfvén’s waves, book II, sec 3).  In summary, we say that in 

order for linear shocks to be produced it is necessary that the equalities (9.1) are not 
satisfied.  One will recall here that there is very general principle of physics that asserts 
that “for such a phenomenon to be produced, it is necessary that certain symmetry 
elements do not exist [11].” 
 
 

10.  Second order discontinuities. – This amounts to determining the terms of order 
two in the development (3.4).  We suppose, to simplify, that the function f in (1.1) is 
identically null, and we consider the propagation in a constant state.  In the perturbed 
neighborhood of S, we thus write: 

 

(10.1)    u = *u + ϕ ππππ +
2

2

ϕ χχχχ + O(ϕ3), 

in which, obviously: 
(10.2)    χχχχ = [uϕϕ]. 
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From the equality: 
 
(10.3)    ( )

J Aj α
αl u = 0,  (j) ≠ (i), 

 
we have, to first order: 
 

lJ A
α(ϕ ππππ + ϕα ππππ + ϕ ϕα χχχχ) + O(ϕ2) = 0, 

 
so that furthermore, upon using (3.1, 3): 
 

I I ( ) ( ) I 2
J* * I* I* * J* J IA ( ) ( )j jα

α αϕ π π ϕψ ψ π ϕ∗+ + + ⋅ +l d d l l d Oχχχχ = 0. 

 
However: 
 
(10.4)  dI = dI* + ∇∇∇∇dI*(u - * )u + … = dI* + ϕ ∇∇∇∇dI* ππππ + O(ϕ2), 

 
and, making use of (3.10), one obtains: 
 

( ) I I II I
* J* I*

1

2
j

α α
α α

ϕψ π π π
ϕ ϕ

∗ ∗
  ∂ ∂ − − − ∂  ∂ ∂   

d d
l dχ ∇ πχ ∇ πχ ∇ πχ ∇ π + O(ϕ2) = 0. 

 
It finally ensues that: 

(10.5)   χχχχ = I I II I
I*

1

2α α
α α

π π π
ϕ ϕ

∗ ∗ ∂ ∂
+ ∂  ∂ ∂ 

d d
d∇ π +∇ π +∇ π +∇ π + + χIdI*. 

 
Because the proper vectors generally depend on the field and the normal vectorn

�
, the 

second order discontinuities depend on the first order ones.  It remains for us to determine 
the functions χI.  To do this, one proceeds as in section 3: one writes: 

 
(10.6)    ( )

I Ai α
α′l u = 0, 

 
upon neglecting only the terms of order greater than two.  One has: 
 

(10.7)  ( ) 2 ( )
I I I I

1
A A

2
i iα α

α αϕ ψ ϕ ϕψ′ ′ ′ ′∂ + ⋅ + ∂ +l l l lπ π χ χπ π χ χπ π χ χπ π χ χ + O(ϕ3) = 0. 

 
We give the calculation of these various terms without comment: 
 
a) I Aα

α′ ∂l ππππ   

  = I I
I I* I*A ( )α

α απ π′ ∂ + ∂l d d   
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  = I
I I I*A ( )α

απ ϕ′ −l d d∇ π∇ π∇ π∇ π + I I
I I * * I*A A ( )α α

αβ α
β

π ϕ ϕ π
ϕ′ ′

 ∂ − ∂ ∂  

d
l l d∇∇∇∇ + O(ϕ3) 

(cf. (10.4)) 
 I Aα

α′ ∂l ππππ   

=
I I

I I
* I I* * I I * * I

1 1
( ) ( )

2 2
k k k

k k k

d d

d d

π ππ ϕ π
σ σ′ ′ ′∗ ∗

   + ∂ Λ ⋅ + + ∂ Λ ∇ ⋅ + Λ ⋅ ⋅ ∂   
   

l d l d lπ ∇ π ππ ∇ π ππ ∇ π ππ ∇ π π  

+ }I I * II*
* I * I* I * I * * I*

1 1
( ) ( ) ( ) A ( )

2 2
k

k
α

α α
α

π π ψ π
ϕ′ ′ ′

 ∂
∂ Λ ⋅ − ⋅ ⋅ ∂ − ∂ ∂ 

d
l d l l d∇ π ∇ π ∇ π∇ π ∇ π ∇ π∇ π ∇ π ∇ π∇ π ∇ π ∇ π + O(ϕ2) 

(cf. (3.14)) 
 
b) ( )

I
iψ ′ ⋅l ππππ  

 = πI{ ϕ ∇∇∇∇ψ* ⋅ ππππ +
1

2
ϕ2∇∇∇∇ψ* ∇χχχχ + ϕ2 π π π πΤ ∇∇∇∇(∇∇∇∇ψT)* p + …}  

  ×{ }*
I * I* I I I * I*( )ϕ ϕ′ ′ ′⋅ + ⋅ +l d l d l d ⋯∇ π − ∇ π∇ π − ∇ π∇ π − ∇ π∇ π − ∇ π  

 = ϕ(∇∇∇∇ψ* ⋅ ππππ) I *′l ∇π π π π + ϕ2(πI(∇∇∇∇ψ* ⋅ ππππ){ }*
I I I * I*( )′ ′⋅l d l d∇ π − ∇ π∇ π − ∇ π∇ π − ∇ π∇ π − ∇ π  

    + { 1

2
∇∇∇∇ψ* ⋅ ππππ + ππππΤ ∇∇∇∇(∇∇∇∇ψΤ)∗ππππ} I *′l ⋅ π π π π ) + O(ϕ3) 

(cf. (10.4); T denotes the transpose) 
 

c)    2
I

1
A

2
α

αϕ ′ ∂l χχχχ  = 2
I * *

1
A

2
α

αϕ ′ ∂l χχχχ + O(ϕ3) 

d)    ( )
I

iϕψ ′l χχχχ    = ϕ2(∇∇∇∇ψ* ⋅ ππππ) I *′l ⋅ χχχχ + O(ϕ3). 
 
By definition, the second order conditions translate into: 
 

(10.8) I

1
A

2
α

α′ ∂l χχχχ + (∇∇∇∇ψ* ⋅ ππππ) I *′l  ⋅ χχχχ +{ 1

2
∇∇∇∇ψ* ⋅ ππππ + ππππΤ ∇∇∇∇(∇∇∇∇ψΤ)∗ ππππ + *

1
( )

2
k

k∂ Λ∇ π∇ π∇ π∇ π } I *′l ⋅ χχχχ    

        −−−− I
I * * I* * I *A ( ) ( )k

k
α

α π′ ′∂ + Λ ⋅ ∂l d l∇ π ∇ π π∇ π ∇ π π∇ π ∇ π π∇ π ∇ π π  

  I *( )π ψ− ⋅∇ π∇ π∇ π∇ π I*
I * I * I *

1

2 α
αϕ′ ′ ′

  ∂ ∂ +  ∂   

d
l l d∇ π∇ π∇ π∇ π   

 = 0. 
 
One sees that this system of differential equations for the functions χI is linear.  Precisely, 
it is of the form: 
 

(10.9)  
I

* I * I I
I * I * I*

1
log 2 ( )

2

d d

d d

χ θ ψ χ ψ π χ
σ σ

′′
′′ ′

  + + ⋅ + ⋅ ⋅  
  

d l d∇ π ∇∇ π ∇∇ π ∇∇ π ∇  

  =  I * 0( , )ix σ′ ∗⋅l b , 
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in which 0( , )ix σ∗b may be determined by means of the results of section 5. 

 
 

11.  The case of plane waves. – We now put ourselves in the case of plane waves 
(see sec. 6) with simple proper values.  Then: 

 

(11.1)    ππππ =π ∗d , π = 0π
Φ

 

(11.2)    Φ = 1 + |∇ϕ | ∇∇∇∇λ* ⋅ ππππ0 σ, 

(11.3)    χχχχ = π2∇∇∇∇ * *d d + *
*k

k

π χ
ϕ

∂
∂ +

∂
d

d . 

 
We then note that, from (3.14): 
 

*
* *Aα

αβ
β

π
ϕ

∂
∂

d
l =

2
* * *

* * *

1

2 αβ αβ
α β α β

ψ ψπ π
ϕ ϕ ϕ ϕ
∂ ∂ ∂

⋅ +
∂ ∂ ∂ ∂

d
l d l , 

 
and, from the law of propagation: 
 

2*
* *( )α

α

ψ π ψ π
ϕ

∂
+ ⋅

∂
d∇∇∇∇ = 0, 

from which, one derives: 

*
* *2 ( )αβ β

α

ψ π ππ ψ
ϕ

∂
+ ⋅

∂
d∇∇∇∇ = 0, 

 
and one easily obtains, by starting with (10.8): 
 

(11.4) 
d

d

χ
σ

+ 3(∇∇∇∇ψ ⋅ d)* πχ + {∇∇∇∇ψ ∇∇∇∇dd + 2dT ∇∇∇∇(∇∇∇∇ψT)d}*π3 

     + *

*

1
2

2

k
k

k kl
k l

ψ π π π
ϕ ϕ

  ∂Λ∂Λ ⋅ + ⋅ ∂ + ∂ ∂ ∂ 

d
d∇ ∆∇ ∆∇ ∆∇ ∆ = 0. 

Since: 
 

(11.5)   0

0 0 0 0

2
0

3
0 0 0 * *

,

( 2 ),

k k

kl k l k l

π π
π π π π ψ σ

−

−

∂ = Φ ∂

∂ = Φ Φ∂ − ∂ ∂ ∇ ⋅d
 

 
integration leads to: 
 
   χΦ3 – χ0 + |∇ϕ | 3

0π σ { ∇∇∇∇λ ∇∇∇∇d d + 2dT∇∇∇∇(∇∇∇∇λT) d} * 
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(11.6)   +
0 0 0

*
0 0 0

*

1
2 | |

2

k
k

k k l
k l

σ ϕ λ π π π
ϕ ϕ

   ∂Λ∂ Λ ⋅ + ∇ ⋅ ∂ + ∂  ∂ ∂   

d
d∇ ∇∇ ∇∇ ∇∇ ∇  

    +
1

4
σ2 |∇ϕ | ∇∇∇∇λ* ⋅ d*

0 0 0 0

*
0 0 0 0( 2 )

k

k l k l
l

π π π π
ϕ

∂Λ
∂ − ∂ ∂

∂
= 0. 

 
If the waves present an exceptional character (cf. 8.1): 
 

(11.7)   ∇∇∇∇(∇∇∇∇λ ⋅ dI) I′d = T T
I I I I( )λ λ′ ′+d d d d∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ≡ 0, 

 
and equation (11.6) shows that: 
 
(11.8)    χ = 0 0( )ixχ , 

 
when one adds the initial restriction: 
 
(11.9)    π0 = const. 
 
then one has the condition: 
 
(11.10)    T T

*( )λd d∇ ∇∇ ∇∇ ∇∇ ∇ = 0. 

 
From (8.1), or rather, from: 

∇∇∇∇ψ ⋅ d ≡ 0 , 
 

which is equivalent to it, one further deduces upon differentiating with respect to ϕk: 
 

(11.11)    |∇ϕ | ∇∇∇∇λ ⋅
kϕ

∂
∂

d
 = − ∇∇∇∇Λk ⋅ d , 

 
and (11.6) may be simply written: 
 

(11.12)  χ − χ0 + σ{|∇ϕ | dT∇∇∇∇(∇∇∇∇λT)d* 3
0π + }

0 0 0

*
* * 0 0 0

1

2

k
k

k k l
l

π π π
ϕ

∂Λ
Λ ⋅ ∂ + ∂

∂
d∇∇∇∇ = 0. 

 
 

________ 
 



BOOK TWO 
 

APPLICATIONS.  EXAMPLES 
______ 

 
 

I. – Classical electromagnetism. 
 

1.  The caustics of optics. – We make no pretense of great originality in briefly 
summarizing the now classical study of luminous waves here, but we have to find an 
example that illustrates some of the simplest phenomena of linear shocks.  Therefore, 
starting with the Maxwell equations: 

 

(1.1) 
H + rot E = 0,

E rot H = 0,−

� �ɺ

� �ɺ
 

(1.2) 
div H = 0,

div E = 0,

�

�  

 
and introduce delta symbol to denote the first order discontinuities, the set of which 
constitutes the vector p, we then find: 
 

(1.3)    
H + E 0,

E + H 0,

n

n

λδ δ
λδ δ

− × =
× =

� ��

� ��  

(1.4) 
H = 0,

E = 0.

n

n

δ
δ

⋅
⋅

��

��  

 
These latter constraints prohibit the existence of longitudinal stationary waves, which 
permits only the equations (1.3): 

  
(1)

(2)

H ,

E .

n

n

δ π
δ π

=
=

� �

� �  

 
Therefore, if one desires that λ not be null, one obtains: 
 

2( 1) E ( E)n nλ δ δ− + ⋅
� �� �

= 0, 
namely: 
 
(1.5)  λ = ±1. 
 
Equations (1.3) show further that: 
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  0

0

H ,

E ,

h

e

δ π
δ π

= ±
=

��

� �  

 

in which 0h
�

and 0e
�

are unit vectors that are functions of the point M0 on S0 and are such 

that they form a directed orthonormal frame0 0( , , )e h n
�� �

with n
�

.  By reason of (1.5), the 

surfaces S(t) are parallel, and: 
 

(1.6) π = 0π
θ

, 

 
in which θ has the expression (6.7), which is annulled on a two-sheeted surface, the 
geometric locus of the centers of curvature of the wave surface S0.  We have already 
recognized the caustic, whose brilliance manifests the appearance of linear shocks.  One 
knows the importance that optics attaches to the determination of that surface.  Given the 
experimental evidence, it permits one to calculate, a posteriori, the form of the wave 
surfaces [12].  On the other hand, the luminous intensity, which is proportional 

to 2 2E H+ , is known from its variation on that of the field.  The latter will present a 
maximum on the focal surface. 
 
 

II. – General relativity. 
 

 2.  Gravitational waves. – When one uses isothermal coordinates that satisfy the de 
Donder conditions: 

(2.1) 
1

2
g g g gαβ αβ

β γα γ αβ∂ − ∂ = 0, 

 
the Einstein equations for the external case may be written [13]: 
 

(2.2) Rµν = 
1

2
g gαβ

αβ µν− ∂ + Fµν = 0, 

 
in which the Fµν are quadratic forms of the first derivatives of the gravitational potentials 
gαβ.  The latter are continuous, along with their first derivatives, whereas discontinuities 
παβ =[ ]gϕϕ αβ∂ may exist in the second derivatives [14] upon crossing the characteristic 

hypersurfaces that satisfy: 
 
(2.3)  gαβ ϕα ϕβ = 0. 
 
The exception relation (I, 8.2) is verified since λ depends only upon the gαβ, which 
possess continuous first derivatives. (The Einstein system of equations then corresponds 
to the type (I, 8.3).)  In pseudo-euclidian space: 
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(2.4)    *gαβ = ηαβ = diag(1, −1, −1, −1),  

 
the waves are parallel, and their velocity of propagation is equal to that of light in vacuo: 
 
(2.5) *λ = ±1. 

 
The system (2.2) is obviously hyperbolic for the values (2.4).  If we set: 
 

gαβ = ηαβ  + hαβ , 
 

and make the weak field approximation (see, for example [15]) then one deduces: 
 

hαβ□ = 0. 

 
As a consequence, the discontinuities obey a law that is identical to (1.6), namely [16]: 
 

(2.6) παβ  =
0
αβπ
θ

. 

 
In addition, Lichnerowicz has shown (op. cit.) that the 0

0απ are stripped of all physical 

significance and that one may always assume that they are null.  Finally, when one 
accounts for the restrictions that are expressed by (2.1), one notes that: 
 
  π0α  = 0 
(2.7) δijπij  = 0 
   njπij  = 0, 
 
in such a way that the initial discontinuities depend only upon two arbitrary functions of 
the point M0. 

Physically, the πij have the effect of creating a discontinuity in the relative 
acceleration of the two particles, which are situated on either side of the wave front.  That 
discontinuity then varies with their positions; it is null if they are aligned along the 
normaln

�
, which shows the transverse nature of gravitational waves [17]. 

 
 

III. – Magnetohydrodynamics. 
 
3.  The Lundquist equations, Alfvén waves. – The Lundquist equations relate the 

magnetic fieldb
�

, the fluid velocityu
�

, its density ρ, and the entropy S, by introducing the 
sound velocity c(ρ, S) and a constant µ (the magnetic permeability), according to [18]: 
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(3.1) 

2

rot( ) 0

( ) rot 0

div( ) 0

S ( )S 0.

b b u

c b
u u u b

u

u

ρ
ρ µρ

ρ ρ

 + × =


 + ⋅ ∇ + ∇ + × =

 + =
 + ⋅ ∇ =

� � �ɺ

�
�� � �ɺ

ɺ
�ɺ

 

 
Outside of the contact surfaces that displace with the fluid, there exist three possible 

modes of propagation, which are associated with Alfvén waves, fast (supersonic) waves, 
and slow (subsonic) waves, respectively [19].  (In general relativity, the corresponding 
velocities have been determined by Choquet-Bruhat [20].) 

The Alfvén waves with the velocities: 
 

(3.2)  λ = un ± vn, 
or: 

(3.3) 
b

v
µρ

=
�

�
,  un =u n⋅� � , etc., 

are transverse waves: 

(3.4)  d =
0

0

n b

v n

 ×
 

± × 
 
  
 

��

� �

. 

They are exceptional: 

(3.5) ∇∇∇∇λ =
1

, , , 0
2

nvn
n

ρρµ

 
± − 
 
 

�
�

, 

 
and (I, 8.1) is verified, and since: 
 

(3.6)  u vΛ = ±
� � �

, 
 
they are displaced by translation (see book I, sec 6), 
 
(3.7)  ππππ = ππππ0. 
 

As far as second order discontinuities are concerned: 
 

(3.8)  ∇∇∇∇d d =
( )

0

0

n

n

b n b

v v n

 −
 

± − 
 
  
 

��

� �

, 
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from which: 
∇∇∇∇λ ∇∇∇∇d d ≡ 0. 

 
We likewise confirm that one has: 

Λ ⋅d
�

∇∇∇∇ ≡ 0, 
 

and that the plane waves lead to (cf. I, 11.7, 12): 
 
(3.9)  χ = χ0. 
 
 

4.  Fast and slow waves. – They are defined by the velocities: 
 

(4.1) λ = un + w, w2 =
1

2
(c2 + v2 ± ∆ ), 

(4.2) ∆ = (c2 + v2)2 − 2 24 nc v = (c2 + v2)2 + 4c2(v2 − 2 )nv ≥ 0, 

(4.3) 
2

( )n
n

c v
u wn nv v

w
Λ = + ± −

∆

� � � � �
, 

 
and the proper vectors: 

(4.4)   d =
2

2
1

0

n

n

n

b b n

v
wn v

w

v

w
ρ

 −
 

  ± −    
  

−  
  

 
 

� �

� �

. 

A calculation then gives: 
 

  21 nv
wv c n

wb

λ
µρ

∂  = ± − ∂ ∆  

� �
�  

  n
u

λ∂ =
∂

�
�  

  
22 21

2 2
2

nvv c
cc w cc

w

λ
ρ ρ ρ

    ∂  ′ ′= ± − − −    ∂ ∆      
 

 
with: 

c > 0, 
c

c
ρ

∂′ =
∂

> 0. 

 
If is convenient to introduce the quantity: 
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(4.5)   q(u, )n
�

=
2

2
nv

w
, 

 
by means of which one easily expresses that [21]: 
 
(4.6)   ∇∇∇∇λ ⋅ d = −w(q – 1)Q(q), 
 
with: 

(4.7)   Q(q) = 1

2

1 5

2 2

q qc

c q q
ρ′ − +  − 

, 

(4.8)  q1 = 1 +
2 2

2

3( )

2 5

v c

cc cρ
−

′ +
, q2 =

2

2

1
1

2

v

c

 
+ 

 
. 

 
Thanks to (4.4), it then follows that: 
 
(4.9)   [ ]ρɺ = |=ϕ | λπρ(q – 1), 
 
in such a way that if one assumes that one is propagating in a fluid at rest(u

�
= 0) in which 

there is a constant magnetic fieldb
�

then: 
 

(4.10)   |∇ϕ | ∇∇∇∇λ ⋅ ππππ = − [ ]ρ
ρ
ɺ

Q(q). 

In the case where v < c, 
c

c
ρ′

<
1

2
: 

2

2

v

c
< q1 < q2 < 1, 

the inequalities: 
0 [ 2

nv [ v2, 
 

impose the following domain of variation upon q: 
 For fast waves: 

0 [ q [
2

2

v

c
, 

 For slow waves: 

0 [ q [ 1 +
2

2

v

c
. 

 
As a result, for the set of shock waves one has: 
 

(4.11)   
c

c
ρ′

+ 1 [ Q [ 3

2
, 
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and the latter inequalities will change their sense if 
c

c
ρ′

is greater than
1

2
. 

Therefore, just as in aerodynamics (where w = !c, Q = 1 + 
c

c
ρ′

) shocks will be 

produced if the fluid experiences a compression (see I, 8.6): 
 

(4.12)   [ ]ρɺ > 0 
 
during the passage of a fast or slow wave.  It will suffice that this condition is initially 
satisfied. 
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IV. – Nonlinear electrodynamics 
 

5.  The field equations. – The components of the electric field vectorE
�

and the 
magnetic field vectorH

�
on the axes of an orthonormal frame may be expressed in terms 

of a world vector (qα) by the formulae [22]: 
 
  H1 = 3 2

2 3q q− ,   E1 = 0 1
1 0q q−  

(5.1)  H2 = 1 3
3 1q q− ,   E2 = 0 2

2 0q q−  

   H3 = 2 1
1 2q q− ,   E3 = 0 3

3 0q q−  

 
in which one has set: 

q qα α
β β= ∂  (x0 = t, c = 1), 

 
and which have the immediate consequence that: 
 

(5.2)   H + rot E
� �ɺ = 0, 

(5.3)    divH
�

= 0. 
 

On the other hand, one knows that the electromagnetic field tensor: 
 

(5.4)   Fαβ = q qα β β α∂ − ∂  

 
permits us to construct two invariants [13][14]: 
 

(5.5)  Q = 2 21
(H E )

2
−

� �
, R =E H⋅

� �
, 

 
which will be conveniently expressed in the following fashion in the rest of this section: 
 

(5.6)  
0 0 0

0 0 0
0

0

2Q = 2 ,

R = ( ),

j j i j i i i
i i j i i i i

i j i
ijk j k k

q q q q q q q q q q

q q q qε
− − − +

−
 

 
in which we have used the permutation indicator εijk, which equals +1 if ijk constitutes an 
even permutation of the natural sequence 123, −1 if it constitutes an odd permutation, and 
0 in all other cases. 

If one does not impose the condition of linearity on the field equations then one may 
take the Lagrangian density to be a function of the two quantities Q, R [9]: 

 
(5.7)   L = L(Q, R). 
 
The variational principle: 
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(5.8)   δ ∫ L dV = 0 

 
translates into the Euler equations [15]: 
 

(5.9)   
q qβ α α

β

 ∂ ∂∂ =  ∂ ∂ 

L L
. 

One has: 

qα
β

∂
∂

L
= Q R

Q R
L L

q qα α
β β

∂ ∂+
∂ ∂

, 
qα
∂
∂

L ≡ 0, 

 
since one has, upon using the expressions (5.6): 
 

(5.10) 
0 0

0 0

Q Q R R
E , H ,

Q R
H , E .

i i
i i

i i

k k
ijk ijki i

j j

q q q q

q q
ε ε

∂ ∂ ∂ ∂= − = = − = −
∂ ∂ ∂ ∂
∂ ∂= − = −
∂ ∂

 

 
Finally, equations (5.9) may be written: 
 

(5.11) 
QQ QR QQ QR Q

QR RR QR RR R

( Q + R) E + H ( Q + R) + (E rot H)

( Q + R)H + E ( Q + R) + (H rot E) 0,

× ∇ ∇ −

− × ∇ ∇ − =

� � � �ɺɺ ɺ

� � � �ɺɺ ɺ

L L L L L

L L L L L
 

(5.12) QR RR RR QR R Q( H E) Q + ( H E) R + div H div E− ∇ − ∇ −
� � � � � �ɺ

L L L L L L = 0. 

 
 
(5.2) and (5.11), along with (5.5), constitute a system of six partial differential equations 

for the components of the vectorsE,H
� �

, which are subject to the constraints (5.3, 12), in 
addition. 
 
 

6.  The characteristic equation. – We once more denote the first order 

discontinuities by E, Hδ δ
� �

, as in the first section.  Equation (5.2) gives: 
 

(6.1)   H = Enλδ δ×
� ��

, 
 
from which, if we suppose that λ ≠ 0: 
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(6.2)   

H
Q E E,

E
R + H E.

n

n

δ δ
λ

δ δ
λ

 ×= − 
 

 ×=  
 

� �
� �

� �
� �

 

 
If one multiplies (5.11) by λ then one obtains: 
 

  QQ QR({ (H E) + (E + H)} E)(H E)n n nλ λ δ λ× − × ⋅ × −
� � � � � � �� � �

L L  

(6.3) + QR RR({ (H E) + (E + H)} E)(E + H)n n nλ λ δ λ× − × ⋅ ×
� � � � � � �� � �

L L  

  −LQ{(λ2 − 1) E + ( E) }n nδ δ⋅
� �� � = 0. 

 
As for (5.3) and (5.12), they simply project (6.1) and (6.3) onto the normal to the wave 
surface.  In revenge, when λ is null they provide conditions that are independent of the 
ones that one obtains by starting with (5.2, 11) (cf. sec. 7). 

If we suppose that the vectorsE,H
� �

are not collinear then we may write: 
 

(6.4)  1 2 3E H E Sa a aδ = + +
�� � �

, 
 
in which we have introduced the Poynting vector: 
 

(6.5)   S = E H×
� � �

. 
 
When the decomposition (6.4) that was introduced in (6.3) is successively multiplied 

byH,E,S
�� �

, one obtains three scalar equations that one may transcribe in the form [23]: 
 
(6.6)   (λ2αij + λβij + γij) a

j = 0,  (i, j = 1, 2, 3). 
 
The various coefficients are symmetric in their indices, and calculation gives: 
 
  α11 = R2

LQQ – 2 H2 RLQR + H4
LRR – H2 LQ 

  α12 = E2R LQQ – (R2 + E2H2) LQR + H2 R LRR – R LQ  

(6.7) 13
4 2 2 2

22 QQ QR RR Q

0

E 2E R R E

α
α

=
= − + −L L L L

 

  α23 = 0 
  α33 = − S2

LQ. 

 
  β11 = 2 Sn(R LQR – Η2

LΡΡ) 

  β12 = − Sn{R  LQQ – (E2 + H2) LQR + R LRR} 
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(6.8) 
2 2 2 2

13 QQ QR QR RR
2

22 QR QQ

(H E RH )(R H ) (E H RE )(R H )

2S (R E )
n n n n

n

β
β

= − − − − −
= −

L L L L

L L
 

  β23 = (H2En – RHn)(E
2 LQQ – R LQR) – (E2Hn – REn)(Ε2

LQR – R LRR) 

  β23 = 0. 
 
  γ11 =

2 2 2
RR QS (H H )n n+ −L L  

  γ12 = − 2
QRSnL + (R – EnHn)LQ 

(6.9) 
2 2

13 QR RR Q
2 2 2

22 QQ Q

S (H E RH ) (E H RE ) H }

S (E E )
n n n n n n

n n

γ
γ

= − − − −
= + −

L L L

L L

{
 

  γ23 = Sn{(E
2 Hn – REn) LQR – (H2En – RHn) LQQ − En LQ} 

  γ33 = (H2En – RHn)
2 LQQ – 2(H2En – RHn)(E

2Hn – REn) LQR  

      + (E2Hn – REn)
2 LRR + (S2 − 2

QS )n L  

with: 
 

(6.10)   Sn =S n⋅
� �

, etc. 
 

The proper values, which are solutions of the characteristic equation: 
 

(6.11)  D(λ2αij + λβij − γij) = 0, 

 
are roots of a sixth degree polynomial, provided that: 
 
(6.12)    D(αij) = − S4

LQ{S2(LQQ LRR − 2
QR)L − (E2

LQQ + H2
LRR – 2R LQR − LQ) LQ} 

 
are different from zero.  This condition (which expresses the regularity of the matrix A0: 
cf. book I, sec. 2) must be verified in order for all of the propagation velocities to be 
finite.  One thus supposes that: 
 
(6.13)    LQ ≠ 0. 

 
 One confirms that the expression in braces is always strictly positive when the following 
inequalities are, moreover, simultaneously satisfied: 
 
(6.14)  LQQ LRR − 2

QRL ≥ 0, LQ (LRR + LRR) ≤ 0. 

 
The characteristic polynomial involves terms of odd degree that, under the hypothesis 

that the three second derivatives of the Lagrangian are not simultaneously null, disappear 
only with Sn; one verifies, for example, that the coefficient of λ5 is equal to: 

 
(6.15) 2 S4 Sn LQ{(E2 + H2)(LQQ LRR − 2

QRL ) − LQ(LRR + LRR)}. 
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As a consequence, there exist certain waves that propagate with various velocities in the 
two senses of a direction that is not perpendicular to the Poynting vector.  In this fashion, 
the privileged role that this vector plays appears already.  It is confirmed when one 

verifies that a symmetry with respect toS
�

leaves the spectrum invariant.  In effect, 
considering a vector that is symmetric aboutn

�
amounts to performing the substitution: 

 
Hn → – Hn,  En → – En, 

 
which changes only the quantities β13, β23, γ13, γ23 into their opposites.  If one develops 
the determinant (6.11) in one’s mind then it is easy to confirm its invariance. 

Taking into account the identity: 
 

(6.16)  S2 − 2Sn − 2 2 2 2E H H En n− + 2R En Hn ≡ 0, 

 
which results from: 

S
�

 = E H H E Sn n nn n n− × + × +
� �� � �

, 

as well as from: 
 
(6.17)   S2 ≡ E2 H2 – R2, 
 
which follows immediately from the definition (6.5), then the determinant D may be 

developed according to: 
D = − S4 2

QL λ2 
P(u, λ), 

with: 
(6.18)   P(u, λ) = ω P1 – P2, 

 
(6.19) P1 = S2λ2 – 2Sn(E

2 + H2)λ3 

   + {(E2 + H2)(E2 + H2 − 2 2E H )n n− + 2(2 2Sn − S2)}λ2 

   − 2Sn (E
2 + H2 − 2 2 2(E + H )n n } λ 

   + S2 − (E2 + H2 − 2 2E H )n n− 2 2(E + H )n n , 

 
(6.20) P2 = (λ2 – 1){(E2

LQQ + H2 LRR – 2R LQR – LQ)λ2 – 2Sn(LQQ + LRR)λ 

   + H2 LQQ + E2 LRR + 2R LQR + LQ – (LQQ + LRR) 2 2(E + H )n n } 

and: 

(6.21)   ω =
2

QQ RR QR

Q

−L L L

L
. 

 
7.  Stationary waves. – Up till now, we have assumed that λ is non-null.  Now, the 

root λ = 0 exists, and we shall show that it is a double root.  First of all, (6.1) implies that: 
 

(7.1)    E = nδ π
� �

 



GENERAL THEORY 31 

whereas, referring to (5.11), one obtains: 
 

(7.2)   (LQQδQ + LQRδR)H n×
� �

+ (LQRδQ + LRRδR)E n×
� �

+ Q Hn δ×
��

L = 0.  

 
From (5.3, 12), it then follows that: 
 

(7.3)     Hn δ⋅
��

= 0, 
(7.4)  (LQQδQ + LQRδR)En − (LQRδQ + LRRδR)Hn + π LQ= 0. 
 
In all of the cases that one may pose, one has, in view of (7.2): 
 

(7.5)    1 2 3H = H E +a a a nδ ′ ′ ′+
� � �

, 
 
from which it results that: 

(7.6)    
1 2 2 3

1 2 2 3

Q H R + H E ,

R R E + E H .

n n

n n

a a a

a a a

δ π

δ π

′ ′ ′= + −

′ ′ ′= + +
 

Consider two cases: 

 1.  Sn = 0.  The vectorsH n×
� �

, E n×
� �

are collinear withS
�

: 3a ′ = 0, one of the remaining 
coefficients is arbitrary, and the other one may be deduced from equation (7.2).  The 
set E, Hδ δ
� �

depends on two parameters; the proper value λ = 0 is double. 
 2.  Sn ≠ 0.  One derives from (7.2) that: 
 

(7.7)    
1

QQ QR Q

2
QR RR Q

Q + R = ,

Q + R = .

a

a

δ δ

δ δ

′

′

L L L

L L L

 

 

π and 3a ′ are arbitrary, 1a ′ and 2a ′ are determined by (7.6, 7).  Indeed, one verifies that the 
system that is composed of these equations is regular; its determinant: 
 
(7.8)  S2(LQQ LRR − 2

QR )L − LQ(H2
LQQ + E2

LRR + 2RLQR – LQ) 

 
is strictly positive if the inequalities (6.14) are true. 

It remains for us to include the constraints (7.3, 4).  With (7.6, 7), they form a system 

of four homogeneous linear equations for the four unknowns 1a ′ , 2a ′ , 3a ′ , π, and are such 
that the determinant: 

 
 (LQQLRR − 2

QR)L {S2 – 2Q 2 2(E H )n n− + 2 2 2(E + H )n n + 4R En Hn} 

 − LQ{(H 2 − 2 2H + En n )LQQ + 2(R – 2En Hn) LQR + (E2 − 2 2E + H )n n LRR − LQ}; 

 
which, thanks to (6.16), is also: 
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 (LQQ LRR − 2 2
QR)(SnL  + {En(E E )nn−

� �
+ Hn(H H )nn−

� �
} 2) 

  − Q

QQ RR+
L

L L
({ (H H )nn−
� �

LQQ +(E E )nn−
� �

LQR} 2 

  + (E E )nn−
� �

LRR + (H H )nn−
� �

LQR} 2 + (En LQQ − Hn LQR)2 

   + (Hn LRR − En LQR)2 + (LQQ LRR − 2
QR)L (E2 + H2)) + 2

QL  

 
is strictly positive if one accepts (6.14).  As a consequence: 
 

1a ′ = 2a ′ = 3a ′ = π = 0; 
there exist no stationary waves. 
 
 

8.  Propagation at the fundamental velocity. – Do there exist waves that propagate 

with the fundamental velocity, or, in other words, can one find non-null solutionsEδ
�

of 
equation (6.3) for the values: 
(8.1)    λ = ±1? 
 

When: 
(8.2)    LQQLRR − 2

QRL  = 0 

 
the first two vectors between braces in the right-hand side of that equation are collinear; it 

suffices to chooseEδ
�

to be perpendicular to the plane that it determines withn
�

: 
 

(8.3)  QQ QR

QQ QR

E = { (H H E ) (E E H )},

H = { (E E H ) (H H E )}.
n n

n n

n n n n

n n n n

δ π
δ π

− × + − ± ×
− ± × − − ×

� � � � �� � � �
∓

� � � � �� � � �
∓

L L

L L
 

 
Now suppose that (8.2) is not satisfied.  It is then necessary and sufficient that the 

three vectors H En×
� ��

∓ , E Hn× ±
� ��

,n
�

are coplanar, i.e., that the mixed product: 
 

(8.4)  ((H En×
� ��

∓ , n
�

,E Hn× ±
� ��

)) = 2Sn∓ (H2 – 2Hn + E2 − 2E )n = 0. 

 
From this, one deduces (see 6.16, 17): 
 
(8.5)  (H2 − 2Hn + E2 − 2 2E )n − 24Sn  

    = {(H2 − E2) − 2 2(H E )n n− } 2 + 4(R – En Hn)
2 = 0. 

 
It is thus necessary that the following are true [23]: 
 
(8.6)   2 2H En n− = 2Q,  En Hn = R 

or: 
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(8.7)   2Hn = Q + 2 2Q R+ , 2En = − Q + 2 2Q R+ . 
 
Therefore, there exist two directions of propagation that are symmetric with respect to the 
Poynting vector, which are found in the acute angle of the dihedral that is formed from 
the planes(S,H)

� �
, (S,E)
� �

, in which the waves attain the velocity of light.  (It is remarkable 
that these directions do not depend on the nonlinear form of the Lagrangian.)  It then 
results that the absolute value of a velocity that is less than (or greater than) 1 is 
everywhere (except possibly in the two indicated directions) strictly less than (or greater 
than) 1.  With regard to (8.4), the sense of the displacement in the two distinguished 
directions is the one that makesS

�
an acute angle.  In particular, if R = 0, Q > 0 then the 

two directions are situated in the plane(S,H)
� �

, whereas they belong to the plane(S,E)
� �

if Q 

< 0.  If Q = 0 then they make angles withE
�

andH
�

that are equal to the ones that these 
vectors make between them.  They both agree with the support ofS

�
when Q = R = 0. 

 
 

9.  In a direction perpendicular to the Poynting vector. – In such a direction the 
characteristic polynomial is quartic; one may then study the values of the velocity relative 
to the velocity of light.  One has: 

 
(9.1)     Sn = 0 
 
and (6.18-20) gives us the right to write LQ P = 0 in the form: 

 
(9.2) (LQQLRR − 2

QR)L {S2(λ2 –1)2 + (E2 + H2 − 2 2 2E H )n n− } 

   − LQ(λ2 –1)2(E2
LQQ + H2

LRR – 2R LQR − LQ) 

   + (λ2 –1) (E2 + H2 − 2 2E H )n n− {( E2 + H2) (LQQLRR − 2
QR)L  

   − LQ(LQQ + LRR)} = 0. 
 

If the inequalities (6.14) – which are strict inequalities – are true then the coefficient of λ2 
–1 is positive and the same is true for the sum of the other terms.  (We remark that: 
 
 − LQ(E2

LQQ + H2
LRR – 2R LQR)  

= Q 2 2 2 2 2
QQ QR RR QR QQ RR QR

QQ RR

{(E H ) (H E ) (E H )( )}
−

− + − + + −
+

� � � �L
L L L L L L L

L L
 

 
is positive.)  As a consequence: 

λ2 < 1, 
 

in all spatial directions (except for the ones for which equality applies) provided that λ 
exists (see the preceding section).  Now, in the present case the discriminant of the 
quartic polynomial P, namely: 
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(9.3)  (E2 + H2 − 2 2 2E H )n n− {(LQQ – LRR − 2Qω)2 + 4(LQR − Rω)2} 

 
is never negative.  Furthermore, this does not suffice to assure the reality of the roots; it is 
also necessary that the coefficients of λ4, −λ2, and the independent term have the same 
sign, and that the inequalities (6.14) do not suffice to satisfy these latter conditions for 
all E
�

,H
�

, n
�

. 
Assume (6.14).  The conditions translate into: 
 

(9.4)    Y > 0, 
(9.5)    Z > 0, 
 
with: 
 
(9.6) Y = {2S2 – (E2 + H2)(E2 + H2 − 2 2 2E H )n n− } L Qω 

   + {2Q(L QQ – L RR) + 4RL QR + 2L Q – (L QQ + L RR) 2 2(E H )n n− } L Q, 
 
(9.7) Z = {2S2 – (E2 + H2)(E2 + H2 − 2 2 2E H )n n− } L Qω 

   + {H2
LQQ + E2

LRR) + 2RLQR + LQ – (LQQ + LRR) 2 2(E H )n n− } L Q. 

 
These inequalities must be satisfied for all directions in the plane (E

�
,H
�

).  One is then 
led to determine the minima Ym, Zm of the functions Y(X), Z(X), which are linear and 
quadratic, respectively, in the variable: 

 
(9.8)    X = 2 2(E H )n n−  
 
over its domain of variation.  This domain is calculated by searching for the extrema of X 
when considered as a function of En (for example), on account of the relation: 
 

S2 – E2 2Hn − H2 2En + 2R En Hn = 0. 
 

(Cf. 6.16; 9.1.)  One thus finds that X varies over the segment: 
 

(9.9)    
1

2
(E2 + H2) − 2 2Q R+ , 

1

2
(E2 + H2) + 2 2Q R+ . 

 
From this, one deduces: 
 
(9.10) Ym = − 2(Q2 + R2)LQω  

   + LQ{LQQ(2Q + 2 2Q R+ ) + LRR(−2Q + 2 2Q R+ ) + 4RLQR + 2LQ} 

   − LQ{LQQ + LRR)(E2 + H2) 2 2 1
Q R

2
ϖ + + 

 
, 

where: 
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(9.11)     ϖ =
QQ RR

ω
+L L

. 

 
For given Q, R the quantity E2 + H2 may takes values that are as large as one desires.  
One thus assumes: 

(9.12)    2 2Q R+ ϖ +
1

2
> 0, 

namely: 

(9.13)    0 ≤ −ϖ <
2 2

1

2 Q R+
. 

 
On the other hand, since: 
 

(9.14)    E2 + H2 > 2 2 2Q R+ , 

 
one will have: 
 
(9.15)     Ym > 2Y1, 
(9.16)  Y1 = −2(Q2 + R2)LQω + LQ{Q(LQQ – LRR) + 2RLQR + LQ}. 

 
On thus obtains: 

(9.17)  Zm = LQ{(Q + 2 2Q R+ )LQQ + (−Q + 2 2Q R+ )LRR + 2RLQR + LQ} 
 
and one sees that: 
 

Y1 = Zm – 2LQ(LQQ + LRR) 2 2Q R+  ( 2 2Q R+ ϖ +
1

2
). 

 
Note the sequence of implications: 
 

Zm > 0 → Y1 > 0 → Ym > 0. 
 

In summary, the existence of roots is assured in any direction that is perpendicular to 
the Poynting vector when one assumes that the inequalities (6.14) are subject to the 
condition, besides (9.12), that the following inequality is satisfied: 

 
(9.18)     Zm > 0. 
 
 

10.  The determination of the velocities for the values Q = R = 0. – In this 
eventuality: 

(10.1)    E2 = H2 =| S |
�

= S 
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and, from (6.16): 
(10.2)    2 2S(E H )n n+ = S2 − 2Sn , 

 
which justifies the notation: 
 

   P1 = 2

1

S
(Sλ – Sn)

4, 

   P2 = (λ2 – 1){ 1

S
(Sλ – Sn)

2(LQQ + LRR) + LQ(λ2 – 1)} . 

 
One must find solutions to: 
 
(10.3) ω(Sλ – Sn)

4 − S(λ2 – 1) (Sλ – Sn)
2(LQQ + LRR) + S2

LQ(λ2 – 1)2 = 0. 

 
If one sets: 

(10.4)    
2

2

(S S )

1
nλ

λ
−
−

= µ 

 
then this comes down to solving the equation: 
 
(10.5)   ωµ2 + S(LQQ + LRR)µ + S2

LQ = 0, 

 
a solution that is obtained without undue effort: 
 

(10.6)   µ = Q QQ RR

2
QQ RR QR

S ( )

2( )

− + ± ∆
−

L L L

L L L
  (ω ≠ 0) 

with: 
 
(10.7) ∆  = S2{(LQQ + LRR)2 − 4(LQQ LRR + 2

QR)L } 

   = S2{(LQQ − LRR)2 + 4 2
QRL }. 

 
In turn, (10.4) shows that λ is a root of the trinomial: 
 
(10.8)   (S2 + µ)λ2 – 2S Snλ + 2Sn − µ = 0, 

 
in which µ takes the values (10.6).  In order for the reduced discriminant: 
 
(10.9)    µ(S2 − 2Sn + µ) 
 
to be non-negative for any magnitude of S it is necessary and sufficient that the same be 
true for µ.  This restriction (or rather, these restrictions) is equivalent to (6.14). 

Finally: 
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(10.10)    λ =
2 2

2

SS (S S )

S +
n nµ µ

µ
± − +

. 

 
When ω = 0 this formula is still valid when one makes: 
 

(10.11)    µ = Q

QQ RR

S−
+
L

L L
, (ω = 0) 

 
while one finds both of the velocities to be: 
 

λ = ±1. 
 
Of course, this case is susceptible to a general treatment when one starts with the 
expression (6.20) for P2. 

 
 

11.  Completely exceptional systems.  The system of equations (5.9), in which the 
right-hand side is identically null, is conservative.  Thanks to the expression (5.10), when 
shocks are present, one may then write the conditions: 

 

0qαλ
 ∂
 ∂ 

ɶ L
= j

j

n
qα

 ∂
 

∂  

L
, 

as: 

(11.1)   Q R[ E H]λ −
� �

ɶ L L = Q R[ H E ]n n× + ×
� �� �

L L , 

    [LQEn – LRHn] = 0. 
 

This poses the question: What sort of system is completely exceptional?  Since it is 
not impossible to essentially determine the roots of the characteristic polynomial, i.e., the 
values of λ that are solutions of: 

 
(11.2)    P = 0, 

 
we proceed in the following fashion:  From the equation above, we deduce that: 
 

(11.3)   δλ
λ

∂
∂
P

+ δ P = 0 

where: 
(11.4)   δ P = ∇∇∇∇P ⋅δu = λκ δcκ(u) 

 
upon specifying that: 
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(11.5)    P = cκ(u)λκ, 

 
and that the values of λ are all of the values that satisfy (11.2).  Therefore (see 6.18): 
 

(11.6)   δλ
λ

∂
∂
P

= δ P1 – ωδ P2 – P1δω. 

 
Starting with (6.1, 4), one obtains, in full generality (λ ≠ 0): 

(11.7) 

  Hλδ
�

 = 1 2 3H E (H E E H)n na n a n a− × − × + −
� � � �� �

 

 
1

2
δ(E2)   = a1R + a2E2 

 
1

2
λδ(H2)  = a2Sn + a3(HnR – EnH

2) 

  λδQ  = − a1λR + a2(Sn – λE2) + a3(HnR – EnH
2) 

  λδR  = a1(λH2 − Sn) + a2λR + a3(HnE
2 – EnR) 

  δ(En)  = a1Hn + a1En + a3Sn 
  δ(Hn)  = 0 
  λδ(Sn) = a1(R − EnHn) + a2(E2 − 2En + λSn) + a3{ λ(RHn − H2En) – ESn}. 

 
It then follows that: 
 

(11.8) 2
2 1

δ
λ −
P

 = LQQ{ λ2(δ(E2) – δQ) – 2λδ(Sn) + δ(H2) + δQ – δ( 2En + 2Hn )} 

    + LRR{ λ2δ(H2) – 2λδ(Sn) + δ(E2) – δ( 2En + 2Hn )} 

    + {aLQQQ – 2R(λ2 –1)LQQR + bLQRR} δQ 

    + {aLQQR – 2R(λ2 –1)LQRR + bLRRR – 3(λ2 –1)LQR} δR, 

with: 
(11.9)    a = E2λ2 – 2Snλ + H2 − 2En − 2Hn , 

     b = H2λ2 – 2Snλ + E2 − 2En − 2Hn . 

 
The expressions (11.7) provide: 
 

(11.10)  λ2(δ(E2) – δQ) – 2λδ(Sn) + δ(H2) + δQ – δ( 2En + 2Hn ) = – 3(λ2 –1)δR 

(11.11)  λ2δ(H2) – 2λδ(Sn) + δ(E2) – δ( 2En + 2Hn ) = 0. 

 
The product 2Snλ that appears in P2 is deduced from (11.2) and substituted into (11.9), 

which gives: 
 
(11.12)    (λ2 –1)a = (λ2 –1)2β + ϖ P1, 
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(11.13)    (λ2 –1)b = (λ2 –1)2α + ϖ P1, 

 
where: 

(11.14)  α = Q QQ QR

QQ RR

2Q 2R+ +
+

L L L

L L
, β = Q QR RR

QQ RR

2Q 2Q+ −
+

L L L

L L
, 

 
and we recall that: 

(11.15)     ϖ =
QQ RR

ω
+L L

. 

 
(11.9-15) then permit us to write (11.8): 
 

(11.16) δ P2 = − (λ2 –1)2(LQQ + LRR) Q + R
Q R

α βδ δ ∂ ∂ 
 ∂ ∂ 

 + ϖ P1δ(LQQ + LRR). 

 
We now calculate δP1.  By adding the identities (11.10, 11) term-by-term, one 

obtains: 

(11.17)  δ( 2En + 2Hn ) =
1

2
(λ2 –1)δ(E2 + H2) – 2λδ(Sn) + (λ2 –1)δQ. 

 
Using that equality, one finds that: 
 

(11.18)  δ P1 = (λ2 –1)2{ δ(S2) − 1

2
(E2 + H2)δ(E2 + H2)}  − (λ2 –1)(a + b) δQ, 

 
while it is easy to show, using only (6.17), that: 
 

(11.19)  
1

2
(E2 + H2)δ(E2 + H2) − δ(S2) = 2RδR + 2QδQ. 

 
Finally, (11.6) becomes: 
 

(11.20)  δλ
λ

∂
∂
P

= P1{ ϖδ(LQQ + LRR) + 2ωϖ δQ – δω} 

  −(λ2 –1)2{ (LQQ + LRR) Q + R
Q R

α βδ δ ∂ ∂ 
 ∂ ∂ 

− 2ω (QδQ + RδR) – ω(α +β)δQ} . 

 
When the system of equations (5.2, 11) is completely exceptional, the left-hand – and, 

as a result, the right-hand – side of (11.20) is identically null for the four characteristic 
values that satisfy (11.2).  One must then annul the coefficients of δQ and δR inside each 
pair of braces in (11.20).  One thus arrives at the system of partial differential equations: 
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(11.21)     
Q

ϖ∂
∂

− 2ϖ2 = 0, 

(11.22)     
R

ϖ∂
∂

= 0, 

(11.23)     
Q

α∂
∂

− 2ϖα = 0, 

(11.24)     
R

α∂
∂

− 2ϖR = 0. 

 
To these, one adds: 
 
(11.25)     α − β  = 2Q. 
 
There are two cases to consider: 
 1.  ω = 0.  The last two equations may be integrated to: 
 

α = const. 
 
One is then reduced to taking solutions of the system: 
 

(11.26)    
0,

 const. = .k

ω
α

=
 = −

 

 
We parenthetically note that µ (10.11) is equal to Sk1. 
 
2.  ω ≠ 0.  (11.21, 22) give: 
 

(11.27)     2(Q + k1)ϖ = −1 
 
and (11.24) gives: 

(11.28)     α =
2

1

R

2(Q )k

−
+

+ f(Q). 

 
The value of α that is given by (11.28) must satisfy (11.23).  From this, the following 
differential equation results: 

(11.29)     
1Q Q

df f

d k
+

+
= 0, 

whose solution: 

f = 2

12(Q )

k

k

−
+

 

leads to the system: 
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(11.30)    1
2

1 2

2(Q ) 1,

2(Q ) (R ).

k

k k

ϖ
α

+ = −
 + = − +

 

(k1, k2 are constants.) 
Here, one will have (see (10.6)): 

µ = S(k1 ± 2
1 2k k− ). 

 
The Born-Infeld theory uses the Lagrangian [24]: 
 

(11.31)     L = (1 + 2Q – R2
1
2)  

 

which produces an exceptional system
21 R 1

,
2(Q +1) 2(Q +1)

ϖ α
 − += = − 
 

.  Likewise, if one 

considers the solutions for which R ≡ 0, starting with the Lagrangian: 
 

(11.31 )′      L = (1 + 2Q
1
2) , 

 
then the system is completely exceptional (ω = 0, α = −1).  This fact has already been 
confirmed in the one-dimensional study of that theory; the characteristic curves form two 
families of isoclines [9][25]. 

One likewise verifies that the Heisenberg-Euler theory, which makes use of the 
following Lagrange function [26]: 

 

(11.32)     L = − Q + kQ2 +
7

4
kR2, 

 
in which k is a certain positive constant, does not lead to a completely exceptional 
system.  One may refer to [27] for the study of discontinuities in the latter theory and to 
[28] for the study of shocks. 

In conclusion, we note that the Lagrangian(11.31 )′ is the only one (up to a choice of 
constant that one obtains by integrating (11.26)) depends uniquely on Q in a nonlinear 
fashion that leads to a completely exceptional system [25]. 

 
 

_________ 
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