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 This paper contains a new approach to the results of V. P. Maslov that concern quasi-classical 

asymptotics (viz., the W. K. B. method). 

 

 

§ 1. – QUASI-CLASSICAL ASYMPTOTICS 

 

 1. – W. K. B. method. 

 

 One often resorts to constructing an asymptotic solution to differential equations whose 

derivative coefficients depend upon a parameter h that is supposed to be small: 
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in which S is a function with real values and the uk are functions with complex values, and 
2i  = − 

1, moreover. 

 One formally substitutes (1.1) in the equation and upon comparing the coefficients in the 

development in a series in h, one will determine (S, uk). In other words, one supposes that (1.1) is 

a formal solution of the differential equation. One such method for constructing an asymptotic 

solution is ordinarily called the W. K. B. method. 

 In quantum mechanics, the Schrödinger equation, in its time-dependent form: 
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as well as its stationary form: 
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t, E, R,   nR , the asymptotic that was described above is also called quasi-classical. That is 

linked with the fact that the functions S and uk verify some equations that are constructed as 

functions of the corresponding classical dynamical system in the phase space M = n nR R  and 

are generated by the Hamiltonian function: 

 

H = H (t, x) = 21
2

p  + v (t, q) ,  x = {q, p}  M .   (1.4) 

 

For (1.2), the function S verifies the Hamilton-Jacobi equation: 
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and the equation for least action in the case (1.3). 

 As far as the coefficients uk are concerned, they obey a recurrent system of ordinary differential 

equations for total derivatives along the trajectories of the dynamical system. Under certain 

conditions, one can follow the passage from the quantum dynamical system to the classical 

dynamical system when h → 0 with the aid of those asymptotic representations. This article would 

like to introduce and study a much larger class of asymptotic representations than the development 

(1.1). The necessity of extending the class of developments is dictated by the well-known difficulty 

that one encounters with the usual approach. For the stationary equation, that difficulty manifests 

itself in the appearance of regression points, caustics, etc. Their equivalent for the non-stationary 

equation is the non-invariance of formula solutions of the form (1.1) relative to the dynamics. We 

shall see that in detail. Suppose that one considers a formal solution of equation (1.2) of the form 

(1.1) that is equal to the expression: 
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when t = 0. One must the initial condition: 

 

S (t, x) |t = 0 = 
0 ( )S         (1.7) 

 

to the Hamilton-Jacobi equation (1.5). One knows that the Hamilton-Jacobi equation is equivalent 

(up to components in S that depend upon only time) to the fact that the manifold: 
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in the space M transforms under the action of a diffeomorphism mt of that space that is generated 

by the canonical system: 

ˆJ x  = 
H
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,   (1.9) 

in such a way that: 

t = mt 0 .      (1.10) 

 

Note that the function S : nR → R is recovered by starting from: 
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up to a constant. 

 Consider the manifold: 

0 = 
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It results from what was said that equation (1.5), with the initial condition (1.7), will have a unique 

solution for the t (t1 < t < t2, t2 > 0, t1 < 0) such that the manifolds mt 0 remain bijectively 

projectable onto the plane Q, Q = 0nR  , in other words, for all t for which mt 
0 preserves the 

representation: 

{ {q, f (q)} | q  nR }       (1.13) 

 

under a map f : 
n nR R→ . In that case, f = S / q . One can verify that for those same values of t, 

one will have no difficulty in solving the recursive system of equations for the coefficients uk , 

when completed by the initial conditions uk |t = 0 = 0

ku . 

 Suppose that the development (1.6) is asymptotic for a certain function 
0  = 

0 ( , )h   when 

h → 0. Consider the solution to the Cauchy problem that is defined by equation (1.2) and the initial 

condition: 

 (h, t, x) |t = 0 = 
0 ( , )h   .    (1.14) 

 

 Under certain hypotheses, the formal solution that was constructed above will be asymptotic 

to the exact solution  (h, t, ). But what will the asymptotics of that solution be for t  (t1, t2)? 

 The class of formal developments that will be introduced later on is invariant under dynamics 

and can be used for the asymptotic representation of the solution to the Cauchy problem (1.2), 

(1.4) for all t  R. Invariance under dynamics means that a formal solution that belongs to that 
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class and verifies an initial condition from the same class will exist for all t. Of course, one 

supposes that the diffeomorphism mt will exist for all t. 

 

 

 2. – The manifolds in the preceding section of the form (1.11) constitute a subclass of a 

particular class of n-dimensional manifolds in M that calls Lagrangian manifolds: An n-

dimensional manifold  in M will be called Lagrangian if the restriction of the differential form 

 = 1
2

(p dq – q dp) to  is closed. A general Lagrangian manifold has the form (1.11) if an only if 

it projects bijectively onto Q. 

 The function S can be characterized by the data of a Lagrangian manifold  that projects 

bijectively onto Q and the image has the form  =  + 1
2

( )d q p  on . 

 

S (q) =  ({q, p}) , {q, p}  , q  nR .   (1.15) 

 

The coefficients uk : nR  → C of the asymptotic development (1.1) can be considered to be 

functions on . 

 Therefore, the representation (1.1) will become a set {, , v}, in which v is a formal series of 

functions on . The generalization of the asymptotic developments that are considered here 

consists of saying that those sets are constituted by an arbitrary Lagrangian manifold that no longer 

necessarily projects bijectively onto Q. 

 We first study the asymptotic development that corresponds to a Lagrangian manifold that 

projects bijectively onto an arbitrary Lagrangian plane , i.e., onto a linear Lagrangian manifold. 

The general form of a Lagrangian plane is: 

 

 = 
1g Q−

,      (1.16) 

 

in which g is a transformation of the group G of (inhomogeneous) linear canonical transformations 

of M. The quantization of the space M generates a unitary representation V of the group of 

transformations G in 
2( )nL R . As far as asymptotic developments that correspond to Lagrangian 

manifolds that project bijectively onto  are concerned, it is natural to take a formal expression: 
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 One can argue that if one chooses the plane  to be the configuration plane in M, instead of Q, 

then the quantum state that is represented by the element ,  
2( )nL R  will be represented by the 

element 
1( )V g −

. At the next stage in the asymptotic development of a function from nR  → C, 

one introduces finite or infinite sums of expressions of the form (1.17) that are associated with an 

arbitrary Lagrangian manifold  and an integral  (or ) of the form  (or ) on . One shows 

that such asymptotic developments already have the property of invariance under dynamics. 
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 We denote those representations by the letter . The representations  play a double role in 

our presentation. On the one hand, independently of asymptotic maps, they occur as formal 

solutions to equations of type (1.1) and type (1.2). In connection with that, it is necessary to 

develop a certain formal calculus, and in particular to define some linear operations on , and 

likewise differentiation i h d / dt and the action of an operator of Schrödinger type. On the other 

hand, the  must generate a sequence of functions N  : nR  → C, N = 0, 1, 2, … that are used for 

the asymptotic development in the same sense as the functions: 
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in the classical W. K. B. method. The result is the application of formal solutions to the asymptotic 

development of exact solutions. The center of gravity of our presentation is concentrated around 

its formal construction, and its applications are hardly touched upon. 

 Different sums of expressions of the form (1.17) can generate one and only one asymptotic 

development . One shows that  can be put into bijective correspondence (up to a natural 

identification) with the triple {, , }, where  = 
0

k
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 , in which k are complex 

differentiable measures on . The correspondence   {, , } is realized with the aid of the 

symbolic generating integral: 

 () = ,( ) ( , )dx K x  
 ,     (1.18) 

 

in which K< ,  > is a certain universal kernel. We arrive at that integral by approximating  by 

tangent Lagrangian planes  to certain points x of the manifold  and representing  by a sum 

of the form ( )V g 


 , in which the support of  is localized to a neighborhood of x in a well-

defined sense. The integral (1.18) results from a natural passage to the limit for that construction. 

One can describe the fundamental operations on  very simply by means of such an integral. 

 This article resulted from the work of V. P. Maslov, who was the first to correct the 

inadequacies in the usual method. Maslov’s presentation was constructed on the basis of the 

expression (1.17), in which g served only to exchange the roles of certain components of the 

coordinate vector q and that of momentum p. The consideration of an arbitrary g immediately led 

to the convenient representation of  by the generating integral. The essential character of the 

canonical operator that figured in Maslov’s school is certainly equivalent to the generating integral 

(if one considers only the highest-order terms in the asymptotic development, as Maslov did). 

 However, the generating integral presents the advantage that its definition is obviously 

invariant and does not include any concept such as the index of a curve in the Lagrangian manifold 

(viz., the Maslov index). We also remark that thanks to the passage from the Lagrangian manifolds 

(on which integrals of the form  cannot exist) to their coverings (for more details, cf., § 2), we 

can consider the asymptotic developments that are generated by arbitrary Lagrangian manifolds 
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and not only the manifolds that satisfy the “quantization conditions,” which occupy an important 

place in Maslov’s construction. On the contrary, one immediately obtains those conditions when 

one considers the applications of the asymptotic development to a stationary equation of the type 

(1.3) (cf., § 4). 

 Let us give the plan of this presentation: The necessary notions from classical and quantum 

mechanics are summarized in § 2, and a new formula for the Maslov index is also given there. On 

the latter point, our work overlaps with the articles of Arnol’d and Fuks that are dedicated to the 

topological interpretation of the Maslov index. § 3 is central: In it, we construct the generating 

integral, and its link with Maslov’s canonical operator is explained there. 

 In § 4, we consider the Cauchy problem for the equation of Schrödinger form: 

 

d
ih

dt


 =   ,           (1.19) 

 

and discuss its asymptotic development. A general description of the class of the operator that can 

play the role of the operator  in this case is given. 

 The author would like to express his profound gratitude to L. D. Fade’ev for some valuable 

discussions. 

 

 

§ 4. – PHASE SPACE AND QUANTIZATION 

 

 1. – Phase space. 

 

 One calls the unitary space nC , which is considered to be real, the phase space M. The points 

of M will be denoted by x, a, … The real and imaginary parts of the scalar product in nC , ( . , .) + 

[ . , . ], determine Hermitian and symplectic structures on M, resp. The complex structure is given 

by the operator J, which corresponds to multiplication by i in 
nC . One has [ . , . ] = ( . , J .). 

 Consider the differential form  = 1
2

[x, dx] on M. An n-dimensional submanifold  in M is 

called Lagrangian if the form  | is closed. A linear Lagrangian submanifold is called a 

Lagrangian plane. A subspace  is a Lagrangian plane if and only if the form [ . , . ] is annulled 

identically. The set of all Lagrangian planes is denoted by , and the set of all Lagrangian 

subspaces is denoted by 0 . Fix Q  . Q is considered to be a Euclidian space with the scalar 

product qp = (q, p), q, p  Q. One can consider the space M to be the sum of two exemplars of the 

space Q, and the identification of x  M with the pair {q, p}, q, p  Q, is given by the formula x = 

q + J p, in addition. 

 The letters q and p always give the components of the pair x = {q, p}. 
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 2. – The group G. 

 

 A diffeomorphism m of the space M is called canonical if it leaves the form d invariant. The 

diffeomorphism m will be canonical if and only if dm  Sp (M), where dm is the differential of m 

and Sp (M) is the symplectic group on M, i.e., the group of non-degenerate linear transformations 

of M that preserve [ . , . ]. A canonical diffeomorphism transforms a Lagrangian manifold into a 

Lagrangian manifold. Consider the universal covering group Sp( )M  of the group Sp (M). We 

denote its elements by A and their canonical projections onto Sp (M) by 
o

A . The elements of 

Sp( )M  are naturally parameterized by a triple {, , }, where , ,  are linear transformations 

of Q, and  and  are symmetric. With that terminology: 

 
o

A  = exp J  exp J {0, } exp {, − t} . 

 

  = {, } and { . , . } are quasi-diagonal 22 block-matrices that define a transformation of 

M and correspond to the decomposition M = Q + Q . 

 One deduces exp 2 J  from 
o

A  uniquely. When  is fixed,  and  will be determined 

uniquely. Let G be the semi-direct product of the linear group of the space M and Sp( )M . The 

elements of G will be denoted by the letter g. They are pairs g = {a, A} where a  M. The group 

G generates a group of transformations G of the space M that operates according to the formula: 

 

g x = 
o

g x  = a + 
o

A x , 

 

and G is the universal covering of 
o

G . The group 
o

G  is nothing but the group of linear 

(inhomogeneous) canonical diffeomorphisms of M. 

 The general form of a Lagrangian plane is  = g Q, where g  G. The set 0 of Lagrangian 

subspaces can be interpreted as a homogeneous space of Sp (M), and one easily establishes that 

each   0 can be written as  = (exp J ) Q, where exp 2 J  is determined uniquely upon 

starting from . 

 

 

 3. – Lagrangian pairs. 

 

 Let  be a connected Lagrangian manifold. In what follows, we denote universal covering 

space of the manifold  by E. We likewise introduce the covering space E (), whose characteristic 

subgroup is a normal divisor  () of the group 1 (), which is composed of classes of paths  

that have the property that 


  = 0. The primitive  : E → R of the form  exists on E and E (), 
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and it will take different values at different points of the fiber of E (). Each of the spaces E and 

E () has its individual advantages. 

 Those of E () amount to the uniqueness of the correspondences of the type: 

 

  E () 

 

(cf., § 1, and for more details, § 3), and the entire presentation can be constructed with E (). 

 However, certain formulations are much simpler if one uses E. In the first part of this 

discussion, up to section 2, § 4, it will be convenient for us to consider E to be equivalent to E (). 

That convention will then be abandoned, and we will consider only E. 

 The set < ,  > will be called a Lagrangian pair. Suppose that the map  : E → G has the 

property that  x = {x, A (x)}, in which A (x) Q is parallel to the tangent plane to E at the point x. 

 The set < , ,  > will be called a Lagrangian triple. Let < , ,  > be a Lagrangian triple 

and let g = {a, A}  G. One intends g < , ,  > to mean the Lagrangian triple < g , g , g  >, 

where: 

g (x) = 1 1
2

( ) [ , ]g x a x− +  ,  x  g . 

 

One defines g < ,  > similarly. An n-dimensional submanifold  in M will be called a bijective 

projection onto Q if it has the form: 

 

{{q, f (q)} | q  D},  in which f : D → Q , 

 

and D is an open subset of Q. If D is simply connected then the submanifold will be Lagrangian if 

and only if there exists a function S : D → R such that f = S / q. Hence, < ,  >, where: 

 

 (x) = S (q) − 1
2

( )S q
q

q




 and x = {q, …}   

is a Lagrangian pair. 

 

 

 4. – Quantization. 

 

 One intends that to mean (cf., for example, [4]) a map K from the space M to the set of self-

adjoint operators on a Hilbert space such that the unitary operators W (x) = 
1exp ( )i h K x−

 form a 

projective representation of the linear group of the space M in such a way that: 

 

W (x1) W (x2) = 1 2 1 2exp [ , ] ( )
2

i
x x W x x

h

 
+ 

 
, 

in which h is a given constant: 

h   = (0, b) . 
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All of the irreducible representation of quantization are unitarily equivalent, and the operators that 

realize that equivalence are defined up to a phase C, | C | = 1. 

 One refers to the Schrödinger quantization of phase space M when one means a quantization 

such that H = − L2 (Q), and the operators K (x) are differential expressions: 

 

(K (x) f) () = ( )
h

q p f
i

 


 
+ 

 
 .      Q. 

That quantization is irreducible. 

 The group G operates naturally on the quantization K : 

 

K → g K = A K + a E , 

where 

(A K) (x) = K (tA x) and (a E) (x) = (a, x) E . 

 

One easily sees that g K is an irreducible quantization when K is. There then exist unitary operators 

V (g) such that: 

K V (g) = V (g) g K . 

 

They are defined up to a phase C, | C | = 1. It is obvious that those operators form a unitary 

representation of the group G.  

 

 

 5. – Explicit formulas. 

 

 Introduce the unitary operators: 

 

V (a) = exp ( )
i

K J a
h

− 
 
 

, V (A) = exp [ln , ]
i

AK K
h

 
 
 

.   (2.1) 

Here: 

[B K, K] = 
2

1

( )( ) ( )( )
n

p p

p

B K e J K e
=

  , 

 

in which {ep} is an orthonormal basis in M and J B = (J B), where  is the Hermitian conjugate in 

the complexification of M. Normalize V (A) by continuity upon starting from V (e) = E. 

 The operators V (g) = V (a) V (A) verify the relation: 

 

V (g1) V (g2) = 1 1 2 1 2exp [ , ] ( )
2

i
a A a V g g

h

 
 
 

 . 

 If A = {, , } then: 

(V (a) f) () = exp exp ( ) ( )
2

i i
q p p q f q

h h
 

   
− −   

   
 ,  (2.2) 
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a = q + J p , 

 
(3)( ( ) )( )V f   = 1/2 1| det | ( )r f r − ,  r = pe .   (2.3) 

 
(1) (2)( ) ( )V V   is an integral operator whose kernel is equal to: 

 
1/2

1

0

2
lim det (cos sin ) exp [ ( sin cos )(cos sin )

2

h i

i h
        




          

−

−

→

   
+ − − + +  

   
 

+ 1 1(cos sin ) cos 2 (cos sin ) ]                − −  + − + ,  (2.4) 

in which: 

 =  + i  , x =  + i  , 
(1,2) (0)V  = E . 

 

When cos   + sin  degenerates, that expression will define a generalized function. The 

continuity condition and the normalization will give a unique definition. 

 One must consider the explicit expressions of this section to be known in quantum mechanics. 

However, unfortunately, the author has not succeeded in finding any work in which they are given 

in the form that is necessary for us: We shall then make a few remarks regarding their proofs. 

 Upon changing the element g into the one-parameter subgroup gt in the defining relation 

( )KV g  = V (g) g K and differentiating with respect to t, we can pass to the following equivalent 

equation K G = G K + 0g K  for the infinitesimal generator of the group V (gt) : 

 

V (gt) = exp G t . 

 

Upon specifying G in the form of a quadratic functional of the operator K and using the definition 

of K, we will arrive at formula (2.1) for the operator V (g). The relation: 

 

V (g1) V (g2) = 1 1 2 1 2exp [ , ] ( )
2

i
a A a V g g

h
 

 

is then obtained by a simple verification. Formulas (2.2) and (2.3) are obvious. In order to 

understand (2.4), once more consider the group V (gt) and the equation: 

 

( )t

d
V g

dt
 = G V (gt) ,  V(g0) = E . 

 

In the Schrödinger representation, G is a second-order differential operator with quadratic 

coefficients in the independent variables. The kernel of the operator V (gt), i.e., the Green function 

of the problem, can be found in the form: 
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exp[ ( ) ( ) ( ) ( )}A t B t C t D t       + + +  . 

 

Upon substituting that expression in the equation, one will get a system of ordinary differential 

equations for B, C, and D that is easy to solve explicitly. 

 

 

 6. – Maslov index. 

 

 The set  of symmetric transformations  of the space Q is the universal covering of the 0-set 

of Lagrangian subspaces. The projection is given by the formula  = (exp J ) Q. Consider the 

function of  : 

v () = det−1/2 cos   | det1/2 cos  | , 

 

which is defined by continuity and the normalization v (0) = 1. 

 One easily sees that the product: 
1 (1)

0
lim ( ) ( )v V


 −

→
 

is constant on each fiber. 

 Consider the form  = 
2

lnd v
i




 on . It is a form on 0 . Consider the singular form  = 

lim   on 0 . Let  be an oriented curve on 0 with its origin at 1 and its extremity at 2 . Suppose 

that the Lagrangian planes 1 and 2 project bijectively into Q. The index ind  of the curve  will 

be the integer ind  = 

 . The indices of the closed curves obviously define a certain integer 

cohomology class on 0 : It is the Maslov-Arnol’d characteristic class [2], [3]. The Arnol’d 

formula results directly from our definition: The index of a closed curve  is equal to the degree of 

the map  :  → 
1S , in which  is the restriction to  of the map 0 → 

1S  that is given by the 

formula det exp (2i ), and  = (exp J ) Q, in addition. 

 The oriented curve  on the Lagrangian manifold  indices an oriented curve    in 0 . The 

index ind    is called the Maslov index of the curve . We also denote it by ind . Similarly, a 

curve  in the group G induces a curve    in 0 . We likewise denote the index of the latter curve 

by ind . 

 

 

 7. – Dynamics. 

 

 Let mt , t  R be the family of canonical diffeomorphisms that are defined by the equation: 

 

J x  = 
x




, in which   : R  M → R . 
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Consider the differential form  – c dt on R  M. Its restriction to t

t

E
− +

, where Et = mt E, E 

being the universal covering of the Lagrangian manifold , is a closed form. One denotes a 

primitive of that form by (t). 

 Consider the differential dm : R  M → ( )Sp M , in which dm is defined by the normalization 

dm0, x = e and continuity. Here, dm0, x is the value of dm at the point {t, x}. The trajectory mt a, a 

 M and g = {a, A}  G correspond to a path in the group mt g = 
,{ , }

tt t m am a dm A . Its index 

coincides with the Morse index of the trajectory mt a, in general. 

 Let a dot or d / dt denote the total derivative along the trajectory of the dynamical system mt . 

One has the relation: 

 

( )exp ( )t

t

d i
i h V m g

dt h

  
  

  
 

 

= 
2

( )

2

1
, , ( ) exp ( )

2

t

t

i
K x K x K x V m g

x x h

 


       
+ − + − −              

 .  (2.5) 

 

The operations on K are defined in the same way that they were defined on page 9. The proof is 

obtained by direct calculation. If < , ,  > is a Lagrangian triple then one intends mt < , ,  > 

to mean the triple < mt , (t), mt  >, in which (t) |t = 0 =  and (mt ) x = mt ( x) . Consider the 

function on E that is given by the formula: 

 

K = 
, , ( )xK x  

 = 
( )exp ( )ti

V x
h

 
 

 
 

 ,           (2.6) 

 

in which  is the delta function on Q, and V are the operators that are linked with the Schrödinger 

quantization. Note that V (g) , for g fixed, defines a generalized function on Q, in general. One 

can show that one has the relation: 

 

, , ( )xK x  
 = 1

, ,( ) ( )g xV g K g x−

  
          (2.7) 

 

 

§ 3. – GENERATING INTEGRAL 

 

 In this section and the following one, the series of the form: 

 

0

( / )k

k

k

h i u


  

 

are considered to be formal series in h / i. The expressions of the form: 
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0

,

k

k

k

h
u

i

 
 
 

   in which uk = ,

0

( / )l

k l

l

h i u


  

 

must be understood to mean: 

,

0 0

k k

k l l

k l

h
u

i
−

 =

 
 
 

   . 

 

 An expression of the type D ( | f, ) will denote a linear differential operator that acts upon 

the variable  whose coefficients depend upon the function f and the geometric object  in a finite-

order neighborhood of . 

 

 

 1. – Expression for V  . 

 

 Introduce the formal expression: 

( ) exp
i

V g u S
h

 
 
 

 ,     (3.1) 

i.e., a set {g, u, S} such that: 

 

 (1).  g  G . 

 

 (2)  u = 
0

,

k

k

k

h
u

i

 
 
 

  

 

   in which the uk : Q → C are such that supp u = 
0

 supp k

k

u


 is compact. 

 (3)  S  (supp )C u
, i.e., S : supp u → R, and S prolongs to an open subset U such that: 

 

supp u  U . 

 

The expression (3.1) is written V , for brevity, where  denotes 
1expu i h S−

 and is denoted by the 

symbol {u, S}. Let SU be the prolongation of S to U. One can associate SU with the Lagrangian 

manifold 
US  that projects bijectively onto Q. The subset 

US , which is above supp u, will be 

denoted by S . If the Lagrangian manifold 
US  projects bijectively onto Q for any prolongation 

SU then one says that g S projects bijectively onto Q. One understands the symbol: 

 

/2 /2S.P. (2 ) expi

Q

i
h e u f d

h

  − −  
 
 

  ,   (3.2) 
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in which u was described above and f : U → R, with supp u  U open, has only one non-degenerate 

critical point S on U, to mean the formal expression: 

 

0

( | ) exp ( )

k

k S S

k

h i
D f u f

i h
 



    
    

     
     (3.3) 

 

that one obtains when one applies the method of stationary phase ([5]) to the integral (3.2). One 

utilizes the explicit formula for the operator V (g) in the Schrödinger representation. One can then 

make the expression V  correspond to a symbolic integral of the form (3.2). The function f will 

have a unique non-degenerate critical point there if and only if g S projects bijectively onto Q. 

Under that condition, the symbol S.P. V  will be meaningful and will define an expression of the 

form: 

1 = 1 1exp
i

u S
h

 
 
 

 . 

 

The equivalence relation V1 1 ~ V2 2 is defined by the formula: 

 

1 = 1

1 2 2S.P.( )V V −  . 

 

 

 2. – Class . 

 

 We agree to denote the equivalence classes thus-introduced by the letter . Each class  can 

be associated with a pair <  ,  > . Here,  is the primitive of the form  on the compactum 

 . Suppose that the class  contains the expression 
1( ) exp( )V g u i h S−

. Consider the Lagrangian 

manifold ,
U US S   . The pair <  ,  > is the restriction of the Lagrangian pair ,

U US S    

above g S . 

 That restriction does not depend upon the choice of representative in the class . 

 Consider the map PV :  → supp u that is defined by the formula PV = 1

S Sg − , in which S 

is the orthogonal projection of S onto Q. One has a locality property: V1 1 = V2 2 , so: 

 

1 11 Vu P   = 
2 2 2 22

0

( | )

k

k V V

k

h
D P u P

i
  



  
•      

 .   (3.4) 
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 3. – The linear space  (, ). 

 

 One says that the class  is dominated by the Lagrangian pair < ,  > if the pair <  ,  > 

is a restriction of the Lagrangian pair < ,  > to  . In order to achieve that, one can consider 

 to be a subset of E. 

 A vector in the linear space  (, ) is a formal sum: 

 = 
I




       (3.5) 

 

over a set I of classes  that are dominated by the pair < ,  > and with the condition that each 

point x  E must have a neighborhood that intersects only a finite number of 
 . The linear 

operations in  (, ) are defined in an obvious manner. Define the null vector. Let    (, 

). Fix a point x, x  E and consider one of its neighborhoods U (x). One can suppose that U (x) 

projects bijectively onto a certain Lagrangian plane . Let U0 be a neighborhood of x such that 
0U  

 U (x). Introduce the corresponding support function . Set  = 1

0 VP
  − . Consider the 

expressions 1( )( )exp( )V g u i h S    − , in which 1( ) exp( )V g u i h S  

−  belongs to the class  . 

Let g  = Q, g  G. Introduce the notation I (x) = { | U (x)  
  }. For   I (x), one has: 

 

( )( ) exp
i

V g u S
h

   
 
 
 

 = ( ) exp
i

V g u S
h

  
 
 

 . 

Form the expression: 

V  = 
( )

( ) exp
I x

i
V g u S

h





   
   

  
  . 

 

 The vector  will be considered to be zero if: 

 

( )

( )V

I x

u P x




 
 
 

  = 0 , x E  . 

 

 

 4. – Generating integral. 

 

 In order to prepare ourselves for certain definitions, we shall begin with some symbolic 

transformations. We introduce the fundamental notation: 

 

T  = T< , ,  >       (3.6) 

 

for the correspondence that will be described below: 
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T : {} →  (, ) , 

 

in which < , ,  > is a Lagrangian triple, and: 

 

 = 
0

k

k

k

h

i




 
 
 

 , 

 

 with k being differentiable measures with complex values on E. 

 The fundamental notation is specified more precisely by the symbol: 

 

T< , ,  > = , ,S.P. ( ) ( )
E

dx K x     .    (3.7) 

 

We shall return to the role of S.P.  later on. As for the expression for K, it was described in § 2. 

The formula (2.7) leads to the symbolic equality: 

 

T< , ,  >  = 1

, ,( ) g gV g T  −

  
,    (3.8) 

 

in which g  G and g () = 
1( )g −

,   g E. 

  

 Theorem 1: 

 

 One can establish a bijective correspondence between the vectors  of the space  (, ) and 

the measures  such that the linear operations on  correspond to linear operations on  . 

 

 We can achieve the proof by simultaneously constructing the correspondence T. That 

construction will always be implicit in what follows. We will show how we can construct the 

vector  upon starting from the measure . 

 The invertibility of that construction will become obvious. 

 Take E to be a locally-finite covering {E}  I and a partition of unity {} that is subordinate 

to it. We impose the following conditions: 

 

 1) Each E projects bijectively onto a certain Lagrangian plane  . Let g  G such that 

g Q  =  . 

 

 2) The operator  (x) + tan  (x), in which  and  correspond to the element of the 

group G : 
1g x −  =  x = {x, A (x)},  x  E , 

 

is not degenerate on E . 
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 The symbol T  naturally corresponds to the symbolic sum ( )T 


  , which we can 

represent with the aid of (3.8): 

1 1, ,
( ) ( )

g g
V g T

 
 



 − −   . 

 

The integral (3.7), which is associated with 1 1, ,
( ( ) )( ))

g g
T

 


  − −  
, has the same form as the 

integral in (3.2). 

 The point x = {, …, }  1g E 

−  is the unique non-degenerate critical point of the 

corresponding function f. The symbol S.P.  in (3.7) signifies the application of the method of 

stationary phase that relates to that point: 

 

1 1, ,
( )

g g
T

 


 − −  
→  = exp

i
S

h
 

 
 
 

 , 

 

and the symbol T< , ,  >  corresponds to the vector (3.5), in which the class  contains the 

expression V (g)  . 

 One calls T  the generating integral for the vector  and one writes  = T  . 

 

 

 5. – Relation to the canonical operator. 

 

 We remark that T  will reduce to a class  that contains an expression of the form V (g)  if 

and only if the Lagrangian manifold 
1g −   projects bijectively onto Q. 

 In particular, for g equal to unity, the expression for  is  = 
1exp ( )u i h S−

, in which: 

 

S () = 1
2

( )x p  + , x = {, p}  , 

 

u0 () = 1/2 10 | det cos | exp
2x x

d i
r k

dx



 − −

=

 
 
 

 , 

 

in which one has, respectively, s = surface element on , r = e
,  and  are parameters of  x, and 

finally k = ind , in which  is the projection onto 0 of a curve on  that connects  = 0 to  (x) 

for arbitrary x. 

 Therefore, the index will enter into the expression for V (g)  . 

 Let us show how we can describe Maslov’s canonical operator that we can use to describe the 

higher-order terms asymptotically in terms of those concepts. 

 It is obvious that the Maslov construction utilizes the concept of index. 
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 Each class  contains an expression of the form 
o

(1) ( ) exp /V u i h S , such that the proper values 

of 
o

  are zero or  / 2. Consider the Lagrangian pair < ,  > and the function v : E → C. 

 Introduce the Lagrangian triple < , ,  > and the measure: 

 

 () = 0 () = 
1/2| det | ( )v r s dx

  . 

 

 Introduce the vector T< , ,  >  and represent it in the form (3.5), but while choosing a 

representative of the form: 
o

(1) ( ) exp
i

V u S
h

  
 
 
 

 

in each  . 

 Maslov’s canonical operator is the map from {< ,  >, v} to the associated function Q → C, 

which has the form: 
o

(1) ( ) exp
i

V u S
h

  



 
 
 

  . 

 

One supposes that v has compact support and that { | supp v  E  } is finite. 

 

 

§ 4. – APPLICATIONS OF THE GENERATING INTEGRAL 

 

 Consider the Cauchy problem for the formal equation: 

 

( )
d

i h t
dx

  =  (t)  (t)            (4.1) 

 

at the points 1, 2, with the initial condition: 

 

 (0) =    (, ) . 

 

In connection with that, one defines a certain class of linear operators on the spaces  (, ) and 

then defines the expression ( )
d

i h t
dx

 .  Section 3 will discuss the applications to asymptotic 

series. 
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 1. – Quasi-classical operator. 

 

 We shall define some linear operators on the space  (, ) that have a special form that we 

shall call quasi-classical. 

 A quasi-classical operator  is given by its Hamiltonian function: 

 

H = 
0

k

k

k

h
H

i

 
 
 

 , Hk : M → C . 

 

If H = H0 and  = T< , ,  >  then: 

  = , ,
ˆ ( , )T H      ,         (4.2) 

in which: 

ˆ ( , )H    = 0

0

( | , , )

l

l

l

h
D x H

i
 



 
 

 
  .        (4.3) 

Dk depends upon H0 linearly. 

 For a general H, we must set: 

Ĥ  = 
0 0

( | , , )

k l

l k

k l

h h
D x H

i i
 

 

   
   

   
            (4.4) 

 

in (4.3). We shall now describe the construction that leads to the explicit form for the expression 

of Dl . It will suffice to consider H = H0 and  = 0 . We then perform the sequence of symbolic 

transformations: 

  ~ , ,

0

1
S.P. ( ) , ( ) ( )

!

k

y xE
k

dx K x H y K x
k y

   =


 
− 

 
  

~ 
0

S.P. ( ) k
E

k

dx K F


  .         (4.5) 

 

The definition of Fk is obvious. It is easy to see that Fk is a polynomial in h and x that depends 

linearly on H and its derivatives at the point x. Each term can be specified as an expression of the 

form T . In order to do that, it is necessary to use the transformation of § 2, which transforms 

(there it was T , but here it is) that term into  = 


 , and then represent the result in the form 

T . In summary: 

0

S.P. ( ) k
E

k

dx K F


  ~ 
, , ,

1

2

( | , , )

j

k j

k
j E

h
T d x H

i
     

+ 
  

 

 
  

  
  

 

  .  (4.6) 

 

Here, E (t), t  R is the integer part of t. In the definition of (4.3), one must set: 
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D0 = H , Dl = 
2

,

1

l

k l

k

d
=

 ,  l  1 . 

 

We now free ourselves from the hypothesis that E is equivalent to E () that was made in § 2. 

Upon examining the foregoing, we see that this manifests itself only in the annihilation of the 

measure  on E in  by the inverse transformation to T. We must give the Lagrangian triple on E. 

However, the inverse transformation of T is necessary here only for the construction of the 

differential operator D1 . Taking into account their local character, it is obvious that the formulas 

obtained can also be taken to be definitions in the general case. An analogous remark can also be 

made at the beginning of the following section. 

 Let us change the notation. We agree to let  denote the symbol T< , ,  > , i.e., the set of 

Lagrangian triples and measures. We intend  (, ) to mean the linear space of those symbols 

that are generated by ordinary linear operations on  for a fixed < , ,  >. 

 The space that was introduced in number 3 in § 3 will now be distinguished from  (, ). 

One denotes it by T (, ). The element of T (, ) that corresponds to ,    (, ), will 

be denoted by T . 

 

 

 2. – The Cauchy problem. 

 

 Consider the Cauchy problem (4.1). Define the operation 
d

ih
dt

. Suppose that the dependency 

of  (t) on t has the form  (t) = 
, ,tmT   

, in which mt is the diffeomorphism that was described 

in § 2. Based upon the formula (2.5), one will arrive at an expression of the type (4.5) for 

( ).
d

ih t
dt

  Upon specifying it, one will be naturally led to the following definition: 

 

( )
d

ih t
dt

  = 
2

, , ,

1 1

( | , , )
t

k

t
m j k t

k jt

d h
T i h d

d i



   


  

 =

   
+ + •   

   
  .  (4.7) 

 

Upon returning to equation (4.1), suppose that H0 =  . Equation (4.1) will then be equivalent to 

the equality: 

2

0 , 0 0

1 1 0

( | , ) ( | ,

k l

t t j k l t

k j l

h h
ih H d H D H

i i
  

 = 

    
+ + • − •    

     
    = 0 ,  (4.8) 

 

and after simplification, that will come down to the system of recurrence equations: 

 

0( ) ( )t k t kH +  = Nk ((t)i , i < k), k = 0, 1, 2, …,    (4.9) 
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along with N0 = 0. In the Cauchy problem, those equations are completed with initial conditions 

that will then determine t uniquely. The Cauchy problem is then solved. The choice of t in the 

Lagrangian triple < , ,  > that defines the correspondence  → T is largely arbitrary. In 

particular, one can always give K in the canonical form: 

 

K = (1)K  = ( ) (1)exp ( ) ( )ti
V x V

h
  . 

 

The change of K to (1)K  corresponds to a local linear transformation of the corresponding measures 

 and (1) , and 0 = (1) 1/2

0 | det |  , in addition. If such a change is performed on the solution to the 

Cauchy problem, while considering the fact that H1 = 0, then one will get: 

 
(1) (1)

0 0 0( ) ( ) / ( ) ( )t tm dx dx   = 1/2

0[ ( ) / ( )]t ts dx s m dx ,   (4.10) 

 

in which st is the surface element of t . 

 The generating integral with a kernel of the form (1)K  is described in [6]. Formula (4.10) 

establishes a link between the solutions to the Cauchy problem that were given there and the ones 

that were obtained here. 

 

 

 3. – Asymptotic maps. 

 

 In the expression for V , we let 
NV   denote the element of L2 (Q) that is given by the 

formulas: 

NV   = ( ) expN i
V g u S

h

 
 
 

, 

in which: 

Nu  = 
0

kN

k

k

h
u

i=

 
 
 

  .     (4.11) 

 

One easily sees that it results from V1 1 = V2 2 that: 

 

1 1

NV   = 
2 2

NV   = 
1( )NO h +

 . 

 

We intend ( )kO h , k = 0, 1, 2, … to mean an element of L2 (Q) such that ( )k kh O h−
 has a limit for 

h  . 

 We intend 
N  to mean the class of functions 

NV   for which V  belongs to the class . 

 Let 
o

( , )   denote the subset of elements of  (, ) whose measures have compact support 

. 
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 Let: 

  
o

( , )   and T = 


 . 

 

We take the set I to be finite (if that is possible). Set: 

 
N

T  = N




 . 

 

 One says that  ,   
o

( , )  , is an asymptotic development of the element h , h  L2(Q) 

if: 
N

h T −  = 1( )NO h + ,  N = 0, 1, 2, … 

One writes h ~ . 

 We say that the linear operator H on L2 (Q) that depends upon h generates the quasi-classical 

operator  if N  and    
o

( , )  : 

 

 1) N

T    (H) (viz., the domain of H). 

 

 2) N

TH   = 1( ) ( )N N

T O h + + . 

 

One can give some simple effective criteria for recognizing whether H is an operator that generates 

a quasi-classical operator. In particular, they are verified under some simple hypotheses on v in the 

case of the Schrödinger operator, such that the corresponding Hamiltonian function is given by the 

formula (1.4). 

 Suppose that H = H (t) depends upon t. Consider the Cauchy problem in L2 (Q): 

 

( )
d

i h t
dt

  = H (t)  (t) + f (t) ,  (0) =  .   (4.12) 

We suppose that: 

 

 1) The operator H (t) generates the quasi-classical operator  (t): 

 

 2) The problem (4.12) is soluble, and: 

 

|| y (t) ||  
0

( )[|| || sup || ( ) ||]
t

C t f


 
 

+  , 

 

  in addition. C (t) does not depend upon h. 

 

 For some efficacious criteria for the validity of 2), cf., [7-9]. 
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 Theorem 2: 

 

 If H verifies the conditions 1), 2), and f = 0, but  ~ , with  
o

( , )  , then  (t) ~  (t) 

will be the solution to the problem (4.1). 

 

 The proof will become obvious if one takes into account the fact that: 

 

N

t

d
i h

dt
  = 1( )

N

N

t

d
i h O h

dt

+ 
 + 

 
 . 

 

An analogous result that is expressed in terms of the canonical operator is contained in Maslov’s 

book. 

 In conclusion, here are some remarks about the use of the generating integral in the study of 

asymptotics of proper elements of the operator that generate the quasi-classical operator. 

 One shows that one can associate each closed compact Lagrangian manifold  that is invariant 

with respect to the dynamical system mt and verifies a certain stability condition with an element 

,    (, ) that asymptotically approaches a proper function of the operator H for a certain 

sequence hn (n = 1, 2, …), hn → 0 as n →  . As hn → 0, that proper function will be concentrated 

on  in a certain sense. The sequence hn is determined by means of the Maslov-Arnol’d 

characteristic class of the manifold . 

 A modification of the generating integral will permit one to obtain an analogous result for 

lower-dimensional manifolds; for example, closed orbits of dimension one. The role of the stability 

conditions in that set of problems was observed in some particular cases in the articles [10], [11], 

etc. 
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