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VORTICES, CORPUSCLES, WAVES

WITH SOME PRELIMINARIES

ON THE ROLE OF OPERATORS IN THEORETICAL PHYSICS

By A. BUHL

Translated by D. H. Delphenich

In what follows, | shall always preserve the fundatak viewpoints that are
characteristic of all of my work on theoretical phgsicThe basic identities have the
form:

@) jCXdY:ﬂAdXdY,

and give somé&tokesiarformulas whose principal one will be formula (4) oé thecond
chapter of this treatise. That formula is appropriata space that is divided intobes
by two families of surfaces. With a third family, wall have nothing but a way of
framing that corresponds to the use of arbitrary curviliceardinates. However, | shall
address tubes in which the Stokesian analysis makes arasses, charges, ..., which
can be invariant or depend upon time in a certain manrere im a particularly simple
manner.

That is already true for corpuscular propagation.

Corpuscles can range over wave fronts, and all ofishatovided analytically by the
notion of a vortex, by way of Stokesian formulas. eGiees that the title “Vortices,
Corpuscles, Waves” is immediately justified. Of courgewill amount to only
developing the logical scheme from the identdy ih a new way. For the moment, |
shall not examine how those schemes relate to the rousy@xperimental facts from
latter years in the context of waves and corpusclesthey are sufficiently plastic —
above all, by thevariation of tubes- in order to show one possible aspect of the typical
relationships that unite the propagation of wave and cagsusc

As for the role of differential operators in thetical physics, one will perceive it in
the context of the preceding considerations in thersechapter and in the first chapter
in a more abstract manner.

The principal results of this article have been sunred in five notes that were
included in theComptes rendusl give their titles and dates of publication below:
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“La Géométrie ondulatoire, Ondes et invariants intégmopagés,”191 (1930),
545.

“La Géométrie ondulatoire. Dévoloppements expbgit®91 (1930), 693.

“Considérations dynamiques adjointes a la Géoméntdilatoire,” 191 (1930),
14309.

“Propagations conoidales en Géométrie ondulatoire.nde® dérivées de
I'ellipsoide,” 192 (1931), 323.

“La propagation curviligne d’intégrales invariantes. @as intégrales doubles.
Propagation corpusculaire]l92 (1931), 1006.

In addition, | published three other articles since thauseript of this memoir was
concluded, also i€omtes rendus:

6.

“Sur une invariance d’intégrales doubles attachée a émutation différentielle
ordinaire du premier ordre194(1932), 822.

“Nouvelles invariances intégrales attachées aux équatdifférentielles
contenant plusieurs parameétres94 (1932), 1114.

“Mouvements multiponctuels attachées a I'équation debiacrite pour le case
d’un seul point,”194(1932).

Notes 6 and 7 are notes on analysis and pure geometryithée developed in
another report.

Note 8 returns to the considerations of paragraph 10 ipt&hd below with more
precision.




CHAPTER |

Permutation of integrals of differential systems.

| was led to write the present chapter by at lease thiféerent reasons:

First of all, it seemed agreeable to me to returrhéonhain subject of my doctoral
thesis: “Sur les Equations différentielles simultanéesa forme aux dérivés partielles
adjointes,” which was submitted on 14 June 1901. That suiastof interest to
numerous geometers, as one can see in the bibliographygidnee in theMémorial des
Sciences mathématiquéfasc. XXXIII, pp. 23). Without a doubt, it is still ofterest,
and meanwhile | am not in a position to offer an exangdlthe commencement of my
work to the kind correspondents who have demanded onesof My thesis was not
published in a periodical, and the copies of it that | giasn were exhausted long ago.
In this chapter, my correspondents will find both a conaléms and a perfection of the
ideas of my youth.

Secondly, among the geometers that were recentlyrealspy the topic, let me cite,
above all, G. Pfeiffer of Kiev. Pfeiffer has commeated a very important paper to me
that | was quite happy to publish last year in the mtsgennales | nonetheless believe
that the analysis of that Ukrainian mathematician barsimplified and symmetrized;
however, be that as it may, it has given me precigeyambition to return to my own
treatise in which not everything was as simple and synmras possible.

Thirdly, those permutations of integrals are very spermutations, to begin with,
and the permutations are special cases of linear systefhose systems, with their
determinantsand theirmatrices are easy to relate to the question, and will leadt@tiee
current apparatus of theoretical physics. The variapégatorsx; and the operators of
partial differentiation with respect tg that are easily associated with them are associated
only by way of the theorem of Euler that is anothaywf resorting to the homogeneity
that is usually first put into systems of linear and lalge equations.

One will see that homogeneity in the second chaptethencontext of physical
considerations.

Finally, | believe that none of this could have bdereloped without touching upon
some part of the work of the scholar Elie Cartan, Wisowvork that one can imagine will
dominate the way that all of the comparisons andi@itatin this work will be made. |
shall confine myself to citing the paper “Sur la réductiogadforme canonique de la
structure d’'un groupe fini et continu,” Am. J. Matl8 (1896), which is a citation that
was made already in the last year (pp. 140) at the hedw qfaper by Pfeiffer. That
memoir combines algebraic considerations and the useffefeditial operators in a
particularly profound way.

1. Integrals. Jacobi multipler.— In all of what follows, thelefinitionof an integral
of a differential system:

1) dx
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is constantly present in spirit.

An integral of the system (1) is a function of the variablethat remains constant by
virtue of that system. I# is such a function then, sinc#® = 0, one will conclude
immediately that:

@ X=X, X, e x 28
fox, Cox,

It can have only — 1distinctintegrals; say:

(3) ¢11¢2, ---,¢n—1-

All of the other ones will be functions of them.
Let ¢, be a function such that:

(4) X (o) =1
Set:
94 04, . 94,
0x, 0% 0%,
99, 09, . 99,
(5) D=|ox 0x 0%,
99, 04, . 99,
ox, 0% 0Xx,

D is then thelacobi multiplier;it permits one to write:

ox 0% 0x,
1
(6) X(f) = B a¢n—1 a¢n—1 a¢n—1
ox 0% 0x,
of of of

If one substitutegs, ..., #r-1, @n for the variablesq, ..., X»-1, X» then one will have:

@) X (f) =X (¢) %‘ %

in whichi for the index of summation.
For another operator:
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of of of
8 Y=Y —+Y,—+ ... +Y,—,
(8) f="1 x o o
one will have:
of
9 Y=Y i) ——.
9 ] (¢)a¢i

2. Permutability of the operatorsX and Y. — The operatorX andY that were just

defined do not permute, in general. With (7) and (9), irvéin@blesg;

(10) XY@ -yx (=2 9

26, 3¢, ' P

However, the right-hand side will be annulled if:

(11) Y(#) =Fi (91, P2, ..., Pa),

in which theF; are arbitrary functions o1, @z, ..., $n-1, by notg@,.

can be written more explicitly as:

Y1 %4' Yz%'*' +Yn% =F,

0X 0X, 0X,
(12) Y1%+Y2%+...+Yn%:|:2,
0X, 0X, 0x,

Upon adding (8) to this, viz.:

®) vy =Y. ey, S ey,
0X 0X, 0X;,

one will conclude from relations (12) and (8) collectivest:

Fl
D F,
(13) Fn :0;
of ot of [y
ox, 0% 0x,

, one will have:

The relations (11)
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hence, one will immmediately have:

Fl
D F,
__1
(14) Y(f)= 5 F
i i i Y(f)
X, 0% 0x,

That is the expression for the most general oper@8) that permutes with the
operatorX that was originally defined in (2). Independerifyany application, that result
already has undeniably great esthetic value. incase, it is remarkably coupled to the
Jacobi multiplier.

3. Permutation of integrals.— The present studies had their beginning indba pf
constructing an operatdf of type (8) that would permute the integrals a fystem (1)
or of equation (2). One sees immediately that wherequality (10) is reduced to:

(15) XY (f) =YX (f) = 0,

it will suffice that one hav(f) = 0 in order for one to also ha¥dY (f)] = 0. Moreover,
the integrals of the equation(f) = 0 are permuted by the operakor

In practice, these permutations of the integr&een lead to the discovery of new
integrals when one starts with, for example, iréythat are taken from the list (3) and
are less than — 1 in number. It is likewise obvious that alltbé preceding supposes
that all of the integrals of (1) are known. Meailehthe study of the operator (14) must
be quite interesting. If the integrals tend tariazycles that are impossible to leave then,
from that fact, there will be some cyclic propestief the system (1) or equation (2),
which will still be very remarkable properties, evié they never aid in the integration,
properly speaking. Hence, Galois theory, whiclated to algebraic equations, has the
main objective of constructing an operator thatmpées the roots, but it does not have to
give unknown roots upon starting with known roots.

Moreover, we shall see later on that this analsggrecise, so the permutations of
integrals can be reduced to the groups of pernwnstihat are used in algebra, in some
cases.

Return to (14) and (15). ffis replaced by a true integral ¥f(f) = 0 in (14) then the
choice ofF, has no influence ol (f), becausd-, will then haveX (f) for a coefficient,
and that will be zero, as one sees immediately wpplacing thé that is framed in (14)
with its value (5). That will lead one to imagitigat Y can be, more generally, of the
form:

Y=Z+rX, with XZ=2zZX

andr arbitrary functions o1, ..., $n-1, @n, OrXy, ..., %, . One will then have:
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(16) XY = YX= A X, it A=X()

One can always considdrto be an arbitrary coefficient (x, ..., X,). It seems that
one has a generalization of (15) in (16). In (16), onéndgasX[Y (f)] = 0 if X (f) = O,
but that generalization is easily reduced to the caSg @nd one can prefer to always
reduce to that case, which at least has the advantggfett symmetry. Be that as it
may, the simple link between the two cades0 andA # 0 that we just pointed out again
is one of the most remarkable things in G. Pfeiffer'pgpa It is also one of the very
frequent examples in which non-permutability is assodiatery closely with
permutability.

4. Variant. — One can arrive at formula (14) by another path. sPams with:

df = id¢l+id¢2+...+i dg

¢, 09, og, "
which decomposes into:

of _ of ag, , of 3, . of o,

ox, 0@, 0x, 0¢, 0% 0p, 0%

of _ of o, Of 94, . of 3¢,
ox, 0¢, 0x, 04, 0x, 0, 0x,
and will give:
_ o O iy sns O
(18) Y(f)_a_¢lY(¢l)+6752Y(¢2)+ + 50, Y(4,)

upon linear combination.
It is precisely because the latter equation i®@sequence of the preceding ones
that one will have:

of
0%,
of
0X,
(19) =0.
of
0x,
Y(f) | Y(4) Y¢) - X4)

Here,D' is nothing butD with the change of its rows into columns and @g&imns
into rows.
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From (18), iff is an integral — i.e., a function @i, ..., #»-1 — then the expression
(f) will also be an integral if:

Y (@) =Fi (91, 92, ..., Pn-2), i=1,2,...n—1.

Sincedf / d¢, has zero for its coefficient, one can repeat ttte ldiscussion in the
preceding paragraph fof (¢,) or F, , and in such a fashion that equation (19) will give
(14) again.

When that second method is compared to the first amewall see that there is a
double symmetry in the question. The terms that enter(ir#) and (8horizontallyare
recovered in (17) and (18grtically.

5. One of the aspects of the operator (f). — Starting from the operatof(f) in the
form (14), we propose to develop it linearly in the fuoa$F; .
The result will obviously have the form:

YO =U()Fr+rUa () Fat ... +Un () Fan,

with
Ui (¢1) =1, Ui (¢2) = 0, ceey Ui (¢n) = 0,
U2 (¢1) = 1, U2 (¢2) = 1, . U2 (¢n) = 0,
Un(¢l) :0’ ........ U n (¢2) . : 0’ , ....... U n (¢n) . : 1,

Thesen? equations have an existence that is obviously insured byytmbolic
matrix:

U,(f)
D U,(f)
1
) u,(f)
of of of

in which eachHJ; must be equal to what igdgebraic minor would be if the column dJ;
is the last column of a determinant that is formedreaver, from thé that is framed
and the row of partial derivatives that is placed undzrh Obviously, the precedimf
equations can be summarized in:
1 if i=k
Ui () = = {

0 if izk
One sees that what is essential in the construafoly (f) is the preliminary

construction of the operatot (f), which are, in short, integrals of the system (1&mih
is one, but integrals that reduce to 1 or zdemtically.
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For more developments on the subject of these caasioles, one should again refer
to G. Pfeiffer’s paper.

Here, we add only thatfif(¢1, @2, ..., #n) is an arbitrary integral of (1) then:

Ui () = Ui (49 %

will also be one. As a result, no matter whatftimetionW is:

WIUL (), ..., Un (F); @1, @, ..., 0]

will be another one. It is not onlynear differential operators such as (8) that can
permute the integrals of a differential system in d@erésting manner. However, the
linear operators are the most manageable ones and théhah@se richest in synthetic

considerations.

6. New non-permutability. — From now on, in order to abbreviate the writing, we
shall set:
n-—1=v.

On the other hand, for more precision, the symbol (@l Ye written Yg (f) in order
to indicate that is it is composed of the functions:

(20) Fi(¢n, @2, ..., 0), Fo(@1, @2, ..., 0)), ..., Fu(¢, @2 ..., D).
In Y (f), thus-constituted, we can put any of the integrals:
(21) Gi(p1, @2, ... 00), Ga(p1, @2 ..., D), ... Gu (@, P2, ..., D),
in place off and thus obtain the expressions:
(22) Ye (G,
which must, of course, be integrals of (1).
Now, imagine that one has permuted the roles offtime(20) and th&s in (21) in the
expressions (22). In other words, one forms:

(23) Ya (F).

The expressions (23) will indeed be integrals of theesy<tl) again, but in general
they will not be the same as in (22). In other wood® will have:

(24) Ye (G) =Yg (F) #0.
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It is that new non-permutability that we propose to stuttyis very important, and
not just because it includes then-commutativityof the factors in thenatrix algebraic
multiplication as a special case. However, we retarthe inequality (24) that must be
first established rigorously.

In the ¢ variables, by virtue of (9) and (11), and witlas the summation index that
varies from 1 tos, one will have:

9 9
(25) Ye=Fxk —, Yo =Gk —,
09, 09,
SO
4G aF ) @ 9
YeYo—-YsYe=| F — -G, —! j =[Ye (G) -Yec (F)] —.
[ “op. 04, )g 04

Now, the operators (25) are arbitrary operatorg wariables; they are certainly not
permutable, in general, and the left-hand side of the egl®lity that is finally obtained
will not be zero. As a result, the bracket in tlght-hand side will no longer be zero, in
general, and that will prove (24).

7. Permutability of the operators Y and Ys . — Although that cannot be the
general case, one can meanwhile propose to study the wech the operators (25) are
permutable. It is clear that one can give them that ppby constructing them, one
starting with the other, in the way that one constriaff$ in (14) by starting withX (f),
while the new construction will bring only=n — 1 variables into play, instead rof

8. Linear transformations. — We now return to the study of the expression (22),
upon starting with systems of functions (20) and (21) wthese 2 functions become
linear. One will have, for example:

(26) Fe= bkm ¢m ) G = ap ¢p )

in which the indices, such asandp, that are repeated two times in a monomial term are
summation indices. One concludes immediately that:

(27) Ye (G) = F« 3—2 = ai bem P -

That is the same result as the one that one wouldl @& had set:
Yh=ak b, &=bwmdn, hence, ¢ = ak bcm Pm -
Hence, to introduce the integrdfs and G, in the linear form (26) into (14) is to

transform a linear form, such bgn ¢m , in such a manner that only the coefficients will
be modified. That will give an obvious result. Howevewill become quite interesting
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again when one then returns to the general operator Y¥#h the hypothesg26), that
operator will contain a theory of linear transformations; it will contairgeneralization
of those transformations, of a differential physiognomy, when one oncgivesdy and
G their general significancé€0) and (21),resp Before insisting more thoroughly upon
that agreement, we shall develop the comparison of (6§2¥) more explicitly.

The relations (26) and (27) will give us the tables offwments:

ailz a2 ... A b11 b1z b1y
dp1 A2 ... A bo1 b2 boy
(A) e ,
1 dv2 ... Aw bv1 bv2 bw

or matrices whose product is another matrix whrows andv columns, and whose
general term isy bwm . The factors in that product are re@mmutative;as we stated
above, that non-commutativity is a very special cas¢hefnon-permutability that is
expressed in (24).

9. Matrices and determinants.— The expressions (26) 6k andG, are constructed
from therows in table (A). Now, imagine thd,, for example, is constructed from the
rows in the second table (A), whilg, is constructed from theolumnsof the first one.
One will then have:

Fk =bum @m, G =ap @p.

Hence:
0G
Ye (G) =Fx —- = )
F(G) ka¢k a bm Pm
In general:
Ayl me¢ Akm bKI y

but the determinants that have these unequal sides fort¢neis will nonetheless be
equal, because one passes from one to the other byirodpaing rows and columns, and
vice versa That fact shows that the true multiplication, whieas the most generality, is
matrix multiplication with non-commutative factors,rée Commutativity appears when
the factors are determinants only because the determisam matrix with special
properties. One can find some other examples of contnitytain the theory of
matrices. Hence, itr and S are two matrices that have the identity matrix 1 tfogir
product then one will have both = 1 andBa = 1.

One sees that there is a theory of the transfoomati linear forms of integralg of
an equatiorX = 0 by differential operatorg, which is a theory that one can utilize with
both non-commutative and commutative factors. Needrs, everything has its origin
in the bordered determinant that in (14), which once morergbres the two kinds of
multiplications here when the forms gnare no longer linear.

10. Homogeneity and non-commutativity.— The non-commutativityof matrix
products results immediately from the combination otiblogeneousquations:



Buhl — Vortices, corpuscles, and waves. 12

Vi = ak X Z = bi Yk = bk @m Xm ,

S0 one sees that they are two notions that are dagelyg linked, which is a fact that one
expects to recover by various paths. It should alsceb®rked that the variableg
which are real or imaginary, have commutative multgilan, and in that regard, they are
similar to partial derivation with respectxpo. However, if one constructs operators that
contain both theg and the partial derivatives with respectddhen the commutativity
will disappear, in general. The most elementary exartiiat one can give in that regard
is:

d d
28 —(xf) = x— f =f,
(28) dx( ) ™
or symbolically:
d d _
—X—=X—=
dx dx

It is these considerations that the present chapterifseone to generalize in various
ways. Recall the differential operator:

Y=Z+rX, with XZ=ZX
hence (16):
XY = YX= X(r) X.

Upon taking, for example,= ¢@,, one will haveX(r) = 1, but the equality:
XY = YX=X
will be truly comparable with (28) only if:

(29) X(f) = kf,
in whichk is a constant.
One will then have:
XY(f) = YX() =kf.

Euler’s theorem on homogeneous functions will reak8 (vhen one takes:

30 X=x —,
(30) ma)g

and taked to be a homogeneous function of or#tethat makes the indeterminacy fin
that of an arbitrary function of — 1 variables if the; aren in number. Here again, one
sees that a construction of non-commutative difféaeofperators is realized thanks to
the notions of homogeneity.

In a more immediate manner, one also has:
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9 9 0 if i#j,
2 (xf)-x—f =
axj()‘) ox {nf it i=].

As for the study of the operat®yy when it is finally added to the operadin (30), it
was undertaken by Pfeiffer at the end of his paper ifatte/ear.

We should also remark that, by the preceding, we vath aécover the answer that
Weyl gave to question of knowing what the more importg#rators are after partial
derivatives with respect tq . They are, as that brilliant geometer sajdthe factors; .
Weyl's assertion is justified by some probabilistic edesations. One sees that one can
also justify it by some considerations of homogeneitith Euler’'s theorem as the main
link between the two types of operators. With those tiypes, one can write down the
infinitesimal transformations of numerous groups, notatblg linear groups. With only
the operators of differentiation, one can form thedr partial differential equations with
constant coefficients that have been written foresoime in mathematical physics. With
only the x, one can form linear, homogeneous algebraic systent, tleerefore
determinants and matrices. The partial derivatives anadf alleir combinations, along
with determinants and matrices, are then the fundamémguments of the same
theoretical physics in which the considerations of bgemeity are generally respected in
one manner or another.

() HERMANN WEYL, Gruppentheorie und Quantenmechariirst edition, 1928, pp. 47; second
edition, 1931, pp. 49.



CHAPTER Il
Tubular spaces.

1. Stokes’s formula for tubular spaces— All of our work on Stokesian formulas
rests upon transformations and linear combinationsaasformations of the identity:

(1) jcx dY= HAdx dy,

and some analogous identities that relate to spaces amtlarbitrary number of
dimensions. Without going further in that directidimere is much that can be inferred
from (1).

First, let the plan®©XY correspond to another pla@®Q by the formulas:

X=X (P, Q), Y=Y (P, Q).

[.Xx (g—; dP+— de

One then sees that we employ either @her simply the index that indicates the
differentiated variable for the partial derivatives. Upetting:

One will have:

?|dPdQ.

U=XYs, V=XYo,

one will obtain Riemann’s formula:

0 0
) [LudP+vdQ=|[ |oP oV|dPdQ.
U
Now, perform the new transformation:
3) P=P(XxYV, 2, Q=QKxV 2,

which will be only a change of variablezibelongs to a surface=z (x, y). Under those
conditions, one introduces the new determinant:

-p -q 1
P+Rp R+Ral_| [

= B PR
+ + X
Q+Q,p Q+Qq Q Q Q

~UJ

into the double integral in (2), which will be mplied bydx dy Since:

- p dx dy=adg, - g dx dy=/fdg, dx dy= ydg,
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Riemann’s formula (2) will become, by definition:

9 9@ By
4) [udP+vdQ=|[ |oP 0Q| R R R|d.
Uu VIi{Q Q Q

Obviously, in that formulaP andQ have the form (3). The first determinant under

the double integral is a functiagw (P, Q).
One can verify directly that the double integral inig4$tokesian. For that to be true,

it is necessary that one must have:

0 0 0 ON ON OA

ox 9y dz| |ox oy oz
AP, AP, AR|=|P P PR |=0

X y

Q Q Q QL Q Q

Now, that is indeed realized, sinfeis a function of onlyP andQ. One can also
verify that (4) is only the ordinary Stokes formula:

a B vy
.[Fdx+Gdy+ Hdz:H 9 9 9 do,
z g |0x 0y 0z
F G H
in which one sets:
F:Ua_P+Va_Q,
0x o0X
G:Ua—P+Va—Q,
oy oy
H=uP .99
0z 0z

Since these three relations can be summarized by:
Fdx+Gdy+Hdz=UdP+V dQ

all of the foregoing can also be attached very simplyhe problem of reducing Pfaff
forms.
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Figure 1.

Now, consider the infinitely-narrow tubbe with a quadrangular cross-section that is
composed of the four surfaces on which:

P,P+dP, Q Q+dQ

have temporarily-constant valu€. ( That tube cuts out an elemelat with coordinates
X, ¥, zon the end face of the invariable contaurOn a surfac& whose equation is:

5) (X, Y, 2 =0,
it will cut out the elementiSwhose coordinates ab€ Y, Z. By definition of the tube,

one must consider thaP anddQ are constant along the tubein dS as well as irdo:
Hence 9):

() A. Buhl, “La propagation curviligne dintégrales inimrtes. Cas des intégrales doubles.
Propagation corpusculaire,” Comptes rend92 (1931), pp. 1006. Naturally, the phrase “temporarily-
constant values” means tHaandQ change when one passes from one tube to anotherca@maake the
definition of a tube more precise. If one R4s, y, 2) = A on one face then one will have:

P(x+dxy+dy,z+d2d=A+dA
on the opposite face, sd = dP. That is what one expresses by saying fhandP + dP are constant on

those faces.
() G. HUMBERT,Euvrespublished by P. Humbert and G. Julia, t. I, 1929, pp. 442.
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a p vy o, O, O,
©) APQIPAQ=AP.Q [P B PR|do=|P R P |28
Q Q Q Q Q Q \/CDX+CDY+CDZ

In the middle of this double equality, one must obviousBdP (X, y, 2 andQ (X, ,
2 in A (P, Q), which indicates the associated determinant, moreovar.the final
expression, one must reBdX, Y, Z) andQ (X, Y, Z) in A (P, Q). Now, write:

1 q)X q)Y q)Z
Tororiol PR R PR |=AKXY,2.
X Y z QX Q{ QZ

One can express§ Y, Z in terms of®, P, Q in thisA (X, Y, Z), and since the poinKX(
Y, Z) belongs to the surfac@whose equation is (5), one will finally have:

AX)Y,Z2)=A1(0,P, Q).

One then infers from (6) that:

a B vy
(7) APQ|PR PR PB|do=A(0,P,QA(PQdS
Q Q Q

Since A (P, Q) has not been determined up to now, one can profit fiigah
indeterminacy to set:

_ 1 .
NP
hence:
L a By
BTUTQ Q Q

Finally, for the evaluation of the skew ai®ane will have th&tokesianntegral:

a by do
(9) s:ﬂg P P P 20,0}
Q Q Q|

The Stokesian character of that integral is, hemeobligatory for purely geometric
reasons. The end-fa&(Fig. 1) is determined by tr@ntourZ, and the tube with finite
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section that passes througtand is composed of a sheaf of an infinitude of tubedust
asdScan be called thaibular projection ofdg, the contoulC is a tubular projection of
>. ThereforeC andS are determined by the contaurand not by the end-faege which
can be replaced by any other end-facth the same contolx. Therefore, thé& in (9)
depends upon only the contaur

If one would like to effectively expressin (9) by a line integral that is attachedo
then it will be sufficient to set:

(10 NAM._L
oP 0Q A (0,P,Q)

and to determindJ andV in conformity with equation (10), which is pos&bih an
infinitude of ways. The line integral will then bé&/en immediately by formula (4). One
sees that this formula (4) indeed deserves the mdi@®kes formula for tubular spaces.
Moreover, all of the arguments of this paragrapltemc easily to arbitrary double
integrals that are attached to the aBeaSuch double integrals can then represent, not
only areas, but masses, charges,in.short, they can take on diverse physical nregmi

2. Invariant, curvilinear, propagating areas.— We now propose to study surfaces
on which the finite tube&Cs is cut by areas that are equalSo The existence of such
surfaces can be considered to be assured intyitibelt with those preliminaries, we
prefer to examine everything analytically and gemously as possible.

Now, let there be an element Mt (Fig. 1) that must be, by definition, equald8
while belonging to a surface:

W n{=0.
The expression:
Y, ¢ Y
P“ o Ff A(P,Q) dS
QE Q7 Q é n '

must then be equated to any of the expression8)inlf the factor\ (P, Q), one must
obviously readP (&, 1, {) andQ (¢, n, {) for P andQ. Now, write the last expression as:

N(&n QNP QdS
SO, upon reasoning as before:

A(0,P,Q A (P, Q) dS
and one will have:

a B vy
ANP.Q|PR PR B |[do=4/0,P,QA(P QS
Q Q Q

instead of (7).
Upon giving/A (P, Q) the form:
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1
MEQ= A7(0,P,Q)’

we will have:

1 a B vy
(11) " A0.P.0) P, B FRldg

Q Q Q

instead of (8), which will give:

Al = AlD,
when compared with (8).

The equation:
q)X q)Y q)Z

(12) PR R PR ! =A; (0,P, Q)

P2 + P2 +P?
QX Q{ Q \/ X Y z

then persists for function® other than the ones in equation (5) — vi.= 0 — for the
surface S that was considered originally, and the integratef (12), with® as an
unknown function, will give other surfac& on which the tubé& cuts out equivalent
area elements, where that equivalence obviousndstto the elements that are situated
in the same tube. .

Furthermore, it is not certain that one will obtall surfaceS in that way. One will
further have the expression (9) Bwith the surface equatio®h = 0 for which® wiill
satisfy the equation:

b, P, P,
(122) P R P r—————=N(®PQ)
Q Q Q|VOkreIres

with the single restriction that:
(0, P,Q =4:(0,P,Q).

However, (12) contains the unknown functich explicitly, which is not the case in
(12). It will then follow that if there is less gerality in that then that will be
compensated by the fact that £ 2s more manageable than (12). Moreover, in what
follows, we shall use the latter equation with #ien of obtaining some particularly
simple geometric resuleffectively.

Since the surface® can depend upon an auxiliary paraméterhich we caltime, in
an infinitude of ways, we can say that therprigpagationof invariant areas in the tulbe
or in the sheaf of tubds

Let us now fill up the space in Fig. 1 with a dhefacontiguous tubeE. An end-face
of invariant area can move in each sheaf, and tkosefaces can belong to different
surfacesS when one passes from one sheaf to a contiguoysioaeo the indeterminacy
of the surfaces$ that one infers from the general integral of eium(12). The end-
faces that propagate in that way will therefoot agreewhen one passes from a sheaf to
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a neighboring sheaf, and if those sheaves have snadibrs® then one can imagine a
corpuscular bombardment, and up to now, the trajectories of thgegtites have
depended upon the choice of tuband those projectiles are depicted by small end-faces
of invariantarea.

That geometry can immediately take on a physical aspestead of transporting
corpuscles with invariant area, as we have remarkeddglreae can, by a very simple
extension of the preceding theory, just as well transmadses, charges, and in short,
integrals of various types that will be invariant or vdpend upon time in a certain
manner during propagation. For the moment, we shall addreas, due to the very
elegant results that are associated with that case.

Finally, if equation (12) is realized with the tudesghat have been imposed — i.e.,
with given functiond? andQ — then it will be further clear that these functi¢thandQ
are not the most general ones that satisfy (12). éJeme can preserve equation (12) by
taking Q to be arbitrary and determining by integrating a first-ordelinear partial
differential equation. For the moment, we leave thgsestions of integration aside,
because it is perhaps more remarkable that one canomandfe tubd into another,
more general, onE" without performing any integration, which must be truedoleast
the examples that shall now treat. We shall ul@yatreturn to the methodical
generalities.

3. Archimedean propagation.— The simplest infinitely-thin tubds are obviously
rectilinear, and among them, we shall consider, morecpéatly, the ones that are
composed of rays that issue from tBe axis normally to it. Each tube will then be an
infinitely-thin conoidalpencil of lines.

It corresponds to:

(13) P= arctan% : Q=2

To begin with, we take the surfa&o be the circular cylinder that corresponds to:
(14) ®=X+Y-R=0.

Under those conditions, equation (12) will take the form:

1
\/be( + P2+ P2

q)X q)Y
P R

(15)

One should remark that the right-hand side of thisa simple constant that is
completely independent &f andQ. We now look for surfaceS that are more general
than the cylinde6& of equation (14) and for which one will have:

d=z-f(XY)=0,

while keeping equation (15) for that form®f Equation (15), thus-preserved, is:
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px+ qy
(16) -
0+ y?)y PP+ +l

-1
Rl

in which the capitalized variables have now been reglagéh the lower-case one in
such a way that one will get the usual notation for pladerivatives inx, y, z p, Q.
Equation (16) is capable of a direct and immediate vatiio that draws upon the
extreme simplicity of the first example. We reprgsan elemendS in the circular
cylinder Sthat corresponds to a conoidal pencil, and in that peheif)S of an arbitrary
surface, wherelS has the coordinates y, z, and a normal with direction coefficients —
p, — g, 1 that makes an angle fvith the direction of the pencil. One will have:

cosAdS’ _ dS cosd = — pxX+ qy

\/m R’ \/p2+q2+1\/x2+y2’

and since one must hat& = dS that will, in fact, bring one back to equatio)1

There are different ways of carrying out such wlalkions; their plasticity is,
moreover, obvious in the generalities of the preweg@aragraph. Hence, instead of (13),
one can take:

Y
P=—, =Z,
v Q
Sso, instead of (15), one will have:
b, O .
(17) 1 X Y 21(1_'_'3)
Joi+oz+oZ[ B R| R

That equaition Is closer to the general form o) (bRt it provokes one to divide both
sides by 1 #° and to then replade with arctanP. If one likewise keeps the form (17)
then one will be immediately reduced to (16).

Figure 2.
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We now propose to study the most general surfScésat are defined by equation
(16). That equation first translates into a very sarggometric property. Lé¥l be a
point of a surfacs.

ProjectM onto Oz at m, and draw the plan8 that is perpendicular tbim through
Oz If the normal toS atM pierces the plan8 atN then the segmeN of the normal
will be constant and equal B

Indeed, the figure giveR cosA =r, which is nothing but (16). That property permits
one to perceive some important families of surf&&esithout calculation.

First, the propertRR cosA =r obviously belongs to the cylind&of equation (14);
the triangleMNmthen degenerates into the segmdnt

It also belongs to the circular cylindeZsof diameter Rfor whichOzis a generator.
These cylinders are all tangent to the cylinBanternally. HereMNmi s a true triangle,
but its plane will always be normal @z Finally, the same property belongssfgheres
of radiusR that are centered ddz and thus, inscribed in the cylind8rthe pointN is
then onOz A right conoid with director Oz will cut out equivalent areas on onbase
spheresz and on the circumscribed cylinder Slt is that property that inspired
Archimedes ) and gave rise to the figure that is engraved on thé frthat celebrated
geometer that we shall study here once more, but gemeetadonsiderably. With those
generalizations, it will give various theoretical modésarpuscular propagation that we
shall combine under the nameArthimedean propagation.

Even if one sticks to the elementary case — viz. Aathimedean propagation,
properly speaking — one can already perceive how a corpugeolaagation by a right
conoidal tubd™ that issues fror®z can correspond to a much simpler point-like motion.

It suffices to imagine spheras whose centers descrilf®z (rectilinear point-like
motion). In an assemblage of sufficiently-thin tubeshe surfaces of those spheres will
give a corpuscular propagation of invariant sphericalarea

Another type of propagation can be obtained in thosee saibes by rotating the
cylindersC aroundOz

One can also associate them with type types. A spharel a cylindeC intersect
along a Viviani curve/. When the curv&/ turns aroundz it will generate a spherg
the curveV is then subjected to a translation that is parall€zowhich will generate a
cylinderC. One can imagine thatis subjected to one of those rotations, then to éne o
those translations, and then to yet another of thoisgions, and so on. The locus\of
will then be acontinuoussurfaceV', but one with singular lines. The surfageis no
less proper for generating a corpuscular propagation of antaareas in the conoidal
tubel” by motion around and alor@z However, we shall leave aside these particular
geometric images in order to begin the integratiorgabéon (16) or:

(18) & +y))* (0 + o + 1) —R (px+qy)° = 0,

in as general a manner as possible.
Here, we take the woidtegrationin its usual classical sense that it has in thertheo
of equations irx, y, z p, Q.

() G. LORIA, Histoire des Sciences mathématiques dans I'Antiquité hellén@muethier-Villars and
Co., 1929, pp. 57.
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Whereas the surface¢ with singular linesV show that if one abandons the
continuity of the tangent plane then the word can takevery different meanings that
have the character of G. Bouligan@entingentintegration. However, for the moment,
we shall not stop to compare the two concepts. Welgipoint out, along the same
order of ideas, the beautiful thesis of G. Rabaté whet published again last year (like
the Pfeiffer memoir) in thesAnnales and the no-less-interesting one of G. Durand [J.
Math., edited by Henri Villat10 (1931), pp. 335]. Durand, in the second page of his
expose, addressed the plane curves that were studied bgdual)lifor whichs = f (y).
Along those lines, the slope, which is continuous accgrthnthe classical hypotheses,
can nonetheless present as many discontinuities apleases. The example of the
surfaced/ is closely coupled with those considerations.

We return to equation (18), which one considers to be tred ase.

If one takes semi-polar coordinate®, zthen one will have:

0z’ 1(azY 0z
2o p=| %) 4222 x+qy=r 2 2 =12
P (arj rz(aej X+ ay or P

and (18) will become:
o[ 0Z 2 0z ? 2 _
R-r)|—=|-|—=| -r*=0.
or 00

This suggests that we should takead+f (r), so:

df _ |a®+r?
dr R?—r2’

2 2
(20) z:a9+b+j1/;2trrzdr.

Sinceb is a constant of integration that is added to thegmaleinr, we then have a
solution to equation (18) wittwo arbitrary constanta andb; it is thecompleteintegral.
In order to get thgeneralintegral, one must makie into an arbitrary functions d,
namely,b (a), and then determine the envelope, up to a pararagih the family of
helicoids (20). That envelope does not seem to be capélileing determined in a
completely explicit way; we then confine ourselvesh® study of the helicoids (20), for
the moment.

Those helicoids simplify considerably far= 0. Equation (20) will then become:

(19)

r’ + (z-b)* =R

This is the equation of the spherBs One sees that these spheres, which were
exhibited above by a geometric method, have been reveakmubbysis in all manners.

For a general study of the helicoids (20), one cannbegih the study of their
generating plane curves, which are always situated in a pi@hgasses througdz



Buhl — Vortices, corpuscles, and waves. 24

That curve will admit the differential equation (194t an arbitrary point, let be the
radius of curvature, and letbe the segment of the normal that is bounde®by One

will have:
2+ 2
b LA, v [T e
r a +r

Hence, the producbv is constant which would indicate that the plane curve in
guestion experiences m@tation around Oz, generates aurface of revolutions with
constant total curvatureOne will arrive at the same result by starting with:

1 rn-s* 1
RR (@+p*+q’)® R+a’

and seeking to verify that Monge-Ampere equatiotiaisolution of the forra=f (r).

We construct those of the curves that pass thréhegbrigin. It has a sinusoidal form
that oscillates from one side Ok to the other between two parallels to that axas Have
+ R for their abscissas.

Figure 3.
The arcOM is:
s=, R*+ azj‘rL = R+ 2 arcsin-- .
o | R? — 2 R

Now, if DM is parallel toOzthen the circular ar€D will be:

T
s = Rarcsin—.
R
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Hence:

S_
S R

If ais zero the©M will become an arc of the circle that is obviously éqoa&D.

The proportionality of the ar@®®M andCD in the general case is very remarkable,
because that proportionality obviously rises to theesarder of ideas as the equivalence
of areas that is at the basis for the question.

We further remark that the cur@AB has the intrinsic equation:

2 2
P8 -1 KR=R+a&
K* Resin?S

k

In these few developments, one sees the rich hav/gsiometric properties that one
can expect beyond that of the celebrated Archimedearefithat is composed of the
sphere and the circumscribed cylinder. Notably, therdelieoidal surfaceS (20) and
their envelopes i whenb is replaced withb(a), which have a very simple relationship
with the surfaces of revolution with constant total atmve. All of those surfaces,
when put into motion around and alo@g, will give propagations of invariant areas in
the tubel’ that was defined at the beginning of this paragraph. Anto@giumerous
cases that remain to be studied in detail, we must ré&utinat of the cylinder& for
which the plane of the trianglNm is always normal t@z Here, the simplicity and
symmetry of the case shows immediately that the gatmen of the invariant areas is
provided by the propagation of invariant circuéacs between two radius vectors that
issue from the same point Ok

We fix our attention on those two-dimensional propagatihat are concerned with
invariantsarcs.

4. Propagation of arcs. Archimedean case- This case, to which we are led by the
force of things, is simpler than the spatial case in EigOne will have to treat it in the
first place, regardless.

ds

A ds B
Figure 4.
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Fig. 4 is planar.AB givesab by tubular projection, just aslSgivesds The system
of tubular projectors is imposed by being given a function in vaoablesP that is
constant, as well adP, along the same tube. One has:

dx _ dy B
A(P)dP=A(P)| P,—=+P,—2 | ds=A(P d
(P) ()[xdS ydsj ®)p s
if a andb are direction cosines of the normal to thealratds.
The relations (6) are then replaced with:
a o, P
AP dP=A@) | T P ds:‘ x Pv|_AR)AS
x B Pc R \ D5+ D2

By an argument that is absolutely analogous totiethat accompanied Fig. 1. One
can write:

1 ®, b, _ _
_ =A (X, Y) =41 (P, P) =44 (0, P).
Joz+oz| B R
If one now sets:
AP)=—2
A (0,P)

then one will getS - i.e., the ardAB — by an integral of the exact differential exteshde
over ab, which is an integral that does not depend up@naitcab, but only on its
extremitiesa andb. The equation:

o, P
(21) I RS =N (0, P),
Jo +ol| B R

can serve to determine some other, more generalex@® = 0 that can give a
propagation of invariant arcs in the tubes thatattr@ched to the functidh

We now fix our attention, above all, on the problef thevariation of the tubes
Suppose that equation (21) is established Witiaving any degree of generality that one
would like. That will not prevenP from being imposed at the outset; up to now, the
tubes are given. Now?, can, in turn, be generalizedRoin such a way that:

1 D, D, .
(22) —_— =A; (0,P).
Joi+oz| P R

The left-hand side of that equation can be expreby:
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A" (X, Y) =A(P, P’ = A](0,PP),

which can be only; (0, P).

One sees that this generalization of tubes will depgwh an arbitrary function,
which is quite simple to explain geometrically. Inaanfly of curvesAB, an infinitely-
thin tubedS ds or one that is noAaBbwill cut our equivalent arcs (Fig. 4) in the family.
However, upon starting with aarbitrary curve y that is transverse tAB, one can take
equal arcalong that AB. The locus of the extremities of those arcs wilhbsurvey’ that
forms a propagating tube of equivalent arcs, along with

Take an example. First, let there be a circle watltenter aD and a radius dr, and
when it is considered along with all radii, everythiag de represented by:

o=L-1=0, P=g
R
with
=3+ 6= arctan”..
X
Equation (21) will then give:
(22) B(OP)= =,

which is independent . One will get the same result with:

2 2
(23) ¢ = Xty —" -— T -
R(xcosC+ ysinC) Rcos@-C)

and alwaysP = 8 The calculations are simple. One sees tharderao be in better
agreement with the usual notations, we repkeadY in (21) withx andy. That is what
we did in the spatial case by passing from (131 &).

For the functiorP” that satisfies (22), it is entirely reasonabléstce:

P =P +f (),

with ® having the form (23), anidoeing an arbitrary function.

That result can be easily explained in a geometanner, moreover. In order to
evaluate the new circular arcs that are includethénnew tube, one must specify the
limits of those arcs; i.e., one must seek the gowaftintersection that are defined by the
equations:

® =0, P+f(®)=k

That system can be replaced with:

® =0, P +f(0) =k
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Now, f (0) is a constant likk; everything happens as it does with rectilinear tébes
g =k, while the constark simply changes in value. The equation for the new. tube

9+f{;—1} =k
Rcos@-C)

can obviously be put into a manageable form, such as:

r=Rcos @-C) ¢ (6-K),
for example.
One can infer numerowagebraic curves from this that share the property with the
lines = k that they give propagating tubes of equal arcs of thiesiaf the family (23).

5. Conical or central propagation. Buhl-Vincensi surfaces— After conoidal
propagation that issues normally @z, the simplest and most elegant one to study is
probably the propagation that takes place in rectilineapoical tubes with summit &.

In order to define those tubes, we begin by setting:

P:;, Q:arctanz.

X2+ Y2 X

An infinitely-thin tube is then comprised, on the oradh between two infinitely-
close cones of revolution with sumn@itand axiSOz and on the other hand, between two
infinitely-close planes that pass through

The simplest surface on which one can take areasatieapreserved by conical
propagation is probably the sphere with centéd and constant radiu. We represent

it by:
CD:%\/x2+y2+zz—1:O.

Under these conditions, with the forms thus-indicdbedp, P, Q, one will have:

. O, D, O,
(24) — R B Rl @+PY"
Po+PC+D
VOO0 q Q

Of course, in the right-hand side, one takesatmunt the fact thab = 0.
Now, while preservind® andQ — i.e., the preceding tubes — determine the sesfac
with the equation:
®=z-z(x,y)=0
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for which the relation (24) is still valid. One wilhén arrive at the partial differential
equation:

(25) R2_ZZPX Ay _ 0 +y2 + A2

and always by very simple calculations.
Of course, that can be formed directly with the did o

docosd _ do,
X2 + y2+ P R?

Z— px— gy

: doi = dg; COSA = .
\/p2+q2+1\/ X+ Y+ 7

That was recently studied in a methodical mangeYibcensini ¢).
Let us briefly recall the original geometric cateiations that led us from the conical
propagation of equivalent areas to spherical af¢as

M1

0 /B
Figure 5.
Take the family of Bernoulli lemniscates:
r’ =R cos 2 @- C).

The parameteC is the angleAOB and € and M;OB. The radiusOM; and the
infinitely-close radius cut outls on the lemniscate, arttk on the circumscribed circle.
One has, effortlessly:

rds=R*dg, rsinfds=FRsinddg, yds=y; ds .

Upon multiplying the two sides of the last equatity 27z one will see that here there
is a propagation of arcs of the lemniscate betweeninfinitely-close radius vectors that
will always givethe same area of revolutiomhen the revolution takes place arows.
Moreover, that common area of revolution is eqoahe are of the spherical zone that is
generated bys .The two circular bands that are generatedsgndds, can be divided
into an infinitude of elements by planes that pdeughOB, and thus, as Vincensini
called it, aperspectiveof area elements that are preserved when one &sse the

() P. VINCENSINI, “Aires courbes en perspective,” § finales de la Fac. des Sc. de Toulouse, 1931.
() A. BUHL, “Sur la formule de Stokesibid., (1914), pp. 309.
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surface of revolutiork that is generated by the lemniscate that turns ar@Qitb the
circumscribed sphere.

All of that extends immediately to arbitrary coneattissue fromO. As for the
surfaces ofrevolution %, they are obviously infinite in number, consistent witle
arbitrary character of the constatit One can replace then with the Monge surfaces
that are obtained by rolling the plane of the figure atloam arbitrary cone with summit
O. Those surface’ now depend upon aarbitrary function (that corresponds to the
arbitrary cone that is the base for the rolling); they theeefgenerally integrate equation
(25).

That result is extremely remarkable. Indeed, one krbatsin regard to equations in
X, Y, Z, P, 0, one most often considers them to be being satigfiedich a way that one
can obtain @ompleteintegral; i.e., an integral that depends upon two ayitconstants.
As for the general integral, which is a one-parameter epgedf that complete integral,
it can rarely be specified. Now, in the presents,jtand the question was in no way
prepared to deal with that.

In the case of Archimedean propagations, we are less\@etva Equation (16) has
not been integrated generalin a purely-geometric manner. In short, one must take in
account the complete integral (20).

That comparison obviously carries with it the demdrat bne must integrate (16),
which is already rich in elegant geometric remarks, beanwhile it cannot be further
perfectedfrom the purely-geometric viewpointNevertheless, that is a question that we
shall pass over for the moment.

Let us return to equation (24). One can obviously write:

o, O O,
1 1
) Jorrorrer v 1 TR
Ty Qe QG
by setting:
P z

n

:\/1+P2 :\/x2+y2+zzl

Meanwhile, equation (26), while still preservingetform (12), has a particularly
remarkable aspect to it, now, namely, that thet+igtnd sideh; (0, P, Q) depends upon
neither P nor Q; it is a simple constant, as is already true i) (and (22). The
substitution off1 for P changes nothing in the conical tubes that are @yl Along
such tubesdl1 andP will both be constant, sind@ is a function oP.

However, the reduction of (24) to (26) greatly giies the problem of thgariation
of tubeghat was encountered before in a simpler cadaeipteceding paragraph.

One can generalize the functidisandQ of equation (26) into:

M =n+¢(®), Q =Q+ ().

One can also keep one of the functibiher Q — say,l1 — and generaliz® to:
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Q =Q+x(®,M).

One sees that there is an infinitude of ways of alitgisystems ofurvilinear tubes
in which the Buhl-Vincensini surfaces, which are animated with an arbitrary motion
aroundO, propagate by invariant areas.

We remark that nothing will change in trectilinear tubes that were first envisioned
above if one takes:

Q =Q+a@(n),

in place ofQ, becaus&) andll are homogeneous of order zero. The same thing will be
true forQ , which will once more give a cone when one equatesatdonstant — i.e., a
rectilinear generator that issues fr@n

6. The partial differential equation in ®, in unitary form. — The replacement of
equation (24) with equation (26) and some results of the seture that were obtained
before imply the demand that the equation:

o, O, O, L
(12) n, n, rm, — 2:A1 (0,P, Q)
Q Q Q { Pt Oy+ D
cannot take the form:
o, O, O, L
27) n, n, rm, — = = 1
Q Q Q Pt O+ D
in a general manner, with:
(28) M =M (P,Q), N=N (P, Q).

It is the form (27) that will be referred to ag tinitary formof equation (12) when its
existence is justified.

The tubes in (12) and (27) are the same, bec&isandQ are constants along a tube
then the same thing will be true along the same & andN.

That is true because of (28). However, the fa2if) (ends itself to the problem of the
variation of tubesnuch more than (12).

When one says that the tubes in (12) and (27%iangar, that is not to say that they
coincide absolutely. Twaimilar tubes can be compared for example— to two
infinitely-thin cylinders that are parallel ©z and which both include the same pgnt
of the planeOxy in their interiors, but which can have differentfinitely-small
guadrilateral sections aroupd

Replacing (12) with (27) amounts to replacingdbeble equality (6) with:



Buhl — Vortices, corpuscles, and waves. 32

a [ vy b, D, D, ds
dMdN=[M, M, M |do=|M, M, M, —=
N, N, N, N, N, N, |V Ox O

so, from (27)dS=dM dN and replacing the ar&uwith a line integral irM dN.

As for the path that was described above in paragrapleads one to write (10) and
to conclude, from (4), with a line integralihdP +V dQ

The two processes can be converted into each othee ifan have:

(29) UdP+VdQ=MdN.

Now, the reduction of the left-hand side of (29) to tlght-hand side is always
possible.

The simplest case of the Pfaff problem is the questidinding the integrating factor
for the first-order differential equation:

(30) UdP+VdQ =0.

In short, in order to put equation (12) into the form (2énforming to equation (10),
one must first set:

oP 9Q A0,P,Q)

That will yield an infinitude of forms foJ andV. One integrates the first-order
differential equation (30), in turn, and g&sandN from (29).
Afterwards, one can verify that:

(a_v_a_uj‘ I:)x R( Pz :HMX MY |\/|Z
P Q)| Q@ Qf [Ny N N
if, from (29):
U:Ma_N, V:Ma_N,
oP 0Q
and if;
oM oM oM oM
My= 22 P+ 200y, My= 2po+ oy,
*“p 6QQX Top Y aQQY
oN N oN N
Ny = 28 Py + 22 Qy Ny= 2 py+ 220y,
*“op aQQX TP aQQY

The calculations are not difficult.

In order to return to the practical reduction d2) to the unitary form (27), one sees
that (10) demands at least one quadrature. Onethrers integrate (30), which is much
more difficult, especially when one needs to haxglieit results. However, if one can
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do that then the variation of the tubes can be perfdmith no new integration by way
of (27), precisely as was indicated at the end of theedieg paragraph.
It is obvious that one will not change equation (27) & ogplaced/ andN with:

M* =M + ¢ (D), N =N+ ¢ (P),
or M with:
M* =M + u(®,N),
or N with:
N =N+ v (P, M).

We confine ourselves to these very simple results. h&toreover, it is obvious that
the present paragraph can raise many questions and gemateea research, notably
in the case where equations (12) can be reduced to unitarghplicitly.

7. Homogeneity and operatorsx, y, z — We shall nhow go on to some
considerations of homogeneity that have already enterplicitly into the foregoing,
although it is important to exhibit them explicitly. \Whall find that this will give a basis
for applying the considerations of the preceding chapter.

First of all, if one is given the equation of an adr§rsurface:

(31) ®(xy,2=0
then one can put it into the form:
(32) fxy2=1,

in which the functiorf is homogeneous of ordene
Indeed, it suffices to write (31):

(33) ® (z,_y,zjz 0
T 7 7T

and to imagine that one has solved it foso:
(34) f(x,y,2=r

The latter equation must not change if one reglacg, z, 7 with kx, ky, kz Kz, since
it is only equation (33) written differently. Tledore:

f (kx ky, k2 =kr=kf (X, y, 2),

andf is homogeneous of ordeme. Now, if one setsr = 1 then equation (33) will
become (31) again and (34) will become (32).

That transformation from (31) to (32), which gives undeniably interesting results
here, also seems to have deep consequences indothains — notably, in the theory of
algebraic surfaces and the integrals that arehettbito them.
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It hardly needs to be said that the results thaestablished with three variables will
extend to an arbitrary number of variables in the same w

We return to the Stokes formula (4) for tubular spaaed,to the double equality (6).
We have third-order determinants in it that will obviousiyplify if we set:

PyQ,—P.Q =x¥ (XY, 2,
(35) P,x-PR Q. =y¥(xV, 2,
PcQ-R Q=z¥ (XY, 2.

The last determinant in (6), with replaced withf — 1, will become:
WXY,2)Xik+Yk+Z1) or W1

One can imagine that some simplifications must nagtgntion.
If the relations (35) are true then one will also have:

XPc+yPR +zF, =0,
XQ +yQ+zQ =0,
XWy+yWy+zW¥, =-34.

Therefore P andQ are homogeneous of order zero, #hé homogeneous of order — 3.

Under those condition®? and Q, when equated to constants, represent cones with
summitO that can never intersect except along common generators

Except for the final variation of the tube, they witkt be rectilinear and issue from
O.

The double integral in (4) takes the form:

v _ouU
Il (ap anw(xyz)(ax+w+yz)da

Since the first parenthesis is a functionPodnd Q, it will be homogeneous of order
zero, and the entire coefficient af(+ Sy + yz) will be homogeneous of order — 3. That
double integral is then always identifiable with the enthe formula:

dx dy d
(36) H oL 6M 6N (ax+ By + yz) do= J. z|,
6x 0z
L M N

in whichL, M, N are homogeneous functions of order — 2

In (36), we have theeducedStokes formula, which was given a long time abo (
and of which we have already made numerous geometric ajhis. It is now
interesting to remark that one can interpose an ieiate form between the general

() See for example, A. BUHLGéométrie et Analyse des Intégrales doybBmllect. Scientig 1920,
pp. 8.
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Stokes formula in a three-dimensional space and the redmoed36) that is precisely
the tubular form (4).

One sees that the considerations of homogeneity assdhe operators y, z with
the partial derivative operators with respeckty, z here, where the first association of
that type is represented by Euler’s theorem on homogsneactions. Formula (36) is
the fundamentahtegral formula that realizes an association of the sar@&@a

8. Conical propagating areas and the reduced Stokes formula. With all of the
demands of homogeneity in the preceding paragraph, the dogumddity (6) can be
written:

A (P, Q) dP dQ=A (P, Q) W(x,y, 2)(ax + By + y7) ds

_APQW(X.Y. 2 F(X Y 3 d

J fi+ 7+ 12

One can remark that everything in the left-hane sifithis refers to the surfaGawvhose
equation is:

f(X,Y,2 =1,

in whichf is homogeneous of order one. Siheeequal to unity on that surface, one can
write f * in place off, which will make the coefficient afS homogeneous of order zero.

On the other hand, one is not unavoidably dealiith @ conic propagation that issues
from O; the points X, Y, Z) and §, y, 2) are on a straight line wit@, so:

X

y_Z
X y z

One can then replac€ Y, Z in dSwith x, y, z respectively. One will then have:

MRQWMMZFuyzd{

A (P, Q) WXy, J(ax + py + yz) ds= —_————
fXZ + fy2+ fZZ

Under those conditions, the factdi(P, Q) in the right-hand side will become identical to
the one on the left-hand side, and one can suppinessommon factors ok and W.

Nevertheless, one must not forget that there apdiech double integrals on both sides,
and under those conditions, it is more rigorousaddatedS by arguing as in paragraph 1

—i.e., by setting:
’ fXZ + f2 + fZZ
N (PQ) = .

Wxy,2 F(x %3

thanks to the indeterminacy M which is always possible, because the right-isadel is
a function of only two variables, since it is horeagous of order zero.
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Figure 6.

That formula (37) can be established by direct geomainsiderations. With, y, z
on the surfaces, and theX, Y, Zon S, and the usual notations, one will have:

(ax+py+y2 do _ (Xf, +Yf, + Zf,) dS
(X +y+2)% f2+ f2+ f2(X2+Y%+ 732

Xik+YH+2Z1=f

With:

andf (X, Y, Z) — which is equal to unity replaced wittf 2, the coefficient ofiScan be
written with X, Y, Z replaced withx, y, z, respectively; hence, one will get the preceding
dSand formula (37).

The double integral in (37) is Stokesian; one ttansform it by the reduced formula
(36) by setting.=0,M =0 in it

4

and thus, one will getl by a quadrature. Therefore:

S:LN(ydx— xdy,

and if the contouk is traced on a surface)(with the equation:
N=-1 or N+1=0

then the are&, which originally belonged to an arbitrary surfaeéll be made planar by
a very remarkable geometric process. It suffieeproject fromO onto (o), then to
project the end-face that is thus-obtained gnparallel toOz onto the plan®©xy. The
last plane projection will be equal

Meanwhile, for the moment, we shall not insist mgbese results, which were
already developed at length in some earlier wdoks,their undeniable importance and
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precisely those great developments that one can itfer them leads one to demand to
know whether that homogeneous geometry is not superioretamie that was first
presented with no explicit consideration of homogenektpwever, the superiority does
not exist everywhere. A final formula, such as (37))amger contains any trace of the
functionsP andQ, nor ofW, which is provided by andQ from (35). The tub®, dS
do in Fig. 6 is no longer a tube with a well-defined quadgiialt section. It is an
arbitrary, infinitely-thin cone that projectsSto do from O, and conversely, no matter
what idea that one might have of those area elemebtsder those conditions, the
problem of thevariation of tubesan no longer be posed and solved as it was before.

If we start with a surfac8 that is well-defined by an equatiér= 1 and then form,
from (37):

(38) f3)12+ fZ+f2=2(xY, 2,

in which A (x, y, 2) is obviously homogeneous of order — 3, then we can &aftdswv
propose to look for the most general solutionthat is homogeneous of order one and
verified (38), while preserving. Obviously, the surfacds = 1 propagate the ar&in
the coneOZ.

Therefore, suppose one has the sphere:

=1 X+y' +7 =1
R
Equation (38) is:

(39) f3.)f2+ f2+ 12 =R +y +2)%"

That is the equation of the Buhl-Vincensini surfaces .;-the equation that gives the
most general form fof when one attributes an equation of the fdrm 1 to the
aforementioned surface witthomogeneous of order one. One will easily comparte tha
with (25). However, it is undeniable that the true gditgrna in (24) or in (26), because,
from there one can descend — again, quite easily — to (289 and with (26), one
solves the problem of the variation of tubes immedjatel

9. Extensions. Propagation of area integrals- To conclude this article with all
desirable generality, one must envision the case in vih&ie are no longer just areas
that propagate in certain tubes or deformations of theimntegrals of the form:

jjse(x,v, 2) ds;

those integrals will obviously give are§sagain when the functio® reduces to unity
identically.

One must then modify the double equality (6) slightlgnglwith the arguments that
follow, and none of that should prove difficult, moveo.

In place of the last two terms in (6), one can set:
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a B vy o, O, O,
AP.Q|P P, R|do=i|p, R p | ARQOdS
© J L + 02 +d?

QX Qy QZ QX Q QZ

in which, © is obviously written fo® (X, Y, Z). For the last side, we write:
AXY,2)NP,QOdS or A1 (0,P, QA (P,Q) ©dS.

One will profit from the indeterminacy iy to setA; A = 1, and one will have:

J‘J‘ J'J' ahy do
(9) oY, 2ds=[[ [R B Rl— .
Q Q Q A,(0,P,Q)

That is the extension of formula (9). Thegin (9) coincides with the one in (9) only
when® = 1. One sees that here, one has set:

1 1 q)X q)Y q)Z
(12) 0 [0 + @2+ 02 P R R[=800PQ)
X Y z QX QY QZ

and that is the generalization of equation (12).

Here, one can once more introduce some considesathat are analogous to the ones
that are concerned with equation §L2f paragraph 2. However, that would be pointless
for what follows.

The problem of the variation of tubes will haveaetly the same physiognomy as in
paragraph 6.

We now go on to the homogeneous theory. The tdieametric considerations that
follow from formula (37) are again modified in ammediate fashion, and show that
formula (37) must be replaced with:

_ XY Z\ .32 c2 2
jjse(x,v, Z) ds = jjge[f . jf J B2+ E2+ £ 2 (ax+ By + ) do
For an initially-given surfacé = 1, one will obviously have, as was pointed out i

(38):
f2 ) 2+ 7+ 12 =A(xy, 2,

in which A is homogeneous of order — 3. That will entait tih@ most general forms of
for which the surfacek= 1 will propagate in conical tubes that issuerfi®O as© dSor
integrals of® dSwill need to verify equations of the form:
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(40) (ﬂjz-}-[ﬂj +(£j2: Q (l’l,_zj
X oy 0z f f f

On a surfacé= 1, one can obviously claim that one has:

o2 (af Y (of V.
- (5 (5] (%) = wra

in which the functionQ in (41) has the appearance of an arbitrary functiothagde
variables.

10. Vortices. Corpuscles. Waves- Conversely, any equation (41) that is created
with no condition imposed upo can behomogenized- i.e., replaced with equation
(40), to which one can associate a corpuscular propagayiaonical tubes that issue
from O. One can then construct a more general theory optbagtgation with the aid of
tubes with well-defined quadrilateral sections (viz.raduce the function® and Q),
which will permit us to make those tubesry and to finally show that the most general
corpuscular propagations that are associated with (41) amelireear, as well as
rectilinear.

As for the general considerations that give rise mo eguation (41) and can
approximate a theory of corpuscular propagation, theratdeast two types of them:

In the first place equation (41) can be considered to be a Jacobi equatibretates
to the motion of a point, in the sense of classicatmanics. It is already quite important
to remark that in classical mechanics a Jacobi equdtains written for the motion of
just one point can also govern the entire corpusculgrggation of a number of particles
that is as large as one would like.

In the second placesquation (41) governs the propagation of a wave front ih auc
way that the Stokesian — hengerticial — considerations of this article will resolve to an
ordinary point-like motion, as well as a corpuscular avevlike propagation.

The search for the basis for the phenomena thataatiees corpusclesor wavesis
an indeterminate question that is probably absurd.

The Stokes formula, which generates so many theomnesgably, that of Einstein — is
the beginning of avorticial theory. It will becomecorpuscularwhen it becomes the
formula for tubular spacest will becomewave-likewhen it generates equations such as
(40) or (41).

In order to make these assertions more precise, wevb@ome formulas of Eugéne
Bloch. Moreover, the summary of that eminent auttenn be simplified slightly and
liberated of all vectorial notatiori)(

We first recall the ordinary motion of a point withe elementary expressions for
kinetic and potential energy:

() E. BLOCH,L’ancienne et la nouvelle Théorie des Quariarmann and Co., Paris, 1930, pp. 267-
268.
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T:g(x'2+y’2+z'2), U=U(XYy, 2.

Upon setting:
px = mX, py =my, p, =mzZ,

the Hamiltonian function will have the expression:
H=T+U =%(p§+ |O§+ p?) +U (XY, 2) = const. =E.
The Jacobi equation is then:
%K%)Z +[%—\;j2 j{%_\;f} +U (X Yy, 2=E

One explicitly introduces time by setting:

(42) V=S—-Et

so one will have the equation f8r

“ (5] (23] (25 - me-v)
0x 6y 0z

which can be compared with (41).
As for the propagation of a wave-front, it amounta tanctionV (x, y, z t) that must
remain constant on that front. One must then have:

N ax+ IV ayr OV 420V g = 0
0x oy 0z ot
on it from the outset.
Suppose that one has the pdih(x, y, 2) on that same front at the tirhe During the
time dt, the pointM will experience a displacement with componeinsdy, dz that is

normal to the front and that will have a certain vitloa. Hence:

a—Vd +6_de+6_Vd =udt (avj 6V (avj :
0x oy 0z 0x 6y 0z

When that equation is compared with the preceding ormewdiget:

(555 -5(5)
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Now, if one taked to be the function (42) then one will have:

()55
0x oy 0z u

and a comparison of this with (43) will give:

E

J2m(E-U)

That is the velocity of propagation of the wave-feotfitat correspond to the point-like
motion that was envisioned originally. What is intérgshere is that equations (43) and
(44) are both of type (41). The elementary point-likeiomand the associated wave-
like propagation then once more correspond to certain carangropagations.

11. Return to conoidal propagation.— The simplifications that we just pointed out
for the Stokesian formula (4) and the double equality (&)cartainly not the only ones
that one can obtain. We recall the question thatpeasd in paragraph 7, but posed in a
slightly different manner, now.

First, the equation of an arbitrary surface:

(31) d(xy,2=0
can always be put into the form:
(45) fxy.2=1,

with f homogeneous of order omeonly x and y The argument will be the same, upon
just commencing by writing:
cb(f,l',zj: 0.
T T

As for the third-order determinants, from (4) &6dl, they will once more simplify
greatly, and even more than the first time, if bas:

Q=z Pr=—-yW¥ (XY, 2, Py=xW¥(xY, 2,

instead of (35).
That will give:
XP+yR =0, XWy+yWy,=-24Y.

Hence,P is homogeneous of order zero, akds homogeneous of order -#r2only x
and y. The tubes along whidh andQ are constant are conoids that issue f@m
The double integral in (4) takes the form:
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ov ou
H (G—P—%jlv(x V,)(a@x+ [y .

The entire coefficient ofdx + fy) is homogeneous of order -irRonly x and yin such a
way that the double integral can always be identifigtl e one in the formula:

(46) jj “(ax+By) do= jN(ydx—xdy

in which N (X, y, 2) is homogeneous of order —irRonly x and y. That is a new type of
reducedStokes formula that once more implies numerous geanagiplications.
With all of those homogeneity assumptions, the doublelieg(@) will be written:

AP,QWY(XY,2 (XY 3 ds
JR2+£2+f722

AP, QAP dQ=AP,Q WY (XY, 2 (ax+ £y) do=

Everything in the right-hand side refers to thdeste S whose equation is:
fX,Y2 =1
with f homogeneous or order omeonly X and Y.We can thus introduce factdrato

the right-hand side that are equal to unity andctwhwill render the coefficient odS
homogeneous of order zeroonly X and Y.Since one has:

x

XY
y

one can replack, Y, Z with x, y, z, respectively, in the coefficient d&
One will then have:

AP.QW(x ¥ 2 F(xy3d

AP QW (XY 2 (ax+fy) do=
JREH £z 2]

One can isolateS by suppressing the common factorsNoandW¥ (or by the more
rigorous argument in paragraph 1); thus:

(47) s=|[ P2 17+ 12+ 172 2(ax+ By) do.

Here again, the geometric applications are nunserddioreover, formula (47) can be
established by some direct considerations.
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Figure 7.

With x, y, zindoand therX, Y, Z in dS and with the usual notations:

X+ BY = X +Y & ds
Xy Y R i 1
With:
X f+Y =t

and such factors dfset equal to unity, one can make the coefficierdS¥Momogeneous
of order zeran only X and Y.One can then replace Y, Z with x, y, z, resp., saSandS
will agree with the expression (47).

The integral (47) is Stokesian. One can transforrayitthe reduced Stokesian
formula (46) by setting:

6N_ -2 2 2 -2 2
5 JEH 277

so one will geNN by a quadrature, and:

S:LN(ydx— xdy.

If the contourZ is traced by a surface)(whose equation is:
2N+1=0

then makingS planar will again be quire remarkableSfs projected conoidally ontajf
then upon starting wit®z that will give an end-face o)l whose projection ont@xy
parallel toOzwill containS

One is not dealing with the ar& but an arbitrary integral that is attached to that
area, so one easily sees that formula (47) must becepivith:
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jj @(XYZ)d<—jj e(—sz \/f + 2+ £7212 (ax + fy) dS

Once all of that has been arranged, one will see wayctefficient of gx + fy) is

homogeneous of order —i2 only x and y. For a given surfac8, that coefficient will
have a certain expression that also corresponds tacddnf * that is more general thén
and is a solution of an equation of the form:

(48) (ﬂj [6fj +i2(ij :Q[l,—y,zj.
0x oy f oz f f

The most general solutidn that is homogeneous of order d@neonly x and yand
satisfies equation (48) must unavoidably be equeteshity. Hence, in short, they will
be the surfacefls= 1 on whichone has:

of of of
EREAREARYES

One then recovers equation (41) with its dynanmacal wave-like meanings.

One can now associate a corpuscular propagaticorafidal nature with the motion
of a point and the propagation of a wave front.

With the manner of homogenizing (41) that was istidbriginally, one will get
conical propagation. The variation of tubes wilrmit one to further transform those
propagations greatly, which can, perhaps, be manle meterminate by a study of the
initial conditions for emission. The analysis agelometry that were developed here
show simply how wave fronts can collapse to corf@ssand how swarms of corpuscles
can range over wave-fronts. An indeterminacy thalates to the Heisenberg
uncertainties undoubtedly remains at the basith&ge questions.

12. On the Schrédinger equation— We now have the opportunity to reconcile the
end of this chapter with the end of the precedingpter. It is likewise interesting to
borrow a few things from Weyt). In Newtonian mechanics, we will have:

1
(49) H= %(pi+ p; + pl)

for a free corpuscle.
The correspondence:

() HERMANN WEYL, Gruppentheorie und Quantenmecharfiecond edition, Leipzig, 1931Cf,,
pp. 45-49. As for the generation of second-order wave iegsatom sets of operators, such as the ones in
table (50), one can also refer to the work that wasl digfore by EUGENE BLOCH, ancienne et la
nouvelle Théorie des Quant#n particular, see Chapter XIV on the Schrédinger egoati
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H,  p. B, P,
(50) ho ha ho ho
iot’ iox iody ioz’

when combined with (49), will give the wave equation:

hoy W 9> 0* 0°
51 27 ag=o0, A=+ 42
1) i ot 2m v x> oy> 07

In relativistic mechanics, (49) is replaced by:
H 2 2 2 2 2
= (PPt )=t

Upon (right) multiplying all of the terms in thatuation by and subjecting it to the
correspondence (50), this time one will have:

1 0%y ¢
— S SNy = —
c® ot? h?

&,

instead of (51).
When one is dealing with a corpuscle in a fore&lfione will have:

H :Zi(pi+ P2+ )+ V (XY, 2)
m

in which V denotes the potential energy that was represdmtdd above. Here, the
introduction of the variables, y, z no longer corresponds to any operator that pesnute
with the ones in the second row of table (50). ikgstated that, Weyldc. cit., pp. 49)
wrote:

“Despite the non-commutability that was emphasiabdve, we- with Schrédinger
— dare to apply the rule for obtaining the wave ¢iguain this case, as well. We then
obtain theSchrédinger differential equation:

hoy h
————A¢ +V(XV,2 4=0."
"t 2m Y xy.2y

Thus, as the first word of that quotation suggedtsis despite certain non-
permutabilities that the Schrodinger equation exist

Under those conditions, it seems interesting tmar& that our theory of the
homogenizedacobi equation is not constructgeispitethe non-permutabilities and the
combinations (such as Euler’s theorem) that onkokierve in one row or the other of
the table:
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0 90 9
ox oy o0z
X, VY, zZ

but ratherjn plain accord withthose non-permutabilities and combinations.

Homogenizing the Jacobi equation or deducing the Schrodingeticegfram it are,
without fail, distinct processes that are undoubtedlypted imperfectly in the present
article. However, both of them seem to be comparabportant and to have physical
roles that, while different, must be capable of besgpaiated.

13. Waves derived from an ellipsoid— The present article touches upon theoretical
physics much more than pure geometry, since up to nowawe presented only the
geometric developments that are necessary for theme®n of physical schemes.
From the purely geometric viewpoint, the results carotmecextremely numerous and
can be transformed in a host of ways; there is rasae to elaborate upon those
possibilities. Meanwhile, this is the place to touctyJariefly upon the ellipsoidal areas
and their propagation and some very interesting resodts were pointed out in the
Comptes rendu@ February 1931), and which can still be claimed by Gedtigesbert,
since that excellent and dearly-missed geometer dedicatett effort to ellipsoidal
areas, which is a question that seems rather diffimdteover. What follows seems to
simplify it considerably and to render the ellipsoid&es perhaps more manageable than
the arcs of the ellipse.

Let the ellipsoid have the equation:

(52) AX?+BY?+CZz?=1.

One can associate equation (45) with it:

B fo2+ By _
(53) f= —1_022 =1,

in which one sees thats homogeneous of ordenein only x andy.
Formula (47) will then give:

(54) J@A-CZ)U+ CZ (ax + fBy) do

1
S=|| ———
Han2+By2
upon setting:
A+ B
(53) V= sz—Bf

The search for what one can call flanifying surfaceof the ellipsoid leads one to
write, always with the considerations of paragrafh
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ON _

— U-cu-0)z.
0z AX+ Byz\/ ( )

One sees that one can d¢tby a simple circular quadrature. In a more peecis
manner, upon appealing to:

2
j a’-b’u’du= %«/ a? - b?u? +%arcsinﬂj,

a
one will get:

C(U O
zJU-CU-C) Z+ -
N = v +%¢(yj,

2(A><2 + Byz)

with ¢ an arbitrary function.
The equation of the planifying surfac 2 1 = 0 can finally be written:

(56) C(U-OQZ=UsitV,

in whichU always has the same value that was indicatedbiiy &nd upon setting:

uv
- X — Z,
<00 ¢(Xj A% By -z ,/U -C(U -C)
maoreover.

Therefore, the planifying surfaceg)(in equation (56) approximates the scalene
ellipsoid E in equation (52), which leads one to assert:

If a right conoid with director Oz cuts out a ceartaend-face of area S on the
ellipsoid E and cuts out a contoiron the planifying surfacéo) then the projectiort’
of Z onto the plane Oxy will enclose an area that isiesjent to S.

Now, compare formulas (47) and (54). One willéaed have:

(57) P2 f2+ 12412 2= \/(1 CZ)U+ 27

sz

for the form off that was indicated in (53), but it is clear thHa¢re are other functiorfs
(%, ¥, 2) that are homogeneous of oraerein x andy that satisfy (57). With those new
functionsf, the surfaces with the equatibs 1 will give end-faces in the conoids of the
italicized assertion that are equivalent in aredh\ahich can propagate the al®that the
same conoid cuts out on the ellipsoid in equati).(

Obviously, all of the end-faces that are contaimethe same conoid can be made
planar with the aid of the planifying surfaa8) py the construction that is first concerned
with only the ellipsoidal are&
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Meanwhile, the latter results can hardly be maddiatxpbecause equation (57),
although of first order, is sufficiently complicated tdydan explicit integration.
Everything will become simple in the case of the sphath:

AIBZC:U:%.

Equation (57) reduces to:
(58) P2 f7+ 0741722 =

R

X2+y2’

and one immediately perceives that one can look forlai®o f(x, y) to the latter
equation that contains ornkyandy. That is a great source of simplification that dods no
seem to have an equivalent in the case of equation (57).

For (58), one has:
f= %\/ X+ Y,

and that will bring one back to the Archimedean consiaera of the circumscribed
cylinder. One see that Archimedes was justly excited albogtroposition whose
extensions should greatly exceed the case of the figatevias engraved upon his tomb.




