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 1. Introduction. – In the following article, a property of absolute optical instruments that has 

been proved only for homogeneous isotropic object spaces and similar image spaces will be 

generalized. That generalization can also be inferred from the analogous theorem for arbitrary 

symmetric variational problems, and its proof is even much simpler and more concise than that of 

the original theorem itself. 

 

 

 2. Historical overview. – In the year 1858, J. C. Maxwell used a very elementary method to 

prove the theorem that for an “absolute” optical instrument – i.e., one for which every point in the 

object space creates a sharp (viz., stigmatic) image in the image space – the object and the image 

must be equally large (as measured in light time) (1). In the proof, he had generally neglected 

second-order quantities, such that the result would initially seem to be valid for only small objects. 

 
 (1) “On the general laws of optical instruments,” Quart. J. pure appl. math. 11 (1858), 233-244 or Scientific Papers 

1, pp. 271-285, see esp., Props. VIII and IX.  
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Later, in his famous work on the eikonal (1), H. Bruns proved rigorously and in general that under 

the absolute map, the image would be similar or symmetric to the object. By contrast, Bruns did 

not emphasize that the image and object would have to be be equally large when measured in light 

time, although that fact was almost a direct consequence of his formulas. F. Klein had briefly 

inferred that last consequence in the context of a surprisingly elegant proof that he gave for the 

theorem in question (2). Klein employed the imaginary “minimal ray” in his considerations, which 

would not be refracted at the separation surface under the transition from one medium to the other, 

as he pointed out. H. Liebmann ultimately found a geometric proof that was just as simple as that 

of Klein, but which involved only real rays (3). Liebmann’s beautiful proof not only had the latter 

advantage, but above all, the fact that the only rays that were employed in his construction were 

ones that actually ran completely through the opening of his instrument, no matter how narrow 

that opening might be. It is obvious that such a restriction on the construction must always be 

required (4). 

 

 

 3. The Maxwell fisheye. – All of those proofs assumed in an essential way that the object 

space, as well as the image space, were isotropic and homogeneous, such that from a theorem of 

E. Abbe, the absolute instrument in question would generate a collinear map between the two 

spaces. From the theorem of Maxwell-Bruns-Klein that was just mentioned, the image for an 

absolute instrument is always congruent or symmetric to the object, and the plane mirror is the 

single optical instrument that one knows that produces such a map. 

 Now, Maxwell had remarked (5) that in a medium with varying index of refraction, it might 

be very likely that all rays that go through an arbitrary point will once more meet at a single point 

such that in such a medium, any sufficiently-small object will actually possess a stigmatic image. 

 Maxwell made that discovery in the context of his study of the spherical lens in the eye of a 

fish, whose refraction might be determined by the following formula: If one lets r denote the 

distance from a point in the lens of the eye to its center and n denotes the index of refraction at the 

point considered then the following equation will be true: 

 

(1)  n = 
2 2

2ab

b r+
, 

 

 
 (1) “Das Eikonal,” Abhandl. der Kgl. Schs. Ges. d. Wiss., math.-phys. Klasse 21 (1895), zee esp. pp. 370.  

 (2) “Räumliche Kollineation bei optischen Instrumenten,” Zeit Math. Phys. 46 (1901), 376-382 or Ges. Abh., Bd. 

II, pp. 607-612. 

 (3) “Der allgemeine Malussche Satz und der Brunssche Abbildungsatz,” these Sitz. (1916), 183-200. 

 (4) A very good survey of the results that were cited here was given by H. Boegenhold. One finds it in the new 

third edition of the book by S. Czapski and O. Eppenstein, Grundzüge der optischen Instrumente nach Abbe, Leipzig, 

J. A. Barth, 1924, pp. 213-216. 

 (5) “Solution of problems,” Camb. and Dublin math. jour. 8 (1854), 188-193 or Scient. Pap. 1, pp. 74-79.  
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in which a and b mean positive constants. In the eightieth year of the present century, L. 

Mathiessen found that Maxwell’s formula (1) agreed quite well by measurements made with the 

lens in the eye of the cod and other fish (1). 

 Now, Maxwell found with the help of some rather elegant geometric considerations that when 

one fills up all of space with a medium whose index of refraction obeys the law (1), the light rays 

will all be circular or rectilinear, and that those of them that start from a point A in space that is 

different from the center O of the “fisheye” will all once more run through a second point A1 in 

space. In that way, O always lies along the segment AA1 and divides that segment into two intervals 

for which the relation: 

 

(2)      AO  OA1 = 
2b  

 

is true. Those conditions suffice to completely characterize all light rays. 

 

 

 4. – Now, that result of Maxwell’s follows at one stroke from the remark that in the equation: 

 

(3)     

2 2 2

2 2

2 2 2 2

2
,

,

ab
d dx dy dz

b r

r x y z




= + +
+

 = + +

 

 

the differential d, which defines the optical length of a line element inside of the Maxwell fisheye, 

can also be interpreted as the line element of the three-dimensional boundary of a four-dimensional 

sphere that is projected stereographically onto the space of x, y, z. The diameter of the sphere must 

be taken to be equal to 2a in that, and the distance from the space of x, y, z to the center of projection 

must be taken to be b. The extremals of the variational problem that corresponds to the line integral 

in (3) coincide with the images of great circles on our four-dimensional sphere. However, those 

images are the circles in the space of x, y, z that include two diametrically-opposite points of the 

sphere: 
2 2 2x y z+ +  = 

2b . 

 

They are then characterized by the facts that their planes include the origin O of the coordinates 

and that the power of the point O relative to each of those circles will always be equal to − 
2b . 

 Each pair A, A1 of conjugate points for which the relation (2) is true corresponds to a pair of 

diametrically-opposite points of our four-dimensional sphere, and since the distance between two 

points of the sphere is equal to the distance to their opposite points (while both distances are 

measured on the surface of the four-dimensional sphere), it will follow that for the variational 

problem (3), the extremal distance between two points A, B in the space of x, y, z must be equal to 

the extremal distance between the conjugate points A1 and B1 . 

 
 (1) L. Mathiessen, “Über ein merkwürdiges optisches Problem con Maxwell,” F. Exners Repert. d. Phys. 24 

(1888), 401-407. 
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 It will then follow that for the stigmatic map that the “Maxwell fisheye” generates, every curve 

that is drawn on the object corresponds to a curve on the image with precisely the same optical 

length. Indeed, the map is no longer collinear, but it will be true to scale, as the aforementioned 

theorem in § 2 requires. We will see that this is an entirely general phenomenon and that the 

theorem of Maxwell-Bruns-Klein is not at all linked with collinear maps. 

 

 

 5. The general mapping theorem. – Let J be an arbitrary optical instrument that is intersected 

by a light ray ABA1B1. 

 We shall not assume that the object space in which the segment AB of our light ray lies or the 

image space in which A1B1 lies are homogeneous, such that our light ray can be doubly-curved 

curve along its entire course. 

 The line element of the object space, which deviates neither in length nor direction very 

strongly from a line element of the part AB of our light ray, i.e., the ones that belong to a “narrow 

neighborhood” of AB, as one says in the calculus of variations, have the property that every light 

ray that include one of those line elements will go through both pupils of the instrument, just like 

ABA1B1, and will arrive in the image space. We then say that the light ray lies in the field of the 

instrument. 

 Let  be an otherwise-arbitrary curved segment with continuously-varying tangents and 

nothing but light rays that lie in the field of our instrument will go through whose line elements. 

We would then like to say that the curve  lies tangentially in the field of J. It is clear that every 

light polygon that is inscribed in  will consist of nothing but light rays that lie in the field of J 

when its sides are chosen to be sufficiently small. 

 

 

 6. – With those preparatory considerations, which are true without restriction, we assume that 

we have an absolute instrument before us. That is, we assume that when all of the light rays that 

we consider start from a point A in the object space, they must cross at a point A1 in the image 

space. 

 All of the rays that go through our instrument that connect points A and A1 that correspond in 

that way will then have equal optical lengths between those points, as would emerge from a very 

elementary and well-known theorem in the calculus of variations. We would like to let  (A) denote 

that optical distance between an arbitrary point A in object space and its image point A1, which is 

therefore independent of the direction that the ray connecting A to A1 might possess at the point A. 

 

 

 7. – If we let h denote the optical distance between A and B and let h1 denote the optical distance 

between A1 and B1 then, from the figure below, we will have: 

 

h +  (B) =  (A) + h1  

or 

 

(4)      h1 = h +  (B) –  (A) . 
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 We shall now consider a curve  that lies tangentially to the optical instrument (§ 5) and 

connects the points A and B, and we denote the image of  by 1 . 

 Let APQB be an arbitrary light polygon that is inscribed in  whose sides lie in the field of the 

instrument, and let A1P1Q1B1 be its image that is inscribed in 1 . If we let u, v, w denote the optical 

lengths of the sides of the polygon that is inscribed in  and let u1, v1, w1 denote the optical lengths 

of the images of those sides then we will have the following equations, which are obtained in the 

same way as equation (4): 

(5)      

1

1

1

( ) ( ) ,

( ) ( ) ,

( ) ( ).

u u P A

v v Q P

w w B Q

 

 

 

= + −


= + −
 = + −

 

 

 In that, one must consider that since the two light rays ABA1 and APA1 have the same optical 

length,  (A) has the same meaning in (4) and in the first of equations (5). One sees in exactly the 

same way that the values of  (P),  (Q),  (B) represent the same number in each of the two 

equations (4) or (5) in which they occur. Upon adding equations (4), one will then get: 

 

(6)     u1 + v1 + w1 = u + v + w +  (B) –  (A) , 

 

which is a relation that says that the difference between the optical lengths of the light polygon 

that is inscribed in  and its image is equal to  (B) –  (A) . That property, which is independent 

of the number of sides to the inscribed polygon, can be carried over to the optical lengths of the 

curves  and 1 by passing to the limit, and in that way we will get: 

 

 Theorem 1: 

 

 For any absolute optical instrument that maps a point in an object space R sharply to the point 

in an image space R1, the relation: 

 

(7)      L1 = L +  (B) –  (A) 
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will exist between the optical lengths L and L1 of an arbitrary curve  that lies tangentially in the 

field of the instrument and its image 1, resp., in which  (A) and  (B) mean the optical distances 

from the endpoints A and B of  to the endpoints A1 and B1 of 1 . 

 

 

 8. – The theorem that we have in mind will then be proved when we succeed in showing that 

 (A) =  (B). 

 In regard to that, we remark that the optical lengths L and L1 of  (1, resp.) can be represented 

by integrals along those curves. We can then write: 

 

(8)      L  = ( , , , , , )F x y z x y z dt


 , 

 

(9)      L1 = 

1

1 ( , , , , , )F x y z x y z dt


 . 

 

 In them, the two curves  and 1 are represented with the help of a parameter t, and the functions 

F and F1 are homogeneous of order one in x , y , z  ( 1x , 1y , 1z , resp.). That last condition is 

known to have the consequence that the values of the integrals (8) and (9) are independent of the 

choice of parameter t. The two functions F and F1 can then be completely different from each 

other. From our assumptions, e.g., the object space R can very well be crystalline, while the image 

space R1 is isotropic. 

 The (stigmatic) map of the two spaces R and R1 to each other can now be represented by the 

relations: 

 

(10)   x1 =  (x, y, z) , y1 =  (x, y, z) , z1 =  (x, y, z) . 

 

If one sets: 

(11)     
d

dt


 = x y z

x y z

    
+ +

  
, 

 

with similar equations for d / dt and d / dt, and introduces the notation: 

 

(12)    ( , , , , , )x y z x y z  = 1 , , , , ,
d d d

F
dt dt dt

  
  

 
 
 

 , 

 

then one can replace the curve integral (9) over 1 with a curve integral over  and write: 

 

(13)     L1 = ( , , , , , )x y z x y z dt


 , 
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instead of (9). 

 With the help of (8) and (13), equation (7) will then assume the form: 

 

( )F dt


 −  =  (B) –  (A) . 

 

  However, the last equation means that the value of a curve integral over ( – F) depends upon 

only the endpoints A, B, but not upon the form of the curve . Indeed, the curve  is not arbitrary: 

It must lie tangentially in the field of the instrument. However, that will in no way prevent us from 

concluding that the first variation of the curve integral over ( – F) must vanish identically and 

that the expression ( – F) will itself be the complete differential of a function  (x, y, z) then. We 

can then write: 

 

(14)      – F = 
x y zx y z  + +  . 

 

 

 9. – If the medium of the object space R is isotropic then the function F will possess the form: 

 

(15)    ( , , , , , )F x y z x y z  = 2 2 2( , , )f x y z x y z+ + . 

 

In this case, the equation F = 1 represents a sphere in the space of x , y , z  for fixed x, y, z. If R 

is crystalline then one must replace the function (15) with a more complicated one, in such a way 

that the Fresnel ray surface can be represented by the equation F = 1 in the space of x , y , z  (1). 

However, in all cases, we have the relation: 

 

(16)    ( , , , , , )F x y z x y z− − −  = ( , , , , , )F x y z x y z  . 

 

 [The relation (16) would no longer be true only when the object space R was found to be under 

the influence of an appreciable magnetic field.] 

 In exactly the same way, we can assume that the same identity also exists for the function F1. 

However, from equations (10), (11), and (12), we can then write: 

 

(17)    ( , , , , , )x y z x y z − − −  = ( , , , , , )x y z x y z  . 

 

 If we then replace the quantities x , y , z  with − x , − y , − z  in (14) then, due to (16) and 

(17), we will get: 

 – F = − ( )x y zx y z  + + , 

 

 
 (1) See, e.g., P. Drude, Lehrbuch der Optik, Leipzig, Hirzel, 1900, pp. 303.  
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and upon comparing the last equation with (14), we will get: 

 

(18)       = F . 

 

 It follows from the latter equation that the optical lengths of the two curves are equal to each 

other for not only the curves  that lie tangentially in the field, but also for any curve C at all that 

possesses an image C1 : 

 

 Theorem 2: 

 

 For any absolute optical instrument, the optical length of a curve C whose points lie in the 

field of the instrument is equal to that of its image. 

 

 However, that is the generalization of the theorem of Hamilton-Bruns-Klein that we have in 

mind. 

 

 

 10. The stigmatic map of surfaces. – We would like to say of a two-dimensional piece S that 

it lies tangentially in the field of an instrument J when one can lay at least one light ray through 

every point P of S that first of all contacts the surface S and secondly goes through the instrument 

J. 

 We would now like to assume that J is not actually an absolute instrument, but that every point 

of the surface element S possesses a sharp point-like image. Now, let  be an arbitrary curve 

segment that first of all lies on S and secondly lies tangentially in the field of our instrument. We 

let A, B denote the endpoints of , while L denotes the optical length of that curve segment, and L1 

denotes the optical length of its image. Precisely as in § 7, we can then prove that the following 

equation exists: 

L1 = L +  (B) –  (A) . 

 

 One can express the map between S and its image S1 by saying that one can represent S and S1 

with the help of two parameters u, v in such a way that a point P of S and its image P1 on S1 will 

correspond to the same point in the parameter plane of u, v. The curve segments  and 1 will then 

correspond to the same curve C in the uv-plane, and the optical lengths of those curve segments 

can be represented by curve integrals along C. We can then write: 

 

L = ( , , , )
C

u v u v dt ,  L1 = 
1 ( , , , )

C

u v u v dt  . 

 

 We can now conclude, as in § 8, that ( − 1) is a complete differential, so it has the form 

( )u vu v + . It will then follow once more from: 
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1 1

( , , , ) ( , , , ) ,

( , , , ) ( , , , )

u v u v u v u v

u v u v u v u v

 − − = 


 − − = 
 

 

that  = 1 . In other words, we have the: 

 

 Theorem 3: 

 

 If a surface patch S that lies tangentially in the field of an instrument J is mapped point-by-

point to a surface patch S1 in the image space then any arbitrary curve on S will have the same 

optical length as its image on S1. The two surface patches S and S1 can then be developed 

(optically) into each other. 

 

 

 11. – That last result, which seems to be new, is all the more remarkable because it is entirely 

linked with the condition that S lies tangentially in the field of J. Namely, it has been known for a 

long time (1) that one can connect the rays of the object space with the rays in image space in such 

a way that first of all the Malus condition is satisfied and secondly that two given surfaces (that 

do not, however, lie tangentially in the field) will be mapped to each other in an entirely arbitrary, 

but stigmatic way. It is therefore necessary to investigate the basis for that apparent discrepancy. 

In that way, for greater clarity, we would then like to assume that the image and object spaces are 

homogeneous and isotropic. 

 We once more let S and S1 denote the two surfaces that are to be mapped stigmatically to each 

other and define that map itself when we, in turn, establish that every point inside of a certain 

region in the uv-plane will be associated with two corresponding points S and S1 . 

 Therefore, we assume that a light ray goes through the point (19) in the object space and defines 

direction cosines p, q, r with the positive axes, and that after it goes through the instrument, it will 

go to a ray in the image space that includes the point (20) and subtends the direction cosines p1, 

q1, r1 with the positive axes of an axis-cross in image space. In that way, the quantities p1, q1, r1 

will be functions of p, q, r, u, v that can be calculated explicitly with the help of Malus’s theorem, 

which has been known for a long time. 

 

 

 12. – To that end, we let  (u, v) denote the optical distance from the point (19) of S to its 

image point (20) and let n (n1, resp.) denote the indices of refraction in the two spaces R and R1 . 

We further consider the two points: 

 

(21)   X = x +   p ,  Y = y +   q ,  Z = z +   r , 

 

 
 (1) See, e.g., Bruns, loc. cit., pp. 371-375. Indeed, E. Abbe has occasionally asserted that a stigmatic map of two 

surface segments to each other is only approximately possible (Ges. Abh., Bd. 1, pp. 216), but already in 1890, M. 

Thiessen aptly remarked that Abbe’s assertion will arise from switching the two different angles [Berl. Sitz. 2 (1890), 

pp. 812]. 
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(22)    X1 = x1 + 1 p1 , Y1 = y1 + 1 q1 , Z1 = z1 + 1 r1 

 

on a light ray that goes through the instrument, in which  and 1 mean two parameters. The optical 

distance  between the two points (21) and (22), the first of which lies in object space and the 

second of which lies in image space, is now given by the equation: 

 

(23)      =  (u, v) + n1 1 – n  . 

 

 We shall now replace p, q, r,  with arbitrary functions of u and v and determine 1 by the 

condition that the quantity  in (23) should be a constant. The coordinates of the points (21) and 

(22) will then be certain functions of u, v, and those points themselves will describe certain surfaces 

F and F1 . Malus’s theorem now says that whenever the functions of u, v that we have replaced p, 

q, r,  with have the property that the normals to F at each point possess the components p, q, r, at 

the same time, the normals to 1 must have the components p1, q1, r1. In other words, the relation 

that  p1 dX1 = 0 must follow from  p dX = 0 . 

 Now, when one considers the relations: 

 

(24)   2 2 2p q r+ +  = 1  and  p dp + q dq + r dr = 0 , 

 

one will get: 

pdX  = 2pdx pdp d p + +    = pdx d+ . 

 

 The condition that  p dX = 0 is then equivalent to the relation: 

 

d = − (p dx + q dy + r dz) , 

 

and one will likewise find that the condition  p1 dX1 = 0 is equivalent to the relation: 

 

d = − (p dx + q dy + r dz) . 

 

 Finally, when one sets  = const., it will follow from (23) that: 

 

d + n1 d1 – n d = 0 . 

 

 Malus’s theorem is then equivalent to the following relation: 

 

n1 (p1 dx1 + q1 dy1 + r1 dz1) = n (p dx + q dy + r dz) + d . 

 

 However, that equation is only an abbreviation for the following two: 
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(25)  

1 1 1
1 1 1 1

1 1 1
1 1 1 1

,

,

x y z x y z
n p q r n p q r

u u u u u u u

x y z x y z
n p q r n p q r

v v v v v v v





          
+ + = + + +  

         


          + + = + + +           

 

 

and together with: 

 

(26)     2 2 2

1 1 1p q r+ +  = 1 , 

 

they will allow us to calculate the quantities p1, q1, r1 as functions of p, q, r, u, v. 

 

 

 13. – In order to grasp the geometric consequences of equations (25), we would like to choose 

the parameters u, v and the two axis-crosses x, y, z and x1, y1, z1 in such a way that those equations 

will take on the simplest-possible form for a certain pair of corresponding points. In regard to that, 

we remark that it is known that two mutually-perpendicular line elements can be found at each 

point A of S that will be mapped to mutually-orthogonal line elements of S1 . We can then assume 

from the outset, with no loss of generality, that the parameter curves u = const. and v = const. 

intersect perpendicularly on both the surfaces S and S1 . With that, we can choose the x and y-axes 

to be parallel to the directions of the two parameter curves at a point A of S and assume that the 

axis-cross of x1, y1, z1 has a corresponding position with respect to the parameters of S1 at the image 

point A1 of A. The eight quantities: 

 

y

u




, 

z

u




, 

x

v




, 

z

v




, 1y

u




, 1z

u




, 1x

v




, 1z

v




 

 

will then vanish in (25), and those equations will assume the simple form: 

 

(27)     p1 = p + a ,   q1 = q + b . 

 

 One easily convinces oneself that the parameters ,  mean the magnification ratios of the two 

surfaces (as measured in light time) in the directions of the curves v = const. (u = const., resp.) and 

that a and b are proportional to the first derivatives of  (u, v). 

 

 

 14. – Equations (27) make it very easy for one to exhibit the conditions for the rays in the 

object and image spaces that correspond to each other to be real. Namely, in order for the ray with 

the direction components p1, q1, r1 to be real, equation (26) must be fulfilled, from which it will 

follow that 2 2

1 1p q+  < 1, or due to (27): 
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(28)     
2 2

2 2

( ) ( )p a q b

 

+ +
+  < 1 . 

One likewise finds that one must have: 

 

(29)      2 2p q+  < 1 . 

 

 The instrument in question will then allow light rays to pass through at best when the ellipse 

in the pq-plane whose surface is defined by (28) has interior points in common with the circle (29). 

 

 The light rays that go through the instrument and simultaneously contact both surfaces S and 

S1 at the mutually-corresponding points A and A1 are associated with points in the pq-plane that 

simultaneously lie on the boundaries of the surface patches (28) and (29). Thus, whenever one 

does have a = b = 0 and  =  = 1 simultaneously, there will be only at most four such rays. 

However, it can happen that no rays of that sort exist. 

 For a pair of conjugate aplanatic points on the axis of a rotationally-symmetric instrument, e.g., 

due to symmetry, the two ovals (28) and (29) must be concentric circles that therefore possess no 

real point of intersection. In that case, one must have: a = b = 0 and  =   1. In place of equations 

(27), one will then have: 

 

(30)      p1 = p ,  q1 = q , 

 

i.e., equations from which the famous sine law of E. Abbe will follow immediately. 

 

 

 15. – We are now in a position to completely comprehend the connection between our Theorem 

3 and the known results on the stigmatic maps between two surfaces S and S1. Namely, if S lies 

tangentially in the field of the instrument (§ 9) then there will be infinitely-many rays through any 

point A of S that simultaneously contact S and S1 . From the previous section, the ellipse (28) must 

be identical to the unit circle (29) then, from which it will follow that a = b = 0 and  =  = 1. 

 Consistent with the result in § 10, one infers that the derivatives u and v vanish and that 

( , )u v  =  (A) is constant. However, the second condition  =  = 1 says that the magnification 

ratio, as measured in light time, is equal to one for two mutually-perpendicular directions, and 

therefore for any possible direction. However, with that we have once more proved Theorem 3 for 

isotropic and homogeneous object and image spaces with the help of the theory of the eikonal. 

 

 

 16. The stigmatic map of isotropic spaces. – Under the assumption that the two media in 

object space R and image space R1 are isotropic, but not necessarily homogeneous, Theorem 2 of 

§ 9 will lead to some remarkable consequences. Namely, if one lets f (x, y, z) and f1 (x1, y1, z1) 

denote the indices of refraction of the two spaces at two points that correspond to each other by 
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means of the stigmatic map, as in § 9, and lets ds and ds1 denote two corresponding line elements 

of R and R1 at those same points then it will follow from our mapping theorem that: 

 

f1 (x1, y1, z1) ds1 = f (x, y, z) ds . 

 

 The ratio ds1 : ds of the line elements that get mapped to each other is then independent of their 

directions at each point, from which it will follow with no further analysis that the stigmatic map 

of two spaces to each other must be conformal. 

 Now, there is a known theorem of differential geometry that was first found and proved by 

Liouville (1), according to which every conformal map between three-dimensional regions will be 

identical to either a collineation that transforms every figure into a similar one or a transformation 

by reciprocal radii or a transformation that is composed of the two. We then have the: 

 

 Theorem 4: 

 

 Any stigmatic map of two isotropic spaces to each other that is produced by an absolute optical 

instrument is either a similarity transformation or a transformation by reciprocal radii or a 

transformation that can be represented by a transformation by reciprocal radii, followed by a 

similarity transformation. 

 

 

 17. – The Maxwell fisheye (§§ 3 and 4) is an example of a stigmatic map, as would follow 

from the last theorem. One can easily show that the map of space to itself that is accomplished by 

the fisheye is the only map for which every point in the space at infinity R (with the exception of 

the center O) possesses a single sharp image. That is because among the transformations that were 

enumerated in Theorem 4, there are no other ones that are involutory (i.e., under which the image 

of A1 is, in turn, A), and possess no double points. 

 However, it would be a mistake for one to conclude from that alone that the law for the index 

of refraction that produces such a stigmatic map must necessarily satisfy equation (1) of § 3. 

Namely, from the form of the map of space to itself, one can only conclude that the light rays must 

be closed curves that are transformed into themselves by the stated map, but not, as one might 

imagine, be able to conclude that the index of refraction (1) of § 3 is the only one for which all of 

space will be mapped stigmatically to itself. The “fisheye problem” is the adaptation to three-

dimensional space of a question that W. Blaschke had posed for closed surfaces, but which has 

still not been answered (2). 

 

 

 18. – When one observes that the image of a light ray that lies in the field of the instrument 

coincides with an elongation of the light ray itself, one will see that due to Theorem 4, the light 

 
 (1) Note VI in the 5th edition of Monge Feuilles d’Analyse appliquées à la géomtérie, Paris, 1850, that Liouville 

edited. See also F. Klein, Einleitung in die höhere Geometrie, autogr. lectures, Göttingen 1892-93, pp. 378, et seq. 

 (2) W. Blaschke, Vorlesungen über Differentialgeometrie, I, Berlin, Springer, 1921, 1st ed., § 86, pp. 155-158.  
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rays on image space must be circles of straight lines when the light rays in object space have that 

property. An application of that argument is the following one: 

 One assumes that object space is homogeneous and isotropic, as usual. However, one can try 

to enforce a stigmatic map in such a way that one assumes that the image space is isotropic but has 

a varying index of refraction. The following theorem shows how little there is to be gained by that, 

and it follows immediately from the foregoing arguments and the properties of the transformation 

by reciprocal radii that: 

 

 Theorem 5: 

 

 If the object space is homogeneous and isotropic then in order for a stigmatic map to be 

possible at all, it is necessary that the image space either has the same property or it exhibits a 

distribution of refractive power such that all light rays that go through it have the form of circles 

that all go through one and the same point in space. 

 

 

 19. Application to the calculus of variations. – It is almost self-evident that the proofs in §§ 

7-10 can be adapted directly to arbitrary symmetric variational problems in spaces of arbitrarily-

many dimensions. In that, we are calling a variational problem symmetric when the value of the 

curve integral: 

( , )i iF x x dt  

 

is independent of the sense in which one performs the integration over the given curve, which will 

be the case if and only if the relation: 

( , )i iF x x−  = ( , )i iF x x  

exists identically. 

 In order to adapt our theorems, we must assume that we have two “mutually-coupled” 

variational problems, i.e., that we know a canonical transformation between the canonical 

variables of the two variational problems under which one of those variational problems will go to 

the other one (1). 

 It is known that the extremals of the two variational problems will be in one-to-one 

correspondence with each other under that coupling. Now, if the extremals in the first problem that 

go through a point A in space R go to extremals in the second problem that all cross at one and the 

same point A1 in the space R1 under that association, and if that will always be the case as long as 

A is found on a two-dimensional surface S that lies “tangentially to the field of the coupling” then 

all of the assumptions will be fulfilled that it takes to prove a theorem that is so completely 

analogous to our Theorem 3 in § 10 that we do not need to even state it. 

 
 (1) See, e.g., Riemann-Weber, Differential- und Integralgleichungen der Mechanik und Physik, 7th ed., 

Braunschweig, Vieweg, 1925, pp. 198. 



Carathéodory – Absolute optical instruments and the calculus of variations.  15 

 

 Similar theorems also seem to be true when one considers coupled symmetric variational 

problems with differential equations as auxiliary conditions. However, the relationships in that 

case are more complicated, and for that reason, I shall be content to merely suggest that possibility. 

 

____________ 

 

 


