
“Über die Enveloppen der Extremalen eines Feldes in mehrdimensionalen Räume,” Bull. Soc. Math. Hellen. 4 (1923), 

23-31. 

 

 

On the envelopes of the extremals of a field  

in a multidimensional space 
 

By C. CARATHÉODORY (in Athens) 

 

Translated by D. H. Delphenich 

_________ 

 

 

 1. – If a variational problem that belongs to the function: 

 

(1)       ( , , )i if x x t    (i = 1, 2, …, n) 

 

is given in an (n + 1)-dimensional space whose coordinates might be denoted by x1, …, xn, t then 

it is known that not every n-parameter family of extremals will define a field, but certain conditions 

must be fulfilled that have as a consequence the fact that the extremals of the field must intersect 

a one-parameter family of n-dimensional surfaces transversally, as they must from the definition 

of a field. 

 From a theorem that includes the generalization of a famous discovery by Malus in geometrical 

optics (1808), and for that reason can also be given the name of that author, in order for that 

condition to be fulfilled in all of space, it is sufficient that they should be fulfilled on an n-

dimensional surface in Rn+1 that intersects our n-parameter family of extremals, but nowhere 

contacts it. 

 In what follows, we will exhibit the condition that must be fulfilled on an n-dimensional surface 

 (xi, t) = 0 that contacts an extremal of our family at each of its points in order for those extremals 

to define a field. The theorem that we have in mind is already known in one case: 

 Namely, in the theory of surfaces, one shows that a two-parameter family of lines can define 

the normal congruence to a family of surfaces if and only if it contacts one, and therefore each, of 

its two focal surfaces along a family of geodetic curves (1). 

 We will now see that in a completely-analogous way, the extremals of our family will define a 

field if and only if their envelope on the surface  = 0 represents a field of extremals of the 

variational problem that arises from our original variational problem by adjoining the auxiliary 

condition that  = 0. 

 

 

 
 (1) Darboux, Théorie des Surfaces, § 441 (t. II, pp. 263).  
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 2. – As geometrically trivial as that theorem might seem in the calculus of variations, its proof 

will still lead to some quite non-obvious calculations when one does not go to work with sufficient 

care. 

 We will appeal to an algorithm that I have described in a chapter on the calculus of variations 

in the soon-to-appear new edition of Riemann-Weber’s Partiellen Differentialgleichungen der 

Physik (Braunschweig, Vieweg) that was edited by von Mises, and for that reason, I will treat it 

only briefly here. 

 

 

 3. – We first introduce canonical variables into our variational problem by the equations: 

 

(2)     yi = 
ixf , H (xi, yi, t) = −

1

n

i i

i

f x y
=

+ . 

 

An arbitrary family of curves that simply cover a region in our Rn+1 can be represented most simply 

by a system of differential equations: 

 

(3)     ix  = i (xj, t)  (i, j = 1, …, n) . 

 

We now introduce the functions of position: 

 

(4)  (i) = ( , , )
ix j jf x t ,  (t) = − H (xi, (i), t) 

 

(i, j = 1, 2, …, n), 

 

which can serve to define our family of curves in their own right, just like the functions i . For 

that reason, they shall be called the canonical coordinates of the family of curves. 

 One can express the condition for our family of curves to define a field of extremals for our 

problem by saying that one postulates the existence of a function S (xi, t) that satisfies the 

equations: 

 

(5)     
ixS  = (i) , St = (t)  (i = 1, 2, …, n). 

 

Namely, it follows from those equations, first of all, that the function S satisfies the Jacobi-

Hamilton partial differential equation: 

 

( , , )
it i xS H x S t+  = 0 , 

 

and secondly, that the family of surfaces S = const. is intersected transversally by our curves. 

 If one then introduces the notations: 
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(6)    [i j] = 
( ) ( )

j i

i j

x x

 
−

 
 and [i t] = − [t i] = 

( ) ( )

i

i t

t x

 
−

 
 

 

then equations (5) will show that our family of curves defines a field of extremals if and only if the 

square brackets [i j] and [i t] mean functions that all vanish identically. 

 Upon differentiating and considering the equations above, one will further find the identity: 

 

ii xy H+  = 
1

[ ] [ ]
n

j

j

i j x i t
=

+  , 

 

which is fulfilled by any arbitrary family of curves. It follows from this that the necessary and 

sufficient condition for our family of curves to consist of nothing but extremals can be expressed 

by the equations: 

(7)      
1

[ ] [ ]
n

j

j

i j x i t
=

+  = 0  (i = 1, 2, …, n). 

 

The ix  in it are calculated from equations (3). One can also calculate ix  with the help of the 

functions (i), since it follows with the help of (2), (3), and (4) that: 

 

ix  = ( ,( ), )
iy jH x i t  . 

 

 

 4. – Naturally, as long as n > 1, equations (7) can all be fulfilled without all of the square 

brackets vanishing. The fact that not every family of extremals defines a field that was mentioned 

in the introduction will follows from that. 

 Now, in order to prove Malus’s theorem, we assume that equations (7) all exist and then remark 

that from the definition (6) of our square brackets, the identity: 

 

(8)      [k t]t + [t j]k + [j k]t = 0 

 

will likewise exist. Now, it follows from (7) that: 

 

[k t] = [ ] i

i

i k x , 

[t j] = [ ] i

i

j i x , 

and one will then have: 

 

[k t]t + [t j]k = 
1

([ ] [ ] ) [ ] [ ]
n

i i
k j i

i j k

x x
j i ik x i k j i

x x=

 
+ + +
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  = 
1

[ ] [ ] [ ]
n

i i
i i

i j k

x x
j k x ik j i

x x=

 
+ +

 
 . 

 

 When we now, on the one hand, employ equation (8), but on the other hand remark that the 

derivatives of [j k] along an extremal of our family can be written: 

 

[ ]d j k

dt
 = 

1

[ ] [ ]
n

i i t

i

j k x j k
=

+  

then we will finally obtain: 

(9)  
[ ]d j k

dt
 = [ ] [ ]i i

i j k

x x
k i i j

x x

 
+

 
 . 

 

 The n (n – 1) / 2 square brackets [j k] then satisfy a system of linear homogeneous first-order 

differential equations along each extremal and must vanish along the entire extremal when they 

are all zero at one point of that extremal. 

 If all [j k] vanish on a surface  = 0 that intersects our family of extremals then they must be 

zero in the entire region of space that is covered by our family of curves, and due to (7), all [j t] 

will vanish. We then have the theorem: 

 

 In order for a family of extremals that intersect a surface  (x1, …, xn, t) = 0 to define a field, 

it is necessary and sufficient that the n (n – 1) / 2 square brackets [i j] must vanish on that surface. 

 

 

 5. – The condition that the family of extremals in question should intersect the surface  = 0 

is necessary: If that surface were a focal surface of the family of curves then, in general, the 

extremals would lie on one side of  = 0, and one could not define all of the [i j] on  = 0 at all. 

 We would now like to reduce the case in which  = 0 is a focal surface of our family of 

extremals to the previous case in which the family of extremals intersects the surface  by a trick. 

 In so doing, we would like to assume that the focal surface  = 0 coincides with the plane xn 

= 0. That will imply no loss of generality since we can always transform any arbitrary focal surface 

into the plane xn = 0 by introducing curvilinear coordinates. 

 From now on, the indices i, j, etc., shall run from only 1 to (n – 1), and in place of the function 

(i), we would then like to write: 

 

(10) 1 1( , , ; , , )n nf x x t x x  . 

 

 

 6. – Now let an n-parameter family of curves be given that contacts the plane xn = 0. If one 

denotes the coordinates of a point of contact with a curve of the family by 0

ix , 0t  then one can 

represent the curves of our family by the following equations: 
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(11)    t = 0t  +  , 

 

(12)    xi = 0 0 0( , , )i i jx x t +  , 

 

(13)    xn = 0 0 0 0( , )(1 ( , , ))p

j jx t x t   +  

 

p  2 ,  i, j = 1, 2, …, (n – 1),  0 0( , )jx t   0 . 

 

 The  in that means the curve parameter, and we have assumed that the contact has order p. 

 For the sake of simplicity, we assume that the functions t, , ,  that enter into our equations 

are all analytic. 

 If we substitute the values (11) and (12) for t and xi, resp., in the functions  (xi, t) and consider 

the fact that   0 then we will get an equation of the form: 

 

(14)     (xi, t) = 0 0 0 0( , )(1 ( , , ))i jx t x t  +  . 

 

 

 7. – We now introduce a new variable v by the equation: 

 

(15)     xn = ( , )p

iv x t  . 

 

With the help of (13), (14), and (15), we will then get: 

 

vp = 
0 0

0 0

(1 ( , , ))

(1 ( , , ))

p i

i

x t

x t

 


 

+

+
 , 

 

and we infer from this upon taking the 
thp  root that: 

 

(16)     v = 0 0(1 ( , , ))jx t  + . 

 

 The system of equations (11), (12), and (16) represents our family of curves in the transformed 

space of xi , t, v . We see that the curves of family do not contact the plane v = 0 and are regular at 

the points where they intersect that plane. 

 

 

 8. – We shall denote the transform of the function (10) after the new coordinate v is introduced 

by ( , , , , )i if x v t x v . Since it follows from (15) that: 
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(17)    

1 ,

,

p p

n

xi i t

i

x pv v v

x

 

  

− = +

 = +



 

we can write: 

 

(18)    f  = 1( , , ; ,( ))p p p

i if x v t x pv v v  − +  . 

 

 If we let ( )i , ( )v , and ( )t  denote canonical coordinates of our family of curves in the 

coordinates, as in § 3, and let (i), (n), (t) denote the canonical coordinates of the same family of 

curves for the original problem then we can infer from (18), while recalling equations (4), that: 

 

(19)     ( )i  = (i) + ( )
i

p

xn v   , 

 

(20) ( )v  = 1( ) pn p v − . 

 

 Now, in order to calculate ( )t  in the same way, we remark that when we employ equations (2) 

and (4), it will follow from f  = f that: 

 

( ) ( ) ( )i

i

t i x v v+ +  = ( ) ( ) ( )i n

i

t i x n x+ +  . 

 

With the help of (17), (19), and (20), we will then find that: 

 

(21) ( )t  = (t) + ( ) p

tn v  . 

 

 

 9. – We can now likewise calculate the square brackets that we introduced in § 3 in the new 

variables. Namely, when we partially differentiate equation (19) with respect to xj and consider 

(15), it will follow that: 

 

(22)    ( ) ji  = ( ) ( ) ( )
j i

p p

j v x j xi i v n v + + +  

 

We have not written out the terms that are symmetric in i and j in that. If we switch i and j in that 

last equation and subtract the equation that is obtained in that way from (22) then that will give: 

 

(23)    [ ]i j  = [ ] ( )
j i

p p

x j xi j v n v + + +  

 

 We obtain the relation: 
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(23)    [ ]i t  = [ ] ([ ] [ ] )
j

p

x t xi t v i n nt  + + +  

 

in a completely-analogous way. In the same way, (19) and (20) [(20) and (21), resp.] imply the 

equations: 

 

(25)     [ ]i v  = 1 [ ]pp v i n−  , 

 

(26)     [ ]vt  = 1 [ ]pp v nt−  . 

 

 

 10. – It follows from equations (23) – (26) then every field of extremals of our original problem 

will again correspond to a field of extremals of our transformed problem, but it is also immediately 

clear that families of extremals can likewise be transformed into such things completely 

independently of whether they do or do not define a field. One can also easily confirm that by 

calculation when one forms the expression that are analogous to the expressions on the left-hand 

side of (7). Namely, it will follow from the latter equations when one recalls equations (17) that: 

 

(27)  
1

1

[ ] [ ] [ ]
n

j

j

i j x i v v i t
−

=

+ +  = 
1 1

1 1

[ ] [ ] [ ] [ ] [ ]
i

n n
p

j n x j

i i

i j x i n x i t v n j x nt
− −

= =

 
+ + + + 

 
   , 

 

(28) 
1

1

[ ] [ ]
n

j

j

v j x vt
−

=

+  = 
1

1

1

[ ] [ ]
n

p

j

i

p v n j x nt
−

−

=

 
+ 

 
  . 

 

 

 11. – From the remark at the end of § 7, our functions ( )i , ( )v , ( )t , and therefore the functions 

[ ]i j , [ ]i t , [ ]i v , and [ ]vt , as well, are regular on the plane v = 0, which corresponds to the focal 

surface xn = 0 of our family of curves. Equations (25) and (26) show that this does not need to be 

the case, as opposed to what is true for the functions [i n] and [n t]. However, when we calculate 

the latter quantities from (25) and (26) and substitute them in (23) and (24) then we will get: 

 

(29)   [i j] = [ ] ([ ] [ ] )
j jx x

v
i j i v v j

p
 


+ +


 , 

 

(30)   [i j] = [ ] ([ ] [ ] )
it x

v
i t i v v t

p
 


+ +


 . 

 

 We then see that the quantities [i j] and [i t] are regular for not only v = 0, but also the fact that 

equations [i j] = [ ]i j  and [i t] = [ ]i t  are true on that plane. 
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 12. – Thus, if the family of curves that is represented by equations (11) to (13) defines a field 

of extremals then the functions [i j], [i t] must also vanish for xn = 0. 

  Conversely, we now assume that our family of curves consists of nothing but extremals and 

that the equations: 

 

(31)   [i j] = 0 , [i t] = 0 (i, j = 1, 2, …, n – 1) 

 

are true for xn = 0. It will then follow from equations (29) and (30) that the quantities [ ]i j  and [ ]i t

likewise vanish for v = 0. It will further follow from (17) that the left-hand side of that equation is 

zero and from (16) and (11) that we always have v  = 1 for v = 0. We then see that for v = 0, we 

must have [ ]i v  = 0 for those functions. However, from Malus’s theorem (§ 4), our family of 

extremals must then define a field in the transformed problem, and therefore also on the original 

problem. 

 We then have the result that: 

 

 A family of extremals that possesses the plane xn = 0 as a focal surface will define a field if and 

only if equations (31) are all true for xn = 0. 

 

 

 13. – We shall now examine the variational problem that arises when we set xn = 0 in (10) (and 

naturally also set nx  = 0), and remark that the canonical coordinates of a line element for the new 

problem will be the same as the canonical coordinates of the same line element for our original 

problem when we merely subtract (n) from the coordinates. Namely, if we set: 

 

( , ; )i ix t x  = ( ,0, ; ,0)i if x t x  

 

then we will not only have that the equation ix  = 
ixt  is true for every i, but also that: 

 

 = 
1

1
i

n

x i

i

x
−

=

  = 
1

1
i n

n

x i x n

i

f f x f x
−

=

− −  , 

 

since nx  = 0 here. It then follows from this that the condition (31) says simply that the envelope 

of our family of curves (11) – (13) [i.e., the integral curves of the system of differential equations 

ix  = i (xj, t, 0)] that is found on the plane xn = 0 defines a field of extremals of the variational 

problem that corresponds to the functions ( , , )i ix t x  on the plane xn = 0 . 

 With that, the assertion that was expressed at the end of § 1 is proved. 

 

 

 14. – The theorem that was just proved gives a means for constructing a field of extremals in 

the space of x1, …, xn, t that has the given surface  = 0 for its focal surface. One must next 
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construct an arbitrary field  of extremals of the variational problem that arises from the original 

problem by adjoining the auxiliary condition  = 0 on that surface  = 0 and then consider the 

extremals in Rn+1 that contact the curves of . 

 

__________ 

 

 

 

 

 

 

 

 

 


