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Foreword.

This booklet contains that part of geometrical optluat tcan be regarded as an
immediate consequence of the principles of FERMAT and’&@BNS. The description
of the ray map in the first approximation may be infdtyneategrated with the general
theory, and for that reason, it will likewise be adesed. By comparison, | have left
aside the theory of optical errors of third order, uponctvtihe calculation of optical
instruments rests, because | was forced to choosech taa scant presentation for the
foundations of ray optics. This sacrifice was, howgaéleviated for me by the fact that
precisely those things had been treated in a classical aviéong time ago by K.
SCHWARZSCHILD (see footnote 59, pp. 39). In addition, bnds them in all of the
books that are dedicated to geometrical optics, and thase atl, in the following two
works: CZAPSKI-EPPENSTEINGrundziige der Theorie optischer Instrume®éed.,
issued by H. ERFLE and H. BOERGEHOLD, and M. HERZBERGERahlenoptik
Since these books include very thorough and almost flavbiediographies, | can restrict
myself to just the most necessary ones in my owereates.

| am indebted to G. PRANGE, who corrected this booktat,numerous essential
improvements that | cannot detail individually. My tha@lkso go out for the editors of
the “Ergebnisse” and the publishers, for accommodating allyowishes.

October 1937
C. CARATHEODORY.
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Introduction

With the onset of the Nineteenth century, a viewgebmetrical optics began to
prevail that had already been initiated by CHR. HUYGENS20-1695) (cf.,infra,
footnote 37), but was then completely forgotten. Uhini, one had to content oneself
with treating the validity of the ray refraction ihet first approximation on the axis of a
rotationally-symmetric system’)( but now one turns to the posing of more general
guestions. In the year 1808, E. L. MALUS (1775-1812) stated theré¢m that a
stigmatic light bundle, after reflection or refrasti from a curved surface, would be
converted into a normal congruenée (MALUS was of the opinion that this theorem
was true only for stigmatic light bundles, and therefwhen light rays passed through an
instrument it would only apply to the first reflectionrefraction. However, the theorem
generally extends to arbitrary normal congruences; ths @stablished for the case of
reflection by CH. DUPIN (1784-1873) in the year 1816 and forctse of refraction by
L. A. J. QUETELET (1796-1874) in the year 1825, and almost samebusly by J. D.
GERGONNE (1771-1859J

From the extended theorem of MALUS, the law of mpping can be achieved for
an arbitrary optical instrument, when one ignores alaiityi transformation (cf., § 27).
This path is, however, very tedious and really only autetdNonetheless, it was still
used occasionally and in remarkable ways for a long titee #fe discovery of a direct
path (cf., BRUNS, footnote 18).

The natural approach to the theory of geometricatsmi its full generality was first
found by Sir WILLIAM ROWAN HAMILTON (1805-1865)9). HAMILTON himself
already had been interested in optical problems for thigears. However, should this
folklore itself seem to be only a legend, it is therefsufficiently amazing that before his
entrance into Trinity College of Dublin (July, 1823) hel ladready done his first work on
caustics {) and before the conclusion of his studies he had pesbdris great work
“Theory of Systems of Rays” to the Irish Academy (IRpt827). This rare gift was,
moreover, immediately recognized by everyone. In #mesyear, before he had time to
get over the final exams, he was made professor ofr@stryg a post that his teacher Dr.
BRINKLEY, who had meanwhile been named the Bishop of/fi, had occupied)(

() Cf., M. HERZBERGER: “Geschichtlicher Abriss deratlenoptik,: Z. Instrumentenkde., Bd. 52
(1932), pp. 429-435. 485-493. and 534-542.

() MALUS, “Optique, Dioptrique,” J. Ecole polytechrv,(1808), pp. 1-44, 84-129 — MALUS, E. L.
“Traité d’optique,” Mém. prés. a I'Institut par diversvan2 (1811), pp. 244-302.

() One finds a detailed history of MALUS'’s theorem ,hnétll of the necessary references, on pp. 463
of theCollected Papers of HAMILTO[$ee footnote 16).

(") One finds the best introduction to HAMILTON'’s ideas & PRANGE: “W. R. HAMILTONs
Arbeiten zur Strahlenoptik und analytischen Mechanik” \MQActa. Abh. Leop. Carol. Deutsche Akad.
d. Naturforscher, Bd. 107, no. 1, pp. 1-35. Also very ussful L. SYNGE: “Hamilton’s method on
Geometrical Optics,” J. Opt. Soc. Am&7,(1937), 75-82.

() This paper was announced for the first time in 1931 utfdettitle of “On Caustics, Part First,
1824;” in hisMathematical Papetsy. 1, pp. 345-363.

() ROBERT PERCIVAL GRAVESLife of Sir W. R. HAMILTON including selections from his pgems
correspondence and miscellaneous writing3.vols. (Dublin, Trinity College 1882-1889, Dublin Univ.
Press, Ser.) F. KLEINVorlesungen uber die Enwicklung der Mathematik im 19. Jahrhur{Bertin,
Springer 1926), Bd. 1, esp., pp. 182 et seq.
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The first youthful labor of HAMILTON on caustics adidy included many of the
ideas that would later make him famous. In the “Thexdr@ystems of Rays,” the first
paper of what would be followed by three significant “Supyats,” we find, above all,
the concept otharacteristic functior("). HAMILTON had the inspiration of regarding
the optical length of a light ray that linked a pointhe object space with a point in the
image space as a function of the positions of thesepomints. HAMILTON had first
seen the true basis for this situation, in generdl8B2 when he derived the properties of
characteristic function on the basis of the forraular the variation of a curve integral
with variable endpoints®(. This formula had been discovered by J. L. LAGRANGE
(1746-1813) ) and L. EULER (1707-1783) had, in turn, written it down forveur
integrals in three-dimensional space whose integrands wempletely general
expressions'f), but neither of the two had treated the subject with gimplicity and
clarity that HAMILTON first invested it with.

A second, extraordinary accomplishment of HAMILTONnhsisted in the fact that,
along with the first characteristic function that leed worked with, he also found three
other functions of the same type, for which the roliggosition coordinates and direction
coordinates were switched with the aid of a so-calleB ERDRE transformation'?).

The affinity between the conception of geometricalioasptas HAMILTON had
founded it, and the treatment of mechanics by the methuats LAGRANGE had
developed in hi¢écanique Analytiques so great that HAMILTON could carry over all
of the methods that he had devised for the theory atadphstruments effortlessly to the
most general problems of mechanit’. (

These latter papers attracted the interest of C..Gladobi (1804-1851), who
immediately realized the advance over LAGRANGE and wpesented the
HAMILTONian theory to greater mathematical publi€)(in a newly-minted form*().
By contrast, the optical works that had defined HAMILT®Btarting point would not be
noticed even once by the specialists outside of Englandtilghe end of the Nineteenth
century ¢°). This was surely connected with the fact that, @ dhe hand, thé&ish
Transactions that included these treatises was hard to obtain outsidengland, but
above all, also the fact that HAMILTON, for whomwé&leas were always erupting, had

() Mathematical Papets. 1, pp. 17.

¢) Ibid., pp. 168.

() See R. WOODHOUSHA Treatise on Isoperimetrical Probleppp. 90, Cambridge, 1810.

(*%) EULER, L:Instit. Calculi Integralis pp. 555, Petersburg, 1770.

() “Third Supplement to an Essay on the Theory of Syste#Rays,” presented to the Irish Academy
in 1832. Mathematical Paperpp. 164-293, esp. pp. 175 and 268.

(*3 HAMILTON, W. R.: “On a General Method in Dynamic$hilos. Trans. Roy. Soc. London 1834,
Pt. 2, pp. 247-308. —“Second Essay on a General Metloghiamics,”ibid., 1835, Pt. 1, pp. 95-144.

(* One finds a complete and very precise presentatiothisfentire historical development in G.
PRANGE: “Die allgemeinen Integrationsmethoden der aisalyen Mechanik,” Enzklop. d. math. Wiss.
mit Einschl. ihrer Anwend, IV, 12 and 13, released D683, Bd. 4/2, pp. 505-804, esp., pp. 593-615.

(Y On the contradiction to the conceptions of JAC@BH HAMILTON, cf., A. W. CONWAY and A.

J. McCONNELL: “On the Determination of Hamilton’sifcipal Function,” Proc. Roy. Irish Acad., 41,
Sect. A (1932), pp. 18-25.

(*®) At the naturalist convention in Halle in 1891, F. KNEgave a talk with the title “Uber neuere
englische Arbeiten zur Mechanik,” in which he notabiyphasized the significance of the papers of
HAMILTON on ray optics. Cf., Jber. Deutsch Math.-grig., Bd. 1 (1891/92) or FELIX KLEIN
Gesammelte mathematische Abhandlun@eh 1, pp 601-602. Berlin, Julius Springer 1922. Despite the
authority of KLEIN, this talk still did not have the diesl effect.
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squeezed so many different things into these paperghihatvere, to some extent, quite
tedious to read.

It is only recently that anyone with an interestay optics has been in a position to
study HAMILTON's treatises comfortably. Above all, ban do this in the monumental
publication of those works, which contain many new ideas were published for the
first time in the manuscript, and which is provided with excellent apparatus of
comments (), or also in German translation by PRANGE, whicHiginguished by his
detailed commentary ).

From the general ignorance of HAMILTON's papers,sitnot surprising that his
results were discovered many more times. Aboveoa must cite the paper of H.
BRUNS (1848-1919), who had the greatest influence on the fulthelopment of ray
optics ¢%). In addition, he provided the inducement for F. KLEtN\steer the attention of
the general scientific world to HAMILTON'’s work in dps (*%. The starting point of
BRUNS is clumsier than HAMILTON'’s original method, daise, starting from
MALUS'’s theorem, he dragged along the entire apparatusOsfH&S LIE’'s (1842-
1899) contact transformations with him. On the other hBR#JNS had an obvious trick
that the esteemed HAMILTON had not thought of, and whiaiplified the theory of the
ray map in two regards. He first simplified it by thetfthat he had the ray system fall
on a screen and then characterized the individual raysday determining data when
they went through the screen. By that means, hedcemploy the eikonals, which
depend upon only four variables, in place of the chainatitefunctions of HAMILTON,
while only one of the four characteristic functiondH#&MILTON could be regarded as a
function of four variables®). One observes that this number of variables cannot be
reduced further, since the ray space is also indeed fo@ndional.

The second simplification that BRUNS had, howewevpluntarily arrived at rests
upon the fact that any individual system of formulas trses from an arbitrarily given
eikonal, and which serves to describe the ray map, carsdx for all possible optical
spaces and any choice of coordinates. By contrastmdpping formulas that were
calculated from a HAMILTON characteristic functiolways belong to a single specific
problem (cf., 8 32 and 64).

One must also consider this result of BRUNS when omagldMike to give a modern
presentation to the HAMILTONian theory after morarnha hundred years has passed.
One must also consider many other things, such as, &g.study of canonical
transformations whose beginnings one admittedly findsAMHLTON himself, but first
experienced its systematic definition at the hand3A€€OBI and S. LIE. It is further

(*®) The Mathematical Papers of Sir William Rowan HamiltGunningham Memoir No. XIII, v. 1,
Geometrical Opticsed. for the Royal Irish Academy by A. W. CONWAY and.JSYNGE, Cambridge
University Press, 1931°4XXVIIl and pp. 534.

() “W. R. Hamiltons Abhandlungen zur Strahlenoptik,” A8k and comments by G. PRANGE,
Leipzig, Akad. Verlagsges., 1933. pp. 429 and comment on pp. 116.

(*¥ BRUNS, H.Das Eikona] Abh. math. phys. Cl. séchs. Akad. Wiss., Bd. 21 (189%9-435.

(*°) KLEIN, F.: “Uber das BRUNsche Eikonal,” Z. Math. thyB., Bd. 46 (1901) or Ges. math. Abh.,
Bd. Il, pp. 603-606.

(*® On this, one confers the polemic between M. HERRBER: “On the Characteristic Function of
HAMILTON, the Eiconal of BRUNS and Their Use in OtitJ. Opt. Soc. Amer26 (1936), 177-180,
and J. L. SYNGE: “HAMILTON'’s Characteristic Functiand BRUNS Eiconal,bid., 27 (1937), 138-
144,
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convenient to derive the main result of HAMILTON, ndynethe equivalence of
FERMAT’s and HUYGENS's principles, by a path that he topposite of the one that
was followed by HAMILTON.

Namely, in place of FERMAT'’s principle, we will talkéJYGENS'’s principle as the
starting point, and show the equivalence of the two tbeaevith the help of CAUCHY'’s
theory of characteristics (1819). This has the advanthge the theorem of the
conservation of the integral invariants of POINCARE a®RTAN, which, as we will
see, not only replaces the celebrated theorem of MLt virtually completes it, will
follow almost by itself. | have, moreover, summatdizmme of these things two years
ago in my book Variationsrechnung und partielle Differentialgleichungen erster
Ordnung(Leipzig, Teubner, 1935), and | will cite that book withootaathor name in
the sequel.

| have treated the ray map with the help of the eik@mal the coupling of the
individual line elements of optical spaceswo problems that are all too easily and all
too often confused in different chapters, in order to clearly separatathrom each
other, and | hope that this will contribute to the tiaaof the presentation. In addition, |
have taken great pains to clarify some points thdtpatih they do not seem to have a
fundamental significance, still do not seem trivialor fhstance, at many times we will
assume that every possible optical ray map is readizimbterms of at least one of the
three remaining eikonals. This supposition is, howevése falthough | have compiled
all ray maps for which this does not pertain, such that omekmows all of the cases for
which a representation of the map by this eikonal ispassible. In this way, one can
verify that this hypothesis is always true, at least,rbtationally-symmetric systems. |
have also considered a term in the eikonals of theter Iaystems that was,
inconceivably, always forgotten.



Chapter |
The principles of FERMAT and HUYGENS

1. The discovery of FERMAT's principle ). Once GALILEO GALILEI (1564-
1642) had invented the telescopia the year 1609, the problem of the true explanation
for the refraction of light was popular topic of the énat attracted the best mindg)(
The first one to correctly describe the laws of refoacby a geometric construction on
the basis of many measurements was WILLEBROD SNELL (1581-162@)ever, the
manuscript of SNELL that HUYGENS could refer to wast laithout a trace, and the
fact that SNELL had discovered the law of refractieas first recognized a century after
his death {%). The discovery of SNELL had no further influenaetbe development of
optics. In the meantime, RENE DESCARTES (1596-1850) hadametred the same
law, and described by a simple mathematical law thanineunced in the year 1637)(
DESCARTES found this formula by an ingenious device, nanvely the aid of the
hypothesis (later proved to be false) that under the chahgelocity that the light
suffers when it passes through a medium, the componéné velocity that is parallel to
the separation surface must remain constant, whilalibelute velocities on both sides of
this surface must have a fixed ratio.

Immediately after the appearance of the book of DAFSTES - i.e., in the same year
1637 — PIERRE FERMAT (1601-1665) attacked the physical foundationtheof
CARTESIAN theory fiercely?{). It created a controversy that lasted a centurycand
still provoke a limited degree of interest to this day.e Weed only to point out that
FERMAT, et al., rejected the theory of DESCARTES] amdeed, with justification, on
the grounds that in it the velocity of light in a demsedium would have to be greater
than that in air.

In the course of time, FERMAT came to the idea ahfiting Dioptrics on aninimum
principle, similar to the one that HERON of ALEXANDRIA (c. 2@0D.) had employed

(*) For the historical details of this chapter, sise £ CARATHEODORY The Beginning of Research

on the Calculus of Variation®siris, v. 2 (1937).
[D.H.D. Not true; this is a popular misconception aboutl€ss]

(** Including JOHANNES KEPLER (1571-1630), who had already ewitiisDioptrik in 1610. (Cf.,
M. CASPAR:Bibliographia Keplerianano. 40, pp. 61. Munich, Beck 1936.)

(? Cf., HUYGENS:Opuscula posthuma. 1, Amstelodami 1728Dioptika, pp. 2.

(*)) In the anonymous worlBiscours | de la Methode | pour bien conduire sa raison, and cheftdaer
verité dans les sciences | Plus | la Dioptrique | les btete| et | la Geometrie | qui sont des essais de cette
Methode— A Leyde | De I'lmprimerie de lan Maire | CIC.IC.CXXX. Avec Privelege.

It was long asserted that DESCARTES knew the resuBNELL and had employed it in his own
investigations without mentioning his predecessor. ds \irst in the source reference of the Dutch
historian D. J. KORTEWEG that it was proved that thisiami is obviously false [see D. J. KORTEWEG:
“Descartes et les manuscrits de Snellius d’'aprés quelques edotuumouveaux,” Rev. Métaphys. et
Morale 4" Année (1896), pp. 489-501]. KORTEWEG had attributed the discovehgedaw of refraction
to DESCARTES rather precisely, and showed that atitie of the manuscript of SNELL, who had died
already, not one of his best friends knew of its ext#eand it was first rediscovered many years later.
Cf., also, E. GERLANDGeschichte der Physipp. 481, Munich, Oldenbourg, 1913.

(*® Cf., the letter to MERSENNE on September 163&uvres de Fermat., pp. 106. Paris, Gauthier-
Villars 1891-1922).



6 Introduction

for the treatment of Catoptics (refractiof§)( During reflection, a light ray remains in
the same medium and it suffices to postulate thabtdmary duration of the light path
must be as short as possible (cf., on this, § 4). ®wdhtrary, under refraction, the light
traverses two different media, and FERMAT now présctithat the duration of the light
ray, when one evaluated it with different velocit@sboth pieces, should generally be a
minimum.

FERMAT had already expressed these thoughts in thel@&at ¢°). At the time it
had not been established that light propagated with i@ fuelocity, and FERMAT then
left this question open. However, he chose his corsstansuch a way that if one
interpreted the expression that was used for the mini@sira light duration then the
velocity in dense media would be smaller than in spamss.

In the meantime, the DESCARTES law of refracticad hbeen confirmed quite
precisely by experiment. Since FERMAT was of the @pirthat his Ansatz, which was
indeed diametrically opposite to that of DESCARTES, nthen lead to a law of
refraction that was incompatible with observations, las therefore too discouraged by
this situation to follow through with the analytical nsequences of his minimum
principle €%). It was first at the end of the year 1661 that hallff gathered, from the
repeated urging of his friends, that it was true, and wasraegly surprised to find that
his principle led to precisely the same law of refractiam the hypothesis of
DESCARTES ).

2. Generalization and formulation of FERMAT's principle. FERMAT had
assumed that the velocity of light was the samaligroints of a transparent medium and
in all directions. However, the investigations of ChtUYXGENS and I. NEWTON
(1642-1727) P) showed that this velocity is indeed independent of phevailing
intensity of the light, but it does depend upon the cofothe light, and in crystalline
media, on the direction of the light ray. In adufiti it is interesting to consider those
media in which the density varies from point to pointjsathe case for, e.g., the Earth
atmosphere. In such media, the light veloeity also a function of position. If one lets

(** HERONIS ALEXANDRINI, opera quae supersunt omnia vols., Teubner, Leipzig (1899-1914),
with German translation. “De Speculis,” v. Il 1, pp. &Bb. This paper, which presently exists only in
the form of a Latin translation from the™ &entury, had long been attributed to Cl. PTOLEMAEUS.
was first in the 18 Century that critics showed that it went back to HERO The evidence of
DAMIANOS (4™ Century A. D.) is important in connection with this, dadound in his bookGreek
characterk (Principal Facts of Optics ed. R. SCHONE, Greek and German, Berlin 1897. In ch¥gpp.
20 of this book (also cited in Heronis Al. opera I, §03) the minimum principle of HERON was
discussed and set down in words: (Greek quotation);Atethe conclusion of his proof, he said: If the
nature of light leads us to believe that our eyes are not unnecdbsarnjt must reflect with equal angles
(meas. from the normal to the mirror). [In the opmiof Greek physics, light did not originate from the
things that one saw, but from the eye of the behol@ae then had the inversion (Greek characters).]

(¢) Letter to CUREAU DE LA CHAMBRE of August 165D(ievrest. 2, pp. 354).

(*®® Cf., the passages in his letter in ®euvrest. 2, pp. 460 and 486.

(*®°) Letter on Sunday, 1 January 1662 to CUREAU DE LA CHANEB®euvres, t. 2, pp. 457. The
proof that was attributed to this letter found a broageathetic proof in t. 1, pp. 170, in which the property
of the minimum was confirmedbid., pp. 173.

(% 1. NEWTON: Opticks, or a treatise on the reflexions, refractions, ititers, and colours of light.
London, 1704.



3. Fermat’s principle. 7

denote the constant light velocity vacuoand letsv denote the velocity in the medium
under consideration then one introduces the quantity:

n=2, 2.1)
n

which one calls théndex of refraction(*). We will, however, assume throughout that
the light whose spreading we will examinerisnochromaticso the index of refractiom
should depend upon only the geometric data (position anctidmg

A medium for whichn does not depend upon position is calednogeneouslf the
index of refraction does not depend upon the direction thenmedium will be called
isotropic.

3. In the theory of optical instruments, one almostiesively considers the passage
of light rays through isotropic, piecewise homogeneousianeThis situation had moved
some authors to treat geometrical optics in the vedtation, a choice of notation that is
advisable only when invariance under rigid rotations in epacexpressly specified.
However, this invariance plays an entirely subor@inatle in ray optics, since most
optical instruments- if one ignores prisms, ete: possess a symmetry axis whose
position must be specified by a suitable choice of coomsnatn the following, we will
therefore distinguish an axis and denote it with the syrmb by which, a parallelism
between our formulas with the ones in analytical meicisabecomes especially obvious
— and establish the points of space with the aid of thishlat, along with two other
variablesq andx; .

We will often have to consider the case in which tlrea axes, x;, andx, define a
rectangular coordinate cross, and in which the medianvie examine is isotropic, but
not homogeneous. The index of refraction:

n= n(t, X1, Xz) (31)

will then appear to be a function of three variablesx}, and the timeT that light
requires to describe a piece of the curve:

X = (1), (i=1,2;t <t<t’) (3.2)

will be represented by the integral:

vds _ 1pr I
T= ], i EL n(t, X, %)/1+ ¥ + % di. (3.3)

(Y The definition above of the index of refraction isetrfor the undulatory theory of light. For the
emission theory, one must setproportional to the velocity itself. Cf., P. STACKELElementare
Dynamik der Punktsysteme und starren Kérper,” Encykhathem. Wiss. IV.7, Bd. 4/1, pp. 490.
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In this, ds means the differential of the arc length of our cuare we letx denote the

derivative of the functions (3.2). In order to confirne thalidity of (3.3), one must
imagine that one has set:

< |k

:%, ds = dt + dx¢ + dx. (3.4)

The function in the integral (3.3) will, by our argumepigy an entirely similar role
to that of the LAGRANGIAN function for holonomic prahs of classical mechanics.
In order to express this analogy rigorously, we would tikantroduce the notation:

L(t, %, %)= n(t, X1, X2) y/1+ X+ X . (3.5)

The formulas that we will derive, will be, moreoysdependent of this special form
(3.5) of the functionL(t,x,%); they will remain valid for an arbitrary form ohe

function L, and will correspondingly be just as well-suitexl the case in which the
medium in question is crystalline, and thus, amggt, as for the case in which one uses
a curvilinear coordinate system in an isotropic imed— and, in turn, also in an
anisotropic one — and converts the function (&) such coordinates.

4. FERMAT's principle shall now be formulated for the general problenthatt
sort. A precise translation of the demand that IFBR proposed for the special case,
and which he alone had considered, will read devict Let A and B be two given points
of space. If one considers the totality of curvesg that connect these points and
computes the integral:

ij(t,)g,x)dt (4.1)

for these curves then the light ray that connectsith B will be the curve for which the
expression (4.1) possesses the smallest possible va

The consideration of special optical instrumerds Bhow that the principle that is
formulated in this way is consistently useful. MNdyn in some situations, one can
construct light rays that go through the instrumamd choose the two poines and B
such that no other curve thgthat connects these two points and that runs ¢irabe
given instrument and the integral (4.1) will attairminimum value. Similar phenomena
were already familiar for the problems of catoptiosthe time of FERMAT ).
FERMAT himself wished to overcome this difficulty beplacing the curved mirror with
a plane mirror that contacted it at the place whbreray was reflected®j. If one
overlooks the fact that this represents a stopgap is hard to justify then similar
constructions in the case of refraction would eadl to the desired objective.

(*») One needs only to consider a light ray that sfaota the midpointA of a spherical hollow mirror
and after reflection is led from the poiAtto an arbitrary endpoirB. Any other light ray fromA to B
consists of two rectilinear line segments and has alematal duration along the path that is bent at the
sphere.

(% Oeuvrest. 2, pp. 355.
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One must then modify FERMAT's principle. Since thenfalas of the calculus of
variations will be developed later on, one must propibed the requirement of a
minimum of the integral (4.1) be replaced with the rezagnt of the vanishing of the
first variation of this integral, a proposal that hgenerally been agreed to up to the
present time. From a purely mathematical standpointe tise absolutely nothing to
prevent this procedure. In this way, one obtains all cuttvat come under consideration
as light rays. The method, however, possesses twwbdcks: First, the generally
understood and elementary concept of a minimum is replagbéda complicated and
artificial concept, since the first variation of ameigral can be made more intuitive only
by means of much work and many words. The second drawbaslstsoin the fact that
the way that one obtains the differential equationgHte light rays from the condition for
the vanishing of the first variation must likewise seetnaexdinarily artificial, when one
follows it through with the necessary diligence.

Fortunately, the difficulty that had engendered smynaaradoxes can be eliminated
by means of a minor modification of the problem statetm FERMAT, and also all of
his followers, had considered a fixed piece of thetligty and had drawn all of the
comparison curves through the two endpoints of the curveesggnvieanwhile, if these
endpoints are noticeably far aparé.g., when they lie on both sides of the instrumeint
can happen that the postulated minimum property is notrgre$ée choice of endpoints
is, however, completely arbitrary and thoroughly amgfi One avoids all of the
difficulties when one assumes that the light rayrisoundedwhich it is, in reality) and
the choice of endpoints left open One then postulates something less than what
FERMAT had done, but something more than what would sufficehe vanishing of the
first variation: One demands that FERMAT's princigleould retain its original content
when one considers arc segments along a givenrgyhtvhose positions are arbitrary,
but whose lengths are sufficiently short. One thenesrat the following formulation of
FERMAT'’s principle:

FERMAT's principle:A curve e can coincide with the path of a light ray if and only if
each point P of e is an interior point to at
least one arc segment of these same curve
e that possesses the following property: y
The integral(4.1), when taken along this
arc segment between its endpointsaRd
P”, will have a smaller value than the
same integral when one computes it along = €
a curveythat differs from e, but possesses Fig. 1
the same endpoints, namely, &d P,
and lies in a certain narrower neighborhood of e.

P

The last condition means that one may restrictcti@ce of comparison curve very
strongly without corrupting the fact that the cuesthat it adheres to must be a possible
light ray: Namely, one may choose two arbitrary pesiitumbers and#, and arrive at
the fact that only such curvgscan be drawn for comparison for which the distance
between two point§ andQ’ that lie one () resp.) and possess the same abstjidsa
less thang, and for which the angle that the tangents to both suatethese points
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subtend is, at the same time, less thanThe necessity of such a restriction, for which
the values of the numbersand 77 is not prescribed once and for all, is rooted in the
nature of the problems that we would like to treat. B would always like to leave the
curve ybe completely arbitrary, or choose permanently fixedberse = & and 7 = o,
then it can happen that for certain positions of curvessiwtime would like to establish,
if they are to represent a light ray according to FEERI principle then one must
consider comparison curves that do not lie in the fi¢lthe instrument; e.g., they might
fall on a screen.

5. The discovery of HUYGENS's principle. FERMAT’s principle represents a
geometric theorem that is, in fact, suitable for charamng the form of the light rays
that pass through an optical instrument. For the fudbgelopment of optics, however,
it is worthwhile to point out that, right from the beging, physicists were satisfied with
the ideas that had guided FERMAT.

FERMAT had stated the theorefita nature agit toujours par les voies les plus
courtes” (**) [“Nature always acts along the shortest path.”]. e@ould immediately
respond to it ) by saying that this is moral principle, not a physical, @me that many
times by such a choice of “shortest path,” Naturea=tainly find itself in a quandary.
The fact that HUYGENS, who lived in Paris at the tiraad constantly socialized with
the academia there, had made the same sort of argwasrghown in a letter that was
written at the time3f). One can, in this sense, practically say thatorgag that was
completely similar to the kind that moved physicistsréplace action-at-a-distance in
electricity with the FARADAY-MAXWELL theory 200 yeardater had also led
HUYGENS to the theory of light by thinking through it firsThe result was the book
“vom Licht” that first appeared in 1690, but had been alreadtyen completely twelve
years before®(). The 124 little quarter-pages that he had devoted to this evooptics
included, in principle, everything that would be accomplished dutive next five
quarter-centuries of progress in the theory of the proamgatf light. The most
celebrated part of this paper was the first chapter, iclwiiie phenomenon of light was
described as a process of oscillation, and from which BENS’s principle would be
derived. For our special purposes, it is the chaptefdhaived it that is more important:
It showed, in particular, that HUYGENS's principleutd also be applied when one
declined to pursue the details of the oscillation proeessthus agreed to work in the
first approximation by establishing that the velocity of liglds a function of position
and direction ¥). This approximation subsumes the content of bothptireiples of

(% In theCatopticsof OLYMPIODOR (8" Century A. D), which HERON had revised, one finds the
statement, loc. cit., footnote 26, v. Il, 1, pp. 368: (&rewaracters), i.eNature does nothing superfluous
and does no unnecessary work.

(**) Letters from CLERSELIER to FERMAT on 6 and 13 May 1662ivrest. 2, pp. 464, et seq.).

(*®) On 22 June 166Deuvres complétes de Christiaan Huygensbliées par la Sociétés Hollandaise
des Sciences, t. 4, pp. 157, Lettre 1025. La Haye, Mamlijlisff 1894.

(') Traité | De la Lumiere. | Ou sont expliquées | Les causes deiduy arrive | Dans la Reflexion, &
dans la | Refraction | Et particularement | Dans I'etrange Reifoadt Du Cristale d’Islande. Par C. H. D.

Z. (Chr. Huygens de Zuilyck) | Avec un Discours de la Cdude la Pesanteur. | A Leide | Chez Pierre
vander Aa, Marchand Libraire | MDCXC.

(¥ Precisely the same fact had led E. SCHRODINGERinown time, to discover the relationship
between classical mechanics and wave mechanics.
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FERMAT and HUYGENS, and one can, as is generally ooty in the procedure of W.
R. HAMILTON, derive HUYGENS's principle from only FERMRs. However, it is
not merely a convenient crutch for the intuition wherm ovorks with both principles
from the outset. Moreover, one can, in this way, ébeithe calculations from all slag
and bothersome repetitions, and present a philosophicahedhat is not easy to surpass
in terms of simplicity and clarity.

For that reason, we would first like to briefly sketdUYGENS's train of thought in
the simplest case of the spherical waves and expegssn consequences that arise from
our argument by analytical formulas.

6. HUYGENS’s principle. If a light signal were given at a poif®@ in a
homogeneous, isotropic medium with an index of refraati@at the timeT, then at the
time T > Ty the light excitation would be noticeable on the osteface of a sphepg(T),
that ha<O for its center and possesses the radius (Fig. 2):

R=%(T—To). (6.1)

We consider a convex surfatthat contain®© in its
interior and lies completely withigo(T), and denote
the distance between an arbitrary pdthbf 7 and
the pointO by o(P). A light signal that is given at
the pointP and the time:

To=To+ % oP) (6.2)

Figure 2.

generates a light excitation that is found at the time

T on the outer surface of a sphg#€T). This sphereyps(T) contacts the sphepg(T) at
the pointQ, at which the light ray fron®© to P meets the spherg(T). All of these
spheres were calledight waves by HUYGENS, and he deduced two different
consequences from the construction above.

First, when one fixe$ and lets the poirfe describe the surfadethe light waveyy(T)
will appear to be the envelope of light wave4T) that were generated by the light
excitations at the various points of the surface

Second, if one fixes the poiRtand letsT vary then the contact poin€} Q', ..., of
the light wavesys(T), xo(T"), ... with their current envelopego(T), xo(T), ...will
describe the light ray that go frotnto P.

Finally, we remark that the length of an arbitrary cyrtfeat links concentric spheres
Xo(T) and xo(T) can never be less that the length of a light@&y that links the same
two spheres together.
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7. The family of sphereg(T) can be represented by an equation of the form:
S(t, X1, Xz) =T. (71)

The two-parameter family of light rays throu@hare solutions of a system of differential
equations:

=yt x) (j=1,2), (7.2)
through which, the direction of the light ray is expegssas a function of position and
direction. Then, from (7.1), the time that the ligleieds in order to traverse an arbitrary

piece of this light ray will be equal to the differerioetween the two values &fat its
endpoints; it can be represented by the curve integral:

[fds=[(s+yg) o (7.3)

From (3.3) and (3.5), however, this time can also be sgpckby the integral:

[ LX), (7.4)

and the two integrals (7.3) and (7.4) are equal to each fothalt possible pairs of values
(t', t") and all light rays if and only if the identity exists:

Lt %, ¥) —S - S, =0. (7.5)

From the remark at the end of § 6, one sees with ¢l df an entirely similar
argument that one must consistently have for an arpitine element, x;, X :

L(t,X;,%)-S-%X$=0. (7.6)

8. Generalizations. The last result can be generalized in various wiyst, we can
replace the spherical wavgg(T) with any other light waves. One now obtains the
general light waves that occur in an isotropic and lganeous medium by the following
construction: We assume that we are given an arbitafgcet and set:

To=5(P), (8.1)

in place of (6.2), in whicls(P) means an arbitrary continuous function. From this, we
determine the wave surfacgfl), which are no longer spheres, from the envelopeeof th
spheresyr(T) whose centers lie onand which possess the radius:

Sa-«P).
n
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Second, we can liberate ourselves from the assumpitadriie medium is homogeneous
and isotropic. HUYGENS himself had considered inhomogeasenedia in his book, as
well, when he treated the air refraction of the Eatimosphere, aand also an anisotropic
medium, namely, calcite (Iceland spar), and the bimgémnce that is produced by it.

In order to obtain these generalizations, we wiiywaver, set out on a new path:
Namely, we will seek to present the most general sysfetmctionsS, ¢4, ¢ for which
the relations (7.5) and (7.6) are true for an arbitragilen functionL(t, x, %X ). The
solutions of the differential equations (7.2) are thent Irglys, by means of FERMAT's
principle, and this shows that one will obtain all gibke light rays and possible families
of wave surfaces in this way.



Chapter II.

The foundations of geometrical optics

9. The fundamental equations The question that was just posed should now be
treated for the case in which the functioft, x, %) in 8 3 is differentiable arbitrarily

many times. The treatment of discontinuity surfao@swhich refraction or reflection of
light occurs, will thus not be a problem for us (8 23).e Wiust then determine the

functionsS, ¢4, ¢ in such a way that the relations (7.5) and (7.6) are samebusly
true. The expression on the left-hand side of (7.6)t tihen possess a minimum when

one takesx; = ¢ . As aresult, the first derivatives of this expi@ssvith respect to the
X; must vanish for; = ¢ , and one will obtain the equations:

S =L (tx.¢)) @, =1, 2). (9.1)
With these values @&, , in place of (7.5), one can write down the equation:

S:L(t,)(j, l/’;)—l//u I—xi (taxj 1¢Ij)' (92)

If one substitutes these values in the left-hand sid€7.6) then one will obtain a
function:

EB(t X, ¢ %) =L X%, %) =L(6 x5, ¢) — (X —¢) L (Lx.¢),  (9.3)

and one can easily show that for all of the speciattionsL that occur in optics it is
never negativand vanishes only when the equations: ¢ are true®.

With the help of equations (9.1) and (9.2), one can write:
L(t, %, X)) =S+ S X+ E(t X, ¢ X)), (9.4)

in place of (9.3), and obtain this identity by integratadong an arbitrary curvgfromt’
tot":

'[yL(t,)g,x) dt=S' -S + ij(t, X, %) dt. (9.5)

When one observes that 0 and vanishes only for line elemerts«(, x ) that lie on
a curve of the family that arises by integration & thfferential equations = ¢, one
will see that the curves of this family must repredighit rays, by FERMAT's principle.

(*° This is connected with the fact that the so-calley ‘surfaces of optics” are convex. For each
problem in optics, however, the ray surface is nothirtgtbe indicatrix (or the metric) of the corresponding
problem in the calculus of variations. Gfariationsrechnung§ 225.
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The problem of geometric optics accordingly comes down to that ofirueitey
functions S¢, and ¢, for which the “fundamental equationg®.1)and(9.2) are true.

10. Calculation of the HAMILTONIAN function. When one calculateg; as
functions oft, x, from equations (9.1) and substitutes these values in @2),will
obtain a first-order partial differential equation the functionS This elimination is
particularly simple when one has determined the HAMILTANI function H from the
LAGRANGIAN function L that it is associated witA%.

To that end, we introduce new variabigswhich we will callcanonical direction
coordinates and which will play the same role in optics as thputse coordinates do in
mechanics. These quantities will be defined by the definedebtywvo equations:

yi =L, (t,xj,xj) (,j=1, 2), (10.1)
which, when solved fo‘rj :
X, = @i(t, x, yi) (,j=1,2). (10.2)

With these functions, one defines:
H(t, %, ¥i) == L(t X, @) + Y181 + Y202, (10.3)
and obtains the HAMILTONIAN functiorH, which is then, in other words, the

LEGENDRE transform of.. By partial differentiation of (10.3) with respectttax, v
one obtains, in that sequence, the identities:

He= - Ldt, %, 4), - L (tx,.9,), (.j=1,2) (104)

H, =
H, =&t %, ) = X (10.5)

11. Forisotropic media, one has:

L= n(t, x)y1+ ¥ + X, (11.1)

2

and one has:
n >'<J. n

A N mM—yi-y2=—
v A

Yi 2_ 2 2
g =——2——, H=—n’-y’ -y (11.3)
| linz—yf— y22 Y,

It is very easy to verify equations (10.4) and.§)@n this special case directly.

(11.2)

12. Derivation of the differential equations for light rays. A comparison of
equations (9.1) and (9.2) with (10.1) and (10.8)ds the equations:

0" Variationsrechnung§ 235.
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Yi= S, S+H(t X, y) =0, (12.1)

from which, it next follows that the functio, by which the wave surfaces were
determined, must always satisfy the partial differemgalation:

S+H{tx, % S, S)=0. (12.2)

From (9.1), one obtains, in addition, when one obsethe formulas of § 10y =
H, (t,xj,SXj ), and the light rays that run through the system ofensawfaces, are then

solutions of the ordinary differential equations:
%=H, (t,xj,SXj) (i=1,2). (12.3)

13. We now assume that we have ascertained a solffipm;, x2) to the partial
differential equation (12.2) iany way, computed its derivativesxj, and substituted

them in (12.3). The general integral of the system oéudfitial equations (12.3) that we
obtained in this way will then be represented by equatibtise form:

X = &(t, W) (i, k=1, 2), (13.1)

in which the ux mean integration constants that may choose arbjtrariWe now
introduce the new functions:

a(t, u) =St §i(t, w)), mtu) = S (4 gt w)).  (13.2)

Identities exist between the functions (13.1) and (13.Bjchvwe would now like to
present.
First, one can compute the total derivatives@ind obtain:

do=sdt+S, dg,

or, when one considers (12.2), (13.1), and (13.2):
do=-H(t, &, ) + n dé . (13.3)
Second, one expresses the fact thattlee solutions of (12.1) with the equations:

% = H, (L&, i=12). (13.4)

Third, when one partially differentiates the second egndfi®.2) with respect tg one
will obtain:
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a/7i — 6{. —

AR T ] (135)
On the other hand, it follows from (12.2) by partial diéfetiation with respect tg that:

S, + S, H (1% §)=-H, (tx.S,);

when one substitutes the functioésin this for thexg the left-hand side will become
identical with the right-hand side of (13.5), and one thidlrefore have the equation:

L/
S = THtE ). (13.6)

We obtain a final relationship between tife and the 7 when we partially
differentiate the second equation in (13.2) with respeas and write:

on _ o 9

ou, % ou,
We multiply both sides of this equationsady / du; , sum ovei, and obtain:

950 _o 0§ 9¢ (13.7)
ou ou, 9oy ou,

One now remarks that the right-hand side of this equatibmemain unchanged when
one switches with j and simultaneoushy; with u, .
If one then introduces the symbol:

Uy, ug] = 0.9 _ 94 0% _ 0(6y.17,) , 9(S5.17,) (13.8)
oy, du, du,dy J(u,u,) O(u,u,)
then the relation follows from the latter remark:
[ug, up] = 0. (13.9)
LAGRANGE (1736-1813) introduced the expression.§13vhen he developed the

method of variation of constants in celestial medt® (), and the symbol also
originated with him. For that reason, one calls (i,] a LAGRANGE bracket.

14. Equations (13.4) and (13.6) state that the fonetf, /7 must be solutions of the
system of ordinary differential equations:

(*) LAGRANGE, J. L.: “Mémoire sur la théorie générale la variation des constants arbitraries dans
tous les problémes de la mécanique,” (180@)vrest. 6, pp. 771-805.
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X =H,tx,y), ¥ =-H, (XY, (14.1)

which one calls theanonical equations From 8§ 10, the first of these equations is
equivalent to (10.1); with the help of (10.4), one thers $kat the second equation can be
described as:

d .

—L—L =1, 2). 14.2

s ( ) (14.2)

These are thEULERequationsof the variational problem with the basis functionWe
see that the light rays that we have introduced asi@olof the differential equations
(12.3) must necessarily also be solutions of this systersecond-order differential
equations. However, for our later purposes, it will be mmore convenient to start with
the canonical differential equations (14.1), which are ind=pdvalent to the EULER
differential equations.

The functionsi(t, u), 7i(t, uj) that belong to the light rays, which arise for a paféar
light propagation as a result of HUYGENS's principleyatnstill satisfy the condition
(13.9). The two-parameter ray manifold or, as one algs, $heray congruence:

X = &i(t, ug, Up)

is not arbitrary then. However, before we deduce emumsnces from the condition
(13.9), we must examine certain properties of general rayfofds.

15. Peculiarities of the solutions of the canonical equatienWe let:
X =&(t, Ug), v =nmi(t, ug), i=1,2,0=1,2,.m2<m<4) (15.1)

denote a solution of the canonical differential equeatithat depends uparbitrarily
manyintegration constants, . It is now no longer generally possible to finduadtion
at, ug) for which equation (13.3) is verified, when one substguhe function (15.1) in
its right-hand side.

However, if one restricts the relation that follofrom (13.3):

oo ¢,

___H(t 5’ ,7]) ,7|

15.2
ot ot ( )

then it will always be possible to determine functiaus u,) by a quadrature that satisfy
the condition:

ow 65

___H(t 5’ ,7]) ,7|

15.3
ot ot ( )
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The association of these functiongt, u,), which are defined only up to an arbitrary
additive function, moreover, with the solution (15.1fusdamental to the entire theory
(42).

In order to obtain the relation enters in place ©3.8), we calculate the total
differentialdewwand convert it. One first obtains from (15.3):

dw= ‘2—“’dt+%d%_—H dt+ %L 65'

dt+ 2% ¢ 15.4
% 5y 0% (15.4)

a a

If one multiplies both sides of the equation:

2
ot

&

a

dt+—L duy, = dé

by & , sums oveir, and adds the result to (15.4) term-by-term then thityweid the
relation:

dw=-Hdt+ 7 d&§ - A, du,, (15.5)
in which we have set:
Jw 65.
Ag=—- —dt+n —21d 15.6

a

16. The most important fact in our theory now consegdtshe knowledge that the
functionsA, no longer depend updni.e., that the quantitie®l, / ot vanish identically.
In fact, one has:

2 2
0A, __ 0‘w +6/7i 0¢ o 0°¢ . (16.1)
ot otou, Ot du, otou,

On the other hand, it follows by differentiating (15.3)hwiespect tai, that:

2 2
O w _ 08, 01 ,0n0f, 0%

=H, v : : (16.2)
otou, ou, ou, Ou, dt otoy,

Now, sinceé, 7; are solutions of the canonical differential equatid4s1), one sets:

(*3) The presentation in this text leans very essentisll CAUCHY (cf., § 16, footnote 43). One can,
however, ponder the fact that our functiaft, u,) has the greatest affinity with with HAMILTON'’s

characteristic functions (see, Introduction). If onedduces, e.g., the quantitiexls =& (U, uy) andx = §
(t, ug) in the characteristic functiowu(t’, xI t, X)), and then replaces the quantitwvith t' = ¢(t, u,) in the

result of the substitution, whegemeans an arbitrary function, then one will obtaisolution of equation
(15.3).
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on, 0¢
ot i ot (16.3)
in (16.2) and obtains:
2 2
0w _0m9 ,, 0% (16.4)

otou, ot du,  Atdu,

from which, it will follow that the right-hand side ¢£6.1) vanishes.

A remarkable relationship exists between the quantiiesind the LAGRANGE
brackets of § 13. Namely, if we differentiate equa(®.6) with respect ta then we
will obtain:

a —

M, | Ow & |, 0§ on
ouy, ou,0u, "0udu | dy dy

The bracketed part is symmetricarand 8 and comparison with (13.3) yields:

oA 6)lﬂ
2 ——*= =ug, ug. 16.5
ou, o [Ua, ud (16.5)

a

The LAGRANGE bracketsu,, ug are likewise independent af This result was
already obtained by LAGRANGE in the year 1808; the quastidi,, or at least
equivalent functions, were first employed by CAUCHY (1-A8%7) for his theory of
characteristics’f).

17. Refining the formulas with the help of the initial valies. If the functions
(15.1) are known then the functianwill be defined by (15.3) only up to an additive
constant that depends upon the parametgasbitrarily. As a result, thé, will also not
be defined uniquely, and one can normalize the right-haedogi(15.5) in various ways.

One obtains a very important normalization of tleat eshen one is given the initial
values by which the solutions (15.1) are established uniquely.

We assume that fdr= 7(u,) the following equations are true:

$i(7(Uq), Ua) = Ai(Uo), M(7(Ug), Ua) = Bi(Uy). (17.1)

If we then substituté = 7(u,) in (15.5) then it will follow from the relatioa7(uy),
Ug) = a(uyp) that:
-H(r, A, B) dr+ Bi dA =da + A, dug, . (17.2)

Here, we have used the fact thit does not depend updn We now introduce the
relation:

Q(t, Ug) = aft, Ug) — ad(Uy), (17.3)

(* Bulletin des Sciences par la Société Philomatique de @819), 10-21. This important treatise is
still not included in the volumes of tligeuvres Complétesf CAUCHY that have appeared up to now.
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and obtain, when we subtract (17.2) from (15.5) term-hyxte
dQ =-H(7, & m) dr+ i d& — (- H(7, A;, B) d7 + B; dA). (17.4)

Clearly, this relation is only a special form of egoiat(15.5). The functiof is the
solution of the differential equation (15.3) for which daes:

Q(7(up), Ua) = 0; (17.5)
here, we must write:

or 0A
Aoa=-H(1, A, B)—+B —- 17.6
(7.4 B) o 3 (17.6)

a a

for theA,. If one calculates the LAGRANGE bracketss, [ug from equation (16.5) then
one will find, when one then employs the notations:

H, (7, A, B) =H?, H, (7, A, B) =H?, (17.7)
that:
_ % _ 40 9(7,A) o 0(B,7) . 0(A,B)
[Ug, u/;]—; H‘a(ua,uﬂ)+H“6(ua,%)+6(q,,q;)' (17.8)

18. Determination of the wave surfaces for given initial valueslt is now very
simple to respond in a completely general way to thetguethat we treated in 8 8 for
homogeneous, isotropic media by a geometric constructioe deals with the problem
of finding a solution to the partial differential equatqi?2.2) that, on the surface:

t = (ug, W), X = Ai(ug, W) (i=1,2), (18.1)

assumes the initial values:
S(r(w), A(w)) = (U, Up). (18.2)

We must next determine the initial valugéu;) of the functionsy in § 13. For that, we
remark that, from (13.3) and (18.2), one must have, in asg.c

os _ oy 07 0A
- =-H( A B 4B (18.3)

These are two equations, from which one can calc&t&9) theBi(u). We then
integrate the canonical equations (14.1) with these linigdues and determine the
function Q(7, uy, up) by quadratures) is uniquely determined due to the condition (17.5).
From (18.3), it then follows that the bracket on thyhtdhand side of (17.4) must equal
ds If one then sets:

at, ug, Up) = Q(7, ug, Up) + S(Ug, Up) (18.4)
then one will get the equation:

- H(, §, ) dt+ 15, dé; =dg; (18.5)
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which is identical with (13.3).
We calculate the; from the equations:

X = &i(t, up) (,j=1,2) (18.6)
and get:
U = xi(t, x). (18.7)
We further set:
St x) = a(t, xi(t x)), Yi =t xi(t %), (18.8)
and obtain from (18.5):
- H(t, x, Y;) dt+Y; dx = dS (18.9)

This relation shows th&satisfies the partial differential equation (12.2)pee has:

S. =V S =-H(t x, Y). (18.10)

%

FurthermoreS possesses the desired initial value. Namely, theiigentt, &(t, us)) = u;
follows from (18.6) and (18.7), so one can write:

at, §(t, w)) = a(t, u),

in place of the first equation (18.8). However, if opess = 7(u;) in this equation then
equation (18.2) will follows from (17.5), (17.1), along with (18.4hich will serve to
verify it.

19. One obtains the condition for one to be able toutate theB; as single-valued
functions of the parameters from equations (18.3) when one writes down that the
functional determinant of second order satisfies:

“Ho 9T LA s, (19.)
'6uj 6uj

However, from (17.1):

oA _ 0§ 0r 3¢
au,. ot au,. ou.

I

=T

such that the condition (19.1) is equivalent to the icelat

96

Zz0, 19.2
" (19.2)

t=r

from which, the solubility of equations (18.6) for tiyewill follow. The two coincident
relations (19.1) and (19.2) can also be written with the dita three-rowed determinant
in the form:
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9%

ot
ﬂ a_A # 0. (19.3)
au,. ou.

Volt=r

This latter relation is very easy to interpret geormelly; it says that the light rays that
run through the figure should not contact the surface (18.1).

20. If a single (in general, arbitrary) solution to then@aical differential equations
(14.1) is given that runs through the surface (18.1), but ddesontact it, then one can
give functionss(ui, Up) in infinitely many ways so that in the calculationis§18, this
given solution will be included in the figure that we comsted there.One concludes
from this that any solution of this sort is a possible light ray forcwlfFERMAT's
principle is valid(**).

21. Optical equidistance. Field-like structures. How can one geometrically
interpret all of these formulas? In 8§ 13, we had a faofiwave surface§(t, x) = const.
and a two-parameter family of light rays= &(t, x) that ran through these wave surfaces.
The normal to the wave surfaces had the directianwaictor with the components:

S S,. S, (21.1)

and sinceS must be a solution of the partial differential equati®2.2), the direction of
the normal vectors was uniquely determined when one knewg,theThe tangent to the

light ray that ran through the wave surface had trexton of the vector:

9 04

’ "ot

o (21.2)

and equations (13.4) were true fgr=S_. In any event, when this is the case for a

surface and a ray, one will say that the wave suriatesect the light raygansversely

If the medium is isotropic then it will follow frorthe formulas of § 11 that a surface
intersects a light ray transversally when the vecf@isl) and (21.2) have the same
direction; i.e., when the surface is run throogthogonallyby the ray.

From equation (9.5), the optical length along any lighy that is intersected
transversally by wave surfaces at any of its poinegjigal to the difference of the values
of Sat its endpointskE is then consistently equal to zero along such a fidys optical
length also remains constant when the endpoints slide dleo fixed wave surfaces.
For that reason, the surfaces of the far8{tyx) = const. are calledptically equidistant.

(*Y The proof of the converse conclusion, that any poséiié ray — i.e., that any curve for which
FERMAT’s principle is valid — is a solution to the carmah equations is somewhat more complicated (Cf.,
Variationsrechnung§ 245).
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If the medium is not only isotropic, but also homogersedhen these surfaces will also
be equidistant in the ordinary sens®.(

The LAGRANGE bracket (13.9) is identically zero forethwo-parameter ray
manifold (13.1). Any ray manifold for which this is the caball be called &eld-like
manifold. In the neighborhood of a point at which theti@ia(19.2) is true, a given
field-like manifold will simply cover the space, &, x2) with light rays. In addition, it
will follow from [uy, uz] = O that the expressiofy dw + A2 dw, in (17.2) is a complete
differential. As a result, one can determine theaitgmis of theS(t, x) of the partial
differential equation (12.2) that intersect the rays wf manifold transversely by using
the methods of 8 19. In this case, one says that yheaaifold defines &eld.

If one examines the values of the functional deteami:

0(¢1,¢2)

(U, U,)

along a particular ray of a field-like manifold théhe points at which this determinant
vanishes will define the only exceptional placeswhose neighborhood tHeeld-like
structurecannot also be regarded afsedd.

One can prove that these exceptional placedsatated along any individual ray.
Therefore, | would not like to go into this questioere, since | have recently treated this
topic quite thoroughly*f).

Among the field-like structures, we must point ¢l ones that consist of all light
rays that go through a fixed poitl x’. These ray manifolds will be calletigmatic

(*"), or alsodistinguished field-like manifold¥he fact that these manifolds are field-like
follows immediately from the fact that the derivai$oé / du; must vanish fot =ty , and
as a result, one must hawg,[uy] = 0. Here, the light wave&t, x;) = const. are precisely
the “optical” spheres that HUYGENS had employe®)8

One obtains a further important class of fielaeliktructures when one takes the
functions 7, B;, B, to be constant in the formulas of 8 17. Namatyhomogeneous
media the wave surfaces will be planar and the ligh consist of parallel light rays.

The main result to which we will be led consistsan inversion of the result in § 13:
From HUYGENS's principle, any field-like congruerafdight rays represents possible
paths of propagation for light.

22. Introduction of arbitrary curvilinear coordinates. For many problems, it is
practical to employ curvilinear coordinates tha defined by the equations:

t=t(t,x), %=x(tX) 0,j=1,2). (22.1)

(**) The optical equidistance of the wave surfaces corresgoriti® “geodetic equidistance” that one
encounters in the calculus of variation (dMariationsrechnungg§ 298).

(*°) Variationsrechnungg§ 313-327.

(*) In place of the wordstigmatic one often, especially in older papers on optics, fids term
anastigmatiaused, which includes a superfluous double negation.
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It is not difficult to calculate the new LAGRANGIANufction L'(t", x',dX / dt) directly.
However, the computations becomes simpler when ose dikhibits the transformed
HAMILTONIAN function H'(t',x,y/). Namely, one needs only to employ the fact that
by substituting the functions (22.1) in a solutisf, x) of the HAMILTON-JACOBI
partial differential equation (12.2) must necessarily bsodition S(t, X) to the
transformed partial differential equation. By meangaiations (22.1), one then S
=dS and therefore also:

—H' dt+ y, d¥ =-Hdt+y dx. (22.2)

This latter equation is equivalent to the following system

) ot ox .
Y == H(t X Y— 4y (=1 2), (22.3)
ax,. 6>q
ot 0x
H’:Ht, , _\V —. 22.4

One then obtainkl' when one first computes tlyeas functions oft’, X'

j ’
and substitutes these values in (22.4).
From the equation (22.2), one can, in addition, reacdmfinportant property of the
canonical direction coordinates. Namely, if one @ers that the differentials:

Y, )using (22.3)

dt, dxq, dx

can be interpreted as the components cbraravariant vectothen it will follow from
(22.2) that the three quantities:

“HEX V), Y. Y2
transform like the components otavariant vector(*?).

23. Derivation of the general law of refraction. We now assume that two different
media are separated by a discontinuity surface:

Dit=fu), x=AW  (,i=12). (23.1)
For the one side of the surfa®e— e.g., for the points:

t<ru), % =A), (23.3)

the LAGRANGIAN and HAMILTONIAN functions will be derted byL(t, x, X;) [H(t,
X, ¥;), resp.], as before. In the second medium, the danwions will be denoted by
L'(t, %, %) [H'(t, %, ¥)), resp.].

(**) Variationsrechnungg 83.
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We now consider an arbitrary propagation of light throtlghcombined system that
is generated by a family of wave surfaces. At theouar points of the discontinuity

surface® this light excitation will be noticeable at a timatlone can establish with the
aid of a functiors(us, uy).

However, from HUYGENS's principle the propagationight in the two media will
be uniquely determined by the functis(u;, uy). The associated light rays will be

refracted at the discontinuity surfaé@ during this propagation. From (18.3), the
equations:
g—u ~H(z, A, B,)ﬂmk Aﬂ (i=1,2) (23.3)

between the derivatives sfu;) and the functions, A;, B must be fulfilled. One finds, in
exactly the same way, that one also must have:

2
ou

'\ 0T 0A
=—H(r A, B +B X, 23.4
(T A J)aui Bkaq (23.4)
However, from these two equations, there followsrétetion:
- [H(z A, B)) - H(5 A, B,)]—+[Bk BIS2=0, (=12  (285)

in which the derivatives of the functis(u;) no longer appear.
The system of equations (23.5) represents the law i@ctefn for light rays at the
discontinuity surface®. Namely, if two rays are drawn through a pomtA; of the

surface® that have the canonical direction coefficieBt$B', resp.) and fulfill equations

(23.5) then one can give functios@) in infinitely many ways for which the ray field
that is defined by equations (23.3) and (23.4) contains thesprascribed rays.

Remark. It is very easy to establish that one also willld@ to the same law of
refraction (23.5) by FERMAT’s principle. Namely,efand€ are two light rays, each
one of which belongs to the two fields of rays thatenast considered, and one denotes
the time it takes light to go frorA to B along these
rays byT, then one will get:

= [s(P) —S(A)] +[S(B) —s(P)] = S(B) —SA).

For the time duratiofl  along another patAP'B,
however, one will get, from (9.5):

Figure 3 T'=EP)-SA) +[ Edt+(S(B- ¢ P)+[ Ec
=T+ [ Edt+] Edt
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Now, since the functionE andE' are always> 0, it will follow from this thatT = T,
such that the ratPB must be a light ray, from the definition of 8§ 4.

One can complete this result by saying that one then sthatv6ERMAT’s principle
is no longer true when one extends the A&yin another direction from the one thét
possesses at the poiit We would therefore like to go into this detail.

24. Consequences of the law of refractionClearly, the law of refraction must be
independent of the choice of coordinates. This propertyearerified effortlessly with
the aid of our formulas: namely, from the ones in &R numbers:

-[H(t A, B))-HtLA,B),  [B-B] (24.1)

are components of a covariant vector, and equations (&at8)simply that this covariant
vector should be orthogonal to each of the two ceatiant vectors:

or oA

ou : ou (G=1,2). (24.2)
This is, however, a condition that remains invariant uratgr change of coordinate
system.

For the special case that is based upon rectangulaesi@artcoordinates, the
covariant vectors cannot be distinguished from thdrawariant ones. The condition
above simply states that the vector (24.1) should alwseysperpendicular to the
discontinuity surface, and one obtains the ordinawy bf refraction in the case of
isotropic mediaf).

25. We now consider an arbitrary ray manifold in thetfmedium that depends upon
two, three, or four parameteng, and whose rays run through the discontinuity surface
(23.1). One can characterize each individual ray ofrtfasifold by the line element of
the ray that one finds at the point at which the raycp®the discontinuity surface. The
first two parameters, u, of theu,, which we will denote by Latin indices when they are
to be considered separately from the other ones, cam lth employed as position
coordinates on the discontinuity surface. As a consegue¢he ray manifold itself can
always be represented by solutions (15.1) of the canonifateditial equations that are
established by the initial conditions:

Gi(7(w), ua) = Ai(w), m(7(W), Ua) = Bi(Ua), (25.1)

in which ther(u;), Ai(u;)) have the same meaning as in (23.1). From (17.2), ondnean t
write:
-H(7,A, B) d7+ B dA =da + A du,, (25.2)

(* One observes that this result leads to a construdtiah agrees precisely with the rule of
DESCARTES in 8§ 1 when one meanwhile sets the indexfrafateon proportional to the velocity of light,
as the emission theory of light would suggest (cf., § 2nfuiet31).
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just after one calculates with a functieft, u;) and has determined the functiohsand
ap with its help. If one associates each ray of thaifol in question with the broken
ray that arises from its advance into the second mednen one will obtain (with
entirely similar notations) the equation:

~H(5, A, B)) dr +B dA = daj + . du, . (25.3)

Now, it follows from the law of refraction (23.5) thiite left-hand sides of the last two
equations must always be equal to each other. It folfoavs this, when one introduces
the notation:

W(uo) = ad(ua) — ah(u,), (25.4)
that:

A, duz=d¥ + A, dug, . (25.5)

For the derivation of this latter relation, we haslgsen the parameteus very
specially. However, this equation will remain correat &my arbitrary choice of the
parametersi,. Namely, if one introduces new parametgrthrough the equations:

Ug = Ug(Vp), (25.6)

for which new functiong/«(vp), 1, (v,) appear in place of the functiodg(ug), 4,(u,),
then one will always have:

Aa AUy = Uy dv, +dM, A, du, = g dv, +dM', (25.7)

such that the relation (25.5) will always preserve thmesdform under any arbitrary
choice of parameter.
Equation (25.5) is equivalent to the system:

A= Ag+ g—q’ (@=1,2,..). (25.8)

a

It then follows from(16.5) that theLAGRANGE brackets[u,, ug remain unchanged
under arbitrary refraction of the light rays. Thegpresent differential invariants whose
values do not change under the passage of liglutjin any instrument along the entire
light ray.

Incidentally, one remarks that, from § 16, one can ywaormalize the functions
A! such that equations (25.8) will be replaced wift= A,. One can then always choose

the notations such that thg themselves remain constant along each ray.

26. Integral invariants. MALUS’s theorem. For the applications that we will
make of the invariance of the bracketg,[ug, it would be very advantageous that this
theorem remain true for any choice of the parametgrsince one could then make the
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most convenient choice of parameter in each speci@. c&@n the other hand, this
theorem has no immediate geometric significance, soree can describe each ray
manifold in infinitely many different ways with the hedp parameters, and then obtain
different values ofu,, ug each time.

However, we arrive at any theorem that is geomélyicaeaningful in the following
way: For a two-dimensional manifold that is represemtéld the help of the parameter
Ui, U one has, from (13.8):

_ 0(&m) | 9(51,)
[Ul, Uz] = a(u1, u2) + a(up U,Z) . (26.1)

If we now introduce new parameters, (.) by equations of the form (25.6) then, as must
follow from this, for each ray of the manifold imegstion, the relation:

a H
[vi, Vo] = [ug, ug] LCILY; (26.2)
(v, ;)
must exist between the old LAGRANGE brackets amdtthnsformed ones. @G, and
G, are two regions in they u,-plane {1ve-plane, resp.) that go to each other by means of
the transformation (25.6) then one will have:

[[Tu, wldydy= [[iv, v,] dydy. (26.3)
G, G,

The value of the double integral (26.3) is thusepehdent of
the choice of parameter.

If one interprets the double integral as an irdegrer a
surface patcly that a pencil of rays runs through (Fig. 4) then

the value of the integral depends upon only theihdsut not
on the location or form of the surface patch ovéiclv one
Figure 4 !ntegratgs. For that reason, the integral will dadled an
integral invariant

27. If the ray manifold is field-like theruf, u;] = O, and the integral invariant (26.3)
will vanish identically. Conversely, if the integrinvariant vanishes for all possible
regionsG, then one must have| u;] = 0 and the ray manifold will be field-like. Thi
result includes the theorem that MALUS expressedtha year 1808, with the
generalizations that DUPIN and QUETELET made déier on {°, which states that
when one cuts through an arbitrary instrument &itivo-dimensional ray manifold then
the ray manifold in the object space will be fidike if and only if the ray manifold in the
image space has the same property.

In the past, MALUS’s theorem was very strictly ebed. It seemed that it was even
believed that the optical ray map could be charaeté by this theorem alone. Naturally,

(*% Cf., the Introduction. It is noteworthy that theatise of LAGRANGE appeared in the same year
1808 (cf., 8 13, footnote 41), which already essentialldexl the invariance of the brackets ,[ug].
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this is not the case, because the ray maps for wiishUS’s theorem is true without
restrictions aréessgeneral than the ones for which all of the LAGRAN@&ckets (l,,
ug remain invariant. Namely, one has the following tleaa

If the rays of two homogeneous and isotropic optical spaces are assocititezhoh
other in a one-to-one way such that every field-like ray manifotterfirst space goes
over to the same kind of manifold in the image space then one can, bylaaitgimi
transformation, and possibly also a reflection through one of the coordinate plates t
one of these spaces is subject to, always arrive at the facafiteatperforming these
operations the. AGRANGE bracket itself will remain invariant.

From (25.2) and (25.3), ray manifolds are considered teelaklike if and only if the
expressiond, du, (A, du, , resp.) are complete differentials. We must then demand
that any time when one selects a two-parameter farhiight rays in the object space in
such a way tha#l, du, becomes a complete differential the correspondingession
A, du, will possess the same property. From a theorem édrPforms ¢7), there must

then be a&onstannumberp such that:
A, du, = o(Aq dug) +dW (27.1)

exists identically. By assumption, however, the llakttion goes to (25.5) by a similarity
transformation (and possibly a reflection, in case 0), from which the assertion is
proved.

Starting from the requirement that MALUS’s theoremsinbe valid, one can then
at least, in isotropic, homogeneous spactudy the form of all possible ray maps, and
this would clarify the role that this theorem has pthayethe history of ray optics.

28. The integral invariants. (26.1) can be brought into a form that admits a very
intuitive geometric interpretation.

Namely, due to the relation (16.5), one can write, wdre denotes the boundary of
the regionG, by y.

1= [[Tu, w] dudy = [(Aduy +A,dw) . (28.1)
G, y
The closed curvgrwill be represented in tha ux-plane by the equations:
u = u(s) (0< s<27), (28.2)
where the functionsi(s) refer to periodic functions. To these functiows, add a third

one:
t =t(s), (28.3)

(*Y Variationsrechnung§ 145.
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which does not need to be periodic, and consider the cuhat is defined by equations
(28.3) and:

X = Xi(8) = &i(t(s), ui(9))- (28.4)

A comparison of (28.1) with our previous equation (15.4) thelu g
J= L(—H dt+7, dgﬁ)—jc dw. (28.5)

Therefore, one can, from our construction of thevea, choose any curve that encircles
the bundle of light rays in question once and whargdpoints lie on theamelight ray.

One can make two applications of this formulastiif the functiort(s) in (28.3) is
periodic with period Zrthen the curve will be closed and the integra(28.5) will
vanish. One will then have:

J= jQ(—H dt+7,d&). (28.6)

In the terminology of POINCARE, the right-hand sidé (28.3) is called aelative
integral invariant, because it is true only forsgd curves. Moreover, POINCARE
considered only such closed curves that laid in glaest = const. The integral
invariant (28.6) was considered, in particular BiyE CARTAN (*?).

Second, one can, however, choose the auteebe on the boundary of the ray pencil
in such a way that its tangent at each point ietgssthe light ray, which includes that
point, transversally(§8 21). The condition for this is:

~Hdt+7d5§=0 (28.7)

and one has, as a consequence, in place of (27.5):
J=-[dw=a-w (28.8)

in which aa and «» mean the values otv at the
endpoints ofc. The quantityd is then equal to the
optical distancdr between the two endpoints of a curve \
that entwines the ray pencil and intersects eaglona B
the boundary of this bundle (Fig. 5). The invaceuof h
J will be expressed by saying that the optical dista
between the endpoints af is independent of the
arbitrary choice of the initial points of this cetv

This extraordinarily intuitive interpretation fo¥
goes back to G. PRANGEY. Figure 5

(*) E. CARTAN: Lecons sur les invariants intégrauaris, Hermann, 1922.
(*® PRANGE, G.: “Die allgemeinen Integrationsmethoden afealytischen Mechanik,” Enzykl. d.
Mathem. Wiss., Bd. 4, 1l, Art. 12 and 13, pp. 622.
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29. DESCARTES surfaces.A certain converse of MALUS’s theorem was treated
right at the beginning of Dioptics by DESCARTES for acsplecase. He addressed the
following problem: Consider two arbitrary field-like ragrgruences that lie in optically
different mediad)t and9t’, and assume that they permeate the media. LefaxsDrgo

through a pointtf, x’), such that when one lets one of the media existnenside of the

surface, while the other one is on the other sidefaitmeer ray congruence will go to the
latter one by refraction.

Since the two ray congruences are field-like, oneccanstruct families of light rays
that are represented by the equations:

S, x) = const., S(t, x) = const.,

and intersect these ray congruences transversallym Br@3, any surface= 1(x1, X2)
that belongs to the family:

S, %) = S(t, x) + C (29.1)

is a possible discontinuity surface. The surface gglithrough the pointty x’) when
one determine€ from the equation:

Cc=91t° x°) - S, xX°). (29.2)

By this construction, a part of the light rays will tet out from the medi&t and 9.

One calls these pieces that were cutwodtial light rays; the remaining part of the light
rays will be calledeal light rays.

DESCARTES treated this problem for the special casehich the two media were
isotropic and homogeneous and the two field-like ray comgeswere stigmatic. One
can always, by a suitable choice of the axes, givetequ@9.1) the form:

e+ +¢ == nyJ(t-a)?+ ¥+ X +C. (29.3)

In this case, the DESCARTES surface is a surfacetafion whose meridian curve is an
algebraic curve of fourth order. However, only iacp of this surface is useful as a
discontinuity surface, namely, the piece that [gesented by the equation (29.3) itself
(while preserving the signs of the roots).

30. The aplanatic points of the sphere. A noteworthy special case of the
DESCARTES surface was discovered by HUYGENS. Ngmélthe constantC in
(29.3) is equal to zero then one will obtain thaeatapn of a sphere when one removes the
square roots by squaring. Moreover, this conneatiay be conveniently established in
an elementary geometric manner.

Namely, ifF andF' are two inverse points of a sphere of raditisat one finds on a
line MF through the center then, by definition, there exist the equation:



30. The aplanatic points of the sphere. 33

%: £, (30.1)

from which, one will assume that the two triangRMF andF' MP are similar. It follows

from this that the angIl®FP will be equal to the anglg, and that one can therefore
write:

sini _ MP _ p
+

— = = (30.2)
sini FM a+a

IR

In particular, the ratio sii : sini will be independent of the position of the point
Should this ratio be equal to: n then one would have:

nNp—na=na np—na=0, (30.3)
from which, one would arrive at the equations:

ann o= an an
nZ2—n?’ NERE ERE

(30.4)

which one can also verify directly from (29.3).

We now imagine a solid of rotation that consists lakg in air, with the index of
refractionn = 1, whose meridiaABPCDF'A’' is composed of two concentric circles of
radiusp andp : n" and two rectilinear line segments (Fig. 6). In thisis the index of
refraction of the glass, which will be taken to equi&l in the picture. All light rays'P
that start from a poinE’ of the smaller spherical surface that bounds thel sali be
refracted aP on the large sphere in such a way that their stapinigt seems to be the
point F. The spherical surface with the great cilblé'E’ will, as a consequence, be
mapped stigmatically, and the virtual image, which lieshen spherical surfacBFE,
will be linearly magnified with a ratio’ : 1 and undistorted.

Figure 6. Figure 7.



Chapter Il

The ray map

31. Definition and representation of the ray map. We consider an optical
instrument that consists of an arbitrarily complicasgstem of lenses (or mirrors). The
light excitation originates in one space — thigject space— whose points will be
represented by arbitrary (Cartesian or also curvilineaoydinates t( x;, X) and leads
into a second space — timage space- that is described by the same sort of coordinates

I

(t', x, x,). We call the two Hamiltonian functions that deterenthe form of the light

I

rays in the interior of these two spats, x;, y;) andH'(t', X, V/).

First of all, under the passage of light through this instrument, anyrradlga object
space that goes through the instrument will be associated with an image ray.

Secondly, frong 25,under this association, tHEAGRANGE bracket of an arbitrary
ray congruence in the object space and tBR&RANGE bracket of the corresponding
ray congruence in the image space possess the same values on angotiatexs rays
when the congruences are represented in terms of the same parameters.

The idea that any ray map that satisfies the two donditabove can be realized, at
least approximately, by some suitable system of lensgsnierally broadened. We will
give examples in which this does not always need to dedbe (88 57 and 61). The
separation between the maps of this type, which caedlzed optically, and which is,
moreover, a mathematical problem, is never taken intoount and might be
exceptionally difficult.

This remark should not, however, lead one to think tiastudy of the most general
maps of rays, in which the LAGRANGE brackets remain riavd, are of merely
theoretical interest. On the contrary: Almostpalictical applications that one can make
of the general theory were inconceivable when one dichave these general maps to
work with as a foundation.

In order to represent such a ray map, we consider tis¢ general solution in object
space:

X = gzi(t, ay, ap, by, bz), Vi = /7i(t, ay, ap, by, bz), (I =1, 2) (31.1)

of the canonical equations (14.1) that satisfies thalmtinditions:
& ab)=a, it ab)=b, (=12 (312
fort=t°. Correspondingly, we consider the analogous solutidmage space:
X =¢(tha,a,8,8), Y =nita,a,4,8) (i=1,2 (31.3)

to the associated canonical equations that is establisiteéé bytial conditions:



32. Definition and representation of the ray map. 35

£(°.a.5)= 4. 7.0°,.6)=t (31.4)

The one-to-one association of the rays of thesespaxes will then be expressed by
four equations:

a = Aa;, b), b' = Bi(ay, by) (,j=1,2), (315)
in which it is self-explanatory that the functiomigterminant must satisfy:

0A.AB.B) ., (31.6)
o(a, 2, h, k)

32. We represent a ray congruence in the object spao®nsidering the quantities
a;, b to be functions of two parametarsandu, and substituting these values in (31.1).
With the help of equations (31.5) and (31.3), ohent computes the associated ray
congruence in image space. From the reasoninglin, ®ne will then have, when one
further notices thadt = dt” = 0 here:

dap + A1 du + Ao dup,=b; day + by day, (32.1)
such that one can write, from (16.5):

_ da 03| 0 0a_ ,0a
ol =5, (qau:bz j ul[q au % LJ

_o@a,h) , 9(a,h)
T o(u,) oUW

(32.2)

The expression for the LAGRANGE bracket,[u;]’ in image space is entirely similar,
and we must exhibit the most general transformg3dns) for which one always has:

[Ug, Up]" = [, U] (32.3)
for any choice of functiong;(us, W), ..., bo(ug, Wy).

It is worth mentioning that the form of the conalitithat we have obtained in this way
is completely independent of the form of HAEMILTONIAN functions H and H Our
theory is therefore also valid for arbitrary cunviear coordinates and can therefore also
be applied to the cases in which arbitrary curvenfaces will be represented by the
conditions t=t°and t = t' °,

33. Connection with canonical transformations. In the investigation that now
follows, the notations that we used up to now shalfeplaced with ones that are better
adapted to what one finds in the literature. Ngmek would like to replace;, a; with
X, y andby, b, with & 7, and likewise denote the coordinates of the lieenents in the
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image space by, y, & /. The most general transformation for which the
LAGRANGE brackets remain invariant shall then be givethe form:

X' =X(X &) Y= Y(x ¥EN) } (33.1)

E'==(x¥.é.) n'=H(XYéN).

If one denotes the parameters of a ray congruenaogvyhen one will have, from (32.2):

(] = 2064 9(y.1)

a(u,v) a(u,v) (33.2)
v = 943) | (Y. H)

o(u,v) d(u v

We now choose andv to be any two of the four variabl&sy, ¢ ands, and keep the
remaining two variables constant. The six relation

[xy1=0, k=0, Fd=0 k=0 k=1 kna=1 (333

then arise from the first equation in (33.2). Daehe requirement that[v]" = [u, V],
one must then have, from the second equation 1233

3(X,Z) , O(Y.H) _
oxy) 9(x Y

[, y]' = 0, (33.4)

and one further obtains five similar first-ordertgd differential equations from (33.3)
that are easy to write down.

We would now like to show that conversely whersthsix equations are fulfilled the
equation {1, v]' = [u, v] will be valid for not only the six special ray mgruences that we
have considered up to now, but in complete gengralio that end, we calculate the
coefficientsA, i, p, oin the differential form:

ZdX+HdY-¢dx—ndy=Adx + udy + pdé+ odn, (33.5)
and obtain:
A== X +H Y= ¢ U==X,+HYy—n,
pP==Xs+HYs, o==X,+HY,.

From the last equations, it follows by differenpat that:

A=W A= e =I%4 -1 A, -0, =[xl } (33.6)

U= p =LY €l w,—o,=[ywn'-L p,-o, =&

Therefore, if the LAGRANGE bracketg,[y]', ..., have the same values &sy], ..., then
it will follows from (33.3) that the left-hand side all equations (33.6) must vanish, and
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that means the same thing as the demand that thehaghttside of (33.5) must be a
complete differential. One can then write:

Zdx+Hdy-¢dx —ndy=dv. (33.7)

Conversely, if equation (33.7) is fulfilled then one wiimediately calculate thati,[v]’
= [u, V]EEOI‘ all possible ray congruences, and this is precig@yesult that we wanted to
prove (7).

34. When the four functionsX, ..., H satisfy equation (33.7), one calls the
transformation (33.1) aanonical transformation Thefundamental resulthat we have
obtained can then be expressed as follows:

The requirement that theAGRANGE brackets should remain invariant for the ray
maps of optics is equivalent to the requirement that the associatite dhé elements
be represented by a canonical transformation for ¢t artd t = t*.

There is very extensive literatur®)(on canonical transformations, which also play
an important role in mechanics. Some of the most impbmresults for optics will be
summarized here. For the further details, one can &sk& them up in my
Variationsrechnung

The first important property of canonical transforimas consists in the fact that each
arbitrary canonical transformation is always, in faatiransformation for which the
functional determinant:

D = o(X,Y,=,H)

(34.1)
(%, ¥,$.17)

can never vanish. Namely, one proves at + 1 f%. The proof of this fact is not
entirely simple when one would like to be carefaltiout the sign oD; however, it
suffices for most purposes to show tlkat= + 1, and one achieves this by an entirely
elementary calculation. Namely, one remarks tha oan also obtai® from the
following equation:

D= 0(=,H,-X,-Y)

0(&.n,-%,~y)

(34.2)

If one now multiplies the two determinants (34.hy g34.2)by columnghen one will
get:

(% In the derivation above, we employed the fact that fimctionsX, ..., H are at least twice
continuously differentiable. In chap. 6 of rifgriationsrechnungl showed that the result above, as well
as the entire theory of canonical transformatiors foa derived without assuming that these functions
possess two derivatives.

(*® See PRANGEIoc. cit 14, esp., pp. 74& seq

(*®) Variationsrechnung§ 102.
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[xéI" [y 0 [ndl

p2 = |l Lya” [éa™ 0 (34.3)

0 [xyl' [x¢]' [xna
[yv,¥" 0 [wé] [ynl'

Therefore, if the transformation is canonical them will have, as we have announced:
D?=1. (34.4)

It then follows from this that the inverse of a cagahtransformation always exists and
is obviously also canonical, and since, from (33.7), oneaimbt a canonical
transformation from the composition of two canonicahsformations, the totality of all
canonical transformations defines a grotfj (

35. POISSON brackets. The second main property of canonical transformations
now consists of the fact that one can also charaeteéhese transformations by the
construction of POISSOMNrackets These POISSON brackets are, when one compares
them with the LAGRANGE brackets that have consideredusively up to now, dual in
a certain sense. Namely, in order to define the LAGRENrackets (33.2), we had to
considerfour variablesx, y, & 77 of two parametersi andv. Now, we takdéwo functions
F and G of four variablesx, y, & n and define the POISSON bracké&, (F) by the
formula:

o(F,G) N 0(F,G)

o(x&) ay.n)

(G, F) = (35.1)

The calculations with POISSON brackets are madelsimvhen one notes the following
two properties of these brackets, which follow ingimagely from (35.1). First, we have:

(G FH=-(F0), (35.2)
and second, in the event tha{F1, ..., F,) is a function of arbitrarily many functions
Fulx, Y, & 1n):

5 0P

(G, ®)=> —(GR). (35.6)

= OF,

36. We arrive at a relation between POISSON and LAGRE brackets in the
following way: For an arbitrary functiorF(x, y, & 7)), we define the following
expression:

(=, F)dX +H,F) dy = (X, F)dx - (Y, F) d7, (36.1)

in which we have set:

(") Variationsrechnungg 94.
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dx = a—xdx+~~-+a—xd/7, etc., (36.2)
0x on

develop the POISSON brackets that enter into (36.1)calbelct the coefficients of the
C\ﬁ; gggrivatives ofF. In this way, we find that the expression (36slalways identical
([x &l dx+[ yé]' dyHnz " &)

+H([xpldx+[ yal dyH &' d

+([x W dx+ xS & H X' @)

+([y, ' dx+[ yé]' &+ yil" @)

(36.3)

=11 T <T1 =<T1

If the transformation is now canonical then thisdatxpression has the value:
Fxdx+Fydy+Fsdé+F, dn = dF; (36.4)

conversely, if this is the case for all possible tiorws F then K, &', [y, 7] must equal

unity, and the remaining LAGRANGE brackets must vanish.owéver, the theorem

follows from this:

A necessary and sufficient condition for the transifation(33.1)to be canonical is
the existence of the identity:

EFdX+H,Fdy -(X, F)df = (Y,F) dy =dF (36.5)
for all possible functions ([, y, ¢, 7).

37. We would now like to employ the fact that the fuotl determinant (34.1) is
necessarily non-zero, and that one can then competquantitie, y, & 77 as functions
of thex, vy, &, 17 from equations (33.1). From this, it follows that oaa associate each
functionF(x, y, & n) with a functionF’ (X, y, &, /7) for which the identity exists:

Fxy. & m=FKX,Y, ¢, 7). (37.1)
One can also write the total differentilt as:
dF=dF'=F dX+F,dy+ F &'+ F d7',
and one sees that equation (36.5) means the same thirgfasrtbquations:

EP=F, HP=F, FX=F, FYV=F. (37.2)

X ! y'l

(*® When one reverts to the index notation, this complet#gmentary, if somewhat lengthy,
computation becomes so self-evident that it can be dooed’s head Variationsrechnung8 91.
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If we set, in sequence;, V', &, /7 for F andX, Y, =, H for F then we will obtain a
number of equations that reduce to the following six:

X;V)=0, EH)=0, (37.3)
X,H)=0, EY=0, (37.4)
=X=1 HY)=1 (37.5)

38. The last conditions are then necessary for thaesformation (33.1) to be
canonical. We must now show that these conditioasa#so sufficient; i.e., that any
transformation (33.1) is canonical as long as equations (8Y (37.5) exist identically.
For that, we first remark that when one multiplies teterminants (34.1) and (34.2) with
each otheby rowsthen one will get:

=X) &Y) 0 EH)
_ H,X) (HY) H7=) 0
0 (V,\X) EX) HX)|
X,y 0  E=Y) HY

D2

Thus, if the conditions (37.3) to (37.5) are fulfilled ttere must hav®?® = 1, soD # 0.
One can then associate each functdr y, & 7) with a functionF(x, vy, &, #), for
which (37.1) is true. When one employs (35.3), one walhthave:

&P =FREX)+FEY)+E(E,H).
If equations (37.3) to (37.5) are fulfilled then the fiesfuation (37.2) must be, as well.
One verifies the remaining equations (37.2) in exactly éimeesway, from which, (36.5)
then follows. With the help of the results of § 36¢ dimen obtains the theorem:

The existence of equatior87.3) to (37.5) is necessary and sufficient for the
transformation(33.1)to be canonical

39. An invariant property is true for the POISSON bracket is also similar to the
one that we started with for the LAGRANGE bracketantly, if we set:

Gxy, ¢, M) =G (XY, =, H),
similar to what we did in (37.1), then we will have:
(G R =G (X,F)+G,(Y, A+ G(E, A+ GH, B,
and it will follow with the help of formulas (37.2) that

(G FH=G,FY,
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which is a relation that implies equations (37.3) to (37/reover, from the result of
the previous paragraphs, and to which, it is equivalent.

40. Construction of the canonical transformations. The relations (37.3) to (37.5)
also show that if onlpne of the four functionsX, Y, =, H is prescribed then none of the
remaining ones can be prescribed arbitrarily when timsfwemation is canonical.

Namely, a canonical transformation can — e.g., wighielp of two functionX(x, v,

& n) andY(x, Y, & n) — be constructed only when the POISSON bracketdatisfies:

_A(X,Y) L A(X ) _

=0, (40.1)
a(x,¢) a(y.n)

X,V

and secondly when the first two rows of the funadiodeterminant (34.1) are not
proportional to each other, since otherwise thaérd@inant would vanish. The latter
says that at each point at least one of the sixrskorder functional determinants:

AXY) ALY AXY) AKXV 40.2)
a(x, y) a(x,77) a(y. <) a(¢.n)
AXY)  AX.Y) (40.3)
9(%,€) a(y.n)

may not vanish. On the other hand, these two tondiare also sufficient for one to
calculate the functions, H, which, together witlX, Y, define a canonical transformation.
However, before we prove this, we shall establidbnama that is also useful for later
purposes.

41. From the four functional determinants (40.2), @a@, in fact, select pairs of
these expressions in four different ways, such dnat of the variables, y, & 1 appears
twice in the denominator. We would now like to whthat when both functional
determinants of one such pair vanish at a poir, fiist derivatives oX andY with
respect to the selected variables must also vaifiis point when the conditions of the
previous paragraphs are fulfilled.

In particular, we must then prove, for instanbat from:

0(X,Y) -0 0(X,Y) -0 (41.1)
a(x,y) a(x.17)

it must necessarily follow that:
X 0, oY 0. (41.2)
0x 0x

However, one sees this immediately. Namely, Hegitof these two quantities were non-
zero then, from (41.1), the existence of two fimtemberd, m would follow for which
the four equations:
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X, =AX, Y, =AY,

: : (41.3)
x/] - ﬂxx Y/7 - ,UX

are simultaneously valid. If one substitutes theskiegain the second functional

determinant (40.3) then it must vanish. Due to (40.1)itstedeterminant in (40.3) must
also vanish. The comparison of (40.2) with (41.3) thetihéuryields:

0(X,Y) _ , a(X.Y) AXY) __, aXY)
a(y.<) (&)’ o($.17) a(x¢)

(41.4)

so all six functional determinants (40.2) and (4hiust then vanish, contrary to the
assumption.

42. An important corollary to the lemma that we jpsbved consists in the fact that
at least one of the four expressiof#).2) must be non-zero.Namely, if all of the
determinants (40.2) are equal to zero then ahefirst derivatives oX must vanish, and
one must then have that the expression (40.3) vasiiscontrary to the assumption. For
the determination oE, H, there are now four cases to distinguish from eaitter,
according to whether one desires that the firstose, third, or fourth functional
determinant (40.2) is non-zero, resp. However titbatment of these four cases leads to
computations that are, in principle, entirely samil

For example we assume that:

o(X,Y) 40

(42.1)
a(¢.17)
One can then solve the equations:
X =X Y, & 1), Y =YXy, & n) (42.2)
for ¢, n, and obtain:
$=9(X Yy, X,Y), n=uxy x,y). (42.3)
From the identities:
X =X(%Y, ¢80, Y =YXV ¢ ¢, (42.4)

one can compute the first partial derivativgsand ¢ by differentiation. One finds the
following equations:

o(X,Y) :_6(X,Y) o(X,Y) :6(X,Y) 425
aEn T o @ H o W

From these, it follows, with the help of (40.1) g4@.1), that:
By = . (42.6)

The latter equation states that the functigh&nd ¢ can be represented as partial
derivatives of a function E(x, y, X, y') in an infinite number of ways, and that one can
write:
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§=-E, n=-g. (42.7)

We now assume that we have determined funceidrsy, & 7), Hx Y, & 1), WYX, Y, ¢
n), for which equation (33.7) will be true identically, whem substitute the given
functions in place of th&, Y. If one replaces the variablés 7 with the expressions
(42.7) in these functions then one will obtain new fioms="(x, y, X, y'), H (X, y, X, Y),
W(x,y, X, y), for which the identity exists:

='dx +H'dy +Exdx+E, dy=dW¥". (42.8)
From this, it now follows that:
Ex=W,, E,= W, (42.9)

(E —¥") must then be a function &f andy alone. However, since the functigix, y,
X,Y') is defined only up to an arbitrary additive functionxf¥'), we can, without loss
of generality, seE = W' It then follows from (42.8) that:

E'=Ey, 7 =E,, (42.10)

and these equations determine our canonical transfemetimpletely. Namely, one
needs merely to replace the quantitesy’ in (42.10) withX, Y in order to obtain the
desired functiong andH.

Moreover, one remarks that the functiBnthat we have computed is not entirely
arbitrary: Namely, since it is always possible to edle equations (42.3) fet, y', and
therefore, also equations (42.7), the functiomust necessarily satisfy the equation:

E, E
N ) (42.11)

yX Eyy

43. The eikonals. In optics, a functiorE(x, y, X, y') that fulfills the condition
(42.11) is called arikonal (*%. If an arbitrary eikonal is given then the asseclat
canonical transformation will be determined by equations7j4and (42.10). One
computes the functiong, Y, =, H by an elimination that is always possible, due to the
validity of (42.11).

We obtain all of the canonical transformations for whi¢B.1)is true in this way.

(*° With this terminology, we are following BRUNS (cfootnote 18). We will strictly distinguish the
eikonals from the characteristic functions of HAMILTOHM distinction that is not always made. For
example, K. SCHWARZSCHILD consistently called HAMILTGiN¢haracteristic functions eikonals. (K.
SCWARZSCHILD: “Untersuchungen zur geometrischen optilll,IIl,” Astronom. Mitteil. d. Kgl.
Sternwarte zu Gottingen, Pt. 9 — 11, 1905, pp. 1-31, 1-28, and 1Th4).two notions are occasionally
confused in recent times (M. HERZBERGE®&trahlenoptik Part 5, pp. 111. Berlin, Julius Springer,
1931).
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Second, we assume that the first of the functiontdraenants (40.2) is non-zero,
namely:
2(X,Y)

0. 43.1
o(x.y) @y

One can then solve equations (42.2)xor and obtain:

X=9(& mX.y) Y= X Y). (43.2)

One proves, by a process that this entirely sinidathe one in the previous paragraphs,
that here one has:

$n = WY,

and deduces from this, just as before, the existefna functiorV(é, 7, X, y') for which
equations (43.2) can be replaced with:

X =V, y=V,;. (43.3)

We now remark that, by the introduction of a fuonti

Qx, Yy, & ) =Py, & n) +x$+yn, (43.4)
in place of (33.7), one write:
ZdX+HdY+xdé+ydn=dQ(xy, & n). (43.5)

By this, our problem is brought into a form thatnoades with the form of the one that
was posed in the previous paragraphs, up to ttaioot Thus, when one introduces the
independent variables 7, x, y, with the help of (43.2) [or (43.3)], it will faw in the
same way as it did before that one can always set:

Q(, ¢, & n) =V 11, X, Y) (43.6)
E=Vy, 7 =Vy. (43.7)

In addition, one sees that the following relation\f must be true:

V. V
éX &y
#0, (43.8)
Vf7><’ an/

because, by assumption, equations (43.3) mustlbelsdorx' andy'.

One calls an arbitrary functiof(¢, n, X', y') for which this condition (43.8) is true a
mixed eikonal This notation is supposed to suggest thatepends upon the two point
coordinatesx, y', and the two canonical direction coordinaggs;. One obtains the
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functions X, Y by solving the first two equations fo¢, y, the function=, H by
substituting these values in the right-hand side of equa{id3.7), and the functioW
will ultimately be represented by the equation:

W=V n X, y)=x$—yn (43.9)
with the help of (43.4) and (43.7).

44. 1t still remains for us to carry out a similar argunnér the two cases in which
the second or third functional determinant (40.2) is non-z€lhese two cases go into
each other when one switchesiith y and £ with 77, such that it suffices to examine one
of these cases. For example, we assume that:

A(X,Y)
a(y. <)

0. (44.1)

One can then solve equations (42.2)yfand ¢ and obtain:

y=9x n.X,¥),  {=UX X, Y). (44.2)

One proves, just as we did in § 42, that here wst imave:

==y, (44.3)

and it follows, exactly as before, that one carcdbe the canonical transformation with
the help of askew eikonalU(x, 77, X, Y).

In order to summarize the equations that will datee our canonical transformation,
we remark that one can write:

FdX +ndy —=&dx+ydp=dW +yn) =duy, (44.4)
in case one sets:

W(x @ ¢ n) +on=U(X 17, X,Y). (44.5)

It then follows from this equation that:

§{=-U, y=U,6 §{=U, n=U,

Ux>( ny
£0 44.6
‘U U (44.6)

nx nn

W=U(xn X,Y)- V.

45. We have completely solved the problem that weegosf determining all
possible ray maps. Our result reads:
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Any conceivable canonical transformation in two pairs of variables can allvay
computed, with the help of one of the eikonals E, V (one of the émoeskonals U,
resp.). It is always possible to determine a transformation whetwthéunctions X, Y
are given and the conditions ®f40are satisfied.

From the theoretical standpoint, this result is cetgly satisfactory. However, one
remarks that in the system of equations (37.3) to (37.5fitstefour of them are on
entirely the same footing when we replace the foncpair X, Y that we based our
reasoning upon with one or the other function paiH or X, H or =, Y. By either of
these two combinations, one obtains four possible elkpatleast one of which can be
employed in each case. In all, one obtaindeeneikonals in this way that one can
summarize in the following table:

Xy | x| &y | $n
U

Xy E U \%
xn | U
gy | U
g7 |V w

Each of these eikonals depends upon four variables, and indegel variables are
specified in the left-most column and the top row of tlable, and one finds the
associated eikonal listed in the intersection of thecsedl row and column. From our
result, one can find at least one eikonal in each row @lumn, by which, a given
canonical transformation can be represented. Howewnér,ome of sixteen cells in the
tables will correspond to a possible eikonal, when furkiskith notation, because the
eikonals that are taken from the remaining free cellsnateused at all in practic8%.
Namely, except for the eikondls U, V that we have considered up to now, in practical
optics, only the eikonald andV come into consideration, which one obtains fidrand

V by switching the object and image spaces, andutigellar eikonal\W(é, n, &, n7'), for
which the following formulas are valid:

X =Wrg, y =W, X =-Wg, y =—-W,, (45.1)
W, W..

S PN (45.2)
WR" V\én’

W=W{ n, =, H) + XX+ YH -xE—yn. (45.3)

(*® The remark above does not pertain to the theory dflHAON characteristic functions, which is
used in the theory of eikonals (cf., 8 64). HAMILTON enyeld a characteristic functio® (Mathem.
Papers pp. 268) that depended partly on points and partly on dinectordinates in each of the optical
spaces that were being mapped to each other. An eilkaigddssesses this property will be indicated in,
e.g., the third cell of the third row.
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46. It can naturally occur and this is the general cas¢hat all sixteen eikonals that
we spoke of are simultaneously appropriate to the desorif one and the same
canonical transformation. However, in this case theeealso many practical grounds for
preferring one or the other formal system in the prolidemg addressed. One obtains a
hint about which choice to make by considering the limitages in which some of the
eikonals are excluded from the outset.

For that reason, we would like to consider the varim@ssrictions that, for instance,
the functionE(x, y, X, y') is subject to when one or more of the first threecfional
determinants (40.2) vanishes identically.

First, if:

o(X,Y) _

a(y.<)

0 (46.1)

then one can eliminate the variabjeand ¢ from equations (42.2) simultaneously , and
one will obtain a relation of the form(x, 7, X, y) = 0. However, since, by assumption,
X Y, X,y must be employed as the independent variablessandition equation can be
described in the formy = n(x, X, y'). From (42.7), it then follows th&, is independent
of y and that as a consequence the eikonal possesdesith

E=a(XX,Y)+tya&aX,Y). (46.2)

It is self-explanatory that, conversely, the coiodgit(46.1) will be fulfilled whenE
appears in the form (46.2).

The case in which the second determinant (40:2skias identically can be treated in
a completely similar manner.

Incidentally, it follows from this that when onashboth:

o(X.,Y) o(X.,Y)

=0, =0 (46.3)
a(y, <) a(x,77)
simultaneously the eikon& must necessarily have the form:
E=g&(X,y)+yalX,y) +x&(X,y) +xy&aX,y). (46.4)
However, if we now assume that the functional dateant:
a(X’Y)EO, (46.5)
(%, y)

and indeed only that one, then there will exiselation®(¢, n, X, y') = 0 that, from
(42.7), can be written:
®d(-E, -E,X,y)=0. (46.6)

This relation is much more complicated to treantti@e corresponding relations in the
foregoing cases. As a result, if thkeew eikonal (k, y, X, y') of 8§ 44 were chosen in
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place of the eikond(x, y, X, ¥) then it would follow from (46.5), when one observes th
first equation in (44.5), thad must be linear in x.

We can then assert that whenever a relation of the fd(d) 77, X, y) = 0 exists,
without the need for one of the identit{d$.3)to be in effect, a classical case is at hand
in which one must employ a skew eikonghis may also be the case when the condition
® = 0 is fulfilled approximatelyin the neighborhood of a point,

By contrast, if not only (46.5), but also, for exam#s.1), is fulfilled then there will
exist no basis for replacing the eikolaith a skew eikonal. Namely, it possible here
to pose the condition for the function (46.2) that amfers from the relation (46.6).
Indeed, in this case one must demandxtatdy can be eliminated from the equations:

_5:%+y%, —/7251(X1)('!y,)'
0X oX

This is, however, the case if and onlyifdoes not depend upani.e., when one has:
E=a(XX,Y)+tyal,Y). (46.7)

It only remains for us to speak of the last case, inwthie three identities (46.3) and
(46.5) are simultaneously valide must then have the form (46.4), as well as the form
(46.7); one finds theE has the form:

E=aX,y)+tyalX,y)+x&X,y). (46.8)

47. Semi-telescopic, stigmatic, and telescopic map$he eikonal (46.8) possesses
a noteworthy property. From the previous formula, oostrhave, in fact:

{=-E=-alx.,y) n=-g=-axy), (47.1)

and it follows that one must also have:

X =X(& 1), y =Y(, 7). (47.2)

The functionsX, Y are independent of y, which one can, moreover, infer directly from
the result of § 41.

If the object space is isotropic and homogeneous ancothrelinates are rectangular
then the previous equations will state that parallel liglys in the object space will be
transformed by the passage through the instrument intgraadtc light pencil. The ray
map will then be calledemi-telescopic

A semi-telescopic ray map, for which the right-haitk ©f (47.2) is given, will also
be represented by an angle eikonal (8 45) to advantage.likéwese finds, as before,
thatW must have the form:

W=—ay(s, ) = §'X(& ) — 17 Y& ). (47.3)
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In order for the two eikonals (46.8) and (47.3) to represensame ray map one must
have, first of all, that the two systems of equati¢tsl) and (47.2) are equivalent, and
secondly, one must have:

ay($, 17) = &(X($, 7). Y(<, 7)) (47.3)

One obtains this latter equation from our previous forewlaen one observes (45.3) and
uses the fact th&(x, y, — &, — &) =E.

48. One obtains entirely similar results when one delsdhat the ray map should be
stigmatic i.e., that the points of ther-plane and'y -plane will be mapped to each other
in a one-to-one manner. One must then, in fact,:have

X =Xy, Y =YXYVY), (48.1)

and from these equations, it then follows that therelsE, U, U "that appear in the first
row and the first column of the table in § 45 are all ablesand that one therefore must
use either the mixed eikon®l or the mixed eikonaV/. Since, from (48.1), a relation
must exist between the quantitiesy| X, /7) and the quantitiex(y, Yy, &), this points to

a conclusion that is entirely analogous to the oaedhve us (46.4), namely, tRat(x, y,

&', ') must necessarily be of the form:

V= a(X y) +axy) &'+ awx y) 7 +axy) <. (48.2)
However, the equations that belong to this eikonal:
X = Vg y = V,7 (48.3)
are equivalent to equations (48.1) if and only if one takes:
V7= a(x,y) + $TX(Xy) + 77 Y(X, ). (48.4)
From 8§ 43, one must add the following relations to this:

A(X,Y)

£0, (48.5)
a(x,y)

oay  ,0X , ,0Y
=—2+&—+n"—, 48.6
0x ¢ 0X g oXx ( )

oay . ,0X , ,0Y
=———+&—+n"—, 48.7
n oy 3 oy n 3y (48.7)
W == (X Y), (48.8)

in order for the canonical transformation to be ptately computable.
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49. A third type of ray map that is singular in the same asyhe last two that were
treated is the so-calle@lescopicray map, for which the functiorns, H depends upon
only £ and 7, but notx andy. If the coordinates of the object and image spaces ar
Cartesian then this will mean that parallel rays, im,tuemain parallel when they pass
through the instrument. One deduces in precisely thes saay as in the previous
paragraphs that of all of the usual eikonals, once adanmixed eikonaly andV’ are
the only ones that are useful, and that one muse ggt,

V(& hx,y) =W(E ) +X Z(& ) +y HE ), (49.1)
A=H) Lo, (49.2)

a(&.n)
X:l-Pgr+X' Eg+y’ Hg, (49.3)
y=W%,+x =,;+y Hy, (49.4)
¢'==($, 1), 17 =H( n), (49.5)
W=V-&Ve—nV,. (49.6)

50. Most general ray maps for which the four eikonal€, V, V, W are not
applicable. In the conventional representations of the theafrgikonals, it is tacitly
assumed that one can represent all possible rag (oapat least, all ray maps that are not
completely trivial) by at least one of the ordinaionalsE, V, V’, andW. This is,
however, a mistake: There are maps that can beilbedmnly by eikonals that are not
bilinear in the variables that appear and for whiohe of the variable combinations that
are used ik, V, V', andW can be chosen as independent variables. Theseadskare,
however, not very numerous, and for that reasonyweeld like to present all of them,
since this knowledge can be worthwhile in certainwnstances. We thus demand that
between the eight variables (.., /7) there should exist relations of the form:

KXy, X,Y)
My, X, Y)

=0, AXY, &, 17)=0, (50.1)
=0, N(&né,n)=0. (50.2)

When one switches the coordinate p&irs’ andy’, /7 with each other in the desired
cases, one can, in the general theory, alwayseaatithe fact that skew eikon&)g(x, v,
X, 1) can be employed for the representation of our maps. We compute the
quantitiesé, n, y, £’ with the help of the formula:

dU =- &dxX +y drf + Edx+ 7 dy. (50.3)

Due to the existence of the relations (50.1), oe@udes from this, similar to what one
did in 8§ 46, that)" must have the form:

U =AXYy) X177 +B(x y)i7 +C(x, y) X +D(X, ). (50.4)

The expression that corresponds to the functioatdrchinant (42.11) has the following
form here:
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AX+B  AX+ B
AT +C. AT +C |

since, from the general theory, this expression mustvaoish, at least one of the
functional determinants:

d(A B) d(A,C) d(B,C)
a(x,y) o(xy) (%, y)

(50.5)

must be non-zero.
Furthermore, the identities (50.2) must now bdilled, which, when one uses the
eikonal (50.3), will have the form:
MU, U, X,AX+ B) =0, N(U,U ,-(A+C)n')=0. (50.6)

We partially differentiate the first of these eqoas with respect tg, y, /7 and obtain:

MU, + MU, +M_ (AX+B) =0,
MEU:W + MnU;y +My’(Ay)(+ By) =0,
M,(AX+B)+ M (AX+B) =0.

The three functions dfls , M, My cannot vanish simultaneously since otherwise the
variablex' could not be chosen to be one of the independanébles; from the last
system of equations, one can then deduce thetigenti

(AX+B) U, +2(AX+ B)(A%+ B)U+( A% B U=0.
One obtains a second identity from the second equéb0.6). The left-hand sides of

these equations represent polynomialg iand/; whose coefficients must all vanish. In
order to write down these conditions convenientlg,introduce the symbol:

{ox, B = Do)y Bo— @)+ PXy) Uiy + DX By - (50.7)

Our conditions will then be represented by theofwlhg fifteen second-order partial
differential equations:

{AA A}=0, {AAB}=0, {AA C}=0, (50.8)
{AB,A} =0, {AC, A}=0, (50.9)
{BB,A}+2{AB B} =0, {CC, A} +2{AC,C}=0, (50.10)
{BB,B}=0, {CC,C}=0, (50.11)

{AA, D} = - 2{AB, C} = - 2{AC, B}, (50.12)
{BB,C}+2{AB,D}=0, {CC,B}+2{AC, D}=0, (50.13)

{BB,D}=0, {CC D}=0. (50.14)
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51. We must now exhibit the most general common intedrdieofifteen equations.
The integration of these differential equations leads fundamentally distinct
calculations, according to wheth&fx, y) is constant or not. The final results generally
go over to each other by an elementary transformatibrthe variables, as one
subsequently verifies (cf., § 55).

In the case wherd(x, y) is variable, one can (if need be, by switchigith y)
always assume that:

A% 0. (51.1)

As a consequence, one can introdacndy as independent variables, and in particular,
set:

x=F(A,Y). (51.2)
For an arbitrary functio®(x, y), one can then write:

D(x, y) = oA Y), (51.3)

and with these relations one will then have the idgnti
{AA ©} = g{AA AL+ 6, A (51.4)
It will then follow from equations (50.8) that one can:s
B =fi(A) +y qu(A), C=f(A) +y B(A). (51.5)
One now has the equations:

9(AB) _ A(AC) _ 3(B,C) _ e
A(x, y) A o, 3% y) A O, Ay Alg(f+yd) - g &+ y@], (51.6)

from which, one deduces that the determinants [3@bishes simultaneously only when
at least one of the two functiogsor g, is non-zero. We assume, e.g., that:

9u(A) # 0. (51.7)

If one now observes equations (50.9) and the spfecia (51.5) of the functionB(X, y)
andC(x, y) then one will obtain the identities:

%{AB, ) = - fay G+ B, (1 +y8), (51.8)
%{AB, O} = — Pry G2 +4,, (11 + ya)) (51.9)

from which, it will follow that:
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1 . 1 '
E{AB, C}=-0,9,, E{AC’ B}=-0,0,.

The second equation in (50.12) can then be wridem, = 9,9,, and one thus has the

relation:
g2 = r Loy, (51.10)

in whichr is a constant that can possibly be zero. Theredor finally has:

1 '
g{AB, C}=-1r9,0;. (51.11)

52. From (51.8) and (51.9), one now computes:

1 1 1 ] !
g{AB’ B} = ~0:9 g{AC’ Ct= -0,0; =~ I’Zglgl, (52.1)

such that from equations (50.10), it will follow, moreovéat:

1 : 1 .
E‘[BB, A}: 29191 ’ E{CC’ A}: 2rzglgl' (52-2)

These equations, when combined with our previous resultshem allow us to write:

%{BB, ®} = 20,08, + Fhua- 20, £+ ya)P o+ ( G+ YIOFPS,,  (52.3)

1 , , '
E{CC’ D} = 20,08, + r° 9P — 2r9,(fo+ yrd)p o, + (fo+ yrd)d,,. (52.4)

One immediately deduces from this that:

%{BB, B} = g?(f+yg), %{cc, C= rigi(f/+yrg),  (52.5)

and from equations (50.11), which must be fulfilled for all ealofy, the relations will
then follow:

9, =0, (52.6)
f' =0, rf)=0. (52.7)

53. If we now seD = JA, y) then it will follow from (50.12), when combined with
(51.4) and (51.11), that:
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Ay = 2rg,0;, (53.1)
such that we can set:

D =f5(A) +y &(A) +Y° 1 g, . (53.2)

When we calculateBB, C} and {AB, D} with these formulas, it will then follow from
the first equation of (50.13) that we have the relation:

0, f,+29,f, = 2(g; - rg, ). (53.3)

One likewise deals with the equatioBB, D} = 0 and finds, after one has taken into
account that the coefficient gt vanishes identically, the two conditions:

g; =0, (53.4)
9, f;+29,f;, = 2f/(g;-rg,f). (53.5)

54. Equations (52.6), (52.7), (51.10), in combination with tis¢ fhree equations,
allow us to calculate the six functiois ..., gs explicitly. If we remark that in the
definition of the eikonall we can always ignore a linear function of the Jaaa that
comes about only by a translation of the coordinaggrmgrive can, by a suitable choice of
the origin of the, y', andé-axes, set:

g =AA-3, g =r AA-a), s =sHA -3, (54.1)
fi=a(A -3, (54.2)
f=(s—r a)(A—g + 2 (54.3)
A-a
fa=(s—r )(A—g +-F2 (54.4)

In addition, due to the second equation in (52.7) and (51.€)ymust have:
r (=0, B#0. (54.5)

In order to also compui(x, y), we remark that from the method above, it willdall
from:
{AA x} =0, {AB,x}=0, {BB,x}=0 (54.6)
that:
x=f(A) +y oA), g =0, g, f"+2g f' =0. (54.7)

By a certain choice of origin of theaxis, one can, for that reason, write:

1
a= ———
B(px+qy)

(P#0,6%0). (54.8)
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55. From these calculations, we find that the eikonaltrhasge the form:

(X+a+By)n +s-Ha-BY) + b BX(pX+ QY). (55.1)

U =axng +
axn B(px+ ay

By a suitable translation of the origin of the adinates, one can ultimately arrive at the
fact that the constantsands both keep their zero values, and the desired &y can be
calculated from the skew eikonal:

(X+B8W)n'+rBy) b
. 55.2
By pp W (55:2)

U =axnqg +

Since one must haygG # 0 andr b = 0, we have two essentially different cases to
consider. In the first onez 0 andb = 0, and one obtains:

X==-By + p>2<;rqy( o7~ & =( 7~ o)’ +4 pv&‘),

y =-apy+ TP D 5 - (o= 4 ppE),

1+ a;(rgi ) (553)
' =arpy- 20 (m—qfﬂ/(m—q;‘) +4 prﬁf),
p=ipys P mr-afe(mr- o pie).

In the second casb# 0 andr = 0, and one obtains:

oo BRGETy)
b(px+ qY—( - @)

_aBR0E+ y)+ £+ by
bt()px+q»—(pi+— 0 5.0

&= (px+qy-TrBRED
Y 0B

'=%(px+ ) - ).

In fact, in the case wheneandb vanish simultaneously both of these formulas will
coincide.

It is, moreover, very easy to verify that fouratens of the form (50.1) and (50.2)
must always exist for all of these systems of fdasu For instance, one sees
immediately that from the first two equations 08.(3) thatx andy can be simultaneously
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eliminated as well ag and 77, and furthermore, that the last two equations in (55.3)
possess similar properties. This same result foll@veduations (55.4), once, from the
equations:

Y - ax = X+By _ bX-p¢
Blpx+ay B(pr-&)’

and then, however, from the comparison of thedgstations of (55.4) with the relation:

—pA<& +ary) =b(px + qy) + (pr7—q4).

The case in whiclA(X, y) is a constant can be treated by the same mesinse the
latter of the determinants (50.5) must be non-zene, can take, e.g., the quantitgzand
y to be independent variables. Of the fifteen défeial equations at the end of § 50,
nine of them are fulfilled identically, and the ra@mng ones lead to the final formulas
that essentially arise from the system of form&s3) or (55.4) when one switches the
variable pairxy andx'y’ with én andé’r7, resp. One then obtains all of the ray maps that
can be generated without the help of any of theralsk, V, V’, W from these formulas
by entirely elementary transformations or permateaiof coordinates.

56. Rotationally-symmetric systems.For the applications, the most important ray
systems are the ones that that are rotationallyssstmc. We understand this to mean: If
one replaces the variablgsy, &, 77 in the right-hand side of equations (33.1) with:

X = Xcosg—ysing, y= xsi?+ ycod |, (56.1)

§=¢fcosd-n sind, p=¢ sid+n cof '
and if one denotes the new values of the functdns.. by X,y ,&,77 then these
values shall be connected with the previous ondbdgquations:

X =Xcos?-ysind, Y=y si@#+y cod , (56.2)

§=¢&cosd-n' sing, 7 =& sid+n cof . '

If the points of the object (image, resp.) spaeeestablished by rectangular coordinates
t, X,y (t', X, ¥y, resp.) then this requirement will says that uraleotation of the object
space around theaxis and a rotation of the image space around'ttes the ray map
will remain invariant when the rotational angtds the same in both cases.

We now assume that the ray map is calculated théhelp of an eikond(x, y, X,
y'). The equations:

$=-E(X VXY n=-EX¥XY), } (56.3)

£= EXRVRY), 7= EXWRY),
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must then be fulfilled for all values &fwhen one replaces the quantities...,7” on the
right-hand sides of (56.1) and (56.2). We now considefirtgtepartial derivatives with
respect to of the function:

Q(x, ¥, X, ¥,9)

56.4
=E(xcos?-ysing xsi?+ ycof x cdd-y sh ¥ s+ §  abs } ( )

and obtain, upon consideration of (56.3) and (56.1):
Qu=-cosd & —sindg=- ¢

One then ha®y = Ex(X, ¥, X, ¥), and one verifies the equatiofs = E,, Qx = Ex , and
Qy =Ey . However, from this, it follows that:

Qux, ¥, X, ¥, ) =ExX Y, X,Y) +{(). (56.5)

If one differentiates this latter equation with regpecs and then set$ = 0 then what
will follow, when one then employs the notatif0) = A, is the first-order partial
differential equation:

-yE+XE -y Ex +X E =4, (56.6)

which is then the condition that the eikonal of a rotally-symmetric system must
satisfy. A particular integral of this partial diffett@l equation isl arctany/x; moreover,
particular integrals of the homogeneous differential eqna56.6) forl = 0 are the
functions:

2a=x2+y, b=xX+yy, 2=x?+y? (56.7)

Thus, it ultimately follows from the theory of lineafirst-order partial differential
equations %) that the eikonaE must have the following form here:

E=&abc)+A arctan? . (56.8)
X
One subsequently verifies that, conversely, everynaikthat possesses the form (56.8)
will generate a rotationally-symmetric ray map.

57. This result provokes several remarks:

First, if E is asingle-valuedunction of the variablex(y) in the neighborhood of the
pointx =y = 0 then one must necessarily take 0.

Second, we assume thatis developable in a convergent TAYLOR series in a
neighborhood of that point and can be written:

E=Pi(x VY, X,Y)+PAX Yy, X,¥) + ..., (57.1)

(*Y Variationsrechnungg 22.
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in which Py(x, y, X, ¥) means a homogeneous polynomialnff degree in the four
variables. One proves that adymust be a solution of the partial differential equatio

oP, 0P oP oP
D4 x—D—y 204 X N=( 57.2
0X oy yax oy ( )

-y

I.e., it must satisfy the differential equation (56ah A = 0.
One further remarks that the expression:

d=xy —yX = +4ac- B (57.3)

is a solution of the homogeneous differential equati6). One then proves that the
functionP,, can be represented by polynomials in the four expresajdng, andd. Due
to the identityd® = 4ac—b? one can, in turn, demand ttiatshould be linear id.

It is now very easy to write down the right-side(67.1): The polynomialPs, Pz, Ps,
..., vanishes identicallyP, is a linear, homogeneous expressionajnb, c, d, the
polynomial P4 is quadratic ire, b, ¢, d, and if one so desires then the terndircan be
suppressed, etc.

Proof. The proof of the properties of the polynomiBlgx, y, X', y') that were just
described rests on certain results of formal algebra.

First, the validity of the equation (57.2) will be vexd, when one substitutes the
development (57.1) foE in the left-hand side of (56.6) and then develops thetnegul
expression in homogeneous polynomials. Any one of thenpolials must then vanish,
and then™-degree polynomial in the developments considered witiatdé with the left-
hand side of (57.2).

The second assertion — viz., that the polynorkalalso can be written as a
polynomial in the expressiorss b, ¢, d — is proved most simply when one introduces
complex variables. We set:

Z=X+ly, Z=X-1ly, Z=xX+iy, Z=X-ly, (57.4)
where i means the imaginary unit, and calculd®e as homogeneousy™-degree

polynomialsQ(z, Z, Z, Z). The condition (57.2) can be replaced by another one,
namely, thatQ must be a solution to the partial differential equation

7Q+7Q,=2Q +2Q. (57.5)
This equation possesses the particular solutions:
a= 7z, B=272Z, y=22, o=77. (57.6)

We deduce the following relations from these formulas:
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Vi

£ z=Y (57.7)
z
and introduce these values iro In this way, we obtain the equation:
q
Q=) AZ, (57.8)
m=-p

in which p andq are positive whole numbers and thg mean rational functions @f, 5,
and ;. Now, sinceQ must be a solution of the partial differential equatidn.5), one

must have:
q

> mA =0,

m=-p

from which, it will follow that the right-hand sidef ¢57.8) consists of only one term,
which is independent oz The polynomialQ can therefore be represented as a
polynomial ina, £, andythat is divided by a power @f. One must then show that it can

be represented as a polynomiabing, y; andd.
This result follows by induction on the following argumekiYe assume that a
polynomial inz, Z , Z, Z can be represented by an expression of the form:

AB.y.0) (57.9)

a

in which @ means a polynomial. Now, singe after substituting the value (57.6), is
divisible byz as well as byz, @83, y,0) must be divisible bys, as well as by It is
then also divisible bybg = ad, and one can also write the expression (57.9) as a
polynomial & (5, y,d) in any case.

After we have representéd as a polynomial ina, B, y; and J, we revert to our
original variables, with the help of the formulas:

a= 2a, L=b-id y=b +id, o= 2, (57.10)
and ultimately obtain the desired representatiof,@fs a polynomial i, £, y; ando.

58. One obtains results for the mixed eikongly”, and the angle eikon®V that are
completely analogous to the ones Bor
For instance, by rotational symmetry, the mixdabealV has the form:

V=V(abo+A arctan:%

(58.1)
2a=§"+n" b={X+ny 2c= £+ Y,
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while one obtains the following formulas for the ang@i&onalw:

_ 7]
W= A
W(a b o+ arctang (58.2)

2a=&+n" b=&&+nn' 2c=8"+n".

59. Semi-telescopic, stigmatic, and telescopic ray snapn be rotationally
symmetric.

For example, should the mixed eikon&lof § 48 represent a stigmatic rotationally-
symmetric ray map then one will find thétmust have the form:

V' =a(@+ €+ y@(3+ (' - Fla drdarctan |
a=3(xX+y).
This yields:
X’:xa,l_y@, y’:ya,l+X@, (59.2)
T ! d 1 [} d [} 1 da)
E=&aq+nay-2L x| S+ yp) S (o - ) E2 |,
2a da da da (59.3)
o y o Jday o oada dwz} '
= -fo,+1=—+yl —+ + —+ - —= .
UUQEZZay[da(%w)da(wf)da
Also, whenA # 0 this ray map will beingle-valuednside of a circular ring:
0<rZsx+y2> <r?. (59.4)
However, since, from (48.8), one must set:
W = - w(a) — A arctan y (59.5)

X
here, and since the functidH is many-valuedin the circular ring (59.5), it will be

impossible to realize the ray system that is predolby our eikonal through a
rotationally-symmetric system lens when one dog¢saveA = 0.

60. For rotationally-symmetric systems, it can alse useful to employskew
eikonals In order to derive the condition of rotationgisnetry without extensive
calculations, we remark that due to equations {4&hd (42.10), the condition (56.6) may
also be written:

yé—xp—-y¢& + X1 =A (60.1)

For the skew eikond)'(x, y, X, #7'), however, one has the equations:
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¢=U;, n=u,, &=-U;, y=U,, (60.2)

and this eikonal will then generate a rotationally-synmimetay map if and only if a
solution exists to the partial differential equation:

YU, = XU+ ULUL + %7 = A, (60.3)

It is not necessary to integrate this differentialaeun in general; indeed, we need only
to consider the case for which the eikoralandV’ cannot be employed, and thus
must have the form (50.4). However, is we substitutevdlise ofU' in (60.3) then we
will obtain the following conditions for the functie@, B, C, andD:

XA -y A=A +1, (60.4)
X By—y B =AB, (60.5)
xC -y G=AC, (60.6)
xDy—yD=BC-A. (60.7)

If we now writeA = tan ¢ then (60.4) will go to:

Xpy—yox=1, (60.8)

whose general solution can be written:
y

=arctan—— arctagr ,
¢ =arctany 4) (60.9)
a=31(¢+ ).
It follows from this that:
A= Lﬂ)’(a) (60.10)
x+ yla(a)
If we next set:
u=—2 y=_Y (60.11)
X+ ya X+ ya
then we will find by differentiation that:
Xu, = yu = UuA
2a (60.12)
XYy = Y\ =———=,
(x+ya)

and we will then easily obtain the general solugifor the equations (60.5) to (60.7):

__B@ c-_/a (60.13)

~ x+vya(a)’ x+ya(a)’



62 Chap. lll: The ray map.

D= ECUAC) y +da) -1 arctanz. (60.14)
2a x+vya(a) X

In2they§e equations, the four functiom@), Aa), L a), da) are arbitrary functions & =
x+y) /2.

61. It is easy to recognize that the arbitrary fummsia, ..., d that enter into the last
formulas cannot be chosen in such a way that #enaiU' takes on one of the forms
that were specified in 8§ 53t follows from this that any rotationally-symmetray map
is always representable by at least one of the étkonals EV, V', or W. This assertion,
which was repeated over and over again, was stknproved up to now.

By comparison, one can easily give examples foichvithree of the conventional
eikonals — e.qg., the eikondls V, andV’— do not come under consideration. One will
obtain one such ray map when one cho@sasd 5 to be constant in the formulas above,
and setsy= =4 = 0. One can then always choose the coordinates thata = 0.
Consequently, the eikonal will have the form:

u=Yxg+Ly (61.1)
X X
and will yield the ray map:
X =— —:8/7 , y = —’8,7 , (612)
X$+yn X$+yn
=Y (xé+yn), = - X (x&+yn). 61.3
'3 3 x$+yn), 77 3 (x$+yn) (61.3)

From these equations, it follows that:
Xy —yX =5, X +ny =0, x¢'+yr =0,

and these relations show that all of the eikoralsV, V' must remain outside of
consideration here. From our result, if one wdikd to employ one of the four useful
eikonals then the ray map can be computed only thételp of an angle eikondl, this
says that one must set:

W= 280 —4n') . (61.4)

The rotationally-symmetric ray map that is reprnesd by equations (61.2) and (61.3)
possesses many remarkable geometric properties.addition, it yields one of the
simplest examples of a ray map for which the irarace of the LAGRANGE bracket
exists without it having to be constructible byiogk media. This is connected with the
fact that the rays for which the expressioxs« y7) or X’ + y'#7') vanish in one of the
spaces cannot be associated with any ray in tle sgface. In case the object and image
spaces are homogeneous and isotropic, these singws will define quadratic line
complexes that include the rotational axis.
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Coupled optical spaces.

62. Representation of a ray map in three-dimensional spac&Ve would now like
to associate thandividual line elementsf the object and image space with each other,
and indeed, in such a way that for a ray map under wheLLAGRANGE brackets
remain invariant (8 31), the line elements of two assediatys of the object and image
space should correspond to each other.

In order to exhibit such an association of line eletsiewe return to the arguments at
the beginning of the previous chapter and the notatio8s3df The mutually associated
rays will be represented by the parametgry;, and &', b, while the association itself
will be defined by equations (11.5). From § 33, a functiga, b)) must then exist for
which the relation:

bl'dq"*'li dé:bldal+b2dag+dl// (62.1)
exists identically.

One can establish the association of line elemeitbs mutually-corresponding rays
by a relation of the form:

t' = 1(t, g, b), (62.2)
in which 7 means an otherwise arbitrary function that satishesondition:

ar(t,aj,b])¢O

- (62.3)

We further assume that we find ourselves in adioate domaint( &, b;) in which
equations (31.1) are valid and are soluble foafhlg, such that we can write:

8 = gj(t, X Yk, by = by(t, X« Yid)- (62.4)
By substituting these values in (62.2), we obtdiaretion:
' =1(t X Vi, (62.5)

and by substituting the same functions in (31.%) obtain further relations:
a=atxyd b =8(txWw (62.6)

that we will employ along with (62.5), in their ownght, in order to calculate the
relations:
X =X (t, % i, Yi =Y (4 X W) (62.7)
from (31.3).
Equations (62.5) and (62.7) then represent thec&sns (transformations, resp.)
between the line elements that we would like ta@ra.



64 Chap. IV: Coupled optical spaces.

Since equations (31.5) represent a canonical transformatiwill always be soluble
for theg, by, and it will follow from that and (62.3) that we carv&equations (62.5)
and (62.7) fot, x, Yk, such that the functional determinant will also $gtis

A XY 4 (62.8)
3t X, i)

The identity (17.4) now exists for the functiofjss; that enter into (31.1), but with
the difference that due to the initial conditio®d.@), the term that is multiplied lor
drops out, such that we can write:

-H(t, & n) dt+17,dé§=dQ + b da . (62.9)
We likewise find that:
—H’(t’,EJ.’ ,/7;)dt’+/7i’ dé' =dQ' + b’ dg (62.10)

for the functionsé’, 77 that enter into (31.3). If we then observe (6219 calculate the
function:
Wt X, yi) = Q(t,a],0)-Q(tg,h)+¢(q,b), (62.11)

with the help of the previous equations, then It feilow that the transformation that is
defined by equations (62.5) and (62.7) must alveayisfy the condition:

- H'(t',x,y)dt + y dx == H(t, %, Yi) dt +y; dx + d¥. (62.12)
63. Extended canonical transformations.It is remarkable that the last relation can
be employed in order to characterize an associatidime elements of the kind that we
just presented. In order to show this, we starmnfrany one-to-one association of line
elements that is defined by equations of the fo82%) and (62.7) and assume that

(62.12) is also fulfilled. We calculate the exmiess on the right-hand sides of (62.5)
and (62.7) as functions ofa;, b;, with the help of equations (31.1), and get:

t =1t &, b), x =fi(t, &, b), Y, =gt &, b). (62.13)

I

We further calculate the quantitie, b, as functions ot’, x, y using (31.3); by
substituting the functions (63.1) in the expressitius obtained, we can now write:

a = ak(t, &, by), b= At &, by). (63.2)
Finally, we remark that after introducing the fuoat
g(t.ab) =¥ & 7) +Q(t a, b) - Q'(7, @, B), (63.3)

equation (62.12) will be equivalent to the relation
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Lcdaic=Dbi da + d@, (63.4)

due to the existence of (62.9) and (62.10). If we then sudecestowing that the
functions ai(t, &, by), Adt, &, by), and @(t,a;,b ) do not depend uponthen equations
(63.2) will show that our association of line elemergpresents a ray map, and the
relation (63.4) will teach us, in addition, that the LR&NGE bracket will remain
invariant under this ray map (8 33).

In order to prove this, we replace the varighie ai, 4, and@ with a new variable
ag and introduce three new variableg, by, b;, which should be coupled by the
equations:

a, = o, by =bo. (63.5)

The system of equations that consists of equations (6BR2)&8.5) then represents a
transformation of three pairs of variablgsh;, for which one can write:

b,dd, + da+ ) dg =bpday + by day + b, da + diZ7, (63.6)

instead of (63.4), and which is canonical, for that reason.

However, the properties of POISSON brackets that weedkein § 37 are also true
for canonical transformations with arbitrarily many pairof variables (cf.,
Variationsrechnungchap. 6, esp. § 92).

In particular, the relations:

(.a) =0, (&) =0, (b,0) =0, (b.B)=0 (63.7)

must then exist. On the other hand:(&y, ..., b)) means an arbitrary function of our six
variables then, due to equations (63.5), one will have:

pye OF
(by, F)= 28, . (63.8)

As a result, equations (63.7) state that the four functigné are independent of and it
then follows immediately from (63.4) thdt will also possess the same property. With

that, however, our assertion is proved completely.

A transformation between the line elements of twaces for which the condition
(62.12) exists shall be called artended canonical transformatiowe would then like
to say of the two spaces that they gpécally coupled.

It is self-explanatory that these concepts are itie@s If an optical spacér is

coupled with a spac®’, and correspondingly, the spa®é is coupled with a spacg”
then a coupling of the spacgsandfR” will be defined by the composed transformation
that linksfR to R".
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64. HAMILTON'’s characteristic function. The statement of formula (62.12) and
its application to various problems was the guiding ppiecfor the great discoveries of
Sir W. R. HAMILTON in geometric optics. In his papeldAMILTON replaced the
function that we have calle® with another one for which the independent variables
were chosen in such a way that these functions coulényeloyed as generating
functions for the transformation formulas. In pauwtar, if one sets:

W(t, X, Y) =V (1, X, 1, %) (64.1)

then one will get:
H(t, %, ) = Vi, yj=- VXj : (64.2)
H'(t',X,Y) == Vk, Y =V, . (64.3)

The similarity of these formulas with the ones tihat became acquainted with in the
theory of the eikonal is immediately apparent. In,facte can just as well employ the
function V, which HAMILTON called acharacteristic functionas the eikonakE for
many problems. HAMILTON also discovered other charastier functions that
correspond to the mixed eikonal and the angle eikonal. p@ha&lelism between both
theories is explained by the fact that the ideas of HANDN influenced the genesis of
the theory in the previous chapter. Certainly, this happ@eonsciously in an indirect
and disguised way, but for that reason this influence wnaisless emphatic (cf.,
Introduction).

Just the same, the implementation of the HAMILTONagoparatus is unnecessarily
complicated. Not only does its characteristic functiepend upon more variables than
the corresponding eikonal, but the great advantage thahdory of the previous chapter
enjoys, which consists of the fact that the theogoimpletely independent of the form of
the HAMILTONian functiondH andH’ (cf., § 32), is lost here. By contrast, the functions
H andH “enter explicitly, since equations (64.2) and (64.3) teachaighe characteristic
functionV must satisfy both partial differential equations:

Vi = H(t, %, — VXJ_) =0, Vi + H'(t', X

J,\/X.j) =0 (64.4)
simultaneously.
In exchange, the presentation of the formulas foowpling of the two optical spaces

is somewhat simpler than before. One needs only taackther equation of the form:
t'=t'(t, %, y))

to equations (64.2) and (64.3) in order to arrive at such aliosgupThe choice of the
latter function is arbitrary to a large extent; onasmobserve only that the condition
(62.8) is verified.

65. Canonical sliding transformations. One obtains the simplest extended

I

canonical transformations (8 63) when one lets the twoespaf thet, x; andt’, x
coincide and associates any ray with itself under dgyemmap. The line elementx;, Vi
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will then be simply displaced along the light on whithies. As a result, these special
canonical translations shall be calteghonical sliding transformations

In order to obtain such a canonical sliding transfoionatwe calculate the inverse
functions from the general solutions:

X =& (t &, by), yi =i (t, &, by) (65.1)
of the canonical differential equations, which will giv
a = ¢ (t, %, i), b=t x,Y) . (65.2)

The sliding of the line elements along the differentsravill then be represented by
equation (62.2) with fixedy, b, . 1f one now calculates the function:

XX ¥ =1 @ (XY, ¢ ¢y X)) (65.3)

then the system of equations:
t' = xt, X, Y, (65.4)
X =& g ¥), Y =6 né, &), (65.5)

when regarded as functions ©fx; , y; in the right-hand side of equations (65.5), will
represent the desired sliding transformation.

There are infinitely many extended canonical tramsédgions for one and the same
ray map, which one will obtain from one of them whame ccomposes the original
coupling of the object and image space with an arbitragdinglitransformation in one of
those spaces.

One can imprint special properties on the coupling ®efsttaces by a suitable choice
of sliding transformation, and therein lies the adwgatidoat the introduction of extended
canonical transformations offers.

One can, e.g., succeed in making the funcibm formula (62.12) constant for the
coupling of the two space by invoking a sliding transformatidine coupling will then
be represented by an ordinary LIE contact transformati&mother special coupling that
is important for the purposes of geometric optics istdmgential coupling, which we
would now like to describe.

66. Unions of elements. Tangential coupling. Let any extended canonical
transformation (62.12) be defined by formulas (62.5) and (62I7g variableg, X,
should be regarded as arbitrary functions of two patense, v, one can then calculate
thet, x, y as functions of those parameters. For any functianv) of those

parameters, we introduce the notations:

df =f, du, a =1, dy, adf =fyy du dv=dd. (66.1)
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If we partially differentiate (62.12) with respect W in which the differentiald is
regarded as derivation with respectutan the sense of (66.1), then we will get, with the
notations (66.1):
-H’dt —H’ddt + dy dX + yodx
= - H dt—HdAt + Jy; dx +y; adx + ddW.

If we switch the symbol® andd in this, subtract the equation thus obtained from the
previous one, and observe the last of relations (66.h)ftlewing relation will arise:

dH' & - H’dt +oy dX - dyd x =dH & — JH dt+ Jy; dx — dy; I . (66.2)
When one developdH anddH, the right-hand side of this equation can be written:
(H,dx+H,dy)ot+dy(dx— H di+d x dy+ K dt; (66.3)
on the other hand, one has:
H,dx+H, dy =H, (dx-H,d)+H (dy+ H dj. (66.4)
If one replaces the left-hand side of (66.3) with thetfitdind side of (66.4), and one

transforms the left-hand side of (66.2) in the sametivay one will finally get:

Sy +H.ot)(dX - H, dt) = (6 %- H.ot)(dy+ H d
(Y, + H,ot)(dX Hyi)(’l‘w)(wdb} (66.5)

= (Jy, + H S)(dx - H, d)—(Sx— H,o)(dy+ H dr

A large number of relations can be deduced from this famulwhich® no longer
appears. For example, if one replaces the parametewhich was left completely
arbitrary, up to now with y; and x , in succession, then one will get:

o : % _ 0x,
dx — H; dt —[ay; ayj(dx H, dt) ( y yayj(dy deb (66.6)

A al ~ 0x,
dy + H,dt = [a&, ){j(d H, d+ {ax ya)J(dy H d. (66.7)

If one takesu to be equal tg; in (66.6) then it will follow from these equations that

()¢ ' 0
e O 0% ot

!

et BENEYRC LS z. 66.8
ay, Yoy ay  Vay (66.8)
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67. According to S. LIE, a family of line elemeri(s)), x(u), yi(u) that depends upon
a parameteu is called aunion of element&hen one has:

(o) ot
— =H, X,y )—. 67.1
U 5 6y (67.1)

We would like to exhibit all unions of elements in the objsgace that again go to
unions of elements. For this, we must require thaéthmtions:

dx - H,dt =0 (67.2)
must be verified simultaneously with the equations:
dx - H, dt=0. (67.3)

However, with this assumption, it will follow from (6H.that:

% 1, O |y, + H, dp =0 (=12. (67.4)
ayir Yj a% yj X ’ . .
If the determinant:
oX.
TIPS (67.5)
oy, "oy

then our requirement will be equivalent to the simulbarsevalidity of equations (67.3)
with the following equations:
dy, + H,, dt=0 (=1 2. (67.6)

In this case, which is the general one, the individual union of elernietts once more
mapped to a union of elements is the light ray its€lie fact that they will be associated
with each other by the coupling is due to the fact treatequired that at the beginning of
the entire investigation. One can then read off this ptppd the extended canonical
transformations directly from equations (66.6) and (66.7).

68. We would now like to consider the singular case, fhictvthe left-hand side of
(67.5) does not vanish identically. Due to the relat6®.§), this condition can be
replaced with:
ox; ot’

R R £0, (68.1)
oy,

y}a_yi

from which, one recognizes that the condition posseassimple geometric meaning.
Namely, if one considers the totality of all line etarts in object space that go through a
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fixed point (t°, x°) then one will obtain the corresponding line elemeniniage space
from the equations:

U=rgy), X =X, y), (68.2)
y = yi'(to, X‘.O, Y, ). (68.3)

This line element goes through the points of a surfadewiiiabe represented by the
equations (68.2) with the help of the parameyersThe direction of this line element in
image space will be given by the vector with the comptme

1, H., H., (68.4)

Y1 Y2

while, on the other hand, the normal to the surface (688)be described by three
determinants of the matrix:

ot ox 0%
dy, 0y, 0y,
o 09X 0% |

ay, 9y, 0y,
Since we can also write equation (68.1) as:

o ox 9%
dy, 0y, dy,
ot 0 0% _ 0, (68.5)
dy, 9y, ady,

1 Hy H,

this condition says that the directions of the litements in the image space lie in the
tangential plane to the surface (68.2).

Now, any time that the stigmatic light pencil of thigect space with the centédr X;)
is transformed into a congruence of light rays in imagace, one can transform the
coupling into another one for which (68.1) is fulfiled by ananical sliding
transformation. We would like to call such couplings ofiaght spacestangential
couplings. Since, as we have seen, the two conditions (68d.jGh5) are equivalent to
each other, the inverse transformation must have pigdise same geometric property
as the transformation itself under a tangential coupfmgyeover.

In addition to the light rays, there are other unionsl@ments in object space that go
to unions of elements in image space under tangentiglings. A simple example of
such a union of elements is defined by the envelopes oigthterays of the pencil that
possesses the focal surface (68.2). The most generalafrégdements that again goes to



69. Absolute optical instruments. 71

a union of elements is closely connected with the theboptical images of a surface,
which C. W. OSEEN has recently made knoff (

69. Absolute optical instruments. An optical instrument is calleabsolutewhen all
stigmatic light pencils in object space are again taestigmatic light pencils in image
space. This shall be true for at least the rayslithat the field of the instrument; i.e., the
ones that go through the instrument.

The rays that go through a potnk; in object space must then be converted into rays
that go through a point:

U=t x), X =x(Xx). (69.1)

Therefore, the two optical spaces will be mapped th editerpoint-wisefor a absolute
instrument.

The map (69.1) is, however, not arbitrary. Namely, isrdealing with any extended
canonical transformation by which the ray map that isegged by the absolute
instrument is represented. The elements that lidenfield of the instrument and go
through the point, x; will be transformed into line elements in image sp&ee e on
rays that go through the point (69.1). If we invoke aalg canonical sliding
transformation then we will obtain a new extendeabcgcal transformation under which
the line elements through x will be transformed into line elements through x
directly.

This is a tangential canonical transformation (8 68) whkh be represented when one
add two more equations of the form:

yi =Y (L X, ¥i) (=12 (69.2)

to equations (69.1). One can calculate the functionsherrigght-hand side of (69.2)
immediately, and indeed in two different ways, accordmgvhether one uses the fact
that the transformation in question is a point transéion or the fact that it is an
extended canonical transformation. However, the taboutations must naturally lead to
the same result.

For the first kind of calculation, one remarks tta@ mutually corresponding line
elements, X, X, andt’, x, dX/dt can be obtained directly from the stigmatic map

(69.1). Now, since one must have:
s =H,, Hoop (69.3)

for these line elements, one can write:

(*» OSEEN, C. W., “Une méthode nouvelle de l'optique géopé®” Kungl. Svenska
Vetenskapsakademiens Handlingar (3) Bd. 15, no. 6 (1936).
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L L SRV N (=12 (69.4)
ot ox, ot ox,

these are two equations from which one can get (69.2).
For the second kind of calculation, one starts ftbeifact that the formula:

—H’dt + y dX =—H dt+y; dx + d¥, (69.5)

by which the coupling of the two optical spaces is reptesk must be fulfilled
identically when one substitutes (69.1) and (69.2). Sincerigig-hand sides of
equations (69.1) do not contain the canonical direction cuates, WY will be afunction

of position and the relation (69.3) will be equivalent to the equatio

_H+qu__Ha_t+y (69.6)
at
yrw = O 2 ) (69.7)
i axj axl

One can, in turn, calculate (69.2) from the two equaii6fs/), and the values of that

are obtained in this way must yield an identity when #reysubstituted into (69.6).
One can verify the fact that the result is the esamboth cases in the following way:
By differentiating (69.6) and (69.7) with respectytqg one will obtain:

-H %:—H' o’ ax'
M ay! 3t ot
%:—H’ ot’ 6>q

Yi 0x, 6>g

(69.8)

oy,

and (69.4) will follow by combining these last twquations.
We now remark that, from 8§ 10, one can write:

—Hdt +y dX = L(t, l,dﬂ
(69.9)

-Hdt+y dx = L(t x, x) dt

such that one will get the following from the redet (69.5):

j L( jdt’ —j L(t.x, >g)dt+j . (69.10)
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The latter equation says that the difference betwhenoptical lengths of two curve
segmentg/and )’ that correspond to each other by means of the stigmaficis equal to
the difference between the values ‘B{t, x) at the endpoints of the curye This
difference is then independent of the form of the cupvgsand depends upon only the
positions of their endpoints.

70. If the basic function_(t, x;, X;) of the object space is prescribed then the basic

function L'(t',x,dX / df) in the image space cannot be chosen arbitrarily ifgaatic

optical coupling of the two spaces is to be at all pdessib
In fact, equation (69.10) says that the relation:

L'(t d%j dt =L(t X, ) +Wdt+ W, dx (70.1)

must be fulfilled identically when one replaces tkiablest’, x with the expressions
(69.1) and correspondingly calculatisanddx by means of the equations:

dt = g—tdt+a—td>g dX = 6)‘ dt+—dxj (70.2)

J J

Therefore, the quantities must naturally be chosesuch a way that the light ray of the
line element lies in the field of the instrumemt aiddition. However, it follows from this
that L'(t',x', dX / dt) must have a very special form.

Moreover, this shows that the functighmust be subject to restrictions that one can
already determine when one knows the functiomsdL’, but not the stigmatic coupling
of the two optical spaces. In particular, we wolite to show that¥ must always be
constant when the two optical spaces are isot@parystalline.

We next assume that the two optical spaces argofso, but not necessarily
homogeneous, fix the poihtx;, and let the direction of the light ray vary. Coan then
write equation (70.1) in the form:

N(E, X) dt2+ d¥Z + di =n(t, ) \Jdt? + ¢ + df +W;dt + W, dx. (70.3)

After we have substituted the value (70.2) in #gsiation, we denote the variabt#sdx

by &, &, &, for the sake of greater symmetry. After dividimgn, the last equation will
then have the form:

JA =B +C, (70.4)

where
A=g; & &, B=E&+E+E2, C=ppbo+tpiértpé&. (70.5)

The relations:
A=B+C*+2CJ/B
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(A—B—C?? = 4C°B. (70.6)

now follow from (70.4) by successive squaring.

By assumption, the relation (70.3) should only be assdondthe elements that lie in
the field of the instrument. Thus, it will only be reguirthat (70.6) be true in a small
region of the space &%, &, & . However, since polynomials are on both sides af thi
equation, it will already follow from this assumptidrat the corresponding coefficients
of these polynomials must agree. On the left-hand si@0o6), one finds the square of
an entire rational function. (% is not identically zero theA — B — C?> must be divisible
by C, and by carrying out that divisioB must also appear as the square of a rational
function. Since that is not the ca€emust vanish identically, anl must be equal tB.

It follows from this that the first derivatives & must vanish for any point of the
space of,tx, and consequentl¥ must be constant.

71. The corresponding calculations will become very casapdd for the case in
which the two media are crystalline. However, onealao derive the desired result here
by using an argument from the general theory of functioddter introducing the
homogeneous variablds equation (70.1) will assume the form:

D' (o, $1, &2) =P(éo, $1, &) tPodotPr 1+ P2 &2 (71.1)

in this, the functionspP(&), ®'(&) are positive homogeneous of order ot} i the &,
and of the equations:

®(&o, é1, &) = 1, (&, &, &) =1, (71.2)

the first one represents the (rotated in some way)SNHEHE. ray surface in object space
and the second represents an affine transformatiore ZfREESNEL ray surface in image
space. In addition, on the sphere:

E+E+ET =1, (71.3)

the functions®(&), ¢'(§) are analytic functions of position that can be siagonly at
finitely many pointsP that correspond to the conical points of the two FREISN
surfaces. Now, by assumption, equation (71.1) is fulfilieshtically on a small patctr
on the sphere (74.3), and one can always chadsée small enough that, along with all
pointsP of g; the opposite point® to P will also be different from the singular points
R

We now link a poinP of gwith its opposite poinP by an analytic curvgthat lies
on the sphere (71.3). From the principle of analybictinuation, equation (71.1) must
then be fulfilled along all of that curve. Now,and®’ have the same value at the two
endpoints ofy; while the values of the linear form will be equal apgpasite, unless one
has:

Podo+pLéL+p2é=0. (71.4)

(*® Variationsrechnungg 249.
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Since this latter equation must be true for all pointg;aff will necessarily follow that:

Po=p1= P2=0, (71.5)
and this is precisely the result that we would like to prov

72. The identical vanishing of the total differentd¥ in equation (69.4) has the
consequence that for any cury@ the object space that is transformed into a cyrue
the image space, the relation:

(v B gr = ax
jVL (t,xi,dt,jdt’ = ij(t,x, dtjdt (72.1)

must be true. However, this says that the opl&ajths of the two corresponding curves
must be equal to each othersuch a way that an absolute instrument can eitierease
or decrease therf??).

One observes that, whereas the relation (69.4)ldHe valid only for line elements
that lie in the field of the instrument, equatiof2(1) is truefor any entirely arbitrary
curve since the equatioly dt' =L dtis true for all pairs of line elements that ariated
to each other by equation (69.1).

The theorem that we proved has a long historyt wds proved in 1858 by
MAXWELL (®) for isotropic and homogeneous media, but genewily in the first
approximation — i.e., for small objects. Latemvds found implicitly in the investigations
of BRUNS for just those media, and was explicitigodissed for the first time by F.
KLEIN and was proved by a very original methd.(

73. The MAXWELLian fisheye. For the case in which the object space, as wsell a
the image space, are isotropic, but not necesdarityogeneous, from § 70, the quadratic
form A must be identical witiB. However, this will be the case if and only ifeth
transformation (70.2) of the line elements is ogdwal, which is equivalent to
demanding that the map (69.1) of the object spatke image space must be conformal.
From a celebrated theorem of LIOUVILLEY; in contrast to the planar conformal maps,
which depend upon infinitely many constants, themnly a restricted class of conformal
maps of three-dimensional space. It can alwaysrdpeesented as a sequence of
transformations through reciprocal radii of at minge spheres. It follows from this that
the circle and lines in object space will be transfed into curves in image space that
will always be either circles or lines. MAXWELLeated the simplest case of such a ray
map (when one ignores a reflection) on occasion (n the study of the spherical lenses

(*) This theorem is not true for GAUSSian optics (cf988.

(®*® MAXWELL, J. C.: “On the general laws of optical ingnents,” Quart. J. of pure and applied
Mathem.2 (1858), 233-244; Sci. Pap., v. 1, pp. 271-285.

(*®) KLEIN, F.: “Raumliche Kollineationen bei optischémstrumenten,” Z. Math. u. Physikg (1901),
376-382; Gesammelte Abh. (cf. footnote 15), Bd. Il, pp. 607-612.

() MONGE, G.:Application de I'Analyse a la Géométrig" ed., revised, corrected, and annotated by
Liouville. Note 6, pp. 609. Paris, 1850.

(*® MAXWELL, J. C.: “Solutions of Problems,” Cambr. afubl. Math. J.8 (1854), 188-193; Sci.
Pap., s. 1, pp. 74-79.
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in the eyes of fish, he established that the indexfodaonn in the lens is independent
of position, and indeed in the following way. If one denthe distance from a point of
the lens in the eye to its center amalenotes the index of refraction at the point in
guestion then the equation:

2ab

i (73.1)
will be fulfilled, in whicha andb mean positive constants. Now, MAXWELL imagined
the entire space to be occupied by a medium whose widetraction obeyed the rule
(73.1), and discovered that under the propagation of lighigmatic map of the space
into itself arose. The light rays themselves arentbecular (or rectilinear). One
confirms this result most simply when one remarks ith#tte equation:

_2ab

I’2:X2+y2+22,

the differentialdg; which defines the optical length of a line elemmarthe interior of the
MAXWELLian fisheye, can also be interpreted asre lelement in a three-dimensional
boundary of a four-dimensional sphere of ra@diubat is projected stereographically onto
a space ox, y, zthat should be found at a distancdédfom the center of the projection.

Namely, if one denotes the rectangular coordinafatie point in four-dimensional
space by, 7, ¢, andr then the transformation formulas for the stereplgiaprojection
will read:

2abx 2aby 2abz b*-r?
= = = —a——. 73.
¢ b?+r2’ b?+r2 "’ ¢ b?+r2’ ab2+r2 (73.3)
One further calculates the relations:

EP+ P+ P+ =d (73.4)

2 —
X= bg , y= b,7 , Z= bZ , H:M (735)

a+r a+r a+r a+r

from these equations.
By differentiating one or the other of the systesfigormulas (73.3), (73.5), it will
follow further that:

4a2b?(dX + dyf+ d2)

do? =dé? +diP +d¢? +dr® = T

(73.6)

If one letx, y, z (X, Y, Z, resp.) denote the stereographic projections of tywposite
points on the four-dimensional sphere with the dowatesé, n, { (- & —n, — {, resp.)
then one must write:
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X ==—, y':_—, Z:_r—, r'-=—. (73-7)

The great circles of the sphere will be determined byrtieesection of two hyperplanes:
AE+Bin+C{+bMD7=0 k=1,2), (73.8)

and their projections onto the spaceof, z will satisfy the equations:
Dk (0 +y +Z —b%) — 20k x— By — 26, z=0 k=1, 2). (73.9)

The light rays now coincide with the images (73.9)h&f gjreat circles of our four-
dimensional sphere. These images are, howeverirthesqor lines) in the space xfy,
z that contain two diametrically opposite points of theter surface of the three-
dimensional sphere:
X+ +Z=b (73.10)

They will be characterized by the facts that their @awill contain the coordinate origin
O and that the power of the poiBtrelative to any of these circles is always equal b, —
Thus, if A is a point of space that is different from the ceQesf the fisheye then any
light ray throughA will be circular and will contain a fixed poi&; that lies on the
extension of the line segmeAD and is determined by the relati® x OA, =b*. The
fisheye is then a absolute optical instrument thgisithe poinfA to the pointA;. These
two points correspond to diametrically opposite pointshef four-dimensional sphere.
Here, one can verify the theorem of the previous paragsephno further calculation.
Here, in fact, the equality of the optically lengthscofresponding curves will follow
immediately from the fact that the spherical lengthiwo diametrically opposite curve
segments is the same for both curds (

74. Stigmatic maps of surfaces that lie tangentially to thedfid of the instrument.
We would like to say that a curve lies tangentially @ fibld of the instrument when the
light rays that contact that curve go through the imsant. A two-dimensional surface

patchg§ that contains at least one pencil of curves thatalgentially will be described
similarly. We now assume that a surface patch:

x=¢gtuw (=12 (74.1)

that lies tangentially to the field of the instrumentnapped stigmatically. One can then
choose equations (62.5) and (62.7) for the coupling of the ofpacte with the image
space, possibly after performing a canonical sliding toangdtion, in such a way that
after substituting the values (74.1) for thethe three functions(t, x;, y)) and X, ( t, X, Y;)

(*® CARATHEODORY, C.: “Uber den Zusammenhang der absolutesoben Instrumente mit einem
Satze der Variationsrechnung,” S.-B. Bayer. Akad. Whdath.-naturwiss. (1926), 1-18. One finds a
generalization of the MAXWELLian fisheye in W. LENZZur Theorie der optischen Abbildingen,”
Sommerfeld-Festschrift, pp. 198-207, edited by P. DEBYEp4igj Hirzel, 1928.
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will be independent of thg; . It then follows from (62.12) that after substitutirige t
value (74.1) for thex in the functionW(t, x;, y;), it must likewise follow that it is
independent ofj, and one proves in a similar way to the one in § 7i(8r71) that two
corresponding curve segments on the surfagethe object space and on the surfgte
in the image space must have equal optical lengths, ahthth&wo surface patches

andg’ can then be optically unrolled (abwickelt) from each other.

75. This last result seems to contradict the results4d. 8In that paragraph, we were
able to choose the mutually stigmatically related susfata completely arbitrary way.
The contradiction is resolved when one shows: If theually stigmatically mapped
surfacesy andg’ cannot be optically unrolled from each other then theg cannot lie

tangentially to the field of the instrument.
We assume, e.g., that the two media are isotrogwaatorresponding point3 and
P' of the mutually stigmatically related surfaces, sueth time can write:

H=—yn* -y’ -y, H =-n?-y?-y7?, (75.1)

when one employs rectangular coordinate axes. We tgtr denote the components of

a unit vector that coincides with the tangent to thbtlray at the poinP with respect to

the axes«, Xp, andt, and letp', ', r' denote the components of the corresponding vector
in image space. One then has, first, the equations:

p2 + q2 + r2 — 1’ p12 + q12 + r12 — 1’ (752)
and secondly, from:

b _ Y1 q._ Y>

one calculates the relations:

yi=np y2=ng H=-nr, (75.3)
y, =n'p, Y, =n'q, H=-nr". (75.4)

If one chooses thieandt' axes to be parallel to the normal to the surfgcaadg’, resp.,
at the pointd andP’, resp. then equations will exist between yhand they' that are
completely analogous to equations (48.6) and (48.7), and carittan:

_ 0w, 0K ., 0%
=Dy Ay -2 75.5
0 ox, 0
yz=—%+>/1—xi+y2—><2. (75.6)

0X, 0%, 0%,
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Now, one can always rotate the coordinate axes aroeridtthresp.) axis in such a way
that the quantitiex,/0x and 0x /9x,vanish at the points considered. It will then

follow from the last equations that one can write:

ap'=p+a, [ =q+h. (75.7)
However, from (75.2), one will have:

12

p’+f<l, pl+qgis<i, (75.8)

such that from (75.7), one will also have:

(bra), (@ a" 4 (75.9)
aZ ﬁZ - )

Now, in order for light rays to go through the mia® at all, the ellipse (75.9) must
have common interior points with the cirgé + g° < 1, and the isolated rays that lie
tangentially to the field of the instrument mustrespond to the common points of the
boundaries of these two surface patches. Therefatee one surface patch, along with
its boundary, lies completely within the interiof tbe other one then there will be no
isolated rays of that kind. In general, the cirate the ellipse will intersect, and there
will be afinite number of rays, which can be at mfusir, that lie tangentially to the field
of the instrument. Finallyinfinitely manyrays can also have this property. The latter
can only occur when one has:

a=b=0, a=b*=1; (75.10)

i.e., when the ellipse (75.9) coincides with thé aincle.

One now remarks that the coefficieatandb will vanish only when the derivatives
of ap at the poinP are equal to zero. If the condition (75.10) erthulfilled, not only at
the pointP itself, but also in a neighborhood of that poitign «»y must be constant,
which agrees with the result of 8 70. One further
remarks that the coefficientsand S will represent ’i
the expansion ratio of the two line elements in the %
surfacesy andg’ that coincide with the axes at the g
points P and P, resp., when one measures their
lengths as light path lengths. &f= S then, as is
known, this expansion ratio must be the same for Figure 8
all directions. Since the surfaceg andg' can be

optically unrolled from each other in the case {0%. we can then deduce a new proof of
the result in 8 74 from the second of equationsl(5

76. The map of the focal surfaces of ray congruencegVe consider two associated
ray congruences in two optically coupled spaces$ plssess real, non-decomposable
focal surfaces. The ray map will then be describaaipletely when we give the focal
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surface, the families of curves on each of them thateawveloped by the rays of the
congruences in question, and finally the associationeoptints of the two focal surfaces
with each other that will be generated by the ray map.

If we prescribe all of these data arbitrarily thes tfitegral invariants of 88 26 and 27
will not necessarily preserve their values when ones goem the object space to the
image space, and we must exhibit the condition that wtess the conservation of the
invariance. To that end, we consider (cf., Fig. 8) aerlacurveyon the one focal surface
B that goes through the envelopingf the congruence of light rays. The totality ohlig

rays of our congruence that meet the cupwefines a tubular surface for which the
invariantJ can be obtained by the construction that was describbe @nd of § 27 (cf.,
Fig. 5, pp. 35). For the case in which the optical nmadsiisotropic and homogeneous,
this invariant will have a very intuitive meaning. Naypef we assume thatpossesses
the form of a curvilinear rectangle for which the twoaadnt sides coincide with path
curves that belong to the family of curv@swhile the two opposite sides are defined by
orthogonal trajectories of the family of curvethen we will see, with no further ado, that
we must have:

J=n(s -9 (76.1)

when one denotes the lengths of the latter sides lands. In fact, the orthogonal
trajectories consist of the generators of the tubuled surface considered as evolutes of
the sides of the rectangle that coincide with the csegments of the familg and of
curves that are parallel to the remaining sides of@btangle.

This geometric interpretation will allow us to chaeaie the function under the
double integral in (26.3) by geometric determining piecesyedls Namely, to calculate
the differenceds — d9 between the lengths of the sides of an elementatamgle of the

same kind as the one just considered and obtain a figure for

which the lengthsls andds of the sides and the surface area

dwof the rectangle remain unchanged up to quantities of third
ds (fourth, resp.) order. From Fig. 9 below, we now have:

- % ds=rdd, ds=(+dnds, dw=drs (76.2)
r A

) ' in the plane, from which it will follow that:
Figure 9.

ds — ds=dr dd= % de (76.3)

However, 1 /r is equal to the curvature of the projected curve, so éqisal to the
geodetic curvaturk, of the original curve. In place of (76.1), we can then write:

3=n] kg da (76.4)
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77. We letB' denote the focal surface of the given ray congruenamage space,

and letc’ denote the curve i®' that is enveloped by rays of the congruence. Should the
integral invariant (76.4) be preserved, then the relation:

n'k;de =nlydw (77.1)

would have to exist at corresponding poiAtandP’ of the focal surface® and®s'.

One remarks that an expression appears on each sithe ddst equation whose
numerical value does not change when one modifiesrnhlteotilength. If one chooses
this unit of length to be equal to the distance thatigiimt moves through each medium in

a given time then one will have=n', and equations (77.1) will say thae ratio ng - kg

of the geodetic curvatures of the curves ¢ andtocorresponding points of the focal
surfaces is equal to the dilatation of arewddd that is induced by the map of the two
focal surfaces to each other.

This theorem expresses the requirement of the conmervd the integral invariant
(8 25), or — what amounts to the same thing — the consmrvaf the LAGRANGE
bracket in the event that one puts the focal surfatdse center of consideration.

If one of the two ray congruences is a normal congeuémen the integral invariadt

must vanish identically, and for that reason we willehiay= ng = 0. The envelopes of

the rays of the congruence are, in this case, geodess lon the focal surface.
Conversely, the two ray congruences will always be aboongruences when the family
of curvesc consists of geodetic lines on the focal surface in olspate; the curves
must also be geodetic lines on the focal surface in irspgee then.

78. This result can be generalized: Completely simh@otems are valid when the
optical spaces in question are either homogeneous oopsot The formulas that we
presented have especial practical significance, but w&isahe ordinary case of
homogeneous, isotropic media, where they permit tihedattion of arbitrary curvilinear
coordinates.

We consider a surface:

t =t(s u), x=x(ssu (=12 (78.1)

in the space oft(x;, x) that depends upon the parametgandu. The curves on these
surfaces should be established by equations of the form:

u=u(s (78.2)

(and thus not in a parameter representation). Now(tifx, y;) is the HAMILTONian

function of the optical spaces in question then the dlements, u, du/ dsof the curve
(78.2), when one interprets them as spatial line elemenliscorrespond to certain
values of the conjugate variablgshat one can calculate from the equations:
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(%J,a_)?%j_Hy(ﬂJFE@'; -0 (=1,2). (78.3)
0s O0u ds '"\ds odud

However, instead of considering theo be functions o$, u, du/ dsin equations (78.3),
we try to introduce a new variableand determingn, y,, du/ ds as well as another
functionK, as functions ofi, s, andv. In order to do that, we establish the three functions
yi(s, u, V), yo(s, u, v), andK(s, u, v), which should satisfy, along with equations (78.3), the
identity:

—-Hdt+y,dx=—-Kdt+vduy (78.4)

which is equivalent to the two equations:

ot 0X.

= H(t, x;, yj)%ﬂ/ia—)fJ =v, (78.5)
ot )4

+H(t,x,-,y,-)£—yia—); =K (78.6)

One can calculatg, y», anddu / ds as functions ofg u, v) from (78.3) and (78.5)
and then obtaifK(s, u, v) with the help of (78.6). This latter functi®d{s, u, v) can be
regarded as the HAMILTONian function of a variatiopabblem that iscoupledwith
given problem on the surface (78.1). One refers to thagsariational problem that is
inducedon the surface by the original probleff) (

If follows from the relation (78.4) that the calcutats of § 66 can be carried over
here when one replacd’s X', y with s, u, v, resp., and write¥, instead ofH'. In
particular, when one thinks bandx; as independent af it will follow from (66.6) that:

ay;
du-— Ky ds= W(dxj - Hyj dt) ;

with consideration given to (78.3), one will theawh:

— =K,. (78.7)
In an entirely similar way, if will follow from (6&) that:

0 ot

dv+Kyds=| —--H, — [(dy, + H, df), (78.8)
ou ou ’

which is a relation that can also be written:

(" Variationsrechnung§ 342.
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o(t,x.)( dy
L Ll T (78.9)
ds J(s,u) | dt ,

due to (78.3).

79. In order to now define a family of curve®n the surface (78.1), it will suffice to
take:
v = ¢(s, u). (79.1)

A closed curvey on the same surface corresponds to a closed gurire the su-plane,
and, as a result of the relation (78.4), POINCARE'stnedaintegral invariant] for the
light rays that contact the cureet the points of/can be written:

J= jw—K(s, u@(s ) ds-g( s d. (79.2)
If one now transforms this boundary integral into a deuttiegral then one will get:
3= [[ (K, +K ) +¢)duds. (79.3)

Due to equation (78.7), the function under thegraécan be written:
% +Ku(s, u, #(s u); (79.4)

it will then have the same form as the left-hamt 9f (78.9). In the special case of § 76,
it is self-explanatory that this function will hatlee same geometric interpretation as in
(76.4).

We now consider a second variational problem engpace of, x of a surfaceB’
whose one-to-one map on (78.1) will be establisheslich a way that we can represent
B' by the equations:

t'=t(su), X =x(su) (79.5)

and establish that points of the surfaces (78.d4)(@4.5) should correspond to each other
when they belong to the same values of the paras®te Now, a variational problem
will be induced on the surfacd’ whose HAMILTONian function can be calculated in a

manner that is entirely similar to the previous o the introduction of a new variable
Vv it will be denoted b’ (s, u, V). Furthermore, we determine a family of curgesn
B' by the equation:

vV =¢(s U, (79.5)[sic]

and consider the congruence of light ray that mses5’' as its focal surface and the
curvesc as its envelope. The condition that is analogouse condition (77.1), which
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says that the two ray congruences that pos¥e$®’, resp.) as focal surfaces will be
optically coupled, will be expressed by the equation:

s +Kd(s, U, @) gu+Ku(s, u, ) = ¢, + K| (s,ug")p,+ K,(s ug"). (79.6)

80. The latter condition gives us the possibility ofatieg a large number of
problems that are connected with the optical couplingptongruences.

One can, e.g., prescribe the map of the two focédees to each other and the family
of curvesc*; the right-hand side of (79.6) will then be a knowmdtion ofs, u that we
denote by- of / du, whereas the functiog(s, u) will still be undetermined. The
condition (79.6) then says that any family of curgdbat defines a family of extremals
of the variational problem on the focal surf&aevith the HAMILTONian function:

K(s, u, v) +1(s, u) (80.1)

will define the envelope of a ray congruence that is dpticaupled with the given ray
congruence in the spacetgfx'. In order to determine the ray map with the given data
completely, one can, e.g., give the directions of th@ges at the points of a curve
segment on the surfacB, because the family of extremals of the problem (80.1) is
established by that.

If two congruences of light rays possess the samd faréace, and each of them
contact that focal surface along a family of curves ttan be interpreted as a family of
extremals of the variational problem with the HAMILN@n function (80.1), then one
will obtain an optical map of these ray congruences th @sher when one associates
each two rays that contact their common focal seréddhe same point with each other.

One can also determine those curves of the focalceufahat are transformed into

curves by themap of B to 8B’, for which, the relation (79.6) is valid. In generakde
curves must be solutions of a second-order, ordinary eiffed equation. However,
there are also extreme cases for which no single aifrtleat kind will exist and other
ones for whiclany curve of8 will possess the required property.

One obtains an example of the latter kind when oneddéme focal surfac® with

the homogeneous and isotropic propagation of light andesaati pencils of light rays
whose centers lie at a pointBfrigidly under the bending of the surfacd (

(") Cf., CARATHEODORY, C.: “Bemerkungen zu den Strahlenkinigien der geometrischen Optik,”
Math. Ann.114(1937), 187-193.



Chapter V.

The map in the first approximation.

81.The formulas for the accessory problem If the two optical spaces are isotropic
and homogeneous then the HAMILTONian functions for phepagation of light will
have the form:

H=—yn* -y’ -y, H'=-n?=y?-y7. (81.1)

We would like investigate the ray map in the near vicioftywo arbitrary corresponding
rays. Due to the isotropy and homogeneity of the spaiseno restriction to let the two
corresponding rays coincide with the(t', resp.) axis. Using a method that was
developed in the calculus of variations for the theofythe second variation and in
mechanics for the theory of small oscillations, welaee the HAMILTONian functions
(81.1) with functiondH, H' of the so-called “accessory problem”; we obtain tHater
functions when we develop andH” in powers ofy;, y;, and keep only the lowest

powers. One must then write:

2 2 12 2
Hzon+ YtYe W= BtV (81.2)
2n 2n
and the basic functions of the corresponding vianat problems will read:
52 2 ol 2 o) 2
A=nl1+32 7% | A =1 X% (81.3)
2 2
As a result, the light rays will have the equations
t , ) t'
X =U+yi—, X =uty—. (81.4)
n n

The ray map for the original problem shall likewisereplaced with another one that will
be obtained from a similar consideration. It iirk®l when we letu/, y/ be linear,

homogeneous functions of y; that shall satisfy the condition that the exp@ssi

y dy -y dy
is a complete differential.

Remark. The interpretation of the formulas for the lineay map can come about in
two fundamentally different ways.

For the first of these interpretations, one stanth families of light rays in the object
and images spacé#sat are coupled to each other by the original peob that was posed
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and which depend upon a parameter The valuea = 0 shall be associated with the
basic rays; i.e., the(t', resp.) axis. The rays of such a family will be reprged by the
functionsx(t, a), yj(a), X (t',a), y/(a), their initial elements in the planeés t, andt’ =

t,will be represented by functiong(a), u(a), and the ray map in question will be
represented by equations that will perhaps read as follows

u(a) = A (u(a), yi(a), yi(@) =Bi (u(a), yi(a) -

One develops all of these functions and equations in poovarsand remarks that for
sufficiently small values of this parameter the couplihghe two optical spaces in the
neighborhood of the basic rays can be represented iypdlae terms in this power series
approximately.

The first interpretation of the formula is the dhat the physicists have discussed the
most, and it will be employed as a rule.

For the second interpretation, which will be appliedvimat follows, we consider
linear couplings between two spasbose optical properties are characterized, not by
the original HAMILTONian function81.1),but by the HAMILTONian functior(81.2).
We assume that this should be the case on all of spadestudy the mapping rule,
without considering the original map in any way. This Im@sadvantage that we do not
have an approximation problem before us, but an ordinarigabptroblem, to which, all
of our previous methods and results can be applied witkstriation.

After this “osculating” problem has been examined foous sake, one can, if one
needs to, employ the fact that the two maps deviata &ach other only slightly in the
vicinity of the basic rays.

82. One will obtain the linear ray maps that we haw pliscussed most quickly
when one employs the theory of the eikonal. Sineeptrtial derivatives of the eikonal
should all be linear and homogeneous, the eikonal nse$t be a quadratic form in the
four variables upon which it depends. It would be computatioadlvantageous if one
could treat all possible cases with the angle eikohahea since in that case a
displacement of the starting point along th@', resp.) axis would give rise to a very
simple transformation of the eikonal. One must thetew

W= (a, ¥ +28, 5 %+ 8, W @n+ 2 LYY a L) } 62.1)
2Pt 2P VYot 2 R Yo YiE 2 B Yo Ve
and must calculate the ray map from:
u dy —u;dy =dw. (82.2)
One will then find that:
;. = allYl+a12y2+ pllyl+ p21y2 } (82 3)
'2 :a12Yl+a22y2+ p12y1+ p22y2
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and two similar relations for thg that we will not, however, require in what follows.
The eikonalW is, however, useful only when no relation exists betwienfour

variablesy’, y;, and it can very well happen that such a relationtisadlg present.
One now remarks that a comparison of (81.4) with (82.B)igid the equations:

I

t')
% = (all-*-ﬁj y1+012)/2+ P11yr +P21y2,

I

! ! t
Y, :a12Y1+(a22+ jy'z'*' P12y1+P22Y2.

n

Here, one can always give the variabla value for which these latter equations are
soluble for they,, from which, one easily concludes that in all casesvhich the angle
eikonal is useful (after a possible displacement okthding point along thg-axis), the
mixed eikonal, which depends upon theand theu;, can also be employed. One can

reach precisely the same conclusion when one stattsowd of the skew eikonals, and
one sees that in order to avoid distinguishing betweercéises one would do best to
perform our calculations with only that mixed eikonahfrthe outset. Due to the results
of § 45, we are guaranteed that we can represent all [@ksédar ray maps with the help
of this eikonal.

83. We must then discuss all cases in which the mderiged from the identity:

y; dy + u dy; =dV, (83.1)
where the eikonaV reads:

2V =(ay +2by y+ cy)+ (@ ¢+ 28 bty ) } (83.2)

+2py,u+2qyu+2ry U+ 2sy .

One can, with no loss of generality, simplify the foofthe eikonal when one gives
special positions to the coordinate axes. Namely,afsats:

y1 = y,c0sZ-Y,sin J, y> = Y, Sin#+Yy,cosd, (83.3)
U, = 4, cosg - U,sin &, u,= U, sinJ+ U,cos?d (83.4)

then one can choose the anglésand ¢ in such a way that after calculating the
coefficients in the new variables the relations:

b=0, =0, azc, azy (83.5)
will exist.
In special cases, one can push the simplification &weher. For example, i = 0,
along witha = c, is, by chance, true from the outset then the afglaill be
undetermined, and one can employ the rotation (83.3) aroafehiis in order to obtain
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a relationship between the coefficiepts, r, s by which the geometric properties of the
ray map will emerge more quickly. In particular, ifeodenotes the values of the new
coefficients byp, ... then one will have:

2(pT+0gs) = 2pr cos 29— (p° + f —r? —<) sin 29.

If b = 0and a= c then can always assume thatfgs= 0.
If S=0anda =c then one can likewise always assume thatqs= 0.

However, instead of this, one can, if one desass) arrive simply at the fact that=
0 in each of these cases. Finally, if, along WwithO andS = 0, one simultaneously has
=c anda = yfrom the outset then one can always arrive afatiethatg = 0 andr = 0 by
a suitable choice of the angl@saand ¢ in equations (83.3) and (83.4).

We now return to the general case. From the pusly-developed theory, the
functional determinant (43.8), which possessesctistant valugps — qr here, must
always be non-zero. However, this expression efidnge sign when one performs the
coordinate transformation:

'} vl I

=t X=X, %= =%

One can always assume from the outset that thedic@ades are chosen in such a way
that:
ps—qr > 0. (83.6)

From (83.1) and (83.2), our ray map will be essilgld by the following formulas,
with consideration given to (83.5):

=au + py,+
)(1 au} PR e } (83.7)
Y, = VU, + qy + SY,
U, = yy, + ru, + su, .

In conclusion, we would like to derive the conalitifor a ray map to be rotationally
symmetric. From § 60, the equation:

Uy —UYa— U Y+ U Y, =4

must be satisfied identically in order for thiske true. By replacing the values (83.7),
(83.8), one finds that = 0, and that one must have:

a=c, a=y g+r=0, p-s=0.
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From the remark above, one can then choose the npda#ions of the two coordinate
systems in such a way thgt r = 0, in addition.

84. Coupling of the spaces. From the remark at the end of § 32, all of these
formulas are valid for the accessory problem of amap for which the HAMILTONian
functionsH andH' are completely arbitrary. The formulas that wélwritten from now
on, which are obtained by comparing relations (81.4) with7§8and (83.8), are,
however, valid only under the assumption that the aocgsproblem possesses the
HAMILTON:ian function (81.2) and the basic function (81.3)hese formulas read:

t [/
x1=(a+ﬁj Y.+ pu+ qu,
(84.1)
t [/
(ot s
, t), t'
X1=(1+aﬁjul+(px+ ryz)ﬁ,
(84.2)

, t) , t'
> :(1+Vﬁj u,+(qy+ SX)F-

For any arbitrary choice of the four parametgrsi , these equations represent two rays

that will be associated with each other by our maponé adds yet another arbitrary
relation of the form:
t'=t(ty,u) (84.3)

to these equations then one will obtain a coupling efsfpaces in question to which the
theory of Chapter IV is applicable.

In what we have been doing up to now, tlendt’ axes played a special role. This
assumption is, however, only apparent: Namely, witth#ip of an almost trivial artifice,
anytwo rays:

X =U; +V, l, X = Ui'+V't— (84.4)
n

that are associated by the ray map in question can apppkace of the two axes; i.e.,
ones for which the relations (83.7), (83.8) are fulfikelden one replacas with U;, u
with U/, y; with V;, and y with V/". In order to show this, we consider a collineatiobn o
the space, x; to a space, &, and a collineation of the spate & that is defined by the
equations:

K=UAViTe g, X SU g (84.5)
Two rays:

Xi:Ui‘l'Yila X :Ui'+3{t_,’ (84.6)
n n
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will be transformed into the lines:

!

fi:Ui+/7i l, fi' :U'i+,7i’t_, (84.7)
n n

by these collineations. Now, the relations:

U =u-U, n=yi-V, u=u-U, n=y-V (84.8)

c

exist between the coefficients, and we see that sigceations (83.7) and (83.8) are
fulfilled for u, yi, u’, y;, as well as fotJ;, Vi, U, V', they must also be satisfied far,
i, U, i, . They then say that the two rays (84.6) correspondcio @her.

An important application of this remark is the follogyi In some situations, one can
easily recognize that there is at least one stignpaticil of light with the centep, x; =
X2 = 0 that is transformed into a stigmatic pencil ghtiwith the centet,, x = x, = 0.
If this is the case then, due to the last result,cameconclude thany point of the plané
= to will be mapped stigmatically to a point in the pldTe t; .

Later on, we will see that the rotationally symntesystems are the only ones for
which any stigmatic pencil of light will be taken to anothergstiatic one. It follows

from our remark above that any cone of light rays thaets the planels= const. in
circles will be mapped onto a cone of light rays tlugsesses a similar property.

85. The images of stigmatic pencils of lightFrom equations (84.4), we get:

+ pgy PO+
pyL +1y2 = tpxl + trx2 - pzuti Pad _ lti rSL‘J; (85.1)
—+a —+c —+a —+c
n n n n

once we have also calculatgg + sy in a similar way, we can write the quantitigsas
functions oft, x;, andt’, u; . To abbreviate, we introduce the notations:

2 2
A=q--P -1,
~+a —+cC
n n
Bzﬁ—tpq —trz , (85.2)
—+a —+cC
n n
R
c=y t t
—+a —+cC
n n
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Since the expressions B, C have the dimension of reciprocal lengths, it is, initaufd

preferable to set:

%:%. (85.3)
We then get:
ZX=(2+ Auy+ B{2|+tp—xl+tr—xl,
—+a —+c
n n (85.4)
2% = BU+(2+ G U +>0
—+a —+cC
n n
y, = AU + BLg+tp—X1+tr—X1,
—+a —+cC
n n (85.5)
Y, =By + Cy++ 2
—+a —+cC
n n

If we fix the pointt, x; in formulas (85.4) and let the vary arbitrarily then they will

represent those ray congruences onto which a stigmatd pérays with the centet; x;
will be mapped. These ray congruences consists of thetyavélall lines that cut two
real rectilinear focal lines. Namely, there are ealofz for which the coefficients of,

in the two equations (85.4) will be proportional to theficients of u,. These values
will be determined by the roots of the quadratic equation:

(Z +A)(Z +C) -B*=0, (85.6)

which one can write explicitly as:

7 = ~(A+C)t/(A- O +4F

2

(85.7)

which are then always real.
Each of the two focal rays will then yield a lineitersection that is the intersection

of the plane:

!

-1 (i=1,2) (85.8)
Z

v
nl
with another plane that one obtains by eliminatimgu’ from the two equations (85.4),

in which one has replacetiwith the chosen root, of equation (85.6).

We let¢: and @, denote the angles that the two focal rays subtetidthe x;-axis, so
we can then write:
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tang = —>_ =42*C (85.9)
z+A B
It will follow from this that:
tan 2, = 2B = 2B ; (85.10)
('+A)1—Z"+C A-C
4 Z+A
one therefore always has:
tan 2p, = tan 2p, , (85.11)

i.e., the two focal rays must be perpendicularacheother.

The only exception is defined by the case in wininh simultaneously h&= 0 and
A = C for certain values df this case will be treated thoroughly below (8.93)

One observes that the ray congruence that is idedchere, even though it is the
image of a stigmatic pencil of light, is not a natmaongruence in the ordinary sense of
the word. That rests upon the fact that we hapdaced the isotropic, homogeneous
media from which we started with other ones forahhihe propagation of light will be
described by the basis function (81.3). Theretlaeefore field-like ray congruences for
this accessory variational problem, and one caparticular, easily show that any linear
ray congruence whose focal rays are perpendicalaath other and lie in the plane
const. will be transversally (in the sense of thgational problem of § 81) intersected by
a family of surfaces that satisfy the differengglation:

&+%(S§+ s)=n. (85.12)

86. In formula (85.2), we set:
(86.1)

S|~
1
N

such thatz (unlike Z) has the dimension of length; if we now developatapn (85.6)
then we will get the relation:

(Z+a)Z+y)(z+ oz ¥- W '2y)( 2 )e *¢'za) +z)c (86.2)
1% (Z+y)(z+d-s(z+a)( 2 pr( ps ¥G=0. |

In a projective plane with the coordinae<, this equation will represent a fourth-order
curve with a double point at the points at infindtly thez andz axes. It always has the
form of a “double hyperbola” (cf., Fig. 10), everhen a third, finite, double point is
present. However, this can occur only wiien O andC = A are true simultaneously for
a certain value df In this case, the curve will have the form ig.Fil when one ignores
some further exceptional cases, and is unicursais asuggested in the same figure by
arrows. It is known that one can then represastdirve analytically when one makes
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and Z rational functions of a parametdr One finds these rational functions most
quickly in the following way: In order for the curve (86t@)possess a third double point,
a relation must exist between the coefficients oftcamsformation that has the effect that
one can factor out a complete square from the funatiader the square root in (85.7)
and put it in front of the square root. Only a quadratictianoof z now remains under
the root, and one can therefore simultaneously witelf and the square root as rational
functions of a parameter in a known way, by means of whict,can also be expressed
rationally.

N -y _\X\_V

—a I—¢C -a —-C
Figure 10. Figure 11

87. Calculating the invariants. It was the contribution of A. GULLSTRAND to
have discovered that an already sufficiently-precisessification of our linear maps
could be deduced from the study of the behavior of theiumc

tan 2= —22_ =2 Po(zt 9+ 14 2 & (87.1)

A-C (@-y(z+a(z+ 9—(B- Gz x-(F- §( 2 )k

Here, one actually deals with the classificationhef pencil of the two quadratic forms:

Qu = (pa+rs) &1 &2 + (pac+rsa) {7, (87.2)
Q= (@-Né;+a-y(a+9-(F- ) ~(r- L, } 67.3)
+H(a-pac—(p' - ) c=(r- ) &,

that one obtains when one replaces the quantitgh the homogeneous coordinatgs
{2 in the numerator and the denominator of (87.1).

One thus starts with the fact that there is alwayes pair of points (they can possibly
coincide or also be imaginary) that are simultaisgoaonjugate for the two quadratic
forms Q; andQ, . These two points determine an involution whdsable points they
are and is expressed by the equation:

(@=Plpdz+c)(z + ) +rs(z+a)(z +a)] - (@a—9(ps —g)(pr + a9 = 0. (87.4)

One obtains the double points themselves when eisdlse expression:
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W= (a- Plpdz +c)® +rs(z+a)’] — @ - 9(ps — q)(pr + g9 (87.5)

equal to zero. The discriminant of this latter quadratction is equal to the product of
- (a - y(a — 9 with the function:

® = (a- )(@a-qgpars— (ps — gi(pq + rs)(pr + qs). (87.6)

Since we have always takare ¢, and witha = c, alwayspr + qs= 0, as well (8 83), we
see that the double points of the involution will be imagy whend > 0, they will be
real when® < 0, and ford = 0 they coincide. One remarks, moreover, that theiton
® =0 is also necessary and sufficient for the exprassmler the square root in (85.7) to
vanish for a certain value & and therefore also for the fourth-order curve (86.2) to
possess a third double point.

One obtains a higher singularity when the quadratic $0@n and Q. are both
complete squares that vanish for the same valueé o> . This singularity will be
expressed by the equations:

a=y, pg+rs =0, pP+ri=g’+<. (87.7)
Moreover, it will be shown that for the ray map thisgularity is completely equivalent
to the other one for which all coefficients Qf or all coefficients 0ofQ, vanish but the
numerator and denominator on the right-hand side of (87liflantically zero. Finally,
the last one can, however, occur, and the ray mapbeillotationally symmetric for a
suitable choice of coordinates.
88. For the case in which one has:
® =0, (88.1)

the numerator and denominator of the expression orighehand side of (87.1) have a
common factor. By cancelling this common factor, gets:

—2(pg+ rs)’
t = ) 88.2
S G Py Ty Py g ey v s S

If one eliminates ¢ — )) from this with the help of (88.1) then one widtg

2(@a-c)pgrs
po(S - r)(z+ g+ rg p- §( = x

tan 29 = (88.3)

The expression (88.2) can also be employedafet ¢, while the latter one can be
employed only whea > c (cf., § 92).

89. The quadratic functio that we presented in 8 92 has a remarkable gemmetr
interpretation that is connected with the form ok tray map. Namely, if one
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differentiates equation (87.1) with respectztthen when one multiplies both sides of
cos 2¢ one will get:
nJd¢ _dg _ N A— (89.1).
dt dz (A-CO)"+4B°)(z+ 9° (= ¢

in which the functiony on the right-hand side is defined by equationgB7.

One now remarks that any stigmatic pencil of rey®se center lies on theaxis
itself will be mapped to a ray congruence in thage space that contains two mutually
perpendicular pencils of rays whose centers lighert’-axis. One calculates these two
pencils of rays when one sets:

u =— 0B, u,= o(z+ A (89.2)
in the formulas of § 85 one time and:
u = - 0B, u,= o(z,+ A (89.3)

the other time. In thisp and o are variable proportionality factors, aml, z, are the
roots of equation (85.6) such that one will haweaddition:

Z+7 =-(A+C), Z 2=AC - B. (89.4)
The rays of the two pencils that were just congidaare images of rays of the stigmatic

pencils of light that one starts from. One obtalmes directions of these latter two from
equation (84.1), in which one must get x, = 0, by the formula:

__bu+qy __rd+sg
yl_ ) yz_ y
z+a zZ+ C (89.5)
__pu+qi _ __ rd+sy
' z+a ? z+c '

in which one must substitute the valuesupf ' from (89.2) and (89.3), resp. It follows
from this that any of the pencils of rays above thesthe image of a pencil of rays in
object space, but these two pencils will lie inngla that do not necessarily need to be

perpendicular to each other. Namely, if one Btslenote the angle that they define
between them then one will have:

+coto= It VoY (89.6)
Yo =W Ye

By replacing the values above, one finds that:
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Y
t+ cotO = : (89.7)
(ps—an(z+ 3(z BJ( A F+4 B

and by comparing this with (89.1), one will get:

(ps—qr)? cof © = wh (jj—f (89.8)

The functiony can thus be expressed in a very simple way with the h&@@ofl dp /
dt.

One calls the points of thieaxis for which the angle that was just introduce® is 77
/ 2 orthogonal points. Equation (89.7) shows that orthogonal points are presethiei
general case only when the equatigs O has real roots, and equation (89.1) teaches us
that these will be the points for which one alsodwasdt = 0.

90. Up to now, we have considered the images of stigmagiacils of light.
However, one can, without introducing very many new watons, consider the
analogous problem that one obtains when one exchangésdhaptical spaces. Those
ray congruences in object space shall then be exhibitédatbamapped to stigmatic
pencils in the image space. In order to do this, we sulgé equations (84.2) for the
and substitute the values thus found in (84.1). The desiyedongruences will then be
represented with the help of the parameyersNot only are the results that one obtains
completely analogous to the previous ones, but most dbthaulas do not need to be
recalculated at all. One obtains them from the odohers when one first switchesvith
Z, and thema, ywith a, c, resp., and finallg with r. However, one must not forget tizat
andz do not possess mutually corresponding geometric intetjoretehere, since =t /
nand 1 /Z =t / n'. Therefore, some formulas will become considerabtyem
complicated. For example, equation (87.4) gets a corregmpoandition for the pairs of
coupled points on thé-axis that takes the form:

L (a-9(pry+ am) ~(@-))( ps- O pre 13
D (90.1)
+(%+E?j(a—c)( pry+ qsr)+(a & pr op=0.

However, the asymmetry does not extend to the funebpmvhich remains invariant
under the exchanges that were just given.

91. Twisted and re-twisted systemsWe first examine the case in whidh# 0, and
remark that, from 8§ 83, we can assume thatyanda > c. One could then takgq + rs
= 0, along witha = y; and one would then, in fact, hage= 0.

For @ > 0, the expressiopq + rs # 0, since forpg + rs = 0 the function®, from
(87.6), must assume the signpafrs, which is necessarily negative. The functigrtakes
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the sign of & — ))(pq + rs) for all values oz From (89.1)d¢ / dt is also always a sign,
and since tan @ tends to zero whenZ | becomes infinitely large, and in addition,
possesses precisely one zero point for:

_ pgc+ rsa

Z= )
pg+rs

(91.1)

the angle @ must vary from 0 to Z(— 277 resp.) when describes theaxis; the angle&
itself increases monotonically from zero Adfor (/> 0 and decreases monotonically in
the interval from zero to #

Following GULLSTRAND, the ray map is then calledstedin the case oP > 0.

For® < 0O, it is no longer necessary that one hpge- rs # 0. However, we would
next like to assume — and this is the general caset-thisainequality is also fulfilled
here. One then has tag 2 0 at the point (91.1) again, but, from (89.d¢, / dt will
always has the same sign@sand will therefore have a sign at this point thaigposite
to the one that it assumes for large valued ¢f |f this latter sign is — e.g. — positive then
one will easily find that the following is true: Whehet center of the stigmatic pencil
describes the-axis, the angle will increase from zero to a positive maximum, whish i
< 7/ 2, in any event, and then it will decrease to gatige minimum > 77/ 2, in order
to ultimately increase monotonically and converge to zero.

The system is then called-twisted The points of thé-axis for whichd¢g / dt = 0,
and therefore one will hawg = 0 simultaneously, are the two orthogonal points 898
The oscillation of the angl¢ between its maximum and its minimum is always smalle
thanz

The previously-excluded special case:

pg+rs=0, a>c, a>y

also corresponds to a re-twisted system. Namely, aofapt= 0 will then lie at infinity,
and the maximum or the minimum @fwill be attained fot = c.

We shall refrain from a closer study of the twistad ee-twisted systems. For such a
study, one must distinguish a series of special sulsedaand investigate them. For
example, the case in which identities exist betweencttmponents; and y of the
directions must be examined precisely; in fact, thedatill occur whena or y (but not
both of them) vanish.

92. Semi-twisted systemsWe now assume that the invari@ntthat is defined by
(87.6) vanishes without the function tag Being a constant.
We first remark that one must certainly have:

pgrs# 0. (92.1)

Namely, if, e.g.q = 0 then, from (87.6), one must have:
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() :—p252r2: 0, (922)

and from (83.6)ps# 0. One must then necessarily also haz€d, and tan 2 would be
constant, namely, zero.
Secondly, one cannot simultaneously have:

pg+rs=0, pr+gs=0. (92.3)

By adding these two equations, one will gett(s)(q + r) = 0, one will therefore have

eitherq=-r,p=sorg=r, p=-s. Inaddition, sinc& = 0, one must have either= y

ora=c. However, for each of these assumptions, one anielthat tan @ is constant.
Thirdly, one verifies similarly that tangds constant when one has either:

pg+rs=0, a=c (92.4)
simultaneously or:
pg+rs=0, a=y (92.5)
simultaneously.
If ® = 0, withoutg being constant, then only the three following possieditwill
remain:

pg+rs#0, @Er+q9#0, a>c, a>y (92.6)
pg+rs=0, pr+gs#0, a>c, a=y (92.7)
pg+rsz0, pr+qs=0, a=c a>y (92.8)

In each of these three cases, tah cn be represented by at least one of the two
equivalent formulas (88.2) and (88.3).

It follows from this that, as for twisted systems, g¥hiotate ironesense about the
axis and a plane that goes through one of the foca \ireen the center of the stigmatic
pencil of light describes theaxis here, the angleg2will, however, only increase or
decrease byt

The anglep itself thus changes b/ 2, which is precisely one-half of the change that
occurs for twisted systems, and for that reason tstesyis callegemi-twisted.

93. For semi-twisted systems, the point:

t_,__pqc+rsa (93.1)
n pg+rs

plays a special role. Namely, one simultaneouslyBhas0 andA = C (8§ 87) for that
point. The numerator and denominator on the right-tsashel of (87.1) vanish. Finally,
equation (85.6) has a double root:

y=-Az—g+ PATI(PS—A) ___ (PA*+1(Ps= @) g5
(@a-c)gs (@a=c)pr

If one substitutes these values f@ndZ in (85.4) then one will find that:
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[(pa+r9(ps- gy —a( & F s p=( pg )& sx gx

[(pa+r9( ps- A+ & ¥ pF ¥=( pa - - pX } 939

It follows from the latter equations that the map dstagymatic pencils whose centers lie
in the plane (93.1) istigmatic. However, at the same time, we have also obtained
formulas by which one characterizes the map of both plua¢sre transformed to each
other by the corresponding stigmatic pencils of light.

We are now also in a position to understand how th&td@d and semi-twisted ray
maps can be taken to each other continuously, despit@ac¢hthat the apparently erratic
oscillation of ¢ will be reduced fronvrto 77/ 2. Namely, if the invarian® > 0 and
converges continuously to zero then there will be a pagoupled points — i.e., points
that will be transformed to each other by the involution4B+#.that will converge to one
and the same point. The angfeincreases byr/ 2 when the center of the stigmatic
pencil describes the small interval that links the twapled points. However, since the
two focal lines are mutually perpendicular, the figura ttonsists of two focal lines will
go to another one under the traversal of a smallvatehat differs only unnoticeably
from the first one. In the limit, it is no longpossible to establish whether the rotation
around the angl&/ 2 has or has not taken place.

The connection between semi-twisted and re-twistetkisysan be explained in an
entirely similar way when one employs the fact thatdifference between the maximum
and the minimum o converges taz/ 2 in the limit.

94. There are three different kinds of semi-twistedesyst according to whether the
planes that are mapped to each other for correspornamgasic pencils of light are both
finite, or one of them, or finally all of them, la infinity.

We obtain the semi-twisted systems of the firstknom equations (83.7) and (83.8)
when we demand that the conditions= u, = 0 must imply the further conditions =
uz = 0. We must then write:

a=0, c=0, (94.1)

and from § 83, we can then always choose the coordimsesh a way that:

pr+qgs=0. (94.2)
From (87.1), we now have:

2(pg+rs)
t =- , 94.3
S A gy vy e i (943)

and this function ot is non-constant only when:
pg+rs#z0, a>y (94.4)

The semi-twisted systems of the third kind arated in a completely similar way to
the telescopic ones. One finds the conditions:
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a=y=0, pg+rs=0, (94.5)
a>c, pg+rs#0, (94.6)

The semi-twisted, telescopic systems are less doagdl to calculate. We must
demand that it should follow fromn = u, = O thaty, = y, = 0. From (83.8), one finds

that foru; = u, = 0:
(ps—ah u, =—asy +cqy, (ps—qj u =—aryi +cp . (94.7)

If one substitutes these quantities in the right-handdfigguations (83.7) and demands
that the coefficients o andy, must vanish then one will get:

—qas+(ps- q) p=0, aca(ps odrrO, } (94.8)

yar+(ps—qng=0, —ycp+(ps gy 0.

It first follows that all of the quantities, y; a, andc must be non-zero, and then also that
equations (94.8) are compatible with each other only when:

pgc+rsa= 0. (94.9)

Since, from (92.1), the conditiqgugrs# O is true, one can then write:

_ ps—qr
Asq

, y=- P ar (94.10)

a=Apq, C=Ars, a
Apr

in which A means a non-zero parameter. One ultimately finds flan (87.1), the
function tan 2 is non-constant if and only if one simultaneously. has
pg+rs#0, pgc+rsa=0. (94.11)
The latter equations are equivalent to the followingsone
azc, azy (94.12)
95. Orthogonal systems. We now consider the case in whighpossesses a
constant, well-defined value for all valuestof
If a > ythen, from (87.1), the function tap2will be constant only if it vanishes
identically. This yields the conditions:
pg+rs=0, pgc+rsa=0, (95.1)

from which one concludes that one must have either:

pg=0, rs=0 (95.2)
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ora =c. However, by the second assumption, the condit®b] must be fulfilled in
any case. In the case= c, one can always choose the coordinates suclythdl is true
from the outset (8 83). Equation (87.1) will then takehenform:

-2rs

(@-N(z+a-(F+r-s)’

tan 2p =

and tan 2 will then be constant only whes = 0.
Secondly, ifa = ythen one can again assume tpat0, and one will have:

2rs(z+ a)

N o (P 3

(95.3)

However, from (83.6) it will follow here thais # 0, and the right-hand side of (95.3)
will, as a result, be constant only when eitteer 0 ora =c. In the latter case, one can,
from § 83, again choose the coordinates suchaghkaf,r = 0. In both cases, equations
(95.2) will then be fulfilled here, as well.

Consequently, the condition for tag 20 be constant can always be written in the
form (95.2). Sinces — qr# 0, one can, if one so desires, write this conditiothe form:

q=0, r=0, (95.4)

after a possible rotation of one of the coordirsytstems through 90 However, one can
then no longer assume that one simultaneouslyhaganda > c.
Equations (84.1) and (84.2) now have the form:

t t
Xlz(a-*_ﬁj Y.+ py, &:( C*Ej ¥+ sy
, , , , (95.5)
X1=(1+at—jui+ pxt—, >§=(1+yt—j 0+ Sxt—,
n n n i

from which, it follows that the ray map possesses symmetry planes in this case. In
addition, from (87.5), the functiog is identically zero, from which it will follow (89)
thatall points on the-axis are orthogonal points. Equations (85.2) libeeform:

2
A=g- L, B=0, C=p- S (95.6)
Z+a Z+C

here, which can be written rationally as soluti@isequation (85.6), since the fourth-
order curve in 8 86 decomposes into a product ofliyperbolas.

96. SinceB vanishes identically, the condition for the magéostigmatic will reduce
to A = C, which can also be written as:
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(a—Y(z+a)(z+c)—p?(z+c)+5 (z+a) = 0. (96.1)
The discriminant of this quadratic equation reads:

W=(@-Na-9-p+9)(a-N@-9-p-9. (96.2)

If W < 0 then both roots of equation (96.1) are imaginary, la@cktis no stigmatic point.
If ¥ = 0 then there is a stigmatic point, which is countede, and foV > 0 a pair of
stigmatic points is present.

For the case in which two mutually corresponding stigiatints lie at finite points,
one can choose the coordinate origin in such a wayatpatr coincides with the points
=0,t = 0. For this to be true, one must take:

a=0, c=0, (96.3)
and the second point-pair then possesses the abscissas:

2 _ 2
=P -5 (96.4)
py—-sa

t'
H n,

The map of the stigmatic planes in the case of tise gair of stigmatic points considered
will be represented by the formulas:

X =2, X'z=%, t=t=0. (96.5)

The condition for the point-pair (96.4) to coincide witle first one is expressed by:
P’ =¥, aty; (96.6)
the map (96.5) is then rotationally symmetric.

If the ray map is semi-telescopic for a pair of esponding stigmatic planes then,
perhapsA = C = 0 must follow fronz= 0. From (95.6), this will yield the condition:

a=—, y=—, (96.7)

and in place of the relations (96.5), we must now write:

, ,_s 1
ylzgxl, V=%, g =t=0, (96.8)

The condition for the coefficient afin (96.1) to vanish, along with the constant term,
with the values (96.7) reads:
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p’c?—sa’=0. (96.9)

It once more follows from this that the existenceaafouble root of equation (96.1) can
be expressed by the rotational symmetry of the map (96.8).

Finally, if the ray map for the one pair of assodatBgmatic points is telescopic then
one must write:

a=y=0, Y, =pP% Y, =S¥,
and the rotational symmetry will have the same meanirgfase.

97. GAUSSian systems.The reasoning of the previous paragraph loses its meaning
when all coefficients vanish in equation (96.1). In ordettliis to be the case, one must
have:

a=y a=c, p°=¢, (97.1)

and — possibly after one performs a reflection in onthefcoordinate planesone can
indeed always arrange that the last of equations (97 4plsced by:

p=s (97.2)

From § 83, the ray map is then itself (not just the pamiap in the stigmatic planes of the
previous paragraphsptationally symmetricand we have the classical case before us
that GAUSS first investigated in a celebrated tredfi§e However, what is much more
important than this rotational symmetry here are thtsfthatany stigmatic pencil of rays
will go to a stigmatic pencil of rays, and that the teatical spaces will be mapped
collinearly to each other.

Our discussion shows further that the converse ofrdsalt is also true heréf a
linear ray map has the property that any stigmatic pencil of rays isna@gansformed to
a stigmatic pencil of rays — i.e., when the instrument is absolutiee sense of 8 69 —
then the linear map must be rotationally-symmetric — i.e., it et GAUSSan ray
map.

Here, equations (83.7) and (83.8) have the simple form:

y =au +py, u =ay + py (i=1,2). (97.3)

Moreover, with the notations of 8 85, one will have:

A=C=a--P_ B=0 (97.4)

and in place of equation (85.6), one can now write:

("® GAUSS, C. F.: “Dioptrische Untersuchungen,” Abh. Gesss\WGéttingertl (1843), 1-34. Werke,
Bd. 5, pp. 243-276.
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(Z +a)(z+a) =p* (97.5)

For the collinear relationship between the two optgadces, one thus obtains from
(85.6) and (85.4) that:

=0 JEp— (97.6)

and one will have the equations:
, _a t
0= (x-Ly) voy o
p n

in addition. All of these formulas can be simplifieda well-known way when one
translates the origins of thendt'-axes.

98. Since we have a absolute instrument before us witlG#ESSian map, the
theorem of § 69 is true. One then satisfies a reldbianhas the form:

n {1&(%)2 +3(d_’§ﬂ dt - n{1+—1(%j2+—1(%ﬂ dt=dw,  (98.1)
2l ar ) 2\ ar o\t ) 2 dt

in whichW is a function ot, x;, X2, and which must be fulfilled identically whe'nand
the X are replaced with the values (97.6).

In order to calculate the functidH, one remarks that, from (81.2) and (81.4), one
will have:

—Hdt+y,dx +y, dx =dQ +y; dw + Y, dw (98.2)
in which one must take:
2 2
Q:nt+%d—; (98.3)
n

an analogous formula is true for the second opspalce. Moreover, it follows from
equations (97.3) that:

y dy — y du =dX, (98.4)
with:

X= ZW ) =S+ D). (98.5)

One then obtaind’ by using the Ansatz:
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W=0'-Q+X (98.6)

One then expresses the right-hand side as a fundttort,oq, andy; . The coefficients of
yi then vanish when the first equation in (97.6) exists éettV andt, and one then gets:

2 2

29 =2(n't —nt) + a (at—,+1j X +2X2 : (98.7)
n p
which can also be written as:
2(t+aj (M +mt)-2ngt+a (X+ %)
oy = _\N (98.8)

i
n

The difference between the optical lengths of twliteary curves that are mapped to
each other by the transformation (97.6) depends updy the endpoints of the curve
when one calculates these lengths from the basictians (81.3). For example, if the
endpoints of the curve in object space lie on areethe same second-order surfédée
const. then both curves will have the same oplagjth.

The reason why the way that we reached the caoalsisn 8 71 cannot be applied
here is to be found in the fact that curves thatiri a plang = const. must have an
infinite optical length.

99. Concluding remarks. In practice, only rotationally-symmetric instrunte are
constructed. It would then seem that the consideraf dioptric systems that are not
rotationally symmetric is completely superfluoudowever, that is not the case. If one
would study the ray map in the vicinity of a ragtliloes coincide with the rotational axis
of the instrument itself then one would alreadyehtosconsider orthogonal systems when
the ray cuts the axis. However, if the ray werevsko the rotational axis then one would
indeed be dealing with a general system.

A second remark that justifies our rigorous treatmof the theory in the first
approximation is the following one: If one investigs the ray map in homogeneous,
isotropic media then every stigmatic pencil of ray®bject space will correspond to a
ray congruence with two real focal surfaces. A lelement through the center of the
stigmatic pencil will correspond to a line elementeach of these focal surfaces, and in
fact, these last two line elements will lie uporeand the same ray of the congruence,
namely, the ray in image space that is establilyetthe line element in object space. If
one goes to the accessory problem then its posiannthen be calculated by means of
equation (85.6).

If one now lets the line element in object slideng a ray then the values of the
coefficientsa, y; a, ¢, p, g, r, swill not change; as a consequence, if one setespecific
ray in object space then one cannot, however, gionally establish the center of the
stigmatic pencil on it, although on the associatgdimage the respective contact points
of the focal surfaces for an arbitrary positiontbé center of the stigmatic object ray
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pencil can already be always calculated when onediEscted enough data to determine
the fourth-order curve in § 86.

One will not wonder why such legal details must be prefernte arrangement of
the focal surfaces when one considers that this reselitirely analogous to the well-
known theorem that says that the tangential elemsotg) a generator of an arbitrary
ruled surface are uniquely determined everywhere when onesktmem for three
positions of the generators.



