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Foreword. 
 

 This booklet contains that part of geometrical optics that can be regarded as an 
immediate consequence of the principles of FERMAT and HUYGENS.  The description 
of the ray map in the first approximation may be informally integrated with the general 
theory, and for that reason, it will likewise be considered.  By comparison, I have left 
aside the theory of optical errors of third order, upon which the calculation of optical 
instruments rests, because I was forced to choose a much too scant presentation for the 
foundations of ray optics.  This sacrifice was, however, alleviated for me by the fact that 
precisely those things had been treated in a classical way a long time ago by K. 
SCHWARZSCHILD (see footnote 59, pp. 39).  In addition, one finds them in all of the 
books that are dedicated to geometrical optics, and thus, above all, in the following two 
works: CZAPSKI-EPPENSTEIN: Grundzüge der Theorie optischer Instrumente, 3rd ed., 
issued by H. ERFLE and H. BOERGEHOLD, and M. HERZBERGER: Strahlenoptik.  
Since these books include very thorough and almost flawless bibliographies, I can restrict 
myself to just the most necessary ones in my own references. 
 I am indebted to G. PRANGE, who corrected this booklet, for numerous essential 
improvements that I cannot detail individually.  My thanks also go out for the editors of 
the “Ergebnisse” and the publishers, for accommodating all of my wishes. 
 
 October 1937 
        C. CARATHÉODORY.  
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Introduction  
 

 With the onset of the Nineteenth century, a view of geometrical optics began to 
prevail that had already been initiated by CHR. HUYGENS (1629-1695) (cf., infra, 
footnote 37), but was then completely forgotten.  Until then, one had to content oneself 
with treating the validity of the ray refraction in the first approximation on the axis of a 
rotationally-symmetric system (1), but now one turns to the posing of more general 
questions.  In the year 1808, E. L. MALUS (1775-1812) stated the theorem that a 
stigmatic light bundle, after reflection or refraction from a curved surface, would be 
converted into a normal congruence (2).  MALUS was of the opinion that this theorem 
was true only for stigmatic light bundles, and therefore when light rays passed through an 
instrument it would only apply to the first reflection or refraction.  However, the theorem 
generally extends to arbitrary normal congruences; this was established for the case of 
reflection by CH. DUPIN (1784-1873) in the year 1816 and for the case of refraction by 
L. A. J. QUETELET (1796-1874) in the year 1825, and almost simultaneously by J. D. 
GERGONNE (1771-1859) (3). 
 From the extended theorem of MALUS, the law of ray mapping can be achieved for 
an arbitrary optical instrument, when one ignores a similarity transformation (cf., § 27).  
This path is, however, very tedious and really only a detour.  Nonetheless, it was still 
used occasionally and in remarkable ways for a long time after the discovery of a direct 
path (cf., BRUNS, footnote 18). 
 The natural approach to the theory of geometrical optics in its full generality was first 
found by Sir WILLIAM ROWAN HAMILTON (1805-1865) (4).  HAMILTON himself 
already had been interested in optical problems for thirteen years.  However, should this 
folklore itself seem to be only a legend, it is therefore sufficiently amazing that before his 
entrance into Trinity College of Dublin (July, 1823) he had already done his first work on 
caustics (5) and before the conclusion of his studies he had presented his great work 
“Theory of Systems of Rays” to the Irish Academy (April, 1827).  This rare gift was, 
moreover, immediately recognized by everyone.  In the same year, before he had time to 
get over the final exams, he was made professor of astronomy, a post that his teacher Dr. 
BRINKLEY, who had meanwhile been named the Bishop of Cloyne, had occupied (6). 

                                                
 (1) Cf., M. HERZBERGER: “Geschichtlicher Abriss der Strahlenoptik,: Z. Instrumentenkde., Bd. 52 
(1932), pp. 429-435.  485-493. and 534-542.  
 (2) MALUS, “Optique, Dioptrique,” J. École polytechn., 7 (1808), pp. 1-44, 84-129 – MALUS, E. L. 
“Traité d’optique,” Mém. prés. à l’Institut par divers savans 2 (1811), pp. 244-302. 
 (3) One finds a detailed history of MALUS’s theorem , with all of the necessary references, on pp. 463 
of the Collected Papers of HAMILTON (see footnote 16). 
 (4) One finds the best introduction to HAMILTON’s ideas in G. PRANGE: “W. R. HAMILTONs 
Arbeiten zur Strahlenoptik und analytischen Mechanik”  NOVA Acta. Abh. Leop. Carol. Deutsche Akad. 
d. Naturforscher, Bd. 107, no. 1, pp. 1-35.  Also very useful is J. L. SYNGE: “Hamilton’s method on 
Geometrical Optics,” J. Opt. Soc. Amer., 27 (1937), 75-82. 
 (5) This paper was announced for the first time in 1931 under the title of “On Caustics, Part First, 
1824;” in his Mathematical Papers, v. 1, pp. 345-363. 
 (6) ROBERT PERCIVAL GRAVES: Life of Sir W. R. HAMILTON including selections from his poems, 
correspondence and miscellaneous writings.  3 vols. (Dublin, Trinity College 1882-1889, Dublin Univ. 
Press, Ser.) F. KLEIN: Vorlesungen über die Enwicklung der Mathematik im 19. Jahrhundert (Berlin, 
Springer 1926), Bd. 1, esp., pp. 182 et seq. 



2 Introduction 

 The first youthful labor of HAMILTON on caustics already included many of the 
ideas that would later make him famous.  In the “Theory of Systems of Rays,” the first 
paper of what would be followed by three significant “Supplements,” we find, above all, 
the concept of characteristic function (7).  HAMILTON had the inspiration of regarding 
the optical length of a light ray that linked a point in the object space with a point in the 
image space as a function of the positions of these two points.  HAMILTON had first 
seen the true basis for this situation, in general, in 1832 when he derived the properties of 
characteristic function on the basis of the formulas for the variation of a curve integral 
with variable endpoints (8).  This formula had been discovered by J. L. LAGRANGE 
(1746-1813) (9) and L. EULER (1707-1783) had, in turn, written it down for curve 
integrals in three-dimensional space whose integrands were completely general 
expressions (10), but neither of the two had treated the subject with the simplicity and 
clarity that HAMILTON first invested it with. 
 A second, extraordinary accomplishment of HAMILTON consisted in the fact that, 
along with the first characteristic function that he had worked with, he also found three 
other functions of the same type, for which the roles of position coordinates and direction 
coordinates were switched with the aid of a so-called LEGENDRE transformation (11). 
 The affinity between the conception of geometrical optics, as HAMILTON had 
founded it, and the treatment of mechanics by the methods that LAGRANGE had 
developed in his Mécanique Analytique is so great that HAMILTON could carry over all 
of the methods that he had devised for the theory of optical instruments effortlessly to the 
most general problems of mechanics (12). 
 These latter papers attracted the interest of C. G. J. Jacobi (1804-1851), who 
immediately realized the advance over LAGRANGE and who presented the 
HAMILTONian theory to greater mathematical public (13) in a newly-minted form (14).  
By contrast, the optical works that had defined HAMILTON’s starting point would not be 
noticed even once by the specialists outside of England up until the end of the Nineteenth 
century (15).  This was surely connected with the fact that, on the one hand, the Irish 
Transactions, that included these treatises was hard to obtain outside of England, but 
above all, also the fact that HAMILTON, for whom new ideas were always erupting, had 
                                                
 (7) Mathematical Papers, v. 1, pp. 17.  
 (8) Ibid., pp. 168.  
 (9) See R. WOODHOUSE: A Treatise on Isoperimetrical Problems, pp. 90, Cambridge, 1810.  
 (10) EULER, L: Instit. Calculi Integralis, pp. 555, Petersburg, 1770.  
 (11)  “Third Supplement to an Essay on the Theory of Systems of Rays,” presented to the Irish Academy 
in 1832.  Mathematical Papers, pp. 164-293, esp. pp. 175 and 268. 
 (12) HAMILTON, W. R.: “On a General Method in Dynamics,” Philos. Trans. Roy. Soc. London 1834, 
Pt. 2, pp. 247-308.   – “Second Essay on a General Method in Dynamics,” ibid., 1835, Pt. 1, pp. 95-144. 
 (13) One finds a complete and very precise presentation of this entire historical development in G. 
PRANGE: “Die allgemeinen Integrationsmethoden der analytischen Mechanik,”   Enzklop. d. math. Wiss. 
mit Einschl. ihrer Anwend, IV, 12 and 13, released Dec. 1933, Bd. 4/2, pp. 505-804, esp., pp. 593-615. 
 (14)  On the contradiction to the conceptions of JACOBI and HAMILTON, cf., A. W. CONWAY and A. 
J. McCONNELL: “On the Determination of Hamilton’s Principal Function,” Proc. Roy. Irish Acad., 41, 
Sect. A (1932), pp. 18-25. 
 (15) At the naturalist convention in Halle in 1891, F. KLEIN gave a talk with the title “Über neuere 
englische Arbeiten zur Mechanik,” in which he notably emphasized the significance of the papers of 
HAMILTON on ray optics.  Cf., Jber. Deutsch Math.-Vereinig., Bd. 1 (1891/92) or FELIX KLEIN 
Gesammelte mathematische Abhandlungen, Bd. II, pp 601-602.  Berlin, Julius Springer 1922.  Despite the 
authority of KLEIN, this talk still did not have the desired effect. 
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squeezed so many different things into these papers that they were, to some extent, quite 
tedious to read. 
 It is only recently that anyone with an interest in ray optics has been in a position to 
study HAMILTON’s treatises comfortably.  Above all, he can do this in the monumental 
publication of those works, which contain many new ideas that were published for the 
first time in the manuscript, and which is provided with an excellent apparatus of 
comments (16), or also in German translation by PRANGE, which is distinguished by his 
detailed commentary (17). 
 From the general ignorance of HAMILTON’s papers, it is not surprising that his 
results were discovered many more times.  Above all, one must cite the paper of H. 
BRUNS (1848-1919), who had the greatest influence on the further development of ray 
optics (18).  In addition, he provided the inducement for F. KLEIN to steer the attention of 
the general scientific world to HAMILTON’s work in optics (19).  The starting point of 
BRUNS is clumsier than HAMILTON’s original method, because, starting from 
MALUS’s theorem, he dragged along the entire apparatus of SOPHUS LIE’s (1842-
1899) contact transformations with him.  On the other hand, BRUNS had an obvious trick 
that the esteemed HAMILTON had not thought of, and which simplified the theory of the 
ray map in two regards.  He first simplified it by the fact that he had the ray system fall 
on a screen and then characterized the individual rays by their determining data when 
they went through the screen.  By that means, he could employ the eikonals, which 
depend upon only four variables, in place of the characteristic functions of HAMILTON, 
while only one of the four characteristic functions of HAMILTON could be regarded as a 
function of four variables (20).  One observes that this number of variables cannot be 
reduced further, since the ray space is also indeed four-dimensional. 
 The second simplification that BRUNS had, however, involuntarily arrived at rests 
upon the fact that any individual system of formulas that arises from an arbitrarily given 
eikonal, and which serves to describe the ray map, can be used for all possible optical 
spaces and any choice of coordinates.  By contrast, the mapping formulas that were 
calculated from a HAMILTON characteristic function always belong to a single specific 
problem (cf., § 32 and 64). 
 One must also consider this result of BRUNS when one would like to give a modern 
presentation to the HAMILTONian theory after more than a hundred years has passed.  
One must also consider many other things, such as, e.g., the study of canonical 
transformations whose beginnings one admittedly finds in HAMILTON himself, but first 
experienced its systematic definition at the hands of JACOBI and S. LIE.  It is further 

                                                
 (16) The Mathematical Papers of Sir William Rowan Hamilton, Cunningham Memoir No. XIII, v. 1, 
Geometrical Optics, ed. for the Royal Irish Academy by A. W. CONWAY and J. L. SYNGE, Cambridge 
University Press, 1931 4o, XXVIII and pp. 534.  
 (17) “W. R. Hamiltons Abhandlungen zur Strahlenoptik,”  Transl. and comments by G. PRANGE, 
Leipzig, Akad. Verlagsges., 1933.  pp. 429 and comment on pp. 116.  
 (18)  BRUNS, H. Das Eikonal, Abh. math. phys. Cl. sächs. Akad. Wiss., Bd. 21 (1895), 323-436. 
 (19)  KLEIN, F.: “Über das BRUNsche Eikonal,” Z. Math. u. Phys., Bd. 46 (1901) or Ges. math. Abh., 
Bd. II, pp. 603-606. 
 (20)  On this, one confers the polemic between M. HERZBERGER: “On the Characteristic Function of 
HAMILTON, the Eiconal of BRUNS and Their Use in Optics,” J. Opt. Soc. Amer., 26 (1936), 177-180, 
and J. L. SYNGE: “HAMILTON’s Characteristic Function and BRUNS Eiconal,” ibid., 27 (1937), 138-
144. 
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convenient to derive the main result of HAMILTON, namely, the equivalence of 
FERMAT’s and HUYGENS’s principles, by a path that is the opposite of the one that 
was followed by HAMILTON. 
 Namely, in place of FERMAT’s principle, we will take HUYGENS’s principle as the 
starting point, and show the equivalence of the two theories with the help of CAUCHY’s 
theory of characteristics (1819).  This has the advantage that the theorem of the 
conservation of the integral invariants of POINCARÉ and CARTAN, which, as we will 
see, not only replaces the celebrated theorem of MALUS, but virtually completes it, will 
follow almost by itself.  I have, moreover, summarized some of these things two years 
ago in my book Variationsrechnung und partielle Differentialgleichungen erster 
Ordnung (Leipzig, Teubner, 1935), and I will cite that book without an author name in 
the sequel. 
 I have treated the ray map with the help of the eikonal and the coupling of the 
individual line elements of optical spaces − two problems that are all too easily and all 
too often confused − in different chapters, in order to clearly separate them from each 
other, and I hope that this will contribute to the clarity of the presentation.  In addition, I 
have taken great pains to clarify some points that, although they do not seem to have a 
fundamental significance, still do not seem trivial.  For instance, at many times we will 
assume that every possible optical ray map is realizable in terms of at least one of the 
three remaining eikonals.  This supposition is, however, false, although I have compiled 
all ray maps for which this does not pertain, such that one now knows all of the cases for 
which a representation of the map by this eikonal is not possible.  In this way, one can 
verify that this hypothesis is always true, at least, for rotationally-symmetric systems.  I 
have also considered a term in the eikonals of these latter systems that was, 
inconceivably, always forgotten. 



 

Chapter I 
 

The principles of FERMAT and HUYGENS 
 

 1.  The discovery of FERMAT’s principle (21).  Once GALILEO GALILEI (1564-
1642) had invented the telescope † in the year 1609, the problem of the true explanation 
for the refraction of light was popular topic of the era that attracted the best minds (22).  
The first one to correctly describe the laws of refraction by a geometric construction on 
the basis of many measurements was WILLEBROD SNELL (1581-1626); however, the 
manuscript of SNELL that HUYGENS could refer to was lost without a trace, and the 
fact that SNELL had discovered the law of refraction was first recognized a century after 
his death (23).  The discovery of SNELL had no further influence on the development of 
optics.  In the meantime, RENÉ DESCARTES (1596-1850) had rediscovered the same 
law, and described by a simple mathematical law that he announced in the year 1637 (24).  
DESCARTES found this formula by an ingenious device, namely, with the aid of the 
hypothesis (later proved to be false) that under the change of velocity that the light 
suffers when it passes through a medium, the component of the velocity that is parallel to 
the separation surface must remain constant, while the absolute velocities on both sides of 
this surface must have a fixed ratio. 
 Immediately after the appearance of the book of DESCARTES – i.e., in the same year 
1637 – PIERRE FERMAT (1601-1665) attacked the physical foundations of the 
CARTESIAN theory fiercely (25).  It created a controversy that lasted a century and can 
still provoke a limited degree of interest to this day.  We need only to point out that 
FERMAT, et al., rejected the theory of DESCARTES, and indeed, with justification, on 
the grounds that in it the velocity of light in a dense medium would have to be greater 
than that in air. 
 In the course of time, FERMAT came to the idea of founding Dioptrics on a minimum 
principle, similar to the one that HERON of ALEXANDRIA (c. 200 A.D.) had employed 

                                                
 (21)  For the historical details of this chapter, see also C. CARATHÉODORY: The Beginning of Research 
on the Calculus of Variations, Osiris, v. 2 (1937). 
 † [D.H.D. Not true; this is a popular misconception about Galileo.]  
 (22)  Including JOHANNES KEPLER (1571-1630), who had already written his Dioptrik in 1610. (Cf., 
M. CASPAR: Bibliographia Kepleriana, no. 40, pp. 61. Munich, Beck 1936.) 
 (23)  Cf., HUYGENS: Opuscula posthuma, v. 1, Amstelodami 1728.  Dioptika, pp. 2. 
 (24)  In the anonymous work: Discours | de la Methode | pour bien conduire sa raison, and chercher | la 
verité dans les sciences | Plus | la Dioptrique | les Meteores | et | la Geometrie | qui sont des essais de cette 
Methode. – A Leyde | De l’Imprimerie de Ian Maire | CIC.IC.CXXXVII. Avec Privelege. 
 It was long asserted that DESCARTES knew the result of SNELL and had employed it in his own 
investigations without mentioning his predecessor.  It was first in the source reference of the Dutch 
historian D. J. KORTEWEG that it was proved that this opinion is obviously false [see D. J. KORTEWEG: 
“Descartes et les manuscrits de Snellius d’aprés quelques documents nouveaux,”  Rev. Métaphys. et 
Morale 4th Année (1896), pp. 489-501].  KORTEWEG had attributed the discovery of the law of refraction 
to DESCARTES rather precisely, and showed that at the time of the manuscript of SNELL, who had died 
already, not one of his best friends knew of its existence, and it was first rediscovered many years later.  
Cf., also, E. GERLAND: Geschichte der Physik, pp. 481, Munich, Oldenbourg, 1913. 
 (25)  Cf., the letter to MERSENNE on September 1637 (Oeuvres de Fermat, t., pp. 106.  Paris, Gauthier-
Villars 1891-1922). 
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for the treatment of Catoptics (refraction) (26).  During reflection, a light ray remains in 
the same medium and it suffices to postulate that the ordinary duration of the light path 
must be as short as possible (cf., on this, § 4).  On the contrary, under refraction, the light 
traverses two different media, and FERMAT now prescribed that the duration of the light 
ray, when one evaluated it with different velocities on both pieces, should generally be a 
minimum. 
 FERMAT had already expressed these thoughts in the year 1657 (27).  At the time it 
had not been established that light propagated with a finite velocity, and FERMAT then 
left this question open.  However, he chose his constants in such a way that if one 
interpreted the expression that was used for the minimum as a light duration then the 
velocity in dense media would be smaller than in sparse ones. 
 In the meantime, the DESCARTES law of refraction had been confirmed quite 
precisely by experiment.  Since FERMAT was of the opinion that his Ansatz, which was 
indeed diametrically opposite to that of DESCARTES, must then lead to a law of 
refraction that was incompatible with observations, he was therefore too discouraged by 
this situation to follow through with the analytical consequences of his minimum 
principle (28).  It was first at the end of the year 1661 that he finally gathered, from the 
repeated urging of his friends, that it was true, and was extremely surprised to find that 
his principle led to precisely the same law of refraction as the hypothesis of 
DESCARTES (29). 
 
 2.  Generalization and formulation of FERMAT’s principle.  FERMAT had 
assumed that the velocity of light was the same for all points of a transparent medium and 
in all directions.  However, the investigations of Chr. HUYGENS and I. NEWTON 
(1642-1727) (30) showed that this velocity is indeed independent of the prevailing 
intensity of the light, but it does depend upon the color of the light, and in crystalline 
media, on the direction of the light ray.  In addition, it is interesting to consider those 
media in which the density varies from point to point, as is the case for, e.g., the Earth 
atmosphere.  In such media, the light velocity v is also a function of position.  If one lets c 

                                                
 (26) HERONIS ALEXANDRINI, opera quae supersunt omnia, 5 vols., Teubner, Leipzig (1899-1914), 
with German translation.  “De Speculis,” v. II 1, pp. 301-365.  This paper, which presently exists only in 
the form of a Latin translation from the 13th Century, had long been attributed to Cl. PTOLEMAEUS.  It 
was first in the 18th Century that critics showed that it went back to HERON.  The evidence of 
DAMIANOS (4th Century A. D.) is important in connection with this, and is found in his book (Greek 
characters)  (Principal Facts of Optics), ed. R. SCHÖNE, Greek and German, Berlin 1897.  In chap. 14, pp. 
20 of this book (also cited in Heronis Al. opera II, pp. 303) the minimum principle of HERON was 
discussed and set down in words: (Greek quotation); i.e., At the conclusion of his proof, he said: If the 
nature of light leads us to believe that our eyes are not unnecessary then it must reflect with equal angles 
(meas. from the normal to the mirror).  [In the opinion of Greek physics, light did not originate from the 
things that one saw, but from the eye of the beholder.  One then had the inversion (Greek characters).] 
 (27) Letter to CUREAU DE LA CHAMBRE of August 1657 (Ouevres, t. 2, pp. 354).  
 (28) Cf., the passages in his letter in the Oeuvres, t. 2, pp. 460 and 486. 
 (29)  Letter on Sunday, 1 January 1662 to CUREAU DE LA CHAMBRE, Oeuvres, t. 2, pp. 457.  The 
proof that was attributed to this letter found a broader synthetic proof in t. 1, pp. 170, in which the property 
of the minimum was confirmed. ibid., pp. 173. 
 (30)  I. NEWTON: Opticks, or a treatise on the reflexions, refractions, inflections, and colours of light.  
London, 1704. 
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denote the constant light velocity in vacuo and lets v denote the velocity in the medium 
under consideration then one introduces the quantity: 
 

n = 
c

n
,      (2.1) 

 
which one calls the index of refraction (31).  We will, however, assume throughout that 
the light whose spreading we will examine is monochromatic, so the index of refraction n 
should depend upon only the geometric data (position and direction). 
 A medium for which n does not depend upon position is called homogeneous.  If the 
index of refraction does not depend upon the direction then the medium will be called 
isotropic. 
 
 3.  In the theory of optical instruments, one almost exclusively considers the passage 
of light rays through isotropic, piecewise homogeneous media.  This situation had moved 
some authors to treat geometrical optics in the vector notation, a choice of notation that is 
advisable only when invariance under rigid rotations in space is expressly specified.  
However, this invariance plays an entirely subordinate role in ray optics, since most 
optical instruments − if one ignores prisms, etc. − possess a symmetry axis whose 
position must be specified by a suitable choice of coordinates.  In the following, we will 
therefore distinguish an axis and denote it with the symbol t – by which, a parallelism 
between our formulas with the ones in analytical mechanics becomes especially obvious 
– and establish the points of space with the aid of this variable t, along with two other 
variables x1 and x2 . 
 We will often have to consider the case in which the three axes t, x1, and x2 define a 
rectangular coordinate cross, and in which the medium that we examine is isotropic, but 
not homogeneous.  The index of refraction: 
 

n = n(t, x1, x2)      (3.1) 
 

will then appear to be a function of three variables (t, xi), and the time T that light 
requires to describe a piece of the curve: 
 

xi = xi(t), (i = 1, 2; t′ < t < t″)   (3.2) 
 

will be represented by the integral: 
 

T = 
t

t

ds

v

′′

′∫  = 2 2
1 2 1 2

1
( , , ) 1

t

t
n t x x x x dt

c

′′

′
+ +∫ ɺ ɺ .    (3.3) 

 

                                                
 (31) The definition above of the index of refraction is true for the undulatory theory of light.  For the 
emission theory, one must set n proportional to the velocity itself.  Cf., P. STÄCKEL: “Elementare 
Dynamik der Punktsysteme und starren Körper,”  Encykl. d. mathem. Wiss. IV.7, Bd. 4/1, pp. 490. 
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In this, ds means the differential of the arc length of our curve, and we let ixɺ  denote the 

derivative of the functions (3.2).  In order to confirm the validity of (3.3), one must 
imagine that one has set: 

1

v
 = 

n

c
, ds2 = dt2 + 2 2

1 2dx dx+ .     (3.4) 

 
 The function in the integral (3.3) will, by our argument, play an entirely similar role 
to that of the LAGRANGIAN function for holonomic problems of classical mechanics.  
In order to express this analogy rigorously, we would like to introduce the notation: 
 

( , , )i iL t x xɺ = n(t, x1, x2) 
2 2
1 21 x x+ +ɺ ɺ .    (3.5) 

 
 The formulas that we will derive, will be, moreover, independent of this special form 
(3.5) of the function ( , , )i iL t x xɺ ; they will remain valid for an arbitrary form of the 

function L, and will correspondingly be just as well-suited to the case in which the 
medium in question is crystalline, and thus, anisotropic, as for the case in which one uses 
a curvilinear coordinate system in an isotropic medium – and, in turn, also in an 
anisotropic one – and converts the function (3.5) into such coordinates. 
 
 4.  FERMAT’s principle  shall now be formulated for the general problem of that 
sort.  A precise translation of the demand that FERMAT proposed for the special case, 
and which he alone had considered, will read as follows: Let A and B be two given points 
of space.  If one considers the totality of curve arcs γ that connect these points and 
computes the integral: 

( , , )i iL t x x dt
γ∫ ɺ      (4.1) 

 
for these curves then the light ray that connects A with B will be the curve for which the 
expression (4.1) possesses the smallest possible value. 
 The consideration of special optical instruments has show that the principle that is 
formulated in this way is consistently useful.  Namely, in some situations, one can 
construct light rays that go through the instrument and choose the two points A and B 
such that no other curve that γ that connects these two points and that runs through the 
given instrument and the integral (4.1) will attain a minimum value.  Similar phenomena 
were already familiar for the problems of catoptics in the time of FERMAT (32).  
FERMAT himself wished to overcome this difficulty by replacing the curved mirror with 
a plane mirror that contacted it at the place where the ray was reflected (33).  If one 
overlooks the fact that this represents a stopgap that is hard to justify then similar 
constructions in the case of refraction would not lead to the desired objective. 

                                                
 (32)  One needs only to consider a light ray that starts from the midpoint A of a spherical hollow mirror 
and after reflection is led from the point A to an arbitrary endpoint B.  Any other light ray from A to B 
consists of two rectilinear line segments and has a smaller total duration along the path that is bent at the 
sphere. 
 (33) Oeuvres, t. 2, pp. 355.  
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 One must then modify FERMAT’s principle.  Since the formulas of the calculus of 
variations will be developed later on, one must propose that the requirement of a 
minimum of the integral (4.1) be replaced with the requirement of the vanishing of the 
first variation of this integral, a proposal that has generally been agreed to up to the 
present time.  From a purely mathematical standpoint, there is absolutely nothing to 
prevent this procedure.  In this way, one obtains all curves that come under consideration 
as light rays.  The method, however, possesses two drawbacks: First, the generally 
understood and elementary concept of a minimum is replaced with a complicated and 
artificial concept, since the first variation of an integral can be made more intuitive only 
by means of much work and many words.  The second drawback consists in the fact that 
the way that one obtains the differential equations for the light rays from the condition for 
the vanishing of the first variation must likewise seem extraordinarily artificial, when one 
follows it through with the necessary diligence. 
 Fortunately, the difficulty that had engendered so many paradoxes can be eliminated 
by means of a minor modification of the problem statement.  FERMAT, and also all of 
his followers, had considered a fixed piece of the light ray and had drawn all of the 
comparison curves through the two endpoints of the curve segment.  Meanwhile, if these 
endpoints are noticeably far apart − e.g., when they lie on both sides of the instrument − it 
can happen that the postulated minimum property is not present.  The choice of endpoints 
is, however, completely arbitrary and thoroughly artificial.  One avoids all of the 
difficulties when one assumes that the light ray is unbounded (which it is, in reality) and 
the choice of endpoints is left open.  One then postulates something less than what 
FERMAT had done, but something more than what would suffice for the vanishing of the 
first variation: One demands that FERMAT’s principle should retain its original content 
when one considers arc segments along a given light ray whose positions are arbitrary, 
but whose lengths are sufficiently short.  One then arrives at the following formulation of 
FERMAT’s principle: 
 
 FERMAT’s principle: A curve e can coincide with the path of a light ray if and only if 
each point P of e is an interior point to at 
least one arc segment of these same curve 
e that possesses the following property: 
The integral (4.1), when taken along this 
arc segment between its endpoints P′ and 
P″, will have a smaller value than the 
same integral when one computes it along 
a curve γ that differs from e, but possesses 
the same endpoints, namely, P′ and P″, 
and lies in a certain narrower neighborhood of e. 
 
 The last condition means that one may restrict the choice of comparison curve very 
strongly without corrupting the fact that the curve e that it adheres to must be a possible 
light ray: Namely, one may choose two arbitrary positive numbers ε and η, and arrive at 
the fact that only such curves γ can be drawn for comparison for which the distance 
between two points Q and Q* that lie on e (γ, resp.) and possess the same abscissa t, is 
less than ε, and for which the angle that the tangents to both curves at these points 

 

e 
P′ 

γ 

P 
P″ 

Fig. 1. 
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subtend is, at the same time, less than η.  The necessity of such a restriction, for which 
the values of the numbers ε and η is not prescribed once and for all, is rooted in the 
nature of the problems that we would like to treat.  If one would always like to leave the 
curve γ be completely arbitrary, or choose permanently fixed numbers ε = ε0 and η = η0, 
then it can happen that for certain positions of curves, which one would like to establish, 
if they are to represent a light ray according to FERMAT’s principle then one must 
consider comparison curves that do not lie in the field of the instrument; e.g., they might 
fall on a screen. 
 
 5.  The discovery of HUYGENS’s principle.  FERMAT’s principle represents a 
geometric theorem that is, in fact, suitable for characterizing the form of the light rays 
that pass through an optical instrument.  For the further development of optics, however, 
it is worthwhile to point out that, right from the beginning, physicists were satisfied with 
the ideas that had guided FERMAT. 
 FERMAT had stated the theorem: “La nature agit toujours par les voies les plus 
courtes” (34) [“Nature always acts along the shortest path.”].  One could immediately 
respond to it (35) by saying that this is moral principle, not a physical one, and that many 
times by such a choice of “shortest path,” Nature can certainly find itself in a quandary.  
The fact that HUYGENS, who lived in Paris at the time, and constantly socialized with 
the academia there, had made the same sort of argument was shown in a letter that was 
written at the time (36).  One can, in this sense, practically say that reasoning that was 
completely similar to the kind that moved physicists to replace action-at-a-distance in 
electricity with the FARADAY-MAXWELL theory 200 years later had also led 
HUYGENS to the theory of light by thinking through it first.  The result was the book 
“vom Licht” that first appeared in 1690, but had been already written completely twelve 
years before (37).  The 124 little quarter-pages that he had devoted to this work on optics 
included, in principle, everything that would be accomplished during the next five 
quarter-centuries of progress in the theory of the propagation of light.  The most 
celebrated part of this paper was the first chapter, in which the phenomenon of light was 
described as a process of oscillation, and from which HUYGENS’s principle would be 
derived.  For our special purposes, it is the chapter that followed it that is more important: 
It showed, in particular, that HUYGENS’s principle could also be applied when one 
declined to pursue the details of the oscillation process and thus agreed to work in the 
first approximation by establishing that the velocity of light was a function of position 
and direction (38).  This approximation subsumes the content of both the principles of 

                                                
 (34) In the Catoptics of OLYMPIODOR (6th Century A. D), which HERON had revised, one finds the 
statement, loc. cit., footnote 26, v. II, 1, pp. 368: (Greek characters), i.e., Nature does nothing superfluous 
and does no unnecessary work. 
 (35) Letters from CLERSELIER to FERMAT on 6 and 13 May 1662 (Oeuvres, t. 2, pp. 464, et seq.). 
 (36) On 22 June 1662, Oeuvres complètes de Christiaan Huygens, publiées par la Sociétés Hollandaise 
des Sciences, t. 4, pp. 157, Lettre 1025.  La Haye, Martinus Nijhoff 1894. 
 (37) Traité | De la Lumiere. | Ou sont expliquées | Les causes de ce qui luy arrive | Dans la Reflexion, & 
dans la | Refraction | Et particularement | Dans l’etrange Refraction | Du Cristale d’Islande. | Par C. H. D. 
Z. (Chr. Huygens de Zuilyck) | Avec un Discours de la Cause | De la Pesanteur. | A Leide | Chez Pierre 
vander Aa, Marchand Libraire | MDCXC. 
 (38) Precisely the same fact had led E. SCHRÖDINGER, in our own time, to discover the relationship 
between classical mechanics and wave mechanics. 
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FERMAT and HUYGENS, and one can, as is generally customary in the procedure of W. 
R. HAMILTON, derive HUYGENS’s principle from only FERMAT’s.  However, it is 
not merely a convenient crutch for the intuition when one works with both principles 
from the outset.  Moreover, one can, in this way, liberate the calculations from all slag 
and bothersome repetitions, and present a philosophical scheme that is not easy to surpass 
in terms of simplicity and clarity. 
 For that reason, we would first like to briefly sketch HUYGENS’s train of thought in 
the simplest case of the spherical waves and express certain consequences that arise from 
our argument by analytical formulas. 
 
 
 6.  HUYGENS’s principle.  If a light signal were given at a point O in a 
homogeneous, isotropic medium with an index of refraction n at the time T0 then at the 
time T > T0 the light excitation would be noticeable on the outer surface of a sphere χ0(T), 
that has O for its center and possesses the radius (Fig. 2): 
 

R = 
c

n
(T – T0).  (6.1) 

 
We consider a convex surface t that contains O in its 
interior and lies completely within χ0(T), and denote 
the distance between an arbitrary point P of τ and 
the point O by ρ(P).  A light signal that is given at 
the point P and the time: 
 

TP = T0 + 
n

c
 ρ(P)  (6.2) 

 
generates a light excitation that is found at the time 
T on the outer surface of a sphere χP(T).  This sphere χP(T) contacts the sphere χ0(T) at 
the point Q, at which the light ray from O to P meets the sphere χ0(T).  All of these 
spheres were called light waves by HUYGENS, and he deduced two different 
consequences from the construction above. 
 First, when one fixes T and lets the point P describe the surface t, the light wave χ0(T) 
will appear to be the envelope of light waves χP(T) that were generated by the light 
excitations at the various points of the surface τ. 
 Second, if one fixes the point P and lets T vary then the contact points Q, Q′, …, of 
the light waves χP(T), χP(T′), … with their current envelopes χ0(T), χ0(T′), …will 
describe the light ray that go from O to P. 
 Finally, we remark that the length of an arbitrary curve γ that links concentric spheres 
χ0(T) and χ0(T′) can never be less that the length of a light ray QQ′ that links the same 
two spheres together. 
  
 
 

 

O 
 

P 
P 

τ 

γ 
Q 

Q′ 

Q Q′ 

κp(T′ ) 

κp(T′ ) 

κ0(T′ ) 

κ0(T) 

κp(T) 

κp(T) 

Figure 2. 
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 7.  The family of spheres χ0(T) can be represented by an equation of the form: 
 

S(t, x1, x2) = T.     (7.1) 
 

The two-parameter family of light rays through O are solutions of a system of differential 
equations: 

ixɺ = yi(t, xj) (i, j = 1, 2),    (7.2) 

 
through which, the direction of the light ray is expressed as a function of position and 
direction.  Then, from (7.1), the time that the light needs in order to traverse an arbitrary 
piece of this light ray will be equal to the difference between the two values of S at its 
endpoints; it can be represented by the curve integral: 
 

t

t
dS

′′

′∫ = ( )
i

t

i i xt
S S dtψ

′′

′
+∫ .    (7.3) 

 
From (3.3) and (3.5), however, this time can also be expressed by the integral: 
 

( , , )
t

j jt
L t x dtψ

′′

′∫ ,     (7.4) 

 
and the two integrals (7.3) and (7.4) are equal to each other for all possible pairs of values 
(t′, t″) and all light rays if and only if the identity exists: 
 

L(t, xi, yj) – Si − 
ii xSψ  = 0.    (7.5) 

 
 From the remark at the end of § 6, one sees with the help of an entirely similar 
argument that one must consistently have for an arbitrary line element t, xi, ixɺ : 

 
( , , )

ij j i i xL t x x S x S− −ɺ ɺ ≥ 0.    (7.6) 

 
 8.  Generalizations.  The last result can be generalized in various ways.  First, we can 
replace the spherical waves χ0(T) with any other light waves.  One now obtains the 
general light waves that occur in an isotropic and homogeneous medium by the following 
construction: We assume that we are given an arbitrary surface t and set: 
 

TP = s(P),     (8.1) 
 
in place of (6.2), in which s(P) means an arbitrary continuous function.  From this, we 
determine the wave surfaces χ(T), which are no longer spheres, from the envelope of the 
spheres χP(T) whose centers lie on τ and which possess the radius: 
 

( ( ))
c

T s P
n

− . 
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Second, we can liberate ourselves from the assumption that the medium is homogeneous 
and isotropic.  HUYGENS himself had considered inhomogeneous media in his book, as 
well, when he treated the air refraction of the Earth atmosphere, aand also an anisotropic 
medium, namely, calcite (Iceland spar), and the birefringence that is produced by it. 
 In order to obtain these generalizations, we will, however, set out on a new path: 
Namely, we will seek to present the most general system of functions S, ψ1, ψ2 for which 
the relations (7.5) and (7.6) are true for an arbitrarily given function L(t, xi, ixɺ ).  The 

solutions of the differential equations (7.2) are then light rays, by means of FERMAT’s 
principle, and this shows that one will obtain all possible light rays and possible families 
of wave surfaces in this way. 



 

Chapter II. 
 

The foundations of geometrical optics 
 

 9.  The fundamental equations.  The question that was just posed should now be 
treated for the case in which the function L(t, xi, ixɺ ) in § 3 is differentiable arbitrarily 

many times.  The treatment of discontinuity surfaces, on which refraction or reflection of 
light occurs, will thus not be a problem for us (§ 23).  We must then determine the 
functions S, ψ1, ψ2 in such a way that the relations (7.5) and (7.6) are simultaneously 
true.  The expression on the left-hand side of (7.6) must then possess a minimum when 
one takes jxɺ  = ψj .  As a result, the first derivatives of this expression with respect to the 

jxɺ  must vanish for jxɺ  = ψj  , and one will obtain the equations: 

 

ixS = ( , , )
ix j jL t x ψ
ɺ

 (i, j = 1, 2).   (9.1) 

 
With these values for

ixS , in place of (7.5), one can write down the equation: 

 
St = L(t, xj, ψj) − ψi ( , , )

ix j jL t x ψ
ɺ

.      (9.2) 

 
If one substitutes these values in the left-hand side of (7.6) then one will obtain a 
function: 

E(t, xi, ψi, ixɺ ) = L(t, xj, jxɺ ) – L(t, xj, ψj) − ( ) ( , , )
ii i x j jx L t xψ ψ−
ɺ

ɺ ,  (9.3) 

 
and one can easily show that for all of the special functions L that occur in optics it is 
never negative and vanishes only when the equations ixɺ  = ψi are true 39. 

 With the help of equations (9.1) and (9.2), one can write: 
 

L(t, xj, jxɺ ) = St + 
ix iS xɺ + E(t, xj, ψj, jxɺ ),   (9.4) 

 
in place of (9.3), and obtain this identity by integration along an arbitrary curve γ from t′ 
to t″: 

( , , )i iL t x x dt
γ∫ ɺ = S″ – S′ + ( , , , )i j iE t x x dt

γ
ψ∫ ɺ .  (9.5) 

 
 When one observes that E ≥ 0 and vanishes only for line elements (t, xi, ixɺ ) that lie on 

a curve of the family that arises by integration of the differential equations ixɺ  = ψi, one 

will see that the curves of this family must represent light rays, by FERMAT’s principle. 

                                                
 (39) This is connected with the fact that the so-called “ray surfaces of optics” are convex.  For each 
problem in optics, however, the ray surface is nothing but the indicatrix (or the metric) of the corresponding 
problem in the calculus of variations.  Cf., Variationsrechnung, § 225. 
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 The problem of geometric optics accordingly comes down to that of determining 
functions S, ψ1, and ψ2, for which the “fundamental equations” (9.1) and (9.2) are true. 
 
 10.  Calculation of the HAMILTONIAN function.   When one calculates ψj as 
functions of t, xi, from equations (9.1) and substitutes these values in (9.2), one will 
obtain a first-order partial differential equation for the function S.  This elimination is 
particularly simple when one has determined the HAMILTONIAN function H from the 
LAGRANGIAN function L that it is associated with (40). 
 To that end, we introduce new variables yi, which we will call canonical direction 
coordinates, and which will play the same role in optics as the impulse coordinates do in 
mechanics.  These quantities will be defined by the defined by the two equations: 
 

yi = ( , , )
ix j jL t x x
ɺ

ɺ  (i, j = 1, 2),    (10.1) 

which, when solved forjxɺ : 

jxɺ  = ϕj(t, xi, yi) (i, j = 1, 2).   (10.2) 

 
With these functions, one defines: 
 

H(t, xi, yi) = − L(t, xj, ϕj) + y1ϕ1 + y2ϕ2 ,  (10.3) 
 

and obtains the HAMILTONIAN function H, which is then, in other words, the 
LEGENDRE transform of L.  By partial differentiation of (10.3) with respect to t, xi, yi 
one obtains, in that sequence, the identities: 
 

Ht = − Lt(t, xj, ϕj), 
ixH = − ( , , )

ix j jL t x ϕ ,  (i, j = 1, 2) (10.4) 

iyH = ϕi(t, xj, yj) = ixɺ .    (10.5) 

 
 11.  For isotropic media, one has: 
 

L = 2 2
1 2( , ) 1jn t x x x+ +ɺ ɺ ,    (11.1) 

and one has: 

yi = 
2 2
1 21

jn x

x x+ +

ɺ

ɺ ɺ

, n2 − 2 2
1 2y y−  =

2

2 2
1 21

n

x x+ +ɺ ɺ
,   (11.2) 

ϕj =
2 2 2

1 2

iy

n y y− −
, H = − 2 2 2

1 2n y y− − .   (11.3) 

 
 It is very easy to verify equations (10.4) and (10.5) in this special case directly. 
 
 12.  Derivation of the differential equations for light rays.  A comparison of 
equations (9.1) and (9.2) with (10.1) and (10.3) yields the equations: 

                                                
 40 Variationsrechnung, § 235.  
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yi = 
ixS , St + H(t, xj, yj) = 0,   (12.1) 

 
from which, it next follows that the function S, by which the wave surfaces were 
determined, must always satisfy the partial differential equation: 
 

St + H(t, x1, x2, 
1x

S , 
2xS ) = 0.    (12.2) 

 
From (9.1), one obtains, in addition, when one observes the formulas of § 10, ψi = 

( , , )
i jy j xH t x S , and the light rays that run through the system of wave surfaces, are then 

solutions of the ordinary differential equations: 
 

ixɺ = ( , , )
i jy j xH t x S  (i = 1, 2).   (12.3) 

 
 13.  We now assume that we have ascertained a solution S(t, x1, x2) to the partial 
differential equation (12.2) in any way, computed its derivatives 

jxS , and substituted 

them in (12.3).  The general integral of the system of differential equations (12.3) that we 
obtained in this way will then be represented by equations of the form: 
 

xi = ξi(t, uk)  (i, k = 1, 2),   (13.1) 
 

in which the uk mean integration constants that may choose arbitrarily.  We now 
introduce the new functions: 
 

σ(t, uk) = S(t, ξj(t, uk)), ηi(t, uk) = 
ixS (t, ξj(t, uk)). (13.2) 

 
Identities exist between the functions (13.1) and (13.2), which we would now like to 
present. 
 First, one can compute the total derivative of σ and obtain: 
 

dσ = St dt + 
jxS dξj , 

 
or, when one considers (12.2), (13.1), and (13.2): 
 

dσ = − H(t, ξj, ηj) + ηj dξi .    (13.3) 
 

Second, one expresses the fact that the ξi are solutions of (12.1) with the equations: 
 

i

t

ξ∂
∂

 = ( , , )
iy j jH t ξ η   (i = 1, 2).  (13.4) 

 
Third, when one partially differentiates the second equation (13.2) with respect to t, one 
will obtain: 
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i

t

η∂
∂

= 
i i j

j
t x x xS S

t

ξ∂
+

∂
= 

i i j jt x x x yS S H+ .   (13.5) 

 
On the other hand, it follows from (12.2) by partial differentiation with respect to xi that: 
 

( , , )
i i j j kt x x x y k xS S H t x S+  = − ( , , )

i kx k xH t x S ; 

 
when one substitutes the functions ξk in this for the xk the left-hand side will become 
identical with the right-hand side of (13.5), and one will therefore have the equation: 
 

i

t

η∂
∂

 =  − ( , , )
ix j jH t ξ η .    (13.6) 

 
 We obtain a final relationship between the ξi and the ηi when we partially 
differentiate the second equation in (13.2) with respect to u2 and write: 
 

     
2

i

u

η∂
∂

 = 
2

i j

j
x xS

u

ξ∂
∂

.       

 
We multiply both sides of this equations by ∂ξi / ∂u1 , sum over i, and obtain: 
 

1 2

i i

u u

ξ η∂ ∂
∂ ∂

=
1 2

i j

ji
x xS

u u

ξξ ∂∂
∂ ∂

.     (13.7) 

 
One now remarks that the right-hand side of this equation will remain unchanged when 
one switches i with j and simultaneously u1 with u2 . 
 If one then introduces the symbol: 
 

[u1, u2] = 
1 2 2 1

i i i i

u u u u

ξ η ξ η∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

= 1 1 2 2

1 2 1 2

( , ) ( , )

( , ) ( , )u u u u

ξ η ξ η∂ ∂+
∂ ∂

  (13.8) 

 
then the relation follows from the latter remark: 
 

[u1, u2] = 0.     (13.9) 
 

 LAGRANGE (1736-1813) introduced the expression (13.8) when he developed the 
method of variation of constants in celestial mechanics (41), and the symbol also 
originated with him.  For that reason, one calls [u1, u2] a LAGRANGE bracket. 
 
 14.  Equations (13.4) and (13.6) state that the functions ξi, ηi must be solutions of the 
system of ordinary differential equations: 

                                                
 (41) LAGRANGE, J. L.: “Mémoire sur la théorie générale de la variation des constants arbitraries dans 
tous les problèmes de la mécanique,” (1808), Oeuvres, t. 6, pp. 771-805. 
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ixɺ  = ( , , )
iy j jH t x y , iyɺ  = − ( , , )

ix j jH t x y ,   (14.1) 

 
which one calls the canonical equations.  From § 10, the first of these equations is 
equivalent to (10.1); with the help of (10.4), one then sees that the second equation can be 
described as: 

ix

d
L

dt ɺ
= 

ixL  (i = 1, 2).    (14.2) 

 
These are the EULER equations of the variational problem with the basis function L.  We 
see that the light rays that we have introduced as solution of the differential equations 
(12.3) must necessarily also be solutions of this system of second-order differential 
equations.  However, for our later purposes, it will be much more convenient to start with 
the canonical differential equations (14.1), which are indeed equivalent to the EULER 
differential equations. 
 The functions ξi(t, uj), ηi(t, uj) that belong to the light rays, which arise for a particular 
light propagation as a result of HUYGENS’s principle, must still satisfy the condition 
(13.9).  The two-parameter ray manifold or, as one also says, the ray congruence: 
 

xi = ξi(t, u1, u2) 
 
is not arbitrary then.  However, before we deduce consequences from the condition 
(13.9), we must examine certain properties of general ray manifolds. 
 
 15.  Peculiarities of the solutions of the canonical equations.  We let: 
 

xi = ξi(t, uα), yi = ηi(t, uα),  (i = 1, 2;  α = 1, 2, …m; 2 ≤ m ≤ 4)  (15.1) 
 

denote a solution of the canonical differential equations that depends upon arbitrarily 
many integration constants uα .  It is now no longer generally possible to find a function 
σ(t, uα) for which equation (13.3) is verified, when one substitutes the function (15.1) in 
its right-hand side. 
 However, if one restricts the relation that follows from (13.3): 
 

t

σ∂
∂

= − H(t, ξj, ηj) + i
i t

ξη ∂
∂

     (15.2) 

 
then it will always be possible to determine functions ω(t, uα) by a quadrature that satisfy 
the condition: 

t

ω∂
∂

= − H(t, ξj, ηj) + i
i t

ξη ∂
∂

.     (15.3) 
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The association of these functions ω(t, uα), which are defined only up to an arbitrary 
additive function, moreover, with the solution (15.1) is fundamental to the entire theory 
(42). 
 In order to obtain the relation enters in place of (13.3), we calculate the total 
differential dω and convert it.  One first obtains from (15.3): 
 

dω = dt du
t u α

α

ω ω∂ ∂+
∂ ∂

= − H dt + i
i dt du

t u α
α

ξ ωη ∂ ∂+
∂ ∂

.  (15.4) 

 
If one multiplies both sides of the equation: 
 

i idt du
t u α

α

ξ ξ∂ ∂+
∂ ∂

= dξi 

 
by ξi , sums over i, and adds the result to (15.4) term-by-term then that will yield the 
relation: 

dω = − H dt + ηi dξi – λα duα ,   (15.5) 
in which we have set: 

λα = − i
idt du

t u α
α

ξω η ∂∂ +
∂ ∂

.    (15.6) 

 
 
 16.  The most important fact in our theory now consists of the knowledge that the 
functions λα no longer depend upon t; i.e., that the quantities ∂λα / ∂t vanish identically.  
In fact, one has: 

t
αλ∂

∂
= − 

22
i i i

it u t u t uα α α

η ξ ξω η∂ ∂ ∂∂ + +
∂ ∂ ∂ ∂ ∂ ∂

.  (16.1) 

 
On the other hand, it follows by differentiating (15.3) with respect to uα that: 
 

2

t uα

ω∂
∂ ∂

= 
2

i i

i i i i i
x y iH H

u u u t t uα α α α

ξ η η ξ ξη∂ ∂ ∂ ∂ ∂− + +
∂ ∂ ∂ ∂ ∂ ∂

.  (16.2) 

 
Now, since ξi, ηi are solutions of the canonical differential equations (14.1), one sets: 
 
 

                                                
 (42)  The presentation in this text leans very essentially on CAUCHY (cf., § 16, footnote 43).  One can, 
however, ponder the fact that our function ω(t, uα) has the greatest affinity with with HAMILTON’s 

characteristic functions (see, Introduction).  If one introduces, e.g., the quantities 
i

x′  = ξi (t′, uα) and xi = ξi 

(t, uα) in the characteristic function V(t′,
i

x′ , t, xj), and then replaces the quantity t′ with t′ = ϕ(t, uα) in the 

result of the substitution, where ϕ means an arbitrary function, then one will obtain a solution of equation 
(15.3). 
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− 
ixH  = i

t

η∂
∂

,  − 
iyH  = − i

t

ξ∂
∂

    (16.3) 

in (16.2) and obtains: 
2

t uα

ω∂
∂ ∂

=
2

i i i
it u t uα α

η ξ ξη∂ ∂ ∂+
∂ ∂ ∂ ∂

,     (16.4) 

 
from which, it will follow that the right-hand side of (16.1) vanishes. 
 A remarkable relationship exists between the quantities λα and the LAGRANGE 
brackets of § 13.  Namely, if we differentiate equation (15.6) with respect to uβ then we 
will obtain: 

u
α

β

λ∂
∂

 = 
22

i i i
iu u u u u uα β α β α β

ξ ξ ηω η
 ∂ ∂ ∂∂− + + ∂ ∂ ∂ ∂ ∂ ∂  

. 

 
The bracketed part is symmetric in α and β and comparison with (13.3) yields: 
 

u
α

β

λ∂
∂

 −
u

β

α

λ∂
∂

= [uα , uβ].    (16.5) 

 
The LAGRANGE brackets [uα , uβ] are likewise independent of t.  This result was 
already obtained by LAGRANGE in the year 1808; the quantities λα, or at least 
equivalent functions, were first employed by CAUCHY (1789-1857) for his theory of 
characteristics (43). 
 
 17.  Refining the formulas with the help of the initial values.  If the functions 
(15.1) are known then the function ω will be defined by (15.3) only up to an additive 
constant that depends upon the parameters uα arbitrarily.  As a result, the λα will also not 
be defined uniquely, and one can normalize the right-hand side of (15.5) in various ways. 
 One obtains a very important normalization of that sort when one is given the initial 
values by which the solutions (15.1) are established uniquely. 
 We assume that for t = τ(uα) the following equations are true: 
 

ξi(τ(uα), uα) = Ai(uα),  ηi(τ(uα), uα) = Bi(uα).    (17.1) 
 

 If we then substitute t = τ(uα) in (15.5) then it will follow from the relation ω(τ(uα), 
uα) = ω0(uα) that: 

− H(τ, Aj, Bj) dτ + Bi dAi = dω0 + λα duα .     (17.2) 
 

Here, we have used the fact that λα does not depend upon t.  We now introduce the 
relation: 

Ω(t, uα) = ω(t, uα) – ω0(uα),    (17.3)

                                                
 (43) Bulletin des Sciences par la Société Philomatique de Paris (1819), 10-21.  This important treatise is 
still not included in the volumes of the Oeuvres Complètes of CAUCHY that have appeared up to now. 
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and obtain, when we subtract (17.2) from (15.5) term-by-term: 
 

dΩ = − H(τ, ξj, ηj) dτ + ηi dξi – (− H(τ, Aj, Bj) dτ + Bi dAi).   (17.4) 
 

 Clearly, this relation is only a special form of equation (15.5).  The function Ω is the 
solution of the differential equation (15.3) for which one has: 
 

Ω(τ(uβ), uα) = 0;     (17.5) 
here, we must write: 

λα = − H(τ, Aj, Bj) i
i

A
B

u uα α

τ ∂∂ +
∂ ∂

    (17.6) 

 
for the λα .  If one calculates the LAGRANGE brackets [uα, uβ] from equation (16.5) then 
one will find, when one then employs the notations: 
 

ixH (τ, Aj, Bj) =
0

ixH ,  
iyH (τ, Aj, Bj) =

0

iyH ,    (17.7) 

that: 

[uα, uβ] = 
2

0 0

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )i i

i i i i
x y

i

A B A B
H H

u u u u u uα β α β α β

τ τ
=

∂ ∂ ∂− + +
∂ ∂ ∂∑ .  (17.8) 

 
 18.  Determination of the wave surfaces for given initial values.  It is now very 
simple to respond in a completely general way to the question that we treated in § 8 for 
homogeneous, isotropic media by a geometric construction.  One deals with the problem 
of finding a solution to the partial differential equations (12.2) that, on the surface: 
 

t = τ(u1, u2),  xi = Ai(u1, u2)  (i = 1, 2),  (18.1) 
 

assumes the initial values: 
S(τ(uj), Ai(uj)) = s(u1, u2).    (18.2) 

 
We must next determine the initial values Bi(uj) of the functions ηi in § 13.  For that, we 
remark that, from (13.3) and (18.2), one must have, in any case: 
 

i

s

u

∂
∂

 = − H(τ, Aj, Bj) i
i

A
B

u uα α

τ ∂∂ +
∂ ∂

.    (18.3) 

 
These are two equations, from which one can calculate (§ 19) the Bi(uj).  We then 
integrate the canonical equations (14.1) with these initial values and determine the 
function  Ω(τ, u1, u2) by quadrature; Ω is uniquely determined due to the condition (17.5).  
From (18.3), it then follows that the bracket on the right-hand side of (17.4) must equal 
ds.  If one then sets: 

σ(t, u1, u2) = Ω(τ, u1, u2) + s(u1, u2)     (18.4) 
then one will get the equation: 

− H(t, ξj, ηj) dt + ηj dξj = dσ,    (18.5) 
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which is identical with (13.3). 
 We calculate the uj from the equations: 
 

xi = ξi(t, uj)  (i, j = 1, 2)   (18.6) 
and get: 

uj = χj(t, xi).      (18.7) 
We further set: 

S(t, xi) = σ(t, χj(t, xi)),  Yi = ηi(t, χj(t, xk)),  (18.8) 
 

and obtain from (18.5): 
− H(t, xj, Yj) dt + Yj dxj = dS.    (18.9) 

 
 This relation shows that S satisfies the partial differential equation (12.2), so one has: 
 

ixS = Yi, Si = − H(t, xj, Yj).   (18.10) 

 
Furthermore, S possesses the desired initial value.  Namely, the identity χj(t, ξj(t, uκ)) ≡ uj 
follows from (18.6) and (18.7), so one can write: 
 

σ(t, ξj(t, uj)) = σ(t, ui), 
 

in place of the first equation (18.8).  However, if one sets t = τ(uj) in this equation then 
equation (18.2) will follows from (17.5), (17.1), along with (18.4), which will serve to 
verify it. 
 
 19.  One obtains the condition for one to be able to calculate the Bj as single-valued 
functions of the parameters ui from equations (18.3) when one writes down that the 
functional determinant of second order satisfies: 
 

0

i

i
y

j j

A
H

u u

τ ∂∂− +
∂ ∂

 ≠ 0.    (19.1) 

However, from (17.1): 

i

j

A

u

∂
∂

 = i i

j j t
t u u

τ

ξ ξτ

=

∂ ∂∂ +
∂ ∂ ∂

, 

 
such that the condition (19.1) is equivalent to the relation: 
 

i

j t
u

τ

ξ

=

∂
∂

≠ 0,     (19.2) 

 
from which, the solubility of equations (18.6) for the uj will follow.  The two coincident 
relations (19.1) and (19.2) can also be written with the help of a three-rowed determinant 
in the form: 
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1 i

i

j j t

t
A

u u
τ

ξ

τ

=

∂
∂
∂∂

∂ ∂

≠ 0.    (19.3) 

 
This latter relation is very easy to interpret geometrically; it says that the light rays that 
run through the figure should not contact the surface (18.1). 
 
 20.  If a single (in general, arbitrary) solution to the canonical differential equations 
(14.1) is given that runs through the surface (18.1), but does not contact it, then one can 
give functions s(u1, u2) in infinitely many ways so that in the calculations of §18, this 
given solution will be included in the figure that we constructed there.  One concludes 
from this that any solution of this sort is a possible light ray for which FERMAT’s 
principle is valid (44). 
 
 21.  Optical equidistance.  Field-like structures.  How can one geometrically 
interpret all of these formulas?  In § 13, we had a family of wave surfaces S(t, xi) = const. 
and a two-parameter family of light rays xi = ξi(t, xi) that ran through these wave surfaces.  
The normal to the wave surfaces had the direction of a vector with the components: 
 

St, 
1x

S , 
2xS ,     (21.1) 

 
and since S must be a solution of the partial differential equation (12.2), the direction of 
the normal vectors was uniquely determined when one knew the 

ixS .  The tangent to the 

light ray that ran through the wave surface had the direction of the vector: 
 

1,  1

t

ξ∂
∂

,  2

t

ξ∂
∂

,     (21.2) 

 
and equations (13.4) were true for ηi =

ixS .  In any event, when this is the case for a 

surface and a ray, one will say that the wave surfaces intersect the light rays transversely. 
 If the medium is isotropic then it will follow from the formulas of § 11 that a surface 
intersects a light ray transversally when the vectors (21.1) and (21.2) have the same 
direction; i.e., when the surface is run through orthogonally by the ray. 
 From equation (9.5), the optical length along any light ray that is intersected 
transversally by wave surfaces at any of its points is equal to the difference of the values 
of S at its endpoints; E is then consistently equal to zero along such a ray.  This optical 
length also remains constant when the endpoints slide along two fixed wave surfaces.  
For that reason, the surfaces of the family S(t, xi) = const. are called optically equidistant.  

                                                
 (44) The proof of the converse conclusion, that any possible light ray – i.e., that any curve for which 
FERMAT’s principle is valid – is a solution to the canonical equations is somewhat more complicated (Cf., 
Variationsrechnung, § 245). 
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If the medium is not only isotropic, but also homogeneous, then these surfaces will also 
be equidistant in the ordinary sense (45). 
 The LAGRANGE bracket (13.9) is identically zero for the two-parameter ray 
manifold (13.1).  Any ray manifold for which this is the case shall be called a field-like 
manifold.  In the neighborhood of a point at which the relation (19.2) is true, a given 
field-like manifold will simply cover the space (t, x1, x2) with light rays.  In addition, it 
will follow from [ u1, u2] = 0 that the expression λ1 du1 + λ2 du2 in (17.2) is a complete 
differential.  As a result, one can determine the solutions of the S(t, xi) of the partial 
differential equation (12.2) that intersect the rays of our manifold transversely by using 
the methods of § 19.  In this case, one says that the ray manifold defines a field. 
 If one examines the values of the functional determinant: 
 

1 2

1 2

( , )

( , )u u

ξ ξ∂
∂

 

 
along a particular ray of a field-like manifold then the points at which this determinant 
vanishes will define the only exceptional places, in whose neighborhood the field-like 
structure cannot also be regarded as a field. 
 One can prove that these exceptional places are isolated along any individual ray.  
Therefore, I would not like to go into this question here, since I have recently treated this 
topic quite thoroughly (46). 
 Among the field-like structures, we must point out the ones that consist of all light 
rays that go through a fixed point t0, 0

ix .  These ray manifolds will be called stigmatic 

(47), or also distinguished field-like manifolds. The fact that these manifolds are field-like 
follows immediately from the fact that the derivatives ∂ξi / ∂uj must vanish for t = t0 , and 
as a result, one must have [u1, u2] = 0.  Here, the light waves S(t, xj) = const. are precisely 
the “optical” spheres that HUYGENS had employed (§ 6). 
 One obtains a further important class of field-like structures when one takes the 
functions τ, B1, B2 to be constant in the formulas of § 17.  Namely, in homogeneous 
media the wave surfaces will be planar and the light will consist of parallel light rays. 
 The main result to which we will be led consists in an inversion of the result in § 13: 
From HUYGENS’s principle, any field-like congruence of light rays represents possible 
paths of propagation for light. 
 
 22.  Introduction of arbitrary curvilinear coordinates.   For many problems, it is 
practical to employ curvilinear coordinates that are defined by the equations: 
 

t = ( , )jt t x′ ′ , xi = ( , )i jx t x′ ′    (i, j = 1, 2).  (22.1) 

                                                
 (45)  The optical equidistance of the wave surfaces corresponds to the “geodetic equidistance” that one 
encounters in the calculus of variation (cf., Variationsrechnung, § 298). 
 (46) Variationsrechnung, §§ 313-327.  
 (47)  In place of the word stigmatic, one often, especially in older papers on optics, finds the term 
anastigmatic used, which includes a superfluous double negation. 



23.  Derivation of the general law of refraction. 25 

It is not difficult to calculate the new LAGRANGIAN function ( , , / )i iL t x dx dt′ ′ ′ ′ ′ directly.  

However, the computations becomes simpler when one first exhibits the transformed 
HAMILTONIAN function ( , , )i iH t x y′ ′ ′ ′ .  Namely, one needs only to employ the fact that 

by substituting the functions (22.1) in a solution S(t, xj) of the HAMILTON-JACOBI 
partial differential equation (12.2) must necessarily be a solution ( , )jS t x′ ′ ′  to the 

transformed partial differential equation.  By means of equations (22.1), one then has dS 
= dS′ and therefore also: 

− H′ dt + j jy dx′ ′  = − H dt + yi dxi .   (22.2) 

 
This latter equation is equivalent to the following system: 
 

jy′  = − H(t, xk, yk) i
i

j j

xt
y

x x

∂∂ +
′ ′∂ ∂

 (j = 1, 2),  (22.3) 

H′ = H(t, xk, yk) i
i

xt
y

t t

∂∂ −
′ ′∂ ∂

.      (22.4) 

 
One then obtains H′ when one first computes the yi as functions of( , , )j jt x y′ ′ ′ using (22.3) 

and substitutes these values in (22.4). 
 From the equation (22.2), one can, in addition, read off an important property of the 
canonical direction coordinates.   Namely, if one considers that the differentials: 
 

dt, dx1, dx2 
 
can be interpreted as the components of a contravariant vector then it will follow from 
(22.2) that the three quantities: 

− H(t, xj, yj), y1,  y2 
 

transform like the components of a covariant vector (48). 
 
 23.  Derivation of the general law of refraction.  We now assume that two different 
media are separated by a discontinuity surface: 
 

D: t = τ(uj), xi = Ai(uj)  (i, j = 1, 2).    (23.1) 

 
For the one side of the surface D – e.g., for the points: 

 
 t < τ(uj), xi = Ai(uj),    (23.3) 

 
the LAGRANGIAN and HAMILTONIAN functions will be denoted by L(t, xj, jxɺ ) [H(t, 

xj, yj), resp.], as before.  In the second medium, the same functions will be denoted by 
L′(t, xj, jxɺ ) [H′(t, xj, jy′ ), resp.]. 

                                                
 (48)  Variationsrechnung, § 83. 
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 We now consider an arbitrary propagation of light through this combined system that 
is generated by a family of wave surfaces.  At the various points of the discontinuity 
surface D this light excitation will be noticeable at a time that one can establish with the 

aid of a function s(u1, u2). 
 However, from HUYGENS’s principle the propagation of light in the two media will 
be uniquely determined by the function s(u1, u2).  The associated light rays will be 
refracted at the discontinuity surface D during this propagation.  From (18.3), the 

equations: 

i

s

u

∂
∂

= − H(τ, Aj, Bj) k
k

i i

A
B

u u

τ ∂∂ +
∂ ∂

 (i = 1, 2)   (23.3) 

 
between the derivatives of s(uj) and the functions τ, Ai, Bi must be fulfilled.  One finds, in 
exactly the same way, that one also must have: 
 

i

s

u

∂
∂

= − H′(τ, Aj, jB′ ) k
k

i i

A
B

u u

τ ∂∂ ′+
∂ ∂

.    (23.4) 

 
However, from these two equations, there follows the relation: 
 

− [H′(τ, Aj, jB′ ) − H(τ, Aj, Bj)]
iu

τ∂
∂

+ [ kB′  − Bk] k

i

A

u

∂
∂

= 0, (i = 1, 2) (23.5) 

 
in which the derivatives of the function s(uj) no longer appear. 
 The system of equations (23.5) represents the law of refraction for light rays at the 
discontinuity surface D.  Namely, if two rays are drawn through a point τ, Ai of the 

surface D that have the canonical direction coefficients Bi ( iB′ , resp.) and fulfill equations 

(23.5) then one can give functions s(uj) in infinitely many ways for which the ray field 
that is defined by equations (23.3) and (23.4) contains these two prescribed rays. 
 
 Remark.  It is very easy to establish that one also will be led to the same law of 
refraction (23.5) by FERMAT’s principle.  Namely, if e and e′ are two light rays, each 
one of which belongs to the two fields of rays that were just considered, and one denotes 

the time it takes light to go from A to B along these 
rays by T, then one will get: 
 
T = [s(P) – S(A)] + [S′(B) – s(P)] = S′(B) – S(A). 

 
For the time duration T* along another path AP*B, 
however, one will get, from (9.5): 
 

T* = (s(P*) – S(A)) + ( ( ) ( ))E dt S B s P E dt
γ γ

∗

′
′ ′+ − +∫ ∫   

  = T + E dt E dt
γ γ ′

′+∫ ∫ . 

 
P 

A 
γ 

D 

Figure 3. 
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Now, since the functions E and E′ are always ≥ 0, it will follow from this that T* ≥ T, 
such that the ray APB must be a light ray, from the definition of § 4. 
 One can complete this result by saying that one then shows that FERMAT’s principle 
is no longer true when one extends the ray AP in another direction from the one that e′ 
possesses at the point P.  We would therefore like to go into this detail. 
 
 24.  Consequences of the law of refraction.  Clearly, the law of refraction must be 
independent of the choice of coordinates.  This property can be verified effortlessly with 
the aid of our formulas: namely, from the ones in § 22, the numbers: 
 

− [H′(t, Aj, jB′ ) – H(t, Aj, Bj)],  [ jB′ − Bj]  (24.1) 

 
are components of a covariant vector, and equations (23.5) state simply that this covariant 
vector should be orthogonal to each of the two contravariant vectors: 
 

ju

τ∂
∂

, i

j

A

u

∂
∂

 (j = 1, 2).    (24.2) 

 
This is, however, a condition that remains invariant under any change of coordinate 
system. 
 For the special case that is based upon rectangular Cartesian coordinates, the 
covariant vectors cannot be distinguished from the contravariant ones.  The condition 
above simply states that the vector (24.1) should always be perpendicular to the 
discontinuity surface, and one obtains the ordinary law of refraction in the case of 
isotropic media (49). 
 
 25.  We now consider an arbitrary ray manifold in the first medium that depends upon 
two, three, or four parameters uα, and whose rays run through the discontinuity surface 
(23.1).  One can characterize each individual ray of this manifold by the line element of 
the ray that one finds at the point at which the ray pierces the discontinuity surface.  The 
first two parameters u1, u2 of the uα, which we will denote by Latin indices when they are 
to be considered separately from the other ones, can then be employed as position 
coordinates on the discontinuity surface.  As a consequence, the ray manifold itself can 
always be represented by solutions (15.1) of the canonical differential equations that are 
established by the initial conditions: 
 

ξi(τ(uj), uα) = Ai(uj),  ηj(τ(uj), uα) = Bi(uα),  (25.1) 
 

in which the τ(uj), Ai(uj) have the same meaning as in (23.1).  From (17.2), one can then 
write: 

− H(τ,Aj, Bj) dτ + Bi dAi = dω0 + λα duα ,   (25.2) 

                                                
 (49) One observes that this result leads to a construction that agrees precisely with the rule of 
DESCARTES in § 1 when one meanwhile sets the index of refraction proportional to the velocity of light, 
as the emission theory of light would suggest (cf., § 2, footnote 31).  
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just after one calculates with a function ω(t, uα) and has determined the functions λα and 
ω0 with its help.  If one associates each ray of the manifold in question with the broken 
ray that arises from its advance into the second medium then one will obtain (with 
entirely similar notations) the equation: 
 

 − H′(τ, Aj , jB′ ) dτ  + i iB dA′  = 0d duα αω λ′ ′+ .    (25.3) 

 
Now, it follows from the law of refraction (23.5) that the left-hand sides of the last two 
equations must always be equal to each other.  It follows from this, when one introduces 
the notation: 

Ψ(uα) = ω0(uα) − 0( )uαω′ ,    (25.4) 

that: 

αλ′ duα = dΨ + λα duα  .    (25.5) 

 
 For the derivation of this latter relation, we have chosen the parameters uα very 
specially.  However, this equation will remain correct for any arbitrary choice of the 
parameters uα .  Namely, if one introduces new parameters vβ through the equations: 
 

uα = uα(vβ),     (25.6) 
 

for which new functions µα(vβ), ( )vα βµ′  appear in place of the functions λα(uβ), ( )uα βλ′ , 

then one will always have: 
 

λα duα = µα dvα + dM,  duα αλ′ = dvα αµ′  + dM′,    (25.7) 

 
such that the relation (25.5) will always preserve the same form under any arbitrary 
choice of parameter. 
 Equation (25.5) is equivalent to the system: 
 

αλ′  = λα + 
uα

∂Ψ
∂

  (α = 1, 2, …).   (25.8) 

 
It then follows from (16.5) that the LAGRANGE brackets [uα , uβ] remain unchanged 
under arbitrary refraction of the light rays.  They represent differential invariants whose 
values do not change under the passage of light through any instrument along the entire 
light ray. 
 Incidentally, one remarks that, from § 16, one can always normalize the functions 

αλ′ such that equations (25.8) will be replaced with αλ′ = λα .  One can then always choose 

the notations such that the λα themselves remain constant along each ray. 
 
 26.  Integral invariants.  MALUS’s theorem.  For the applications that we will 
make of the invariance of the brackets [uα , uβ], it would be very advantageous that this 
theorem remain true for any choice of the parameters uα , since one could then make the 
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most convenient choice of parameter in each special case.  On the other hand, this 
theorem has no immediate geometric significance, since one can describe each ray 
manifold in infinitely many different ways with the help of parameters uα and then obtain 
different values of [uα , uβ] each time. 
 However, we arrive at any theorem that is geometrically meaningful in the following 
way: For a two-dimensional manifold that is represented with the help of the parameter 
u1, u2 one has, from (13.8): 

[u1, u2] = 1 1 2 2

1 2 1 2

( , ) ( , )

( , ) ( , )u u u u

ξ η ξ η∂ ∂+
∂ ∂

.    (26.1) 

 
If we now introduce new parameters (v1, v2) by equations of the form (25.6) then, as must 
follow from this, for each ray of the manifold in question, the relation: 
 

[v1, v2] = [u1, u2] 1 1

1 2

( , )

( , )

u u

v v

∂
∂

    (26.2) 

 
must exist between the old LAGRANGE brackets and the transformed ones.  If Gu and 
Gv are two regions in the u1 u2-plane (v1v2-plane, resp.) that go to each other by means of 
the transformation (25.6) then one will have: 
 

1 2 1 2[ , ]
uG

u u du du∫∫ = 1 2 1 2[ , ]
vG

v v dv dv∫∫ .    (26.3) 

 
The value of the double integral (26.3) is thus independent of 
the choice of parameter. 
 If one interprets the double integral as an integral over a 
surface patch F that a pencil of rays runs through (Fig. 4) then 

the value of the integral depends upon only the pencil, but not 
on the location or form of the surface patch over which one 
integrates.  For that reason, the integral will be called an 
integral invariant. 

 
 27.  If the ray manifold is field-like then [u1, u2] = 0, and the integral invariant (26.3) 
will vanish identically.  Conversely, if the integral invariant vanishes for all possible 
regions Gu then one must have [u1, u2] = 0 and the ray manifold will be field-like.  This 
result includes the theorem that MALUS expressed in the year 1808, with the 
generalizations that DUPIN and QUETELET made of it later on (50), which states that 
when one cuts through an arbitrary instrument with a two-dimensional ray manifold then 
the ray manifold in the object space will be field-like if and only if the ray manifold in the 
image space has the same property. 
 In the past, MALUS’s theorem was very strictly observed.  It seemed that it was even 
believed that the optical ray map could be characterized by this theorem alone.  Naturally, 

                                                
 (50)  Cf., the Introduction.  It is noteworthy that the treatise of LAGRANGE appeared in the same year 
1808 (cf., § 13, footnote 41), which already essentially included the invariance of the brackets [uα , uβ]. 

 

F 

F 

Figure 4. 



30   Chap. II:  The foundations of geometrical optics. 

this is not the case, because the ray maps for which MALUS’s theorem is true without 
restrictions are less general than the ones for which all of the LAGRANGE brackets [uα , 
uβ] remain invariant.  Namely, one has the following theorem: 
 
 If the rays of two homogeneous and isotropic optical spaces are associated with each 
other in a one-to-one way such that every field-like ray manifold in the first space goes 
over to the same kind of manifold in the image space then one can, by a similarity 
transformation, and possibly also a reflection through one of the coordinate planes that 
one of these spaces is subject to, always arrive at the fact that after performing these 
operations the LAGRANGE bracket itself will remain invariant. 
 
 From (25.2) and (25.3), ray manifolds are considered to be field-like if and only if the 
expressions λα duα ( duα αλ′ , resp.) are complete differentials.  We must then now demand 

that any time when one selects a two-parameter family of light rays in the object space in 
such a way that λα duα becomes a complete differential the corresponding expression 

duα αλ′  will possess the same property.  From a theorem on PFAFF forms (51), there must 

then be a constant number ρ such that: 
 

duα αλ′ = ρ(λα duα) + dΨ    (27.1) 

 
exists identically.  By assumption, however, the last relation goes to (25.5) by a similarity 
transformation (and possibly a reflection, in case ρ < 0), from which the assertion is 
proved. 
 Starting from the requirement that MALUS’s theorem must be valid, one can then − 
at least, in isotropic, homogeneous space − study the form of all possible ray maps, and 
this would clarify the role that this theorem has played in the history of ray optics. 
 
 28.  The integral invariants.  (26.1) can be brought into a form that admits a very 
intuitive geometric interpretation. 
 Namely, due to the relation (16.5), one can write, when one denotes the boundary of 
the region Gu by γ: 

I = 1 2 1 2[ , ]
uG

u u du du∫∫ = 1 1 2 2( )du du
γ

λ λ+∫ .   (28.1) 

 
The closed curve γ will be represented in the u1 u2-plane by the equations: 
 

ui = ui(s) (0 ≤  s ≤ 2π),   (28.2) 
 

where the functions ui(s) refer to periodic functions.  To these functions, we add a third 
one: 

t = t(s),     (28.3) 

                                                
 (51) Variationsrechnung, § 145.  
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which does not need to be periodic, and consider the curve c that is defined by equations 
(28.3) and: 

xi = xi(s) = ξi(t(s), uj(s)).   (28.4) 
 
A comparison of (28.1) with our previous equation (15.4) then yields: 
 

J = ( )i ic c
H dt d dη ξ ω− + −∫ ∫ .    (28.5) 

 
Therefore, one can, from our construction of the curve c, choose any curve that encircles 
the bundle of light rays in question once and whose endpoints lie on the same light ray. 
 One can make two applications of this formula: First, if the function t(s) in (28.3) is 
periodic with period 2π then the curve will be closed and the integral in (28.5) will 
vanish.  One will then have: 

J = ( )i iQ
H dt dη ξ− +∫ .    (28.6) 

 
In the terminology of POINCARÉ, the right-hand side of (28.3) is called a relative 
integral invariant, because it is true only for closed curves.  Moreover, POINCARÉ 
considered only such closed curves that laid in the planes t = const.  The integral 
invariant (28.6) was considered, in particular, by ÉLIE CARTAN (52). 
 Second, one can, however, choose the curve c to be on the boundary of the ray pencil 
in such a way that its tangent at each point intersects the light ray, which includes that 
point, transversally (§ 21).  The condition for this is: 
 

− H dt + ηi dξi = 0     (28.7) 
 

and one has, as a consequence, in place of (27.5): 
 

J = −
c
dω∫  = ω1 – ω2,     (28.8) 

 
in which ω1 and ω2 mean the values of ω at the 
endpoints of c.  The quantity J is then equal to the 
optical distance h between the two endpoints of a curve 
that entwines the ray pencil and intersects each ray on 
the boundary of this bundle (Fig. 5).  The invariance of 
J will be expressed by saying that the optical distance 
between the endpoints of c is independent of the 
arbitrary choice of the initial points of this curve. 
 This extraordinarily intuitive interpretation for J 
goes back to G. PRANGE (53). 
 

                                                
 (52) É. CARTAN: Leçons sur les invariants intégraux,  Paris, Hermann, 1922.  
 (53) PRANGE, G.: “Die allgemeinen Integrationsmethoden der analytischen Mechanik,”  Enzykl. d. 
Mathem. Wiss., Bd. 4, II, Art. 12 and 13, pp. 622. 
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 29.  DESCARTES surfaces.  A certain converse of MALUS’s theorem was treated 
right at the beginning of Dioptics by DESCARTES for a special case.  He addressed the 
following problem: Consider two arbitrary field-like ray congruences that lie in optically 
different media M and M′, and assume that they permeate the media.  Let a surface D go 

through a point (t0, 0
ix ), such that when one lets one of the media exist on one side of the 

surface, while the other one is on the other side, the former ray congruence will go to the 
latter one by refraction. 
 Since the two ray congruences are field-like, one can construct families of light rays 
that are represented by the equations: 
 

S(t, xi) = const., S′(t, xi) = const., 
 

and intersect these ray congruences transversally.  From § 23, any surface t = τ(x1, x2) 
that belongs to the family: 

S(t, xi) = S′(t, xi) + C     (29.1) 
 

is a possible discontinuity surface.  The surface will go through the point (t0, 0
ix ) when 

one determines C from the equation: 
 

C = S(t0, 0
ix ) − S′(t0, 0

ix ).     (29.2) 

 
By this construction, a part of the light rays will be cut out from the media M and M′.  
One calls these pieces that were cut out virtual light rays; the remaining part of the light 
rays will be called real light rays. 
 DESCARTES treated this problem for the special case in which the two media were 
isotropic and homogeneous and the two field-like ray congruences were stigmatic.  One 
can always, by a suitable choice of the axes, give equation (29.1) the form: 
 

2 2 2
1 2n t x x+ +  = ± 2 2 2

1 2( )n t a x x′ − + + + C.   (29.3) 

 
In this case, the DESCARTES surface is a surface of rotation whose meridian curve is an 
algebraic curve of fourth order.  However, only a piece of this surface is useful as a 
discontinuity surface, namely, the piece that is represented by the equation (29.3) itself 
(while preserving the signs of the roots). 
 
 30.  The aplanatic points of the sphere.  A noteworthy special case of the 
DESCARTES surface was discovered by HUYGENS.  Namely, if the constant C in 
(29.3) is equal to zero then one will obtain the equation of a sphere when one removes the 
square roots by squaring.  Moreover, this connection may be conveniently established in 
an elementary geometric manner. 
 Namely, if F and F′ are two inverse points of a sphere of radius r that one finds on a 
line MF through the center then, by definition, there will exist the equation: 
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α
ρ

= 
a

ρ
α+

,     (30.1) 

 
from which, one will assume that the two triangles PMF and F′MP are similar.  It follows 
from this that the angle MFP will be equal to the angle i′, and that one can therefore 
write: 
 

sin

sin

i

i

′
 = 

MP

FM
= 

a

ρ
α+

 = 
α
ρ

.     (30.2) 

 
In particular, the ratio sin i′ : sin i will be independent of the position of the point P.  
Should this ratio be equal to n : n′ then one would have: 
 

n′ρ – n α = n a, n ρ – n′α = 0,   (30.3) 
 

from which, one would arrive at the equations: 
 

ρ = 
2 2

a n n

n n

′
′ −

,  α = 
2

2 2

a n

n n′ −
,  α + a = 

2

2 2

an

n n

′
′ −

, (30.4) 

 
which one can also verify directly from (29.3). 
 We now imagine a solid of rotation that consists of glass in air, with the index of 
refraction n = 1, whose meridian ABPCD′F′A′ is composed of two concentric circles of 
radius ρ and ρ : n′ and two rectilinear line segments (Fig. 6).  In this, n′ is the index of 
refraction of the glass, which will be taken to equal 1.5 in the picture.  All light rays F′P 
that start from a point F′ of the smaller spherical surface that bounds the solid will be 
refracted at P on the large sphere in such a way that their starting point seems to be the 
point F.  The spherical surface with the great circle D′F′E′ will, as a consequence, be 
mapped stigmatically, and the virtual image, which lies on the spherical surface DFE, 
will be linearly magnified with a ratio n′2 : 1 and undistorted. 
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Chapter III 
 

The ray map 
 

 31.  Definition and representation of the ray map.  We consider an optical 
instrument that consists of an arbitrarily complicated system of lenses (or mirrors).  The 
light excitation originates in one space – the object space – whose points will be 
represented by arbitrary (Cartesian or also curvilinear) coordinates (t, x1, x2) and leads 
into a second space – the image space – that is described by the same sort of coordinates 
(t′, 1x′ , 2x′ ).  We call the two Hamiltonian functions that determine the form of the light 

rays in the interior of these two spaces H(t, xi, yi) and H′(t′, ix′ , iy′ ). 
 
 First of all, under the passage of light through this instrument, any ray in the object 
space that goes through the instrument will be associated with an image ray. 
 Secondly, from § 25, under this association, the LAGRANGE bracket of an arbitrary 
ray congruence in the object space and the LAGRANGE bracket of the corresponding 
ray congruence in the image space possess the same values on any two associated rays 
when the congruences are represented in terms of the same parameters. 
 
 The idea that any ray map that satisfies the two conditions above can be realized, at 
least approximately, by some suitable system of lenses is generally broadened.  We will 
give examples in which this does not always need to be the case (§§ 57 and 61).  The 
separation between the maps of this type, which can be realized optically, and which is, 
moreover, a mathematical problem, is never taken into account and might be 
exceptionally difficult. 
 This remark should not, however, lead one to think that the study of the most general 
maps of rays, in which the LAGRANGE brackets remain invariant, are of merely 
theoretical interest.  On the contrary: Almost all practical applications that one can make 
of the general theory were inconceivable when one did not have these general maps to 
work with as a foundation. 
 In order to represent such a ray map, we consider the most general solution in object 
space: 

xi = ξi(t, a1, a2, b1, b2),  yi = ηi(t, a1, a2, b1, b2), (i = 1, 2) (31.1) 
 

of the canonical equations (14.1) that satisfies the initial conditions: 
 

ξi(t
0, aj, bj) = ai , ηi(t

0, aj, bj) = bi ,   (i = 1, 2) (31.2) 
 
for t = t0 .  Correspondingly, we consider the analogous solution in image space: 
 

ix′  = 1 2 1 2( , , , , )i t a a b bξ ′ ′ ′ ′ ′ ′ , iy′  = 1 2 1 2( , , , , )i t a a b bη ′ ′ ′ ′ ′ ′  (i = 1, 2) (31.3) 

 
to the associated canonical equations that is established by the initial conditions: 
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0( , , )i j jt a bξ ′ ′ ′ ′ = ia′ ,  0( , , )i j jt a bη ′ ′ ′ ′ = ib′ .  (31.4) 

 
 The one-to-one association of the rays of these two spaces will then be expressed by 
four equations: 

ia′ = Ai(aj, bj),  ib′ = Bi(aj, bj)   (i, j = 1, 2), (31.5) 

 
in which it is self-explanatory that the functional determinant must satisfy: 
 

1 2 1 2

1 2 1 2

( , , , )

( , , , )

A A B B

a a b b

∂
∂

 ≠ 0.     (31.6) 

 
 32.  We represent a ray congruence in the object space by considering the quantities 
aj, bj to be functions of two parameters u1 and u2 and substituting these values in (31.1).  
With the help of equations (31.5) and (31.3), one then computes the associated ray 
congruence in image space.  From the reasoning in § 17, one will then have, when one 
further notices that dt = dt0 = 0 here: 
 

dω0 + λ1 du1 + λ2 du2 = b1 da1 + b2 da2 ,   (32.1) 
 

such that one can write, from (16.5): 
 

1 2 1 2
1 2 1 2 1 2

2 1 1 1 2 2

1 1 2 2

1 2 1 2

[ , ]

( , ) ( , )
.

( , ) ( , )

a a a a
u u b b b b

u u u u u u

a b a b

u u u u

   ∂ ∂ ∂ ∂∂ ∂= + − +    ∂ ∂ ∂ ∂ ∂ ∂    


∂ ∂ = +
∂ ∂ 

  (32.2) 

 
The expression for the LAGRANGE bracket [u1, u2]′ in image space is entirely similar, 
and we must exhibit the most general transformation (31.5) for which one always has: 
 

[u1, u2]′ = [u1, u2]     (32.3) 
 
for any choice of functions a1(u1, u2), …, b2(u1, u2). 
 
 It is worth mentioning that the form of the condition that we have obtained in this way 
is completely independent of the form of the HAMILTONIAN functions H and H′.  Our 
theory is therefore also valid for arbitrary curvilinear coordinates and can therefore also 
be applied to the cases in which arbitrary curved surfaces will be represented by the 
conditions t = t0 and t′ = t′ 0. 
 
 33.  Connection with canonical transformations.  In the investigation that now 
follows, the notations that we used up to now shall be replaced with ones that are better 
adapted to what one finds in the literature.  Namely, we would like to replace a1, a2 with 
x, y and b1, b2 with ξ, η, and likewise denote the coordinates of the line elements in the 
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image space by x′, y′, ξ′, η′.  The most general transformation for which the 
LAGRANGE brackets remain invariant shall then be given in the form: 
 

( , , , ) ( , , , )

( , , , ) ( , , , ).

x X x y y Y x y

x y x y

ξ η ξ η
ξ ξ η η ξ η

′ ′= = 
′ ′= Ξ = Η 

   (33.1) 

 
If one denotes the parameters of a ray congruence by u, v then one will have, from (32.2): 
 

( , ) ( , )
[ , ] ,

( , ) ( , )

( , ) ( , )
[ , ] .

( , ) ( , )

x y
u v

u v u v

X Y
u v

u v u v

ξ η∂ ∂ = + ∂ ∂ 
∂ Ξ ∂ Η ′ = +
∂ ∂ 

    (33.2) 

 
We now choose u and v to be any two of the four variables x, y, ξ, and η, and keep the 
remaining two variables constant.  The six relations: 
 

[x, y] = 0,    [x, η] = 0,    [y, ξ] = 0,    [x, η] = 0,    [x, ξ] = 1,    [y, η] = 1 (33.3) 
 

then arise from the first equation in (33.2).  Due to the requirement that [u, v]′ = [u, v], 
one must then have, from the second equation in (33.2): 
 

[x, y]′ = 
( , ) ( , )

( , ) ( , )

X Y

x y x y

∂ Ξ ∂ Η+
∂ ∂

 = 0,   (33.4) 

 
and one further obtains five similar first-order partial differential equations from (33.3) 
that are easy to write down. 
 We would now like to show that conversely when these six equations are fulfilled the 
equation [u, v]′ = [u, v] will be valid for not only the six special ray congruences that we 
have considered up to now, but in complete generality.  To that end, we calculate the 
coefficients λ, µ, ρ, σ in the differential form: 
 

Ξ dX + Η dY – ξ dx – η dy = λ dx + µ dy + ρ dξ + σ dη,  (33.5) 
and obtain: 
    λ = Ξ Xx + Η Yx – ξ,  µ = Ξ Xy + Η Yy – η,  
    ρ = Ξ Xξ + Η Yξ ,  σ = Ξ Xη + Η Yη .  
 
From the last equations, it follows by differentiation that: 
 

[ , ] , [ , ] 1, [ , ] ,

[ , ] , [ , ] 1, [ , ] .
x x

x y

x y x x

y y
ξ ξ η η

ξ η η ξ

λ µ λ µ ξ λ σ η
µ ρ ξ µ σ η ρ σ ξ η

′ ′ ′− = − = − − = 
′ ′ ′− = − = − − = 

  (33.6) 

 
Therefore, if the LAGRANGE brackets [x, y]′, …, have the same values as [x, y], …, then 
it will follows from (33.3) that the left-hand side of all equations (33.6) must vanish, and 
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that means the same thing as the demand that the right-hand side of (33.5) must be a 
complete differential.  One can then write: 
 

Ξ dx + Η dy – ξ dx – η dy = dΨ.   (33.7) 
 

Conversely, if equation (33.7) is fulfilled then one will immediately calculate that [u, v]′ 
= [u, v] for all possible ray congruences, and this is precisely the result that we wanted to 
prove (54). 
 
 34.  When the four functions X, …, Η satisfy equation (33.7), one calls the 
transformation (33.1) a canonical transformation.  The fundamental result that we have 
obtained can then be expressed as follows: 
 
 The requirement that the LAGRANGE brackets should remain invariant for the ray 
maps of optics is equivalent to the requirement that the association of the line elements 
be represented by a canonical transformation for t = t0 and t′ = t0′. 
 
 There is very extensive literature (55) on canonical transformations, which also play 
an important role in mechanics.  Some of the most important results for optics will be 
summarized here.  For the further details, one can also look them up in my 
Variationsrechnung. 
 The first important property of canonical transformations consists in the fact that each 
arbitrary canonical transformation is always, in fact, a transformation for which the 
functional determinant: 

D = 
( , , , )

( , , , )

X Y

x y ξ η
∂ Ξ Η
∂

     (34.1) 

 
can never vanish.  Namely, one proves that D = + 1 (56).  The proof of this fact is not 
entirely simple when one would like to be carefult about the sign of D; however, it 
suffices for most purposes to show that D = ± 1, and one achieves this by an entirely 
elementary calculation.  Namely, one remarks that one can also obtain D from the 
following equation: 

D = 
( , , , )

( , , , )

X Y

x yξ η
∂ Ξ Η − −
∂ − −

.      (34.2) 

 
If one now multiplies the two determinants (34.1) and (34.2) by columns then one will 
get: 
 

                                                
 (54)  In the derivation above, we employed the fact that the functions X, …, H are at least twice 
continuously differentiable.  In chap. 6 of my Variationsrechnung, I showed that the result above, as well 
as the entire theory of canonical transformations can be derived without assuming that these functions 
possess two derivatives. 
 (55) See PRANGE, loc. cit. 14, esp., pp. 748 et seq.  
 (56)  Variationsrechnung, § 102. 



38   Chap. III:  The ray map. 

D2 = 

[ , ] [ , ] 0 [ , ]

[ , ] [ , ] [ , ] 0

0 [ , ] [ , ] [ , ]

[ , ] 0 [ , ] [ , ]

x y

x y

x y x x

y x y y

ξ ξ η ξ
η η ξ η

ξ η
ξ η

′ ′ ′
′ ′ ′

′ ′ ′
′ ′ ′

.    (34.3) 

 
Therefore, if the transformation is canonical then one will have, as we have announced: 
 

D2 = 1.      (34.4) 
 

It then follows from this  that the inverse of a canonical transformation always exists and 
is obviously also canonical, and since, from (33.7), one obtains a canonical 
transformation from the composition of two canonical transformations, the totality of all 
canonical transformations defines a group (57). 
 
 35.  POISSON brackets.  The second main property of canonical transformations 
now consists of the fact that one can also characterize these transformations by the 
construction of POISSON brackets.  These POISSON brackets are, when one compares 
them with the LAGRANGE brackets that have considered exclusively up to now, dual in 
a certain sense.  Namely, in order to define the LAGRANGE brackets (33.2), we had to 
consider four variables x, y, ξ, η of two parameters u and v.  Now, we take two functions 
F and G of four variables x, y, ξ, η and define the POISSON bracket (G, F) by the 
formula: 

(G, F) = 
( , ) ( , )

( , ) ( , )

F G F G

x yξ η
∂ ∂+
∂ ∂

.     (35.1) 

 
The calculations with POISSON brackets are made simpler when one notes the following 
two properties of these brackets, which follow immediately from (35.1).  First, we have: 
 

(G, F) = − (F, G),     (35.2) 
 

and second, in the event that Φ(F1, …, Fn) is a function of arbitrarily many functions 
Fk(x, y, ξ, η): 

(G, Φ) = 
1

( , )
n

k
k k

G F
F=

∂Φ
∂∑ .     (35.6) 

 
 36.  We arrive at a relation between POISSON and LAGRANGE brackets in the 
following way: For an arbitrary function F(x, y, ξ, η), we define the following 
expression: 

(Ξ, F) dx′ + (Η, F) dy′ = (X, F) dx′ − (Y, F) dη′,  (36.1) 
 
in which we have set: 

                                                
 (57) Variationsrechnung, § 94.  
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dx′ = 
X X

dx d
x

η
η

∂ ∂+ +
∂ ∂

⋯ ,  etc.,   (36.2) 

 
develop the POISSON brackets that enter into (36.1), and collect the coefficients of the 
first derivatives of F.  In this way, we find that the expression (36.1) is always identical 
with 58: 

 

([ , ] [ , ] [ , ] )

([ , ] [ , ] [ , ] )

([ , ] [ , ] [ , ] )

([ , ] [ , ] [ , ] ) .

x

y

x dx y dy d F

x dx y dy d F

x y dx x d x d F

y x dx y d y d F
ξ

η

ξ ξ η ξ η
η η ξ η ξ

ξ ξ η η
ξ ξ η η

′ ′ ′+ + 
′ ′ ′+ + + 
′ ′ ′+ + + 
′ ′ ′+ + + 

   (36.3) 

 
If the transformation is now canonical then this latter expression has the value: 
 

Fx dx + Fy dy + Fξ dξ + Fη dη = dF;   (36.4) 
 
conversely, if this is the case for all possible functions F then [x, ξ]′, [y, η]′ must equal 
unity, and the remaining LAGRANGE brackets must vanish.   However, the theorem 
follows from this: 
 
 A necessary and sufficient condition for the transformation (33.1) to be canonical is 
the existence of the identity: 
 

(Ξ, F) dx′ + (Η, F) dy′ − (X, F) dξ′ − (Y, F) dη′ = dF   (36.5) 
 

for all possible functions F(x, y, ξ, η). 
 
 37.  We would now like to employ the fact that the functional determinant (34.1) is 
necessarily non-zero, and that one can then compute the quantities x, y, ξ, η as functions 
of the x′, y′, ξ′, η′ from equations (33.1).  From this, it follows that one can associate each 
function F(x, y, ξ, η) with a function F′ (x′, y′, ξ′, η′) for which the identity exists: 
 

F(x, y, ξ, η) = F′ (x′, y′, ξ′, η′).   (37.1) 
 

One can also write the total differential dF as: 
 

dF = dF′ = x yF dx F dy F d F dξ ηξ η′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′+ + + , 

 
and one sees that equation (36.5) means the same thing as the four equations: 
 

(Ξ, F) = xF ′′ , (H, F) = yF ′′ , (F, X) = Fξ ′′ , (F, Y) = Fη ′′ .  (37.2) 

 

                                                
 (58) When one reverts to the index notation, this completely elementary, if somewhat lengthy, 
computation becomes so self-evident that it can be done in one’s head.  Variationsrechnung, § 91. 
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If we set, in sequence, x′, y′, ξ′, η′ for F′ and X, Y, Ξ, Η for F then we will obtain a 
number of equations that reduce to the following six: 
 

(X, Y) = 0, (Ξ, Η) = 0,    (37.3) 
(X, H) = 0, (Ξ, Y) = 0,    (37.4) 
(Ξ, X) = 1, (Η, Y) = 1.    (37.5) 

 
 38.  The last conditions are then necessary for the transformation (33.1) to be 
canonical.  We must now show that these conditions are also sufficient; i.e., that any 
transformation (33.1) is canonical as long as equations (37.3) to (37.5) exist identically.  
For that, we first remark that when one multiplies the determinants (34.1) and (34.2) with 
each other by rows then one will get: 
 

D2 = 

( , ) ( , ) 0 ( , )

( , ) ( , ) ( , ) 0

0 ( , ) ( , ) ( , )

( , ) 0 ( , ) ( , )

X Y

X Y

Y X X X

X Y Y Y

Ξ Ξ Ξ Η
Η Η Η Ξ

Ξ Η
Ξ Η

. 

 
Thus, if the conditions (37.3) to (37.5) are fulfilled then one must have D2 = 1, so D ≠ 0.  
One can then associate each function F(x, y, ξ, η) with a function F(x′, y′, ξ′, η′), for 
which (37.1) is true.  When one employs (35.3), one will then have: 
 

(Ξ, F) = ( , ) ( , ) ( , )x yF X F Y Fη′ ′ ′′ ′ ′Ξ + Ξ + Ξ Η . 

 
If equations (37.3) to (37.5) are fulfilled then the first equation (37.2) must be, as well.  
One verifies the remaining equations (37.2) in exactly the same way, from which, (36.5) 
then follows.  With the help of the results of § 36, one then obtains the theorem: 
 
 The existence of equations (37.3) to (37.5) is necessary and sufficient for the 
transformation (33.1) to be canonical. 
 
 39.  An invariant property is true for the POISSON bracket that is also similar to the 
one that we started with for the LAGRANGE bracket.  Namely, if we set: 
 

G(x, y, ξ, η) = G′(X, Y, Ξ, Η), 
 
similar to what we did in (37.1), then we will have: 
 

(G, F) = ( , ) ( , ) ( , ) ( , )x yG X F G Y F G F G Fξ η′ ′ ′ ′′ ′ ′ ′+ + Ξ + Η , 

 
and it will follow with the help of formulas (37.2) that: 
 

(G, F) = (G′, F′ )′, 
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which is a relation that implies equations (37.3) to (37.5), moreover, from the result of 
the previous paragraphs, and to which, it is equivalent. 
 
 40.  Construction of the canonical transformations.  The relations (37.3) to (37.5) 
also show that if only one of the four functions X, Y, Ξ, Η is prescribed then none of the 
remaining ones can be prescribed arbitrarily when the transformation is canonical. 
 Namely, a canonical transformation can – e.g., with the help of two functions X(x, y, 
ξ, η) and Y(x, y, ξ, η) – be constructed only when the POISSON bracket first satisfies: 
 

(X, Y) = 
( , ) ( , )

( , ) ( , )

X Y X Y

x yξ η
∂ ∂+
∂ ∂

≡ 0,   (40.1) 

 
and secondly when the first two rows of the functional determinant (34.1) are not 
proportional to each other, since otherwise that determinant would vanish.  The latter 
says that at each point at least one of the six second-order functional determinants: 
 

( , )

( , )

X Y

x y

∂
∂

, 
( , )

( , )

X Y

x η
∂
∂

, 
( , )

( , )

X Y

y ξ
∂
∂

, 
( , )

( , )

X Y

ξ η
∂
∂

,  (40.2) 

( , )

( , )

X Y

x ξ
∂
∂

, 
( , )

( , )

X Y

y η
∂
∂

    (40.3) 

 
may not vanish.  On the other hand, these two conditions are also sufficient for one to 
calculate the functions Ξ, Η, which, together with X, Y, define a canonical transformation.  
However, before we prove this, we shall establish a lemma that is also useful for later 
purposes. 
 
 41.  From the four functional determinants (40.2), one can, in fact, select pairs of 
these expressions in four different ways, such that one of the variables x, y, ξ, η appears 
twice in the denominator.  We would now like to show that when both functional 
determinants of one such pair vanish at a point, the first derivatives of X and Y with 
respect to the selected variables must also vanish at this point when the conditions of the 
previous paragraphs are fulfilled. 
 In particular, we must then prove, for instance, that from: 
 

( , )

( , )

X Y

x y

∂
∂

 = 0, 
( , )

( , )

X Y

x η
∂
∂

 = 0,    (41.1) 

it must necessarily follow that: 
X

x

∂
∂

= 0, 
Y

x

∂
∂

= 0.    (41.2) 

 
However, one sees this immediately.  Namely, if either of these two quantities were non-
zero then, from (41.1), the existence of two finite numbers l, m would follow for which 
the four equations: 
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y x y x

x x

X X Y Y

X X Y Yη η

λ λ
µ µ

= = 
= = 

    (41.3) 

 
are simultaneously valid.  If one substitutes these values in the second functional 
determinant (40.3) then it must vanish.  Due to (40.1), the first determinant in (40.3) must 
also vanish.  The comparison of (40.2) with (41.3) then further yields: 
 

( , )

( , )

X Y

y ξ
∂
∂

 = λ 
( , )

( , )

X Y

x ξ
∂
∂

, 
( , )

( , )

X Y

ξ η
∂
∂

 = − µ 
( , )

( , )

X Y

x ξ
∂
∂

,  (41.4) 

 
so all six functional determinants (40.2) and (40.3) must then vanish, contrary to the 
assumption. 
 
 42.  An important corollary to the lemma that we just proved consists in the fact that 
at least one of the four expressions (40.2) must be non-zero.  Namely, if all of the 
determinants (40.2) are equal to zero then all of the first derivatives of X must vanish, and 
one must then have that the expression (40.3) vanishes, contrary to the assumption.  For 
the determination of Ξ, Η, there are now four cases to distinguish from each other, 
according to whether one desires that the first, second, third, or fourth functional 
determinant (40.2) is non-zero, resp.  However, the treatment of these four cases leads to 
computations that are, in principle, entirely similar. 
 For example we assume that: 

( , )

( , )

X Y

ξ η
∂
∂

 ≠ 0.     (42.1) 

One can then solve the equations: 
 

x′ = X(x, y, ξ, η), y′ = Y(x, y, ξ, η)   (42.2) 
for ξ, η, and obtain: 

ξ = ϕ(x, y, x′, y′), η = ψ(x, y, x′, y′).   (42.3) 
From the identities: 

x′ = X(x, y, ϕ, ψ),  y′ = Y(x, y, ϕ, ψ),    (42.4) 
 
one can compute the first partial derivatives ψy and ϕx by differentiation.  One finds the 
following equations: 

( , )

( , )

X Y

ξ η
∂
∂

ϕy = − ( , )

( , )

X Y

y η
∂
∂

,  
( , )

( , )

X Y

ξ η
∂
∂

ψx =
( , )

( , )

X Y

x ξ
∂
∂

. (42.5) 

 
From these, it follows, with the help of (40.1) and (42.1), that: 
 

ϕy = ψx .     (42.6) 
 

The latter equation states that the functions ϕ and ψ can be represented as partial 
derivatives of a function – E(x, y, x′, y′) in an infinite number of ways, and that one can 
write: 
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ξ = − Ex , η = − Ey .    (42.7) 
 

We now assume that we have determined functions Ξ(x, y, ξ, η), Η(x, y, ξ, η), Ψ(x, y, ξ, 
η), for which equation (33.7) will be true identically, when we substitute the given 
functions in place of the X, Y.  If one replaces the variables ξ, η with the expressions 
(42.7) in these functions then one will obtain new functions Ξ*(x, y, x′, y′), Η*(x, y, x′, y′), 
Ψ*(x, y, x′, y′), for which the identity exists: 
 

 Ξ*dx′ + Η*dy′ + Ex dx + Ey dy = dΨ*.   (42.8) 
 

From this, it now follows that: 
 

Ex = x
∗Ψ , Ey = y

∗Ψ ;    (42.9) 

 
(E – Ψ*) must then be a function of x′ and y′ alone.  However, since the function E(x, y, 
x′, y′) is defined only up to an arbitrary additive function of (x′, y′), we can, without loss 
of generality, set E = Ψ*.  It then follows from (42.8) that: 
 

ξ′ = Ex′ , η′ = Ey′ ,    (42.10) 
 

and these equations determine our canonical transformation completely.  Namely, one 
needs merely to replace the quantities x′, y′ in (42.10) with X, Y in order to obtain the 
desired functions Ξ and Η. 
 Moreover, one remarks that the function E that we have computed is not entirely 
arbitrary: Namely, since it is always possible to solve the equations (42.3) for x′, y′, and 
therefore, also equations (42.7), the function E must necessarily satisfy the equation: 
 

xx xy

yx yy

E E

E E
′ ′

′ ′
≠ 0.    (42.11) 

 
 43.  The eikonals.  In optics, a function E(x, y, x′, y′) that fulfills the condition 
(42.11) is called an eikonal (59).  If an arbitrary eikonal is given then the associated 
canonical transformation will be determined by equations (42.7) and (42.10).  One 
computes the functions X, Y, Ξ, Η by an elimination that is always possible, due to the 
validity of (42.11). 
 We obtain all of the canonical transformations for which (42.1) is true in this way. 

                                                
 (59)  With this terminology, we are following BRUNS (cf., footnote 18).  We will strictly distinguish the 
eikonals from the characteristic functions of HAMILTON, a distinction that is not always made.  For 
example, K. SCHWARZSCHILD consistently called HAMILTON’s characteristic functions eikonals.  (K. 
SCWARZSCHILD: “Untersuchungen zur geometrischen optik I, II, III,” Astronom. Mitteil. d. Kgl. 
Sternwarte zu Göttingen, Pt. 9 – 11, 1905, pp. 1-31, 1-28, and 1-54).  The two notions are occasionally 
confused in recent times (M. HERZBERGER: Strahlenoptik, Part 5, pp. 111.  Berlin, Julius Springer, 
1931). 
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 Second, we assume that the first of the functional determinants (40.2) is non-zero, 
namely: 

( , )

( , )

X Y

x y

∂
∂

 ≠ 0.     (43.1) 

 
One can then solve equations (42.2) for x, y and obtain: 
 

x = ϕ(ξ, η, x′, y′), y = ψ(ξ, η, x′, y′).   (43.2) 
 

One proves, by a process that this entirely similar to the one in the previous paragraphs, 
that here one has: 

ϕη = ψξ , 
 
and deduces from this, just as before, the existence of a function V(ξ, η, x′, y′) for which 
equations (43.2) can be replaced with: 
 

x = Vξ ,  y = Vη .    (43.3) 
 

 
We now remark that, by the introduction of a function: 
 

Ω(x, y, ξ, η) = Ψ(x, y, ξ, η) + xξ + yη,   (43.4) 
 

in place of (33.7), one write: 
 

Ξ dX + Η dY + x dξ + y dη =  dΩ(x, y, ξ, η).   (43.5) 
 

By this, our problem is brought into a form that coincides with the form of the one that 
was posed in the previous paragraphs, up to the notation.  Thus, when one introduces the 
independent variables ξ, η, x, y, with the help of (43.2) [or (43.3)], it will follow in the 
same way as it did before that one can always set: 
 

Ω(ϕ, ψ, ξ, η) = V(ξ, η, x′, y′)          (43.6) 
ξ′ = Vx′ , η′ = Vy′ .    (43.7) 

 
In addition, one sees that the following relation for V must be true: 
 

x y

x y

V V

V V
ξ ξ

η η

′ ′

′ ′
 ≠ 0,     (43.8) 

 
because, by assumption, equations (43.3) must be soluble for x′ and y′. 
 One calls an arbitrary function V(ξ, η, x′, y′) for which this condition (43.8) is true a 
mixed eikonal.  This notation is supposed to suggest that V depends upon the two point 
coordinates x′, y′, and the two canonical direction coordinates ξ, η.  One obtains the 
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functions X, Y by solving the first two equations for x′, y′, the function Ξ, Η by 
substituting these values in the right-hand side of equations (43.7), and the function Ψ 
will ultimately be represented  by the equation: 
 

Ψ = V(ξ, η, x′, y′) – xξ – yη    (43.9) 
 

with the help of (43.4) and (43.7). 
 
 44.  It still remains for us to carry out a similar argument for the two cases in which 
the second or third functional determinant (40.2) is non-zero.  These two cases go into 
each other when one switches x with y and ξ with η, such that it suffices to examine one 
of these cases.  For example, we assume that: 
 

( , )

( , )

X Y

y ξ
∂
∂

 ≠ 0.     (44.1) 

 
One can then solve equations (42.2) for y and ξ and obtain: 
 

y = ϕ(x, η, x′, y′), ξ = ψ(x, η, x′, y′).   (44.2) 
 

One proves, just as we did in § 42, that here we must have: 
 

ϕx = − ψη ,     (44.3) 
 

and it follows, exactly as before, that one can describe the canonical transformation with 
the help of a skew eikonal U(x, η, x′, y′). 
 In order to summarize the equations that will determine our canonical transformation, 
we remark that one can write: 
 

ξ′ dx′ + η′ dy′ – ξ dx + y dη = d(Ψ + yη) = dU,  (44.4) 
in case one sets: 

Ψ( x, ϕ, ψ, η) + ϕη = U(x, η, x′, y′).   (44.5) 
 

It then follows from this equation that: 
 

0

( , , , ) .

x y x y

xx xy

x

U y U U U

U U

U U

U x X Y y

η ηη

ξ ξ η

η η

′ ′

′ ′

′ ′

′ ′= − = = = 

≠ 

Ψ = − 

   (44.6) 

 
 45.  We have completely solved the problem that we posed of determining all 
possible ray maps.  Our result reads: 
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 Any conceivable canonical transformation in two pairs of variables can always be 
computed, with the help of one of the eikonals E, V (one of the two skew eikonals U, 
resp.).  It is always possible to determine a transformation when the two functions X, Y 
are given and the conditions of § 40 are satisfied. 
 
 From the theoretical standpoint, this result is completely satisfactory.  However, one 
remarks that in the system of equations (37.3) to (37.5) the first four of them are on 
entirely the same footing when we replace the function pair X, Y that we based our 
reasoning upon with one or the other function pair Ξ, Η or X, Η or Ξ, Y.  By either of 
these two combinations, one obtains four possible eikonals, at least one of which can be 
employed in each case.  In all, one obtains sixteen eikonals in this way that one can 
summarize in the following table: 
 

 xy xη ξy ξη 
x′y′ E U U V 
x′η′ U′    
ξ′y′ U′    
ξ′η′ V′   W 

 
Each of these eikonals depends upon four variables, and indeed these variables are 
specified in the left-most column and the top row of the table, and one finds the 
associated eikonal listed in the intersection of the selected row and column.  From our 
result, one can find at least one eikonal in each row and column, by which, a given 
canonical transformation can be represented.  However, only one of sixteen cells in the 
tables will correspond to a possible eikonal, when furnished with notation, because the 
eikonals that are taken from the remaining free cells are not used at all in practice (60).  
Namely, except for the eikonals E, U, V that we have considered up to now, in practical 
optics, only the eikonals U and V come into consideration, which one obtains from U and 
V by switching the object and image spaces, and the angular eikonal W(ξ, η, ξ′, η′), for 
which the following formulas are valid: 
 

x = Wξ , y = Wξ ,  x′ = − Wξ ,  y′ = − Wη′ ,   (45.1) 
 

W W

W W
ξξ ξη

ηξ ηη

′ ′

′ ′
≠ 0,     (45.2) 

 
Ψ = W(ξ, η, Ξ, Η) + XX + YΗ – xξ – yη.   (45.3)

                                                
 (60) The remark above does not pertain to the theory of HAMILTON characteristic functions, which is 
used in the theory of eikonals (cf., § 64).  HAMILTON employed a characteristic function S (Mathem. 
Papers, pp. 268) that depended partly on points and partly on direction coordinates in each of the optical 
spaces that were being mapped to each other.  An eikonal that possesses this property will be indicated in, 
e.g., the third cell of the third row. 
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 46.  It can naturally occur − and this is the general case − that all sixteen eikonals that 
we spoke of are simultaneously appropriate to the description of one and the same 
canonical transformation.  However, in this case there are also many practical grounds for 
preferring one or the other formal system in the problem being addressed.  One obtains a 
hint about which choice to make by considering the limiting cases in which some of the 
eikonals are excluded from the outset. 
 For that reason, we would like to consider the various restrictions that, for instance, 
the function E(x, y, x′, y′) is subject to when one or more of the first three functional 
determinants (40.2) vanishes identically. 
 First, if: 

( , )

( , )

X Y

y ξ
∂
∂

= 0     (46.1) 

 
then one can eliminate the variables y and ξ from equations (42.2) simultaneously , and 
one will obtain a relation of the form Φ(x, η, x′, y′) = 0.  However, since, by assumption, 
x, y, x′, y′ must be employed as the independent variables, our condition equation can be 
described in the form η = η(x, x′, y′).  From (42.7), it then follows that Ey is independent 
of y and that as a consequence the eikonal possesses the form: 
 

E = ε0(x, x′, y′) + y ε1(x, x′, y′).   (46.2) 
 

It is self-explanatory that, conversely, the condition (46.1) will be fulfilled when E 
appears in the form (46.2). 
 The case in which the second determinant (40.2) vanishes identically can be treated in 
a completely similar manner. 
 Incidentally, it follows from this that when one has both: 
 

( , )

( , )

X Y

y ξ
∂
∂

≡ 0,  
( , )

( , )

X Y

x η
∂
∂

≡ 0   (46.3) 

 
simultaneously the eikonal E must necessarily have the form: 
 

Ε = ε0(x′, y′) + y ε1(x′, y′) + x ε2(x′, y′) + xy ε3(x′, y′).  (46.4) 
 

However, if we now assume that the functional determinant: 
 

( , )

( , )

X Y

x y

∂
∂

≡ 0,      (46.5) 

 
and indeed only that one, then there will exist a relation Φ(ξ, η, x′, y′) = 0 that, from 
(42.7), can be written: 

Φ(− Ex, − Ey, x′, y′) = 0.    (46.6) 
 

This relation is much more complicated to treat than the corresponding relations in the 
foregoing cases.  As a result, if the skew eikonal U(x, y, x′, y′) of § 44 were chosen in 
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place of the eikonal E(x, y, x′, y′) then it would follow from (46.5), when one observes the 
first equation in (44.5), that U must be linear in x. 
 We can then assert that whenever a relation of the form Φ(ξ, η, x′, y′) = 0 exists, 
without the need for one of the identities (46.3) to be in effect, a classical case is at hand 
in which one must employ a skew eikonal.  This may also be the case when the condition 
Φ = 0 is fulfilled approximately in the neighborhood of a point, 
 By contrast, if not only (46.5), but also, for example, (46.1), is fulfilled then there will 
exist no basis for replacing the eikonal E with a skew eikonal.  Namely, it possible here 
to pose the condition for the function (46.2) that one infers from the relation (46.6).  
Indeed, in this case one must demand that x and y can be eliminated from the equations: 
 

− ξ = 0 1y
x x

ε ε∂ ∂+
∂ ∂

, − η = ε1(x, x′, y′). 

 
This is, however, the case if and only if ε1 does not depend upon x; i.e., when one has: 

E = ε0(x, x′, y′) + y ε1(x′, y′).     (46.7) 
 

 It only remains for us to speak of the last case, in which the three identities (46.3) and 
(46.5) are simultaneously valid.  E must then have the form (46.4), as well as the form 
(46.7); one finds that E has the form: 
 

E = ε0(x′, y′) + y ε1(x′, y′) + x ε2(x′, y′).  (46.8) 
 
 
 47.  Semi-telescopic, stigmatic, and telescopic maps.  The eikonal (46.8) possesses 
a noteworthy property.  From the previous formula, one must have, in fact: 
 

ξ = − Ex = − ε2(x′, y′),  η = – Ey = − ε1(x′, y′),   (47.1) 
 
and it follows that one must also have: 
 

x′ = X(ξ, η),  y′ = Y(ξ, η).    (47.2) 
 

The functions X, Y are independent of x, y, which one can, moreover, infer directly from 
the result of § 41. 
 If the object space is isotropic and homogeneous and the coordinates are rectangular 
then the previous equations will state that parallel light rays in the object space will be 
transformed by the passage through the instrument into a stigmatic light pencil.  The ray 
map will then be called semi-telescopic. 
 A semi-telescopic ray map, for which the right-hand side of (47.2) is given, will also 
be represented by an angle eikonal (§ 45) to advantage.  One likewise finds, as before, 
that W must have the form: 
 

W = − ω0(ξ, η) − ξ′ X(ξ, η) – η′ Y(ξ, η).   (47.3) 
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In order for the two eikonals (46.8) and (47.3) to represent the same ray map one must 
have, first of all, that the two systems of equations (47.1) and (47.2) are equivalent, and 
secondly, one must have: 

ω0(ξ, η) = ε0(X(ξ, η), Y(ξ, η)).     (47.3) 
 
One obtains this latter equation from our previous formulas when one observes (45.3) and 
uses the fact that Ψ(x, y, − ε2, − ε1) = E. 
 
 48.  One obtains entirely similar results when one demands that the ray map should be 
stigmatic; i.e., that the points of the xy-plane and x′y′-plane will be mapped to each other 
in a one-to-one manner.  One must then, in fact, have: 
 

x′ = X(x, y), y′ = Y(x, y),    (48.1) 
 

and from these equations, it then follows that the eikonals E, U, U′ that appear in the first 
row and the first column of the table in § 45 are all unusable and that one therefore must 
use either the mixed eikonal V or the mixed eikonal V′.  Since, from (48.1), a relation 
must exist between the quantities (x, y, x′, η′) and the quantities (x, y, y′, ξ′), this points to 
a conclusion that is entirely analogous to the one that gave us (46.4), namely, that V′ (x, y, 
ξ′, η′) must necessarily be of the form: 
 

V′ = ω0(x, y) + ω1(x, y) ξ′ + ω2(x, y) η′ + ω3(x, y) ξ′ η′.  (48.2) 
 

However, the equations that belong to this eikonal: 
 

x′ = Vξ ′′ , y′ = Vη ′′ ,    (48.3) 

 
are equivalent to equations (48.1) if and only if one takes: 
 

V′ = ω0(x, y) + ξ′ X(x, y) + η′ Y(x, y).    (48.4) 
 

From § 43, one must add the following relations to this: 
 

( , )

( , )

X Y

x y

∂
∂

 ≠ 0,      (48.5) 

ξ = 0 X Y

x x x

ω ξ η∂ ∂ ∂′ ′+ +
∂ ∂ ∂

,      (48.6) 

η = 0 X Y

y y y

ω ξ η∂ ∂ ∂′ ′+ +
∂ ∂ ∂

,      (48.7) 

Ψ = − ω0(x, y),      (48.8) 
 

in order for the canonical transformation to be completely computable. 
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 49.  A third type of ray map that is singular in the same way as the last two that were 
treated is the so-called telescopic ray map, for which the functions Ξ, Η depends upon 
only ξ and η, but not x and y.  If the coordinates of the object and image spaces are 
Cartesian then this will mean that parallel rays, in turn, remain parallel when they pass 
through the instrument.  One deduces in precisely the same way as in the previous 
paragraphs that of all of the usual eikonals, once again, the mixed eikonals V and V′ are 
the only ones that are useful, and that one must set, e.g.: 
 

V(ξ, h, x′, y′) = Ψ(ξ, η) + x′ Ξ(ξ, η) + y′ Η(ξ, η),   (49.1) 
( , )

( , )ξ η
∂ Ξ Η
∂

 ≠ 0,     (49.2) 

x = Ψξ + x′ Ξξ + y′ Ηξ ,    (49.3) 
y = Ψη + x′ Ξη + y′ Ηη ,     (49.4) 
ξ′ = Ξ(ξ, η), η′ = Η(ξ, η),    (49.5) 
Ψ = V – ξ Vξ – η Vη .     (49.6) 

 
 
 50.  Most general ray maps for which the four eikonals E, V, V′, W are not 
applicable.  In the conventional representations of the theory of eikonals, it is tacitly 
assumed that one can represent all possible ray maps (or, at least, all ray maps that are not 
completely trivial) by at least one of the ordinary eikonals E, V, V′, and W.  This is, 
however, a mistake: There are maps that can be described only by eikonals that are not 
bilinear in the variables that appear and for which none of the variable combinations that 
are used in E, V, V′, and W can be chosen as independent variables.  These eikonals are, 
however, not very numerous, and for that reason, we would like to present all of them, 
since this knowledge can be worthwhile in certain circumstances.  We thus demand that 
between the eight variables (x, …, η′) there should exist relations of the form: 
 

Κ(x, y, x′, y′) = 0, Λ(x, y, ξ′, η′) = 0,   (50.1) 
Μ(x, y, x′, y′) = 0, Ν(ξ, η, ξ′, η′) = 0.   (50.2) 

 
 When one switches the coordinate pairs x′, ξ′ and y′, η′ with each other in the desired 
cases, one can, in the general theory, always arrive at the fact that skew eikonals U′(x, y, 
x′, η′) can be employed for the representation of our ray maps.  We compute the 
quantities ξ, η, y′, ξ′ with the help of the formula: 
 

dU′ = − ξ′ dx′ + y′ dη′ + ξ dx + η dy .   (50.3) 
 

Due to the existence of the relations (50.1), one deduces from this, similar to what one 
did in § 46, that U′ must have the form: 
 

U′ = A(x, y) x′η′ + B(x, y)η′ + C(x, y) x′ + D(x, y).  (50.4) 
 

The expression that corresponds to the functional determinant (42.11) has the following 
form here: 
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x x y y

x x y y

A x B A x B

A C A Cη η
′ ′+ +
′ ′+ +

; 

 
since, from the general theory, this expression must not vanish, at least one of the 
functional determinants: 
 

( , )

( , )

A B

x y

∂
∂

, 
( , )

( , )

A C

x y

∂
∂

, 
( , )

( , )

B C

x y

∂
∂

   (50.5) 

must be non-zero. 
 Furthermore, the identities (50.2) must now be fulfilled, which, when one uses the 
eikonal (50.3), will have the form: 
 

( , , , )x yM U U x Ax B′ ′ ′ ′ +  = 0, ( , , ( ), )x yN U U A Cη η′ ′ ′ ′ ′− + = 0. (50.6) 

 
We partially differentiate the first of these equations with respect to x, y, η′ and obtain: 
 
  xxM Uξ ′  + xyM Uη ′  + ( )y y xM A x B′ ′ +  = 0, 

  xyM Uξ ′  + yyM Uη ′  + ( )y y yM A x B′ ′ +  = 0, 

  ( )x xM A x Bξ ′ + + ( )y yM A x Bη ′ +  = 0. 

 
The three functions of Mξ , Mη , My cannot vanish simultaneously since otherwise the 
variable x′ could not be chosen to be one of the independent variables; from the last 
system of equations, one can then deduce the identity: 
 

2 2( ) 2( )( ) ( )y y xx y y x x xy x x yyA x B U A x B A x B U A x B U′ ′ ′ ′ ′ ′ ′+ + + + + +  = 0. 

 
One obtains a second identity from the second equation (50.6).  The left-hand sides of 
these equations represent polynomials in x′ and η′ whose coefficients must all vanish.  In 
order to write down these conditions conveniently, we introduce the symbol: 
 

{ ϕχ, ψ} = ϕyχy ψxx – (ϕyχx + ϕxχy) ψxy + ϕxχx ψyy .  (50.7) 
 

Our conditions will then be represented by the following fifteen second-order partial 
differential equations: 
 

{ AA, A} = 0, {AA, B} = 0,  {AA, C} = 0,    (50.8) 
{ AB, A} = 0,  {AC, A} = 0,     (50.9) 

{ BB, A} + 2{AB, B} = 0,  {CC, A} + 2{ AC, C} = 0,   (50.10) 
{ BB, B} = 0,  {CC, C} = 0,     (50.11) 

{ AA, D} = − 2{AB, C} = − 2{AC, B},   (50.12) 
{ BB, C} + 2{AB, D} = 0,  {CC, B} + 2{ AC, D} = 0,   (50.13) 

{ BB, D} = 0,  {CC, D} = 0.     (50.14) 
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 51.  We must now exhibit the most general common integral of the fifteen equations.  
The integration of these differential equations leads to fundamentally distinct 
calculations, according to whether A(x, y) is constant or not.  The final results generally 
go over to each other by an elementary transformation of the variables, as one 
subsequently verifies (cf., § 55). 
 In the case where A(x, y) is variable, one can (if need be, by switching x with y) 
always assume that: 

Ax ≠ 0.      (51.1) 
 
As a consequence, one can introduce A and y as independent variables, and in particular, 
set: 

x = F(A, y).     (51.2) 
 

For an arbitrary function Φ(x, y), one can then write: 
 

Φ(x, y) = ϕ(A, y),    (51.3) 
 

and with these relations one will then have the identity: 
 

{ AA, Φ} = ϕA{AA, A} + 2
yy xAϕ .   (51.4) 

 
It will then follow from equations (50.8) that one can set: 
 

B = f1(A) + y g1(A),  C = f2(A) + y g2(A).  (51.5) 
 

One now has the equations: 
 

( , )

( , )

A B

x y

∂
∂

= Ax g1,    
( , )

( , )

A C

x y

∂
∂

= Ax g2,     
( , )

( , )

B C

x y

∂
∂

= 2 1 1 1 2 2[ ( ) ( )]xA g f yg g f yg′ ′ ′ ′+ − + ,    (51.6) 

 
from which, one deduces that the determinants (50.5) vanishes simultaneously only when 
at least one of the two functions g1 or g2 is non-zero.  We assume, e.g., that: 
 

g1(A) ≠ 0.     (51.7) 
 

If one now observes equations (50.9) and the special form (51.5) of the functions B(x, y) 
and C(x, y) then one will obtain the identities: 
 

2

1

xA
{ AB, Φ} = − ϕAy g1 + 1 1( )yy f ygϕ ′ ′+ ,   (51.8) 

2

1

xA
{ AB, Φ} = − ϕAy g2 + 2 2( )yy f ygϕ ′ ′+ ,    (51.9) 

 
from which, it will follow that: 
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2

1

xA
{ AB, C} = − 2 1g g′  , 

2

1

xA
{ AC, B} = − 1 2g g′  . 

 
The second equation in (50.12) can then be written 2 1g g′  = 1 2g g′ , and one thus has the 

relation: 
g2 =  r ⋅ g1,     (51.10) 

 
in which r is a constant that can possibly be zero.  Therefore, one finally has: 
 

2

1

xA
{ AB, C} = − 1 1rg g′ .    (51.11) 

 
 52.  From (51.8) and (51.9), one now computes: 
 

2

1

xA
{ AB, B} = − 1 1g g′  ,  

2

1

xA
{ AC, C} = − 2 2g g′  = − 2

1 1r g g′ , (52.1) 

 
such that from equations (50.10), it will follow, moreover, that: 
 

2

1

xA
{ BB, A} = 2 1 1g g′  ,  

2

1

xA
{ CC, A} =  2 2

1 1r g g′ .  (52.2) 

 
These equations, when combined with our previous results, will then allow us to write: 
 

2

1

xA
{ BB, Φ} = 2 2

1 1 1 1 1 1 2 22 2 ( ) ( )A AA Ay yyg g g g f yg f yrgϕ ϕ ϕ ϕ′ ′ ′ ′ ′+ − + + + , (52.3) 

2

1

xA
{ CC, Φ} = 2 2 2

1 1 1 1 2 1 2 12 2 ( ) ( )A AA Ay yyg g r g rg f yrg f yrgϕ ϕ ϕ ϕ′ ′ ′ ′ ′+ − + + + .  (52.4) 

 
One immediately deduces from this that: 
 

2

1

xA
{ BB, B} = 2

1 1 1( )g f yg′′ ′′+ ,  
2

1

xA
{ CC, C} = 2 2

1 2 1( )r g f yrg′′ ′′+ , (52.5) 

 
and from equations (50.11), which must be fulfilled for all values of y, the relations will 
then follow: 

1g′′= 0,       (52.6) 

1f ′′  = 0, 2r f ′′ = 0.    (52.7) 

 
 53.  If we now set D = δ(A, y) then it will follow from (50.12), when combined with 
(51.4) and (51.11), that: 
 



54   Chap. III:  The ray map. 

δyy = 1 12r g g′ ,     (53.1) 

such that we can set: 
D = f3(A) + y g3(A) + y2 r 1 1g g′ .   (53.2) 

 
When we calculate {BB, C} and {AB, D} with these formulas, it will then follow from 
the first equation of (50.13) that we have the relation: 
 

1 2 1 22g f g f′′ ′ ′+  = 3 1 12( )g rg f′ ′ ′− .     (53.3) 

 
One likewise deals with the equation {BB, D} = 0 and finds, after one has taken into 
account that the coefficient of y2 vanishes identically, the two conditions: 
 

3g′′  = 0,     (53.4) 

1 3 1 22g f g f′′ ′ ′+  = 1 3 1 12 ( )f g r g f′ ′ ′ ′− .   (53.5) 

 
 54.  Equations (52.6), (52.7), (51.10), in combination with the last three equations, 
allow us to calculate the six functions f1, …, g3 explicitly.  If we remark that in the 
definition of the eikonal U we can always ignore a linear function of the variables that 
comes about only by a translation of the coordinate origin, we can, by a suitable choice of 
the origin of the η, y′, and ξ-axes, set: 
 

g1 = β(A – a),  g2 = r β(A – a), g3 = s β(A – a), (54.1) 
 f1 = α(A – a),         (54.2) 

f2 = (s – r α)(A – a) + 2

A a

µ
−

,    (54.3) 

f3 = (s – r α)(A – a) + 3

A a

µ
−

.     (54.4) 

 
In addition, due to the second equation in (52.7) and (51.7), one must have: 
 

r µ2 = 0, β ≠ 0.    (54.5) 
 

 In order to also compute A(x, y), we remark that from the method above, it will follow 
from: 

{ AA, x} = 0, {AB, x} = 0, {BB, x} = 0   (54.6) 
that: 

x = f(A) + y g(A), g′ = 0,  1 12g f g f′′ ′ ′+  = 0.  (54.7) 

 
By a certain choice of origin of the x-axis, one can, for that reason, write: 
 

A – a = 
1

( )px qyβ +
  (p ≠ 0, β ≠ 0).   (54.8) 
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 55.  From these calculations, we find that the eikonal must have the form: 
 

U′ = a x′η′ + 
( )( ( ))

( )

x y s r y

px qy

α β η α β
β

′ ′+ + + − −
+

 + µ2 β x′(px+ qy).  (55.1) 

 
By a suitable translation of the origin of the coordinates, one can ultimately arrive at the 
fact that the constants α and s both keep their zero values, and the desired ray map can be 
calculated from the skew eikonal: 
 

U′ = a x′η′ + 
( )( )

( )

x y r y

px qy

β η β
β

′ ′+ +
+

 + 
b

pβ
x′(px+ qy).   (55.2) 

 
 Since one must have pβ ≠ 0 and r b = 0, we have two essentially different cases to 
consider.  In the first one, r ≠ 0 and b = 0, and one obtains: 
 

( )
( )
( )
( )

2

2

2

2

( ) 4 ,
2

1 ( )
( ) 4 ,

2

1 ( )
( ) 4 ,

2

( ) 4 .
2

px qy
x y p q p q pr

pr

a px qy
y a y p q p q pr

pr

a px qy
ar y p q p q pr

p

px qy
r y p q p q pr

p

β η ξ η ξ βξ

ββ η ξ η ξ βξ
β

βξ β η ξ η ξ βξ
β

η β η ξ η ξ βξ

+ ′ = − + − − − + 


+ + ′ = − + − − − + 

+ + ′ = − − + − +

+ ′ = − + − + − +


 (55.3) 

 
In the second case, b ≠ 0 and r = 0, and one obtains: 
 

( )
,

( ) ( )

( )
,

( ) ( )

1 ( )
( ) ( ),

1
( )( ).

p x y
x

b px qy p q

a p x y by
y

b px qy p q

b a px qy
px qy p q

p p

px qy p q
p

β ξ η
η ξ

β ξ η ξ
η ξ

βξ η ξ
β β

η η ξ

+ ′ = + − −


+ + + ′ = + − − 
+ + ′ = + − −


′ = + −


    (55.4) 

 
 
In fact, in the case where r and b vanish simultaneously both of these formulas will 
coincide. 
 It is, moreover, very easy to verify that four relations of the form (50.1) and (50.2) 
must always exist for all of these systems of formulas.  For instance, one sees 
immediately that from the first two equations of (53.3) that x and y can be simultaneously 
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eliminated as well as ξ and η, and furthermore, that the last two equations in (55.3) 
possess similar properties.  This same result follows for equations (55.4), once, from the 
equations: 

y′ − ax′ = 
( )

x y

px qy

β
β

′ +
+

=
( )

bx

p q

βξ
β η ξ

′ −
−

, 

 
and then, however, from the comparison of the last equations of (55.4) with the relation: 
 

− pβ(ξ′ + aη′) = b(px + qy) + (pη – qξ). 
 

 The case in which A(x, y) is a constant can be treated by the same means.  Since the 
latter of the determinants (50.5) must be non-zero, one can take, e.g., the quantities B and 
y to be independent variables.  Of the fifteen differential equations at the end of § 50, 
nine of them are fulfilled identically, and the remaining ones lead to the final formulas 
that essentially arise from the system of formulas (55.3) or (55.4) when one switches the 
variable pairs xy and x′y′ with ξη and ξ′η′, resp.  One then obtains all of the ray maps that 
can be generated without the help of any of the eikonals E, V, V′, W from these formulas 
by entirely elementary transformations or permutations of coordinates. 
 
 56.  Rotationally-symmetric systems.  For the applications, the most important ray 
systems are the ones that that are rotationally-symmetric.  We understand this to mean: If 
one replaces the variables x, y, ξ, η in the right-hand side of equations (33.1) with: 
 

cos sin , sin cos ,

cos sin , sin cos ,

x x y y x yϑ ϑ ϑ ϑ
ξ ξ ϑ η ϑ η ξ ϑ η ϑ

= − = + 
= − = + 

  (56.1) 

 
and if one denotes the new values of the functions X, … by x′ , y′ ,ξ ′ ,η′  then these 
values shall be connected with the previous ones by the equations: 
 

cos sin , sin cos ,

cos sin , sin cos .

x x y y y yϑ ϑ ϑ ϑ
ξ ξ ϑ η ϑ η ξ ϑ η ϑ

′ ′ ′ ′ ′= − = + 
′ ′ ′ ′ ′ ′= − = + 

  (56.2) 

 
If the points of the object (image, resp.) space are established by rectangular coordinates 
t, x, y (t′, x′, y′, resp.) then this requirement will says that under a rotation of the object 
space around the t-axis and a rotation of the image space around the t′-axis the ray map 
will remain invariant when the rotational angle ϑ is the same in both cases. 
 We now assume that the ray map is calculated with the help of an eikonal E(x, y, x′, 
y′).  The equations: 

( , , , ), ( , , , ),

( , , , ), ( , , , ),
x y

x y

E x y x y E x y x y

E x y x y E x y x y

ξ η
ξ η′ ′

′ ′ ′ ′= − = − 
′ ′ ′ ′ ′ ′= = 

  (56.3) 
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must then be fulfilled for all values of ϑ when one replaces the quantities x , …,η′  on the 
right-hand sides of (56.1) and (56.2).  We now consider the first partial derivatives with 
respect to x of the function: 

( , , , , )

( cos sin , sin cos , cos sin , sin cos )

x y x y

E x y x y x y x y

ϑ
ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

′ ′Ω 
′ ′ ′ ′= − + − + 

 (56.4) 

 
and obtain, upon consideration of (56.3) and (56.1): 
 

Ωx = − cos ϑ ξ – sin ϑη = − ξ. 
 

One then has Ωx = Ex(x, y, x′, y′), and one verifies the equations Ωy = Ey, Ωx′ = Ex′ , and 
Ωy′ = Ey′ .  However, from this, it follows that: 
 

Ωx(x, y, x′, y′, ϑ) = Ex(x, y, x′, y′) + f(ϑ).   (56.5) 
 

If one differentiates this latter equation with respect to ϑ and then sets ϑ = 0 then what 
will follow, when one then employs the notation f′(0) = λ, is the first-order partial 
differential equation: 

− y Ex + x Ey – y′ Ex′ + x′ Ey′ = λ,   (56.6) 
 
which is then the condition that the eikonal of a rotationally-symmetric system must 
satisfy.  A particular integral of this partial differential equation is λ arctan y/x; moreover, 
particular integrals of the homogeneous differential equation (56.6) for l = 0 are the 
functions: 

2a = x2 + y2, b = xx′ + yy′, 2c = x′2 + y′2.   (56.7) 
 

Thus, it ultimately follows from the theory of linear, first-order partial differential 
equations (61) that the eikonal E must have the following form here: 
 

E = E(a, b, c) + λ arctan 
y

x
.    (56.8) 

 
One subsequently verifies that, conversely, every eikonal that possesses the form (56.8) 
will generate a rotationally-symmetric ray map. 
 
 57.  This result provokes several remarks: 
 First, if E is a single-valued function of the variables (x, y) in the neighborhood of the 
point x = y = 0 then one must necessarily take λ = 0. 
 Second, we assume that E is developable in a convergent TAYLOR series in a 
neighborhood of that point and can be written: 
 

E = P1(x, y, x′, y′) + P2(x, y, x′, y′) + …,  (57.1) 
 

                                                
 (61) Variationsrechnung, § 22.  
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in which Pn(x, y, x′, y′) means a homogeneous polynomial of nth degree in the four 
variables.  One proves that any Pn must be a solution of the partial differential equation: 
 

n n n nP P P P
y x y x

x y x y

∂ ∂ ∂ ∂′ ′− + − +
′ ′∂ ∂ ∂ ∂

= 0;   (57.2) 

 
i.e., it must satisfy the differential equation (56.6) with λ = 0. 
 One further remarks that the expression: 
 

d = xy′ – yx′ = 24ac b−    (57.3) 
 

is a solution of the homogeneous differential equation (56.6).  One then proves that the 
function Pn can be represented by polynomials in the four expressions a, b, c, and d.  Due 
to the identity d2 = 4ac – b2, one can, in turn, demand that Pn should be linear in d. 
 It is now very easy to write down the right-side of (57.1): The polynomial P1, P2, P3, 
…, vanishes identically, P2 is a linear, homogeneous expression in a, b, c, d, the 
polynomial P4 is quadratic in a, b, c, d, and if one so desires then the term in d2 can be 
suppressed, etc. 
 
 Proof.  The proof of the properties of the polynomials Pn(x, y, x′, y′) that were just 
described rests on certain results of formal algebra. 
 First, the validity of the equation (57.2) will be verified, when one substitutes the 
development (57.1) for E in the left-hand side of (56.6) and then develops the resulting 
expression in homogeneous polynomials.  Any one of the polynomials must then vanish, 
and the nth-degree polynomial in the developments considered will coincide with the left-
hand side of (57.2). 
 The second assertion – viz., that the polynomial Pn also can be written as a 
polynomial in the expressions a, b, c, d − is proved most simply when one introduces 
complex variables.  We set: 
 

z = x + iy, z = x – iy, z′ = x′ + iy′, z′ = x′ – iy′,  (57.4) 
 

where i means the imaginary unit, and calculate Pn as homogeneous, nth-degree 
polynomials Q(z, z , z′, z′ ).  The condition (57.2) can be replaced by another one, 
namely, that Q must be a solution to the partial differential equation: 
 

zQz + z′Qz′ = z zzQ z Q′′+ .    (57.5) 

 
This equation possesses the particular solutions: 
 

α = zz, β = zz′ , γ = z z′ , δ = z z′ ′ .  (57.6) 
 

We deduce the following relations from these formulas: 
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z = 
z

α
, z′ = 

z

β
, z′ = 

zγ
α

,   (57.7) 

 
and introduce these values into Q.  In this way, we obtain the equation: 
 

Q =
q

m
m

m p

A z
=−
∑ ,     (57.8) 

 
in which p and q are positive whole numbers and the Am mean rational functions of α, β, 
and γ.  Now, since Q must be a solution of the partial differential equation (57.5), one 
must have: 

q
m

m
m p

m A z
=−
∑ ≡ 0, 

 
from which, it will follow that the right-hand side of (57.8) consists of only one term, 
which is independent of z.  The polynomial Q can therefore be represented as a 
polynomial in α, β, and γ that is divided by a power of α.  One must then show that it can 
be represented as a polynomial in α, β, γ, and δ. 
 This result follows by induction on the following argument: We assume that a 
polynomial in z, z , z′, z′ can be represented by an expression of the form: 
 

( , , )ω β γ δ
α

ɶ
,     (57.9) 

 
in which ωɶ  means a polynomial.  Now, sinceωɶ , after substituting the value (57.6), is 
divisible by z, as well as by z , ( , , )ω β γ δɶ  must be divisible by β, as well as by γ.  It is 
then also divisible by bg = ad, and one can also write the expression (57.9) as a 
polynomial 1( , , )ω β γ δɶ  in any case. 

 After we have represented Q as a polynomial in α, β, γ, and δ, we revert to our 
original variables, with the help of the formulas: 
 

α = 2a,  β = b – id, γ = b + id, δ = 2c,  (57.10) 
 

and ultimately obtain the desired representation of Pn as a polynomial in α¸ β, γ, and δ. 
 
 58.  One obtains results for the mixed eikonals V, V′, and the angle eikonal W that are 
completely analogous to the ones for E. 
 For instance, by rotational symmetry, the mixed eikonal V has the form: 
 

2 2 2 2

( , , ) arctan

2 2 ,

V a b c

a b x y c x y

ηλ
ξ

ξ η ξ η

= + 

′ ′ ′ ′= + = + = + 

V
  (58.1) 
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while one obtains the following formulas for the angular eikonal W: 
 

2 2 2 2

( , , ) arctan

2 2 .

W a b c

a b c

ηλ
ξ

ξ η ξξ ηη ξ η

= + 

′ ′ ′ ′= + = + = + 

W
  (58.2) 

 
 59.  Semi-telescopic, stigmatic, and telescopic ray maps can be rotationally 
symmetric. 
 For example, should the mixed eikonal V′ of § 48 represent a stigmatic rotationally-
symmetric ray map then one will find that V′ must have the form: 
 

0 1 2

2 21
2

( ) ( ) ( ) ( ) ( ) arctan

( ).

y
V a x y a x y a

x
a x y

ω ξ η ω η ξ ω λ ′ ′ ′ ′ ′= + + + − + 

= + 

 (59.1) 

This yields: 
x′ = x ω1 – y ω2, y′ = y ω1 + x ω2,    (59.2) 

 

0 1 2
1 2

0 1 2
1 2

( ) ( ) ,
2

( ) ( ) .
2

d d dy
x x y x y

a da da da

d d dy
y x y x y

a da da da

ω ω ωξ ξ ω η ω λ ξ η η ξ

ω ω ωη η ω ξ ω λ ξ η η ξ

 ′ ′ ′ ′ ′ ′= + − + + + + −  
  


  ′ ′ ′ ′ ′ ′= − + + + + + −    

 (59.3) 

 
Also, when λ ≠ 0 this ray map will be single-valued inside of a circular ring: 
 

0 < 2
0r ≤ x2 + y22 2

1r≤  .    (59.4) 

 
However, since, from (48.8), one must set: 
 

Ψ = − ω0(a) – λ arctan 
y

x
    (59.5) 

 
here, and since the function Ψ is many-valued in the circular ring (59.5), it will be 
impossible to realize the ray system that is provoked by our eikonal through a 
rotationally-symmetric system lens when one does not have λ = 0. 
 
 60.  For rotationally-symmetric systems, it can also be useful to employ skew 
eikonals.  In order to derive the condition of rotational symmetry without extensive 
calculations, we remark that due to equations (42.7) and (42.10), the condition (56.6) may 
also be written: 

yξ – xη – y′ξ′ + x′η′ = λ.    (60.1) 
 
For the skew eikonal U′(x, y, x′, η′), however, one has the equations: 
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ξ = xU ′ , η = yU ′ , ξ′ = − xU ′ , y′ = Uη′ ,  (60.2) 

 
and this eikonal will then generate a rotationally-symmetric ray map if and only if a 
solution exists to the partial differential equation: 
 

x y xyU xU U U xη η′ ′′ ′ ′ ′ ′ ′− + + = λ.   (60.3) 

 
It is not necessary to integrate this differential equation in general; indeed, we need only 
to consider the case for which the eikonals E and V′ cannot be employed, and thus U′ 
must have the form (50.4).  However, is we substitute this value of U′ in (60.3) then we 
will obtain the following conditions for the functions A, B, C, and D: 
 

x Ay – y Ax = A2 + 1,    (60.4) 
x By – y Bx = AB,     (60.5) 
x Cy – y Cx = AC,     (60.6) 
x Dy – y Dx = BC − λ.     (60.7) 

 
If we now write A = tan ϕ then (60.4) will go to: 
 

x ϕ y – y ϕ x = 1,    (60.8) 
 

whose general solution can be written: 

2 21
2

arctan arctan ( ),

( ).

y
a

x
a x y

ϕ α = − 

= + 

   (60.9) 

It follows from this that: 

A = 
( )

( )

y x a

x y a

α
α

− ⋅
+ ⋅

.    (60.10) 

If we next set: 

u = 
1

x yα+
, v = 

y

x yα+
    (60.11) 

 
then we will find by differentiation that: 
 

2

,

2
,

( )

y x

y x

xu yu u A

a
xv yv

x yα

− = ⋅ 

− = + 

   (60.12) 

 
and we will then easily obtain the general solutions for the equations (60.5) to (60.7): 
 

B = 
( )

( )

a

x y

β
α α+

, C = 
( )

( )

a

x y

γ
α α+

,   (60.13) 
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D = 
( ) ( )

2 ( )

a a y

a x y

β γ
α α+

 + δ(a) – λ arctan 
y

x
.  (60.14) 

 
In these equations, the four functions α(a), β(a), γ(a), δ(a) are arbitrary functions of a = 
(x2 + y2) / 2. 
 
 61.  It is easy to recognize that the arbitrary functions a, …, d that enter into the last 
formulas cannot be chosen in such a way that the eikonal U′ takes on one of the forms 
that were specified in § 55.  It follows from this that any rotationally-symmetric ray map 
is always representable by at least one of the four eikonals E, V, V′, or W.  This assertion, 
which was repeated over and over again, was still never proved up to now. 
 By comparison, one can easily give examples for which three of the conventional 
eikonals – e.g., the eikonals E, V, and V′ – do not come under consideration.  One will 
obtain one such ray map when one chooses α and β to be constant in the formulas above, 
and sets γ = δ = λ = 0.  One can then always choose the coordinates such that α = 0.  
Consequently, the eikonal will have the form: 
 

U′ = 
y

x
x x

βη η′ ′ ′+      (61.1) 

and will yield the ray map: 
 

x′ = − 
x y

βη
ξ η+

, y′ = 
x y

βη
ξ η+

,    (61.2) 

ξ′ = 
y

β
(xξ + yη), η′ = − 

x

β
(xξ + yη).    (61.3) 

 
From these equations, it follows that: 
 

xy′ − yx′ = β,  ξx′ + ηy′ = 0,  xξ′ + yη′ = 0, 
 

and these relations show that all of the eikonals E, V, V′ must remain outside of 
consideration here.  From our result, if one would like to employ one of the four useful 
eikonals then the ray map can be computed only with the help of an angle eikonal W; this 
says that one must set: 

W = 2 ( )β ηξ ξη′ ′− .    (61.4) 
 

 The rotationally-symmetric ray map that is represented by equations (61.2) and (61.3) 
possesses many remarkable geometric properties.  In addition, it yields one of the 
simplest examples of a ray map for which the invariance of the LAGRANGE bracket 
exists without it having to be constructible by optical media.  This is connected with the 
fact that the rays for which the expressions (xξ + yη) or (x′ξ′ + y′η′) vanish in one of the 
spaces cannot be associated with any ray in the other space.  In case the object and image 
spaces are homogeneous and isotropic, these singular rays will define quadratic line 
complexes that include the rotational axis. 



  

Chapter IV. 
 

Coupled optical spaces. 
 

 62.  Representation of a ray map in three-dimensional space.  We would now like 
to associate the individual line elements of the object and image space with each other, 
and indeed, in such a way that for a ray map under which the LAGRANGE brackets 
remain invariant (§ 31), the line elements of two associated rays of the object and image 
space should correspond to each other. 
 In order to exhibit such an association of line elements, we return to the arguments at 
the beginning of the previous chapter and the notations of § 31.  The mutually associated 
rays will be represented by the parameters aj, bj, and ia′ , ib′ , while the association itself 

will be defined by equations (11.5).  From § 33, a function ψ(aj, bj) must then exist for 
which the relation: 

1 1 2 2b da b da′ ′ ′ ′+  = b1 da1 + b2 da2 + dψ   (62.1) 

exists identically. 
 One can establish the association of line elements with mutually-corresponding rays 
by a relation of the form: 

t′ = τ(t, aj, bj),     (62.2) 
 
in which τ means an otherwise arbitrary function that satisfies the condition: 
 

( , , )j jt a b

t

τ∂
∂

≠ 0.    (62.3) 

 
 We further assume that we find ourselves in a coordinate domain (t, aj, bj) in which 
equations (31.1) are valid and are soluble for the aj, bj, such that we can write: 
 

aj = aj(t, xk, yk), bj = bj(t, xk, yk).   (62.4) 
 
By substituting these values in (62.2), we obtain a function: 
 

t′ = t′(t, xk, yk),     (62.5) 
 
and by substituting the same functions in (31.5), we obtain further relations: 
 

ia′  = ia′ (t, xk, yk), ib′  = ib′ ( t, xk, yk)   (62.6) 
 
that we will employ along with (62.5), in their own right, in order to calculate the 
relations: 

ix′  = ix′ (t, xk, yk), iy′  = iy′ (t, xk, yk)   (62.7) 
from (31.3). 
 Equations (62.5) and (62.7) then represent the associations (transformations, resp.) 
between the line elements that we would like to examine. 
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 Since equations (31.5) represent a canonical transformation, it will always be soluble 
for the aj , bj , and it will follow from that and (62.3) that we can solve equations (62.5) 
and (62.7) for t, xk, yk , such that the functional determinant will also satisfy: 
 

( , , )

( , , )
i i

k k

t x y

t x y

′ ′ ′∂
∂

≠ 0.     (62.8) 

 
 The identity (17.4) now exists for the functions ξj, ηj that enter into (31.1), but with 
the difference that due to the initial conditions (31.2), the term that is multiplied by dτ 
drops out, such that we can write: 
 

− H(t, ξj, ηj) dt + ηj dξj = dΩ + bi dai .   (62.9) 
We likewise find that: 

− ( , , )j j i iH t dt dξ η η ξ′ ′ ′ ′ ′ ′ ′+  = dΩ′ + i ib da′ ′    (62.10) 

 
for the functions iξ ′ , iη ′  that enter into (31.3).  If we then observe (62.1) and calculate the 

function: 
Ψ(t, xk, yk) = ( , , ) ( , , ) ( , )j j j j j jt a b t a b a bψ′ ′ ′ ′Ω − Ω + ,   (62.11) 

 
with the help of the previous equations, then it will follow that the transformation that is 
defined by equations (62.5) and (62.7) must always satisfy the condition: 
 

− ( , , )i i i iH t x y dt y dx′ ′ ′ ′ ′ ′ ′+  = − H(t, xk, yk) dt + yj dxj + dΨ.  (62.12) 

 
 63.  Extended canonical transformations.  It is remarkable that the last relation can 
be employed in order to characterize an association of line elements of the kind that we 
just presented.  In order to show this, we start from any one-to-one association of line 
elements that is defined by equations of the form (62.5) and (62.7) and assume that 
(62.12) is also fulfilled.  We calculate the expressions on the right-hand sides of (62.5) 
and (62.7) as functions of t, aj, bj, with the help of equations (31.1), and get: 
 

t′ = τ(t, aj, bj),  ix′  = fi(t, aj, bj), iy′  = gi(t, aj, bj). (62.13) 

 
We further calculate the quantities ka′ , kb′  as functions of t′, ix′ , iy′  using (31.3); by 

substituting the functions (63.1) in the expressions thus obtained, we can now write: 
 

ka′ = αk (t, aj, bj), kb′ = βk (t, aj, bj).  (63.2) 

 
Finally, we remark that after introducing the function: 
 

( , , )j jt a bψ  = Ψ(t, ξj, ηj) + Ω(t, aj, bj) – Ω′(τ, αj, βj),  (63.3) 

 
equation (62.12) will be equivalent to the relation: 
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βk dαk = bi dai + dψ ,     (63.4) 
 
due to the existence of (62.9) and (62.10).  If we then succeed in showing that the 
functions αk(t, aj, bj), βk(t, aj, bj), and ( , , )j jt a bψ  do not depend upon t then equations 

(63.2) will show that our association of line elements represents a ray map, and the 
relation (63.4) will teach us, in addition, that the LAGRANGE bracket will remain 
invariant under this ray map (§ 33). 
 In order to prove this, we replace the variable t in αk, βk, and ψ  with a new variable 

a0 and introduce three new variables 0a′ , b0, 0b′ , which should be coupled by the 

equations: 

0a′  = a0, 0b′  = b0 .    (63.5) 

 
The system of equations that consists of equations (63.2) and (63.5) then represents a 
transformation of three pairs of variables ai, bi, for which one can write: 
 

0 0 1 1 2 2b da b da b da′ ′ ′ ′ ′ ′+ +  = b0 da0 + b1 da1 + b2 da2 + dψ ,   (63.6) 

 
instead of (63.4), and which is canonical, for that reason. 
 However, the properties of POISSON brackets that we derived in § 37 are also true 
for canonical transformations with arbitrarily many pairs of variables (cf., 
Variationsrechnung, chap. 6, esp. § 92). 
 In particular, the relations: 
 

0 1( , )b a′ ′  = 0, 0 2( , )b a′ ′  = 0, 0 1( , )b b′ ′  = 0, 0 2( , )b b′ ′  = 0  (63.7) 

 
must then exist.  On the other hand, if F(a0, …, b2) means an arbitrary function of our six 
variables then, due to equations (63.5), one will have: 
 

0( , )b F′ = 
0

F

a

∂
∂

.     (63.8) 

 
As a result, equations (63.7) state that the four functions αk, βk are independent of t, and it 
then follows immediately from (63.4) that ψ  will also possess the same property.  With 
that, however, our assertion is proved completely. 
 
 A transformation between the line elements of two spaces for which the condition 
(62.12) exists shall be called an extended canonical transformation; we would then like 
to say of the two spaces that they are optically coupled. 
 It is self-explanatory that these concepts are transitive: If an optical space R is 

coupled with a space R′, and correspondingly, the space R′ is coupled with a space R″ 

then a coupling of the spaces R and R″ will be defined by the composed transformation 

that links R to R″. 
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 64.  HAMILTON’s characteristic function.   The statement of formula (62.12) and 
its application to various problems was the guiding principle for the great discoveries of 
Sir W. R. HAMILTON in geometric optics.  In his papers, HAMILTON replaced the 
function that we have called Ψ with another one for which the independent variables 
were chosen in such a way that these functions could be employed as generating 
functions for the transformation formulas.  In particular, if one sets: 
 

Ψ(t, xk, yk) = ( , , , )i jV t x t x′ ′     (64.1) 

then one will get: 
H(t, xj, yj) = Vi,  yj = − 

jxV ,    (64.2) 

( , , )i iH t x y′ ′ ′ ′  = − Vt′,  iy′  = 
jxV ′ .    (64.3) 

 
The similarity of these formulas with the ones that we became acquainted with in the 
theory of the eikonal is immediately apparent. In fact, one can just as well employ the 
function V, which HAMILTON called a characteristic function, as the eikonal E for 
many problems.  HAMILTON also discovered other characteristic functions that 
correspond to the mixed eikonal and the angle eikonal.  The parallelism between both 
theories is explained by the fact that the ideas of HAMILTON influenced the genesis of 
the theory in the previous chapter.  Certainly, this happens unconsciously in an indirect 
and disguised way, but for that reason this influence was not less emphatic (cf., 
Introduction). 
 Just the same, the implementation of the HAMILTONian apparatus is unnecessarily 
complicated.  Not only does its characteristic function depend upon more variables than 
the corresponding eikonal, but the great advantage that the theory of the previous chapter 
enjoys, which consists of the fact that the theory is completely independent of the form of 
the HAMILTONian functions H and H′ (cf., § 32), is lost here.  By contrast, the functions 
H and H′ enter explicitly, since equations (64.2) and (64.3) teach us that the characteristic 
function V must satisfy both partial differential equations: 
 

Vt − H(t, xj, − 
jxV ) = 0, Vt′ + ( , , )

jj xH t x V ′′ ′ ′  = 0  (64.4) 

simultaneously. 
 In exchange, the presentation of the formulas for a coupling of the two optical spaces 
is somewhat simpler than before.  One needs only to add another equation of the form: 
 

t′ = t′ (t, xj, yj) 
 
to equations (64.2) and (64.3) in order to arrive at such a coupling.  The choice of the 
latter function is arbitrary to a large extent; one must observe only that the condition 
(62.8) is verified. 
 
 65.  Canonical sliding transformations.  One obtains the simplest extended 
canonical transformations (§ 63) when one lets the two spaces of the t, xi and t′, ix′  

coincide and associates any ray with itself under the ray map.  The line element t, xi, yi 
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will then be simply displaced along the light on which it lies.  As a result, these special 
canonical translations shall be called canonical sliding transformations. 
 In order to obtain such a canonical sliding transformation, we calculate the inverse 
functions from the general solutions: 
 

xi = ξi (t, aj, bj), yi = ηi (t, aj, bj)   (65.1) 
 
of the canonical differential equations, which will give: 
 

aj = ϕj (t, xi, yi), bj = ψj (t, xi, yi) .   (65.2) 
 
The sliding of the line elements along the different rays will then be represented by 
equation (62.2) with fixed aj, bj .  If one now calculates the function: 
 

χ(t, xi, yi) = τ (t, ϕj (t, xi, yi), ψj (t, yi, xi))   (65.3) 
 
then the system of equations: 

t′ = χ(t, xi, yi),     (65.4) 

ix′  = ξi (χ,ϕj, ψj), iy′  = ξi (χ,ϕj, ψj),   (65.5) 

 
when regarded as functions of t, xj , yj in the right-hand side of equations (65.5), will 
represent the desired sliding transformation. 
 There are infinitely many extended canonical transformations for one and the same 
ray map, which one will obtain from one of them when one composes the original 
coupling of the object and image space with an arbitrary sliding transformation in one of 
those spaces. 
 One can imprint special properties on the coupling of the spaces by a suitable choice 
of sliding transformation, and therein lies the advantage that the introduction of extended 
canonical transformations offers. 
 One can, e.g., succeed in making the function Ψ in formula (62.12) constant for the 
coupling of the two space by invoking a sliding transformation.  The coupling will then 
be represented by an ordinary LIE contact transformation.  Another special coupling that 
is important for the purposes of geometric optics is the tangential coupling, which we 
would now like to describe. 
 
 66.  Unions of elements.  Tangential coupling.  Let any extended canonical 
transformation (62.12) be defined by formulas (62.5) and (62.7).  The variables t, xj, yj 
should be regarded as arbitrary functions of two parameters u, v; one can then calculate 
the t, ix′ , iy′  as functions of those parameters.  For any function f(u, v) of those 

parameters, we introduce the notations: 
 

df = fu du, δf = fv dv, δdf = fuv du dv = dδf.   (66.1) 
 



68   Chap. IV:  Coupled optical spaces. 

If we partially differentiate (62.12) with respect to v, in which the differential d is 
regarded as derivation with respect to u, in the sense of (66.1), then we will get, with the 
notations (66.1): 

− δH′ dt′ − H′ δ dt′ + i i i iy dx y dxδ δ′ ′ ′ ′+  

= − δH dt – H δdt + δyj dxj + yj δdxj + δdΨ. 
 

If we switch the symbols δ and d in this, subtract the equation thus obtained from the 
previous one, and observe the last of relations (66.1) then following relation will arise: 
 

dH′ δt′ − δH′ dt′ + i i i iy dx dy xδ δ′ ′ ′ ′−  = dH δt – δH dt + δyj dxj − dyj δxj .   (66.2) 

 
When one develops dH and δH, the right-hand side of this equation can be written: 
 

( ) ( ) ( )
i i i ix i y i i i y i i xH dx H dy t y dx H dt x dy H dtδ δ δ+ + − + + ;  (66.3) 

 
on the other hand, one has: 
 

i ix i y iH dx H dy+  = ( ) ( )
i i i ix i y y i xH dx H dt H dy H dt− + + .  (66.4) 

 
If one replaces the left-hand side of (66.3) with the right-hand side of (66.4), and one 
transforms the left-hand side of (66.2) in the same way then one will finally get: 
 

( )( ) ( )( )

( )( ) ( )( ).
i i i i

i i i i

i x i y i y i x

i x i y i y i x

y H t dx H dt x H t dy H dt

y H t dx H dt x H t dy H dt

δ δ δ δ
δ δ δ δ

′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − − − + 
= + − − − + 

 (66.5) 

 
A large number of relations can be deduced from this formula in which Ψ no longer 
appears.  For example, if one replaces the parameter v − which was left completely 
arbitrary, up to now − with iy′  and ix′ , in succession, then one will get: 

 

ii ydx H dt′′ ′ ′−  = ( ) ( )
j j j j

j j
x j y y j x

i i i i

y xt t
H dx H dt H dy H dt

y y y y

∂ ∂   ∂ ∂+ − − − +   ′ ′ ′ ′∂ ∂ ∂ ∂   
, (66.6) 

 

ii xdy H dt′′ ′ ′+  = − ( ) ( )
j j j j

j j
x j y y j x

i i i i

y xt t
H dx H dt H dy H dt

x x x x

∂ ∂   ∂ ∂+ − + − +   ′ ′ ′ ′∂ ∂ ∂ ∂   
.  (66.7) 

 
If one takes u to be equal to yj in (66.6) then it will follow from these equations that: 
 

j

j
y

i i

x t
H

y y
′

′∂ ′∂′−
∂ ∂

= − 
j

j
y

i i

x t
H

y y

∂ ∂+
′ ′∂ ∂

.   (66.8) 
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 67.  According to S. LIE, a family of line elements t(u), xi(u), yi(u) that depends upon 
a parameter u is called a union of elements when one has: 
 

ix

u

∂
∂

 = ( , , )
iy j j

t
H t x y

u

∂
∂

.    (67.1) 

 
We would like to exhibit all unions of elements in the object space that again go to 
unions of elements.  For this, we must require that the equations: 
 

ii ydx H dt′′ ′ ′−  = 0    (67.2) 

 
must be verified simultaneously with the equations: 
 

ii ydx H dt−  = 0.    (67.3) 

 
However, with this assumption, it will follow from (66.6) that: 
 

( )
j j

j
y j x

i i

x t
H dy H dt

y y

∂ ∂− + ′ ′∂ ∂ 
 = 0  (i = 1, 2). (67.4) 

If the determinant: 

j

j
y

i i

x t
H

y y

∂ ∂−
′ ′∂ ∂

 ≠ 0     (67.5) 

 
then our requirement will be equivalent to the simultaneous validity of equations (67.3) 
with the following equations: 

jj xdy H dt+  = 0 (j = 1, 2).   (67.6) 

 
In this case, which is the general one, the individual union of elements that is once more 
mapped to a union of elements is the light ray itself.  The fact that they will be associated 
with each other by the coupling is due to the fact that we required that at the beginning of 
the entire investigation.  One can then read off this property of the extended canonical 
transformations directly from equations (66.6) and (66.7). 
 
 68.  We would now like to consider the singular case, for which the left-hand side of 
(67.5) does not vanish identically.  Due to the relation (66.8), this condition can be 
replaced with: 

j

j
y

i i

x t
H

y y′

′∂ ′∂′−
∂ ∂

 ≠ 0,     (68.1) 

 
from which, one recognizes that the condition possesses a simple geometric meaning.  
Namely, if one considers the totality of all line elements in object space that go through a 
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fixed point 0 0( , )it x  then one will obtain the corresponding line element in image space 

from the equations: 
t′ = 0 0( , , )j jt t x y′ , ix′  = 0 0( , , )i j jx t x y′ ,   (68.2) 

iy′  = 0 0( , , )i j jy t x y′ .     (68.3) 

 
This line element goes through the points of a surface that will be represented by the 
equations (68.2) with the help of the parameters yj .  The direction of this line element in 
image space will be given by the vector with the components: 
 

1,    
1y

H ′′ ,    
2yH ′′ ,    (68.4) 

 
while, on the other hand, the normal to the surface (68.2) can be described by three 
determinants of the matrix: 

1 2

1 1 1

1 2

2 2 2

x xt

y y y

x xt

y y y

′ ′′ ∂ ∂∂
∂ ∂ ∂

′ ′′ ∂ ∂∂
∂ ∂ ∂

. 

 
Since we can also write equation (68.1) as: 
 

1 2

1 2

1 1 1

1 2

2 2 2

1 y y

x xt

y y y

x xt

y y y

H H′ ′

′ ′′ ∂ ∂∂
∂ ∂ ∂

′ ′′ ∂ ∂∂
∂ ∂ ∂

′ ′

 = 0,    (68.5) 

 
this condition says that the directions of the line elements in the image space lie in the 
tangential plane to the surface (68.2). 
 Now, any time that the stigmatic light pencil of the object space with the center (t, xi) 
is transformed into a congruence of light rays in image space, one can transform the 
coupling into another one for which (68.1) is fulfilled by a canonical sliding 
transformation. We would like to call such couplings of optical spaces tangential 
couplings.  Since, as we have seen, the two conditions (68.1) and (67.5) are equivalent to 
each other, the inverse transformation must have precisely the same geometric property 
as the transformation itself under a tangential coupling, moreover. 
 In addition to the light rays, there are other unions of elements in object space that go 
to unions of elements in image space under tangential couplings.  A simple example of 
such a union of elements is defined by the envelopes of the light rays of the pencil that 
possesses the focal surface (68.2).  The most general union of elements that again goes to 
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a union of elements is closely connected with the theory of optical images of a surface, 
which C. W. OSEEN has recently made known (62). 
 
 69.  Absolute optical instruments.  An optical instrument is called absolute when all 
stigmatic light pencils in object space are again taken to stigmatic light pencils in image 
space.  This shall be true for at least the rays that lie in the field of the instrument; i.e., the 
ones that go through the instrument. 
 The rays that go through a point t, xi in object space must then be converted into rays 
that go through a point: 

t′ = t′(t, xj), ix′  = ix′ (t, xj) .    (69.1) 

 
Therefore, the two optical spaces will be mapped to each other point-wise for a absolute 
instrument. 
 The map (69.1) is, however, not arbitrary.  Namely, one is dealing with any extended 
canonical transformation by which the ray map that is generated by the absolute 
instrument is represented.  The elements that lie in the field of the instrument and go 
through the point t, xj will be transformed into line elements in image space that lie on 
rays that go through the point (69.1).  If we invoke a suitable canonical sliding 
transformation then we will obtain a new extended canonical transformation under which 
the line elements through t, xj will be transformed into line elements through t′, ix′  

directly. 
 This is a tangential canonical transformation (§ 68) that will be represented when one 
add two more equations of the form: 
 

iy′  = iy′ (t, xj, yj)   (i = 1, 2)  (69.2) 

 
to equations (69.1).  One can calculate the functions on the right-hand side of (69.2) 
immediately, and indeed in two different ways, according to whether one uses the fact 
that the transformation in question is a point transformation or the fact that it is an 
extended canonical transformation.  However, the two calculations must naturally lead to 
the same result. 
 For the first kind of calculation, one remarks that the mutually corresponding line 
elements t, xj, jxɺ , and t′, ix′ , /idx dt′ ′  can be obtained directly from the stigmatic map 

(69.1).  Now, since one must have: 
 

jxɺ  = 
jyH , idx

dt

′
′
 = 

jyH ′′     (69.3) 

 
for these line elements, one can write: 
 

                                                
 (62) OSEEN, C. W., “Une méthode nouvelle de l’optique géométrique,” Kungl. Svenska 
Vetenskapsakademiens Handlingar (3) Bd. 15, no. 6 (1936). 
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j
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t x
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t t
H H

t x
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 ′ ′∂ ∂′ +  ∂ ∂ 
  (i = 1, 2); (69.4) 

 
these are two equations from which one can get (69.2). 
 For the second kind of calculation, one starts from the fact that the formula: 
 

− H′ dt′ + i iy dx′ ′  = − H dt + yj dxj + dΨ,   (69.5) 

 
by which the coupling of the two optical spaces is represented, must be fulfilled 
identically when one substitutes (69.1) and (69.2).  Since the right-hand sides of 
equations (69.1) do not contain the canonical direction coordinates, Ψ will be a function 
of position, and the relation (69.3) will be equivalent to the equations: 
 

− H + Ψi = − i
i

xt
H y

t t

′′ ∂∂′ ′+
∂ ∂

,     (69.6) 

 

yj + 
jxΨ = − i

i
j j

xt
H y

x x

′′ ∂∂′ ′+
∂ ∂

  (i = 1, 2).   (69.7) 

 
One can, in turn, calculate (69.2) from the two equations (69.7), and the values of iy′  that 

are obtained in this way must yield an identity when they are substituted into (69.6). 
 One can verify the fact that the result is the same in both cases in the following way: 
By differentiating (69.6) and (69.7) with respect to iy′ , one will obtain: 
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′

′

∂ ′′ ∂∂′− = − + ′∂ ∂ ∂ 
∂ ′′ ∂∂ ′= − +
′∂ ∂ ∂ 

    (69.8) 

 
and (69.4) will follow by combining these last two equations. 
 We now remark that, from § 10, one can write: 
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( , , ) ,

i
i i i

j j j j

dx
H dt y dx L t x dt

dt

H dt y dx L t x x dt

′  ′ ′ ′ ′ ′ ′ ′ ′− + =  ′  
− + = ɺ

   (69.9) 

 
such that one will get the following from the relation (69.5): 
 

, , i
i

dx
L t x dt

dtγ ′

′ ′ ′ ′ ′ ′ 
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γ γ
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The latter equation says that the difference between the optical lengths of two curve 
segments γ and γ′ that correspond to each other by means of the stigmatic map is equal to 
the difference between the values of Ψ(t, xj) at the endpoints of the curve γ.  This 
difference is then independent of the form of the curves γ, γ′ and depends upon only the 
positions of their endpoints. 
 
 70.  If the basic function L(t, xj, jxɺ ) of the object space is prescribed then the basic 

function ( , , / )i iL t x dx dt′ ′ ′ ′  in the image space cannot be chosen arbitrarily if a stigmatic 

optical coupling of the two spaces is to be at all possible. 
 In fact, equation (69.10) says that the relation: 
 

, , i
i

dx
L t x dt

dt

′ ′ ′ ′ ′ ′ 
 = L(t, xj, jxɺ ) + Ψt dt + 

jx jdxΨ    (70.1) 

 
must be fulfilled identically when one replaces the variables t′, ix′  with the expressions 

(69.1) and correspondingly calculates dt′ and idx′  by means of the equations: 

 

dt′ = j
j

t t
dt dx

t x

′ ′∂ ∂+
∂ ∂

,  idx′  = i
j

j

x x
dt dx

t x

′ ′∂ ∂+
∂ ∂

.  (70.2) 

 
Therefore, the quantities must naturally be chosen in such a way that the light ray of the 
line element lies in the field of the instrument, in addition.  However, it follows from this 
that ( , , / )i iL t x dx dt′ ′ ′ ′  must have a very special form. 

 Moreover, this shows that the function Ψ must be subject to restrictions that one can 
already determine when one knows the functions L and L′, but not the stigmatic coupling 
of the two optical spaces.  In particular, we would like to show that Ψ must always be 
constant when the two optical spaces are isotropic or crystalline. 
 We next assume that the two optical spaces are isotropic, but not necessarily 
homogeneous, fix the point t, xj, and let the direction of the light ray vary.  One can then 
write equation (70.1) in the form: 
 

2 2 2
1 2( , )in t x dt dx dx′ ′ ′ ′ ′ ′+ +  = n(t, xj)

2 2 2
1 2dt dx dx+ +  + Ψi dt + 

jx jdxΨ .  (70.3) 

 
After we have substituted the value (70.2) in this equation, we denote the variables dt, dxi 
by ξ0, ξ1, ξ2, for the sake of greater symmetry.  After dividing by n, the last equation will 
then have the form: 

A  = B  + C,     (70.4) 
where 

A = aij ξi ξj , B = 2 2 2
0 1 2ξ ξ ξ+ + , C = p0 ξ0 + p1 ξ1 + p2 ξ2 . (70.5) 

 
The relations: 

 A = B + C2 + 2C B  
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 (A – B – C2)2 = 4C2B.      (70.6) 
 
now follow from (70.4) by successive squaring. 
 By assumption, the relation (70.3) should only be assumed for line elements that lie in 
the field of the instrument.  Thus, it will only be required that (70.6) be true in a small 
region of the space of ξ0, ξ1, ξ2 .  However, since polynomials are on both sides of this 
equation, it will already follow from this assumption that the corresponding coefficients 
of these polynomials must agree.  On the left-hand side of (70.6), one finds the square of 
an entire rational function.  If C is not identically zero then A − B – C2 must be divisible 
by C, and by carrying out that division, B must also appear as the square of a rational 
function.  Since that is not the case, C must vanish identically, and A must be equal to B. 
 It follows from this that the first derivatives of Ψ must vanish for any point of the 
space of t, xj , and consequently, Ψ must be constant. 
 
 71.  The corresponding calculations will become very complicated for the case in 
which the two media are crystalline.  However, one can also derive the desired result here 
by using an argument from the general theory of functions.  After introducing the 
homogeneous variables ξi, equation (70.1) will assume the form: 
 

Φ′(ξ0, ξ1, ξ2) = Φ(ξ0, ξ1, ξ2) + p0 ξ0 + p1 ξ1 + p2 ξ2 ;   (71.1) 
 
in this, the functions Φ(ξi), Φ′(ξi) are positive homogeneous of order one (63) in the ξi, 
and of the equations: 

Φ(ξ0, ξ1, ξ2) = 1, Φ′(ξ0, ξ1, ξ2) = 1,   (71.2) 
 
the first one represents the (rotated in some way) FRESNEL ray surface in object space 
and the second represents an affine transformation of the FRESNEL ray surface in image 
space.  In addition, on the sphere: 

2 2 2
0 1 2ξ ξ ξ+ +  = 1,    (71.3) 

 
the functions Φ(ξi), Φ′(ξi) are analytic functions of position that can be singular only at 
finitely many points P* that correspond to the conical points of the two FRESNEL 
surfaces.  Now, by assumption, equation (71.1) is fulfilled identically on a small patch σ 
on the sphere (74.3), and one can always choose σ to be small enough that, along with all 
points P of σ, the opposite points P  to P will also be different from the singular points 

kP∗ . 

 We now link a point P of σ with its opposite point P  by an analytic curve γ that lies 
on the sphere (71.3).  From the principle of analytic continuation, equation (71.1) must 
then be fulfilled along all of that curve.  Now, Φ and Φ′ have the same value at the two 
endpoints of γ, while the values of the linear form will be equal and opposite, unless one 
has: 

p0 ξ0 + p1 ξ1 + p2 ξ2 = 0.   (71.4) 
 

                                                
 (63) Variationsrechnung, § 249.  
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Since this latter equation must be true for all points of σ, it will necessarily follow that: 
 

p0 = p1 =  p2 = 0,    (71.5) 
 
and this is precisely the result that we would like to prove. 
 
 72.  The identical vanishing of the total differential dΨ in equation (69.4) has the 
consequence that for any curve γ in the object space that is transformed into a curve γ′ in 
the image space, the relation: 

, , i
i

dx
L t x dt

dtγ ′

′ ′ ′ ′ ′ ′ 
∫  = , , i

i

dx
L t x dt

dtγ

 
 
 

∫    (72.1) 

 
must be true.  However, this says that the optical lengths of the two corresponding curves 
must be equal to each other in such a way that an absolute instrument can either increase 
or decrease them (64). 
 One observes that, whereas the relation (69.4) should be valid only for line elements 
that lie in the field of the instrument, equation (72.1) is true for any entirely arbitrary 
curve, since the equation L′ dt′ = L dt is true for all pairs of line elements that are related 
to each other by equation (69.1). 
 The theorem that we proved has a long history.   It was proved in 1858 by 
MAXWELL ( 65) for isotropic and homogeneous media, but generally only in the first 
approximation – i.e., for small objects.  Later, it was found implicitly in the investigations 
of BRUNS for just those media, and was explicitly discussed for the first time by F. 
KLEIN and was proved by a very original method (66). 
 
 73.  The MAXWELLian fisheye.  For the case in which the object space, as well as 
the image space, are isotropic, but not necessarily homogeneous, from § 70, the quadratic 
form A must be identical with B.  However, this will be the case if and only if the 
transformation (70.2) of the line elements is orthogonal, which is equivalent to 
demanding that the map (69.1) of the object space to the image space must be conformal.  
From a celebrated theorem of LIOUVILLE (67), in contrast to the planar conformal maps, 
which depend upon infinitely many constants, there is only a restricted class of conformal 
maps of three-dimensional space.  It can always be represented as a sequence of 
transformations through reciprocal radii of at most five spheres.  It follows from this that 
the circle and lines in object space will be transformed into curves in image space that 
will always be either circles or lines.  MAXWELL treated the simplest case of such a ray 
map (when one ignores a reflection) on occasion (68).  In the study of the spherical lenses 

                                                
 (64) This theorem is not true for GAUSSian optics (cf., § 98).  
 (65) MAXWELL, J. C.: “On the general laws of optical instruments,” Quart. J. of pure and applied 
Mathem. 2 (1858), 233-244; Sci. Pap., v. 1, pp. 271-285. 
 (66) KLEIN, F.: “Räumliche Kollineationen bei optischen Instrumenten,” Z. Math. u. Physik, 46 (1901), 
376-382; Gesammelte Abh. (cf. footnote 15), Bd. II, pp. 607-612.  
 (67) MONGE, G.: Application de l’Analyse à la Géométrie, 5th ed., revised, corrected, and annotated by 
Liouville.  Note 6, pp. 609.  Paris, 1850.  
 (68) MAXWELL, J. C.: “Solutions of Problems,” Cambr. and Dubl. Math. J. 8 (1854), 188-193; Sci. 
Pap., s. 1, pp. 74-79.  
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in the eyes of fish, he established that the index of refraction n in the lens is independent 
of position, and indeed in the following way.  If one denote the distance from a point of 
the lens in the eye to its center and n denotes the index of refraction at the point in 
question then the equation: 

n = 
2 2

2ab

b r+
     (73.1) 

 
will be fulfilled, in which a and b mean positive constants.  Now, MAXWELL imagined 
the entire space to be occupied by a medium whose index of refraction obeyed the rule 
(73.1), and discovered that under the propagation of light a stigmatic map of the space 
into itself arose.  The light rays themselves are then circular (or rectilinear).  One 
confirms this result most simply when one remarks that in the equation: 
 

2 2 2
2 2

2 2 2 2

2
,

,

ab
d dx dy dz

b r
r x y z

σ = + + 
+ 

= + + 

   (73.2) 

 
the differential dσ, which defines the optical length of a line element in the interior of the 
MAXWELLian fisheye, can also be interpreted as a line element in a three-dimensional 
boundary of a four-dimensional sphere of radius a that is projected stereographically onto 
a space of x, y, z that should be found at a distance of b from the center of the projection. 
 Namely, if one denotes the rectangular coordinates of the point in four-dimensional 
space by ξ, η, ζ, and τ then the transformation formulas for the stereographic projection 
will read: 

ξ = 
2 2

2abx

b r+
, η =

2 2

2aby

b r+
 , ζ = 

2 2

2abz

b r+
, τ = 

2 2

2 2

b r
a

b r

−
+

.  (73.3) 

 
One further calculates the relations: 
 

ξ 2 + η2 + ζ 2 + τ 2 = a2,    (73.4) 
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ζ
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, r2 = 
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τ
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−

+
  (73.5) 

 
from these equations. 
 By differentiating one or the other of the systems of formulas (73.3), (73.5), it will 
follow further that: 
 

dσ2 = dξ 2 + dη2 + dζ 2 + dτ 2 = 
2 2 2 2 2

2 2 2

4 ( )

( )

a b dx dy dz

b r

+ +
+

.  (73.6) 

 
If one let x, y, z (x′, y′, z′, resp.) denote the stereographic projections of two opposite 
points on the four-dimensional sphere with the coordinates ξ, η, ζ (− ξ, − η, − ζ, resp.) 
then one must write: 
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x′ = − 
2

2

b x

r
, y′ = − 

2

2

b y

r
, z′ = − 

2

2

b z

r
, r′ = 

2

2

b

r
.  (73.7) 

 
The great circles of the sphere will be determined by the intersection of two hyperplanes: 
 

Ak ξ + Bk η + Ck ζ + b ⋅⋅⋅⋅ Dk τ = 0 (k = 1, 2),   (73.8) 
 
and their projections onto the space of x, y, z will satisfy the equations: 
 

Dk (x
2 + y2 + z2 – b2) – 2Ak x – 2Bk y – 2Gk z = 0  (k = 1, 2). (73.9) 

 
 The light rays now coincide with the images (73.9) of the great circles of our four-
dimensional sphere.  These images are, however, the circles (or lines) in the space of x, y, 
z that contain two diametrically opposite points of the outer surface of the three-
dimensional sphere: 

x2 + y2 + z2 = b2.    (73.10) 
 
They will be characterized by the facts that their planes will contain the coordinate origin 
O and that the power of the point O relative to any of these circles is always equal to – b2.  
Thus, if A is a point of space that is different from the center O of the fisheye then any 
light ray through A will be circular and will contain a fixed point A1 that lies on the 
extension of the line segment AO and is determined by the relation AO × OA1 = b2.  The 
fisheye is then a absolute optical instrument that maps the point A to the point A1.  These 
two points correspond to diametrically opposite points of the four-dimensional sphere.  
Here, one can verify the theorem of the previous paragraph with no further calculation.  
Here, in fact, the equality of the optically lengths of corresponding curves will follow 
immediately from the fact that the spherical length of two diametrically opposite curve 
segments is the same for both curves (69). 
 
 74.  Stigmatic maps of surfaces that lie tangentially to the field of the instrument.  
We would like to say that a curve lies tangentially to the field of the instrument when the 
light rays that contact that curve go through the instrument.  A two-dimensional surface 
patch F that contains at least one pencil of curves that lie tangentially will be described 

similarly.  We now assume that a surface patch: 
 

xj = ϕj (t, u) (j = 1, 2)    (74.1) 
 
that lies tangentially to the field of the instrument is mapped stigmatically.  One can then 
choose equations (62.5) and (62.7) for the coupling of the object space with the image 
space, possibly after performing a canonical sliding transformation, in such a way that 
after substituting the values (74.1) for the xj, the three functions t′(t, xj, yj) and jx′ ( t, xj, yj) 

                                                
 (69) CARATHÉODORY, C.: “Über den Zusammenhang der absoluten optischen Instrumente mit einem 
Satze der Variationsrechnung,” S.-B. Bayer. Akad. Wiss. Math.-naturwiss. (1926), 1-18.  One finds a 
generalization of the MAXWELLian fisheye in W. LENZ: “Zur Theorie der optischen Abbildingen,” 
Sommerfeld-Festschrift, pp. 198-207, edited by P. DEBYE.  Leipzig, Hirzel, 1928. 
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will be independent of the yj .  It then follows from (62.12) that after substituting the 
value (74.1) for the xj in the function Ψ(t, xj, yj), it must likewise follow that it is 
independent of yj, and one proves in a similar way to the one in § 70 (or in § 71) that two 
corresponding curve segments on the surface F in the object space and on the surface F′ 
in the image space must have equal optical lengths, and that the two surface patches F 

and F′ can then be optically unrolled (abwickelt) from each other. 

 
 75.  This last result seems to contradict the results of § 48.  In that paragraph, we were 
able to choose the mutually stigmatically related surfaces in a completely arbitrary way.  
The contradiction is resolved when one shows: If the mutually stigmatically mapped 
surfaces F and F′ cannot be optically unrolled from each other then they also cannot lie 

tangentially to the field of the instrument. 
 We assume, e.g., that the two media are isotropic at two corresponding points P and 
P′ of the mutually stigmatically related surfaces, such that one can write: 
 

H = − 2 2 2
1 2n y y− − ,  H′ = − 2 2 2

1 2n y y′ ′ ′− − ,  (75.1) 

 
when one employs rectangular coordinate axes.  We let p, q, r denote the components of 
a unit vector that coincides with the tangent to the light ray at the point P with respect to 
the axes x1, x2, and t, and let p′, q′, r′ denote the components of the corresponding vector 
in image space.  One then has, first, the equations: 
 

p2 + q2 + r2 = 1, p′2 + q′2 + r′2 = 1,   (75.2) 
and secondly, from: 
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r
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2 2 2
1 2

y

n y y− −
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2 2 2
1 2

y

n y y− −
, … 

 
one calculates the relations: 
 

y1 = n p, y2 = n q, H = − n r,   (75.3) 

1y′  = n′ p′, 2y′  = n′ q′, H′ = − n′ r′.    (75.4) 

 
If one chooses the t and t′ axes to be parallel to the normal to the surfaces F and F′, resp., 

at the points P and P′, resp. then equations will exist between the yj and the iy′  that are 

completely analogous to equations (48.6) and (48.7), and can be written: 
 

y1 = 0 1 2
1 2

1 1 1

x x
y y

x x x

ω ′ ′∂ ∂ ∂′ ′+ +
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,    (75.5) 

y2 = 0 1 2
1 2

2 2 2

x x
y y

x x x

ω ′ ′∂ ∂ ∂′ ′+ +
∂ ∂ ∂

.     (75.6) 
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Now, one can always rotate the coordinate axes around the t (t′, resp.) axis in such a way 
that the quantities 2 1/x x′∂ ∂  and 1 2/x x′∂ ∂ vanish at the points considered.  It will then 

follow from the last equations that one can write: 
 

αp′ = p + a, βq′ = q + b.    (75.7) 
 
However, from (75.2), one will have: 
 

p2 + q2 ≤ 1, p′2 + q′2 ≤ 1,    (75.8) 
 
such that from (75.7), one will also have: 
 

2 2

2 2

( ) ( )p a q a

α β
+ ++  ≤ 1.    (75.9) 

 
 Now, in order for light rays to go through the point P at all, the ellipse (75.9) must 
have common interior points with the circle p2 + q2 ≤ 1, and the isolated rays that lie 
tangentially to the field of the instrument must correspond to the common points of the 
boundaries of these two surface patches.  Therefore, if the one surface patch, along with 
its boundary, lies completely within the interior of the other one then there will be no 
isolated rays of that kind.  In general, the circle and the ellipse will intersect, and there 
will be a finite number of rays, which can be at most four, that lie tangentially to the field 
of the instrument.  Finally, infinitely many rays can also have this property.  The latter 
can only occur when one has: 

a = b = 0, a2 = b2 = 1;    (75.10) 
 
i.e., when the ellipse (75.9) coincides with the unit circle. 
 One now remarks that the coefficients a and b will vanish only when the derivatives 
of ω0 at the point P are equal to zero.  If the condition (75.10) is then fulfilled, not only at 
the point P itself, but also in a neighborhood of that point, then ω0 must be constant, 
which agrees with the result of § 70.  One further 
remarks that the coefficients α and β will represent 
the expansion ratio of the two line elements in the 
surfaces F and F′ that coincide with the axes at the 

points P and P′, resp., when one measures their 
lengths as light path lengths.  If α = β then, as is 
known, this expansion ratio must be the same for 
all directions.  Since the surfaces F and F′ can be 

optically unrolled from each other in the case (75.10), we can then deduce a new proof of 
the result in § 74 from the second of equations (75.10). 
 
 76.  The map of the focal surfaces of ray congruences.  We consider two associated 
ray congruences in two optically coupled spaces that possess real, non-decomposable 
focal surfaces.  The ray map will then be described completely when we give the focal 

 

γ 

B 

c 

P 

Figure 8. 
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surface, the families of curves on each of them that are enveloped by the rays of the 
congruences in question, and finally the association of the points of the two focal surfaces 
with each other that will be generated by the ray map. 
 If we prescribe all of these data arbitrarily then the integral invariants of §§ 26 and 27 
will not necessarily preserve their values when one goes from the object space to the 
image space, and we must exhibit the condition that will express the conservation of the 
invariance.  To that end, we consider (cf., Fig. 8) a closed curve γ on the one focal surface 
B that goes through the enveloping c of the congruence of light rays.  The totality of light 

rays of our congruence that meet the curve γ defines a tubular surface for which the 
invariant J can be obtained by the construction that was described at the end of § 27 (cf., 
Fig. 5, pp. 35).  For the case in which the optical medium is isotropic and homogeneous, 
this invariant will have a very intuitive meaning.  Namely, if we assume that γ possesses 
the form of a curvilinear rectangle for which the two adjacent sides coincide with path 
curves that belong to the family of curves c, while the two opposite sides are defined by 
orthogonal trajectories of the family of curves c then we will see, with no further ado, that 
we must have: 
 

J = n (s′ – s)     (76.1) 
 
when one denotes the lengths of the latter sides by s′ and s.  In fact, the orthogonal 
trajectories consist of the generators of the tubular ruled surface considered as evolutes of 
the sides of the rectangle that coincide with the curve segments of the family c and of 
curves that are parallel to the remaining sides of the rectangle. 
 This geometric interpretation will allow us to characterize the function under the 
double integral in (26.3) by geometric determining pieces, as well.  Namely, to calculate 
the difference (ds′ − ds) between the lengths of the sides of an elementary rectangle of the 

same kind as the one just considered and obtain a figure for 
which the lengths ds′ and ds of the sides and the surface area 
dω of the rectangle remain unchanged up to quantities of third 
(fourth, resp.) order.  From Fig. 9 below, we now have: 
 

ds = r dϑ, ds′ = (r + dr) dϑ, dω = dr⋅⋅⋅⋅ ds, (76.2) 
 
in the plane, from which it will follow that: 
 

ds′ − ds = dr dϑ = 
1

r
 dω.   (76.3) 

 
However, 1 / r is equal to the curvature of the projected curve, so it is equal to the 
geodetic curvature kg of the original curve c.  In place of (76.1), we can then write: 
 

J = n ∫∫ kg dω.     (76.4) 
 

 

ds 

dr 

ds′ 

r 

dϑ 

Figure 9. 
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 77.  We let B′ denote the focal surface of the given ray congruence in image space, 

and let c* denote the curve in B′ that is enveloped by rays of the congruence.  Should the 

integral invariant (76.4) be preserved, then the relation: 
 

gn k dω∗′ ′  = n kg dω    (77.1) 

 
would have to exist at corresponding points P and P′ of the focal surfaces B and B′. 
 One remarks that an expression appears on each side of the last equation whose 
numerical value does not change when one modifies the unit of length.  If one chooses 
this unit of length to be equal to the distance that the light moves through each medium in 
a given time then one will have n = n′, and equations (77.1) will say that the ratio gk∗  : kg 

of the geodetic curvatures of the curves c and c* at corresponding points of the focal 
surfaces is equal to the dilatation of area dω : dω′ that is induced by the map of the two 
focal surfaces to each other. 
 This theorem expresses the requirement of the conservation of the integral invariant J 
(§ 25), or – what amounts to the same thing – the conservation of the LAGRANGE 
bracket in the event that one puts the focal surfaces at the center of consideration. 
 If one of the two ray congruences is a normal congruence then the integral invariant J 
must vanish identically, and for that reason we will have kg = gk∗  = 0.  The envelopes of 

the rays of the congruence are, in this case, geodetic lines on the focal surface.  
Conversely, the two ray congruences will always be normal congruences when the family 
of curves c consists of geodetic lines on the focal surface in object space; the curves c* 
must also be geodetic lines on the focal surface in image space then. 
 
 78.  This result can be generalized: Completely similar theorems are valid when the 
optical spaces in question are either homogeneous or isotropic.  The formulas that we 
presented have especial practical significance, but also in the ordinary case of 
homogeneous, isotropic media, where they permit the introduction of arbitrary curvilinear 
coordinates. 
 We consider a surface: 
 

t = t(s, u), xi = xi(s, u) (i = 1, 2)   (78.1) 
 
in the space of (t, x1, x2) that depends upon the parameters s and u.  The curves on these 
surfaces should be established by equations of the form: 
 

u = u(s)     (78.2) 
 
(and thus not in a parameter representation).  Now, if H(t, xj, yj) is the HAMILTONian 
function of the optical spaces in question then the line elements s, u, du / ds of the curve 
(78.2), when one interprets them as spatial line elements, will correspond to certain 
values of the conjugate variables yj that one can calculate from the equations: 
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i

i i
y

x x du t t du
H

s u ds s u ds

∂ ∂ ∂ ∂   + − +  ∂ ∂ ∂ ∂  
 = 0 (i = 1, 2).  (78.3) 

 
However, instead of considering the yj to be functions of s, u, du / ds in equations (78.3), 
we try to introduce a new variable v and determine y1, y2, du / ds, as well as another 
function K, as functions of u, s, and v.  In order to do that, we establish the three functions 
y1(s, u, v), y2(s, u, v), and K(s, u, v), which should satisfy, along with equations (78.3), the 
identity: 

− H dt + yi dxi = − K dt + v du,   (78.4) 
 
which is equivalent to the two equations: 
 

− H(t, xj, yj) i
i

xt
y

u u

∂∂ +
∂ ∂

 = v,    (78.5) 

 

+ H(t, xj, yj) i
i

xt
y

s s

∂∂ −
∂ ∂

 = K.    (78.6) 

 
 One can calculate y1, y2, and du / ds as functions of (s, u, v) from (78.3) and (78.5) 
and then obtain K(s, u, v) with the help of (78.6).  This latter function K(s, u, v) can be 
regarded as the HAMILTONian function of a variational problem that is coupled with 
given problem on the surface (78.1).  One refers to it as the variational problem that is 
induced on the surface by the original problem (70). 
 If follows from the relation (78.4) that the calculations of § 66 can be carried over 
here when one replaces t′, x′, y′ with s, u, v, resp., and writes K, instead of H′.  In 
particular, when one thinks of t and xi as independent of v, it will follow from (66.6) that: 
 

du – Kv ds = ( )
j

j
j y

y
dx H dt

v

∂
−

∂
; 

 
with consideration given to (78.3), one will then have: 
 

du

ds
 = Kv .     (78.7) 

 
In an entirely similar way, if will follow from (66.7) that: 
 

dv + Ku ds = ( )
j j

j
y j x

x t
H dy H dt

u u

∂ ∂− + ∂ ∂ 
,   (78.8) 

 
which is a relation that can also be written: 
 

                                                
 (70) Variationsrechnung, § 342.  
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dv

ds
+ Ku = 

( , )

( , ) j

j j
x

t x dy
H

s u dt

∂  
+ ∂  

,   (78.9) 

due to (78.3). 
 
 79.  In order to now define a family of curves c on the surface (78.1), it will suffice to 
take: 

v = ϕ(s, u).     (79.1) 
 
A closed curve γ on the same surface corresponds to a closed curve γ * in the su-plane, 
and, as a result of the relation (78.4), POINCARÉ’s relative integral invariant J for the 
light rays that contact the curve c at the points of γ can be written: 
 

J = ( , , ( , )) ( , )K s u s u ds s u du
γ

ϕ ϕ
∗
− +∫ .  (79.2) 

 
If one now transforms this boundary integral into a double integral then one will get: 
 

J = (( ) )u v u sG
K K du dsϕ ϕ

∗
+ +∫∫ .   (79.3) 

 
Due to equation (78.7), the function under the integral can be written: 
 

d

ds

ϕ
 + Ku(s, u, ϕ(s, u));    (79.4) 

 
it will then have the same form as the left-hand side of (78.9).  In the special case of § 76, 
it is self-explanatory that this function will have the same geometric interpretation as in 
(76.4). 
 We now consider a second variational problem in the space of t′, ix′  of a surface B′ 
whose one-to-one map on (78.1) will be established in such a way that we can represent 
B′ by the equations: 

t′ = t′(s, u), ix′  = ix′ (s, u)    (79.5) 

 
and establish that points of the surfaces (78.1) and (79.5) should correspond to each other 
when they belong to the same values of the parameters s, u.  Now, a variational problem 
will be induced on the surface B′ whose HAMILTONian function can be calculated in a 

manner that is entirely similar to the previous one with the introduction of a new variable 
v′; it will be denoted by K′ (s, u, v′).  Furthermore, we determine a family of curves c* on 
B′ by the equation: 

v′ = ϕ *(s, u),     (79.5)[sic] 
 
and consider the congruence of light ray that possesses B′ as its focal surface and the 

curves c* as its envelope.  The condition that is analogous to the condition (77.1), which 
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says that the two ray congruences that possess B (B′, resp.) as focal surfaces will be 

optically coupled, will be expressed by the equation: 
 

ϕs + Kv(s, u, ϕ) ϕu + Ku(s, u, ϕ) = ( , , ) ( , , )s v u uK s u K s uϕ ϕ ϕ ϕ∗ ∗ ∗ ∗
′′ ′+ + . (79.6) 

 
 80.  The latter condition gives us the possibility of treating a large number of 
problems that are connected with the optical coupling of ray congruences. 
 One can, e.g., prescribe the map of the two focal surfaces to each other and the family 
of curves c*; the right-hand side of (79.6) will then be a known function of s, u that we 
denote by − ∂f / ∂u, whereas the function ϕ(s, u) will still be undetermined.  The 
condition (79.6) then says that any family of curves c that defines a family of extremals 
of the variational problem on the focal surface B with the HAMILTONian function: 

 
K(s, u, v) + f(s, u)     (80.1) 

 
will define the envelope of a ray congruence that is optically coupled with the given ray 
congruence in the space of t′, x′.  In order to determine the ray map with the given data 
completely, one can, e.g., give the directions of those rays at the points of a curve 
segment on the surface B, because the family of extremals of the problem (80.1) is 

established by that. 
 If two congruences of light rays possess the same focal surface, and each of them 
contact that focal surface along a family of curves that can be interpreted as a family of 
extremals of the variational problem with the HAMILTONian function (80.1), then one 
will obtain an optical map of these ray congruences to each other when one associates 
each two rays that contact their common focal surface at the same point with each other. 
 One can also determine those curves of the focal surface B that are transformed into 

curves by the map of B to B′, for which, the relation (79.6) is valid.  In general, these 

curves must be solutions of a second-order, ordinary differential equation.  However, 
there are also extreme cases for which no single curve of that kind will exist and other 
ones for which any curve of B will possess the required property. 

 One obtains an example of the latter kind when one bends the focal surface B with 

the homogeneous and isotropic propagation of light and carries all pencils of light rays 
whose centers lie at a point of B rigidly under the bending of the surface (71). 

                                                
 (71) Cf., CARATHÉODORY, C.: “Bemerkungen zu den Strahlenabbilungen der geometrischen Optik,” 
Math. Ann. 114 (1937), 187-193. 



  

Chapter V. 
 

The map in the first approximation. 
 
 

 81. The formulas for the accessory problem.  If the two optical spaces are isotropic 
and homogeneous then the HAMILTONian functions for the propagation of light will 
have the form: 

H = − 2 2 2
1 2n y y− − ,  H′ = − 2 2 2

1 2n y y′ ′ ′− − .  (81.1) 

 
We would like investigate the ray map in the near vicinity of two arbitrary corresponding 
rays.  Due to the isotropy and homogeneity of the space, it is no restriction to let the two 
corresponding rays coincide with the t (t′, resp.) axis.  Using a method that was 
developed in the calculus of variations for the theory of the second variation and in 
mechanics for the theory of small oscillations, we replace the HAMILTONian functions 
(81.1) with functions H, H′ of the so-called “accessory problem”; we obtain these latter 
functions when we develop H and H′ in powers of yj, jy′ , and keep only the lowest 

powers.  One must then write: 
 

H = − n + 
2 2
1 2

2

y y

n

+
,  H′ = − n′ + 

2 2
1 2

2

y y

n

′ ′+
′

,   (81.2) 

 
and the basic functions of the corresponding variational problems will read: 
 

Λ = 
2 2
1 21

2

x x
n
 ++ 
 

ɺ ɺ
,  Λ′ = 

2 2
1 21

2

x x
n

′ ′ +′ + 
 

ɺ ɺ
.  (81.3) 

 
As a result, the light rays will have the equations: 
 

xi = ui + yi 
t

n
,  ix′  = i i

t
u y

n

′′ ′+
′
.   (81.4) 

 
The ray map for the original problem shall likewise be replaced with another one that will 
be obtained from a similar consideration.  It is defined when we let iu′ , iy′  be linear, 

homogeneous functions of uj, yj that shall satisfy the condition that the expression: 
 

i iy du′ ′  − yj duj 
is a complete differential. 
 
 Remark.  The interpretation of the formulas for the linear ray map can come about in 
two fundamentally different ways. 
 For the first of these interpretations, one starts with families of light rays in the object 
and images spaces that are coupled to each other by the original problem that was posed, 
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and which depend upon a parameter α.  The value α = 0 shall be associated with the 
basic rays; i.e., the t (t′, resp.) axis.  The rays of such a family will be represented by the 
functions xj(t, α), yj(α), ( , )ix t α′ ′ , ( )iy α′ , their initial elements in the planes t = t0 and t′ = 

0t′ will be represented by functions uj(α), ( )iu α′ , and the ray map in question will be 

represented by equations that will perhaps read as follows: 
 

( )iu α′  = Ai (uj(α), yj(a)), ( )iy α′  = Bi (uj(α), yj(a)) . 

 
One develops all of these functions and equations in powers of α and remarks that for 
sufficiently small values of this parameter the coupling of the two optical spaces in the 
neighborhood of the basic rays can be represented by the linear terms in this power series 
approximately. 
 The first interpretation of the formula is the one that the physicists have discussed the 
most, and it will be employed as a rule. 
 For the second interpretation, which will be applied in what follows, we consider 
linear couplings between two space whose optical properties are characterized, not by 
the original HAMILTONian functions (81.1), but by the HAMILTONian functions (81.2).  
We assume that this should be the case on all of space and study the mapping rule, 
without considering the original map in any way.  This has the advantage that we do not 
have an approximation problem before us, but an ordinary, optical problem, to which, all 
of our previous methods and results can be applied without restriction. 
 After this “osculating” problem has been examined for its own sake, one can, if one 
needs to, employ the fact that the two maps deviate from each other only slightly in the 
vicinity of the basic rays. 
 
 82.  One will obtain the linear ray maps that we have just discussed most quickly 
when one employs the theory of the eikonal.  Since the partial derivatives of the eikonal 
should all be linear and homogeneous, the eikonal itself must be a quadratic form in the 
four variables upon which it depends.  It would be computationally advantageous if one 
could treat all possible cases with the angle eikonal alone, since in that case a 
displacement of the starting point along the t (t′, resp.) axis would give rise to a very 
simple transformation of the eikonal.  One must then write: 
 

2 2 2 2
11 1 12 1 2 22 2 11 1 12 1 2 22 2

11 1 1 12 1 2 21 2 1 22 2 2

2 ( 2 ) ( 2 )

2 2 2 2 ,

W a y a y y a y y y y y

p y y p y y p y y p y y

α α α′ ′ ′ ′ = + + + + +
′ ′ ′ ′+ + + + 

  (82.1) 

 
and must calculate the ray map from: 
 

i iu dy′ ′  − uj dyj = dW.     (82.2) 

One will then find that: 

1 11 1 12 2 11 1 21 2

2 12 1 22 2 12 1 22 2

,

,

u y y p y p y

u y y p y p y

α α
α α

′ ′ ′= + + + 
′ ′ ′= + + + 

   (82.3) 
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and two similar relations for the uj that we will not, however, require in what follows. 
 The eikonal W is, however, useful only when no relation exists between the four 
variables iy′ , yj, and it can very well happen that such a relation is actually present. 

 One now remarks that a comparison of (81.4) with (82.3) will yield the equations: 
 

 ix′  = 11 1 12 2

t
y y

n
α α

′  ′ ′+ + ′ 
+ p11 y1 + p21 y2 , 

 

 iy′  = 12 1 22 2

t
y y

n
α α

′ ′ ′+ + ′ 
+ p12 y1 + p22 y2 . 

 
Here, one can always give the variable t′ a value for which these latter equations are 
soluble for the iy′ , from which, one easily concludes that in all cases for which the angle 

eikonal is useful (after a possible displacement of the starting point along the t′-axis), the 
mixed eikonal, which depends upon the yj and the iu′ , can also be employed.  One can 

reach precisely the same conclusion when one starts with one of the skew eikonals, and 
one sees that in order to avoid distinguishing between the cases one would do best to 
perform our calculations with only that mixed eikonal from the outset.  Due to the results 
of § 45, we are guaranteed that we can represent all possible linear ray maps with the help 
of this eikonal. 
 
 83.  We must then discuss all cases in which the map is derived from the identity: 
 

i iy du′ ′ + uj dyj = dV,    (83.1) 

where the eikonal V reads: 
 

2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 2 2 2 2

2 ( 2 ) ( 2 )

2 2 2 2 .

V ay by y cy u u u u

py u qy u ry u sy u

α β γ′ ′ ′ ′ = + + + + +
′ ′ ′ ′+ + + + 

  (83.2) 

 
One can, with no loss of generality, simplify the form of the eikonal when one gives 
special positions to the coordinate axes.  Namely, if one sets: 
 

y1 = 1y cos ϑ − 2y sin ϑ, y2 = 1y sin ϑ + 2y cos ϑ,  (83.3) 

1u′ = 1u′ cos ϑ − 2u′ sin ϑ, 2u′ = 1u′ sin ϑ + 2u′ cos ϑ  (83.4) 

 
then one can choose the angles ϑ and ϕ in such a way that after calculating the 
coefficients in the new variables the relations: 
 

b = 0, β = 0, a ≥ c, α ≥ γ    (83.5) 
will exist. 
 In special cases, one can push the simplification even further.  For example, if b = 0, 
along with a = c, is, by chance, true from the outset then the angle ϑ will be 
undetermined, and one can employ the rotation (83.3) around the t-axis in order to obtain 
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a relationship between the coefficients p, q, r, s by which the geometric properties of the 
ray map will emerge more quickly.  In particular, if one denotes the values of the new 
coefficients by pɶ , … then one will have: 
 

2( )p r q s+  = 2pr cos 2ϑ – (p2 + q2 – r2 – s2) sin 2ϑ. 
 
 If b = 0 and a = c then can always assume that pr + qs = 0. 
 If β = 0 and α = c then one can likewise always assume that pr + qs = 0. 
 
 However, instead of this, one can, if one desires, also arrive simply at the fact that q = 
0 in each of these cases.  Finally, if, along with b = 0 and β = 0, one simultaneously has a 
= c and α = γ from the outset then one can always arrive at the fact that q = 0 and r = 0 by 
a suitable choice of the angles ϑ and ϕ in equations (83.3) and (83.4). 
 We now return to the general case.  From the previously-developed theory, the 
functional determinant (43.8), which possesses the constant value ps − qr here, must 
always be non-zero.  However, this expression will change sign when one performs the 
coordinate transformation: 
 

t′ = t′,  1x′ = 1x′ , 2x′ = − 2x′ . 

 
One can always assume from the outset that the coordinates are chosen in such a way 
that: 

ps – qr > 0.     (83.6) 
 
 From (83.1) and (83.2), our ray map will be established by the following formulas, 
with consideration given to (83.5): 
 

1 1 1 2

2 2 1 2

,

,

y u py ry

y u qy sy

α
γ

′ ′= + + 
′ ′= + + 

    (83.7) 

1 1 1 2

2 2 1 2

,

.

u y pu qu

u y ru su

α
γ

′ ′= + + 
′ ′= + + 

     (83.8) 

 
 In conclusion, we would like to derive the condition for a ray map to be rotationally 
symmetric.  From § 60, the equation: 
 

u2 y1 – u1 y2 − 2 1 1 2u y u y′ ′ ′ ′+  = λ 
 
must be satisfied identically in order for this to be true.  By replacing the values (83.7), 
(83.8), one finds that λ = 0, and that one must have: 
 

a = c,  α = γ,  q + r = 0, p – s = 0. 
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From the remark above, one can then choose the mutual positions of the two coordinate 
systems in such a way that q = r = 0, in addition. 
 
 84.  Coupling of the spaces.  From the remark at the end of § 32, all of these 
formulas are valid for the accessory problem of a ray map for which the HAMILTONian 
functions H and H′ are completely arbitrary.  The formulas that will be written from now 
on, which are obtained by comparing relations (81.4) with (83.7) and (83.8), are, 
however, valid only under the assumption that the accessory problem possesses the 
HAMILTONian function (81.2) and the basic function (81.3).  These formulas read: 
 

1 1 1 2

2 2 1 2

,

,

t
x a y pu qu

n

t
x c y ru su

n

  ′ ′= + + +  
  


  ′ ′= + + +    

   (84.1) 

1 1 1 2

2 2 1 2

1 ( ) ,

1 ( ) .

t t
x u py ry

n n

t t
x u qy sy

n n

α

γ

′  ′ ′= + + +  ′  
′  ′ ′= + + +  ′  

    (84.2) 

 
For any arbitrary choice of the four parameters yj, iu′ , these equations represent two rays 

that will be associated with each other by our map.  If one adds yet another arbitrary 
relation of the form: 

t′ = t′ (t, yj, iu′ )    (84.3) 

 
to these equations then one will obtain a coupling of the spaces in question to which the 
theory of Chapter IV is applicable. 
 In what we have been doing up to now, the t and t′ axes played a special role.  This 
assumption is, however, only apparent: Namely, with the help of an almost trivial artifice, 
any two rays: 

xi = Ui + Vi 
t

n
,  ix′ = i i

t
U V

n

′′ ′+
′
    (84.4) 

 
that are associated by the ray map in question can appear in place of the two axes; i.e., 
ones for which the relations (83.7), (83.8) are fulfilled when one replaces ui with Ui, iu′  

with iU ′ , yi with Vi, and iy′  with iV′ .  In order to show this, we consider a collineation of 

the space t, xi to a space t, ξi, and a collineation of the space t′, iξ ′  that is defined by the 

equations: 

xi = Ui + Vi 
t

n
+ ξi , ix′  = i i i

t
U V

n
ξ′′ ′ ′+ +

′
.   (84.5) 

Two rays: 

xi = ui + yi 
t

n
,  ix′  = i i

t
u y

n

′′ ′+
′
,   (84.6) 
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will be transformed into the lines: 
 

ξi = i i

t
u

n
η+ ,  iξ ′  = i i

t
u

n
η ′′ ′+

′
    (84.7) 

 
by these collineations.  Now, the relations: 
 

iu  = ui – Ui , ηi = yi – Vi, iu′  = i iu U′ ′− , iη ′  = i iy V′ ′−   (84.8) 

 
exist between the coefficients, and we see that since equations (83.7) and (83.8) are 
fulfilled for ui, yi, iu′ , iy′ , as well as for Ui, Vi, iU ′ , iV′ , they must also be satisfied for iu , 

ηi, iu′ , iη ′ .  They then say that the two rays (84.6) correspond to each other. 

 An important application of this remark is the following: In some situations, one can 
easily recognize that there is at least one stigmatic pencil of light with the center t0, x1 = 
x2 = 0 that is transformed into a stigmatic pencil of light with the center 0t′ , 1x′  = 2x′  = 0.  

If this is the case then, due to the last result, one can conclude that any point of the plane t 
= t0 will be mapped stigmatically to a point in the plane t′ = 0t′ . 

 Later on, we will see that the rotationally symmetric systems are the only ones for 
which any stigmatic pencil of light will be taken to another stigmatic one.  It follows 
from our remark above that any cone of light rays that meets the planes t = const. in 
circles will be mapped onto a cone of light rays that possesses a similar property. 
 
 85.  The images of stigmatic pencils of light.  From equations (84.4), we get: 
 

py1 + ry2 = 
2 2

1 2 1 2 1 2px rx p u pqu r u rsu
t t t t

a c a c
n n n n

′ ′ ′ ′+ ++ − −
+ + + +

;  (85.1) 

 
once we have also calculated qy1 + sy2 in a similar way, we can write the quantities ix′  as 

functions of t, xj, and t′, iu′ .  To abbreviate, we introduce the notations: 

 

2 2

2 2

,

,

.

p r
A

t t
a c

n n
pq rz

B
t t

a c
n n

q s
C

t t
a c

n n

α

β

γ




= − − 
+ +

= − − 
+ +


= − −
+ +


    (85.2) 
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Since the expressions A, B, C have the dimension of reciprocal lengths, it is, in addition, 
preferable to set: 

t

n

′
′
 = 

1

z′
.     (85.3) 

We then get: 

1 1
1 1 2

1 1
2 1 2

( ) ,

( ) ,

px rx
z x z A u Bu

t t
a c

n n
qx sx

z x Bu z C u
t t

a c
n n

′ ′ ′ ′ ′= + + + + 
+ + 



′ ′ ′ ′ ′= + + + +
+ + 

   (85.4) 

1 1
1 1 2

1 1
2 1 2

,

.

px rx
y Au Bu

t t
a c

n n
qx sx

y Bu Cu
t t

a c
n n

′ ′ ′= + + + 
+ + 



′ ′ ′= + + +
+ + 

     (85.5) 

 
If we fix the point t, xj in formulas (85.4) and let the iu′  vary arbitrarily then they will 

represent those ray congruences onto which a stigmatic pencil of rays with the center t, xj 
will be mapped. These ray congruences consists of the totality of all lines that cut two 
real rectilinear focal lines.  Namely, there are values of z′ for which the coefficients of 1u′  

in the two equations (85.4) will be proportional to the coefficients of 2u′ .  These values 

will be determined by the roots of the quadratic equation: 
 

(z′ + A)(z′ + C) – B2 = 0,    (85.6) 
 
which one can write explicitly as: 
 

iz′  = 
2 2( ) ( ) 4

2

A C A C B− + ± − +
,    (85.7) 

 
which are then always real. 
 Each of the two focal rays will then yield a line of intersection that is the intersection 
of the plane: 

t

n

′
′
 = 

1

iz′
 (i = 1, 2)    (85.8) 

 
with another plane that one obtains by eliminating the iu′  from the two equations (85.4), 

in which one has replaced z′ with the chosen root iz′  of equation (85.6). 

 We let ϕ1 and ϕ2 denote the angles that the two focal rays subtend with the x1-axis, so 
we can then write: 
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tan ϕi = 
i

B

z A′ +
 = iz C

B

′ +
.    (85.9) 

It will follow from this that: 
 

tan 2ϕi = 
2

( ) 1 i
i

i

B

z C
z A

z A

 ′ +′ + − ′ + 

 = 
2B

A C−
;   (85.10) 

one therefore always has: 
tan 2ϕ1 = tan 2ϕ2 ,     (85.11) 

 
i.e., the two focal rays must be perpendicular to each other. 
 The only exception is defined by the case in which one simultaneously has B = 0 and 
A = C for certain values of t; this case will be treated thoroughly below (§ 93). 
 One observes that the ray congruence that is described here, even though it is the 
image of a stigmatic pencil of light, is not a normal congruence in the ordinary sense of 
the word.  That rests upon the fact that we have replaced the isotropic, homogeneous 
media from which we started with other ones for which the propagation of light will be 
described by the basis function (81.3).  There are therefore field-like ray congruences for 
this accessory variational problem, and one can, in particular, easily show that any linear 
ray congruence whose focal rays are perpendicular to each other and lie in the plane t′ = 
const. will be transversally (in the sense of the variational problem of § 81) intersected by 
a family of surfaces that satisfy the differential equation: 
 

St′ + 
1 2

2 21
( )

2 x xS S
n

′ ′+
′

 = n′.    (85.12) 

 
 
 86.  In formula (85.2), we set: 

t

n
 = z,      (86.1) 

 
such that z (unlike z′) has the dimension of length; if we now develop equation (85.6) 
then we will get the relation: 
 

2 2

2 2 2

( )( )( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( ) 0.

z z z a z c p z z c q z z c

r z z a s z z a ps rq

α γ γ α
γ α

′ ′ ′ ′ + + + + − + + − + +
′ ′− + + − + + + − = 

 (86.2) 

 
In a projective plane with the coordinates z, z′, this equation will represent a fourth-order 
curve with a double point at the points at infinity on the z and z′ axes.  It always has the 
form of a “double hyperbola” (cf., Fig. 10), even when a third, finite, double point is 
present.  However, this can occur only when B = 0 and C = A are true simultaneously for 
a certain value of t.  In this case, the curve will have the form in Fig. 11 when one ignores 
some further exceptional cases, and is unicursal, as is suggested in the same figure by 
arrows.  It is known that one can then represent this curve analytically when one makes z 
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and z′ rational functions of a parameter λ.  One finds these rational functions most 
quickly in the following way: In order for the curve (86.2) to possess a third double point, 
a relation must exist between the coefficients of our transformation that has the effect that 
one can factor out a complete square from the function under the square root in (85.7) 
and put it in front of the square root.  Only a quadratic function of z now remains under 
the root, and one can therefore simultaneously write z itself and the square root as rational 
functions of a parameter λ in a known way, by means of which, z′ can also be expressed 
rationally. 

 

Figure 10. 
− c − a 

−γ 

−α 

− a − c 

−α 

−γ 

Figure 11  
 

 87.  Calculating the invariants.  It was the contribution of A. GULLSTRAND to 
have discovered that an already sufficiently-precise classification of our linear maps 
could be deduced from the study of the behavior of the function: 
 

tan 2ϕ = 
2B

A C−
= − 2 2 2 2 2

( ) ( )

( )( )( ) ( )( ) ( )( )

pq z c rs z a

z a z c p q z c r s z aα γ
+ + +

− + + − − + − − +
. (87.1) 

 
Here, one actually deals with the classification of the pencil of the two quadratic forms: 
 

Q1 = (pq+ rs) ζ1 ζ2 + (pqc + rsa) 2
2ζ ,       (87.2) 

 
2 2 2 2 2

2 2 1 2
2 2 2 2 2

2

( ) [( )( ) ( ) ( )]

[( ) ( ) ( ) ]

Q a c p q r s

ac p q c r s a

α γ ζ α γ ζ ζ
α γ ζ

= − + − + − − − −
+ − − − − − 

    (87.3) 

 
that one obtains when one replaces the quantity z with the homogeneous coordinates ζ1 : 
ζ2 in the numerator and the denominator of (87.1). 
 One thus starts with the fact that there is always one pair of points (they can possibly 
coincide or also be imaginary) that are simultaneously conjugate for the two quadratic 
forms Q1 and Q2 .  These two points determine an involution whose double points they 
are and is expressed by the equation: 
 

(α − γ)[pq(z + c)(z0 + c) + rs(z + a)(z0 + a)] – (a – c)(ps – qr)(pr + qs) = 0.  (87.4) 
 
One obtains the double points themselves when one sets the expression: 
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ψ = (α − γ)[pq(z + c)2 + rs(z + a)2] – (a – c)(ps – qr)(pr + qs)  (87.5) 
 
equal to zero.  The discriminant of this latter quadratic function is equal to the product of 
− (α − γ)(a – c) with the function: 
 

Φ = (α − γ)(a – c) pqrs − (ps – qr)(pq + rs)(pr + qs).   (87.6) 
 
Since we have always taken a ≥ c, and with a = c, always pr + qs = 0, as well (§ 83), we 
see that the double points of the involution will be imaginary when Φ > 0, they will be 
real when Φ < 0, and for Φ = 0 they coincide.  One remarks, moreover, that the condition 
Φ = 0 is also necessary and sufficient for the expression under the square root in (85.7) to 
vanish for a certain value of z, and therefore also for the fourth-order curve (86.2) to 
possess a third double point. 
 One obtains a higher singularity when the quadratic forms Q1 and Q2 are both 
complete squares that vanish for the same values of ζ1 : ζ2 .  This singularity will be 
expressed by the equations: 
 

α = γ,  pq + rs = 0,  p2 + r2 = q2 + s2.  (87.7) 
 
Moreover, it will be shown that for the ray map this singularity is completely equivalent 
to the other one for which all coefficients of Q1 or all coefficients of Q2 vanish but the 
numerator and denominator on the right-hand side of (87.1) are identically zero.  Finally, 
the last one can, however, occur, and the ray map will be rotationally symmetric for a 
suitable choice of coordinates. 
 
 88.  For the case in which one has: 
 

Φ = 0,      (88.1) 
 
the numerator and denominator of the expression on the right-hand side of (87.1) have a 
common factor.  By cancelling this common factor, one gets: 
 

tan 2ϕ = 
2

2 2 2 2

2( )

( )[ ( ) ( )] ( )( )

pq rs

pq z a rs z c pq rs p q r sα γ
− +

− + + + − + − + −
. (88.2) 

 
If one eliminates (α – γ) from this with the help of (88.1) then one will get: 
 

tan 2ϕ = 2 2 2 2

2( )

( )( ) ( )( )

a c pqrs

pq s r z a rs p q z c

−
− + + − +

.  (88.3) 

 
The expression (88.2) can also be employed for a = c, while the latter one can be 
employed only when a > c (cf., § 92). 
 
 89.  The quadratic function ψ that we presented in § 92 has a remarkable geometric 
interpretation that is connected with the form of the ray map.  Namely, if one 
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differentiates equation (87.1) with respect to z then when one multiplies both sides of 
cos2 2ϕ one will get: 

d
n

dt

ϕ
 = 

d

dz

ϕ
 = 2 2 2 2( ) 4 )( ) ( )A C B z a z c

ψ
− + + +

,  (89.1). 

 
in which the function ψ on the right-hand side is defined by equation (87.5) 
 One now remarks that any stigmatic pencil of rays whose center lies on the t-axis 
itself will be mapped to a ray congruence in the image space that contains two mutually 
perpendicular pencils of rays whose centers lie on the t′-axis.  One calculates these two 
pencils of rays when one sets: 
 

1u′ = − ρB,  2u′ = 1( )z Aρ ′ +     (89.2) 

 
in the formulas of § 85 one time and: 
 

1u′ = − σB,  2u′ = 2( )z Aρ ′ +     (89.3) 
 
the other time.  In this, ρ and σ are variable proportionality factors, and 1z′ , 2z′  are the 

roots of equation (85.6) such that one will have, in addition: 
 

1 2z z′ ′+  = − (A + C),  1 2z z′ ′ = AC – B2.   (89.4) 

 
The rays of the two pencils that were just considered are images of rays of the stigmatic 
pencils of light that one starts from.  One obtains the directions of these latter two from 
equation (84.1), in which one must set x1 = x2 = 0, by the formula: 
 

1 2 1 2
1 2

1 2 1 2
1 2

, ,

,

pu qu ru su
y y

z a z c
pu qu ru su

y y
z a z c

′ ′ ′ ′+ + = − = − + +
′ ′ ′ ′+ + = − = −
+ + 

   (89.5) 

 
in which one must substitute the values of iu′ , iu′  from (89.2) and (89.3), resp.  It follows 

from this that any of the pencils of rays above must be the image of a pencil of rays in 
object space, but these two pencils will lie in planes that do not necessarily need to be 
perpendicular to each other.  Namely, if one lets Θ denote the angle that they define 
between them then one will have: 
 

± cot Θ = 1 1 2 2

2 1 1 2

y y y y

y y y y

+
−

.    (89.6) 

 
By replacing the values above, one finds that: 
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± cot Θ = 
2 2( )( )( ) ( ) 4ps qr z a z c A C B

ψ
− + + − +

,   (89.7) 

 
and by comparing this with (89.1), one will get: 
 

(ps − qr)2 cot2 Θ = ψ ⋅⋅⋅⋅ n 
d

dt

ϕ
.    (89.8) 

 
 The function ψ can thus be expressed in a very simple way with the help of Θ and dϕ / 
dt. 
 One calls the points of the t-axis for which the angle that was just introduced is Θ = π 
/ 2 orthogonal points.  Equation (89.7) shows that orthogonal points are present in the 
general case only when the equation ψ = 0 has real roots, and equation (89.1) teaches us 
that these will be the points for which one also has dϕ / dt = 0. 
 
 90.  Up to now, we have considered the images of stigmatic pencils of light.  
However, one can, without introducing very many new calculations, consider the 
analogous problem that one obtains when one exchanges the two optical spaces.  Those 
ray congruences in object space shall then be exhibited that are mapped to stigmatic 
pencils in the image space.  In order to do this, we must solve equations (84.2) for the iu′  

and substitute the values thus found in (84.1).  The desired ray congruences will then be 
represented with the help of the parameters yi .  Not only are the results that one obtains 
completely analogous to the previous ones, but most of the formulas do not need to be 
recalculated at all.  One obtains them from the older ones when one first switches z with 
z′, and then α, γ with a, c, resp., and finally q with r.  However, one must not forget that z 
and z′ do not possess mutually corresponding geometric interpretations here, since z = t / 
n and 1 / z′ = t′ / n′.  Therefore, some formulas will become considerably more 
complicated.  For example, equation (87.4) gets a corresponding condition for the pairs of 
coupled points on the t′-axis that takes the form: 
 

2 20

0

0

[( )( ) ( )( )( )

( )( ) ( )( ) 0.

tt
a c pr qs ps qr pr rs

n n

tt
a c pry qs a c pr qs

n n

γ α α γ

α

′′ ⋅ − + − − − + ′ ′ 
 ′′ + + − + + − + = ′ ′   

  (90.1) 

 
However, the asymmetry does not extend to the function Φ, which remains invariant 
under the exchanges that were just given. 
 
 91.  Twisted and re-twisted systems.  We first examine the case in which Φ ≠ 0, and 
remark that, from § 83, we can assume that α > γ and a > c.  One could then take pq + rs 
= 0, along with α = γ, and one would then, in fact, have Φ = 0. 
 For Φ > 0, the expression pq + rs ≠ 0, since for pq + rs = 0 the function Φ, from 
(87.6), must assume the sign of pqrs, which is necessarily negative.  The function ψ takes 
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the sign of (α – γ)(pq + rs) for all values of z.  From (89.1), dϕ / dt is also always a sign, 
and since tan 2ϕ tends to zero when | z | becomes infinitely large, and in addition, 
possesses precisely one zero point for: 
 

z = − 
pqc rsa

pq rs

+
+

,     (91.1) 

 
the angle 2ϕ must vary from 0 to 2π (− 2π, resp.) when t describes the t-axis; the angle ϕ 
itself increases monotonically from zero to π for ψ > 0 and decreases monotonically in 
the interval from zero to – π. 
 Following GULLSTRAND, the ray map is then called twisted in the case of Φ > 0. 
 For Φ < 0, it is no longer necessary that one have pq + rs ≠ 0.  However, we would 
next like to assume – and this is the general case – that this inequality is also fulfilled 
here.  One then has tan 2ϕ = 0 at the point (91.1) again, but, from (89.1), dϕ / dt will 
always has the same sign as ϕ, and will therefore have a sign at this point that is opposite 
to the one that it assumes for large values of | t |.  If this latter sign is – e.g. – positive then 
one will easily find that the following is true: When the center of the stigmatic pencil 
describes the t-axis, the angle ϕ will increase from zero to a positive maximum, which is 
< π / 2, in any event, and then it will decrease to a negative minimum > − π / 2, in order 
to ultimately increase monotonically and converge to zero. 
 The system is then called re-twisted.  The points of the t-axis for which dϕ / dt = 0, 
and therefore one will have ϕ = 0 simultaneously, are the two orthogonal points of § 89.  
The oscillation of the angle ϕ between its maximum and its minimum is always smaller 
than π. 
 The previously-excluded special case: 
 

pq + rs = 0, a > c, α > γ 
 
also corresponds to a re-twisted system.  Namely, a root of ψ = 0 will then lie at infinity, 
and the maximum or the minimum of ϕ will be attained for t = ∞. 
 We shall refrain from a closer study of the twisted and re-twisted systems.  For such a 
study, one must distinguish a series of special sub-classes and investigate them.  For 
example, the case in which identities exist between the components yj and iy′  of the 

directions must be examined precisely; in fact, the latter will occur when α or γ (but not 
both of them) vanish. 
 
 92.  Semi-twisted systems.  We now assume that the invariant Φ that is defined by 
(87.6) vanishes without the function tan 2ϕ being a constant. 
 We first remark that one must certainly have: 
 

pqrs ≠ 0.     (92.1) 
 
Namely, if, e.g., q = 0 then, from (87.6), one must have: 
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Φ = − p2 s2 r2 = 0,     (92.2) 
 
and from (83.6), ps ≠ 0.  One must then necessarily also have r = 0, and tan 2ϕ would be 
constant, namely, zero. 
 Secondly, one cannot simultaneously have: 
 

pq + rs = 0, pr + qs = 0.    (92.3) 
 
By adding these two equations, one will get (p + s)(q + r) = 0, one will therefore have 
either q = − r, p = s or q = r, p = − s.  In addition, since Φ = 0, one must have either α = γ 
or a = c.  However, for each of these assumptions, one will have that tan 2ϕ is constant. 
 Thirdly, one verifies similarly that tan 2ϕ is constant when one has either: 
 

pq + rs = 0, a = c     (92.4) 
simultaneously or: 

pq + rs = 0, α = γ     (92.5) 
simultaneously. 
 If Φ = 0, without ϕ being constant, then only the three following possibilities will 
remain: 

pq + rs ≠ 0, (pr + qs) ≠ 0, a > c, α > γ,   (92.6) 
pq + rs = 0, pr + qs ≠ 0, a > c, α = γ,   (92.7) 
pq + rs ≠ 0, pr + qs = 0, a = c, α > γ.   (92.8) 

 
In each of these three cases, tan 2ϕ can be represented by at least one of the two 
equivalent formulas (88.2) and (88.3). 
 It follows from this that, as for twisted systems, which rotate in one sense about the t-
axis and a plane that goes through one of the focal lines when the center of the stigmatic 
pencil of light describes the t-axis here, the angle 2ϕ will, however, only increase or 
decrease by π. 
 The angle ϕ itself thus changes by π / 2, which is precisely one-half of the change that 
occurs for twisted systems, and for that reason the system is called semi-twisted. 
 
 93.  For semi-twisted systems, the point: 
 

t

n
 = z = − 

pqc rsa

pq rs

+
+

     (93.1) 

 
plays a special role.  Namely, one simultaneously has B = 0 and A = C (§ 87) for that 
point.  The numerator and denominator on the right-hand side of (87.1) vanish.  Finally, 
equation (85.6) has a double root: 
 

z′ = − A = − α + 
( )( )

( )

pq rs ps qr

a c qs

+ −
−

 = − γ − 
( )( )

( )

pq rs ps qr

a c pr

+ −
−

.  (93.2) 

 
If one substitutes these values for z and z′ in (85.4) then one will find that: 



94.  Semi-twisted systems.                                                 99 

1 1 2

2 1 2

[( )( ) ( ) ] ( )( ),

[( )( ) ( ) ] ( )( ).

pq rs ps qr a c qs x pq rs sx qx

pq rs ps qr a c pr x pq rs rx px

α
γ

′+ − − − = + − 
′+ − + − = + − + 

 (93.3) 

 
It follows from the latter equations that the map of all stigmatic pencils whose centers lie 
in the plane (93.1) is stigmatic.  However, at the same time, we have also obtained 
formulas by which one characterizes the map of both planes that are transformed to each 
other by the corresponding stigmatic pencils of light. 
 We are now also in a position to understand how the twisted and semi-twisted ray 
maps can be taken to each other continuously, despite the fact that the apparently erratic 
oscillation of ϕ will be reduced from π to π / 2.  Namely, if the invariant Φ > 0 and 
converges continuously to zero then there will be a pair of coupled points – i.e., points 
that will be transformed to each other by the involution (87.4) – that will converge to one 
and the same point.  The angle ϕ increases by π / 2 when the center of the stigmatic 
pencil describes the small interval that links the two coupled points.  However, since the 
two focal lines are mutually perpendicular, the figure that consists of two focal lines will 
go to another one under the traversal of a small interval that differs only unnoticeably 
from the first one.  In the limit, it is no longer possible to establish whether the rotation 
around the angle π / 2 has or has not taken place. 
 The connection between semi-twisted and re-twisted system can be explained in an 
entirely similar way when one employs the fact that the difference between the maximum 
and the minimum of ϕ converges to π / 2 in the limit. 
 
 94.  There are three different kinds of semi-twisted systems, according to whether the 
planes that are mapped to each other for corresponding stigmatic pencils of light are both 
finite, or one of them, or finally all of them, lie at infinity. 
 We obtain the semi-twisted systems of the first kind from equations (83.7) and (83.8) 
when we demand that the conditions 1u′ = 2u′  = 0 must imply the further conditions u1 = 

u2 = 0.  We must then write: 
a = 0, c = 0,     (94.1) 

 
and from § 83, we can then always choose the coordinates in such a way that: 
 

pr + qs = 0.     (94.2) 
From (87.1), we now have: 
 

tan 2ϕ = − 2 2 2 2

2( )

( ) ( ) ( )

pq rs

z p q r sα γ
+

− − − − −
,   (94.3) 

 
and this function of z is non-constant only when: 
 

pq + rs ≠ 0, α > γ.    (94.4) 
 
 The semi-twisted systems of the third kind are treated in a completely similar way to 
the telescopic ones.  One finds the conditions: 
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α = γ = 0, pq + rs = 0,    (94.5) 
a > c,  pq + rs ≠ 0,     (94.6) 

 
 The semi-twisted, telescopic systems are less complicated to calculate.  We must 
demand that it should follow from u1 = u2 = 0 that 1y′  = 2y′  = 0.  From (83.8), one finds 

that for u1 = u2 = 0: 
 

(ps – qr) 1u′  = − as y1 + cq y2 , (ps – qr) 2u′  = − ar y1 + cp y2 . (94.7) 

 
If one substitutes these quantities in the right-hand side of equations (83.7) and demands 
that the coefficients of y1 and y2 must vanish then one will get: 
 

( ) 0, ( ) 0,

( ) 0, ( ) 0.

as ps qr p cq ps qr r

ar ps qr q cp ps qr s

α α
γ γ

− + − = + − = 
+ − = − + − = 

  (94.8) 

 
It first follows that all of the quantities α, γ, a, and c must be non-zero, and then also that 
equations (94.8) are compatible with each other only when: 
 

pqc + rsa = 0.     (94.9) 
 
Since, from (92.1), the condition pqrs ≠ 0 is true, one can then write: 
 

a = λpq, c = λrs, α = 
ps qr

sqλ
−

,  γ = − 
ps qr

prλ
−

,  (94.10) 

 
in which λ means a non-zero parameter.  One ultimately finds that, from (87.1), the 
function tan 2ϕ is non-constant if and only if one simultaneously has: 
 

pq + rs ≠ 0, pqc + rsa = 0.    (94.11) 
 
The latter equations are equivalent to the following ones: 
 

a ≠ c,  α ≠ γ.     (94.12) 
 

 95.  Orthogonal systems.  We now consider the case in which ϕ possesses a 
constant, well-defined value for all values of t. 
 If α > γ then, from (87.1), the function tan 2ϕ will be constant only if it vanishes 
identically.  This yields the conditions: 
 

pq + rs = 0, pqc + rsa = 0,    (95.1) 
 
from which one concludes that one must have either: 
 

pq = 0,  rs = 0     (95.2) 
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or a = c.  However, by the second assumption, the conditions (95.2) must be fulfilled in 
any case.  In the case a = c, one can always choose the coordinates such that q = 0 is true 
from the outset (§ 83).  Equation (87.1) will then take on the form: 
 

tan 2ϕ = 2 2 2

2

( )( ) ( )

rs

z a p r sα γ
−

− + − + −
, 

 
and tan 2ϕ will then be constant only when rs = 0. 
 Secondly, if α = γ then one can again assume that q = 0, and one will have: 
 

tan 2ϕ = 2 2 2

2 ( )

( ) ( )( )

rs z a

p z c r s z a

+
+ + − +

.    (95.3) 

 
However, from (83.6) it will follow here that ps ≠ 0, and the right-hand side of (95.3) 
will, as a result, be constant only when either rs = 0 or a = c.  In the latter case, one can, 
from § 83, again choose the coordinates such that q = 0, r = 0.  In both cases, equations 
(95.2) will then be fulfilled here, as well. 
 Consequently, the condition for tan 2ϕ to be constant can always be written in the 
form (95.2).  Since ps – qr ≠ 0, one can, if one so desires, write this condition in the form: 
 

q = 0, r = 0,     (95.4) 
 
after a possible rotation of one of the coordinate systems through 90o.  However, one can 
then no longer assume that one simultaneously has α ≥ γ and a ≥ c. 
 Equations (84.1) and (84.2) now have the form: 
 

1 1 1 2 2 2

1 1 1 2 2 2

, ,

1 , 1 ,

t t
x a y pu x c y su

n n

t t t t
x u py x u sy

n n n n
α γ

   ′ ′= + + = + +    
    

′ ′ ′ ′    ′ ′ ′ ′= + + = + +    ′ ′ ′ ′    

  (95.5) 

 
from which, it follows that the ray map possesses two symmetry planes in this case.  In 
addition, from (87.5), the function ψ is identically zero, from which it will follow (§ 89) 
that all points on the t-axis are orthogonal points.  Equations (85.2) have the form: 
 

A = α − 
2p

z a+
,  B = 0,  C = γ − 

2s

z c+
   (95.6) 

 
here, which can be written rationally as solutions of equation (85.6), since the fourth-
order curve in § 86 decomposes into a product of two hyperbolas. 
 
 96.  Since B vanishes identically, the condition for the map to be stigmatic will reduce 
to A = C, which can also be written as: 
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(α – γ)(z + a)(z + c) – p2 (z + c) + s2 (z + a) = 0.   (96.1) 
 
The discriminant of this quadratic equation reads: 
 

Ψ = ((α – γ)(a – c) – (p + s)2)((α – γ)(a – c) – (p – s)2).  (96.2) 
 
If Ψ < 0 then both roots of equation (96.1) are imaginary, and there is no stigmatic point.  
If Ψ = 0 then there is a stigmatic point, which is counted twice, and for Ψ > 0 a pair of 
stigmatic points is present. 
 For the case in which two mutually corresponding stigmatic points lie at finite points, 
one can choose the coordinate origin in such a way that a pair coincides with the points t 
= 0, t′ = 0.  For this to be true, one must take: 
 

a = 0,  c = 0,     (96.3) 
 
and the second point-pair then possesses the abscissas: 
 

t

n
 = 

2 2p s

α γ
−
−

,  
t

n

′
′
 = 

2 2

2 2

p s

p sγ α
−
−

.   (96.4) 

 
The map of the stigmatic planes in the case of the first pair of stigmatic points considered 
will be represented by the formulas: 
 

1x′  = 1x

p
, 2x′  = 2x

s
, t′ = t = 0.   (96.5) 

 
 The condition for the point-pair (96.4) to coincide with the first one is expressed by: 
 

p2 = s2,  α ≠ γ ;     (96.6) 
 
the map (96.5) is then rotationally symmetric. 
 If the ray map is semi-telescopic for a pair of corresponding stigmatic planes then, 
perhaps, A = C = 0 must follow from z = 0.  From (95.6), this will yield the condition: 
 

α = 
2p

a
, γ = 

2s

c
,    (96.7) 

 
and in place of the relations (96.5), we must now write: 
 

1y′  = 1

p
x

a
, 2y′  = 2

s
x

c
, 

1

t′
 = t = 0.   (96.8) 

 
 The condition for the coefficient of z in (96.1) to vanish, along with the constant term, 
with the values (96.7) reads: 
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p2 c2 – s2 a2 = 0.     (96.9) 
 
It once more follows from this that the existence of a double root of equation (96.1) can 
be expressed by the rotational symmetry of the map (96.8). 
 Finally, if the ray map for the one pair of associated stigmatic points is telescopic then 
one must write: 

α = γ = 0, 1y′  = p y1, 2y′  = s y2 , 

 
and the rotational symmetry will have the same meaning as before. 
 
 97.  GAUSSian systems.  The reasoning of the previous paragraph loses its meaning 
when all coefficients vanish in equation (96.1).  In order for this to be the case, one must 
have: 

α = γ, a = c, p2 = s2,     (97.1) 
 
and – possibly after one performs a reflection in one of the coordinate planes − one can 
indeed always arrange that the last of equations (97.1) is replaced by: 
 

p = s.      (97.2) 
 
From § 83, the ray map is then itself (not just the point map in the stigmatic planes of the 
previous paragraphs) rotationally symmetric, and we have the classical case before us 
that GAUSS first investigated in a celebrated treatise (72).  However, what is much more 
important than this rotational symmetry here are the facts that any stigmatic pencil of rays 
will go to a stigmatic pencil of rays, and that the two optical spaces will be mapped 
collinearly to each other. 
 Our discussion shows further that the converse of this result is also true here: If a 
linear ray map has the property that any stigmatic pencil of rays is again transformed to 
a stigmatic pencil of rays – i.e., when the instrument is absolute in the sense of § 69 – 
then the linear map must be rotationally-symmetric – i.e., it must be a GAUSSian ray 
map. 
 Here, equations (83.7) and (83.8) have the simple form: 
 

iy′  = iuα ′  + pyi , ui = ayi + ipu′   (i = 1, 2).  (97.3) 

 
Moreover, with the notations of § 85, one will have: 
 

A = C = α − 
2p

t
a

n
+

, B = 0,     (97.4) 

 
and in place of equation (85.6), one can now write: 
 
                                                
 (72) GAUSS, C. F.: “Dioptrische Untersuchungen,” Abh. Ges. Wiss. Göttingen 1 (1843), 1-34.  Werke, 
Bd. 5, pp. 243-276. 
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(z′ + a)(z + a) = p2.     (97.5) 
 
For the collinear relationship between the two optical spaces, one thus obtains from 
(85.6) and (85.4) that: 
 

t

n

′
′
 = 

2

t
a

n
t

p a
n

α

+

 − + 
 

,  ix′  = 
2

ipx
t

p a
n

α  − + 
 

,   (97.6) 

 
and one will have the equations: 
 

iy′  = i i

t
x y

p n

α  − 
 

 + p yi ,    (97.7) 

 
in addition.  All of these formulas can be simplified in a well-known way when one 
translates the origins of the t and t′-axes. 
 
 98.  Since we have a absolute instrument before us with the GAUSSian map, the 
theorem of § 69 is true.  One then satisfies a relation that has the form: 
 

2 2 2 2

1 2 1 21 1 1 1
1 1

2 2 2 2

dx dx dx dx
n dt n dt

dt dt dt dt

   ′ ′       ′ ′+ + − + +             ′ ′ ′ ′          
= dΨ, (98.1) 

 
in which Ψ is a function of t, x1, x2, and which must be fulfilled identically when t′ and 
the ix′  are replaced with the values (97.6). 

 In order to calculate the function Ψ, one remarks that, from (81.2) and (81.4), one 
will have: 

− H dt + y1 dx1 + y2 dx2 = dΩ + y1 du1 + y2 du2 ,   (98.2) 
 
in which one must take: 

Ω = nt + 
2 2
1 2

2

y y t

n

+ ⋅ ;     (98.3) 

 
an analogous formula is true for the second optical space.  Moreover, it follows from 
equations (97.3) that: 

i i i iy du y du′ ′ −  = dX,     (98.4) 
with: 

X = 2 2 2 2
1 2 1 2( ) ( )

2 2

a
u u y y

α ′ ′+ − + .    (98.5) 

 
One then obtains Ψ by using the Ansatz: 
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Ψ = Ω′ – Ω + X.     (98.6) 
 
One then expresses the right-hand side as a function of t′, t, xi, and yi .  The coefficients of 
yi then vanish when the first equation in (97.6) exists between t′ and t, and one then gets:   
 

2Ψ = 2(n′t′ – nt) + α 
2 2
1 2

21
x xt

n p
α

′ + + ′ 
,   (98.7) 

 
which can also be written as: 

2Ψ = 

2 2 2 2
1 2

2

2 ( ) 2 ( )
t

a n n t np t x x
n

t
p a

n

α α

α

  ′+ + − + + 
 

 − + 
 

.  (98.8) 

 
The difference between the optical lengths of two arbitrary curves that are mapped to 
each other by the transformation (97.6) depends upon only the endpoints of the curve 
when one calculates these lengths from the basic functions (81.3).  For example, if the 
endpoints of the curve in object space lie on one and the same second-order surface Ψ = 
const. then both curves will have the same optical length. 
 The reason why the way that we reached the conclusions in § 71 cannot be applied 
here is to be found in the fact that curves that lie in a plane t = const. must have an 
infinite optical length. 
 
 99.  Concluding remarks.  In practice, only rotationally-symmetric instruments are 
constructed.  It would then seem that the consideration of dioptric systems that are not 
rotationally symmetric is completely superfluous.  However, that is not the case.  If one 
would study the ray map in the vicinity of a ray that does coincide with the rotational axis 
of the instrument itself then one would already have to consider orthogonal systems when 
the ray cuts the axis.  However, if the ray were skew to the rotational axis then one would 
indeed be dealing with a general system. 
 A second remark that justifies our rigorous treatment of the theory in the first 
approximation is the following one: If one investigates the ray map in homogeneous, 
isotropic media then every stigmatic pencil of rays in object space will correspond to a 
ray congruence with two real focal surfaces.  A line element through the center of the 
stigmatic pencil will correspond to a line element on each of these focal surfaces, and in 
fact, these last two line elements will lie upon one and the same ray of the congruence, 
namely, the ray in image space that is established by the line element in object space.  If 
one goes to the accessory problem then its position can then be calculated by means of 
equation (85.6). 
 If one now lets the line element in object slide along a ray then the values of the 
coefficients α, γ, a, c, p, q, r, s will not change; as a consequence, if one selects a specific 
ray in object space then one cannot, however, provisionally establish the center of the 
stigmatic pencil on it, although on the associated ray image the respective contact points 
of the focal surfaces for an arbitrary position of the center of the stigmatic object ray 
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pencil can already be always calculated when one has collected enough data to determine 
the fourth-order curve in § 86. 
 One will not wonder why such legal details must be present for the arrangement of 
the focal surfaces when one considers that this result is entirely analogous to the well-
known theorem that says that the tangential elements along a generator of an arbitrary 
ruled surface are uniquely determined everywhere when one knows them for three 
positions of the generators. 
 
 


