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INTRODUCTION

This work is the reproduction of a professional course thas held during the summer
semester of 1920-1921 at the Faculté des Sciences in Paris.

The theory of integral invariantgas founded by H. Poincaedd examined by him in tome
Il of his Méthodes nouvelles de la Méchanique céleste

In his notes to the Comptes rendus de I'Académie desic@sg16 and 30 June, 1902) the
author was led, in the study of differential equatiohat tadmit given transformations, to
consider certain differential forms that are calletégral forms. They are the ones that are
characterized by the property that they are expressilterms of only first integrals of the given
differential equations and their differentials. ItsMa contemplating research along the same
lines that the author arrived, on the one hand, to fdusanethod of integration of systems of
partial differential equations that admit charactersstihat depend only on arbitrary constants
(Cauchy characteristics), and, on the other hand, tmdfohis theory of the structure of
continuous groups of transformations, both finite anchiti

Now, one finds that the notion of integral form doed differ essentially from that of
integral invariant. It is the confrontation of thes® thotions that forms the basis for this work.

For example, consider a system of three first-odifferential equations in the three
unknown functions, y, z of the independent variabte One may regard them as defining an
infinitude of trajectories of a moving point. A differeitform, such a® dx+ Q dy+R dz+H
dt, for example, may be envisioned as a quantity thattaslsd to sstate (x, vy, z t) of the
moving point and an infinitely closgate(x + dx, y + dy, z+ dz t + dt). We say that this form is
integral (or invariant, following the terminology that will be adopted in thesessons), which
obviously signifies that this quantity depends only on th@¢tory that contains the first state
and the infinitely close trajectory that contains #aeond state. In other words, an invariant
form does not change its value if one displaces thestai@sX, y, z t) and & + dx, y +dy, z +
dz t + dt) along their trajectories in an arbitrary manner.onge then considers a continuous,
linear collection of trajectories, and if one takesitttegral | P dx+ Q dy+ R dzalong the arc of
the curve of positions taken by the moving point on itettayiesat the same instantthen this
integral will be independent of it is anintegral invariant in the sense of H. Poincaré.
Conversely, by a method that is quite simple to exhibéte exists an invariant forerdx+ Q
dy + R dz+ H dtthat corresponds to the integral invariaft dx+ Q dy+ R dzof H. Poincaré.

These considerations are not limited to linear diffeaé forms. Any invariant differential
form that is susceptible to being placed under an integratgn— simple or multiple- gives
rise to an integral invariant, in the sense of H. Raicif one suppresses the terms that contain
linear differential forms or the differentials oftindependent variable$ (

By definition, the quantity under the integration sign in an integral invariant, in the sehse
H. Poincag, is nothing but a truncated invariant differential fornT.he invariant character of
the complete integral is preserved if it is taken over an arbitrary sk states,whether
simultaneous or not.

() R. Hargreaves, in a paper in thensactions of the Cambridge Philosophical Soc{etyXXI, 1912), has
already considered integrals that contain differentéfhe independent variables. However, his point of vew
completely different from that of this book, and ithaiways play a role on the part of the independent bkzia
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The consequences of this agreement between the twonsatiointegral invariant and
invariant differential form are numerous. In thetfiptace, all of the properties that relate to the
formation of these integral invariants and the derivabd one from the other are obviously
important in their own right. Similarly, the sangetiue for the applications to the integration of
differential equations.

Another consequence has been pointed out that rétatée principles of Mechanics. H.
Poincaré has shown that the general equations of dynaosssess the property that they admit a
(relative) linear integral invariant, namely:

1) '[ P1d0L + P20 + ... +Pn O,

in which theq andp; denote Hamilton’s canonical variables. If one conggehe differential
form under thé sign then the integral invariant will take the form:

(2) '[ pLo1 + P2 + ... P O — H 4,

in which H denotes Hamilton’s function. One thus seesdhergy Hof the material system
considered along with itguantity of motior(py, ..., pn). The form under thesign thus acquires
an extremely important mechanical significance. Ong ginee it the name of th&guantity of
motion-energy” tenso('). The elementary Hamiltoaction is nothing but this tensor, when
considered along a trajectory. The notionagtion is therefore related to the notion of the
guantity of motion and energy.

There is more: Not only do the differential equagiah motion admit the integral invariant
(2), but they are, moreover, tlaly differential equations that enjoy this property. One may
then place the following principle at the basis of haggcs, which one may give the name of
“the principle of conservation of motion and energy:”

The motion of a material system (with perfect holonomic constramdssubject to forces
that are derived from a function of position) is regulated by first-odierential equations in
time, the parameters of position, and the parameters of velocity, asel difeerential equations
are characterized by the property that when the integral of the “qyanfitmotion-energy”
tensor is taken over an arbitrary closed, continuous, linear catlectf states of the system it
will not change value when one displaces these states in an arbitrary malomgy their
respective trajectories.

In this statement, the woslaterefers to the set of quantities that define the pasiibthe
system in space, the instant where it is consideredifemelocity at that instant.

The preceding statement is more abstract and lesgvatthan Hamilton’s principle of least
action, for example. It nevertheless has an adganthat is important to point out. Lagrange’s
equations permit us to give the laws of mechanics a fbahisindependent of the framing
adopted for spacegnd this is what makes them important; however, tinwipies a privileged

(l) The indicated form presents itself in a completeljural way when one calculates the variation of iHams
action integral. This point of view has already beented out, which is why it is introduced in these Lessons.
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position in them. On the contrary, the principle & tdonservation of the quantity of motion and
energy gives the laws of mechanics a form that is indkperof the framing adopted for the
universe (space-time). If one effects a change of bi@sathat involvedoth the parameters of
position and time for the system then it suffices tovkrthe form that will be taken by the
“‘gquantity of motion energy” tensor in the new systemcobrdinates in order to deduce the
equations of motion. One thus obtains a schema to \aliicti the mechanical theories will be
subordinate, and to which, indeed, relativistic mechatsef is subordinate.

It is important to remark that this schema appliey émimaterial systems that depend on a
finite number of parameters.

The present work omits a great number of applicatiotiseotheory of integral invariants. In
particular, some that are extremely important tostelemechanics, and are related to the theory
of periodic solutions of the three-body problem and theory of Poisson stability are
systematically omitted. One is principally limitedapplications that relate to the integration of
differential equations, although the problem is only bedoimgathose lines.

Meanwhile, one is forced to show that this problem cabeoconsidered in isolation. One
only makes it narrow in scope if one does not regaad # particular aspect of a more general
problem in which not only the consideration of integral iruas enter into it, but also that of
invariant Pfaff equations for the given differential etipuas, as well as the infinitesimal
transformations that preserve these differential egiusmt A complete exposition of the problem
is beyond the scope of these Lessons and would demand ksmwiedge of the theory of
continuous groups. On several occasions, one is limotstidwing the fundamental role that is
played in the final analysis by the groGpof transformations that, when applied to the integrals
of the given differential equations, leave all of if®rmation that is knowa priori about these
integrals invariant). Any system of differential equations may be conveitiéal a system of
this type with a correspondingsample group G. If this simple group idinite then one will
obtain systems of differential equations that havenlstedied especially by S. Lie and Vessiot,
who gave them the name lok systems.They are attached to the theory of integral invarjants
the sense that they admit as many linear integral enwtrias they have unknown functions, if
necessary by the adjunction of auxiliary unknown fioms. One will find some general
indications of why one would take this latter viewpointiapter XV of these Lessons.

If the groupG isinfinite, and if one abstracts to the case where this is tist gemeral group
in n variables— a case in which one knows nothing about the correspgnslystem of
differential equations then it admits either an integral invariant of maximwegree (the theory
of the Jacobi multiplier), a relative linear integralvariant (the theory of equations that are
reducible to canonical form), or an invariant Pfaff equatiequations that amount to a first-
order partial differential equation). Chapters XI-XIké aedicated to these classical theories.

The notion of an integral invariant may be envisionexnfra viewpoint that is slightly
different from the usual one, which is that of H. Rai¢, and which is, in summary, the one that
is used in these Lessons. Instead of considering ansystalifferential equations as being
attached to a multiple integral, relative to which tleeyoy the property of invariance, one may
consider the system as being attached to a group of traraions with respect to which they
are invariant. These viewpoints are, moreover, relaldg latter is the one that S. Lie took and
the one that he has wagered on several occasionghe baly truth. There again, the notion of

() Cf. E. Cartan. Les sous-groups des groups continus de transformattoms; Ec. Norm. (3), t. XXV (1908),
pp. 57-194 (Chap. I).
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integral invariant plays an important role since, as ahthor has shown®)( any group of
transformations may be defined as a set of transfosnsthat admit a certain number of linear
integral invariants, by the adjunction of auxiliary vatés, if necessary. This aspect of the
notion of integral invariant is completely omitted nese Lessons.

Several chapters are dedicated to the rules of tlweilgal of the differential forms that
present themselves under multiple integration signsurgab has given these forms the name of
symbolic expressionsl propose to call them differential forms withtestor multiplication, or,
more briefly,exterior differential formsbecause they obey the rules of exterior multiplticaof
H. Grassmann. Similarly, | propose to call the ofi@nathat permits us to pass from a multiple
integral of degre@ — 1 that is taken over a manifold of dimenspn 1 to a multiple integral of
degreep that is taken over a manifold of dimensiprthat is bounded by the lattezxterior
derivation(?). This operation, which reduces to the classical oparativhen the coefficients of
the differential form under thé sign admit first-order partial derivatives, may be presd in a
sense when this is no longer true. In this regard, g#poderesting problems that have not been
systematically studied, although they deserve to be.

This work terminates in two chapters, which are veryctike moreover, on the relations
between the theory of integral invariants, the calcafusriations, and the principles of optics.

One will find a list at the end of this volume, whiclakes no pretense of being complete, of
the principal works that relate to the theory of inéégnvariants. Papers that relate to the
classical theory of Jacobi multipliers, canonical emuiat and first-order partial differential
equations are cited only when they are directly concenitécthe theory of integral invariants.

Le Chesnay, 24 November 1921.

(l) E. Cartan. Sur la structure des groupes infinis de transformati@s). Norm. (3), t. XXI (1904), pp. 153-
206; t. XXII (1905), pp. 219-308.

(2) This is the D operation” of Goursat.



CHAPTER |

HAMILTON’S LEAST-ACTION PRINCIPLE
AND THE “QUANTITY OF MOTION-ENERGY” TENSOR

l. - Case of the free material point.

1. One may base all of analytical mechanics on a iptenthat reduces the determination of
the motion of a material system to the solution @rablem in the calculus of variations; this
principle is Hamilton'sleast-action principle. We shall first discuss it in the case of a free
material point that is subject to a force that derifresn a force functionJ that is a given
function of the rectangular coordinatey, z of the point and time

In this simple case, Hamilton's least-action priteils stated as:

Amongst all of the possible motions that take a material point vgthea positionXo, Yo, o)
at the instant¢ to another positior(xi, y1, z1) at the instant; the true motion is the one that
minimizes the definite integral:

W:J:j[%n(*z*' v+ P+ U} d

In this expressionn denotes the mass of the point ahd/, Z denote the components of its

velocity. The quantity under the integral sign aled theelementary actionand the integralv
is theactionover the interval of timetd, t1).

In order to prove this principle, one must regarg, z as functions of and an arbitrary
parametemr, and calculate theariation of W when one giveg an increas@a, while supposing

thatx, y, z reduce tax, Yo, 2o for t =to, and tox,, yi1, z for t = t3, and that this is trufor any a.
One has:

OW = j M X3 %X+ y0 Y+ D z+a—U5 £V 5 y—a
ay 0z

Now, one has:

5% = 0 (axj‘h a(axmj:a(ax)’
da\ ot ot\ da ot

SO an integration by parts then gives, if one rés#natox, dy, oz vanish at the limits:

d*x ou_ d%y ou_ &z
o= jKax e o 5y e o+ 5 WH”-
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If one makesW zero fora = 0 and all of the function&, dy, oz of t zero at the limits then,
by a classical argument, it is necessary and suffitieeth one have foer = O:

¢*x_ou
dt®>  ox’
Ly U
dt*>  oay’
d’z_ouU

dt2 9z

3)

It then results from this th#te motions that the material point makes underaitteon of the
given force realize the extremum for the integraM¥h respect to all of the infinitely close
possible motions that correspond to the same indiad final positions of the point, and,
moreover, these motions are the only ones thayehje property.

To be rigorous, one may speak only of éx¢remunof the action and not of theinimum,
because the condition that the first variatidW/ vanish is a necessary, but not sufficient,
condition for a minimum.

2. The elementary action:
[4m(x* + y?*+ 2%+ U] d

seems to have been introduced here in a pureficaitiway in order to state the laws of motion
in a condensed form. We shall see that one magae@amilton’s principle with another
principle that is equivalent to it, in which a lareexpression ialx, dy, dz dt also appears, but
where all of the coefficients have a simple meatarsignificance.

Indeed, continue to use the same acignbut now suppose th& andt; are themselves
functions of the parametar , while the corresponding values, Yo, 2, X1, Y1, z2 are also
functions of a. If one applies the preceding derivation to trefindte integral then the
calculation ofdWN would give:

w3 s fo D) e[ 0% e 0

+[MXSx+ myg y mD gz, - MK w fdy 4y Bz

2 2
+[" CERL e NGRS ) SV (LG 4 F 3 )
|| ox dt oy df 0z dt

We now remark that one has:
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0Xx o0x 0Xx
oA... =|—| oa, ox =|—| ot+|—| oo,
(3, [ML x=|2 } ! [ML
and, as a result:
[0X o, =OX% — X ot.
The formula that givedW is thus:
oW = mX(dx- 0P+ my(d y- Y J+ M,z ‘&)t

+HAm(*+ W+ £+ Yot
{MY(I%- %D+ mY I y- Y+ nigd # 'd )t

) [am(g+ g2+ 29+ U]o g
w(oU _ d’x ou_ d’y U d’z
+LKaX mdtzjax{ay "'dfjay{az mdfjéz} a
Set:

W =MX(OX- XY+ mYd y Y+ nm z 'a)t
(5) +H4m(x*+ y?+ 2+ Ut
=mXdx+ mys yr mz z[1 (ke A Y- |8
The differential expression that is thus introdilbas for its components, first:
mx, my, mz,
i.e., the components of tlgeiantity of motiorof the moving point, and then:

Im(xX?+ Y2+ 2% - U,
i.e., theenergy E
Thanks to this notation, one may write:

.| (0U d®x ouU d*y ou &z
oW = l+t —=-Mm— |0 - o Al o .
L&To LKaX dtzj X{ay dfj y{az mﬁj }“

Now suppose that one considers a collection dftregctories that depend on a parameter
a, and that one limits each trajectory to an inteofaime (o, t1) that varies witha. The formula
that gives the variation of the action along theseable trajectories reduces to

MW = (ah)1 — (o -
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Finally, suppose that we considertubbe of trajectories,.e., aclosedcontinuous linear
collection of trajectories, each of which is limiteda time intervaltg, t1). When one returns to
the initial trajectory the total variation of the act is obviously zero, in such a way that, if one
integrates with respect mthen one will have:

[ (@@= (o

3. In order to interpret the result we obtained, we agreall the seven quantities:
XY,z2X,Y,Z,t

the stateof the material point, in which the first threeagities define the position of the point,
the next three define its velocity, and the lase alefines the instant when the point is
considered. One may regardtateas a point in a seven-dimensional sp#oe:state spaceA
trajectory may be defined as the collection of all states timarespond to exactly one real
motion of the point, i.e., in summation, it is dusion of the system of differential equations:

dx dX oU
—=X, m— =—,
dt dt odx
dy dy oU
6 —= =V m—=—,
©) dt Y dt ady
dz dz_oU
— =7, m—=—.
dt dt 0z

From this, when theurvilinear integral
j a)c;:j mXdx+ my &+ mZ Z-E &

is taken along an arbitrary closed curve in thetstgpace it does not vary if one displaces each
of the states that comprise it along the trajectthrgt corresponds to that state in an arbitrary
manner.

One may then say thajiven an arbitrary tube of trajectories, if the égtral/ a5 is taken
along a closed curve that makes a circuit of thigetthen that integral will be independent of
that curve and will depend only upon the tube.

One can remark that the expressmnmay be regarded as the elementary work done on a
vector in a universe of four dimensions ¥, z t). This vector will have the three ordinary
components of the quantity of motion for its spat@mponents and energy for the component
that corresponds to time.

4. If one considers aimultaneousollection of states i.e., if one supposes thdt = 0 -
then the integrdlas will reduce to:
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j mx dx+ my & + mZ &

If we assume the latter viewpoint then we will obtdie following theorem:

If one considers a closed collection of trajectsriand if one takes the states that correspond
to an arbitrary fixed instant then if the integral mx dx + my dy + mZ Jz is taken over the
closed collection of states thus obtained thenititagral will be independent of

This theorem is due to H. Poincaré, who characttize property thus obtained by giving
the name ointegral invariantto the integral:

j mx dx+ my & + mZ &

when it is taken over a closed contour.

In Poincaré’s way of thinking, the notion of energydg involved. It necessarily appears if,
instead of considering a closed collection snultaneousstates, one considers a closed
collection ofarbitrary states.

We say that the integrdlaws of the “quantity of motion-energy” is eomplete integral
invariant— or, more simply, amtegral invariant,when there is no danger of confusiofor the
differential equations of motion. Poincaré’s integralariant is thus the complete integral
invariant of the “quantity of motion-energy” when itvewed in a particular light.

It is remarkable that if, instead of considering a ctiten of simultaneous states, one
considers a collection of states that satisfy thaioms:

X=X, =Yy 4, =7 a
then the tensoews will reduce to Hamilton’s elementary action:
[$m(X* + y*+ 2%+ U]o L

As a resultH. Poincaré’s integral invariant and Hamilton’s @ah are different aspects of
the integral of the “quantity of motion-energy,although on first glance there is no relation
between these two notions.

5. In the preceding section, we simply deducegraperty of the “quantity of motion-
energy” tensor from Hamilton’s principle, namellgat the integral of this tensor along a closed
curve of states does not change when one deforimscibsed curve without changing the
trajectories over which it is taken. We shall nelvow thathis property may replace Hamilton’s
principle, i.e., the differential equations of nustiare the ones that admit the integfals as an
integral invariantwhen it is taken over an arbitrary closed contour.

Let:
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be an arbitrary system of differential equations whieseominators are particular functions of
the seven variables, y, z X', y,Z, t. Imagine a tube of integral curves of this systiat
depend upon one parameter This parameter will vary, for example, from Oltsuch that the
integral curve that corresponds o= | coincides with the one that correspondsrte 0. In
order to express the idea that when the intdégoal is taken over a closed curve that makes a
circuit around this tube it does not depend ondhesen closed curve, we imagine that the
coordinatex, y, z, X', Y, Z, t of an arbitrary state of the tube are functionthefparametesr and

another parameter. If one gives a fixed value tothen one will have a closed curve that makes
a circuit of this tube. If one displaces that eldsurve along an integral curve of the tube then
one will have:

in which p denotes an arbitrary facttitat one may always choose in such a manner abt&mn
an arbitrary succession, given in advance, of aosentours that go around the tube for=u
const.

Having said this, when one gives a definite vatue the integral = J.(C)a)(, as a function of

u and, if one reserves the notatidrior a displacement that makes onlywary, then one will
have:

dl :I(C) mdxXd x + mdy oy + mdZ oz - dE & + mx' d(x) + my' d(dy) + mZ d(de) - E d(&),

or, upon changing the order of differentiationsl@ndd and integrating by parts:

dl =[mXdx+mydy+mZ dz-E dfc
+j(c) (mdxX & +mdy & +mdZ & - dE &

— mdxdx — mdydy' — mdzdZ + dt J).

The total integral part is obviously zesoce the integration contour is closeds for the
integral that remains in the right-hand side, idesrfor] ws to be an integral invariant for the
differential system considered, it is necessary sufticient that the integral must vanish when
one replaces:

dx, dy,dz dx, dy, dZ, dt
with:
X, pY, pZ, p X', pY', pZ', pT,

respectively, and that this must be tfaeany closed contoyiC) and any functiorp. One easily
deduces from this that the coefficients of:

dx dy, dz dx, dy , dZ, dt
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become identically zero. As a resutt,order for a system of differential equations to admit the
integral invariant as, it is necessary and sufficient that the equations:

mdx +3—E dt=0,
X
JE mdx -2 dt=0,
mdy +— dt=0, 1)
oy U
0E mdy -— dt=0,
mdz +— dt=0, oy
0z aU
OE mdz-— dt=0,
(6) -mdx+— dt=0, or 0z
g’é —mdx+ mx dE 0,
—mdy+W dt=0, —-mdy+ my d& 0,
-mdz+ mz dt0,
oE
—de+—, dt: O, B aU
0z -m(Xdx+ ydy+ zdi+ dHE ato
—dE+a—E dt=0,
ot

be consequences of the differential equationseofyistem.

The first six of these equations are nothing betcdlassical differential equations of motion.
As for the seventh one, it has tfie vivatheorem as a consequence.

6. In the preceding, one sees the fundamental hakeig played by the “quantity of motion-
energy” tensor. If one assumes that a trajectory is defined to b&uecession of states that
constitute a solution for a system of ordinary etéhtial equations then this system will be
characterized by the property that, among all & itlhaginable systems of differential equations,
it will admit the curvilinear integral of the “qudity of motion-energy” tenspmwhen taken over
an arbitrary closed contour of statess an integral invariant.

One thus obtains a new principle that may be dalie principle of the conservation of the
guantity of motion and energy.

Il. - General case.

7. All of the foregoing may be extended to the matesrystems that one habitually considers
in analytical mechanics. We suppose that thedermsgssatisfy three conditions:

1. The constraints to which they are subject are perfee., at each instant the sum of the
elementary works done by the constraint forcesei® Zor any virtual displacement that is
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compatible with the constraints that exist at that thetantt. Under these conditions,
d’Alembert’s principle is valid and may be stated in fibven:

d’ALEMBERT’'S PRINCIPLE. - If one considers the motion of a material system that is
subject to perfect constraints under the action of given forces theachtinstant the sum of the
elementary works done by the given forces and the forces ofaineriero for any virtual
displacement of the system that is compatible with the constrainisxigaat the instant t

d’Alembert’s principle translates into the formula:
d*x d’y &z
7 X=-m—- |[0X+| Y- m— |0 £ m— |0
() ZK dtzj ( dtzj y{ dtzj }

in which X, Y, Z denote the components of the given force thappdied to the pointx vy, 2) of
massm and o, dy, o denote the components of the most general elenyatisplacement that is
compatible with the constraints.

Amongst all of the systems with perfect constsainte now consider the ones that have
holonomicconstraints, i.e.:

0 ’

2. We suppose that the constraints can be translatéol a finite number of equations
between the coordinates of the points of the syatehtimet. Again, this amounts to saying that
it is possible to express the coordinates of tHerdint points of the system by formulas such as

X =fi(qu, ..., 0, t),
Yi = Gi(dt, -y Ch, 1), (i=1,2.)
z =hi(qg, ...,0n, 1),

with n arbitrary parameterg. To each system of values @fandt there corresponds one and
only one position of the system that is compatibih the constraints that exist at the instant
Any virtual displacement that is compatible witle ttonstraints that exist at the instantay be
obtained by giving arbitrary incremends, ..., &, to gu, ..., On.

We make one last hypothesis:

3. For any arbitrary virtual displacement that is coatible with the constraints that exist at
the instant t,the sum of the elementary works that are done bygtiien forces is the total
differential of a certain function df theq andt, i.e.:

U U
XOX+YEy+ B 3= 3 g+.. 45 g
> ( y 360& G+t 5q O A

The term%—LtJJt does not appear in the right-hand side becausgitiual displacements to

which d’Alembert’s principle refer suppose thaémains constant.
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8. Hamilton’s least-action principle may be extendetheut difficulty to the preceding
systems.
Set:

W:T[%zn(>€2+ V+ 2+ U} d

Regard the parametegs, ..., g, , as functions of and a parametar; while the lower and
upper limits of the integral may depend @n A calculation that is identical to the one thatsw
given above (se@) gives us the variatiodW of theaction when one gives a variatiader to a.
One obtains:

(8) oW =[wjy], -[w) 0+.|'{5U z ’T{ dt? ?ﬁzy 4 giz j} d

if one sets:

=2 m(XOx+ YOy B y-[ 3 0+ Y+ Y- Bt
@ @l =Y MO+ YO Y+ D I-[1Y okt F+ F- S it
[@lo =2 M %%+ YO %+ 2 A-[1). &+ §+ 3- Yo 4

Having said this, d’Alembert’s principle immedigteshows that when one is given a real
motion of the system, and one considers this matican arbitrary interval of timety t;) then
this motion will realize arextremumof the actionW with respect to all of the imaginable
infinitely close motions that correspond to the sanitial positionand the same finglositionof
the system. Conversely, the only motions that \etijgs property are the real motions of the
system. This is Hamilton’s least-action principle.

Formula (8) shows, moreover, that when the inlefras is taken over a closed contour of
statesof the system (that is compatible with the constsy, it does not change if one deforms
this closed contour by displacing each of the stdtat constitute it in an arbitrary manner along
the corresponding system trajectory. In other watte integral wsis an integral invariant for
the differential equations of motion.

If one supposes that one considers only stateheofystem that are compatible with the
constraints then the differential formms may again be called the “quantity of motion-egérg
tensor of the system.

9. The differentialsdx, dy, dz, & that enter into the expressiags are not arbitrary, in
general, because they must satisfy the equati@isatie obtained by totally differentiating the
constraint equations of the system. One may adgoess them in terms of

ah, X, ..., On, &

if one has introduced theposition parameters of the system. We shall thiseviewpoint and
determine, on the one hand, the differential equatdf motion, and, on the other, the “quantity
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of motion-energy” tensor. It will suffice for u® tcalculatedW while supposing that the
elementary action is expressed by means of the paranodtpand timet. Set:

T= Z m(X*>+ y*+ 7°).
T, the kinetic energy, is a function of the second eegn the derivative%qT, which we write as

g , and which we regard as independent argumergsaoidt. We temporarily set:

b4
F=T+U, W:det

A simple calculation gives:

However:
Jq'dtzéﬁ dtzi(é ) dt= dJ @)
i ot a9 ’
So one has, after integrating by parts:
4 t
oF _. ¢ oF d|oF
oW = Edt - Fot. + —5 + — | — dt
o8 % {Zaqi qL {Z{aq dt(aqﬂ

In conclusion, we remark that one has:

_0 0y =94 (4,9) 5 , 94 (,a)
[4al, =5 —a(t, ) oa and (gl == 2 Oy + 0 da
hence:
[3g],, =X d) - It and [dq], =& q®) - ¢“at.

Finally, one has

w | () ae(za-r) )

S fs (e
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Hamilton’s principle then leads us to the following deues of motion, which are nothing
but theLagrange equations:

(11)

d(aTj O 9V_ 4 =12 .n)

datloq) og oq -

Comparing the two expressions (8) and (10) that we foundvibteads to the following
expression for the tensaous:

(12) ws = 2%5% -Hot,
q;

in which we set:

(13) H =Zq{a—T—T—U.
oq

The quantltlesa—, are the quantities of generalized motion (withpees$ to the chosen
i

system of coordinates); the quantityis thegeneralized energy.

10. A simple remark permits us to simplify the ca#tidn of the generalized energlyin
practice. In general, the kinetic eneffynay contain terms of second degree, first degree,
zero degree iy, , @, ..., g,, namely:

T=T+T1+Tp.

An application of Euler’s formula concerning homogeus functions then immediately gives:
H= T2 - To -U.

In the generalized energy, the tefmmay be regarded as of kinetic origin since thentefT,

— U is of dynamic origin.

For example, take the case of a free material panose axes rotate arou@a with angular
velocityr. One has:

2T =m[(X - ry)*+ (Y +x)? + 7],
and, as a result, the energyhen referred to the chosen reference sysiem,
H=im(X?+y?+2%) =3 mP (¢ +y’) - U.
The part of the energy that is dynamical in origiay be decomposed into two terms, one of

which provides the given forces and the other mlewithe centrifugal forces. As for the
components of the quantity of motion, they are:

m(x' -ry), my+rx), mz,
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i.e., they are the projections of the quantityb$olutemotion onto the chosen coordinate axes

11. Hamilton’s canonical variables- When the equations of motion are regarded as first-

order differential equations ig, ¢ , t they take an extremely simple form if one introduttes
variables:
(14) _aT

pi_a_qi,-

The new variables, which one substitutes &t are all simply the components of the
guantity of motion of the system. The teng@rthen takes the simple form:

(15) ws = 2piag—-H A&,

in whichH may be regarded as a function of thethep;, andt.

We shall search for the equations of motion direattgr expressing the idea that they must
admit the integrall as as an integral invariant when it is taken overabitrary closed curve
of states of the system.

Let:

(16) d_qlzﬂ:__:d_pnzg
Q Q R T

be an arbitrary system of differential equations. order to express the idea that it admits the
integral invariant] «s , we need only to repeat the argument of sec.ddvior word. We
consider a tube of integral curves of system (1) express ther2+ 1 coordinateg, g, t of a
state of the tube as functions of the two parameteandu, the first of which is constant on an
integral curve and varies in the interval [jOin such a manner that the integral curve that is
defined bya = | coincides with the integral curve that is defi bya= 0. We letd denote the
symbol for differentiation with respect to the \adlleu and set:

I:j w
©) ©

We then have, by an immediate integration by parts

dl :j(c) (dp & — dg i) —dH & +dt H .

In order for the system (16) to admit the integnakriant cws, it is necessary and sufficient
that the coefficients of:

ah, A, ..., X, &

in the quantity under tHesign vanish everywhere, if one takes the equatidrise system into
account. Now, if one annuls these coefficients thiee will obtain the2+ 1 equations:
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dn +3—H dt=0,

(17) ~dq +3—H dt=0.

—dH+ g0
at

This shows thathere is only one system of differential equations that admits thgrahte

invariant f ws, and that would be the system that gives us bbtinecequations of motion in the
canonicalform of Hamilton:

dq _oH
dt ap’
(18) "
dn __oH
dt  aq
The last equation:
dH - at=0
ot

is the analytical translation of thés vivatheorem; it is a consequence of the firseguations.

12. In the general case of the material systems atycal mechanics, we thus arrive at the
generalized principle of the conservation of the quantity of motion amdyene

If one assumes that any motion of a system that is subject to grees fs a continuous
succession of states that satisfy a system of first-orderrethffel equations then these
differential equations will be characterized by the property that #ueyit the integral of the
“quantity of motion-energy” tensor as an integral invariant when it isstalover an arbitrary
closed contour of states.

The “quantity of motion-energy” tensor can arbilyatake any one of the forms:

Wy =Y M(XEx+ Yo y+ B y-[ D% k+ §+ Y- o,
oT oT
- ' 5q - =g —-T-
W= o oq — Hot (H=>q oq v),

w; =) pdg - HAt
If one displaces oneself in the space of statessh a way as to satisfy the relations:

a = Q' dt
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then the expressioas will reduce to Hamilton’s elementary actioh € U)&. On the contrary,
if one considers only a collection of simultaneous stdte = 0) then one will obtain the

expression:
D> Py

that constitutes the element under [tsign in the integral invariant that was proposed by H.
Poincaré.

13. The principle of conservation of the quantity of ranotand energy permits us to form
equations of motion no matter how we choose the paeaswgf ..., ., t that serve to localize
the system in space and time. In other words, it gigethe laws of mechanics, since that fact
restsimplicitly upon Hamilton’s principle in a form thatirsdependent of any particular mode of
spacetime framing.This property becomes analytically obvious if, insteadntybducing the
derivatives g, ...,q, of the spatial parameters with respect to the teaipparameter, one
introduces + 1 quantities:

s G- G o1,

whose mutual relations are defined by the equalities:

q O q 1
If one sets:
F=t{(T+U),

the right-hand side of which is homogeneous offilse degree ing,,...,q, ,t and is expressed in
terms of theq, t, , t, then the “quantity of motion-energy” tensor wéke the form:

Wy :a—':c5q1+...+a—|_:c5q1 +6—F5t.

aq aq, ot

In the general theory of relativity, the motionaopoint that is subject to gravitational forces
obeys the preceding principle. The functiowill then be of the form:

F=y>aa4,

in which the four variableg serve to localize the point in space and time.
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lll. - Transformation of the canonical equations. Jacobi’s theorem.

14. An important application of the preceding consideratiefetes to the transformation of
the canonical equations and the method for integratinglyhamical equations that is due to
Jacobi.

When the integrdlas is taken over a closed contour, it obviously does nahgh if one
adds an exact differential t@s. Conversely, if another linear differential foram; enjoys the
same property of giving the same integralas when one takes it over an arbitrary closed
contour thero; will differ from aws only by an exact differential.

Suppose then that one must findrw variables;, s , and a functiorkK such that the two
expressions:
ws =X P g —HA,
ws =215 - Ka

differ only by an exact differential. The differentequations of motion may be characterized by
the property that they admit the integral invarjémg , and, as a result, they may be written:

ds oK i oK
dt  or’ dt  9ds’

so the canonical form of these equations is preskrv
The hypothesis may be translated by an identity intdottme:

(19) 2 pag-2ricg—-H-K)d=Jdv.

It is easy to realize such an identity. Indeed, stetht an arbitrary functior’ of 2n + 1
argumentsy, s, t, and set:

pi:a_vi ri__a_v, K:a—V+H.
oq 0s ot

(20)

If these equations define a change of variables., if the firstn are solvable with respect to
thes;, 9, ..., — then the followingn will give r4, ...,rn, the latter will give the functioK, and
the new variables that are thus obtained will presereectmonical form of the dynamical
equations. It is important to remark that if equati®®y @re solvable in terms of theand thes
then, conversely, they will be solvable in terms & phandg; . In both cases, the possibility
condition is that the determinant:

oV
dq, 0s,

must not be identically zero.
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The solution thus obtained from identity (19) is rie thost general solution. It leaves aside
the case in which then2+ 1 quantitiesy , pi, t are related by one or more relations. However,
this singular case is easy to treat directly by givirgrtHations that exist betwegn p;, andt a
priori.

15. The applications of the preceding general theory inecparticularly interesting in two
cases.

The first one is the case in which the functioms identically zero. The canonical equations
become:

The equations of the trajectories reduce to:
s=a, ri=bi,

in which a andb; are 2 arbitrary constants. From (20), in order for this éothe case, it is
sufficient to find a functionv(t; i, ..., On ; &, ..., &) that satisfies the partial differential
equations:

ov oV
21 —+H|t,q,—
(21) ot [ g aqj

0.

If this function V, into which n arbitrary constants, ..., a, enter, is such that the
determinant:

AN
0003, |’

is not identically zero then the equations of motiol bva:

_ov
aq, ’

v

P Q: 6_81-’

this isJacobi’s theorem.The condition on the determinant amounts to sayingthieafunctionv
is acomplete integrabf Jacobi’s first-order partial differential equation (21)

The second application appears in the context offtdery ofperturbations. Suppose that
the functionH is the sum of two termd; andH,, the second of which is very small with respect
to the first one. This amounts to dividing the givercésrinto two groups, one of which is of
little importance with respect to the other and is coregasf what one callperturbing forces
The method that is employed in celestial mechanics m ¢hse consists of searching for a
complete integraV of the Jacobi equation:

6_V + Hl =0
ot
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that involves only the principal term of the functibh The 2 new variables; , s thus
introduced will be constant the perturbing forces do not existhey are thus the unperturbed
trajectory parametersThe introduction of these new variables will preserve the canonical form
of the equations with the new function=KH- , i.e., the part of Hhat relates only to the
perturbing forces.

Nonetheless, we do not insistat least for the momenrt upon the canonical equations and
Jacobi’s theorem. In particular, the relation thaste between the integration of the dynamical
equations and the integration of a first-order partidedeitial equatiorthat does not explicitly
contain the unknown functionill be clarified some other time when we have shdhat one
may associate a linear integral invariatd any partial differential equation of that typeor,
more generally, to any first-order partial differenggjuation that admits a known infinitesimal
transformation.



CHAPTER I

THE TWO-DIMENSIONAL INTEGRAL INVARIANTS OF DYNAMICS

l. - Formation of the two-dimensional integral invariant in dynamics

16. We have seen that Hamilton’s elementary action eanlbained by supposing that in
the expression:
ws=2Xpa-HX
one has
i = ¢ dt.

It is remarkable thathe trajectories of a material system will again realize an exira for
the integral:

W ='[t:12pi a —Hdt

if we simply suppose that theand g  are arbitrary functions of t that are subject only to the
condition that the gtake given values at the limitsAs in Hamilton’s principle, one thus
supposes only that thg are the derivatives of thg with respect to time. Similarly, one may
suppose, more generally, that theand g  are functions of the same parametewhich varies

from O to 1, in such a way that the quantitieandt take given values at the limits.
An easy calculation gives:

=y poq-Ho " +[ (3 (G p da-5.a dh-0 Hdkd tol

The total integral part is zero, by hypothesise Bxtremal equations are thus obtained by
annulling the coefficients of:
d:lly d:IZ, "'1@”1 d

in the quantity under the summation sign, but ttagulation was done in setl, and we
correctly gave the equations of motion in theirar@cal form.

17. The expression:
2 (dp & - dg gp) —dH & +dt H,

that we have encountered twice is linear with respe both types of differentials. One may
write it in the simpler form:
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daws — oay

if one assumes that the two differentiation symbols are interchangetbéeexpression that we
denote by w' (d, J) enjoys the property of being zero whenever the synidbdkefines an
elementary displacement in the direction of a ttajgy in the state space, and the symdol
defines anarbitrary elementary displacement. Moreover, upon expressiag pgfoperty, we
obtain relations betweendq, do, ..., dp, , dt that define the differential equations of the
trajectories, or from another point of view, thefeliéntial equations that admit the integral
invariant | cus .

More generally, we now consider twdbitrary elementary displacements that are defined by
the differentiation symbolg® andd’, and we propose to look for the significance of thenedr
form @'(d,0'). In order to do this, imagine a continuous two-dimeraisat of states. One will
realize such a set by taking functions of two pararsetendf for theq;, pi, andt. Each state
of the set can be represented in the plane byra pdth coordinatesd, f), and the set will be
represented by an area in the plane. The symbatgld’ refer to increments ir alone ang3
alone, respectively. Therefore, consider fourestat B, C, D in the state space that correspond
to the parameter values:

a, &
a+ oaq, yéi
a, B+0' B,
a+ aa, B+ 9B

respectively, and form the integfal; which is taken over the closed contABCD. One
obviously has:

-[AB - -[AC =W .[CD = b+ 0o, .[AC = Wy + Oy,

and, as a result
[ .. =ow,-Jw=d(3,7).

18. The bilinear forma/'(d,d") that appears when summing an arbitrary state aod t

infinitely close states, and represents, from tiredoing, the value of the integfabwhen it is
taken over a closed contour, is avariant of the system of differential equations of the
corresponding trajectories, in the sense thatlitnet change value if one displaces each of the
states along the corresponding trajectory. Thignfas also a double integral element.
Moreover, if one regards, for example, and g; as the coordinates (which depend on two
parametersr and f) of a point in the plane then the expressipnd’ gx — a1 0’ p1 will be the
area element of this plane with respect to the ilbear coordinatese and S, which one
habitually writes as:

dp; dop or P As .
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This leads us to the notion of a new integral invariant:
(1) [Jo=[[Zmam-oHa

This double integral, when taken over a two-dimensiomah an the state space, is
reproduced if one displaces each of the states ofatleat along the corresponding trajectory.
This double integral is then obtained by the generalizeReStformula as the expression of the

curvilinear integral:
Jw=[(X poq - Hat),

when it is taken over the closed contour that bourelsutéa.
In Poincaré’s way of thinking, one considers only arbas are composed afmultaneous
states. One may then state the result obtained iofbe/ing form:

Given a two-dimensional set of trajectories, iedakes the set of states each trajectory
that correspond to a given instarthen the double integral:

[[Z
will be independent of t when it is taken over ¢h&tsites

As one sees, this theorem expresses a particulart apke property that was proved above.

19. Poincaré calls the two-dimensional integral invariﬁm)’ absolute,as opposed to the

invariant | &y which he callgelative. This signifies that the double integrﬂlw’ possesses an
invariant character for any domain of integratienwhether open or closed, whereas the
integrall w possesses an invariant character only if it is taken aclosedcontour.

Since the integra”a)’ is nothing but the integrdlwwhen it is taken over a closed contour,
one may confirm that thdifferential equations of motion are the only ortkat admit the
integral invariant j j «' . The invariance of the integrﬂ «' is the analytic translation of a new
generalized principle in the form of the conservatibthe quantity of motion and energy.

Il. - Applications to vortex theory.

20. Up until now, we have considered only sets of trajgtothat are realized in our
imagination. There is one case where such sets d@omcrete existence. It is the case of a
perfect fluid that is subject to forces that are derivech a force functiod. In hydrodynamics,
one proves the following equations:
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_oU _19p

“ox  pox

ou 1o0p

(2) Vy=——~"—=
oy poy

_U_13p

* 0z poz

in which ), ), ), denote the components of the acceleration of tbkecule that occupies the
position §, y, 3, andp andp denote the pressure and density at that poingectisely.
We add to these hypotheses that there is a nelagbwveerp andpthat is given in advance,
which is certainly true if the motion is isothermal
If we direct our attention to a given motion oetHuid then we may regamd as a given
function ofx, y, z t, and by setting:
_(dp
q=| p

we will see thatach molecule moves like a material point of miadsat has been placed in a
force field that is derived from a force function-g.

We thus have a concrete realization of an infdetof trajectories of a moving point subject
to given forces. We remark that they part of the force function represents the actloat is
exerted on the molecule by the molecules in itsrenment.

21. The trajectory of each molecule can be regardeal @articular solution of the system of
differential equations:

dx_u duza(U— o]

dt dt 0X

(3) ﬂ:v, EI:M
dt dt oy
dz_,, dw_o(u-g
dt dt 0z

Thus, if one considers a closed collection of mgdés in the fluid (each taken at an arbitrary
instant) then the integral:

(4) Jux+vdy+wdk-E&

will not change in value if one displaces each mule along its trajectory when it is taken over
that closed collectionln this expression, one has set:

(5) E=1(P+V+w)-U-+q
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E is the energy (per unit mass) of the fluid. This epésghe sum of the kinetic energey(u2
+V* + W), the potential energyJ, and the internal hydrodynamic enemyy

In particular, if one considers a closed collectiomofecules, all of which are considered at
the same instart- i.e., a closed streamlinethen the integrdl u & + v dy + w & will keep the

same value if one takes the same fluid line (i.e., the streathittés composed of the same
molecules) at different instants of its motioRhis is the classical theorem of tt@nservation of

circulation. One gives the name oirculation to the integrall u o + v dy + w &z.

22. Now let us take a different point of view. Let usa® consider a particular motion
of the fluid mass. In this motion, the componants, wof the velocity are given functions »of
Yy, z, t and the trajectories of the different moleculey iva regarded as solutions of the system
of differential equations:

dx _
dt

dy
6 — =V
(6) ot
dz _
dt

on the right-hand side of whiah v, w are assumed to be replaced by their values asdua®f
X Y, z t. The integral:

fJux+vdy+wk-E&
is again obviously a relative integral invariant finese new differential equations. Upon

transforming it into a double integral, we obtaimabsolute integral for the system (6).
If we form the expressiodw; — d'w; then we will obtain:

W (0,0)=AUd'X—XKO'u+ NA'Yy -Vt WI'z-Zd'w-E J't+ & JE.
The right-hand side is linear with respect to@h@mbinations:

yoz-aady, & O'X—Xo'z, X O'y— oy I'x,
XOt—- & o'x, gy ot-ao'y, xZot-ad'z.

A simple calculation, which is nothing but an aggtion of Stokes’s formula, gives the
following coefficients for the first three terms:

_O0ow_ov _o0u_ ow _0v_ou,

dy 0z’ 0z ox’ ox dy’

these are the components of togticity vector. In order to calculate the other thredfaents,
we can use the fact that since the expregsios invariant for equations (6), the equations that
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are obtained by annulling the coefficientsd&f dy, oz, & in «(d,d’) can be consequences of
equations (6). Therefore, set:

W (d,0)=€&(dy dZ —dz dy) + n (dzX —dx d) + {(dx dy —dx dy)
+P(dXd —dtx) +Q(dy & —dtoy) + R(dz& —dt d&z).

The equations considered are:

ndz-{ dy- Pdt=0,
o {dx—¢édz— Qdt=0,
&dy—-ndx— Rd&=0,
Pdx+ Qdy+ Rdz=0.

If we say that they are a consequence of equat@®riben we will obtain:

P=nw-{v
Q=Ju-<w,
R=¢&v-nu

As a result, the desired double integral invarisnt
[[| éyq@+ noxy+iagy+@nw-2v) Ka+((u-§w) &y &+ (Ev-nu) &d.

When this integral is taken over a closed area@éaules that are all taken at the same ingtant
we obtain thevorticity flux across that area. From this, we recover the theavérthe

conservation of vorticity flux through a fluid sade.

23. We will now calculate the expressiat{(d, o) directly. In particular, the coefficie of
dx& is obviously:

ou JE_ 0du Odu dv dw 0dU 10p
— —U—-V——W—+t—-

"ot ox ot ox ax ax 9x paXx

and if one sets it equal to the preceding value:

0z 0x ox dy

then one will obtain the equation:
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which is nothing but the main equation of hydrodynamitsdeed, the left-hand side is the
expression that we developed far

This result reminds us that the intednaldx + v dy + w & - E & is invariant for the
differential equations (6) only ifi, v, ware the components of the velocity of a molecula of
perfect fluid that is subject to a force that is derifredh a force function, or again, if there is an
acceleration potential.

24. Equations (7), which may also be written:

n(dz-—wd)-J(dz vdt=0,
(7) ¢(dx—udf-¢(dz wdx=0,
¢(dy-vd -7(dx- udr=0,

are a consequence of the differential equations (6),they are notequivalentto those
differential equations. In other wordbe equationg6) of the trajectories are not the only ones

that admit the integral invariarfitca In particular, this is also the case for the equatio
(9) —=—=—=—"

equations (7) are obviously a consequence of fhie solutions of these equations are what one
calls vortex lines. Imposing the requirement that thiéedential equations of the trajectories
and the differential equations of the vortex liaesnit the same integral invariant leads us to the
fundamental theorem of vortex theory.

Indeed, one may characterize an elementary deplact ¢{x, dy, dz, 0) (in the four-
dimensional universe of y, z t) in the direction of a vortex line by the propetitat the bilinear
forma(d,d)is zerofor any displacemen®d; this results immediately from equations (7).
Having said this, consider a vortex lifé @t an instant. The molecules that comprise it form a
line (") at another instant. We shall show thafl'") is a vortex line for the instant. Indeed,
let (dx, dy, dz, 0) be an elementary displacement alripand associate it with aarbitrary

displacemen{ox',0y,0Z,0t). If we displace the three states
xX,y,Z,1), (X+dX,y+dy, z+ dz'), (X +IX,Yy+0Y, 2+ 2 t+J 1)

along their respective trajectorieghe first two, up to the instaband the second two, up to the
instantt + & — then we will obtain a two-dimensional elementvidrich dx, dy, dz0) represents
a displacement along thertex line(I"). The formw'(J,d") will thus have the value zero. It is
therefore zero for the original element as well] as a resul{l'") is a vortex line. This is the
celebrated theorem of Helmholtz.
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25. Consider a vortex tube at the instaaind two closed curve€) and (C') that encircle

the tube. Theirculation around these two closed curves is the same diageis an integral
invariant for the differential equations (9) of thertex lines. At another instant the vortex
tube will take another position in space, but tineutation around any closed line that encircles
the new tube will not have changed sintey is an integral invariant for the differential
equations of the trajectories. We recover theomodif what one calls thmomentr theintensity

of a vortex tube in hydrodynamics, a quantity tatonserved through the duration of the
motion. This property is only a particular aspeicthe invariance of the integral:

j ux+voy+woa-E 4,

for the differential equations of the trajectorae®l for those of the vortex lines.

Furthermore, we recover all of these results gsréicular case of a general theorem that
concerns differential forms that are simultaneousijariant for several systems of differential
equations.

It is trivial to remark that in all of the precediwe have essentially supposed that not all
three ofé, n, { were zero; i.e., that the motion of the fluids watstional.



CHAPTER IlI

INTEGRAL INVARIANTS AND INVARIANT DIFFERENTIAL FORM S

l. - General notion of an integral invariant.

26. The preceding chapters have shown us the importartbe abtion of integral invariant
in mechanics. We shall now discuss this notion ifuitggenerality.

Consider an arbitrary system of first-order ordinaryedéntial equations (one knows that
one may always reduce to this case), which we write:

d_)& = Xl’
dt
% _
(1) dt %
% = xn
dt

We have distinguished the independent varialfilem the dependent variablgs X, ..., X%,
but, as one can verify, that distinction is noteessl, so we continue to say thHatepresents
time. The set of values od, ..., X, , t that correspond to a solution will be said to tibuie a
trajectory, which we may regard as a curve in the 1-dimensional space of(( ...,x,, t).

Having said this, H. Poincaré gave the namentefgral invariantto an integral (simple or
multiple) that, when taken over an arbitrary sesiofultaneougi.e., ones that correspond to the
same value o) points, does not change value when one dispthesgoints of that set along the
corresponding trajectories up to another arbitriaustant’. An integral invariant is called
absoluteif its invariance property is true for any integoa domain. It is calledelative if the
invariance property is only true forcdosedintegration domain. The linear integral invariait
mechanics:

JZ pi 0
is relative; the double integral invariant of mecica:

HZ Xi X
is absolute.
The simplest forms for integral invariants are:
ja15x1+ a0x+..+aodx,
[Va.0X + 8,0 % +..+ 28,0 x5 %+ ..,
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[[a.0x0%+adxd x+..+ a0 %X J X,
[[[212s0%8 %0 %+ ..

27. The quantity under the summation sign in an integsadriant is a differential form into
which the variables- both dependent and independenand their differentials (or, similarly,
several sets of differentials) enter. That fdfnmay be considered by itself, and it enjoys the
property that when it is calculated for an arbitrarynp@nd one or more infinitely close but
simultaneougpoints it will not change values if one displacessehpoints along their respective
trajectorieswhile keeping all of the points simultaneodssis quite clear that from this viewpoint
one may consider more general foringhan the ones that are susceptible to appearing under a
integration sign; for example, an arbitrary ratioteriogenous) function a¥;, ..., o, .

As we showed in the examples that were treateckirfirgt two chapterghere is no point in
restricting ourselves to the consideration of simultaneous poirfge shall see that any
elementary integral invariant, in the sense of H. Ro#cmay be regarded as resulting from
suppressing all of the terms that contain the diffeabrdr differentials of the independent
variablet in a more complete elementary integral invariant.

However, in order to arrive at this essential resuftich will give us the key to almost all of
the properties of integral invariants, it is necessatyriefly recall the classical properties of first
integrals of a system of differential equations.

Il. - First integrals.

28. As one knows, one calls a functiofx,, ..., %, t) afirst integral of system (1) if it enjoys
the property that if one replaces tkg ..., X, with their values as functions ¢falong an
arbitrary trajectory then the functioun of t thus obtained can be reduced to a constant. These
first integrals are solutions of the first-order linpartial differential equation:

ou du Jdu du
2 —Z+X,—+ X, —+..+ X —=0.
@) ot tox  Cox X”a>g

Imagine that one has integrated equations (1),thatl one has expressed the dependent
variablesx, ...,%, as functions of timéand their initial valueg’, x} ..., X for t = 0, namely

X% = H(6X ),

X = Tt %)

When these equations are solved r ...,x° they will give functions ok, ...,%., t that are

obviously first integrals for thesequantities. One thus obtains a system {ifst integrals that
are obviouslyndependenti.e., ones that are not related by any idengtgtion inxy, ..., X, t.
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It is clear that any function of the first integrat$, ...,x>  will be a first integraland,
converselyjf u is an arbitrary first integral then its numericaluealfor anarbitrary trajectory
will be, by the same property, equali@x’, ...,x°, 0).

The total differential of any functiomof x;, X, ...,X,, t may obviously be put into the form:

du = Ay (dxe — Xo dt) + A2 (dxe — Xodt) + ...+ An (dx — X.di) + A dt.

The necessary and sufficient condition for this t@ st integral is that the coefficiedtmust
be identically zero. One may easily account for lyis direct argument. One may also verify
this by remarking that is nothing but the left-hand side of equation (2). Thusdifferential of
any first integral is a linear combination oflinear differential forms:

Xm - det, dX2 - det, ,an - Xndt,

and, conversely, each of these forms is a linear combination of tleeedtfals of n given
independent first integrals

lll. - Absolute integral invariants and invariant differential forms.

29. Having said this, we first occupy ourselves with #ifisoluteintegral invariants. The
element of any absolute integral invariant is a diffea¢riorm F(xa, ..., X, t; O, ..., K,) that
does not change value if one displaces the p&int.(, x,, t) and the infinitely close poini(+
Xy, ..., Xt O, t) along their respective trajectories while always @eréng them at the same
instant. In particular, consider them at the instan0. We have:

F(X,e0X ,t0%,.0% )= FX,.X ,00X ,.9%.

Now regard thex’ in the right-hand side as first integrals of the sys{1) and replace them
with their values as functions &f, ...,X,, t. We obtain a new identity:

FOC, X, 00X, .. 0X FD (%,...% tdx,.d xat.

The left-hand side of this identity is obviously a quantityose numerical value is of interest to
the trajectory that is defined by the initial valx@s..,x’ and the infinitely close trajectory. Its

value is thus independent of the particular powt (., X, , t) that was taken from the first
trajectory and the particular pointif o, ..., X, + K, , t + &) that was taken from an infinitely
close trajectory. It is therefore also an elenwrdn integral invariant, but of a more complete
integral invariant than the one that served as our pdideparturesince now we are no longer
obliged to restrict ourselves to the consideration of simultaneous points.
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We now remark that it is easy to pass from the Irfbian F to the final form®. Indeed, if
one regardsg as a constant in the calculation f,...,x?,0x,...0 X then one will obviously
revert to the fornf. One thus has:

D(X1, ..oy Xn, t; XK, oony FKany 0) =F(Xa, ooy Xy B K, ooy OKn).

Now, & appears only by the intermediary of the?,...,0%°, and thesen differentials are

linear combinations of
K= X1 X, HKo—Xo & K- X3d.

As a result® depends only on theselinear combinations, and when one has its expression
for & = 0 one immediately has its expression for arbitidryy replacingdx; with o — X1 &,
etc.

Finally, one has:

(3) D(X1, ooy Xn, 6 Key oory HKny X) = F (X, ooy X, 6 XK= X4, .., Ky — X ).

30. We summarize the results that we just obtained; dhe two in number.

1. The fornF, which constitutes thelemeniof an absolute integral invariant, in the sense of
H. Poincaré, and in which only the differentials of tependent variables appear, is associated
with a more complete forn®, in which the differential (or differentials) of thedependent
variablet is also involved. One passes from the faprto the formF by suppressing the terms
that containd, and, conversely, one passes from the fBrim the form® by replacing:

XKy, Ko, ..., Kn
with:
XK1= X1 X, HKo—X & OK—XzdA.

2. The form® may be expressed in terms of first integrals of thetesy (1) and their
differentials.

This latter property makes the invariant character of the forself-evident.

A simple example will make the relation betweentthe formsF and® comprehensible. If
one starts with an arbitrary integrakhen the total differentiadu will obviously be a forntF.
The corresponding form® is:

and one has indeed:

ou ou oJu
D=AU=—"-(0X — X +— (O, - XD +..+— (O x — XI0.
axl(xl 1)6X2(><2 O a)%(m X019
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31. We agree to say that a differential form that caexXpressed in terms of first integrals of
the system (1) and their differentials isiamariant form for the system (1). The quantity under
the integration sign in an absolute integral invariargbtained by annullingX in an invariant
form. This is the double integral invariant of mechanics ¢baesponds to the invariant form:

J'[zd)i X — H &,

or, if one prefers, after introducing two types of difetials:
®=[[3 (g - &op)-H 5t +& IH.
Its expression in terms of the first integrad$, q° is obviously:

() :Z(inod’qo -0q°0" p).
IV. - Relative integral invariants. Hamilton’s function.

32. One part of these results can be extended to tbeytbé relative integral invariants. It
is the fact that the linear integral invariant of dymes that was considered by H. Poincaré:

szid:li

does not change value when one displaces each statgitsldrajectory at the instahup to an
arbitrary instant’ and equals the integral:

[2 pPod.

Any relative integral invariant may thus be givan expression in terms of only first
integrals and their differentials, and, in that foy it may taken over any closed domain of
simultaneous or non-simultaneous states withourhdpi$s invariant character.

However, if one replaces the first integrals bytlegpressions as functions of the dependent
and independent variables in the new expression then dhebtain a form® inside the
summation sigihat is not derived from the initial form By the same process in the case of
an absolute invariant.

The equality:

[ FOu, o t; 84, oy 860) = [ D0, oo X0, b O, .o, B, O)

holds for anyclosedintegration domain that is formed from simultaneous tgpibut the term-
by-term equality of the two sums does not result frbim, tand one necessarily has only the
identity:
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F(X1, ooy Xn, £ Ka, oony HKn) =DP(Xe, oony X, T K, ...y K, 0),

which will be necessary in order for one to deduce, e¢amfay to the formula (3), that:

D(X1, ooy Xn, 6 Key vy HKny &) =F (X, ooy Xy 1 K — Xa &, L., Ky — Xi X).

This is true in the simple case of a free materiaitpol he element:
F=m(X X+ Yy dy+7Z &)

that appears inside the summation sign in the express$itre linear integral invariant of H.
Poincaré leads to the form:

m(X X+ Yy y+7 &) -m(X?+y?*+ 2% 4,
which is nothing but a complete integral invariant, ancedsffrom the form:
ar=m(x &+ y & +7 &) - [3m(x* +y*+ 2%) -U]&

by only a simple exact differential, if necessary.

We should remark that the difficulty that presenselit here in passing from a relative
integral invariant, in the sense of H. Poincaré, tomplete integral invariant does not have
great practical importance, because any relative integratiant may be reduced to an absolute
integral invariant. Indeed, one knows that an integakkn over a closed contour, closed
surface, etc., may be reduced to an integral over an l@anded by the closed contour, a
volume bounded by the closed surface, etc.

33. It is useful to illustrate the preceding consideratiaith some examples.
Recall the (complete) linear integral invariant of akyncs, i.e., the “quantity of motion-
energy” tensor:

Wy = Z pid:]i—Hd.

[ > poq-Hat= [ ¥ poef,

© (&)

One has the equality:

in which one supposes that the closed contGg)i6 composed of the states that constit@g (
but are displaced along their trajectories up to theams = 0. One may furthermore consider
the integral of the right-hand side as being extendedtbeesame contouC) as the integral on

the left-hand side, on the condition that one regdrélgp” and theq® as functions of thg;, the
gi, andt. From that point of view, the two expressions:

> pdg - HAt and > p°oq’
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give the same integral along an arbitrary closed contmuone that differs only by an exact
form, and one has:

(4) Z poq - H5t=JS+Z P 4.

The functionS is what one calls thédamilton function and it has a simple concrete
interpretation. If we refer to formula (10) of chaptewhich gives the variation of the action
along a variable trajectory, then we will see thatay be interpreted as representing the action
between the instaand the instant along the trajectory that leads up to the st@ieq, 9.

The functionS was considered by Hamilton, and it has a certain irapoet from a historical
perspective because it was the remarks that Hamilton oratieat subject that led Jacobi along
the path of his discoveries that relate to the equatbnsechanics. Indeed, Hamilton remarked
that if one knows how to express the funct®mot as a function of thg , g, andt, but as a
function of the p°, g°, andt, then one will get the equations of motion by the santegiation.

Indeed, when the identity (4) is put into the form:

dS=> pog- HOt=> pPod,
it will give:
0S 0S 0S
5 | = —— —_0:_, —+H=0.
(5) P 2 P o’ ot

The second set of equations will give fhes functions of and the 8 initial values. The
first one will give the quantities of motigm. Finally, the last one shows that the funct®is a
solution of the partial differential equation:

3S S
6 L iH|tg,—|=0.
© e

The difficulty with this way of looking at things isoth merely in integrating that partial
differential equation, but in finding a solution for whithe arbitrary constantsq’ agree
precisely with the initial values of treg. Jacobi resolved this difficulty by showing that this
condition was totally unnecessary for the purpose of mgakhe integration of the partial
differential equation (6) serve as the integration ef €guations of motion; this is what we
briefly discussed already in selcl.

34. It is quite instructive to effect the calculation lo¢ tHamilton functiorSin a simple case;
for example, the case of a free point of mass 1 haiot subject to any force. Here the
equations of motion are:

X=xt+x, X=X,

Y=Y%t+ Y% Y=Y

z=7t+z, 2= ¢
The difference:
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B= s~ (o= X K+ y &+ 27 &= F(X?+ y?+2%)& - (% o+ Yo &o + 2 o)

is equal to:
B=XK+Y +7Z - I(X*+ y?+7)A- X Ax-tX) -y Ay-ty')-Z Jz-t7Z)
=3 (X?+ y?+Z2)X +t (XX + YOy + 752),

from which, upon taking into account ti&amust be annulled with we will get:
S: %(XIZ + y’2+Z'2)t-
Upon expressing by means oX, Yy, Z X, Yo, 2, t, One obtains:

(x—&f+(y—%f+(z-@2.
t

s=4

Hamilton’s formulas (5) permit us to deduce thaaepns of motion from this function:

'_E:X_)% _X(’):E__X_XJ
0X t 0%, t

! E y_yo ! E y_yO

Y ay t Yo oy, t

Z':Ezz_% —z{):E:—Z_%
0z t 0z, t

V. - Examples. The “element of matter” form.

35. Now that we have made the preceding parenthetgrabrks, we return tabsolute

integral invariants.
In the simplest case, it is good to directly actofor the invariant character of the

differential forms® that are deduced, as was said above, from fdfdeg replacingox with

X — X A& in them.
To simplify matters, take a system of two diffearahequations in two unknown functions:

dax_y dy_y
dt dt

and start with an absolute linear integral invatian

| = j alx, y, 2 + b(x, y, d oy.
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The complete integral invariant that is associate ivis:
I={ ax,y, (=X &) +b(x,y, ) (&~ Y.

Start with an arc of a curu&, By in thexy-plane and guide the different points of that arc
along the corresponding trajectories. One thus obtaiggeaof cylindrical surface whose (non-
rectilinear) generators will be the trajectories. cerawo curved arc#N and MN'on the
surface that connect the trajectory that issues figmo the trajectory that issues frdgg. We
shall show that one has:

JMN :'JMN’ .

The two curved arcBIN and M'N', together
with the trajectory arcsMM' and NN’', bound a
closed area of the surface. On the other hand,
M when the integral is taken over each of these
PQQ N latter two arcs the result is obviously zero since
upon displacing along one of these arcs one
constantly has:
X=Xd& ou=YA

N As a result, when the integralis taken over
Y the closed contoWNN'M’, one gets:

Bo Jumnw = IMN ~ Iy

and everything comes down to showing that this integra¢ie. Now, from Stokes’s formula
this integral amounts to a surface integral that is takem the areaMNN'M’. We shall show
that this surface integral has a zero elememtdeed, in order to do this, we decompose the
surface into surface elements that are formed fronl g@meallelograms that are defined, on the
one hand, by arcs of trajectories, and, on the othet, bgrsections by the planes const. Let
PQQP be one of these surface elements. The elemeheafdrresponding surface integral is
equal to

JPQ - JP,Q, )

but, since the points of P@re simultaneousas well as those &fQ', Jpq reduces tolpg,
andJ,, to l,y. Now, from the fact that is an integral invariant, the two integrdisg
andl ., are equal.

Hence, any integral element of the surface is prgcmeb, and the theorem is proved.

36. An analogous argument will be made in the case ofialdantegral invariant:
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|:jj alx, y, ) &Koy .

Here, the passage from the fofmto the form® is a little more difficult than it was in the
preceding case.

One arrives at it by associating the surface elerdery with a bilinear fomdd'y — dy
o0'x. In order to do this, it suffices to imagine an indetieate system of curvilinear coordinates
(a, B), and regardX, dy as the elementary displacement relative to an ireméda in the first
coordinatea, and regard’'x, d'y as the elementary displacement relative to an nnenéd’3
in the second ong. One then has:

_ a‘ X 5y‘.
gy dy
From this, one deduces that:

Ox— XJt 5y—Y5t|‘ ‘5x 53;] ‘5y 5] 45t51
= +aX + a :

“A5x & 5y o St 3

=a

OX—XJdt Jdy-Yo
or, upon returning to the notations in the theory ofesar integrals:
P=akdyt+taXdgya+a¥Yda o

Therefore, consider a surface element:
J= jj aokdy +ax &y & +aY & o,

and let us try to account for its invariant character

directly. In order to do this, imagine an arbitrary T

area & in the xy-plane and construct the

trajectories that issue from different points of that o
area. We thus obtain an indefinite volume @
bounded by a type of cylindrical lateral surface AV

that is generated by the trajectories that begin on
the contour ofS . Cut this volume with two
arbitrary surfaces. We thus obtain two (plane or o X
curved) areas$ andS that are in the interior of
the volume, but extend up to the lateral surface.
We would like to show that one has:

Js=J,. Y

The areasS and S', along with a portion of the lateral surface of tlyincler, define a
volumeV. On the other hand, when the integl#d taken over the area that bounds this volume,
the result is obviously zero, since, if we call theaaelementio and the direction cosines of the
normala, S, ythen we will have:



36 Lessons on integral invariants

J:jj a(y+Xa+YB dg,

and the fact that the directioK,(Y, 1) is normal to the directiom( 5, ), since it is the direction
of the tangents to the trajectories that generat&atbml surface considered. It results from this
that the differencel, — Js can be regarded as the surface integjtaken over the closed area

that bounds the volumé Everything amounts to showing that the volume intagrabviously
zero. In order to account for this, it sufficesake the elementary volume to be the volume that
is laterally bounded by small arcs of the trajectory avo plane areathat are parallel to the xy
planeat the extremities, because then when the sunfegrald is taken over each of the bases
it will reduce to the integrdl and, by hypothesis, the value of the integialthe same for both
bases.

37. The kinematics of continuous media provides us with aretamdllustration of the
considerations that were developed in this chapter.

In a continuous medium in motion, the trajectoryeath molecule can be regarded as a
solution to the system of differential equations:

in which the components of velocity v, ware assumed to be expressed as functiorsypt, t.
On the other hand, lgxx, y, z t) be the density at the instanat the pointX, y, 2. The mass
that occupies an arbitrary volurieat the instant will be given by the triple integral:

fl, pxora

This integral obviously constitutes an absolute inteigkeriant, in the sense of H. Poincaré.
It was the first example of an integral invariant thais given by H. Poincaré. If the molecules
that occupy the volum¥ at the instant occupy the volumé’at another instantthen one will
obviously have:

(I, Ay, zysya@=|[[ A(x,y,2,)5%3 Y6 2.

The form® that is associated with the forfn= p X Jdy & can be calculated, as in the
preceding example, by writirfg in the form:

OX 0J0y Oz
F=pldx Jy Jz|.
o'x 0y 0'z
One deduces from this that:
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OX—Uuot OJy-wt oz wt
P=p|l Ix-udt dy-wt 5z W 1,
O'X-ud"t 0'y-\wW't &z W'

from which, by an easy calculation one obtains:
P=p( KW IZ-UYRZA-VIZKX—-WXKJ X).

The form® represents thelement of matteiwhen envisioned in its complete kinematical
aspect. If one considers an arbitrary three-dimensgetabf molecules, and if one takes each
molecule of the set at an arbitrary insthaf its motion, then one will obtain a three-dimensib
domain in a four-dimensional universe Yy, z t). The triple integral of taken over this domain
will be equal to the total mass of the set of molecatessidered. If the molecules are all taken
at the same instantthen they will occupy a certain voluriveat that instant, and the integral of

@ will reduce to the integraﬂjV p X & & However, this is entirely peculiar to the case at

hand.

Consider, to be specific, an ar@a space, for example, and the set of all of molecihas
cross that area between an instgnand an instant;. Take each of these moleculasthe
moment when it traverses the ar8a We will then get a three-dimensional domain in the
universe of X, y, z, . The states of this domain are easily expressed dansnof the three
parametersy, £, ). In order to do this, it suffices to express therdowmtes of a point 0% as
functions of the two parametens 3, and to takeé = )2 One then will have formulas such as:

x =f(a, p),
y=9(a, D),
z=h(a, P,
t=y

in which the parameterg and S take all of the values that correspond to the diffepamts of
the aredaS and the parametgrtakes all of the possible values in the intervglt{). When the
integralF is taken over this domain, the result will obviously igaoring the sign:

L:lét[ﬂ(s)puéyéz—pvézd X0 VB B }

The surface integral between brackets representadtter fluxthat traverses the surfaSat
the instant. When it is multiplied by, it will represent the quantity of matter that tresesy the
surfaceS during the intervalt(t + &). The total integral thus represents what we have been
waiting for: viz., the total mass that cros§as the interval, t1).

38. Analogous remarks apply to the double integral invariaat the encountered in
hydrodynamics (Chap. Il, formula (8)), viz.:
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I=[] ¢y @nEEF XY+ (W-V) KA+ ((u-Ew) § &+ (Ev-nu) & &

We saw (se@5) that when this integral is taken over a two-dimendisaaof molecules
that are taken at the same instarthe result will represent the moment or the intgnsf the
vortex tube that is formed from the vortex lines thattsat these molecules. Therefore, consider
the set of molecules that traverse an arc of theedDirin an interval of timetg, t;). Instead of
taking these molecules at the same indtatatke each of them at the instant when it crosses th
arc of the curve&€. At an arbitrary instartt the moment of the vortex tube that originates fiom
will be equal to the integral:

oX 0y Oz
j“atj(c) E n 7|

to
u V w



CHAPTER IV

THE CHARACTERISTIC SYSTEM OF A DIFFERENTIAL FORM

I. - The class of a differential form.

39. In all of this chapter, we will consider systems dfafential equations in variablesx,
X2, ..., Xn Without distinguishing the independent variable by a speciakioat it will be any of
the variablesxy, xo, ..., X,, arbitrarily. In other words, we will consider systeof differential
equations of the form:

1) dx

One of the first problems that presents itselfthe theory of integral invariants is the
following one: to recognize whether a given differential formnsgariant for a given system of
differential equations, and, more generally, toedetine all of the systems of equations that
admit a given differential form as an invariantrior

Before commencing the solution of this problem tloe differential forms that habitually
present themselves in applications we make segeradral remarks that lead us to an extremely
important theorem.

In order for a form®d to be an invariant of the system (1) it is necgsaad sufficient that it
be expressible in terms of first integrals of (I)datheir differentials. Thus, aecessary
condition for a given forn® to be invariant for a conveniently chosen systdndifferential
equations is that this form can be expressed bynsmnedat mostn — 1 quantitiesand their
differentials.

40. Suppose then that the fordncan be expressed by means &f n quantitiesy, ..., yr
(i.e., functions ok;) and their differentials. Suppose, in additidigtttheymay notbe expressed
in an analogous manner by meandess thanr quantities. With these conditions, we shall
prove the following theorem:

In order for such a system of differential equasido admit® as an invariant form it is
necessary and sufficient that ...,y be first integrals of the system.

The condition is obviously sufficient. To proveat it is necessary, consider a system of
differential equations that adn#® as an invariant form, and write the equationshat system
by takingys, ...,yr , andn —r other independent quantitigs; , ...,y to be the new variables.
Let:

(2) v _ dy?z...— dy: dyﬂ:...z d,
Y, Y Y  Ya Y
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be the equations of the system.yilf...,y; are not all first integrals then the firstenominators
Y1, ..., Yy will not all be zero. Suppose, for example, thiat 0. One may then take to be the
independent variable, and the fodnwill not change value if one replacgsand dy; by 0

everywhere. One then replaces:

y]_, ...,yr—]_, yr+1, ...,yn
Yoo Yoo Yoo W

which are regarded as first integrals of system (2), imadlyf one replaces the differentials:

with their initial values:

N1, ...y O,
5V O

with:

But then, asp contains neithes,.1, ..., Yo nor their differentials, the new fort¥ thus
obtained depends upon only §fe...,y°, and their differentials. In other words, one can find
— 1 functions z, ..., z-1 of thex such that® can be expressed in terms of thesel functions
and their differentials. This result is contrarythe hypothesis. The numbewill be called the
classof the form®.

Il. - The characteristic system of a differential form.

41. This extremely general theorem leads to some impoctamiequences that help us to
better understand its scope.

From the foregoing, the most general system of diffeal equations that admit the foxdn
when written in terms of the variablgs ...,y,, as an invariant form is:

@3) dy_d o oAy o O
0 © 0 Y Y,
whereY.1, ..., Y, arearbitrary functions. We immediately deduce that any fisegral that is
common to these systems is a function ofyhe...,y, . As a result, if the fornb can be
expressed in a second manner by means of thmmtities z, ..., z and their differentials then
the z will be functions of the;yand converselysince thez are first integrals that are common to
all of the differential systems that admd}t as an invariant form. This amounts to saying that
there is essentially only one manner of expresgiegorm® in terms of a minimum number of
variables and their differentialdn the sense that if one has an expression thativies the
minimum number of quantitiesy, ...,Y: then all of the others can be obtained by perfognan
arbitrary change of variables on the This conclusion will obviously be invalid ifis not the
minimum number of variables.



The characteristic system of a differential form 41

42. Another consequence is the following one: agree talsstya certain number — three,
perhaps- of the systems of differential equationsiimariables:

d _dy_ %
Xl X2 Xn,
d _dy_ _d
X TR
XiTx X

arelinearly independentf it is impossible to find three coefficiemsA’, A" that are not all zero
such that one has:

AX + A X +A" X =0,

AX, + A" X, + A" X,= 0,

AX, +A' X, +A" X, = 0.

In the contrary case, we say that theyla®arly dependent.

The property of several systems being linearlgpwhdent or not obviously persists under an
arbitrary change of variables.

Among the systems (3) that admit as an invariant form, one can obviously find- r
linearly independent systems, namely, the ones tra obtains by setting all of the
denominatorsy;+1, ..., Y, equal to zerogexcept for one. Furthermore, all of the systems (3)
depend linearly upon these- r particular systems.

We thus see thdfta form® is invariant for n—r and only n—r linearly independent systems
of differential equationshen it will be invariant for any system that degerinearly upon it,
and, moreover, all of these systems will hawelependent first integrals in common.

43. For example, suppose —r = 2. There exist two systems of differential edpres,
namely:

that admit® as an invariant form, and any other system thgtysrthis property will depend
linearly upon these two. Call the trajectoriestlué first system@) and those of the second
system [). For any arbitrary poir¥l in n-dimensional space, take the trajectori@s gnd ()
that pass through that point. Take an arbitramptg® on (C) and an arbitrary poir® on ().
Finally, construct the trajectoly’)that passes througR and the trajectoC')that passes
through it. These two new trajectories intersectf v, ..., yo—» are first integrals that are
common to the two systems considered, ana,if..., a,» are the numerical values of these
integrals at the poiri¥l then their numerical values at the pdt&nd at the poin® will again be
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the same. As a result, the curv&d, ((N),(I'"),(C") will be all situated on the same two-
dimensional manifold:
Y1 =ay, Y2 = ay, <oy Yn-2 = an-2;

hence, the last two intersect each other.

44. The preceding case presents itself preciselgarcase of the double integral invariant of
vortex theory, which corresponds to the differdritam:

®) Pe=f{ya+tnay+{xdy+(w-JVv)Kd+(u-¢w) yd+({v-nu) ad

We have seen (se24) that the systems of differential equations tltahia ® as an invariant
form are the ones that imply, as a consequencehtée equations:

n(dz- wdy -J(dy- vdr=0,
(6) ¢(dx—-udf-¢(dz wdr=0,
&(dy—vdd —n(dx= udr=0.

The most general of these systems may be written:

dx _ dy _ dz :_d1
Au+ué Avtun Aw+rud A

and from this we linearly derive the two systems:

that define the trajectories of the molecules witifland the vortex lines. The first system defines
the curves ), and the second system defines the curveat(any time, and the properties that
one obtains in the general case may be expressedheaying thathe molecules that form a

vortex line (I at the instantt again form a vortex lin@ ") at the instantt’. Helmholtz’s

theorem is thus a very special consequence ofténgrém that was proved at the beginning of
this chapter.

45. In the preceding two sections we supposed thatr = 2. Analogous geometric
considerations may be developed for any valuesarfdr. They are based upon the existence of
manifolds that are defined Inyequations of the form:

yl:ali y2:a21 ey yr:ar,
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and are such that any trajectory of a differential esys(3) that contains one point of the
manifold will be contained completely in the manifoldack of these manifolds, which amne
—r-dimensional, can be obtained by starting with an arlgipaint M and passing a trajectory of
one of the systems that adndk as an invariant form through that point, and then pgsai
trajectory of either system through an arbitrary p&intf this trajectory, and so on. One can
generate ang — r-dimensional manifold by these operations and never esicape

We give such a manifold the namecbfracteristic manifoldor the formd.

Characteristic manifolds may be regarded as resulting thheraquations:

dyl = O,dyz = 0, ...,dyr =0.

However, if one returns to the original variablgs ..., X, then these equations will be
composed of the set of linear relations in,dx, dx, that are consequences of the equations of
any differential system that admibsas an invariant form.

More simply, one may sayhe necessary and sufficient condition for the elementary
displacemenfdx, ...,dx,) to be performed in the direction of a trajectory of a differentiatean
that admits® as an invariant form translates analytically into a certain number rogéali
equations in dx ..., dx,. These equations,af which are assumed to be independent, define n
- r-dimensional manifolds that depend upon r arbitrary constants, such that one and only one of
them passes through any point of space; these are the characteristioldgniThe linear
system of total differentials itself is called the charactersgstem of the fori.

46. To abbreviate, call an equation that is lineaix ..., dx, aPfaff equationand a system
of Pfaff equations, &faff system.A system ofr Pfaff equations im variables can always be
regarded as defining variables, which are considered to be dependent varidatblats,are
functions of the othem —r, which are considered to be independent variablegeneral, such a
system is impossibleé-or example, a classical result is that a Pfaff eguan three variables:

Pdx+Qdy+Rdz=0,

in which one regardsas an unknown function afandy, admits a solution that corresponds to
arbitrary given initial values only if a certain intelglay condition, namely:

P(%_G_Qj.{.Q(a_P_@j.{. R(G_Q—G_Fj = 0,
dy 0z 0z 0X ox 0y

is satisfied. In this case, one says that the systeampletely integrable.

Similarly, one says that a Pfaff systenr @quations withr unknown functions im —r variables

is completely integrabldf it always admits a solution that correspondsrateary given initial

values of these variable3.hat is what happens for the characteristic Pfaff system of adorm
The fundamental theorem of this chapter may be stetdallows:
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The characteristic Pfaff system of an arbitrary differentialnfo® is always completely
integrable.

47. Let us return one last time to the fodnof vortex theory. The characteristic Pfaff
system of that form is defined by equations (5) or, whaiuats to the same thing:

dx- udt: dy- vdt: dz wc
& n '

If we know how to express the idea that such a syseompletely integrable then we will
necessarily arrive at the analytical translatioHefmholtz’'s theorem. As for the characteristic
manifolds, they are composed of the set ofstditesof the molecules that constitute such a
vortex line.

The characteristic Pfaff system for the double intleigraariant of dynamics reduces to the
equations of motion, and the characteristic manifolds rettutte trajectories.

The situation could be otherwise if, as we did in voth®ory, we were to consider only one

type of trajectory; for example, trajectories thatify some system of relations between the
variables.



CHAPTER V

SYSTEMS OF PFAFF INVARIANTS
AND THEIR CHARACTERISTIC SYSTEMS

I. - The notion of an invariant Pfaff system

48. Instead of invariantormsfor a system of differential equations one may alsesitler
invariantequations. In particular, H. Poincaré usediaite system of invariant equations. They
enjoy the property that if a point satisfies such a syshken all of the points that can be obtained
by displacing along the corresponding trajectory will assdisfy such a system. To use
geometric languagerhe manifold that is represented by a system of invariant equations is
generated by the trajectories.

One may also consider invariant differential equatioRsst of all, we restrict our point of
view to the simple case of two differential equations:

(1) dx_ X, dy_y
dt dt
The equation:
(2) d-mx,y,)x=0,

will be calledinvariant in the sense of H. Poincai& given two arbitrary infinitely close
simultaneouspoints &, y, ) and & + & y + ¢y, t) that satisfy relation (2), the
points(x’, ¥, Z,t)and (X +ox, Yy+dYV, 2+ z tthat are obtained by displacing them along
their respective trajectories up to another arbitrartamis also satisfy relation (2), i.e., one has
once more that:

oy’ -m(X, y, t)d x =0.

If equation (2) is invariant, in the sense thatjugt made precise, then it will be equivalent to
the equation:

(3) %o — M(Xo, Yo, 0) o =0,
in which one denotes the initial valuesxpfy along the trajectory that passes through the point

(X, y, t) by xo, Yo. Now, if one regardgo, Yo in equation (3) as functions of,(y, 9, and if one
replaces«, yo with their numerical values then this equation wiiviously take the form:

(4) &Y &-m(&-X &) =0.
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This new equation (4), on account of its origin, hasyaariant significance, in the complete
sense of the term, because it expressesn@imsic property of the two trajectories that
correspond to the pointg,(y, ) and & + &,y + dy, t + &).

Geometrically, equation (4) makes a plaRg that passes through any pomt= (x, y, )
correspond to that point. The invariance property sigmifinat the liné1M; that joins a poiniM
to an infinitely neighboring poirl; is situated in the plan®) that corresponds to the poivi,
and if one displaceM andM; along their respective trajectories (while always ksgphem
infinitely close to each other) intbIN and M;N then the lineMNM;N will be situated in the
plane PN) that corresponds to the poibIN. We remark thathe plane(P) is tangent to the
trajectory that passes through the pdiht

From the preceding, it is obvious that if a cur@g gatisfies equation (4) at each of its points,
i.e., if it is anintegral curve,then the surface that is generated by the trajectthiaspass
through the different points ofCf will also be an integral surface of equation (4). Tdi&o
results analytically from the form (3) of equation (4).

49. The preceding considerations are easily generalizetven a system of differential
equations:

dx ,
5 — =X i=1,2, ..n),
(5) ot ( n)
a system of Pfaff equations:

a.o0x+..+a,0x+aot=0,
e
a,0% +...+8,0X% + a0t=0,

will be calledinvariant for system (5) if equations (6) can be expressed uniquédynms of first
integrals of (5) and their differentials; for exampdeges that have the form:

aox +..+adx =0,
(7) .
aoxX +.+30Xx=0.

This demands that equations (6) must be verifigshtically when one replace® by X d&.
However, this condition is obviously not sufficienBe that as it may, if the Pfaff system (6) is
invariant then it will enjoy the important geometproperty thatgiven an arbitrary integral
manifold of the syster{6), the manifold that is obtained by guiding each pah the given
manifold along the trajectory that corresponds tuations(7) will again be integral. Indeed,
this results if one displaces it onto this new rf@diat an arbitrary point while equations (7) do
not cease to be verified.

(It should be understood that one calls a manitoidintegral manifold if it is such that
equations (6) are verified if one displacesthat manifoldn an arbitrary direction&s,..., &).)

From this, it results thany integral manifold of an invariant Pfaff syst¢@) enjoys either
the property of being generated by the trajectooéshe given equation®) or the property of
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being a part of an integral manifold of very large dimension that is itpeftierated by the
trajectories.

Il. - The characteristic system of a Pfaff system.

50. Given an arbitrary Pfaff system o#ariables X, ..., X):

a,0% +..+a,0% =0,
(8)
ay0% +...+8,0x% =0,

one may propose to determine all systems of differeatjiahtions:

©) dx

for which system (8) is invariant. This is a pebl that we will solve later on, but, without
solving it, one may still prove an important thearhat concerns all of these systems, a theorem
that is identical to one that was proved in thecpding chapter in the context of a given
differential form.

Suppose that the given equations (8) can be writtderms of the quantitiesys, ..., yr,
which are functions of and its derivatives, in the form:

b (Y)Jy, +..+ b dy =0,
(10)

b, (V)oY +...+ B (W y =0,

and suppose moreover that they cannot be writteerims of less than quantities and their
differentials. The numbarwill be called theclassof the system.The necessary and sufficient
condition for the Pfaff syste(8B) to be invariant for the equatior{9) is that these equatior{9)
must admit y; y-, ...,y: as first integrals.

The proof is exactly the same as in the precedmapter, and the consequences that one
deduces are also the same. In particular, thetiegaahat express that the given Pfaff system
(8) is invariant for the system of differential eqons (9) can be reducedrtdinear equations in
X1, ..., Xn, Or —what amounts to the same thiago r linear equations idx, ...,dX,, and these
equations form a Pfaff system that is equivalent to

dyy =0, ....dy; = 0;

i.e., they arecompletely integrable.This Pfaff system is called tleharacteristic systerof the
given Pfaff system (8). The equations of the cttarsstic system can be ultimately obtained by
adjoiningr —h other equations to the given systenm@guations (8).
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The necessary and sufficient condition for such a Pfaff sy8)etm be completely integrable
is obviously that it must coincide with its own characteristgtesy,in such a way that if one
knows how to form the characteristic system of amtiary Pfaff system then one will know
how to express that it is completely integrable bysti®e means.

51. It is obvious that a Pfaff system (8) can be regardadvasiant for its characteristic
system. Any integral manifold of the syste(B8) is either generated by its characteristic
manifolds or defines a subset of an integral manifold of much larger diorethat is itself
generated by characteristic manifolds.

If one considers an arbitrary differential form, ahdhis form is invariant for a certain
system of differential equations then the characterfaff system of the form will be invariant
for the same system of differential equations.

It follows that in hydrodynamics the Pfaff system:

5x—u5t:5y— \5t:52— Vo 1
'3 n ¢

is invariant for the differential equations of the tcageies of the fluid molecules (and also for
the differential equations of the vortex lines).

All of these theorems, and some others that one easjly imagine, are immediate
consequences of the characteristic property of an imtasigstem that it involves only first
integrals of the differential equations for which itnsariant.

52. Consider either a differential form or a Pfaff teys, or likewise, a set of several
differential forms and a Pfaff system, and yet ..., y; denote either the first integrals of the
characteristic Pfaff system, the given differenfadm, or the given Pfaff system, etc. It is
obvious thaif one directs one’s attention uniquely to the mamioy which the differentialé,,

..., Xy figure in the differential form, or the in the Pfaff sgst, etc., without being preoccupied
with the coefficients therthese differentials will enter only in combinasoof dy,, ..., dy: .
However, it might also be the case that they entdy as linear combinations of a number less
thanr. In any case, if one knows the linear combinations minimum number afx; by means

of which the form (or Pfaff system, etc.) can be esped therthe equations that are obtained
by annulling these linear combinations will be &set of the characteristic system.

lll. - The rank of an algebraic form and its associated system.

53. The preceding considerations increase in clarity ifpr@ve a theorem for algebraic
forms that is analogous to the one that led to the mati@ characteristic system:

If an algebraic form in nvariables u, ..., u, can be expressed in terms of r linearly
independent combinationsg, \.., v; of variables without being expressible in termaamaller
number, and if, moreover, one has found anotheresgmon for the form by means obther
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linear combinationsw, ..., W of variables then thewvill be independent linear combinations
of the v
Indeed, consider the #near forms:

V]_, ...,Vr; W]_, ...,Wr

of the given variables. Suppose that among these fdrens aire 2 — p independent ones (0
< p<r). This amounts to saying that there eysinearly independent combinations of ththat
are, at the same time, linear combinations ofwheall themty, ...,t,. Suppose, moreoveras
is legitimate— that thety, ...,t, are independent linear combinations of bothvihe.., v, and the
Wi, ...,W,. One then has a double equality of the form:

F(X1, v Xn) = P(ta, .o to; Vorr, V) =W(ty, outo; Wor, .o, WE).

Since the quantities, ...,t,, Vpr1, ..., Vi, Wort, ..., W are independent, this is possible only if
F, for example, does not depend uponuhe, ...,v;. This is not compatible with the hypothesis
that po=r, and the theorem is thus proved.
The system of linear equations:
Vi=Vo=...=\%=0

will be called theassociatedsystem of the given form. The notion of assodiasgstem
obviously extends to a set of forms, or again to tegy®f algebraic equations. We say that the
integerr is therank of the form.

From this, we infer that the characteristic systdma differential form always contains the
associatedsystem of that form, which is considered to be anbatge form in dx, ..., o, .
However, it may contain other equations besides the equations of theatesbsgstem.
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FORMS WITH EXTERIOR MULTIPLICATION

l. - The associated system of a quadratic form.

54. We must say a word about ordinary algebraic, quadratie, forms, etc.
A quadratic form:

(1) F(X)zinaijqq ZQ1'~f+ 322@'*'""*'26}2"1['&'*'"'

is, as one knows, reducible to a sum of squarkthe Idiscriminant of the form is different from

zero then there will be as many squares as the ewmbf independent variables. We propose
to determine the minimum number of variables by mseaf which the form may be expressed
(by a convenient substitution). In order to obtdiase variables it will suffice to consider the
system of linear equations:
) oF _ 0 oF  OF _ 0

o oy, oy,

It is immediately obvious that this system is ipeiedent of the choice of variables. Suppose
that it reduces to independent equations, which one may always s@pjoolse:

X1=0,%=0,..%=0.

Having said thisthe form Fcan be expressed in terms ofariablesx,, ...,% and cannot be
expressed in terms of less thavariables.

Indeed, expresB by means ox, ..., X and ofn —r other independent forms:, ...,X,. The
variablex;.;, for example, does not enterknbecause if it did enter into a term suchAag.; X,
then the equation:

oF

— = O,
0X,

would contain.1, which is contrary to the hypothesis.
Conversely, suppose that the foFntan be expressed by meansoafr variablesy, ys, ...,
y: . The system (2) that is formed by starting witle wvvariablesy, ..., Y,, ..., ya manifestly
contains only the variablss, ...,y:. It is therefore necessary that r, and system (2) will then
reduce to:
VYi=Y2=..=y%=0.

Theys, ...,y are thus independent linear combinations okihe.,x; .



Forms with exterior multiplication 51

The last part of the proof shows, as we already kbt expressing- in terms of a
minimum number of variables is possiblesgsentialljone manner, up to a linear substitution of
a minimum number of these variables.

System (2) is thassociatedsystem of the forrk.

The foregoing can be extended to a form that is intage@thomogeneous of arbitrary degree.
For example, i is a cubic form then the associated system of liegaations will be obtained
by annulling all of thesecondderivatives of:

2
0°F _o.
ou,0u,

This system gives the minimum number of variables bynsiedwhichF may be expressed.

Il. - Alternating bilinear forms and quadratic exterior forms.

55. The forms with which we shall now occupy ourselvestae ones that appear under a
multiple integral sign when one considers the défeials to be variables. These are forms that
have special rules of calculation, upon which it ispwntless to insist.

We start with a bilinear form:

f(u, V) = Z aj u; u;
in two series of variables:
UJ_, ...,Un; V]_, ...,Vn.

Such a form is calledymmetricif it is preserved when one exchanges the two sefies o
variables:

f(u, V) =f(v, U
andalternatingif it is preserveavith a sign changender the same conditions:
f(u, ) =—1(v, U.
The conditions that the coefficients of the symmdtrm must satisfy are:
&j = aji .
The conditions for it to be alternating are:

aj+a;=0, & =0.
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If one subjects the two series of variablesindv; to thesamelinear substitution then the
form
f(u, V) will be changed into a new bilinear forRfU, V) in the new variabled);, Vi, and it is
obvious that the fornk(U, V) will again be symmetric if is, and alternating if is. This says
that the exchange of the two series of new variablesidV amounts to the exchange of the
original two series of variablasandv.

One may make a quadratic form, nam&ly, U, correspond to any symmetric bilinear
function
f(u, V), and the correspondence is invertible. If one sets:

f(u, U =F(u)
then one will have:
1( OF oF oF
flu, ) ==, —+V,—+-+v — |
(.Y 2[16ul ?0u, an

An analogous correspondence can no longer be estabighd alternating forms because
f(u, U becomes identically zero in that case. This i;naonvenience that one may obviate in a
manner that we shall now describe.

56. We first remark that the coefficients of the temmu; are all zero for an alternating
bilinear form, and the coefficients of the terms; andu; u; will have opposite signs. One may
then write:

f(u, V) =>a(yy -y y),

(i)

in which the summation on the right-hand side ketaover alcombinationf n index pairs, in
nn-1 o , , . ,

such a way that there argz—) terms in this summation. Since the expressiof —u; Vv is

nothing but the determinant:

one mayby a notational conventionlenote it by the notatior)(
Ui Vi — Ui Vi = Ui U]

by writing first the one and then the other of the elements of the first row of the determinant
and then putting them between brackets. Withrtbtation, one has:

(T) [DHD] This notation is misleading, compared te thore modern notation af v, insofar as it makes no
mention ofv; however, since Cartan uses this notation throughouthakremain faithful to the original.
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f(u,v) =) a[uu].
Similarly, we agree to denote the alternating bilineamfthat is defined by the determinant:

fuy f'(u)
f(v) f'(v)

by the notationf{u) f ' (u)], in whichf andf ' denote two arbitrary linear forms:

flu =aup+au + ... +a, Uy,
f'luy=au+au+..+a u,.

If one develops the preceding determinant thermalh@nmediately find that:

fu) f'(u)
f(v) f'(v

[f(u) (W] =‘

=sz:6}4

=22 adlpyl

u
ViV

Comparing the left and right-hand sides shows that development dff(u) f'(u)] can be
obtained by regarding that expression as a progunct then developing that product according
to the ordinary rules of algebra but without changing the order of the factors Ine fpartial
products— and agreeing that any partial product that contaiwvo identical variables will be
zero, and that any partial product of two differeatiables will change sign when one changes
the order of the factors.

The multiplication whose rules that we have juatesi is due to H. Grassmann, who gave it
the name oéxterior multiplication.

Upon using that operation, one sees tra can make a form of second degree in only one
series of variables- but with exterior multiplication— correspond to any alternating bilinear
form, and conversely, to any quadratic form witkearr multiplication, there corresponds an
alternating bilinear form.

To abbreviate, we say “exterior form” instead fafrfn with exterior multiplication.”

57. If one performs a linear substitution of theiahles in an exterior forr&(u) then the
new form will be obtained simply by developing egelntial product §i uj] as a function of the
new variables.

The partial derivativeF /du,of an exterior quadratic form is defined simplythe sum of

the partial derivatives of its terms. A term tllates not contain; will naturally have a zero
derivative. As for a term that does containone can always suppose tbaappears as the first
term in the partial product. The derivativeApti, uj] will then beA u. For example, one has:

oluuy] _ | ofwwl _ - duWl _o  duy

oy, au, ou, ou,
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With these conventions:
oF oF oF
2F(U) =|u,— |+|u,— |[+---+|u — |,
“ { lauj { zauj {wa%}

in which the partial products of the right-hand side ater®r products.
If F(u) corresponds to the alternating foffu, \) then one will obviously have:

_ oF oF oF
flu, v = - vl£+vza+.--+vna ,
1 2

in which the partial products will be formed accordinghe rules of ordinary multiplication.
Finally, we remark that if one performs a linear siasbdn:

U = hilUl + ... +h|n Un G :1, ,n)

on theu;, and ifF(u) becomesb(U) by that substitution then one will have:

0P oF oF oF
— = -+ ...+ —_—
2, by ou by, ou, M ou

sinceF is an ordinary algebraic form.

58. The system of linear equations:

(3) a_F:O a_F:O’...,a_F:
ou, au, ou,

Ol
in which F is a given exterior quadratic form, is obvioustydépendent of the choice of
variables. One may then suppose that it reducdetequations:

u=0 w=0,..u=0 @S n).

It is then the case th#tie form Fwill depend upon only,u, ...,u,. Indeed, if it contains a
term such ag\|[u;+1 U] then the equation:

will not be a consequence of equations (3). Thenfb can thus be expressed uniquely by
means of the right-hand sides of equations (3).

Conversely, suppose that the foFncan be expressed by meangpafr variablesv , vz, ...,
V,. The left-hand sides of the equations of theesyst
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a_F:O’...,a_F: 0
ov, ov,

will depend upon onlys, ...,v,. This system will thus contain at mgsindependent equations.
As a result, one will have =r, and the; will be linear combinations of the.

The associated system of an exterior quadratic form is thereforaetitay annulling all of
its first-order partial derivatives.

59. This result can made be made more precise. \Aesstow thathe rank ris necessarily
even and at the same time, find a reduced form forettierior quadratic form that will play the
same role that the sum of the squares does fanargdquadratic forms.

Suppose, to fix ideas, that the coefficiaptof F(u) are not zero, and consider the form:

i a_Fa_F —_1[( u, + u,+---+ )( + + .04 9]
a,|ou oy | a, AUy + 833U, a Y Ut asls & Wl

This form has the same coefficientda®r the terms in:

[ui U], [urug], ..., [urug], [Uz2Ug], ..., [u2Up],

i.e., for the terms that contain at least one ef\thriablesi; or u,. As a result, the form:

1| oF oF
F - — | =F
W a, LSUl auj (W

will contain only the variabless, us, ...,u,. Suppose then that the coefficiafjtof that form is
not zero. Similarly, one will verify that the form

F'(u)——?{aiai} =F()
8y, | 0U, U,

contains only the variables, us, ...,u,. One may thus continue, step by step, until oneesr at
a form that is identically zero. For example, seg®that one has:

_1|0F oF 1| oF' oF’ 1| 0F" oF"
w-iEEhRE-IRR
,[0U 0U, | &, 0U;0U,| &g 0 U0

The six linear forms:
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OF OF OF OF OF" OF
ou Adu, Odu, du, O0u Ay

will obviously be independent. Upon setting:

oF 0

—=U , — = U ,
u, U, e
oF' oF'
— =Ujs, —=a\u,,
u, ou, %
oF" oF"

- U , - n U ,
au, U, %

the formF will be reduced to desired canonical form:
F(U) = [U1U3] + [UsUy] + [UsUg].
This argument is obviously general and leadseacnonical form:
F(U) = [UiUg] + ... + Uzs1U2] (B <).
The associated system is obviously:
Ui =Uy=..=Ux=0.

This result will have great significance later on.

60. The reduction of an exterior quadratic formtsocanonical form is obviously possible in
an infinitude of ways. The set of linear subsiitog that make a canonical form pass into
another constitute an important group that depemds(2s + 1) arbitrary parameters. $f= 1

then these substitutions of two variables will Hearacterized by the condition that their
determinant must be equal to unity.

lll. - Exterior forms of degree greater than two.

61 One may imagine exterior forms of arbitrary aegr One arrives at them most naturally
upon starting with a linear form mseries of variables;, vi, ...,w :

f(u, v, ...,w)

that satisfies the condition that exchanging twaeseof variables will reproduce the form, but
with a sign change. In the case 3, for example, this hypothesis entails the eqonence that
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any term in which the same index appears twice will hazera coefficient and that the set of
terms in which three distinct indices appedor example, 1, 2, 3 will be of the form:

ul u2 l"%
aiZ3 Vl V2 V3 '
W W W

The same notational convention as above leads totabdisre, but notcommutative,
multiplication law, by which each product changes sigané exchanges two of the variables
that appear in it. Consequently, one will have:

[Ul Uo U3] == [Uz Uz U3] = - [Ul Us Uz] = - [U3 Uo Ul] = [Uz U3z Ul] = [U3 Ug Uz].
From this, one may define an exterior product such as:
[F d W],

in whichF, ®, W, are exterior forms of arbitrary degree. The degrabeproduct is the sum of
the degrees of the factors. The product will necegdagilzero if the sum of the degrees exceeds
n. One easily confirms that if one exchanges two fadtothe product then the product will not
change sign if at least one of these factors msveh degree, and it will undergo a sign change if
both of the degrees are odd. Similarly, one may defisem of products of this nature.

In particular, the product of a form with itself wile zero if this form is of odd degree, but it
will not necessarily be zero if it is of even degré@ar example, take a quadratic foFnthat has
been reduced to its canonical form:

F= [Ul Uz] + [U3 U4] + ..+ [U25_1 UZS]-
One has:

%[FZ] Sluwu] H ubud +-- 4 WU U
%[FS] =[uluuwy) +---,

é[FS] :[u1u2u3u4"' uES—luﬁ-l J
1
(s+1)!

[F*=

The rank 2 of a quadratic fornk is therefore twice the largest power to which aray raiseF
without annihilating it.
A simple application of the theory of determinaistthe following one. Let:

F =ag[us Uz] + arg[Us Us] + ara[Us Ug] + @z3[U2 Us] + @24 U2 Us] + @34[Us U]
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be a form in four variables. One has:

1
E[Fz] = (a8, — A3y, * a,3) uu,ul,.

On the other hand, the associated systekisf

agaUy + 13Uz + Ay4Us =0,
apuy + +A3U3z + azqUs =0,
agily + agol + +az4Us =0,
Uz + ayoUp + ayaUs + =0.

The condition for the form to be expressed by mearsd &ast four variables is, on the one
hand, that one must have’] = 0, i.e.:

Q12834 — 3824 + 4823 = 0,

and, on the other hand, that the determinant of theiassd system must be zero, i.e.:

0 a, a;, a,
B 0 A a|_,
a A, 0 &,

a'41 a'42 a43 O

Despite appearances, these two equations are equivdleiged, one may prove that the
determinant, which is anti-symmetric of even degredia@stjuare of the expression:

Qo834 — Q1384 + A14a23.

62. Any exterior form of degree (which is equal to the number of variables) is of thenfo
Aluz Uz ... Up).

One may obtain canonical forms when the degree-id orn—2. One then easily arrives at the
notion of theadjoint formto a given form.

Consider a formF of degreep, and let& &', ....&™" P denote the linear forms with
indeterminate coefficients:
& =&u+ L+,
' =&u+ ... +&un,

The exterior productH¢' ... £ P] is of degree, and so, as a result, is the form:
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[P uuy...uy].

The coefficientF is linear with respect to each series of coeffigefi Furthermore, it is
alternating. Therefore it corresponds to an exterior form of degre-p in the variables;, ...,
& ; this is the definition of the form that is adjpia F.

If one performs a linear substitution on thand if, at the same time, one performs a linear
substitution on the& that preserves the expressiru; + ... + &, u, then the expressio®[u; ...
un] will obviously be preserved. In other wordlse adjoint form is reproduced, but multiplied
by the determinant of the substitution that was performed on the vanables

The adjoint form to a forrk = F; + F; is obviously the sum of the adjoint formhg and ®..
Similarly, the adjoint form t@®, wherea is a numerical coefficient, sF. From this, in order
to calculate the adjoint form to an arbitrary fortmmill suffice to know how to calculate the
adjoint form to a monomial form such as:

F= [ualu[72 %n] )
Upon applying the given definition, one finds that:

o = [fapﬂ,...’fan],

since the indicesy.1, ..., an are the ones among the indices 1, 2n.that do not appear in the
set ofn, a», ..., ap . These indices are supposed to range in such an ordethéhtotal
sequence:

ay, ..., Qp, Op+1,y ..., On
is even.

63. From this, suppose th&tis a form of degre@-1. The adjoint form will be of first
degree. One may thus suppose that it is reducég ;tfor example, in such a way thatmay
always be converted into an expression of the form:

F= [U]_Uz Un—l]-

Now suppose thdt is of degreen — 2. The formF will be of second degree. Therefore, one
may always suppose that it is given by formula:

D =[&&] + ... + [E2s-12d].

As a result, one will have:
F=[usUsUs ...Up] + [UpU2UsUg ... Up] + ... + U Uz ... Ups—2 U2st1 ... Up).
If s=1 thenF will be reduced to a monomial form.

For example, ih = 5 then any fornk of degree 5-2 = 3 will be reducible to one of the
canonical forms:
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F= [U3 Uy U5],
F= [Ul Uo U5] + [U3 Uy U5].

If n = 6 then any fornk of degree 4 will be reducible to one of the forms:

F= [U3 Ug Us Ue],
F= [U3 Uz Us Ue] + [Ul U> Us Ue] = [([Ul Uz] + [U3 U4]) Us Ue],
F= [U3 Uz Us Ue] + [U3 Uz Us Ue] + [U3 Uz Us Ue] = % [U1 Uz] + [U3 U4] + [U5 Ue]] 2.

The notion of adjoint form permits us to define theduct of two forms when the sum of
their degrees exceeds This is the operation that H. Grassmann catleglessive exterior
multiplication, but we shall not use it.

64. Again, we point out several applications of extenarltiplication. Suppose thét, f,,
...,fn arehindependenlinear forms. The equation:

[F fif,...fa] = O,

in which Fis an arbitrary exterior form, gives the necessary and sefftatondition for Ro be
annulled when one establishes relations:

fl = 0, f2 = 0, ...,fh =0
between the variables.

Indeed, one may consider the case in which ond kas; . In that case, if every term Bf
contains one or more of the variablgs.., u, then it will be obvious that the produét {1 ... up]
must be zero. Conversely, if this product is zero #rearbitrary term oF will contain one or
more of the variables, ..., u, as a factor, except that the multiplication of tleisrt by [s...ur]
will give a non-zero product that cannot be reduced tootmer.

IV. - The associated system of an exterior form.

65. The determination of the associated system may peefbjust as easily for an exterior
form of arbitrary degree as it is for a quadratic forif.the form is of degreg then the
associated system will be obtained by annulling all efgartial derivatives df of orderp — 1.
One will define a first order derivative, such%g, to be the coefficient af; in the set of terms

ul
of F that contain that variable, after first taking thegaution of insuring that; has rank one in

each of these terms. We remark that this deriv 6F no longer depends an. By definition,
ul

2
- F . L F . .
the derlvatlveaa—a will be the derivative ofg— with respect ta,. One obtains it as a result
ul u2 ul
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of taking the set of terms &fthat contain both the variablasandu,, while making sure that;
is of first rank andu, is of second rank in each of these terms and firallypressing the
variablesu; andu, from all of these terms. From this, one has:

0°F _ _ 0°F
oudu, Odudy

The higher-order partial derivatives are defined in same fashion; they are necessarily
taken with respect to variables that are all different

The rank of a form of degre®ethat is not identically zero is obviously equalnto The rank
of a form of degrea — 1 is equal ton — 1. The rank of a form of degree- 2 is equal tan — 2 if
it is reducible to a monomial form andrion any other case. If the degree is less thar2 then
one can say nothirg priori about the rank.

V. - Formulas that relate to exterior quadratic forms.
66. We return to the case of an exterior quadratic ferimn variablesus, u, ...,u,. It can
happen that one supposes that the variables are coupdelthbgr relation:
f=zagup+ayu + ... +a,u, = 0.
The formF, in which we will suppose, for example, thatis expressed as a functionwaf
..., U-1 by means of the given relation, will have a certank hat corresponds to the number

of linearly independent equations in its associated sysidra.latter obviously has:

oF a oF 0. oF _an_laF:O

_—1 =0, , f= 0
ou, &, dy, oy, & Jy,
for its equations, or again:
oF OoF oF
ﬂ:% ..... aun , f=0.
a 2 %

More generally, one may suppose that these vadadike coupled by an arbitrary number of
relations:
f=au +tau +... +taau, =0,
g=biu; +bou, + ... +byuy, =0,

h=liu +lbu + ... +Hhu, =0.

The associated systemffvill then be defined by the formulas:
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oF OF  OF
ou, O0u, ou,
=0, f=0, g=0,..h=0.
b b - R
Lo, ]

Equating the matrix above means annulling all of thera@tants that are formed from the
rows of that matrix and the same number of columns.

One may remark thathen one supposes that the variables are coupled by given relations,
the rank2s of the form F will be twice the largest exponent such that the form:

[fg...hFS']
is not zero.

67. In particular, suppose that= 2s and that the fornf is of rankn. If one couples the
variables by only one relation then it will be obviouattthe rank of the form cannot exceed
-1 = -1, andsince this rank is eveihwill be equal to at mosts2- 2. Furthermore, it is easy
to see that it cannot descend below that limit.

From this, it results that if one couples the variglidg p independent linear relations then
the rank ofF will be diminished byat most2p units. We look for the case in which the
maximum reduction will be obtained. If the relations:ar

fi=0, ,=0,..f,=0
then it will be necessary and sufficient that onestninave:
(4) fif2 ..., FP Y = 0.
This condition can be replaced by other simpler caovtit Indeed, we remark that if one

takes any two of thp given relations then these two relations will necelgsdiminish the rank
of F by 4 units. Therefore, one will have:

(5) FfF=0 (.i=1 2 ..p).
We shall prove thahese@ necessargquationsare also sufficient.

Indeed, suppose that these conditions are satisfied akel anchange of variables in such a
manner as to taketo u;. One will thus have

[Lli Uj Fs_l =0,
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which shows that there is no term ify [§] in the form®(¢) that is adjoint to £(u). Now, the
form that is adjoint t&=>“ is ®9; this is easily recognized by supposing thds reduced to its
canonical form. As a result, each term of the aljfsirm toF®**, which isF"™*, will containat
mostp — 1 of the variables, ..., &. As a result, the form that is adjoint B8 will containat
leastone of the variables, ...,u,. This amounts to saying that one will have:

[Ul Uz ... Up Fs—p+1 =0.
Q.E.D.

The significance of the preceding theorem is easyiat put. Since the forms; f; F*™] are

of degreen, the equations to be written will Q%(Z;l)in number, whereas, since the forif]

I FSP*1 is of degreen — p + 2, the number of equations that express that iefis will be
CP™?, and furthermore, each of them will contain the ficiehts ofall the given relations.

For example, if one has:
F = [uiuz] + [usug] + [us Ug),
fi=aus + ... +agUs,
fo=byug + ... +bg U,
fs=ciup + ... +CsUs

then, on account of the three relatidns f> = f3 = 0, the condition thaE be of rank 6-6 =0
will be, by the first procedure:
[f1f2f3 F] = 0,

which gives:
a & | |a & G a4 & G| | & G
b b, b+ kB Q=0 |b b bi+b hk k=0,
G & G |G G G G, &G G G G G
4G & & |& a & a & & |4 a &
b, b bi+ b B b=0, , B bki+h B b=0,
G G G G G G n GG » G G
G & & |& & g % & &| | & g
b, b b+ bk b b=0|b b bj+h b =0
G G G G G G G G G G G G

On the contrary, the theorem above puts the requineditcans into the very simple form:

bico—ciby +bscs—csba +bscs —csbs =0,
Clay—aC +C3au—asCs+Csa—asC =0,
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arby, —byay +aghs —bsas + asbs —bsas = 0.

68. One may point out a theorem that is much more pre¢hee the preceding one, and
which permits us to find, in the simplest fashion, téwek of the form to whiclF reduces when
one supposes that the variables are couplegl diyen relations. In order to do this, we define
the alternating bilinear form:

OEE) =D & &
by the equality:
SFH & UL+ A EU) (G U+ & U] = B(E &[],

The exterior quadratic form:

®(d =2 ajl&d]

s-1
is (up to a factor) the adjoint formﬁ . It is theabsolute covariandf F, in the sense that if
s-1)!

one performs an arbitrary linear substitution aavhriabless, ...,u,, and the linear substitution
that preserveg, u; + ... +& u, on the variablegs, ..., &, and if these two substitutions take the
two formsF(u) and®(&) toF () and®(&) then one will also have:

TRHED+ -+ EUEU+ -+ Y] =D& A
In particular, ifF has been reduced to its canonical form:
F=[urug] + ... + [Uxs1Ug]
then one will immediately find for the canonicatto of ®:

P=[&&] +...+[Es14d .

From this, there easily results the general itgnti

Fe°
(s—p

(Guy + -+ & U (U + "'+<(;Un)"'(f§2p_l) ul+...+ff]2p_l) L@
(6)

_ CD(p)(f,f',--- ’{(29-1) F_S
p! d |

in which the exterior form of degrgethat corresponds to the alternating multilineamfe® is
equal to fpP(&]. This identity is obvious wheR has been reduced to its canonical form and is
therefore true in the general case. This basieatigunts to the property that was invoked in the
preceding section that the adjoint form E5f] is equal to "], up to a scalar factor.
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In particular, upon setting = 2, and upon taking the terms [i§,¢,&,&" in identity (6)

one will obtain:
@) {—FS_Z uuw}(qw RAat -a-@)r—s}
(s-2)! "’ o g

in which the coefficients;; are defined by:

FS_Z Uuu (= F—S
s—2 T g

Finally, one may deduce another identity that we vedl later on. Consider the form:

FS—Z _ FS—l N N .
muiujl{ (s—l)!(%u & Ut gy

it is of degree - 1. If one exterior multiplies it by any of the variably, ..., s — sayu, —
then one will immediately confirm from (7) that theoduct is zero. As a result, the form itself
will be identically zero. Since;, uj, ux can be replaced by three arbitrary linear forms isehe
variables, we arrive at the following theorem:

If one considers an arbitrary number of linear formss ...,f,, and if one sets:

{(;:_S_ly f fl}:aﬂ {%T (i,j=1,2,..p)

then one will have the identities

Fs—z B Fs_l
(8) {mfif,‘fk}_{@(% ftacf+a )|

69. We shall now go on to the problem that was statedegbwhich consists of finding the
rank of the form to whiclir is reduced when one supposes that the variables are a¢daypte
independent linear relations:

fl = O,fz = 0, ...,fp =0.

We may suppose that these relations are:

Up = 0, Up = 0, walp = 0.
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They permit us to perform an arbitrary linear substitubn theu, with the one condition
that the firstp variablesuy, ..., U, must be exchanged amongst themselves. It resultsthism
that we can perform an arbitrary linear substitutiothenvariable<, with the one condition that
thelast2s — p variablesép.y, ..., &s must be exchanged amongst themselves. We then set:

LS%)!UM } =3 {%} i,i=12, ..p).

If one suppresses the termséy, ..., &s from @ then one will obviously obtain:

6= al£4]

(i)

Let 2y be the rank of the forda. One may, by a convenient linear substitution that is
performed on thé, ..., & , reduced to:

(T) :[(,(152] +"'+[§(2q_1§(2q] .

As a result, one may, by removing linear combinationthe &1, ..., &s from the éy, ...,
& , if necessary- and this is permissible reduce® to:

P=[&E]+ ... +H[Eog1 Eoq] + [Eogrr Spra] + oo +[Ep Eop2d]

+ [ Epogqir Eopagra] + .. H[Eos-1 E2d)
but then the fornk will be changed into:
F=[urug] + ... + [Upg-1Uoq] + [Uge1Ups1] + ... + [UpUopog] + ... + [Ups-1Uog] .
One sees that if one now takes the relations:
u=0, L=0,..,u=0

into account then the rank Bfwill be reduced by R2- 2qg units.
We therefore arrive at the following theorem:

Consider the independent linear forms, ...,fp ,the@ quantitiess; that are defined

FS_l B FS
Ls—l)! h fi}a" {?}

and the exterior quadratic form in@riablesés, ..., &:

by the equalities
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o= ale€].

(i)

If that form is of rank2qg then the rank of the form Will be reduced byp -2 g units when one
supposes that the variables are coupled bglgtions:

fl = O,fz = 0, ...,fp =0.

Furthermore, if one performs a linear substitution on thgiyen linear forms such thab is
reduced to its canonical form:

D =[& &) + ..+ [E2g-1 &2
then the form Rwill be reduced to the canonical form:
F= [flfz] + ...+ [fzq_lfzq] + [f2q+1fp+1] + ...+ [fpfzp_zq] + ...+ [f25_1f25],

in which §.4, ..., f2s denote new formthat are conveniently chosen to be mutually independent
and independent of the given forms.

In particular, ifq = 0 then one recovers the preceding theorem thastated and proved in
sec.67.



CHAPTER VII

EXTERIOR DIFFERENTIAL FORMS AND THEIR DERIVED FORMS

I. - The bilinear covariant of a Pfaff form.

70. Now consider a linear differential form (Pfaff form

W = a1 + K + ... +a, K, .

One can derive an alternating bilinear form in two typéslifferentials from that form,
namely:

Ow, — 0w, =8 (08'% ~35X)+Y.(5ad x=3 x5 @).
Suppose that the two differentiation symbols are intewgable, i.e., that one has:
A0'x = 00X .
As for the right-hand side, which one calls bienear covariantof the forma one may make it

correspond to an exterior quadratic differential formt twe write, with the conventions made
above:

, Ja; _Jda
b =Y [080%] =3 | S - 2 [3%X].
w; =2 1630 %{d& o"x,}[ X0 ]

This form will be called thexterior derivativeof the forma

This derivation procedure has a significance thatndependent of the choice of variables.
Furthermore, it is the one that takes place whenpasses from a curvilinear integral taken over
a closed contour to a double integral taken owarréace bounded by the contour.

For example, if one has three variabtey, zand one sets:

ws=Px+Qdy +Rx
then one will have:

5= [P+ [R 3] + [R & =L [oxod + Xl oyox+ 2 s wk
)4 ay 0z
+ 9545+ %5y5y+ R 55y
)4 ay 0z

+ R4+ 5vy51+28 5 512
0x oy 0z
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(5o (G- o33 e
y o0x 0y

and Stokes'’s formula can be written:
Jow=]l@,

in whichSdenotes a surface that is bounded by the co@our

The necessary and sufficient condition é@rto be annihilated is that the foreamust be an
exact differential.

REMARK. — The permutability of the two differentiation symb@sndd’ must take place
in the case where the differentiations are appliechtarhitrary function of independent variables
or else the differentiations would not have a covariant characténs is easy to verify. If one
sets:

_ oy Y 5
~ox,

w; =0y X+ +§yc5>§1

X
then awswill be an exact differential, and one will have:
owy; —d'w;= 0,

00'y=09Yy.

[l. - Exterior derivation.

71. The same derivation procedure can be applied to anaxtbfferential form of any
degree. For example, let:

Q=3 a[d ]
be a quadratic form, and consider the alternating bilifoeanr:
Q(30)=), aj(d &'%; — & I'X)

that corresponds to it, and introdutteee differentiation symbols), o',0" that are mutually
interchangeable. Finally, consider the expression:

m(J’,5”)—5'Q(5, 5")+5HQ(5’ 51)’
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which obviously has an intrinsic significance that is indepahdf the choice of variables.
Upon doing this calculation, one easily confirms thais itreduced to an alternating trilinear
expression:

Ql (5’ 51’511) - Z [@Ij(él)(lan)(‘ _5’X15”)$) _ 5’8" (&'511)(] _ d(]é”)g)
+ 5"a,.j (% 5’xj =X O0'X).
Now, a cubic exterior differential form:

' da; 03, oa,
QJ=Z[5%5>$5>§]=Z{61 + 6‘1 +615)5x5>§525],

which we shall call thelerivedform of Q, corresponds to that trilinear form.

72. In the case examined, it is important to accdanthe relation that exists between the
derivation of a quadratic exterior form and the rapien that consists of passing from a double
integral taken over a&losedsurface to the triple integral taken over the vaubounded by
surface.

In order to do this, imagine that, ..., X, are functions of three parametersg, y; and
consider an elementary parallelepipedridimensional space whose edges are portions of the
coordinate lines, and whose verticasB, C, D, E, F, G, H correspond to the curvilinear
coordinates:

(a, By, (a+da, B, ), (a, 0B, ), (a, By +0"y),
(a+da, B+0B, Y. (a+oa, B, y+3"y), (a, fro3, y+d'y), (a+da, +IB, y+3'y).

As one knows, the symbo&sd’, 0" refer to differentiations with respect to the thpegameters
a, B, y, respectively.
Now consider the curvilinear integlﬁlQ, which is taken over the surface that bounds this

parallelepiped.
The integrals that are taken over the three fdw@scontairA are, up to a sign:

Q(5',8"), Q(d", 9, QS ),

and, in order for these integrals to be taken @leof the internal faces or all of the external
faces, it is necessary to take them to be eithealeég the three preceding expressions or equal
and opposite. If we take them to be equal and ofgptsen the sum of the integrals taken over
the six faces will be:

-Q(5,0")-Q(0",9 —Q(J, ") +[Q(I',0") + X(J',0")]
+[Q(3", 9+ 0" Q(3", | +[Q(J d") + 5" Q(5, J")]
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:&2(5’,5")'{'5’9(5",d'*'J"Q(d 51)291(5’ 5115").

The surface integreﬂ Q is thus transformed into the volume integfﬁﬁ Q'.
In the simple case of three variables, if one: sets

Q=P[oydd+Q[aed +R[XJ]
then one will have

Q=[P & & +[RQ & &K +[R & F] {%*%*%”‘Mﬂ'

73. These considerations can be extended to exterims of arbitrary degree. Any exterior
form admits a derived form whose degree is grebhteone unit and whose calculation is
extremely easy, since each term of the form:

A O ... K]
gives rise to the derived term:

[OA O O; ... K.

We note several formulas that are useful and eagyove. If mis a coefficient that is a
finite function of the variables arfd is an arbitrary exterior form then one will have

(mQ)" = [dmQ] + mQ".
If Q andl1 are two arbitrary exterior differential forms then one will have
[QN] =[Q" N £[QN'];

the + sign refers to the case in whi€his of even degree and thesign, to the case in whid
is of odd degreeln particular, ifQ is of even degree then the derived form®@f][will be given
by the ordinary formula:

[Q°] =p[Q”Q'].

74. In the preceding, we supposed that the coeftisi@h the forms under consideration
were continuous functions that admitted partiaivdgives of the first orderHowever, it is also
the case that one may still define an exterior derivafvahen the coefficients of a fofhdo
not admit derivatives A classic example is provided by potential tlyeor

We consider a material voluméthat is bounded by a surfae Letp be the density at a
point of V. We suppose that the functignis continuous. The potentidl of that mass is a
continuous function on all of space that everywhaenits continuous first order derivatives.
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Regarding that function, there exists a theorem (Gaukgorem), which is expressed by the
formula:

H—dydx+— dzdxir%—u dxdscjj 4rp  dxdyg

the integral on the left-hand side is taken oveadntrary closed surface and the one on the
right-hand side is taken over the volume that isnged by that surface. From this, it results that
upon setting:

Q :a—U[dy dj +6—U[ dz C!X+6_U[ dx ¢h
0x oy 0z

one can define the exterior derivati®e of Q by:
Q' =-4mp[dx dy df
If the function Uadmits second-order partial derivativeében this will amount to the

classical Poisson formula, because the derivatimteulure defined above will immediately
give:

, (U oU U
@ (a”a? afj[ddd1

However, one can still define the derivatiYeif the functionU does not admit second-order
partial derivativesyhich is the general case when one does not make supplementary hypotheses
on the functiorp.

One thus concedes the possibility of defining éxterior derivative as aautonomous
operation that is independent of classical deivatiThere is then a direct proof of the formula
from the preceding section:

(1) [Qn] =[Q'M [ Qn] ,

in which one simply supposes tifatandl1 are exterior-differentiable.

75. Take the simplest case of a linear form in twoaldes:

w=P X+Qoy
that admits an exterior derivative:
w=R[X ] .

Suppose that the functiosandQ are continuous, and consider a functmrihat admits
continuous first-order partial derivatives. Hetes formula:

(mw)' =ma' + [dnd]
amounts to:
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jm(P5x+ QJ)):'U( mR %— r%iy“ja a.

The proof of this formula can be carried out very syimdlet A be the integration area, and
let C be the contour that bounds it. Divide the afeiato a large number of partial areas; for
example, areas parallel to the axes. Take a painof in each of the partial areas, and call the

values of the functions), P, Q,a—m 6_m at that point:
ox oy

wa a5, {5)

In the interior, or on the contour of that area, ovag set:

_ om aom
me e 9] (20 <] w20 ve|.

P=Po+&s Q=Q+é&.

When the integral m(P & + Q d) is taken over the contour of that partial areayiil be
equal to:

Jm)(Pcfx+Qw+j[(x~ g)[%—r;j Oy w(%—;“j }( Px @y

plus a quantity that is less thai Al, upon denoting the upper limit &f, &, &, &, by ¢, a fixed
number byM, the diameter of the area By and the length of its contour by The sum of all
these supplementary quantities can obviously beeraadsmall as one pleases, becailkis of
order of the total area. As for the sum of the imtegrals written above, it is equal to:

Zﬂ[mo R+ Q(%—T}O— o[g—rynﬂaﬁ y

One easily derives the proof of the formula in dgeesfrom this.
With analogous hypotheses, this proof may be ebet@ho the case of a quadratic form:

Q=P[dyd +Q [ +R[XO].

The existence of the equality:

jj Pcz/az+Q5zd<+Rc5<cz/:m H Xy &
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implies that:
[[mPsysz @5 x B a)fff| mu B4 %‘% K5 & a.
0x y 0z

The proof seems very difficult in the case of twe#ér forms in three variables:

w=AX+Bd+Cd
w=AXx+By+C

Suppose that these two forms are differentiable anatigahas, for example:

jAd(+B@+caz :jj PYXZ+QaX+RXJY,
j AX+Bd+C &= jj Pydz+ QK+ R XJy.

Formula (1) then becomes:

jj (BC'-CB')y &+ (CA-AC') ZX+ (AB -BA) X &
=m (PA+QB+RC'-PA-QB-RC) &Jy &

It does not seem possible to prove this by the sameeguoe as in the preceding case
without adding supplementary hypotheses in order to thiss¥ample, the hypothesis that the
functionsA, B, C, A',B’,C' must satisfy a condition that is analogous to the Lipstondition.

It is interesting to study this question and see if iteslly true thatthe differentiability of an
exterior product always results in the differentliy of its factors.

As for the question of knowing the conditions undéiclh an exterior differentiable form is
differentiable, it is related, at least for forms ddggreen — 1 in n variables, to the theory of
additive functions on the set of C. de la Valée-PouskinFor example, the forf = P [dy &

+ Q[dz oK + R X oy] is differentiable if the sum of the integre%&Q , when it is taken over the

surfaces that bound a finite number of cubes that anp@sed of planes that are parallel to the
coordinate planes, tends to zero when the sum of thenes of these cubes tends to zero. The
functionH that appears in this expression is the derivative:

Q' =H [Xy A,

which is not naturally continuous, in general.
In what follows, we shall always assume the legaity of the operations performed.

() See the book entitledintegrales de Lebesgue, fonctions d’ensemble, classes de Baiis; Gauthier-
Villars, 1916.
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1. - Exact exterior differential forms.

76. Now, here is an important theorem:

The derivative of the derivativ@' of an arbitrary exterior differential forn@ is identically
zero.
Indeed, take an arbitrary term@) say:

a[Ki Ko ... K.
The corresponding term @' is:
[da K Ko ... OKp).

If a depends upon onlby, ..., % then the latter term will be zero, and its derivatas well.
If, on the contrarya is independent afy, ..., X, then one can make a change of variables such
thata becomes equal tg.1. The derivative of the term:

[ HKp+1 K O ... OKp)

will then be zero, since the coefficient of thatnteis unity, so its derivative will contribute
nothing to the exterior derivative.
This theorem has a converse, namely:

If the derivative of a differential forr is zero then the for@ can be regarded as the
derivative of a fornil whose degree is less than thafbby one unit.

In order to prove this theorem, we shall appeal tofadhewing lemma, which we will use
later on, moreover:

If the derivative of a form is zero, and if that form does not contée differentialdx, then
its coefficients will be independent @f x

Indeed, take aterm @ such as:
AKX ... OK).

In the derivation, it will furnish the term:
[OA X1 Xz ... K,

which, upon developing, will give several terms, such as:

0A
—[0X,0%x0%---0X] .
oy, 10X, 0X00 %]
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Obviously, the last term cannot be reduced any furth@e 310 other term d® containsdx,
. SinceQ' = 0, one necessarily has:

Having thus proved the lemma, we return to our theorkat.us callQy what the fornQ
becomes when one makes= X* and dx, = 0. The derivative o2, will obviously be zero if

that of Q is. Suppose then that the theorem has been proved-fdr variables. It will be

possible to find a fornfily that is constructed from the variablgs ..., x,-1, such thaQy is its
derivative:
I'I{) = Qo.

If this is the case then separate the terms in thengawmQ and the unknown formil that
do not contaird, from those that do. One may write:

Q=0 + [ Q] M =M+ [, M.

If we calculate the terms i’ that containdx, then we will find that:

on
n'=|ox,—*
{ X,

}mn;w---

Choose the forml; arbitrarily, and determin€l; by the conditions:

1) M reduces tdlo forx, = xX.
2) One has:
or,

ox,

=M, +Q,.
One thus obtainBl; by quadratures.

When the fornf1 is chosen in the manner that we just described, itemjy the following
properties:

1) The differenc€l’ — Q will not containdx, when one reduces the similar terms.
2) It will reduce to zero when one makes= x’ in its coefficients.

We now remark that the derivative of that form isozeonsequently, from the lemma, all of
its coefficients will have values that are independdnt, . It is therefore identically zero, and
the theorem is proved.
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The same proof shows that one may arbitrarily choleseerms in the forml that contain
X, , arbitrarily choose the values for= X in the terms that do not contad,, but do contain

-1, arbitrarily choose the values fog, = X, x_, = X, in the terms that contain neithéx,

nor ,-1 , but do contairdx,—2, and so on.
Furthermore, it is quite clear that if one has aitsmh of the problem then all of the others
can be deduced from it by adding the derivative of an arpiform (whose degree is two units

less than that d®) to 1.

77. If Q is a linear form then, from the preceding theorem, lifppothesis that its exterior
derivative is zero will thus lead to the conclustbat was pointed out before thatis an exact
differential. IfQ is a quadratic form in three variables:

Q=P[oyda+Q[d +R[X ]
then the condition:
oP 0Q OR_

— +—=4+_=0

will be necessary and sufficient forto be regarded as the derivative of a linear form,foe.,
one to find three function&, B, C that satisfy:

a_C—@ =P
dy 0z
0A 0C

oz ax O

a_B—a_'A\: R
ox ay

Remark.— If the coefficients of the forn2 are uniform in a certain domain then the
condition Q" = 0 will not always be sufficient to assure the existeof a forni1 that isuniform
in that domainand ha<2 for its exterior derivative. For example, considerttie-dimensional
domain (closed and without boundary) that is composed qidimts of a spherg, and letQ be
a form of degree 2 that is uniform in that domain (and dueficients that admit continuous

partial derivatives of the first order). The derivatQ' will obviously be zero. Nevertheless, if
there exists a linear forrw whose derivativew' is equal toQ then when one integratqsw
twice around the same great circle of the sphereeitvib different senses one will obtain:

[[a =0,
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in which the integral is taken over the entire surfacd@fsphere.The preceding equation gives
a supplementary condition fd2 to be regarded as the exact derivative of a farnthat is
uniform over all of the sphere.



CHAPTER VIII

THE CHARACTERISTIC SYSTEM
OF AN EXTERIOR DIFFERENTIAL FORM.
FORMATION OF INTEGRAL INVARIANTS

l. - The characteristic system of an exterior differential form.

78. The results of the preceding chapter permit us to efsig the characteristic Pfaff
system of a given exterior differential fon
In order to do this, we remark thatifis invariant for the system of differential equations:

1) dx

then Q can be expressed in terms mf 1 independent first integralg, ..., yn-1, and their
differentials; as a result, this will also be true for its derivet Q'. As a consequence, the
system of linear equations (in total differentidlgt is associated with the two exterior foréhs
and Q" will be a consequence of the equations:

(2) dy; =0, ....dy-1 = 0,
and, as a result, of equations (1).

In other wordsin order for systen(l) to admitQ(J) as an invariant form it is necessary that
the associated system@fand Q" pwor be verified when one replaces the variakdes ..., &,
with X1, ooy Xn.

Conversely, suppose this condition is true. Simeeassociated system QfJ) is satisfied
on account of equations (1) it will also be sa¢dfon account of the equivalent equations (2).
Hence, wher)(J) is considered as an exterior form in the quastitie , it can be uniquely
expressed in terms dlfs, ..., dyr-1 . Since the coefficients are functions»fone may always
suppose that they are expressed by meays of, yn-1, andx, (if X, # 0). One will thus have:

Q= ZAil__,-p[d){l.-- dy ].

oA .
When one formsQ’, one will find that the only term iidx, dy...dy ] has% for its
1 p )q’]

coefficient. Now, by hypothes®, can also be expressed by means of only the questiti.
One thus has
oA
A _ .
0x,
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As a result,Q can be expressed by means of first integrals of thengiystem and their
differentials; it is therefore an invariant form.

It results immediately from this th#te equations of the characteristic syster@atduce to
the equations of the associated systenf2ptombined with the equations of the associated
system ofQ'.

79. We shall now examine some important particular cases

Suppose tha® is an exact form; i.eQ’ = 0. In this casethe characteristic system of the
differential formQ coincides with the associated system of the farm

As an application, we look for the characterisgistam of the (completeklative integral

invariant j Q. That relative invariant reduces to the absolute innajié) . HoweverQ' is an

exact derivative. Hencéhe characteristic system of a relative integral invarifaﬁt coincides

with the associated system of the derived f@'m
This is just what happens with the linear integral imrdrof dynamics:

j ws ijpidli—H a.
Here one has:

ws=Y [ &y - [H &)
The associated system of the fown is:

o o o

00q)  a@p) | @)

0;

i.e., if we use the symbdlinstead o)

oH
—-dp ———dt=0,

dq _oH dt=0,

op,
dH _OoH dt=0;
ot

this is the same as what we found in chapter | (sBc

Here, the differential formav’ is quadratic. As a result, we know in advance th& number
of linearly independent equations of the associaystem will beeven;this explains why ther?
+ 1 equations of the characteristic system redac&.t Similarly, we will have an explanation
for what happens in hydrodynamics in relation ®ittvariant form:

Slya+nlad]+{[xy]+(nw-dV[xKA +({u-¢wly d +({v-nulad]
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Heren = 4; the characteristic system thus contains 4 or 2imddpendent equations. Now,
there cannot be 4, since the form is invariant for tfferéntial equations of the trajectories of
the molecules. Hence, there are 2 or 0. There atef6&n=¢ = 0, i.e., if the motion is
irrotational. In the contrary case, one may expadqdriori, that the trajectories will not be the
only characteristic curves of the form.

80. One last important case is the one in which thenf@ is of degreen —1. Ifit is
invariant for a system of differential equations then gystem will necessarily be unique,
because the associated Pfaff syster afill be composed oh — 1 independent equations. In
order for the associated system(@f to contain no more tham— 1 independent equations, it is
obviously necessary th&@' must be zero. As a resuil, order for a formQ of degree n-1 to
be invariant for a system of differential equations, it is necessadysufficient that its derivative
must be identically zero.

A simple example is furnished by the integral invariahthe kinematics of continuous
media:

m 0(X —u&)(y -v X)(Z-w &).
Here, the fornf is:

Q=plxdyd-pulydad -pw[axd -pw[xd d.

The conditionQ' = 0 gives:

o =| 9, 9(pu)  9(pv)  0(oW (5t 5x5y54 =0.
ot 0x oy 0z

This is the condition of continuity, or the lawadnservation of matter:

9p , 0(pu) , A(pV) | AoW _
ot 0x oy 0z

One sees thahis law of conservation of matter translates itlte simple condition thahe
derivativeQ' of the form that defines the quantity of elementaagter must be zero.

81. The conservation laws of physics can often bestaded into analogous conditions. The
law of conservation of flux for a force field, Y, Z translates into the condition thditzergence
of that force field be zero, i.e.:

0X  0Y  0Z
—+—+— =0.
ox 0y 0z

This simply expresses the idea that the derivatiibe elementary force flux:
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Q=X[dy o + Y[z + Z[ X ]
iS zero.
Any (static) magnetic field satisfies this conditiofi.he electromagnetic field, defined by
means of the exterior form:

Q =Hx[oy o] +Hy[dz o] + H,[ox o] + Ex[ &] + Ey[y A] + E;[d A]

also satisfies the condition titis zero. One has:

oH oE
o' _ aHX+ y+aHZ (Ox3y34 + aHx+6EZ_ v |15 y5 DY
ox 90y 0z ot 0y 0z
oH oE
+ y+6EX_6§ [0zoxof + aHZ+ v _OE, [O0XO YO].
ot z 0X Jdt dx 0y

Upon annulling the four coefficients @', one obtains the four classical equations, which
one may write, in vector notation:
divH =0,

ﬂ_H+curIE =0.
ot

The form from hydrodynamics, which we have often comsiialready:

Q=¢[ydid+nlad]+{[xy+(nw-{V[XA +({u-swWly d] +({v -nu)ad]

also has a zero derivative, sirds the derivative of the linear form of the “quantitynaotion-
energy,” and the vectors,(/7, {) and gw —{v, {u —¢v, év —nu) satisfy the same relations
as the magnetic field and the electric field. Thege \tectors are the vorticity, which plays the
role of magnetic field, and the vector product of vastievith velocity, which plays the role of
electric force.

We remark that the electromagnetic field (or rattiex,formQ that represents it) might not
be invariant for any system of differential equatiorisces [27] is not zero, in general. The
exception is when the magnetic field is perpendiculath&éoelectric field. The characteristic
system will then be defined by the equations:

H,dy -Hydz + Edt=0,
Hxdz -H,dx + E,dt =0,
Hydx —Hydy + E.dt= 0,
—+E,dx -E,dy - E;dz=0,

which reduce to three. The system of differential equatthat admit€ as invariant form will
then be:
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At any instant, it defines the lines of force lo¢ tmagnetic field. Another is:

dx _ dy _ dz _ dt
EH,-EH, EH-EH, EH;-EH, HiH+H,

If the magnetic field is zero then the characterisnanifolds will be defined by the
equations:
dt=0, Exdx + Edy + E;dz=0;

they will be the equipotential surfaces when comi®d at each instant
Il. - Formation of integral invariants.

82. It is obvious that the exterior product of twaaniant exterior forms is also an invariant
form. From this, the knowledge of an invariantegidr formQ implies the knowledge of any
other series of invariant forms, namely and all of the forms that are deduced fr@nand Q'
by exterior multiplication.

First, suppose th&® is anabsoluteinvariant form ofevendegree. One will then have two
series of absolute invariant forms:

[Q7, [Q"'Q'] (=12, ..).

The derivative of a form of the first series vii# a form of the second series. The derivative
of a form of the second series will be zero.

Now, suppose that one hasedative integral invariantj Q, and suppose first th& is of
even degree. One can deduce only one new invdreantthat: viz., the absolute invariaﬁQ’ :

On the contrary, ifQ is of odd degree then one will have a series tdtive integral
invariants | QQ'P™ and a series of absolute integral invariah®?. Moreover, the relative

integral invariantf Q Q"™ will reduce to the absolute invariah®'? by differentiation.
For example, this is true for the relative invatiaf dynamics:

jw:j;p,dq—Hcft

The relative integral invariants that one deddoa® it are:
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[wu™*  p=1,..n).
The absolute integral invariants are:
[w? =1 ..n).

There thus exists a (relative or absolute) invariararofirbitrary given degree that is less
than or equal tor2

83. One must not assume that the new invariants whosemogsthat we have just pointed
out are always the only ones that can be deduced (withimgfration) from a given invariant.
For example, suppose that one knows an invariant @that is reducible to the form:

Q= wr @] + [ w ],

in which aw, @, ..., as are six linearly independent (Pfaff) forms. Introduceisdeterminates
&, ..., &, and consider the auxiliary quadratic form:

0Q 0Q 00
MN=§—+&—+..+ :
516&4 526&)2 5660)6

It is obvious that if one regards tées quantities that are covariant in théhen the fornfl
will be covariant iQ. We say that this form is of rank 2. We obt&ie tonditions:

$iéa=0, (=1,2,30=45,6).
This gives two possible solutions: one for:
=8&=4=0,
&=46=46=0.

and one for:

The existence of two systems of three equatio¥aff covariants results from this, namely:

w=w=w=0,
w=w=w=0.

As a result, the formdh a» az] and the form §u as as] will themselves also be covariant. The
first one is obtained by takin@ into account in the equations of the second cauarsystem,
and the second one is obtained by taking the empsatf the first covariant system into account.
Now, suppose thdR is expressed by means of first integrals of thetesy of equations, as
well as their differentials, and th&t is an invariant form. The formation of the twest®ms of
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Pfaff covariants will also work for the reduced foramd each of them will contain only first
integrals and their differentials. This will also beuda for the two forms 4 «» a3] and
[y a ax], which are, as a result, invariant forms.

The existence of the integral invariaftw therefore implies the existence of each of the
integral invariants| « « a and | @ @ a.

One verifies by an analogous argument thatexistence of an invariant form of degree ®
that is reducible to a sum ofrhonomial terms such that thgfactors that enter into these terms
are linearly independent implies the property that each of these montemad must be an
invariant form.

This theorem is not true jif= 2.

84. In certain cases, the existence of an invariant fonpilies the existence of an invariant
equation.For example, consider the form:

Q= v w] +[as w w],

in which @, ..., a» denote five independent Pfaff forms. The only lineaati@h between these
forms that annihilate® is obviously:
w = 0.

This latter equation is thuswariant. It may be expressed by means of first integrals of
differential equations for whic is an invariant form.

In a general manner, @ is an invariant form, and the associated system ©f is not
identical to its characteristic systemhmen the associated system will be a system of Pfaff
invariants.

One may alter these considerations in various ways.

85. Once more, take the case of two quadratic invariamdg€; andQ, that have the same
associated system. Les Be their common rank. The equation of degrzeA:

[(Ql - AQz)] = O,

which expresses the idea that the rank of the faim A1Q; is less than £ obviously has an
invariant significance.The roots of the equation uhare thus first integrals of the differential
equations that admi®, and Q, as first integrals. One may show thain the general caseQ;
andQ, are reducible to the forms:

Q=M w] + A [as @] + ... +As[abs1 a3,
Qo =[w w] +[az ] + ... + [s-103q].

Each of the monomial fornmigy ], [ a3 @y, ..., [s1 g IS iNvariant.



CHAPTER IX

DIFFERENTIAL SYSTEMS THAT ADMIT
AN INFINITESIMAL TRANSFORMATION

|. - The notion of an infinitesimal transformation.

85. A transformationin n variables is defined by a system of equations:
(1) X = fi (X1, ++eyXn) i=1,..n

that can be solved fogq, ...,x,. Geometrically, if one regards, ..., X, as the coordinates of a
point M in the space af dimensions then the transformation (1) takes an arpipointM of the
space to another poil’ by a well-defined law. The transformations are thesothat are
currently used in geometry (homothety, similarity, inv@nsi or, more simply, rotation,
translation, etc.).

The transformation (1) is called tigentity when the right-hand sides reducexio..., X ,
respectively; any point is then transformed into itself.

Given a system of differential equations:

dx _ d d
2) &I 2S5
Xl X2 Xn

this system is said tadmit the transformatiofil) when the application of this transformation to
different points of amrbitrary integral curve of (2) gives points that all beldnghe same new
integral curve.

Consider a transformation that depends upon anesa that reduces to the identity for a
certain numerical valuay of this parameter. Sat— a; = & and suppose that the right-hand side
can be developed in powersof

X =X+ EE(Xe, oy Xn) * .

One will have what one may call arfinitesimal transformatiorby paying attention to only
the terms of first order ig. An infinitesimal transformation is thus complgtdetermined by
then functionsé of xy, ..., X,. One obtains the same infinitesimal transfornmabyg multiplying
all of these functions by the same constant fadfée. say that the functiof represents the
increment of the variablg by the infinitesimal transformation (in realityhet increment €&,
but the coefficient plays only an auxiliary role).

Given a functiorf(x, ..., X), the increment to which the infinitesimal tramsfation subjects
this function is, up to a factor &f the first term in the development:

f(X s o X)) =Xt o Xn) =0+ &, o Xa + &) — T(Xa, -0y Xn).
It is therefore:
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of
51 +52 5na'
We denote this expression by the symibl
3) Af—ci—+<‘2—+ E—
0% 0% 0%,

We agree to say thaf is thesymbolof the infinitesimal transformation in question.

86. Formula (3) is analogous to the one that givedahal differential of a functioh

of —5xli+5xzi+ +5>gi
0%

0% 0x,

The only difference is thad is the symbol of amndeterminedoperation, wherea# is the
symbol of adeterminedoperation. The symbol of differentiation becontes symbol of an
infinitesimal transformation when one gives e, ..., X, definite values (i.e., given functions
of the variables).

The operation symbolized B is susceptible to being applied not only to firfiactions,
but also to differential forms. For example, take principal part (divided by) of the
increment ofdx for A(dx). Now, one has:

dx —dx =&dx + ...
One is thus led to suppose that:
A(dx) = dx = d(Ax).

One sees by this thalhe operation Acan be considered to be interchangeable with the
operation of (undetermined) differentiation.

87. Return now to the system of differential equatiqd). This system will admit the
infinitesimal transformation (3) if the applicatiaf that transformation to the different points of
an arbitrary integral curve takes the points tmatsstuated along it onto the same new integral
curve,up to second-order infinitesimals.

It is quite obvious that if the equations (2) admitransformation that depends upon a
parametera for any numerical value of this parameter therwii admit an infinitesimal
transformation that corresponds to the valuea tfat are infinitely close to the valag (if it
exists) that gives the identity transformation.

If there is a first integral of equations (2)dahthese equations (2) admit an infinitesimal
transformationAf then it is clear thaf(y) will also be a first integral. Indeeg, has some
numerical value at any pointM of an arbitrary integral curveCf. The functiory is augmented
by £ A(y) at the pointM’ that is the transform dfl. This augmentation will be the same for any
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point M of (C). It is therefore necessary th&fy) have the same numerical value at all of the
points of C). In other wordsA(y) is a first integral.

Conversely,if the application of the operatioh to an arbitrary first integral gives a first
integral again then the system (2) will admit thenimésimal transformatioAf. Indeed, if:

C1, C, ...,Cp1

are constant numerical values that are takem-b{ independent first integrals:

yl, y21 ey yn—l

at the different point$ of an integral curveQ) then the values that these integrals take at the
transformed point8’ will be the values that the functions:

Y1+ EAY), Y2+ EAY2), -...Yn1 + EA(Yn-1)

take at the pointM themselves; they are therefam@nstant. As a result, the pointd ' will truly
generate an integral curve.

Il. - Formation of integral invariants when starting with infingsimal transformations.

88. The preceding property show us tkabwing an infinitesimal transformatiofff that is
admitted by the differential equatio(®) will permit us to deduce another invariant form from
the invariant differential forn2, namely AQ). If the formQ is exterior then so is the form
A(Q), and the new form will have the same degree as therd did.

There exists a second operation that permits us to deshatber invariant form from an
invariant exterior fornrQ2. Suppose- to fix ideas— thatQ is of third degree, and consider the
corresponding trilinear differential for(J, 6',0"). Replace the symbol of undetermined

differentiationdin this form with the symbol of the infinitesimahnsformation. We obtain an
alternating linear formQ(A,J',d8") with two types of differentiald’,d", to which there
ultimately corresponds a quadratic exterior forrhjolr we designate (A, J). This new form
is deduced from the first one by an operation thakes sense independently of the choice of
variables. IfQ is expressed by means of first integrglsof the equations (2) and their
differentials then the expressioX(A, J) will also be expressed in terms of thand thedy,. As
a consequencehe operation that we just defined will permit us to deduce from ramariant
form another invariant form whose degree is diminished by one.

From this, one has:

_ . 0Q 0Q 0Q
(4) Q(A0)=¢ (%) +¢, 20%) +..+¢, —6(5)41) .
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89. The two new operations that we just defined are mt#pandent of each other. Suppose
- to fix ideas- thatQ is of second degree, and recall the definition of #ter®r derivative' .
One has (sed.l):
Q' (4, 0',0")=X(0",0")- 0'Q(5,0") + 3"Q(59")

for the condition that the three symbai®)’,d" be interchangeable. Replace the symbwiith
the one for the infinitesimal transformatigf We then have:

Q' (A0,0")=AQ(0",8")) - 0Q(A, d")+ 3" Q (A, J');
I.e., upon passing to the exterior forms:

Q' (A, J = AQ(I) - [Q(A, IT',
or, finally:

() AQ(9) = Q'(A J + [QA J]'.

This fundamental formula contains the result @f finst operation that was performed An
in its left-hand side. As for the two terms in tight-hand side, the first one can be obtained by
first applying the operation of exterior derivatit;mQ, followed by the second operation, which
is associated witiAf. As for the second term, it is deduced frnby the same operations, but
in the reverse order.

By definition,knowing an infinitesimal transformatiohf that equationg2) admit puts us in
possession of an essentially new operation, which is defined by fowad permits us to
deduce a new invariant for@(A, J) from an invariant fornQ(J).

In particular, we may remark thatyfis a first integral then the first integra(y) can be
obtained, first by differentiation, which givegd) = dy, and then by the application of operation
(4), which gives:

W(A) = A(Y).

lll. - Examples.

90. Consider a continuous material medium in motitvse density i® and whose velocity
components are, v, w. As we saw in (sec37), the differential equations of motion for a
molecule:

(6)

admit the integral invariant:

dx _ dy _ dz _
—=u, —=w
dt dt

m AKXy Z-UN ZA-VERXE-W XK X,

which corresponds to the invariant form:
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Q=plxdyd-plyad -pw[axd -pw[xd d.

Suppose that the motionpermanentj.e., thato, u, v, ware independent of Equations (6)
do not contain time explicitly i.e., they do not change when one repldcggh t + £— so they
admit the infinitesimal transformation:

_0Q _ _ ~
Q(A,é)—ﬁ— puloyoqd-pNo D k-p 0 By

The property of this form that it is invariantpbBysically obvious. Indeed, considetude of
trajectories, and cut this tube by two arbitrargfaces that determine two aréaand S' in the
interior of the tube. The quantity of matter thifis the volume situated between the lateral
surface of the tube and the two surfaSesd S' is always the same, so the algebraic flux of the
matter traversing the surface that bounds thismaelwill be zero. Now, the flux that traverses
the lateral surface is zero. One will thus have:

[ pus@+vas+wad) =[], pluda+vda+wid3)

We remark that the invariant forfA, J) is an exact derivative. Indeed, its derivativié it
is not zero—- may differ fromQ by only a finite factor. Now, this derivative doeot contairdt.
One thus has:

[Q(A g]" = 0.

As a result, the characteristic system@€A, J) reduces to its associated system. It is thus
given by the equations:

It defines the trajectories of the molecules, independently of the manner in which these
trajectories are described in time.

Formula (5) also shows that the fofdA, J) has zero derivative. Indeed, here the fd@m
is identically zero. On the other hand, siize&loes not contaihexplicitly, it does not change
when one changdsinto t + & soA(Q) is zero. This remark will be applied to the doling
examples.

91. Now consider a perfect fluid in motion under #wution of forces that are derived from a
potential. We have seen (s@@) that there exists an absolute invariant form:

Ww=¢[ya+n[ad+z[axd]+(nw-JV)[xd]+({u-sW[ d] + (Sv-nu)dad].
It is given by the exterior derivative of a lindarm:

w=uXx+tvoyy+twoaz-E 4,
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in which the coefficienkE — viz., the energy per unit masss expressed by:
d
E=1(W+V+ wW)- U+j—p.
Yo

Suppose the motion ermanent;.e., thatu, v, w, p, p are independent of As before, one
will have a new invariant form:

o

w(A,5)=ﬁ=(vc—W7)5X+(Vf— L)oo y-(g— §)o .
oX 0y Oz
=lu Vv w|.
¢ n g

On the other hand, if one starts with the expogssi

w =[N +[I]+[wd -[&E d]
then one will find that:
w (A 0 =CE.

As a resultE will be a first integral of the equations of matio We recoveBernoulli’'s
theorem according to which the quantity:

l(u2+v2+w")—U+j%
2 P

remains constant along each streamline for a geftted in permanent motion.

However, the formdE is invariant, not only for the differential equais of motion of
molecular fluids, but also for the vortex lines, ighhalso admit the invariant formi. As a
result, thequantity E remains constant along not only each streamlimg, also along each
vortex line.

If the motion is irrotational then the forw' (A, J), as we originally wrote it, will obviously
be identically zero. In this case, energy willdeastant over all the fluid mass at any instant.

The equality:

oX 0y Oz
OE=lu Vv w
s n <

permits us to represent the (spatial) variatioaradrgy at each poii by means of a vectdiH
that has this point for its origin, and which vk the vector product of the velocity vector ¥,
w) with the vorticity vector §, 17, (). The derivative of energy in a given directioii be equal
to the projection of the vectdfH on that direction.
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92. Another very general application relates to the probleddynamics in which the

constraints and the forces are independent of timee ifffinitesimal transformatiorAf :g—ft

that the equations of motion admit permits us to dedwse the fundamental integral invariant
of dynamics:

flo=]] ®a-Ha
the new integral invariant:
[ o+

that is obtained by partial differentiation with redpee & One therefore obtains the
generalized energy integral
H=h

under the condition that the functionrilust be independent of time.
More generally, suppose that the functidrloes not contain one of the variabteandqg -

say(n, for example. The equations of motion thus admititfiaitesimal transformatlona—,

aq,
from which one deduces the invariant linear form:
oot --5p..
d(aq,)

Therefore, if the functiod does not contain one of the canonical variables thiee
conjugate variable will be a first integral of tleguations of motion.

IV. - Applications to the n-body problem.

93. Considern mutually attracting material points that are sobje forces that are
proportional to their masses and inversely propaodi to a given power of their distance. There
then exists a function of the forces:

_ m
U= ij: r__':] ,
i, ij

in which the exponenp is a given (which is equal to 1 in the case oésehl mechanics), and
the quantityr;; denotes the distance between two pditandM; of massesy andm .

The equations of motion of the system admit aaterbumber of obvious infinitesimal
transformations. First, time is not explicitly ¢aimed in these equations. In addition, for any
solution of the problem, one may deduce anotherfiame it by displacing the set in space, and
also by communicating a supplementary uniform lisetar motion (which is the same for all
points) to each of theé points. One immediately deduces the existence¢heffollowing
infinitesimal transformations from this:
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Af=S
Af=ig—; Af = % Af = %
&f:zMg—;—;%+ yg_;— %, Af=..,  Af=..

The transformatiod\; f corresponds to a translation parallelOx the transformatiow f, to
a rotation aroun@®x, and the transformatiofy, f, to a supplementary motion of constant velocity
€ that is parallel t@®x

Finally, one can point out one last infinitesimabnsformation that is based upon
considerations of homogeneity. The equations:

d’x _oU d’y

dt*>  ax dt®  dy

_Y d°z _ou
’ dt* oz

remain unaltered if one multiplies all of the caoedesx, y, z by the same constant factér
on the condition that must be multiplied byl*"*?. The components, ', Z of the velocity

are then multiplied byd 2. Upon takingd =1+ & one will arrive at the new infinitesimal
transformation:
of of of p( ,of  of pj f
f:E — Y —+ 72— | X—+ y— |+| 1+ | .
Aol = 2% 5,795y " #52 2[?(6;& yayj ( 2) ot

If we make the same definition Ofthen we remark that one will have:

AU =AU=..=AU=0, Ag_oU:—pU.

94. Recall the fundamental second-degree integrakiamt:
W= m[0X &]+m[dy &]+m[dZ &) -[D m(XoX+ydy+ 23 5)d] +[d &.

Denote the linear form' (A, d by w. There then exist eleven invariant linear forms
w, , ..., Wo. This is easy to se@ priori, from formula (5), since the first ten are exact
differentials, becauses does not change under any given one of the finrstinénitesimal
transformations. As foao, formula (5) gives:
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(o)’ =Awa).

Now,w' has a degree of homogeneity (in the sense abaoatistbqual to  p/ 2. One thus

has:
(o) = [1—2}«)' ,

and o will be an exact differential only g = 2; i.e.,if the attraction is proportional to the cube
of the distance.
The calculation of the eleven forragdoes not offer any difficulty and gives:

@w= >m (XX +YIy+ 25 2)& - = H,

@ =-).m ox =dHy,

@ ==).m Oy, = Iy,

@ ==Y .M 07 = Ok,

@= Ym @y -yoZ+yd -z =,

w= Y M(%0Z -z0X +7Z & -Xd =,

= > m(yiox —X0y+Xd -y & =,

w= Y m(-tx-xd& =y,

= ) m(d-ty -y &=,

w= Y m(&-tz -7z & =0,

%:—ZM(X5X+ YO y+ @ ,z+5 %, x5 'Y, ¥4,'d, ¥
+(1+gjt5H + pH Jt.

We have set:
= 32mO* Y+ ) -,
Hi=-) m¥,
Ho=- Zmy
Hy=->mZ7,

Ho==)> m vz -zy),
Hs=-> m (zx-xZ),
He==> m (XY - ¥X),
Hz= > m(x-tx),
He= D> m(y —ty),
Ho = Zm (z-tZ).
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One easily verifies that the bilinear covariani@f is equal t{l+§j «w'. If p=2thenone

will have the new first integral:

DM X +yiy +z7)-2Ht=C,
which will give:

dmMOF+ Y+ 7F)=2Ht+2Ct C

upon integrating; this is thiacobi integral.
The first integralsH,;, H,, Hs, H7, Hs, Hg are the ones that give us the center of gravity
theorem. The first integralds, Hs, Hg are the ones that give us the law of areas.

95. In the preceding section, varectly obtained only thaifferentialsof the first integrals
H and not the integrals themselves. They must bengio us by applying the operation that
corresponds to the infinitesimal transformati&rf to each of the invariant forms. We have
therefore obtained invariafunctions,i.e., first integrals:

aj = @A) =a (A, A) = - aj,

which we shall write in the form of a matrix witlwd indices that will be manifestly
antisymmetric. The calculations offer no diffiquit The quantityw; is found at the intersection
of the rowi and the colump The letteM denotes the sum of the masses oftbedies.
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0 1 2 3 4 5 6 7 8 9 10
o O 0 0 0 0 0 0 0 0 0 - pH
H - - 0 0
11 O 0 0 0 0 H, M _g Hl
- 0 H 0 - 0
21 O 0 0 0 Hs 1 M __g H2
31 O 0 0 0 H, -H, 0 0 0 -M __g H3
0 0 H -H 0 H -H 0 H -H
4 3 2 6 5 3 8 (1—£)H4
2
0 - 0 H - 0 H -H 0 H
5 H; 1 Hs 4 9 7 (l—B)HS
3
6| O H, -H 0 Hs -H 0 Hs | -H 0
1 4 7 (1_£)H6
3
71 O M 0 0 0 Hg - Hg 0 0 0 H,
8| O 0 M 0 —Hg 0 H, 0 0 0 Hg
9| O 0 0 M Hg -H, 0 0 0 0 Hg
10| PH I 2hy | 2H, | 2H, | €-DH, | (G-DHy| (G-DH,| Hr | o | Ho | O

We remark that the determinant of the elements opteeeding matrix is zero since it is an
antisymmetric determinant of odd degree. There thus dgigre coefficientsi; that are not all
zero such that the expressiuli cw becomes zero when one applies the operation totit tha

relates to any of the transformationsf AOne easily sees thaiy is zero. Calculation gives us
the expressiol A a, which is defined up to a factor of:

oK , 2-pJH
K p H'

upon setting:

K = (MH4 + H2Hg — H3 Hg)* + (MHs + HaH7 — HiHg)? + (MHg + HiHg — HoH7)%.

In the case of celestial mechanigs= 1. The express,i0|qcf<£+%_| is the logarithmic

differential of HK. This quantityHK is therefore invariant under all of the transfotioms A f.
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It is then easy to find an interpretation for it by nmgka convenient choice of coordinate axes.
If we take the center of gravity to be the origin, whlpermissible, since it is animated with a
uniform rectilinear motion, then one will see théd, H,, Hs, H7z, Hg, Hy are annulled. The
aformentioned quantity is theH (H? +HZ+H?), up to a constant factor; i.e., it is theoduct

of the square of the kinetic moment of the system in its motoncthe center of gravity with
the total energy of the system in this motidimis quantity is evidently independent of the choice
of axes and the choice of units.

V. - Application to the kinematics of rigid bodies.

96. Consider the motion of a rigid body with respecthiee fixed rectangular axes. One
knows that at each instant it is defined by a systemectors with the general resultapt ¢, 1)
and the moment with respect to the origfn/, {). Suppose that these six quantities are given
functions of time. The differential equations of matobf a point of a rigid body are:

dx

—=&+qz—-ry= X,
at é+q y

dy
—=p+rx—-pz=Y,
dt U P

dz
—={+py-gx= Z
at {+py—-¢q

These equations admit an obvious integral invariant. néf considers two infinitely close
points:
(X, ¥, 3, X+Xyt+dy,z+a)

of the rigid body at the instamtthen the distance between these two points willvaoy with
time. One thus has a differential form:

K+ &+ &

that is invariant if one considers only points at e instant, and which becomes invariant in
an absolute manner if one completes it by replacing:

X, 0y, &
with:
K-X& o-Y& &-Z&
respectively.
Let:
F=(X-XX?+y-YX+ (dz-Z X?

be this invariant form, to which there corresponds thedair invariant:

F(30)= (X=X X)(I'Xx-XI't)+ (&Y -YX)(O'Yy-YO't) +(dz—Z X)(d'z-Z7').
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This bilinear form is not alternating, bsymmetric. Nevertheless, the differential equations
of motion admit the infinitesimal transformation:

A=
ot

As a result, one may deduce another invariant form trenformF, namely:

1TOF _ o oeo osn _
9@ X(3x- XY -Y(Sy- ¥ )- 26 = Z)t

The same process may be repeated, learé this time it gives a first integral.

2
1oF F2 =X*+Y?+ Z2.
2 4(dt)

This first integral is obviously geometric. The too of the rigid body is helicoidal, and the
preceding integral is equal to the square of tHecity of the point considered a velocity that
remains unchanged throughout the motion.

VI. - Differential equations that admit an infinitesimal transfonation.

97. In the preceding examples, we supposed d@haintegral invariant was known. Now,
suppose that one knows only an invarieqiation—for example, the equation:

(4.(0) =ZaiX +adk + ... +a, K, = 0.

We assume that this equation is invariant; it@at t may be written in such a manner that it
contains only first integrak, ...,y.-1 0f the given differential equations and their datives. In
other words, one has:

(9 = p[ba(y)Oy1) + baly) Iz + ... +bn-a(y) n-1],

in which theb; depend upon only thg, ...,yn-1, @andp is an arbitrary function. If one replaces
the symbol of indefinite differentiatiod with the symbol for the infinitesimal transfornaat Af
then one will immediately have:

w9d) _b(y)oy+b(yoy+..+ b (Y y,
(A By AY+ B( Y Ay+.+ hi( Y Ay

and the right-hand side will obviously beiamariant linear form.
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The knowledge of an infinitesimal transformation tA&t a given system of differential
equations admits and the knowledge of a Pfaff equatigh= Othat is invariant for this system

implies the knowledge of a linear integral invari rﬁ@
W(A)

For example, suppose that one is dealing withrdimary differential equation:

dx _ dy

X Y
It is invariant by itself. As a result, if it adimian infinitesimal transformation:

of of
Af =& —+np—
‘(ax ,76y

then it will also admit the invariant linear form:

Xoy-YO0 x
Xn-Y&

Here, since there is only one first integral, tloaim is necessarily an exact differential. In othe
words, one knows an integrating factor for the éiquathis result is classical.

Most of the differential equations that one kndwe integrable follow from the preceding
remark. This is the case for the equations:

dy _ dy _ dy _ (yj
—Z=f(x), =Z==1(y), —=Z=f1f|=2].
dx ) dx ) dx X

For example, the last of these equations doeshaotge if one multiplies andy by the same
constant factor 1 € It thus admits the infinitesimal transformation:

Af = xﬂ+ yﬂ.
ox "oy
As a result, the expression:
dy- f(yj dx
_\X)

is an exact differential. This property becomesials if one sets:

y=ax
because then the expression becomes:
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du dx
+

u-f(u x°

The integration of that exact differential lead¢he same calculations as in the classical method.

98. Finally, if one knows nothing priori about a given system of differential equationsithe
the knowledge of an infinitesimal transformatiomttbhis system admits allows us to obtain an
invariant Pfaff system. Indeed, we look for all tfe Pfaff equationsw = 0 that are
consequences of the given differential equationlsaaa such thad(A) is zero. If one sets:

a(a) =K+ ALK+ ...+ A K
then the coefficientd; will be given by the two conditions:

A X+ X+ ... +An X = 0,
M+ &+ .+ 46 =0.

The desired set of equations thus forms a Pfaftlesy that is obtained by annulling all of the
determinants with three lines and three columnaeématrix:

Xl X2 Xn
51 52 fn

This system has a significance that is independétite choice of variables. Now, if one
takes then -1 first integralsys, ..., yn-1, and onen™ variable to be the variables then the
equations will reduce to:

%:%:“.:_5%1_1 (/7|:Ay|)

h 1, MTh-1
The Pfaff system under consideration is therefoneniant, and obviously it is completely
integrable, since it reduces to a system of orglidéferential equations ig, ..., Yn-1.

For example, if the equations:

dx_dy_ dz
X Y Z
admit the infinitesimal transformation:
of of of
Af =¢f—+np—+7—
‘(ax ,76y Zaz

then the total differential equation:
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dx dy d
X Y Z|=0
$ n ¢

will be completely integrable. Upon integrating it, om# obtain a first integral of the given
equations. After equating this first integral to a coristane will be left with an ordinary
differential equation that admits a known infinitesimr@nsformation, which can be integrated
by quadrature.

VIII. - Expressing the idea that a given system of differential equation
admits a given infinitesimal transformation.

99. We have not yet indicated the analytical conditithrag express whether a given system
of differential equations:

d d d
@ A= =Th

admits a given infinitesimal transformation:

of of of
3 Af =& —+& —+ +& —.
(3 ciaxl 526X2 Ena)%
Set:
of of of
5 Xf=X —+ X, —+--+ X —.
(5 x| 2 ox, Xna)%

Our problem is then basically one of expressing the tidaaif f is a first integral, ie., if it
satisfies the equation:

then Af must also be a first integral. In other words, it an®uo expressing the idea that the
equation:
X(Af) =0
must be a consequence of the equation:
Xf=0.
We may substitute the equation:
X(Af) = A(Xf) =0,

for the first equationwhich contains the second-partial derivatives.of$ an easy calculation

shows, this new equation is linear and homogeneous w'mbcrtetoi, i. The desired

X 0X,
condition is thereforequite simplythe existence of an identity of the form:



10z Lessons on integral invariants

(7) X(Af) - AXP) = p XF,

in which p denotes a conveniently chosen coefficient

This condition is obviously verified if one uses the in@simal transformation whose
symbol isXf. This transformation displaces each pdhbf space along the integral curve that
passes through that point; it thus leaves each integrak invariant. If one directs one’s
attention to the effect that is produced on the integrales, which are considered as indivisible,
then this particular infinitesimal transformation willlay the same role as theentity
transformation. One will easily see that the efiecapplying the infinitesimal transformations
that were defined in this chaptenishesn this particular case. The same remark appli¢lseto
infinitesimal transformationXf, in which A is a given arbitrary factor.

VIII. - Equations of variation.

100. The notion of an equation of variation is due to binParé. One may relate it to the
notion of infinitesimal transformation.
Consider a system of differential equations, whichanite as:

dx dx, _
8 — =X, x
®) dt ' dt

in which the right-hand sides are given functiong;of..,x,, t. Let:
9) x1 =fi(t), X2 =fo(t), ...y Xn =Tn(t)
be a particular solution of this system. Take an itdipiclose solution:
Xp =f1(t) + exa, Xe=f(t) + £x2, ..., %0 =fo(t) + X,
in which gis an infinitely small constant, and theare unknown functions af If we neglect the

infinitely small terms of second order then we wititain the following as a definition of the
unknown functions:

(10) Z‘: 0>§5 6X62+ -+ XE (i=12:-n).

These are the equations of variatietative to a particular solution under consideaii

It may be the case that one knows a particulantisol of the equations of variation
independently of the particular solution of theagivequations that serve to define the equations
of variations. The quantitieséy, ..., & are then, in reality, definite functions ®f, ..., t that
satisfy the partial differential equations:

ag(1+)( 5 + X 5 51 fzai+...+f a_x

ot ax1 " 0X, 0%, 0X
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In this case, the given equations obviously admit theiie§imal transformation:

of of of
Af =& +& 7+ 48
516)(1 526x2 5”6%

This transformation is expressed by the equations:
X =X+ E&,

X;:Xn-l"ggn,
t' =t

The transformed curve of the integral curve (9) hagdarquations:

X + &6 = fi(t)
or
% =fi(t) - &6i.
It is also an integral curve sinced, ..., =&, constitutes a solution of the equations of
variation.

More generally,any solution () of equations(11) corresponds to an infinitude of
infinitesimal transformations that leave the given syst@) invariant, namely, the
transformations:

of of of of of
12 Bf =& — 4+ 4+& — 4| —+ X, — et X — |,
(12) gzlaxl ‘(”axq [at tox ”64}

in which A is an arbitrary function.

Conversely,suppose that one knows an infinitesimal transformatian leaves the given
system invariant; it may always put into the form (12he integral curve (9) is then changed by
this transformation into the curve:

X + && + EAX =1t + &1),
or
Xi=fit) - &+ EA[f () - X]=Fi(t) —€&.

As a consequence, the equations of variation (11) williteithe solution &, ..., &).
All of these properties ultimately result from tleetf that equations (11) define an analytical

translation of relation (7) only when the coeffici«a)rhtg—ft in Afis zero.



CHAPTER X

COMPLETELY INTEGRABLE PFAFF SYSTEMS

l. - Frobenius’s theorem.

101. A system oh Pfaff equations:

@ =a,dx+ a,dx+---+ g dx=0,
(1)
@, = a,dx + g,dx+---+ g,dx=0,

is completely integrable when it may be put into thenfor
(2) dyy =dy, = ... =dy, = 0.

From this, it follows that each forma is linear indy, ..., dy,, and, as a result, that is
zero, on account of (2), i.e., on account of (1).

In order for a Pfaff system to be completely integrable it cesgary and sufficient that the
derivatives of its left-hand sides all be annulled on account of thensgsjuations.

In order to prove the converse, we first remark thatpifoperty that we just stated does not
depend on the choice of variables and does not depend ohdice of the left-hand sides. In
other words, if one writes the equations of the systethd form:

EGiw+aa+ ... +anah =0,
ThEhi W+ 0w+ ...+ 0hnah =0

then the derivativesr,,w,,--- &, will also be annihilated on account of the system eqgustio

One has:
W = 0100, + G, + ... + 0 @, + [dais a] + [dap awp] + ... + [dain a)] ,

and each of the terms on the right-hand side is antatildy hypothesis, under the indicated
conditions.

Having said this, we suppose that the converse has beerdprp ton — 1 variables, and
prove it forn variables. Theo' are annulled on account of equations (1), aridrtiori if one
also makedx, = 0. As a resultif one regardsx, as a fixed parametethen system (1) is
reducible to the form:
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dy1:0,
dy, = 0,

in whichy;, ..., yn» areh independent functions o, ..., x,-1, but which might also contain the
parametex,. Now, if one no longer regards as constant then the system will obviously be
reducible to the form:

@, =dy, + hdx =0,
(3)
@, =dy, +b,dx =0,

in which by, ..., b, are functions ofy;, ..., yn, and, for example, ofp+1, ..., X, . One has,
moreover:
@, = [dbydx.), ..., @, = [db, dx.).

On account of equations (3), these formulas reduce to:

[AX,., dx] +---+ aab

+1 -1

o =28

[ dx, dy .

The hypotheses thus imply as a consequence thabtfficientd depend upon only thg,
...+ Ynh, Xn. But then equations (3) constitute a system dinary differential equations that may
be reduced to the form:
dz =0, ...,dz =0.

The symbols, ...,z, denoteh independent first integrals.

102. The preceding theorem, which is due to Froberpesnits us (se®4) to express the
necessary and sufficient conditions for the conepietegrability of the given system by means
of the relations:

(@, ...ah@1=0, ..., [, ..., ar @] = 0.

For example, take a Pfaff equation in three véemb

w=Pdx+Qdy+Rdz=0.

d-z(a_l:)—@j dzd a_Q—a_P dx
0z 0X ox 0y

The condition for complete integrability is:

[wa] E[( Pdx+ Qdy+ Rw{(a—R—a—Qj d
dy 0z
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_|p[9R_0Q), o(9P_OR) (2Q 0P ]
_{P(ay azj*‘Q(az an+R(6X ayj}[dxdyd]z 0.

Il. - Forming the characteristic system of a Pfaff system.

103. One may give another form to the argument that wesepted above by seeking the
characteristic Pfaff system of a given arbitrary egs(1) in a general manner.
In order for a system such as (1) to be invarianterdifferential equations:

@ i R e

it is necessary and sufficient that the equations ofdfh)be expressed by means of first integrals
of (4) and their differentials. Therefore, it is fireecessary thady, ..., ay are annihilated on
account of (4), and it is therefore necessary thafottmas:

(@, ....,ah ], .., A, . ah ]

can be expressed by means of differentials of the ifitegrals of (4). In other word4, is
necessary that the associated system of the forms:

a, @..., @, [W, ....,ah A ], ..., [, ...,k W]
be a consequence of equati¢as
Conversely, if this condition is realized, andyif ..., ya-1 are first integrals of (4) then one
will be left with equations of the form:

ah =dy; + by pe1AYher + ... +b1 n1dyng = 0,

h = dyh + by he1dyhes + ... +bn p-1 dyh-1 = 0.

. ... 0db,, oh ., .
The form[a, ..., @ @' ] does not involvedx, , so the derivatives—"2 ..., B, will all

X, 0x,
be zero. As a result, equations (1) can be writtesuch a manner as to involve only the first
integrals of system (4) and their differentialsende, system (1) is indeed invariant for equations
(4).
It results from this thahe characteristic system ¢f) is nothing but the associated system of
the forms:

A, @...,a, (W ... dd], . [@A.ad] .

In particular, in order for the system to be casbgply integrable, it is necessary and sufficient
that this system be identical with (1), i.e., ttie forms:
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[ ..ahdd], ..., [AW...;h W]
be identically zero.

104. One may also obtain the equations of the charatitesiystem of (1) in the form:

@120’0)2 = 0,... ), = 0,
o/  0df = 0df
d(dx) o(dx) a(dx) 0
a, a, - & '
A G2 &y,

In particular, the characteristic system of a Pdgffiation:

w=Eadx +axdx + ... +a,dx, =0
is given by the equations:

adx +adx+---+ @ dx=0,
a,dx, + a;dx+---+ g d?](: g dyt g dy---+ @ qX:_._

a a,
— anld)ﬁ oot %,deﬂ
a,
upon setting:
_9%a oda
' ox ox

We shall return to this system later in Chaptev Xl

lll. - The integration of a completely integrable Pfaff system.

105. We now return to a completely integrable Pfa#iteyn, which we write:

dz = g, dx+--+ g, dy,
(5)
daq = 3n1d)£+...+ atq d)é-
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The integration of this system amounts to the intégraif a system of ordinary differential
equations in h unknowns,z.., z of one independent variable. x
Indeed, we know that the system admits one and omysoftution that corresponds to the

given initial values(x’, z|.°). In order to find the values of the unknown functiefs.., z, that
correspond to a given system of numerical valujes--,xﬁ of the independent variables, we

displace ourselves on the integral manifold from thetppif) to the point(x"), and follow the

variation of thez;. For any such succession of intermediary valueseoindiependent variables,
the result will always be the same. For examme, s

X =% =m(x= X),, ¥— &= m( x ¥,

in whichmy, ...,mq denote the| — 1 quantities:

:)ﬁl_)ﬁ0 =2.
M=l (=200
We have:
dz =(a,+ a,m+---+ g ny dx
(6)

dz,=(g,+ o m+---+ §, M) dx

It will suffice for us to integrate this systemafdinary differential equations and determine
the solution that corresponds to the valaps:-, Z of the unknown functions fox = x’. Once

this solution is determined, we will obtai),---, Z by replacing the parametric quantities, ...,

my with the values that were indicated above.

We remark thathe knowledge of one first integral of a systemomfinary differential
equationg6) in g — 1 parameters fnrdoes not unavoidably imply the knowledge of a firstgral
of the Pfaff systertb).

IV. - Complete systems.

106. Return to the completely integrable system ()which we denote a system bf
independent first integrals lyy, ...,yn. Arbitrarily choosen —h linear differential forms:

a‘h"’ll lah

that are mutually independent and independentefdimsa, ..., ay. Any linear form indxq,
..., X, may be expressed in only one manner as a lineatidun of thea, ..., a . Now take an
undeterminedunctionf and consider its total differential:
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df :id)&+i d)&++i d%
0% 0, 0x,
One may express it linearly by meanscaaf ..., a» , whose coefficients are obviously linear
of of
and homogeneous+a-,---,—. Let:
ox  0x,
(7) df = Xaof O + Xof Oy + ...+ Xf Dy,

Then expressionXf are linearly independentJ?nf—,---,i.
0% 0x
Having said this, any first integral of the contplg integrable system (1) is characterized by
the property that its differential, which is corevidd to be a linear form idx, ..., dx, , is
annulled under the one condition that equationsafé)verified; in other words, by the property
of annulling:
X f, ooy Xnf.

The system of —h linearly independent partial differential equagon
(8) Xne1f=0, ... X f=0

thus admitd linearly independent solutionys, ..., Yn.
Identity (7) gives us that:

(9) dy =Xpy O + Xoy Oy + ...+ X,y O i=1,2,..h.

Since they; are independent functions, the right-hand sidesgoftions (9) will be linearly
independent combinations of tiag, «, ..., an. As a resultsystem(1) will be equivalent tq2).
Hence, it will be completely integrable.

We agree to say that the system of equationso{@)sf acomplete systent it admits the
maximum numbeh of linearly independent solutions. We see thate is a complete system
that corresponds to any completely integrable Pfaff system, and cdyverbe correspondence
is such that if the equations of the Pfaff systee a

W=W=..=w= 0
then the equations of the complete system will be:
Xh+1f:0, Xh+2f:0,..., anZO.
107. It is easy to find conditions for a given systefrinear first-order partial differential

equations to be complete.
Start with identity (7) and exterior differentiate We easily get
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=

h=n i=n j=
9) X L+ > X(X; ] =0.
h=1 i=1 j=1
Then covariantsa), can be expressed as quadratic exterior forms iathe., ay. Let:
1,..n
(10) o =) culww]

(i)

If we equate all of thedf «j] terms in identity (10) to zero then we will findat:
k=n
(11) X (X, f)=X (X H+> g X f=0.
k=1

Note the duality between formulas (10) and (11).
Now suppose that system (1) is completely intdgrabFrom Frobenius’s theorem, this
signifies thateJ , ...,aJ, will be annihilated, along witlw, ..., a. In other words, one will have:

Cerhijk =0 (j=1,...n=-hk=1,..h).
As a result, from (12), the combinations:
Xn+i (Xn+j ) = Xnsj Knai )
will depend linearly upon only thé..1 1, ..., X,f. The converse is obvious.
We agree to denote the combinatk(yf) — Y(Xf) by (XY). One sees thahe necessary and

sufficient condition for such a system to be cotepkethat the brackets of all the left-hand sides,
when taken two at a time, must be linear combinatf these left-hand sides.
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THE THEORY OF THE LAST MULTIPLIER

l. - Definition and properties.

108. Consider a system of differential equations:

dx dy
1 — =X, — =Y, —rt=[7
® XL =Y Z

that admits an integral invariant of maximum degree
Q =M[(K = X1 X) (K2 = X2 &) ... (O = Xn X)].

As we have seen (seé®0), the condition for this to be the case is thatekierior derivative
Q' must be zero, which gives, by an easy calculation:

oM , O(MX,) , O(MX,) | O(MX,) _
at  ox 0% 0%

(2)

The coefficientM is known by the name of tllacobi multiplier.
As we have seen, condition (2) expresses thetidgdahe fornQ2 can be expressed by means
of n independent first integrals:

of the system (1) and their differentials. In athverds, that one has an identity:

B)  MI[(o =Xy &)z~ X2 &) ... (Bn = Xn &) =H(y, Y2, ..., Yn)[ 1, 2, ..., Ol
It is now possible for us to recover the classibabrems that relate to the Jacobi multiplier.
THEOREM |.- The quotient of two multipliers lsind M " is a first integral.

Indeed, the two identities (3) that relate totthe multipliersM and M' give:

M _H %)
M H'(Y,. V)
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THEOREM II. - If one knows pndependent first integrals of equatio() thenone can
determine a multiplier of the system of-rp differential equations that reduces the integration
of the given system.

Suppose that one knowsndependent first integrajs, v, ..., ¥ , and suppose, as is always
permissible, that they are independent functiorns\ariablesx, xa, ...,Xp, i.€.:

D(yl,---,yp)io_
D(X,....X,)
Equations (1) may then be written:
d
(4) %:O’...,i: ,
dt dt

dxp+1 d)ﬂ1

5 —— =X !""_:Xn’
( ) dt p+l dt
and if one equateys, ...,yp to arbitrary constantS, ..., C, then the integration of system (1)
will reduce to that of system (5), in the right-taside of which one is supposed to replage..,
Xp With their values as functions gf:1, ...,X., t, Cy, ..., C,.

This suggests that the forfh which is invariant for equations (4) and (5), cdaviously be
written:

Q =N[(F1 ... Fp (Koss = Xps1 ) ... (T = %o A)].

In order to obtain the value of the coefficidt it is necessary to identify that expression
with the original expression. For example, by dopgethe terms in:

[OX1 O ... OKn),
one will obtain:
L)
D(X,-s%;)

Having thus determined the quantyone has the identity:
N (1 .. Fp (Fors = Xort ) .. (B = X D] = H [SF1...0%p Fpes... Vi,
[Oy1 ... FYp{N(HKp+1 — Xp+1 &) ... (K — Xn &) — HOyp+1...00n}] = 0.
Thisidentity expresses the idea (s&4) thatif one takes into account the linear relations:

N =0,0,=0,..0p=0

then one will have that:

(6) N [(HKpr1 = Xpr1 &) ... (K= Xn X)] = H (Y1, ..., Yn)[OYp+1...O0n].
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The left-hand side of this equality is therefore an invariant fornthiisystem of differential
equationg5). In other wordghe systen(5) admits the multiplier

- M
N= D(Yys-1Yp)
D(xl,...,xp)

THEOREM llII. - If one knowsn — 1 independent first integrals of equatio() then the
integration of the equations is achieved by a qaade.

It suffices to apply Theorem Il in the casemf n —1. One then sees that the linear
differential form:
M

D(¥y: s Vo)
DX+ %)

(9%, = X, 01)

is an exact differential when one supposes thatdhables are coupled by relations:

Yi=C1, ¥2=Cy ...y VY1 = Cp-1.

The general solution of equations (1) is thus oletéi by equating the integral of a total
differential:
M

ID(yl,---,yn-l)
D(X. %)

(dx, = X, df
to a constant.
Il. - Generalizations.

109. The theorem of the last multiplier can be geneedlto the considerably more general
case in which one knows an invariant fofof arbitrary degreer <n. Suppose that one knows
n -1 independent first integrays, ...,yn-1. Choosen —r of these integrals:

yal’yaz,...’ yﬂ

n-r

in all possible ways, and consider titeviously invarianforms:

[0Y, 0V, -0y, Q.
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All of these forms are of degree If they are not all zeradhen we shall revert to the
preceding case that we just studied/e have a multiplier.We may even have several, and in
certain cases Theorem | can give the last firggral by dividing two of these multipliers.

The exceptional case is the one for which all ofgtezeding forms are zero. Now, imagine
that Q is expressed by means &, ..., &1 and the differential of an (unknowmj" first
integraldy,. The hypothesis made amounts to saying @hdbes not contaimry, , because i
contains, for example, a non-zero term such that:

Al1 ... Or-1 9]

then the exterior product 6f with dy;+1yr+2... dyn-1 Would not be zero

If this is the case the@ will be an exterior form indy, ..., dyn-1, Which is an exterior form
whose coefficients that one may calculate. Eat¢hede coefficients will be a first integral. If at
least one of these coefficients is independen,of.., yn-1 then one will achieve the integration
by equating that coefficient to an arbitrary constartie ®nly doubtful case is the one for which
all of the coefficients are functions wf, ...,y»-1. Now it is clear that in this case the knowledge
of the invariant formQ might not be of any help in achieving this integration.e ®mply
remark that in this case the given equatidosiot constitutéhe characteristic system Qf

We may therefore state the following general theorem:

The knowledge of an invariant differential foh that admits the given syste(h) of
differential equations as its characteristic system permitsrughe most unfavorable case, to
achieve the integration of this system by a quadrature when one already kmows
— lindependent first integrals.

110. Another generalization of Jacobi’'s theory of thd lasltiplier relates to completely
integrable Pfaff systems. Let:

=0, =0,..,w4=0
be a completely integrable system for which one knawis\aariant form of maximum degree
Q=M[wa ... W]

The knowledge of —1 first integralsys, ..., -1 Of the system permits us to achieve the
integration by a quadrature. Indeed, upon equating., y.-1 to arbitrary constants, the given
system will reduce to only one equatierfor example,«w = 0 — and one will have a formula
such as:

Q=N[dy1 ... Wr1a],

in which the coefficienN can be deduced froM by an easy identification. It results from this
thatNa is an invariant form for the single equation that ras& be integrated; vizg) = 0. In
other wordsNe is an exact differential. The integration is thehiaved by a quadrature.
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Finally, the completely general theorem that sunmearall of the cases envisioned is the
following one:

The knowledge of a differential folthpermits us, in the most unfavorable case, to achieve
the integration of the characteristic system of that form by quadratues wne already knows r
— lindependent first integrals, where we have denoted the class abrtimaby

lll. - Case where the independent variable is not specified.

111. If the given system of differential equations wpue into the form:

then any integral invariant of degree- 1 would be of the form:
Q =MX[dxedXs ... dX] — MXz [dx dXs ... dX] + ... =(=1)"MX, [dx d% ... d%-4],

and the conditio’ = 0 would become:

OMX,) L AMX,) | O(MX,) _ o
o, 0%, 0x, |

Apart from the difference described, this theorywddbe identical to the one that was described
above.

IV. - Case in which the given equations admit an infinitesintednsformation.

112. Take the general case of a completely integraydeem:
(7) =0, @=0,...,.4=0
that admits an invariant form of degneavhich one may suppose is reduced to the form:
Q=[wa ... &].

Suppose that this system admits a known infimtesitransformationAf, and form the
guantities:

aw(A), A, ..., wA),
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which we suppose are all zero. One may always suppasthéhaquations of the system are
written in such a manner as to make:

(8) wA) =1, @A) =w)=..=awA) =0,

while Q keeps the same form.

As we have seen (se88), the knowledge of the infinitesimal transformatiipermits us to
deduce another invariant for@(A, J) from the formQ(J), which, with the hypotheses made
here, reduces to:

QA J=[w ... wl].
We denote this new form by the letfér We have that:
Q=[]
Theassociatedand non-characteristic) systemlofs:

9) @w=0, @=0,..au=0.

It is completely integrablel his results from an earlier theorem (s@8), but also from the fact
that sinceQ is expressible by means offirst integralsys, ..., y: of the given system and their
differentials, the associated system Q¢A, J), like Q, contains onlyys, ..., yr , and their
differentials. As a result, it will be a system arfdinary differential equations. Hence, it is
completely integrable.

Now, form the exterior derivativié' of the formIl. It is a new invariant form of degree
One therefore has:

M=mQ=m[wMN].

The coefficient s a first integral. However, there are some cases that we must discuss:

1. m=0: M'is zero, and the system (9) that is associatdd i® its characteristic system.
One therefore knows a multiplier of system (9). Assult, when one knows- 2 independent
first integrals of this system, the integration wik lachieved by a quadrature. A second
guadrature will then achieve the integration of the givertesys(7). This quadrature is
obviously | .

It is obvious that herBl andQ are reducible to:

N=[3:..%] Q=[d1:..H]

When the transformatiofsf is applied to the first integrals of the given systémwill reduce
to:

A=

ay,
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There are an infinitude of ways of choosing the fimstgrals in such a way that the givens
remain the same, i.e., in such a manner thaind Af do not change. One may perform an
arbitrary transformation ow, vs, ..., Yy of functional determinant 1, and add an arbitrary function
of yo, ..., ¥r toyi. This explains the nature of the simplifications the¢ presented in the
integration.

2. mis a non-zero constanttn this case, we suppose that one has integrated s{@&eamd
letys, ...,y: be a system af- 1 independent integrals. One will have:

Mn= H[d/z @3 d/r],

in which the coefficienH is independenbfys, ...,y: (otherwisd1' would be zero), butl is still a
first integral of the given system. One thus obtaims'sintegral of the given system by simple
differentiations.

If we writey; in place oH then we have that:

1 of
Q:E[5Y15y2"'5yr]’ n:yl[éyz"'ayr]’ Af:m}{a_'

1

The most general transformationyp ..., yr that preserves the given data is obtained by
performing ararbitrary transformation omy, ...,y and setting:

v = Vi
AT, )
D(yzi"'1 yr)

This explains why the integration of system (9) canmosimplified and also why, once that
integration has been performed, the integration o$yseem (7) can be deduced from it.

3. The coefficientnis not constant, but () is zero: The functionm is a first integral of
system (9). The integration of this system amountsabof a system of differential equations in
r —2 unknown functions. The integration of the given eystis deduced from it as in the
preceding case.

The formlT is reducible to:

M :yl[&nd@ d/r],
and one has:

1 of
Q==—[0y movy---0 V], Af =my—.
rn[ Yy Moy, Y] %5

Y1

The transformations that preserve the givens are:
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m=m y=f(my- Y y= fmye, ),

o y;
toD(f )

D(ysi""yr)

<

This explains the simplifications that are preednh the integration.

4. The coefficient ms not constant andAm= m#0: In all of what follows, take the

general case:
Am=nmy, Amy=np, ..., Amyi=m,

and suppose that, my, ...,m_; arei independent first integrals of the given systendl ¢natm is
a function ofm, ...,m_z .

The given system then admitsknown independent first integrals, amd integration
amounts to the integration of a system of differential equations ihunknown functions when
one knows a multiplier.

We look for the reduced form €f andAf. One may always set:

Q=H [dn ATy ... O @Hl d/rL

in whichyiss, ...,yr arer —i first integrals of the system (9) ahudis a function ofn, ...,m_1, Vi1,
...,Yr. Obviously, one has:

of of of

A =M om om T Mo
-1

We express the fact that the exterior derivatifdlo= Q(A, J) is equal tomQ, or, what
amounts to the same thing:
AQ) =mQ.
One has:

AQ) = (A H)+(,,"’r;n oM Mg--8 M, & ¥y .

One will thus have:

A(H)+aam H=mH.

-1

Let h(m, my, ..., m-;) be aparticular solution of that partial differential equation. € latter
may be written:

In other wordsH / h is an integral of equations (9). One may therosbyi.1, ..., ¥: in such
a manner as to reduce that function to unity. Wie¢hus have:
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Q :h(m, ...,m_l)[dn dnl...dn_ld/m...d/r],
of . of o

The transformations that preserve the given datalaneusly:

m:m ﬁil: m,...’_rinl: ml,
_i+1: i+1(ﬂ11"'1/4—1’¥+11"'1y )""1

Y,
Yo = f (YY),
with:
D(7i+1"“’7r):1
D(Yiar - %)

(We have leps, ..., -1 denote -1 independent functions af, my, ...,m-; that satisfyAy/ = 0.)

The nature of the preceding transformations erpléie simplifications that are presented by
the integration.

However, it may be the case that r. In this case, no integration needs to be pemdim
since one hasindependent first integrals by definition.

V. - Applications.

113. The theory of the last multiplier can be appliedall of the indicated preceding
examples that involve an invariant form whose degee equal to the number of unknown
functions. Recall these cases:

1. The equations that give the motion of the mwles in a continuous medium when one
knows the density and the components v, w of the velocity as functions af y, z, t:

Since the integral invariant is:
Q=pl(x-ud)(dy-vi)(aZ-wd)],
the multiplier will be p. Therefore, if one knows two independent firstegrals then the

integration is achieved by a quadrature.
If the motion issteadythen the invariant form:

N=Q(, J=-pul[yd -pv[dd -pw[X W]
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has zero derivative. The equations that give the geantedjectories:

admit a multiplierr. As a result, if one knows a first integral théyxe tdetermination of the
trajectories will require only a quadrature, and a finatgatre gives.

2. The equations that give the vortex lines of a giveator field ¥, Y, Z2) are the
characteristic equations of the form:

[OX & + [dY o] + [ &

_(9z _ov ax_0z Y OX
_(ay azj[éyéz]{az j[ézd]u[ 3% ay}d%]y.

The equations:
dx _ dy _ dz
0Z 0Y 04X _9Z adY 0X
dy 0z 0z 0x 00X 0Y

thus admit a known multiplier, which is unity.
3. The equations of dynamics, in their canonical form:

dq _oH dp _ oH

dt op’ dt  aq

admit the multiplier 1. This results from a direefaulation. It also results from this that the
existence of the invariant form:

0= i[(aq. —aét)(én +a—';5t)1

implies the existence of the invariant fof:

Lo = Biiaq - sy(an +
2= [lea -5 aven + qét)]
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114. However, the preceding theory of the last mukiplapplies not only to material
systems for which the canonical equations of Hamili@nvalid, but also to any systewith
perfect holonomic constraints whose given forces depend upon only the podtiersydtem.

For such a system, one has Lagrange’s equations:

g[a_Tj_a_;:Q(q,..,q,t)_

If the Q; are zero then the introduction of Hamilton’s candniaxiables will lead to the
equations:

dq _oH dp _

dt op’ dt  aq

It results from this that the complete equations ofi@moare susceptible to being put into the
form:
dq _oH dp _

ot op’ ot 6q *Q

They admit the multiplier 1. In other words, they &dhre invariant form:

Q= [(5%—6—;'50 (5q—g—pat)(5n+[g—q—qjéo (59{62 qjén,

n

which can be written in terms of the Lagrange variables

Q= |‘][(5q. qét)(éa—T—[g—T+Qj5t)1

If the constraints, as well as the given forces,irrdependent of time then the equations of
motion will admit the infinitesimal transformation:

A=
ot

and, as a result, they will also admit the invariamtrfl1 = Q(A, J), whose derivative is zero.
From the general theorem, the integration of the equsatid motion is reduced to the integration
of the (geometric) equations of trajectories:
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49T
dq _ o9 or da__ dp
qi al.{.Q aiH _67H+Q
ag op  oq

to which the theory of the last multiplier may be #gxhl and a quadrature gives time. Indeed,

one obviously has, for example:
Q= (&—iﬂn ,
G

sinceQ(A, J) is equal td.

115. As an example of forces thdepend on timebut still admit a known infinitesimal
transformation, consider the simple case of a gt is moving on a fixed line and is attracted
to a fixed point on the line according to a force tlsapiioportional to the distance, with the
proportionality factor being a known function of tim&he motion is given by the second-order
differential equation:

d?x

— =-k(t)x,

e (t)
or by the system:

(10) dx _ dx

— =X, — +k(t)x=0.
dt dt ©

The second-order equation does not change if dtramgesx into Ax, with A being an
arbitrary constant factor. As a result, the systemvhich it is equivalent admits the infinitesimal
transformation whose effect is to change:

X, X, t
into
Q+9x%x (@Q+ox, t,

respectively. The symbol of this transformatian is
Af = x—+ X—.
0
System (10) admits the invariant form:
Q=[(x- X X)(IX +kxA)],
which corresponds to the multiplier 1. Here, tbeied formQ(A, J is:

@=xX(OX +kx &) — X (&K~ X &) =xIX — X &+ (X2 + kd) 4.
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It is an invariant form. Its exterior derivative is:
@ =2[X oX']+2X'[oX d] + 2kx[x &] = 2Q.

Since the coefficient o€ in the right-hand side is constant, we have (4@ that it
suffices to integrate theompletely integrableequationcw = 0 in order to deduce the general
solution of the given system by differentiations. eTifarm w s indeed reducible tg dy,. This
form may be written, upon changignto d:

] 2
m:x{di+(xl_2+ kj dt]
X | x

If one sets:

then one will thus be led to integrate the Ricatti eéquat

%+u2+k:0.
dt

Suppose we have integrated that equation. We have atigtal in the form:

_a(u+ Bt _a)x +B(H)x
2 yu+o(t)  yt)X +o()x’

After identifying wwith y;1 dy,, we find, upon taking, for example, the termehn

_ ad - By
from which:
_(yxX' +9%°
YT as-py

If one supposes as is permissible that the determinartdo— Sy is equal to 1 (or simply
constant) then the general solution of the systdhibesfurnished by the equations:

ax + ,65( =Cy,
X'+ X =Cy,
and one has that:
x =Caa(t) — Cy ().
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In other words, the coefficientgt) and (t) that present themselves in the general integral of
the Ricatti equation constitute a system of fundanhesdlutions to the given second-order
equation.

Other situations may also present themselves. Suppokeomethe general solution of the
Ricatti equation, expressed in termg ahd the integration constayt. The identity:

y1dy, =X [du + (U? + K) df]
gives:
T
oy,

from which we obtaix as a function oy, y,, andt. Since we have:

u= a_3/2_,3
VY, ta

we will obtain:
X =yi(a - yy)),
from which, we will get:
x=Cia+GC, ) A

116. REMARK. — The theory of Jacobi’'s last multiplier can be apptie other problems in
mechanics than the ones that were pointed out abaweexmple, take the motion of a material
point that is subject to a force that is a functiorooly its position in space, but the system of
reference is associated with a uniform rotational nmoéicoundOz  The equations of motion
are of the form:

2
AX g Y x =0,
dt d

2

Y _2g &_y=,
dt dt

2
d'z -z2=0,
dt

in which X, Y, Z are given functions of y, z t. If we write them as:

%zx' d—X:—Zay+X,
dt dt
ﬂzy’ d—y: 2aX +Y,
dt dt
dZ:z’ dz: L7

dt ot
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then we will obtain a system that obviously admits tiultiplier 1.

117. The final application that we shall envision is furedhoy the integral invariant of
hydrodynamics:

Q=¢[ya+nlad]+[xd]+(nw-dV[XA]+(Ju-dWdy d]l+({v-nuad].

The characteristic system of this invariant is corepas the two Pfaff equations:

dx—wdt_ dy- vdt_ dz wd
& n '
The integral manifolds in spacetime ¥, z t) are two-dimensional manifolds that are generated,
for example, by a vortex line in its different succespositions.

The integration of this system amounts to that oystesn of two differential equations in
two unknown functions when one knows a multiplieheBearch for molecular trajectories (i.e.,
the streamlines) requires, in addition, the integratibran ordinary differential equatiotmat
might be arbitrary.

If the motion is steady then the characteristic fodds will be given by two quadratures,
namely:

dx dy d
I u v =C,
& n ¢

and then if we take the preceding equation into accoumtjwve assume to be solvable in terms
of z, then we will get:

o1 Edy_
§v-nu



CHAPTER XIlI

EQUATIONS THAT ADMIT
A RELATIVE LINEAR INTEGRAL INVARIANT

l. - General method of integration.

118. Consider a Pfaff formw and the characteristic system of the relatintegral
invariant/ cw This is the associated system of the fafm

First, suppose thaw has 2 + 1 variables. Since the fow\ hasevenrank (sec59), its
characteristic system will be composed ofejuations, in general. As a restittere will exist,
in general, one and only one system of differential equations that adm#isiteve integral
invariant] w3 wherewis an arbitrary Pfaff form ir2n + 1 variables; this is the case for the
integral invariant of dynamics.

In a general manner, lehde the rank (or the class) of the foeh. It is easy to indicate a
method of integration for the characteristic equat@ng' .

Indeed, lety; be a first integral of these equations (it is obtéibg an operation of ordenp
If one couples the variables by the relatyare C,, i.e., if one couples the differentials by the
relationdy; = 0, then the rank @ will diminish, and as it always remains even, itlwgduce to
2n - 2. Lety, be a first integral of the new characteristic systdf we suppose that:

y1 =Cy, y2=C2
then the rank ab' reduces to 2- 4, and so on. Thus, by successive operations of order:

2n,2n-2, ..., 4, 2,
one will find n first integrals:
yl, y21 ---,yn,
such that if one supposes that the variables are cobpldg relations:

Y1 = Cl, Yo = Cz, o Yn = Cn

then the rank ad’ will become zero. At that point, sineg’ is identically zero, the forrvwill
be an exact differential. A quadrature will then punitiv the form:

w=dS

The functionS depends om constantsC,, ..., C, . If one no longer supposes that the
variables are related by thandicated relations then one will obviously have:
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w=dS+z dy; + zdy, + ... +Z,dys,
and, as a result:
w = [dzdyi] + [dzdy:] + ... + [dz, dyy).

Sincew' is of rank 2, the 2 differentialsdy; anddz will be linearly independent. Hendbége
2n functionsy; and z will constitute a system of independent first integrals of thengive
equations and the integration is thus accomplished.

By definition, the integration requirest+ 1 operations of order:

2n,2n-2, ..., 4, 2,0,
according to the differentiations.

REMARK |. — The quantityS serves as only an intermediary here. In genenglnivt a first
integral of the characteristic equations of the invafia

REMARK Il. — One sees from the result that was just obtainedating quadratic exterior
form with zero exterior derivative can be put into the form

[dz dyi] + [dzdy,] + ... + [dz,dyy] .

119. It is important for us to account for the indeterminacthe choice of functiong and
z that enter into the canonical form. The equality:

[dZ, dy] +[dz, dy] + ... {dZ, dy] = [dzdy] + ... + [0z dyi]
implies the property that the difference:
z dy+z dy,+ .. +z dy,— (zdys + 22dy, + ... +z,dyp)

must be an exact differentidV. Suppose, as is the general case, ¥hat.., y, are independent
functions ofz, ...,z,. There is then no relation between yhand they . If one expresseg as
a function of they; and they; then one will deduce that:

,:6_V :—a_v
T Ty

These equations, which involve an arbitrary functionrofjuments, permit us to express
they' and thez' as functions of thg andz. As a result, the lattergive v, ..., y,, and the first

givez, ..., Z,. This supposes that one does not have:
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D(GVGV...WJ
0y, 0y, 0% )_,

D(Y1 Y3 ¥h)

Under the same condition, one can expresy t#®ea function of thg’ and thez' by means of
the firstn equations and thus obtain thby means of the last equations.

One will similarly treat the case where there ewis¢ or several relations between yrend
they'.

The set of transformations thus defined on the vasabtandz - i.e., on the integral curves
of the given equations defines an infinite group that plays the same role inth@ery that the
group of transformations of functional determinant equdl fays in the theory of the Jacobi
multiplier.

120. Recall the integration of the characteristic equatiofew’'. Suppose that, by an
arbitrary procedure, we come to kn&w> n independent first integrals, V-, ..., yn , such that
upon equating them to arbitrary constants, the rank' diecomes zero, i.ecwbecomes an exact
differential. A quadrature that corresponds to the diffgations then gives:

w=dS+z dy; + zdy, + ... +Z,dy,.
It is easy to see that, z, ...,z are first integrals.
Indeed, suppose that among the functigrend z there areN + r independent ones. One

may then express the functionss functions of thg andr of the others, which we call, ...,t;.
Having assumed this, we will then have:

w = [dzadyi] + [dzdy;] + ... + [dzydw].
By hypothesis, the characteristic system/a$ composed of the equations:
dyl =0, dyz =0, ...,dyN =0.

It also consists of the equation:

o 0z, 0z, 0z
——=-dz+—Ltdy+—2 dy+---+— dy =0;
o[dy] oy * dy dy

hence, the equation:
dz = 0.

One sees from this that taeare first integrals, and, on the other hand, that r will be
equal to 2.
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Finally, the knowledge of Nrst integrals makesv an exact differential when one equates
them to arbitrary constants and permits us accomplish the integration byuamkature and
differentiations.

121. In practice, it may happen that one does not seeéfdhe solutions of the given
differential equations, but only the ones for which bhdirst integralsy, ..., yn, have given
numerical values. One may then proceed in the following mannenceShe formw'is zero
when one annulldy, ...,dyy it can be put into the form:

w = [dyia@] + [dyoap] + ... + [dyn arl]

in an infinitude of ways, with theg being conveniently chosen linear forms. Among tHédse
forms g , there are - N of them that are independent of each other and indepeatithedy;
. Suppose that the same is truedmy ..., @~ . The characteristic system af is obviously
composed of the equations:

dyp =dy = ... =dyw =0,

=0 =...=0nnN=0.

If we express the idea that the exterior derivabif@' is zero then we will obtain:
[dyia@;] + [dyecm; ] + ... + [dyw @y ] = 0,
from which, in particular, upon exterior multiplying baygdys ... dyw], we will obtain:
[dy:dys ... dyna | = O.

The forma (as well as the formay, ..., @bn-n) IS thus an exact differential when one gives
fixed numerical values to thg . As a resultthe desired solutionare obtained by?n — N
independent quadratures

[ @ =, oo, | @onen = Poren -

There is no reason to be surprised at the fact thahave encounterech2 N quadratures
here when the search for the general solution requndg one quadrature. Indeed, after
performing the @ — N quadratures that were indicated above, we then perfbensimgle
guadrature:

jAlﬂ_ + Aok + ... +Aop-N Tn-n = CONSL.

that has @ — N arbitraryparametersd, ..., Aan-n.-

The preceding integration procedure uses only the invariamcfo, and does not involve
the forma Thus, the things that play an essential role here are the knowledge alfsbleite
integral invariant of the second degree and the property of the forai that it is an exact
derivative. The formw(or the formsa), whose derivative &', plays only an auxiliary role.
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Il. - The Poisson brackets and the Jacobi identity.

122. Let 2n be the rank of the exterior derivatiee, and letf andg be two first integrals of
its characteristic system. The two differentiahfist

[w"idfdd and R

are invariants of maximum degrea. 2 They differ by only a factor, and this factor isiestf
integral. We set:
1 _ 1
—— [ 'df dg =—=( f 9[ J
= d=—(f9[a]
or
fo[w"] =n[w " df dd.

The quantity f(g) thus defined bears the namePafisson bracketlt is an alternating bilinear
form in the partial derivatives dfandg.

The bracket of two first integrals is again afinstegral.

This theorem, which is due to Poisson in the paldr case of canonical equations, had its
importance pointed out by Jacobi.

Before going on to the applications of this theareve make several remarks.

The conditionf(g) = 0 expresses the idea that the rankvbis equal to 8 — 4. In this case,
one says that the integrdélandg arein involution.

If this condition is not satisfied then the defigiformula of { g) will express the idea that
the form:

o _[df dg]

(fg)

is of rank & — 2. Indeed, the™ power of this form is:

n

«"df dd =0 .
(f 9)[ d

[a)"] -

Again, we remark that if one redueedo its normal form:

W=l w] +[a ]+ ... +[an-1 ],
and if one sets:
df=fra +foa + ... +on ahn,
dg=gi1a +foa + ... +0on tn,
then one will have:
(fo)=f102—f201 +f3 Qs —faQs + ... +fon-102n —fon Oon-1.
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We finally remark that from what was said above (448), one may always suppose that
the w are exact differentials. An easy calculation thmegthe following identity, which is due

to Jacobi:
(fgh+(@hf)+(hhHg =0,

which is applied to three arbitrary first integrglg, h.
However, the verification can be carried out withawy gestrictions on the linear forms,
W, ..., . Itis based upon the identity:

(1) L _[wm((fg)dh+(gh df+(h) di=—

(n-1)! (n—2)![wn_ atdg di.

which is nothing but identity (8) that was provedsiec.68. Upon exterior differentiating and
remarking that the exterior derivative of the ridpaind side is zero, we obtain:

[/ d(f g) dh] + [/ "™ d(g h) df] + [ " d(h f) dg] = O,
which is nothing but the Jacobi identity.
123. The method of integration that was pointed ouhatbeginning of this chapter can be
stated in terms of the Poisson brackets. Let:
Xf=0

be the equation that expresses the ideaftimta first integral. One first seeks a particular
solutiony; of that equation. One then seeks a particulattisoly., of the system:

Xf=0, f)=0,
then a particular solutioys of the system:
Xf=0, ¢.f)=0, ¢f)=0,
and so on, up to a particular solutigyof the system:
Xf=0, §f)=0, ¢f)=0, .. ¢-1f)=0.
In the case of the canonical equations of dynamics

da_oH  dp__oH
dt op’ dt  aq’

which correspond to the invariant form:
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o =) [dp dq] {IH I,
i=1
the partial differential equation in the first igtals of the given equation is:

A o oH _of oH)_ o
ot =\0q dp 0p dq

As for the Poisson brackefsg) of the two first integrals, they are defined hg equality:
nf«/"*df dd = (fg)[ "]

Equating the terms in:

[IP1 A 2 ... Pn ]
(f g)zg[a_f_a_g_ﬂﬁj_

The partial differential equation in the first egrals can also be written by means of the
definition of the bracketf @) of two arbitrary functions af;, pi, andt as:

on both sides, we obtain:

of
2 -(Hf)=0.
P (Hf)

lll. - Use of known first integrals.

124. Now, we shall once more take up the problem t&grating the characteristic equations
of the differential forna’ by supposing that a certain (arbitrary) numbeifirst integralsy; , y»,
..., Yp are known. When one equates these integralsbitrasy constanty, C,, ..., Cp , the
forma’ will have its rank reduced by a certain even nuripeg 2p of units. It then suffices to
integrate the characteristic equations of that foeam — or rather, to finch — p’first integrals in
involution. One is then reduced to the problersexf.120

The preceding method does not generally give uthalpossible sets of known integrals.
Indeed, from the Poisson-Jacobi theorem, the btaakg given integrals, when taken two at a
time, are themselves first integrals of the equetibeing integrated. One will then form the
bracketsy; y;), and then, if they provide new integrals, onarfeithe brackets of these integrals
amongst themselves and the given integrals, amohsontil the operation gives us nothing new.
This amounts to saying thahe may always, by prior differentiations, suppthed the brackets
(yiy;) are functions of the first integrals,y>, ...,Yp.

Now, in order to know how many units it takes @éduice the rank ofy’ when one supposes
that the variables are coupled by relations:
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ylzcl, y2:(:2, ...,yp=Cp,

it will suffice to apply the theorem of se@9 to the exterior quadratic foraf that is constructed
from the variablegx, ..., don+1, Which are coupled by the relations:

@120’ @2:01 ---,@pzo.

In this case, the coefficients of sec.69 are the brackets;), and the quadratic foris:
=3 (y y)I& &1

The number of units by which the rankadf is reduced is equal to the maximum nuniger
diminished by the rank of the fodn

125. One may account for the fact that all of the possibls have been obtained from the
given first integrals in the following manner.
Perform a linear substitution (with coefficientsyn ..., yp) on thep variablesx, ..., % in

such a way as to reduddo its normal form:
=[]+ H Eppr & o (20 < p).
This amounts to replacing the linear fordys, ..., dy, with new differential forms:

@D, ooy Ty,

which are linear indys, ..., dy, with coefficients that are functions wf, ...,y,, and are such that
one has identically:

EOY, + &0y, +--+EDY, :Elml+§p2+...+§pmp.
The exterior quadratic forma will then take the form:

W= [@@] + ... + [@g-108g] + [@qr1@d] + ... + [@pah-2q] + [Wp-2qad-2q+2] + .. + [@np-16np],

upon introducing & — p new linear formsu, ..., n—p.
Let 'l denote the form:

N =[] + ... + [@hg-108],

and express the idea that the exterior derivative isfzero. If we neglect all of the terms that
contain one of the linear forms:
@Cﬁ'll 1%1 %—2q+1, ---,@n—p
then we will get:
(2) N+, W]+ H@,w, o] =0.
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As the formll is constructed from only the functiogsand their differentials, the same is
true forf’. As a result, no reduction of the similar terms banmade between the different
parts of the left-hand side of (2). In particularesults from this that each of the forms:

!
w2q+1’“ ’ 1w1p

will be zero (upon supposing that the formg.1, ..., &} are zero). As a resuthe Pfaff system
Tpgr1 = ... =ap =0

is completely integrableWe denote a system of first integrals of these egustyy:

72q+1’“'17p'
Furthermore, one always has:
n=0
if one regards the formsog+1, ..., @ as zero. In other words, if one supposes that

theY,q.., -+, Y, are constant then the forfh will be an exact derivative, and, as a result (sec.

118), it will be reducible to:
M =[dy, dy,] +---+[ dy,_, dy] .

Finally, one easily sees that one cangguito the form:
(3 o =[dy, dy,] +---+[ d)éq—l 6¥q] ul dxﬁlﬂl tee +[d7p E)p—Zq] +[a)iﬂch‘la)rﬂel*J tee
This ultimately amounts to the following theorem:

One can find functions:

Yir Yoo Yo
of the given pirst integralsthat satisfy the conditions
(71 72) == (72(]—1_y2q) =1,
while all of the other bracket§y, y;) are zero.
126. Apart from the intrinsic interest of this theoreits, form clarifies the fact stated above

that the indicated method of integration has educed #lleopossible consequences of the given
integrals. The form (3) that was found f@f permits us to write:

w=dS+7y dy+---+7y_, dy+ way,,+-+w , dy, +y dyt-+ oy ody
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@ =[dy, dy] +---+[ dy, o dy] H dwdy, ]+ Hwy o dY ]+ dydy + -4 dy o dy ] .

The most general group of transformations on the iategirves thapreserves the givens,
l.e., that leaves’', yi, ...,¥p invariant, is defined by the following equations, in which thmed
letters indicate the transformed variables ¥rdknotes an arbitrary function of the arguments
uir, 72q+1’ e ’Vp

yi':y (i:l’z,...,p)’

NV, v
1= 30 v Ve-prga T 0
oy, 0.
V. :—a_v ARV =— ov
toou TP ou
ov ov
w =w + e W, = + .
' 6y2q+1 b e yp—2q

Any unambiguous procedure that permits us, upantiisy withe' andp first integralsys, ...,
Yp, to deduce another first integral by operatithed have a significance that is independent of
the choice of variablesecessarily leads to a first integral that is mewa under the most general
group of transformations that presew'e yi, ..., ¥p . However, the only functions that are
invariant under this group are obviously arbitramyctions ofys, ..., Y.

V. - Generalization of the Poisson-Jacobi theorem.

127. The Poisson-Jacobi theorem is immediately genedliz instead of two first integrals,
one knows two invariant linear fornag andap. The quantityr that is defined by the equality:

4 n[o" o) = alw"]
is obviously a first integral. It reduces ta Y») if ax anda are the differentials of the two first
integralsy; andys,.

We apply this remark to the case in which, assgrinat the characteristic equations @f
admit two infinitesimal transformatiosf andA.f, one has:

= (A, ), k= w (Ag O).

In order to calculate the quantityin this case, we apply the operation that takeis aariant
form Q(J) into the formQ(A;, J) to both sides of equality (4). One obtains:

n(n-1) [ @mm] -n[W" maa(A)] = na [« @],

from which, since the formd/"™ ] is certainly not zero:
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a= —(Uz(Al) = (A]_, Az) = (D_]_(Az)

When the generalized Poisson-Jacobi theorem is applied to the two inviarisastw' (A4,
J) and o' (A2, 9 it leads to the first integraky’ (A1, A2) that is furnished by twice applying the
operations that correspond to the infinitesimal transformatiofigad Af.
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EQUATIONS THAT ADMIT
AN ABSOLUTE LINEAR INTEGRAL INVARIANT

l. - General method of integration.

128. Let wbe a linear differential form. Its bilinear covatian’ is of even rank, namelyn2
Two cases may be presented, according to whether thBoeque= 0 does or does not belong to
the characteristic system af . We shall first occupy ourselves with the latteseca

[. Obviously, one may set:
W=l a)]+ ...+ [n-1 W]

The X + 1 formsaw w, ..., i, are independent. In this case, the characteristic eqaatif w
are (sec78):

W=W=0=..=wn=0.
One may easily exhibit a reduced form éar Indeed, from operations of order:

2n,2n-2, ..., 2,
we successively find first integrals:

Y1, Y2, ..oy ¥n

of the characteristic equations adf, and reduce its rank to zero when we equate them to
arbitrary constants. A quadrature putsito the form:

w=du+zdy; +zdy, + ... +Z,dy,.
This is the desired reduced form, which is obtained byatipes of order:
2n,2n-2, ..., 2,0,
and which, once obtained, gives the general solutidheotharacteristic equations @f

In this case, one sees that the integration of tlaacteristic equations aob and the
integration of the characteristic equationscdf are two equivalent problems, and the fact that
[ w is anabsoluteintegral invariant has no more importance in the irtiégn than iff wwere a

relative integral invariant. This is true at least when onéo¥ed the method indicated in sec.
118 This will no longer be the case when one appliesré#hod of secl21

II. In the former case, one may express:

W =lwa] +[wa] + ... + [an-2 abn1]
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in terms of the & linearly independent forms) , ..., an-1. The equations:
w=0,r=w=..=wn-1=0

that are obtained by writing the equations of the aswmmtiaystem ofw', in addition to the
equationw= 0, in which one supposes that the differentials are coupled by the relato0,

have an intrinsic significance. This is the assediaystem of the two formeand [w «'], and,

as a result (sed.03), it is the characteristic system of the Pfaff equatios 0. We call that
system E), and denote the characteristic systenwdly (S), which contains the equatian = 0,

as well.

One may obtain a first integra of the systemX) by an operation of ordem2-1. Upon
equating the systenx) of the new formw- i.e., the characteristic system of the new equation
= 0-to an arbitrary constant, the number of its equatiahde reduced by two units. One may
thus find new integrals:

Y2, ooty Yn-1
by operations of order:
2n-3, ..., 3,

such that upon equating them to new arbitrary constaatsdaWw system>() that corresponds to
wwill contain only one equation, which will obviously lbe= 0. This says that this equation is
completely integrable, and a new operation of orderlllgwie a new integray,, which permits
us to write:

w=z1dy; + zdy, + ... +Z,dy,.
One will thus arrive at theeduced formof « which effectively involves the minimum
number 2 of variables, sincerRis the number of equations in the characteristic syé8of w;
i.e., the class odfu

One finds, with no difficulty, the most general tramsfation that one can perform on the
characteristic variables andz that preserves the form The equality:

z dy+ .. +z dy,=zdy + ... +z,dy;
gives, upon keeping the most general case:

V(Y s oY Y1 oY) =0,
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These formulas show that the variabjes..., yn ,ﬁ, ~~-,i are transformed into each other.
4

They are the minimum number of variables by meanwtoch the equatiorrv = 0 may be
written. They are the first integrals of the cluaeaistic system) of that equation.
If there existp independent relations:
Vi=0, V.=0,..,V,=0

between the; and they then the formulas that define the transformatiofh lvei:

ov

Z :/]la_\/}+/]2%+...+/]p_p’
oy, 0y, oy
ov

L VI .
oy, oy, oy

with p auxiliary unknownsly, ..., Ap.

129. One must remark that, from the point of viewrdgégration, the difference between the
two cases where the characteristic systemvisfodd (21 + 1) or even (B) is that in the first case
the integration requires operations of order:

2n,2n-2, ..., 2,0,
whereas, in the second case it requires operatiomsler:
2n-1,2n-3, ..., 1.

One must also remark that the two cases are gadgtdistinguished from each other in the
following manner: Let & be the rank b/, i.e., letn be the largest exponent such that the form

[ "] is non-zero.In the first casejww"] is non-zero. In the second cap@w"] is zero.

Il. - Generalization of the Poisson-Jacobi formulas.

130.1. Suppose that the formwis of the first type- Let f be an arbitrary first integral of its

characteristic system. The forrw['df] is invariant and of maximum orden2 1. One may
thus set:

[w"dl = {Hwa"],
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in which {f} is a finite quantity that is linear with respect to ffivst order partial derivatives of
the functionf. The quantity{f} is either a constant or a first integral of the characteristic
equations ot

Now letf andg be two first integrals of the characteristic equatioh&a One may define a
quantity € g) by the relation:

Nnfwaw"dfdd = (folwaw"].
The quantityf g) is again a first integral.
If the formwhas been reduced:

w=du+zdy; + ... +Z,dy,
then one has:

_af
{f}—au,

= of (dg _dg) odg( of _ of
fg)=—|Z-z=2|-=2| —-z—|.
(o ;64[%{ ZGIJ GY(G}/ Zauj

From this, one may deduce the following important idesgtitvithout difficulty:

{(far=({1 g+ ({9,
(Fg h)+(@hf)+ (g =Fgi{ht+ (g h{f}+ (hH{g}

131. In order to prove these identities directly, we rdnthat the forndf — {f} wis a linear
combination of the 2 linearly independent forms by means of whig¢imay be expressed, since
one has:

[w"(df - {f} )] = O.
From this, one immediately derives an identity offtren:
N[ (df {f} D(dg-{g} J] = AL "],
and exterior multiplication bygivesA = (f g). One then has:
(1) n[a/"tdf dd — n{f}] w /" *dg] + n{g}f w " df} = (f Q[ "].

When the identity (8) of seé8 is applied to the three linear formé—-{g} @ dg - {g} aw dh
—{h} w, that gives:

(f gl (dh—{h} )] + (g W[ " (df {f} ] + (N[ " (dg—{g} W]
= (n- L[ (df - {f} )(dg - {g} &)(dh - {h} ],

from which one deduces, upon multiplying aythat:
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2) [ww™((fg)dh+ (g N df+ (hf) dg)] = (n - 1)[w /" *df dg dij.
Having said that, taking the exterior derivative of idgrl) shows that:
nfoww ™ d{f}dg] + nfw " df g g}] = [ w"d(f g)],

i.e., the first identity shows that:

({f} g) + {ah) = {(f 9)}.

Exterior derivation of identity (2) then gives:

[@"(fg) dh+ (g ) df + (h f) dg)] - [cwe " d(f g) dh] — [we ™ d(g h) df] - [wew "™ d(h f) dg]
= (n- 1)[e/ " df dg dh.

On the other hand, exterior multiplication of (1)diygives:
n[w"*df dg dijy — n{f}[ wew""dg d + n{g}[ wa/"*df dH = (f g)[ &/ "dH].
From this one deduces the final formula:
n[o/™ df dg di = [{f}(g B + {g}(h ) + {h}(f @Il w "],
and, from the preceding, the identity has shown that:
(fayht+ (g h{f} + (hH{g} = ((fg) h) + (@ h f+ ((h ) 9).

132. Now suppose that the formis of the second type.Similarly, if one is given two first
integralsf andg of the characteristic equations @then one will define the quantitie§ fand (f
g) by the formulas:

n[wa " df] = {f}] "]
n[aw"*df dd = (f g)[/"].
If wis of the reduced form:

w=z1dy; + zdy, + ... +Z,dy,
then one will have:

(f o) :Z[a_f_a_g_ﬂa_gj,

One then verifies the following formulas without diffity:
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(3) {fg}=(fg +({f} g+ {F{a}
(4) (Fgh+(@hf)+(hfg) =0,

in which the second one is nothing but the Jacobi idersigef, g, h are first integrals of the
characteristic equations @f .

In order to prove the first identity directly we apphe identity (8) of seds8 to the three
linear forms,w df, dg. The relations:

n[o/" wdf] = {f} ",
n[o™dfdd= (ola"],
n[o"dgd =—{g}f w"],
lead to the identity:
[« ({f} dg+ (f ) w—{g} df)] = (N - 1)[w"* wdf dd,

which, when exterior differentiated, gives:

[ d{f} dg+ [« " df A g}] + (f QY[ "] - [we " d(f Q)]
= (n-1)[w " df dg.

Upon replacing each term by its value and simplifying, abtains the identity that was to be
proved.

lll. - Use of known first integrals.

133. Suppose that the forrwis of the first typeand that we knowp independent first
integralsys, ...,Yyp of these characteristic equations. We form the dgues{y:}, (i vj). If they
introduce new integrals then we adjoin them to the givaes and repeat the operation until it
gives no new integrals. We may thus suppose that theeforesult is obtained, i.e., that the
quantities i} = a, (yiy) = are functions ofs, ..., Yp.

If we now introduce auxiliary variables, ..., X, then we will obtain two forms, one of which
is linear:

P =Xy +taXe+ ... 38X,

and the other of which is quadratic:

®=> a[&d].

The first form indicates the value of the quantityWhenf is any one of the variablgs, ...,
yp that admitsé,, ..., & for its partial derivatives. The second form, or ratie alternating
bilinear form:

D> aén

to which it corresponds, indicates the value of the phesrs { g).
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Having said this, we shall reduce the preceding twoddyyna convenient linear substitution
in the variables; .
Three cases are possible: If the fabnmas been reduced to:

® =[]+ o+ 60185

then one might have:

¢ =0,
¢ =<,
P =S40

When a linear substitution with coefficients thae &unctions of they is performed on the
oyi, one will obtainp differential formsa, ..., @, that satisfy the identity:

S+ émt .+ @@=+ &Nt .+
Having said this, all of the forms casea):

('@, [w" @ o]
are zero, except for:

rn-1

Nww" @) = ... =N’ [@g-100q) = [w W"].

One easily deduces that:
W= [ @] + ... + [@bg-1 Thqg] + [@hge1 @] + ... + [@h Gp-2q] + [WP2q+1 G-2q42] + ...
If one equates thg to arbitrary constants then the fommwill remain a form of the first
type, and the rank of' will be reduced by @ — 2q units. This case is identical to the one that
was studied in the preceding chapter, in which the givenifitegrals are the integrals of the

characteristic system ab'.

In caseb), one has:
[ (@ - W] =[" @] =...=[" @] =0,

anda"is reducible to the form:
W= (-] + [@Bam] + ... + [@g1adq] + [@ogra@d] + ... + [@p&p-2q] + [ Wh-2qr1ap-2q+2] + ...

If one equates thg to arbitrary constants then the fowwill again remain of the first type,
and the rank ob) will be reduced by 2 - 2q units.

In casec), one has:

[W" @] = ... = [W" @] = [W" (@1 - Q] = ... = [ @] = 0.
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The formw' is reducible to:
W=+ ... + [@hg-10hg] + [(Tgr1— @) W] + ... + [Cpay-2q] + [ Wp-2g+1Gp-2g+2] + ...

If one equates thg to arbitrary constants then the foeowill become a form of the second
type, and the rank o will be reduced by @ — 2q — 2 units. The characteristic system of the
new equationw = 0 will be composed of2-2p + 29 + 1 equations. In this case, the
integration will require operations of order:

n-2p+29+1,..3,1,
whereas, in cases a) and b) it will require operatidrasder:
2n-2p+2, ..., 2,0,
resp.

In summation, if the exterior produat] is zero then the formywill remains a form of the
first type, and it will become a form of the second typthe contrary case.

134. Now suppose that the formis of the second type.We again have two forms:

p=aiér+..+apép,
b= al&d.

Since the coefficients; are given by the equations:
n[a/""dydy] = a;[ "],
the rank ot will be reduced by R — 2q units when one equates the integnalso arbitrary

constants, if @is the rank of the forrd.
Since the fornt is reduced to its normal form:

O =[EE]+ o HEga El

one can suppose, at the same time, that one has treefoflowing forms forg :

a) ¢ =0,
b) ¢ =4,
c) P =1

From identity (3),casea) requires that all of the bracketgy() must be zero, i.e., that the
form @ must be identically zero. One thus las 0. In this case, one obviously has:

w=[wa] + @] + ...+ [@hapa] + [apeo apeg] + ...
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The formwremains a form of the second type, since the numizediminished by units.

In caseb), one has:
nfWw" ' wa]=n[d"" @] =... =n[ " @g1aq) = [W"],

anda' is reducible to the form:

=[]+ ...+ [@g-10h] + [(w+ @) wl]
+[@ogr1 @] + ...+ [0 Ap2gra] + [Wp2g+2 Gp-2q+3] T ...

If one equates thg to arbitrary constants then the fomrwill remain a form of the second
type since the rank of will be diminished by g -2 q units.

In casec), w'is reducible to the form:

W= [ @] + ... + [@bg-1 o] + [WTBge1] + [@bge2 ] + ...+ [@hp-2g-1] + [Wp-2q Wp-2q+1] + ...

If one equates thg to arbitrary constants then the fommn will become a form of the first
type since the rank of will be diminished by @ — 2q units.

In summation, if the producif] is zero then the form will remain a form of the second
type, and in the contrary case it will become a fofrthe first type.

135. In summation, we have obtained four essentiallytindis reduced problems by
abstracting from two cases &f one of which was treated in the preceding chapter,rendther
of which corresponds to knowing first integrals in involution for the characteristigseem of
the equatiorw= 0.

One may examine the four reduced problems a little maredfudly and ask whether all of the
possible results of the known first integrals have h@@ained. The method of answering this
guestion is the same as the one that was used in tbedprg chapter. It is based upon the
reduction ofwto a canonical form that involvgsconveniently chosen functions of, ...,y ,
and other independent first integrals. Once this caabfacm is obtained, one deduces from it
the equations of the largest group of transformationspiteserve the given data when they act
on the integral curves

We shall rapidly indicate the canonical formswénd ' in each of the four cases, with the
calculations that bring us to that form being made irséime manner as in the preceding chapter
(sec.125.

1. The formwis of the first type, and the forngsand ® are reducible to:

=4, P=[G8H] T+ [l

In this case, one has:

W =[(m-a) w] + [msaw] + ... + [@bg10hg] + [@ogr1 @] + ... + [ ah-2q] + [ @h-2g+1 Up-2g+2] + ...
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If one sets:
N =[] + ... + [Whg-1 i

then the exterior derivative af will give, if one neglects terms in:

@Cﬁ'll eny % ’ %—2q+1, ey @n—p,
the identity:

N' =[N @] + [w@,] + [Ty @] + ... + @, ap2q] = 0.
One may then set:

w, =—=, m2q+1:d72q+1""! w,= dyp_
2

. . o 1.
Since the exterior derivative of the for-IN is zero, one may then set:
Y>

M :72([dy1 d_)é] +"'+[ d_)ﬁq—l HXJ]) .
Finally, one has:

dy. _ _ _ _
w{#w}yz[oryl Ayl +--+ Y iy, Ay] HYoq @]+ +H dY, @, ,] +---

2

This result may be put into a more intuitive folbgnsetting:

_ 1 = -
W=—wW= Y, dY, == Vo, OY-
2
Indeed, one then gets:

2 :[d72q+15)1] +"'+[ dypa)p—Z(] +[ CT)p—Zq@p—ZqL ++[ CT)ZH— p@Zn]p'

In this form, one sees quite clearly that all of fhossible results have been deduced from the
known integrals.
In addition, one has the canonical relations:

=L %9 (=250
(71 72) = (73 _y4) == (_yzq— 1_y;q) = _yz

and all of the other brackets are zero.

2. The formwis of the first type, and the forngsand ® are reducible to

b =S P = [EE]+ o+ [0 85]

In this case, one has:
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w =[] + ... + [@g-1 To] + [(ogrr = @) W] + ..+ [@h @2q] + [@y-2q+1 Gp2ge2] + ...
Exterior derivation of the right-hand side easily shalaat one may set:

m2q+2 = d72q+2’ "'1mp = dyp’
m2q+1 = d72q+1+ 71 dS’2+ et _yaq— 1 6yzp
M=[dy, dy]+[ dy ay +---+ dy,_, Oy -
Upon setting:
w=-wt dy2q+1+71 dy, + et Y dyqi
one obtains:
5):[5)5{] +[d72q+2@3 ++[ dyp@p—zl 'i{ E)pzqu@p 2q]2 oy

a formula that makes it obvious that all of the possieilts have been derived from the given

integrals.
In addition, one has obtained the canonical relations:

{72q+1} =1,
(71 72) == (72(]—1_qu) =1,

% 72q+1) ==V (V5 72q+1) ==V
in which all of the other quantiti¢g}, (Y ) are zero.

3. The formwis of the second type, and the forgnand® are reducible to

¢ =6, P=[8G] L+ [ 8]

In this case, one has:

W= @] + ..+ [@hg-1 D] + [(W + @) W] + [@gr1 @] + ... + [@pp2qge1] + ...

Again, set:
N =[] + ... + [@hg-108],

and exterior differentiat®’ , while neglecting the terms in:

a)+@l @Cﬁ'll "'l%l %—2q+2,
We get:

N'=[N w] + [@, @] + [@yq,, @] + ... + [W], ap2g+1] = 0.

This identity permits us to set:
m2q+1 = d72q+1’ t 1mp = dyp'
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One then sees that if we regayg,,, ---,y, as constants them, will be equal to-T1, which
is of rank 2, since the equatioar = 0 is a part of the associated systear,to One may then
suppose that:

w, :_(Vldy2+"'+_yzq—1 d_ym)-

Finally, if one sets:

W= W+, :w_yldyz_"'__yzq—l d_ya
then one will get:
o :[CT) 5{] +[d72q+1@z] ++[ dypa)p—2q+1 e

One sees that all of the possible results of the kniotegrals have been deduced, and one
arrives, in addition, at the canonical relations:

{71} = _71 {73} = _73’ ""{VZq—l} = _VZq—l’
(Vi ¥2) = (Vs V) =+ = (Va1 ¥a)) =1,

with all of the other quantiti¢y}, ('Y, ) being zero.

4. The formwis of the second type, and the forgnand® are reducible to:

P =G PG+ [$oq065]-

In this case, one has:

W =@ @] + ... + [Wog1 O] + [WTge1] + [@Bgr2 ] + ... + [@pap-2g-1] + ...

If the notation retains its same significance tiatad in part Il then one will have, by
neglecting terms in:

@q+3l "'l%l %‘2(2]1 eny @n—l—p )
the identity:
N+ [N @] — [WTyq] + (D, @] + ... + [0 Gp-26-1] = 0.

The exterior derivativeer, ,,, @,,,,, ..., @, are zero, along Witksg1 , ..., @ . One may

20+1?
therefore set:

dy.
_ 2g+1 _ _
w2q+1 - ) w2q+2 - d72q+ 2" ’wp - dyp'

2q+1

The exterior derivative of the form, ., I will then be zero when one regaids,,, ..., Y,
collectively as constants. One may therefore set:

72q+1r| :[dyl dyz] +"'+[ d_)ﬁrl GXJ :
Finally, upon setting:
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@:72q+1w_yl dyz_"'__yzq—l d_yq’
one gets:

w:[d72q+2@1]+"'+[dyp@ +-

p—2q—]

One sees clearly that all of the possible resulie leen deduced from the known integrals.
In addition, one obtains the canonical relations:

{72q+1} = 72q+1
(71 72) = (73 _y4) == (_yz]— 1_yzq) = _y:q+ 1

with all of the other quantitiesy, (yiy;) being zero.



CHAPTER XIV

DIFFERENTIAL EQUATIONS THAT ADMIT
AN INVARIANT PFAFF EQUATION

l. - General method of integration.

136. We have already (set04) encountered the characteristic system of a Pfafftequa

(7) w=a;dx +adx + ... +a,dx = 0.
It is composed of the equations:
o ow o
@® 0=0 o(dx) _a(dy) _  _a(dy)
a & g

of which the last — 1 provide the associated system of the quadrate&riex forme' when one
supposes that the variables are coupled by theorela= 0.

This characteristic system has likewise been ameoed in the preceding chapter (sE29
in the context of a Pfaff expressiarmnof the second type.

The number of independent equations of the chematit system (2) is always odd. Indeed,
on account of the relatio= 0, one may put' into the form:

W=l @]+ ... + [n1 @i (moda),

if we denote the linear differential forms, whiale anutually independent and independeniuof
by a, @, ..., an. The characteristic system of equation (1) is thhefined by the equations:

W=W=w=..=wn,=0.

The integem is, as one knows, the greatest integer such tieaform [w «/"] is non-zero. The
class of the equatio@= 0 is equal to the degree of that form.

137. It is easy to recover a canonical form for equra(il). Indeed, ley; be an arbitrary
first integral of the characteristic system (2 orie equateg,; to an arbitrary consta@; anddy;
to zero then the rank of the characteristic systémme new equation (1) will be reduced by at
least one unit, angjnce its rank is oddt will be reduced by at least two units. Letbe a first
integral of the new characteristic system. If sats:
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y1=Ci, y2=C;, dy1=0, dyp=0

then the rank of the characteristic system of themgiequation will be reduced by at least four
units, and so on. Finally, after at leastr 1 equations the equatio@ = 0 will be verified
identically. In other words, that equation will be of tbem:

zdy; +2dy, + ... +z3dyg +dyg1 =0 g <n).

The integer is, moreover, equal to; otherwise equation (1) could be written by means of less
than 2 + 1 variables.

Hence|f the characteristic system of equati(i) is of rank2n + 1 then this equation will be
reducible to the form
dyne1 +z2dys + 20y + ... +Z,dyn = O,
and the quantities
Y1, «osYnt1s 21, ..y Zn

will constitute a system of independent first integrals of the cteraiic equations.

One sees that by this methtiee reduction of systeifi) to its canonical form-and, as a
result, the integration of its characteristic systemequiresn+1 successive operations of order:

2n+1, 2-1,..,31
and differentiations.

138. One may remark, as in chapter Xl (s€20), that knowingN = n+1 first integrals:

Y1, Y2, ..., YN

such that equation (1) is verified identically by equativese integrals to arbitrary constants will
permit us to accomplish the integration of the charstieequation by differentiation. Indeed,
equation (1) may in one and only one mannetbe put into the form:

dyn +z2dys —2dy, + ... +zy1dyv-1 = O,
and one proves that the coefficiers ..., zv-1 are again first integrals of the characteristic
equations.

More generally, one may propose to see to whatntiegration of the characteristic system
reduces when one knows a certain nunberindependent first integrals of this system.

139. First integrals in involution. We say that two first integralsandg of the characteristic
system of equation (1) ame involutionif one has:

9) [wa/"*df dd = 0.
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This definition is obviously independent of the choitgariables, and is also independent of
the arbitrary factor by which one may multiply thedeénd side of equation (1).

The property of two first integrals being in involutionpimes the important consequence that
the rank of the characteristic system will be reduced by four urtisnwone supposes that the
variables are coupled by two relations:

f=C, g=C,

in which CandC' are two arbitrary constantsindeed, if one supposes tliit=dg= 0 as well as
w = 0, then condition (3) will express the idea thatrdngk of &' is less than2-2, and as a
result, is equal tor2— 4.

Il. - Use of known integrals.

140. Case where one knowdfipst integrals y, ..., Y, that are pair-wise independent and in
involution. - In this case, from the developments of chapter \d. @8, it results that when one
supposes the differentials are coupled by the relations:

w=0, dyy =0, ....dy, = 0,

the rank ofaw’ will be reduced by2- 2p. If one supposes that the variables are coupled by the
relations:

ylzcl, y2:CZZ ) ...,yp:Cp,

then the characteristic system of equation (1) veilbbrank & — 2p + 1, and its integration will
require operations of order:
2n-2p+1, 2-2p-1,..,3,1,
along with its differentiations.
The case that we shall now examine is the one in wh&hank of the characteristic system
is instantly reduced by the maximum number of units 2

141. Case where the given first integrals are not all in pair-wiselmyon. — In this case,
when one equates the given first integrals to arbitcarnstants, the reduction of rank of the
characteristic system will not attain its upper li@pt On the other handne may determine an
absolute linear integral invariant for the characteristic equationbjch, in certain cases, may
produce a reduction of the integration problem that isagtlas large as in the first case, which is
apparently the most favorable case.

Indeed, suppose thgt andy, are two first integrals of the characteristic equatitrat are
not in involution. One will have:

n[ww " dydy] = Alw /"],

in which the coefficien is non-zero. There exist an infinitude of (unknowmchionsm such
that:
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ao=mw

is an invariant form; i.e., it may be expressed by medrgst integrals of the characteristic
equations and their differentials. For such a form,lase

o' =ma + [dmdd,
and, as a result:
[ dyidy,] = ' [w /"™ dyy dy,],
[ =M waw"].
By comparison, one thus has:

n[@@™dy, dy] :£[ww”] |

The two forms between brackets are obviously invariakg a resultA / mis a first integral.
Hence

A

—aw = Aw

m

is an invariant form. This is the conclusion thathe@ed to reach:

If one knows two first integrals;,yy. such that the function ,Avhich is defined by the
equality.

nlwaw " dydy] =A[w "],
is not zero then the linear formedwill be an absolute invariant form.

In addition, we remark that the minimum number ofalales by means of which the form
Awcan be expressed are obviously therZl first integrals of the given characteristic equations
The characteristic system of the forrmwAhus agrees with that of equati¢h) and, as a result, it
is of odd rank.The form Awis then of the first type.

142. One may attach the preceding theorem to a methodegfration that is susceptible to a
vast generalization and consists of integrating theacheristics of théorm uw whereu is an
auxiliary variable. Indeed, it is obvious that to any solutiorheke equations there corresponds
a solution of the characteristic equations oféheationw= 0, namely, the one that is obtained
by eliminating the auxiliary variable from the relations that define the solution.

The formuw is obviously of the second type, and the general methattegration of its
characteristic equations that was discussed in1&8ds identical to the one that was recalled in
sec. 137 for the characteristic equations of the equatton= 0. However, the advantage
becomes obvious if one knowe,priori, first integrals of the characteristic equations, begaus
one may apply the method that was discussed in18ddo the integration of the characteristic
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equations of the fornucw In particular, if one knows two first integrays andy, of the
characteristic equations of the equatwonr 0 then one will have:

{yi}=0, {y2}=0,
and if one then calculates the bracketyf) that was defined by (set32):
(n+ D[(uw) " dyrdys] = (y1y2) (Ua)™
then this will give, upon developing and equating the tertmsiwcontaindu:

A
(V1 Y2) :U,

in which A is the quantity that was defined in the preceding sect@me may continue to apply

the general method while preserving the variabley forming the quantit{/é}, which is the

bracket of that quantity wity andy,, and so on. One may thus remark that the fawns itself
invariant sincéA / u is a first integral of the characteristic equatiohthe formua

lll. - Application to first-order partial differential equations.

143. The problem of integrating the characteristic equatwmina Pfaff equation finds an
immediate application in the theory of first-order rdifferential equations. Indeed, to
integrate an equation:

BRGNS 0% 0%, 0%, )
or, if we employ the classical notation:
(10) F(z X1, X2, ..., %n; P1, P2, ---»Pn) = 0,

is to determiner(+ 1) functionsz, pi, p2, ..., pn Of Xg, X2, ..., Xn that satisfy equation (4) and the
Pfaff equation:
(11) w=dz-prdxg — p2dxe — ... — prdx, = 0.

Now, if one imagines that one of the@ 2 1 arguments, X, pi has been expressed in
equation (4) as a function of then thers then the Pfaff equation (5) will contain only 2
variables, and its characteristic system will neadgsbe of odd rank 21 —1. As a result, on
account of equation (4) the Pfaff equation (5) will be rddado the canonical form:
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(12) dz - P]_ Xm - ... Pn—l an_l = 0,

in whichZ, Xy, ..., Xq-1, P1, ..., Pn-1, are 21 — 1 independent functions. They are first integrals of
the characteristic equations of equation (5).

Having said this, suppose that one wants to bring equd)omtp the canonical form (6).
As the integration of equation (4) amounts, in essendietdetermination of a number, which
is equal tan + 1 (with the given relation (4)), of independent relas betweem, x4, ...,Xn, p1, --.,

p» such that equation (5) results, it will suffice to bkl a number, which is equal toand
implies equation (6) as well, of independent relationwé&enZ, X, ...,P.-1, in order to arrive at
this result. But this is possible in a general manneaking:

Z= f(Xl, ---,xn—l),

Pl:i,...’a_lz of ,
X, X,

in whichf denotes an arbitrary function of its argumentsord/igenerally, one will establish an
arbitrary numbeh < n of independent relations:

CDJ_(Z, Xl, ...,Xn_]_) = 0, CDZ = 0, ...,th = 0,

betweer?, X, ...,Xn-1, and combine them with the relations that areinbtaby eliminating the
homogenous parametets ..., A, from the equations:

aq)l.{.pl% +/]2 &.{.pl& +...+/]h &+ e% =0,
X, ‘oz X, ‘oz IX ‘oz

N

A o, +Pn_lacp1 o, oD, +Pn_lacb2 Y od, +Pﬂ& 0.
X, 0z X, 0z X 0z

144. The equations:
X1=a1, ..., Xn-1 = 8n-1,
P]_ = b]_, veny Pn—l = bn—]_,
Z=c,

define one-dimensional multiplicities that are @weristic multiplicities of the Pfaff equation
(5) (when one supposes that the variables are eduyyl relation (4)).These are what one calls
the characteristics of the partial differential exjion (4). One sees immediately that any surface
integral is generated by characteristics.

It is easy to form the differential equations b tcharacteristics. Indeed, they are the
equations of the associated systerm'oif one supposes that the differentials of thealalas are
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coupled by the relatiow = 0 andalso by the relatiodF = 0. One thus obtains the equations
(sec.104) by adding the equations:

o o oy 0 0
d(dz) a(dx) a(dy) o( dp o( dp
1 -p, -p, 0 0 =0,
oF ok OF OF OF
0z 0% 0% on on
which may be written:
dx _ 29 _ -dg _  __-—dn
(13) OF ~OF OF _OoF  OF oF
. T au TR P
op, op, 0% 0z 0X 0z

to equation (5). One then recovers the classical eqsatio

IV. - Cauchy’s method.

145. The method that we just presented amounts, in essendble integration of the
characteristic equations and the reduction of equatioto(B$ canonical form (6). Moreover,
this reduction will result in the integration if it isself directed in a convenient manner (sec.
137). Whatever procedure is used to integrate the chaisd@taerquations, it is easy to see that
the reduction of equation (5) to its normal form is alsv@ossible once the integration of the
characteristic equations has been performed. It sutficdstermine the first integrals that, for a

given numerical valug® of x, reduce them to:

Zl Xll ---1Xn—la pll "'lpnl
respectively.
If one denotes these first integrals by:
Zl xll ---axn—l, Pll "'anl
which are necessarily coupled by the relation:

F(Z, Xl, ---,Xn—l, Xg; P]_, ...,Pn) = 0,

then relation (5), which may, as one knows, be exprebgetheans of first integrals, will
obviously reduce to:
dz - P]_dxl .. Pn_ldxn_l =0.
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This is the principle o€auchy’s method.
V. - Lagrange’s method.

146. Lagrange’s method of theomplete integralalso adheres easily to the preceding
viewpoint. The equation:
(14) V(z X1, .., % &, ...,a@) =0

will define a complete integral if it defines a functiohz that satisfies equation (4) for any

arbitrary constantsay, ..., a,. Equation (4) is, moreover, the only one that sasséll of the

functions ofz that are defined by (8), because the elimination o&the.,a,, between equation
(8) and the equations:

6_V+ a_V_O
0x, A 0z
(15)
ov ov
~ thh 2=
0X,, 0z

which are derived from them, leads in general (and this & wk have supposed) to only one
relation, which is naturally equation (4).

Since equation (4) is the result of the eliminatiothefay, ..., a,, from the ( + 1) equations
(8) and (9) the integration of equation (4) will amount tissgang the Pfaff equation (5) while
supposing that then3+ 1 variables, x , pi, & are coupled by then(+ 1) relations (8) and (9).
Now, on account of these relations, one has:

6_de+6_v dx+-- +6_ da+---

0z 0x 0a
oV

——d— dx—---— pd —d
(dz— pdx R dy) + At - aanda

The Pfaff equation (5) is itself reduced to itsmal form by setting:

Xl :all ---,xn—l = an—l, Z :an,

v oV
__0Oa __0a,
ER AR
0a, oa,

One sees that the characteristics are definedebgduations:
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V=0,
a_v+bla_V:0’...,aV +t}1_1ﬂ—0
da, ~0a, 08, 03,

This is a classical result.

147. We now apply the theorem of sdell to the particular case of an equation in two
independent variables:

(16) F(x,y,zp,q =0.

The knowledge of two independent first integraleind v of the characteristic equations
leads, when they are not in involution, to the dateation of a linear integral invariant for the
characteristic equations. This invarianAis whereA is defined the equality:

[wdu dy =Alw w'],
or rather, since we have supposed that the vasiakecoupled by relation (10) here:
[dFwdu dy = A[dF w o' ].

If we take the terms indk dz dp dfjin both sides of this equation in particular thvea will
find that:

oF oF OF OF
—+tp— — —
0x dz 0dp 0Jq
1| ou Ju du Adu
= —+tp— — — .
OF | ox "9z dp dq
09| gv _dv ov v

—+p— — —
ox 0z dp 0¢

A

Hence, if the determinant of the right-hand s&laan-zero then the expressioftiZ- p dx-
g dy) will be an invariant form for the characteristic @afions.

VI. — First-order partial differential equations that admit an infimesimal transformation.

148. If the first-order partial differential equation:

F(z X1, ..., %n, P1y «-,Pn) =0

admits an infinitesimal transformatidikf that acts on the variablesx;, ..., p, then this would
signify that any system af + 1 relations between these 2 1 variables that defines an integral
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multiplicity is changed by the transformation into amotBystem oh + 1 relations that also
defines an integral multiplicity. As a result, on@auct of equation (4), the Pfaff equation:

w=Edz-prdxg —...— phdx, =0

will admits the infinitesimal transformatioff. It then immediately results from this (s€g)
that the linear form:

@) _ 92— pdx- pdx—-— pd X
WA A-RAY-pAY-— pAY

will be invariant for the system of differentialwegions of the characteristics.

The knowledge of one infinitesimal transformatibos implies the knowledge of a linear
integral invariant for the characteristic equatiomasid, as a result, the integration of the given
equation, which, since it is a problem of the selctype that requires operations of order:

2n+1, 2-1,..,3,1,
is converted into a problem of the first type ttegjuires operations of order:
2n, n-2,...,2,0.
149. A classic example of this is the case in whiah ¢iven equation (1) does not depend
explicitly onz It is obvious then that from any solution of #guation one can deduce another
solution by adding an arbitrary constantzto In other words, the given equation admits the

infinitesimal transformation:

ar =9
0z

The absolute integral invariant that admits tharabteristic equations is then:
'[ ws :'[ (52‘[31(5(1— ...—pnd(n.

The method of integration of these equationsfigsaature, a result of the theory of chapter
XIl. Here, the characteristic equationsware:



dx _ _dx, _-dp_ _-dp,

OF oF oF oF -
ap, op, 0x ax,

Once we have determinad- 1 first integrals that are pair-wise in involution théegration
of the characteristic equations afwill be converted into a quadrature, since the expression
will become an exact differential when on equatesithd. first integrals to arbitrary constants.

V11. -Jacobi’s first method.

150. Jacobi’s first method for integrating first-order grtlifferential equations is related to
the preceding considerations. Jacobi converted equatiowliith was supposed arbitrary, into
an equation in which the unknown function no longer figunaanely:

v o
0 0
F|z >g,---,>g,—a—\xll,--- ,—a—)\(”/ =0.
9z 9z
To abbreviate, we set:

ov

—:U,

0z

and the characteristic equations to be integrated are tlidse absolute invariant form:

N-U(Z—p1OKs— ...~ Pn ),

in which the & + 3 variables are related by the relation (4). Theyiatma relative integral
invariant:

(17) [ u(@-pida~ ...~ ),

and they are the characteristic equations of the ifdtagrariant that one integrates with the
methods of chapter XII.

Jacobi’'s method approaches the one that we indicasstih42, with the difference that the
latter method used the integral (11)adsoluteintegral invariant, but Jacobi's method uses it as
arelative integral invariant. Moreover, Jacobi's method leadsperations of order:

n+2, M, .. 20,
instead of:
n+1, -1, .. 1.
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Its advantage is that it permits us to use the knowledldheogiven first integrals by
applying the Poisson-Jacobi theorem. However, this adgant preserved by the method of
sec.142, which deduced all of the possible consequences of grstnrfiegrals.

VIII. - Reducing certain differential equations to a first-order partidifferential equation.

151. One may now place oneself at a viewpoint thatasofpposite of the one that was taken
in the preceding sections.

First, consider a Pfaff equation with an even nun@sef variables, but suppose that osly
+ 1 of these coefficients are non-zero:

W= g dx +axdx + ... +ax1 A% = 0.

The characteristic equations of this Pfaff equationadméously the same as those of the
first-order partial differential equation mindependent variables, x,, ..., Xs that is obtained by
setting:

Xst1=8, & +Pras1=0, ...,.as1Ps8s+1 = 0,

and eliminatingXs+1, Xs+2, ..., Xos, DEtween thess + 1 equations. Of course, it is necessary to
suppose that the elimination is possible and that it gimgsone relation.

152. Now consider a system of differential equationg #@mit a relative linear integral
invariant | &y such that the fornwis in 2+ 1 variables andd/*] is non-zero. The differential
equations considered are the characteristic equatians of heir integration can be converted
into the integration of a first-order partial diffetexh equation that does not contain the unknown
function explicitly if thes coefficients of the differentials are zeroadn

w= apdxg + axdxe + ... +as X1
Indeed, consider the Pfaff equation:

dV-w=dV-a dxy —axdx —...— as1dX%+1 = 0,
and set:
Pr=a1, pP2=ay ...,Ps+1 = Ast1.

The elimination of thes.», ..., Xs:1 between these+ 1 equations leads to one relation:
(18) F(X1, .. Xst1; P1, -y Psra) = 0,
which is nothing but the partial differential equationttivas alluded to above. The differential
equations of the characteristics of that equation amae€d from the characteristic equations

ofw', to which one adds the equation:
dv - w=0.
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One easily accounts for the fact that the methoidtegration that was indicated in chapter
XII of the characteristic equations ®f leads to the same operations as the search for the
characteristics of the partial differential equatihf)(

If the invarianf wis that of the equations of dynamics:

W=pP1dp + ...+t —H &

then equation (12) will be nothing but the Jacobi equation:

ov o oV
—+H|tqg,-q; —,--—1=0
ot [ R an

153. Jacobi's method for integrating the equations of dynams therefore based
fundamentally upon the equivalence of two integration mob| the problem of integrating the
characteristic system of a relative linear integrehitant [ «g and the problem of integrating the
characteristic equations of a first-order partial dédfeial equation that admits an infinitesimal
transformation for example,one that does not explicitly contain the unknowncfion). The
nature of the problem is determined in the two casesebgntistence of an integral invariahiu

This method of reducing to one partial differential equeatsouseful only if the formw has
2s + 1 variables withs zero coefficients, but it is hard to believe thatthe case where that
peculiarity is not present the integration of the ahtaristic equations ef would be a problem
that is more complicated than the search for the ctemstics of a first-order differential
equation that does not explicitly contain the unknowrctions, or, what amounts to the same
thing, the integration of a system adnonicaldifferential equations. Basicallthe importance
of the canonical equations stems uniquely from their property of admittingegral invariant
[ w, and not on the simplicity of their formThe existence of the integral invariant is the
fundamental property from which everything else is derived.

IX. - Remarks on the nature of the principal practical applications of da€s method.

154. In fact, most of the rich variety of applicationsJacobi’'s method in dynamics have
their origin in the simplifications that the search o complete integral of Jacobi's partial
differential equation presents, an equation that igio&tl as a sum of functions in each of which
only one of the variableg,, ..., g, other thart appears. However, these simplifications may be
exhibited independently of any recourse to the theoryrsttdirder partial differential equations
and complete integrals.

Indeed, letwbe a linear differential form ins2 1 variables that we denote by:

X1, oony Xos, L.
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Suppose thatwmay be decomposed into a sunpaérms:
w=wt+twt..+ta,

such that the fornawis constructed from a certain numbérdf variablesx and the variablé in
such a manner that the variablethat enter into the formation of any two of thenfisra, ..., @
are different. As a result, one will have:

S:h1+h2+...+hp.

If one supposes that quadratic exterior faxmis of rank 2 then it will be necessary that the
forms o, &), ..., @, must be of rankl&, 2n,, ..., 2y, resp. The reduction of each of thgse

forms to its canonical form will thus imply the samegluction forw' . As a resultjntegrating
the characteristic equations @' amounts to integrating the characteristic equations®f ...,
w,, and thep corresponding problems may be solved independently of eheh ot

An even greater simplification is produced if the numbersf the x variables (that are
different for different formsw) that enter into the composition of these formtghatsame time as
t are not all even. In this case, the varidaall be a first integral of the characteristic equasio

ofw' . Indeed, if one gives an arbitrary constant valugtien the rank of the quadratic fora
will be reduced to at most:

ki for everk,
ki-1 for odd k;.

Now, X is equal to the sum of all the. The rank ofw’ will therefore be less tharsZor
constantt, which was to be proved. Furthermore, one seeslbat tannot bevo numbers;
that are both odd, and when one matkesnstant, the reduction @ to its normal form will be
furnished by the reductions aff, ..., @, to their normal forms when one likewise makes

p
constant.



CHAPTER XV

DIFFERENTIAL EQUATIONS THAT ADMIT
SEVERAL LINEAR INTEGRAL INVARIANTS

l. - Case in which one knows as many integral invariants as there anknowns.

155. We will not go into the general problem of integrgtdifferential equations that admit
an arbitrary number of integral invariants in theseoless We will restrict ourselves to the
particularly simple case in which a systemnofirst-order ordinary differential equations m
unknown functions admits (independent) linear invariant forms:

W, ad, ..., G,
i.e., n absolute linear integral invariants:

[a.[a fa.
In this particular case, the given differential equatioan be written:
(1) Ww=w=..=a=0.

Since the quadratic exterior formg ,«), ...,&w, are invariant, they may be expressed in
terms ofa, @, ..., a by formulas such as:

(2) C’js :lfciks[wi a)k] (S:1,2,---, n)-
(ik)

The coefficientsis are obviously first integrals of the given diffatal equations. We shall see
that one may always convert them into a form wileeg are constant.

Indeed, suppose that among the integcalsthere are a certain numberof independent
ones, which we denote by:

Yi, Y2, ..o, Yr.

The cys are thus well-defined functions of thesentegrals. Each differentialy; is, in turn,
an invariant form that can be expressed linearlyneans otu, @, ..., a:

dyi:bilcu1+bi2wz+... +bin a (:1, 2,...,]’).

The coefficientsby are, in turn, first integrals. If there afef them that are mutually
independent and independent of thethen their differentialsdy+s, ...,dy,,. can also be
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expressed linearly as functions of ttag and the coefficients might provide new first intdgyra
and so on. We will arrive at a point where these dp#&iscease, and one will arrive at a certain
numberp< n of first integralsys, ..., ¥, such that the coefficientss in formula (2) and the
coefficientsby in the formula:

() dy = bz +bizap + ... +bina (=12, ..0

are well-defined functions of thg, y», ..., Y,.

Having said this, suppose, for the sake of specificity, tietleterminant that is obtained by
taking the firsto columns of the matrix dfix is non-zero. One may then substitute the invariant
formsdys, ..., dy,for the p invariant formsa, ..., ap. If one attributes arbitrary constant values
to theys, ..., ¥, then the system of equations to be integrated williadm o invariant forms
W1, ..., ah, and one will have:

@ = z Cidw w] (s=p+l, -, n,
(ik)

in which the coefficientswgare now constant.

156. Therefore, take the case in which the coeffigent in formula (2) are all constant.
Conversely, it is easy to see that the existencelafions such as (2) implies, as a consequence,
the property of the formsy, ..., a that they must be invariant with respect to théedgntial
equations (1). The characteristic system of th@s®rms w, w,..., @ is obtained (sed8) by

adding the equations of the associated syste®,®w,, ..., — equations that are all a

n
consequence of equations (1o equations (1).
If one substitutes linear combinationgh constant coefficients:

5)1 =W taw,t -+ a),,
(4)

W, = a0, +a,w,+ -+, W,

for the formsa, ..., ax then thesa& new forms will again be invariant, and one wilbaghave

relations:
1,...n

Ejs = z Eiks[a)i CT)k]’
(ik)

with new constantg, .. We say that the matrix df,, has the samstructureas the matrix ois

It is possible that one can choose the constaefficientsa; in the substitution (4) in such a
manner that only theg, ---,c, appear in the expression of the fitst n derivativesd, ---,a), ;

i.e., in such a manner that one will have:
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Coriks = Cavris :T?mm,s =0 ks=12,..vi,j=1,..n-V).

In this case, the formay, ..., @, are invariant for theompletely integrableystem of Pfaff
equations:

o=wh=..=wm=0.

If one knows how to integrate this system, and if eqeates these first integrals to arbitrary
constants then the given system will be convertedargystem that is analogous to the first one,
except thah will be replaced by — v.

We say that the matrix o€ys is simpleif it is impossible to find a linear substitution with
constant coefficients (4) that brings about the prageceduction. We then say thidie given
system of differential equations can be converted into successgiemsysich that the matrix of
Ciks IS simple for each of themA particular integration problem corresponds to eachixnat

157. Leaving aside this method of reduction for the momentnvagine a second system of
differential equations:

(1) B=a=..=ah=0

that admit then invariant formseg with the relations:

1,..n
(2) @, = ¢ Jmm],
(ik)

where the coefficientsys have the same numerical values as in formulal(2).

yl, y21 ---,yn,
2,2, ..., 2,

respectively, be two systems of independent fimgggrals, the first one being associated with
eqguations (1), and the second one, with equatitins ¢, @, ..., ah can then be expressed by
means of thaly and their differentials.It is possible to choose the first integrajsresuch a
fashion that theg can be expressed by means of thend the dzin the same way that tha
are expressed by means of thand the dy This amounts to saying that if this conditiomet
realized then one can, at least, find functions:

falys, oY)y con fu(Y1y ooy Vi)
such that upon setting:

z = filyy, .o, Yn)s o0y Zn =Ta(Va, - V),

the ag will become equal to they, respectively. In order to this, it suffices nbeigrate the total
differential equations:
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(5)

in which thez are unknown functions of the independent variahlesThis Pfaff system (5) is
completely integrablgsec. 101), because, if one takes equations (5) into account tien
exterior derivatives:

o~ = Zciks[mimk] _Zcik£ w,w),

of the left-hand sides will all be zero. It is tbfre possible to satisfy the stated conditions, and
in an infinitude of ways (that depend pmrbitrary constants).

In particular, this proves that the integrations of the systems (1) andl() are two
problems ofessentiallythe same nature, in the sense that any metiatduses only the given
property of thea, ..., a that they are invariant forms for the integrati@an be applied to
systems (1) andl() in a parallel fashion, such that any progress in tregration of (1) implies
an equivalent progress in the integration10f.(

Il. - The group that preserves the given invariants.

158. Return to system (1), and imagine that a choiceindiependent first integrals:

y]_, ...,yn
has been made.
It is possible to find an infinitude of other systems difst integrals:

371’721""yn

such that the forms; may be expressed by means of §heand their differentials in the same

manner as they are by means of yhand their differentials. In order to do this, ifffses to
integrate the Pfaff system:

Q- =0,
(6)

in which @, denotes the same function of tigeand dy that « is ofy; anddy; . In this Pfaff
system, we regard the argumeyts...,y,as unknown functions of the independent variaples

....Yn. Such a system is completely integrable for the saason that was indicated in relation
to system (5). Therefore, there exist functions:

(7) VS:fS(yl,...,yn; Ci""’Cn) (S:].,"',I’),
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that depend on arbitrary constantand satisfy the conditions stated above.

Equations (7) define an infinitude of transformations Heiton the first integralg, ...,
Yn andpreserve the givens of the probleine;, they leave the forms), ..., ax invariant. These
transformations form a grou@® because, since they are characterized by the property of
preservinga, ..., a , it will be obvious that if one performs a transfatmon of the form (7),
followed by another one, then one will again obtainamdformation of the same form. The
group G is a finite group ofn parametersit is the largest group that preserves the given
invariant forms when it is applied to the first integrals of the miggstem. As one easily
concedes, just what the knowledge of theéerms gives us depends on the nature of that group.
Moreover, this is a general fact that applies to &ldases where one knovespriori, integral
invariants, systems of invariant equations, infinitesimahdformations, etc. The nature of the
largest group of transformations that preserves the knofermation when applied to the first
integrals of given differential equations (or, what amis to the same thing, to their integral
curves, which are regarded as being indivisible) has anslwa@owing importance in the
integration of that system.

In the case that occupies us, one sees, in partichédrit is impossible to obtain any first
integral without integration’) by starting only with the fact that, ..., a are invariant forms.
Nevertheless, the fact that the formg, ..., a are invariant will, by itself, permit us to
individualizea first integral- yi1, for example- which, as a result, becomes equal to one of the
integrals y; that are defined by formula (7). However, this is obstpumpossible, because

equations (6) always admit a solution such that given noalevalues ofyi, ..., y, will

correspond t@rbitrary numerical values o/, -+, .

h-*

159. The constantsys play an important role in relation to the gro@p They are what one
calls thestructure constantsf that group in group theory. The method of reductioh wWes
indicated above (set56) is based precisely upon the decompositio® @ito a normal series of
subgroups. The case where the matrig@is simplecorresponds to tr@mplegroups.

One knows that the structure constants of a groupodrarbitrary. One may verify this here
by saying that the exterior derivatives of thg, ..., w, are zero. If we use the expressions (2)

for &, ..., w, thenthe exterior derivative ofy, will be (sec.73):
1,..n 1,..n/i=n
> GelldalTwal) =3 [ZCH s T Gayi Gos * Gai cmj[wawﬁwy]-
(ik) (aBy) \li=1

One thus has the necessary relations:

i=n

Ca/ﬂ qys+cﬁyi q:as+9m pﬁs:O (a,ﬁ,y,S: 11 2,11)

i=1

(7) This is also true for an arbitrary sequenceweértible operations that are appliedds, ..., « and which are
capable of being performed no matter what the natutleeatoefficients of these forms.
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In group theory, one proves that they are sufficienthe existence of a group that admits
the cys for its structure constants.

lll. - Examples.

160. Suppose that all of the constaatsare zero. It is obvious then that since the founs
..., ap are exact differentials, the integration will reguanly n independent quadratures. Since
the formsa, ..., ay are reducible to:

w@=dy1, @=dy, ..., ah =dy,
the groupG will have:
Y.=Ys+ Cs 6=1,2,..n
for its equations.
The preceding case presents itself whenl.
We look for all possible cases wherr 2. Along with the case that we just examined, one
may have:
W =ala

w=blaw w],

in which the coefficienta andb are not both zero. Suppose, for example,ktl#ad. If one
takesaa — ba to be a new forngy, then one will immediately see that one has:

o =0,

W =@ w) .
One quadrature gives:

@ =dy,.

If one equatey; to an arbitrary constant the will become an exact differential, and a
second quadrature will complete the integration. By cingnthe notations slightly, one may
suppose that:

dy,
@ =-
Y.
dy,
W ==
Y.

The groups will then have the equations:

y;=Ciy1,
y;= Ciy2 +C,.
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161. We shall not discuss the general casenfer3. We only point out the most interesting
case, in which one reduces formulas (2) to:

W =[w w),
w,=[w @],
w,= [ ).

In this casethe integration of equationd) amounts to the integration of a Ricatti equation.
Indeed, consider the Pfaff equation:

(8) dt+a +tw, + 1 t?w, =0,

in whicht is regarded as an unknown function of the variablestk tbependent and independent
— that appear in the given differential equatiomis equation is completely integrablendeed,
one verifies without difficulty that the exterior deative of its left-hand side is zero if one takes
the equation itself into account (and if one uses Hpeessions fow) ,w,, k). As a result, as

one knows, one may convert this integration into thiegration of an ordinary differential
equation that is obviously a Ricatti equation. Now, & a@enotes a system of independent first
integrals of the given equations (1) Yayys, ys then the expressiona, a, a3 may be expressed
by means of three quantitigs, Y., ys and their differentials. The solution of equation fdr)
generalt is thus a function oyi, Y., y3 (and an arbitrary constaf). As a result, if one has
integrated the Ricatti equation (8) in its classicatfor

t:LC’B
y+Co

then the mutual relations between the four functiang, y; o will furnish three first integrals of
the given equations, and one easily shows that thep@ependent.

V. - Generalizations.

162. We nevertheless do not insist on the use of theydamg theory, which, in order to be
appropriately developed, requires a very extended knowleddpe theory of groups. One sees
how the latter is necessarily introduced if one pushesntéthod of integrating differential
equations that admit given integral invariants to itstlinwe point out only that the method that
was indicated in sed.42 can be generalized to an arbitrary system of difteabequations that
admit an invariant form, invariant Pfaff equations,. elicconsists of forming any linear integral
invariants that the given system of equations impliesndependent first integralby the
introduction of auxiliary variables An example will suffice to make the spirit of thigethod
comprehensible.

Suppose that one has integrated a system of diffdreqtiations X) in 4 variables:

w=w=w=0,
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and each of these equationg=0, c3=0, a3=0 are invariant for the given system. One
introduces three new variables u,, us, and one will consider the three forms:

q = ula) ! a)Z = u2w2’ 5)3 = u3w3'

The integration of the characteristic equatiobs ¢f these three forms implies that of the
given differential equations by the eliminationwaf u,, us between the relations that define an
arbitrary solution ofY). We then form the exterior derivativasa,,a,. If one supposes that

one has:
W =afww]  (modw,),
W, = a,[w,w] (mod w,),
, = alww,] (mod w,),

with coefficientsa;, ap, as that are functions of the original variables, thea ol have:

[w,;]  (mod @),

@ =22[pn] (moda,),

Uy
_ U, _ _
@ = jfuz [@@]  (mod@,).
The coefficients:
=_auy _ _au __ _ aly
Q=—" &= y =
HUs U U, Uy

are thus first integrals of the systel),(which is characteristic for th®rmsa,w,,,. As a
result, the same is true for:

and the form:
Aa,0, = 8,a,W,

is again an invariant form. However, it does nmttain the auxiliary variables;, uy, us. It is

thus an invariant form for the given equatio$, @nd the same is true fgfagaia)z, Jaaw,
As a resultif any of the coefficients;aa,, a; are zero then the given differential system will
admit three invariant linear formsand one is confronted with the problem that waated in

this chapter.
Naturally, this will not always be the case, buany case one will have the means to deduce

all of the possible consequences of the known nmdton about the given equations.



CHAPTER XVI

DIFFERENTIAL EQUATIONS THAT ADMIT
GIVEN INFINITESIMAL TRANSFORMATIONS

l. - Reduction of the problem.

163 We have already considered differential equations #dmit infinitesimal
transformations, but these equations were assumed td@ adnntegral invariant or a Pfaff
invariant. We shall now take the most general viewpaihtch will furnish us, moreover, with
an illustration of the theories that were sketchetdrothe preceding chapter.

Consider a system ofordinary differential equations (or a completely intédgasystem oh
Pfaff equations):

(1) Ww=w=..=a =0,
and suppose that this system admits a certain nungbeiof infinitesimal transformations:
Adf, AS, AT

We then look for the consequences that one might defdoicethe knowledge of these
infinitesimal transformations by integrating. This ipr@blem that has been solved by S. Lie.
We confine ourselves to its essential generalities.

Consider the matrix of quantities (Ax) that is obtained by replacing the differentiation
symbol in the formw with the symbol of the infinitesimal transformatiépf. Suppose that the
determinant that is formed from the firstows and the first columns of the matrix:

q(A) w(A) - w(A)
(2) %(A) a)Z(AZ) U MZ(A)
is zero. One may then substitute linear combinatiortbeofeft-hand sides of equations (1) for
those left-hand sides in such a way that the matriarbes:
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10 -0
o1 0
(3) 00 - 1
00 - O
00 -0

I.e., in such a manner that all of thgA;) are zero, except for:
w(A) = @A) = ... =aw(A) = 1.

It is obvious that iin is greater tham then the new formsu, ..., ax will not be perfectly
determined; one may once more perform an arbitraryrls@astitution on:

m+1, "'lahl

and one may add an arbitrary linear combination ofahe, ..., a to each of the formay, ...,

W .
If equations (1) have been put into the form:

dyp =dy, =... =dy,=0

then it will be obvious that, since the quantitigéd)) = Ai(y;) are presumably first integrals, the
new formsa, ..., ay that are obtained by reducing the matrixag(y;) to its canonical form can
always be presumed to have been constructed fromy e their differentials. The following
two consequences result from this, along with what wasagsive:

1. Whenever the matrix @b(Ay) is reduced to its normal fori§3), the Pfaff system:

(4) CLJ+1: ...:CL?]:O
will be an invariant system.

2. Each of the linear formsy, ..., a is an invariant form, up to a linear combination of the
left-hand sides of the preceding invariant Pfaff system.

164. Before we proceed, we first remark that if the gys{@) admits two infinitesimal
transformationAf andBf then it will admit the infinitesimal transformati@f whose symbol is
defined by:

Cf = A(Bf) — B(AY).

Assume, with no loss of generality, that the symladlthe infinitesimal transformations
that one may deduce from the given transformations, when taken pair-wise, are linear
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combinations of théf, ..., A f. In other words, suppose that one has:

(5) AAD-AAD=D K AT (ik=12:-,1).
s=1

With this hypothesis, we shall prove thia¢ Pfaff syster(d) is completely integrable.
In order to prove this, it is necessary that weurre to the definition of the bilinear
covarianiw'(d,d") of a linear formwin the case that we have not considered up tdl imwhich

the two differentiation symbolg o' are not interchangeablelf one sets:

(4(0) —a K +a K + ... +a, K,
then one will have:

0w d") 0w () =a1(80'x—0'0x) + ... + a,(30'x,— 0'0X,)
da, OJa
+Z[a& ox j(éxé"& %I %),
or rather, if we agree to set:
0"=00"-00
then we will have:
(6) o0Wd') - dw(d)=awd")+ w(d,0).

We apply this formula to the case in which the Bgmdandd’ are replaced by the symbols
A f andAd. It will then be convenient to replagéwith the symbol:

A (AG) = AdAT) =2 HsAt.

Finally, suppose that one takes any one of themdan.,, ..., a to bew which we may, as
we have seen, presume to be expressed in terms of, y, and their differentials. One will
have:

W r+a :Z Ciuralh @) .
However:
W+ a(A) = Wa(A) = Wa(Ay) = 0.

Therefore, one has the relation:

> Caurral @ (B) @A) = au(A) wi(AJ] =0.

It results from this that the coefficients,.+o, will be zero when the indice} u are both less
than or equal to, since the preceding relation then obviously reguo:

Cikr+a = 0 (, k= 1, 2, J’)
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As a consequence, since the exterior derivatives, ..., w, are all zero when one takes
equations (4) into account, system (4) will be compldategrable (secl01

[l. - Case in which there are as many infinitesimal transformatis as unknown functions.

165. Now suppose that the system (4), which is an absolutatyaay completely integrable
Pfaff system, has been integrated. Similarly, singplypose that a solution of this system (4) is
known. An infinitude of solutions in the given system wibrrespond to that solution that are
obtained by integrating the equations:

@) w=w=..=a=0.

This is a system for which one knowsvariant formsa, ..., @ . One is then reduced to the
problem that was treated in the preceding chapter.

Here, it is easy to determine,priori, the coefficientsis that enter into the expressians
N5

r

10
6’Js = z Ciks[a)i a)k] .
(ik)

Indeed, we apply formula (6) after replacing themksol & with the symbolA, , the
p=r

symbold’ with the symboh, , and the symbal” with z Vago®, Init. As all of theaw (A are
p=1

equal to O or to 1, i.e., to constants, formulaw@)reduce to:

0 = yag + Caps -
Therefore, one will have:

Cal& == yal& .

166. We now restrict ourselves to the case in whiehdbefficientsyis are constants. In

this case, one proves thae given infinitesimal transformationsfA..., A, f will generate an +
parameter groud whose structure coefficients are tjag . One sees that the system (7) falls
into the category of the two systems that we studiethe preceding chapter (sé&6), and the
group G that corresponds to it has the same structurdegitoupl that admits the given
differential system (7).This group Gs the largest group that, when applied to thetfinsegrals
yi, -, ¥r , preserves the following rule: These integrals arerchangeable with the given
infinitesimal transformations.

Indeed, denote an arbitrary functionyef...,y; by f. It is obvious that one may determine
in one and only one mannerr Pfaff expressionsa, ..., @ such that one has identicaltyi.e.,

for any differentialdys, ...,dy; and any argumengsf—,m,i'

oy, oy,
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df Eid>{+...+i dy :(UlAl\ f+.--+m A f.

ay; oy, o

In this identity, if we replace the symbol of indeterate differentiatiord with the symbol
A then we will have:

A = @A) Adf + ... +a@(A) Af.

As a result, all of thea(Ax) will be zero except for:
a(A) = @A) = ... =a(A) = 1.

Finally, it results thathe formsay are identical with the formgy . We then perform a
transformation of the grouf on they, ..., y, and these quantities beconyg---,y.. The

function f of theyi, ..., y; becomes a functiorf of the Yoo,y the symbolsAdf, ..., Af
becomeA f,---, A f, and one will have:

df =g Af+--+@ AT,
However, since théy are forms in they, and their differentials, just as tlae are forms in

the y; and their differentials, the coefficientgg_gfin A fwill be the same function of the
Yi

Y,.-+, Y. that the coefficient orf;—]c in Aif is as a function of thg, ...,y; . In other words, the
Yi

given infinitesimal transformations transform tiie in the same way that they transform yhe

Here, one sees once more that the grGus the largest group of transformations that
preserves the given data when applied to the firsgiate

lll. - Application to second-order differential equations

167. We have already treated the caser = 1 directly; let us take several other examples.
A second-order differential equation of the form:

dy_p(dy

dx F(dxj
dy- y dx=0,

dy - F(y) dx=0,

is equivalent to the system:

which admits the two infinitesimal transformations:
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a=2 =

ox’ oy

In order to reduce this matrix of quantitiegAx) to its normal form, it is necessary to take:

dy
=dx———,
“TTEW)
o ydy
=dy- Y|
“EY TRy

These two invariant forms are exact differentialsl one gets the desired general solution by
two independent quadratures:

dy ydy _
TR s

Now, take a second-order differential equatiothefform:

d’y _ _(dy
F
YR ( dx)
It admits a translation that is parallel to thaxis and a homothety with a centerthat
correspond to the two infinitesimal transformations

Af —ﬂ Bf=xﬂ+ yﬁ.
ox’ ox ~ody

The given equation is equivalent to the system:

dy-y dx=0,
ydy - F(y) dx=0.

In order to make the matrix @ (Ax) normal, it is necessary to take:

Xy
=dx—— dy- dy
GO YRy
_dy y
=Y gy,
Fiy) ™Y

Since one has:
A(Bf) — B(Af) = Af

here, one will have, as is easily verified:
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w=-[w w],
w,= 0.

As a result, the integration is carried out by mesrigvo quadratures:

y'dy

y:qejﬂy'),
T

IV. - Generalizations. Examples.

168. In the case of system (1), one may arriva Bfaff equations that admitinfinitesimal
transformations:
Adf, LA,

such that the rank of the matrix af (Ac) becomes less than(this is certainly the casenf> n).
Therefore letp be the rank of this matrix, and suppose, as imgsible, that the determinant
that is constructed from the firstrows and the firsp columns is not zero. For any indgxone
will then haver — prelations of the form:

@ (Arv1) = A1 (A1) + ... +A1p aa(Ay),
A A) =Appa(A)+..+=hppad(A).

The coefficientd; that were introduced into these relations are first integralisdeed, for
any linear combinatiorw of a, ..., ax — in particular, for the differentialdy, ..., dy, of n
independent first integratsone will have the same relations:

A1 (Ys) = A11A1(Ys) + ... +A10A0 (Vs),
which implies that the values @3, ..., A1, depend upon only th& (yi) ; i.e., upon thens, ..., ya.

We will not pursue the general case further; ibased upon the same principles as the
preceding one.

169. EXAMPLE I. — Consider the differential equation:

(L+y?)* =Ry

of plane curves that have a ray of given curvatlirés equivalent to system:
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o =dy- Yy dx=0,
@, =Rdy - (1+ y*)*? dx= 0.

This system admits the three infinitesimal transfiioms that correspond to a translation
parallel toOx, a translation parallel t®y, and a rotation aroun®. One may calculate the
effects of these transformations on not onndy, but also ory’. One finds without difficulty

that:

Af =%,

Af oy

Af= —y%+ xg—;(1+ yZ)%.
The matrix of quantitiess (Ay) is the following one:

H -y 1 X+ yy
—(1+y?)¥* 0 y@l-y?*)¥*+ R@+ y?)

One therefore has:

—_ R __ Ry
@ (A)= £y+\/1+7}ws(ﬁ)+{x W}%(%)-

As a result, one obtains two first integrals a& tiven system by simple differentiations, and
the general solution is furnished by the formulas:

Ry

X= +C,
’1+y12
y:L-{-CZ,
1+y12

or
(xa - C)’+ (Y- C)* =R

170. EXAMPLE Il. — Consider the third-order differential equation:

m 3 ' "2
y = yylZ
1+y

that defines the plane curves of constant curvatline equivalent to the system:
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o =dy- ydx=0,
w =dy - y'dx=0,

o SYY
w, =dy’ 1+y,2dy_o.

This admits four infinitesimal transformations, ialin correspond to a translation parallel to
Ox, a translation parallel t®y, a rotation around, and a homothety with cent€&. The
symbols of these transformations, which are reghedeoperating ox y, x',y', andy”, are:

/ﬂf=%,

Azf:a—y’

Af=oyg oxe (L ) T3y o
f f f

Af= x%+ yg—y— yg_y,.

Here, the matrix of quantitias (Ay) is:

-y 1 x+yy y- Xy
-y 0 1+y*+yy -—xy
0 O 0 -y

It is of rank 3, and the determinant that is aiedi by taking the first, the second, and the
fourth column, for example, is non- zero. Fronstline deduces the relations:

1+ 2 ) 1+ 2
ws(A3)=—[y+ y jws(m{x— y—?’jws( A).
y y
which lead to the two first integrals:
12
u=x-y 1+ Y ,
y
12
_ g1ty
y

In order to continue the integration, choose liremambinationsa, , @, ,, such that the
principal determinant of the matrix of tlee(A, ) is reduced to its normal form. In order to do
this, one may take:
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o 1 Xy dy'
a{—dx—[7+Wde+ X—-,
o y . 3y dy
C‘)z_dy_[7+l+yyzjdy+ y7’
_ _3ydy dy
Tly? oy
On the other hand:
du=a + uw,,
dv=a, + W,
and:
W =-[ww],
@:_[@2@3]’
a,=0.

As a resulti, is an exact differential, and one gets the misémsgintegralby a quadrature.
The general solution of the given equation is fshed by the formulas:

2\3/2
%:C‘ga
oS

1+y12
- G +G,.

J1+y?
Here, one sees that the grdbphat preserves the given data is:

C,=C, C,=GC,, C,=aC, {because deé%j
3

with an arbitrary constard. It is because of the fact that there is only pasameter that the
integration reduces to a quadrature. In the pliagedxercise, the grou reduced to the
identity transformation, and the solution was afediwithout integration

171. REMARK. - For all of the examples in which one arriveatvariant linear forms,
one obtains integral invariants of all degrees bwystructing an arbitrary exterior form with

constant coefficients from th@), ..., ax. This is why one has the invariant integfﬁf 0,00,
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in the latter exercise, which, if one is limited taéssef states that correspond to the same value of
X, reduces to:

IR

As a result, if one considers an arbitrary familycatumferences that depend on three
parameters, and if one cuts the circles of that fabylgn arbitrary parallel to theaxis then the

integral Hj dy y 9 when taken over the family of circles under consitien, will be
dC dC, dG
C,

independent ok. It will be, moreover, equal tﬂj If one denotes the coordinates

of the center b¢; andC; and those of the ray 1§35



CHAPTER XVII

APPLICATION OF THE PRECEDING THEORIES
TO THE n-BODY PROBLEM

l. - Reduction of the number of degrees of freedom.

172. We have already seen (s&23) how the method of integration that was discussed in
Chapter Xll is applied to the canonical equations of dynamics

da_oH  dn__on
dt op’ dt  dp

We suppose the functiod is arbitrary. If that function is independent of tirtteen the
functionH will be a first integral (se®2), and one is left with the integration of the equagion

dq __dp
oH  oH'
ap, aq

whose first integrals are solutions of the equation:

HH=0
and a quadrature.

173. A little later on, we shall study the reduction in theegration of ther-body problem
that is produced by accounting for the previously determined. (88) infinitesimal
transformations that the equations of motion admite SMppose, as is permissible, that the
system o bodies is referred to its center of gravity, i.eattthe 3 coordinatess, yi, z , and

the 31 velocity components,y' ,z are coupled by the relations:

xmx =0, 2 my =0, 2 mz =0,
2 mx=0, 2my=0 2mz=0.

Let U be a function of forces that is assumed to be lyggmeous and of degreep with respect
to the coordinates. The equations of motion then adhnifite infinitesimal transformations:

_of

f="_
& ot
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of of  rof , of
I o VL LU |
A Z(y.a; 2oy Vs #ayj

of of of f
I 3| P AP LU
AT=20 %50 o T oy zj

of of  ,of |, of
f= — -y —+ X— = y— |,
Af=) Xy Yax " ¥ay yaxj

A f :z Xi'* yi+ ;i—ﬁ{ #(a—f,+ yﬂ+ .Zﬂj:l+(l+—pj {(‘E

On the other hand:

W =2{m[JX% o] + m [dY, o] + m [0Z d]} - [H J],
if one sets:

H=Z T MO ¥ )= U

174. The five invariant linear forms:

W= (A, 9
are:
)y =0H,
@ =0H,,
w, =0H,,
(1) aw, = OH,,
-_—— I p 1, p I I -
W, =2 M(XOX+ yIY+ 20,20 S0 W, W, "D, )
+(1+§jt5H + pHOt,

in which one sets:

HFZ”]()(Z— Ziy)’
(2) Hz:zfﬂ(#x— ?'(iz)a
He=>m({y- ¥y ¥

Finally, one has:
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o, :AA(w):(l—gja;.

The matrix of quantities; =« (Ai, A) has already been addressed in the most genesel ca
(sec.95). We reproduce it below.

0 1 2 3 4
0 0 0 0 0 - pH
1 0 0 H3 —H2 (1__2) Hl
2 0 —H3 0 H]_ (1__2)H2
3 0 H> -H; 0 (1—§)H3
4 pH (2-9H, | (2-9H, | (2-2)H, 0

175. We now recognize five invariant linear forms, aihe matrix of coefficients; is
defined by the operation of the generalized Poissaokets:

N[ w ] =a[™].
We apply the theory of Chapter XlI (sd25. Construct the auxiliary form:
0,1..,4
o) = alégl

(i)
It may be written:

®(S) =pH [ éo] + p;2 [a(Hiés +H2 &+ Ha )] + Hi[& &l + Ha [ 6] + Hs[ 1 &

It is of rank 4, and its reduction to normal form:

®=[&é0] +[443]

can be accomplished by setting:

&= pH& + p;2 (Hié& +H2& +Hs &),
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$=éa,
=aéi+ &+ asés,
&HELG L&+ B,
é;=¢&o,

in which thea; and3 are chosenr as is always possibtein such a manner as to make:
ol-FHa=H, af-Loan=H, oaf-[0=Hs.
One may add the supplementary conditions:
a,p +a,B,+a,5,=0,
af +aj+al=pl+pi+BI=HITH IHH ]
However, if one defines five linear fornms, i, a», as, @ by the identity:
S+ &1+ W+ S+ L =§mt+ & mrEm+E e,
then one will obtain, without difficulty:
w, = w,,

2 H,dH, +H,dH,+ H,dH,
p-2 H7 +HZ+H;

0

2pH H,dH, + H,dH, + H dH,
p-2 Hf +HZ+H;

@, =dH -

o = a,dH, +a,dH,+a,dH,
o HEAHZeR2

o, = BdH * BdH, + B.dH,

0 JHZHHZHH?

When the auxiliary forn® has been reduced g, &,] + [ & &1, we will have:

W= o) + o) +[was] +[aww] + ...

i.e., when we perform the calculations:
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g 2 P%HpHﬁ+gwg+HpHﬂ

p-2 Hf +HZ+H2
 HildH,dH; + Hf dHydH] + HE dH,dH] |
HZ+HZ+H? ’

3)

in which we have set:

@ Q:[%{mﬂ_2m4Hpr+HpH[+H@H3

p-2 Hf +HZ+H2 Hﬂ%@“m

176. If one equates the four first integré&s Hi, Ho, Hs to arbitrary constants then the rank
of &' will be reduced by six units. It thus passes fiém+ 6 to 6 — 12, which corresponds to a
problem with 3 — 6 degrees of freedom (which will be 3 in the cafsthe three-body problem)
as a consequence. However, the corresponding atbaséic system contains arbitrary
parameters.

There is a (theoretical) procedure for reducing tlumber of degrees of freedom while
completely avoiding the introduction of arbitrararpmeters. After annulling the exterior
derivative in the right-hand side of equation (8l &aking into account the relation:

wrzz_pwr
2

N

one will obtain:

Q’

_| HidH, + HpdH, + HydH,
HZ+HZ+H? '

This relation expresses the idea that the exterorative of the quadratic form:

1 _ 1 2 H,dH, +H,dH,+ H, dH,
Q= - 4 2 2 21312
JHE+HZ+HZ  (JHZ+HZ+H? P2 (H +H;+H;)

_H,[dH,dH ]+ H] dH, dH] + H[ dH, dH],
(H7 +HE+H)

I

2 1 _H,[dH, dH ]+ H] dH, dH] + Hf dH, dH|

= a,
2—p[,/Hf+H§+H§ } (H + HZ+H3)™
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is zero. This property is, moreover, evident in the rlggntd side of the preceding equality,
whose first term has a zero exterior derivative esilhds an exact exterior derivative. We shall
see that the same is true for the second term.

In order to interpret the second term, consider tiotovdO9 of lengthy = HZ +HZ +H2Z,
which represents the kinetic moment of the systerh reispect to the origin, and which Hés
H», Hs for its projections. If one imagines a surface elanderthat is described by the poit
and if one calls the direction cosines of the nortoahat surface elememnt;, a», as then one
will have:

[dedH3] = mdg, [dH3dH1] = a»dg, [dHlde] = oz dg,

and, as a result:

H,[dH, dH] + H] dH, dH] + H} dH, dH],
(H +HZ+H;)™”
_aH taH,+aH Sdo = cosy da _

y: y?

in which ¢ represents the angle th@S makes with the normal to the element, atw
represents the solid angle that the surface elesudtends at the origin. If one denotes the co-
latitude (viz., the angle wit®2) and the longitude (viz., the angle between thagtOSand the
planexO32 of the pointSby and¢ , respectively, then one will have, on the one hand:

dw,

dew= sin6[dodg] .

As a result, the form under consideration candganmded as the exterior derivative of the
linear form— cosé& dg.
We then set:

(5) w=—2"% L coshdg.
2-p y

We see thathe characteristic equations of the relative intgnvariant | @ are:

(6) p-2 y
w :0,0)6: 0,@: 0,...

dH-2P y -

Il. - Equations of motion with respect to a moving reference frame.

177. It is easy to interpret this system. In ordefixadeas, we place ourselves in the case of
the three-body problem of celestial mechangks (1). First, we calculate the quantities(A),
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s (A), etc. In order to do this, we shall apply the operati@an corresponds & f to both sides
of formula (3), while writing it in terms adH, s, @, ...,@1. We immediately have:

dH = a(Ao) dH — w(Ao) ad + w(Ag) wr + ... +wo(Ag) A,
0 =ay(A1) dH — w(A1) as + a(A) @ + ... +wo(A1) s,

0 = c3(Ag) dH — ax(As) @& + aa(A) @ + .. +cao(Ad) ds

We therefore find that all of they, (A) are zero forr = 5, except foray(Ao), which is equal
to 1.

On the other hand, we remark that the quantifigs$ + 2H Ay are all zero, since the functiéh
14

= H)# will be invariant for each of the infinitesimahtrsformations under consideration. We see

that the characteristic syster(6) of EQ can be defined by all linear combinations of the
4

equations of motion that enjoy the property of gererified identically when one replaces the
symbol of undetermined differentiation in them with symbol of any one of the infinitesimal
transformations Af, Axf, Asf, Asf.

178. This result is what permits us to geometricailgipret the system (6).

In order to do that, imagine different possiblgerence systems, each of which is defined by
three rectangular coordinate axes, a time origid, @nits of length, time, and mass. We fix the
unit of mass once and for all, and impose the ¢amdon the other units that the constant of
universal attraction must have a fixed numericdue@a The unit of length is also arbitrary.
Finally, we fix the origin of the axes, which witle the center of gravity of the three-body
system, as well as the time origin.

The remaining reference systems depend on foutrampparameters. Three of them fix the
orientation of the axes, and the fourth one fixgsunits.

One may make a reference system correspond tcstself the three bodies (as defined by
their positions, velocities, and time, and depegdin 13 variables) according to a law that is
determined in advance, in such a manner as to edthecnumber of quantities that fix the state
of the three bodies with respect to that referesystem by 4 units.For example,one may
choose the line that joins the center of gravityh® bodyA; to be thex-axis, the plane of the
three bodies to be thgrplane, and the distan€@A; to be the unit of length. The state of the
three bodies is then defined by the two coordinate, the six projections of the velocities of
A; and A; onto the three axes, and finally, the titne One may fix the choice of moving
reference system that corresponds to a given Isya@other law. While always taki@g to be
perpendicular to the plane of the three bodies,mag takeOx to be parallel téA; Ay, and take
the length of the sid&; A, to be the unit of length. One may also chooseates according to
either of the preceding laws, but choose the umissich a manner as to make the measure of the
kinetic momentOS equal to 1. One may also take to be perpendicular to the plane of the
three bodies, take the plan@Sto be thexzplane, and choose the units in such a way as ke ma
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the measure ddSequal to 1. Under this latter hypothesis, the nine quantiiasdetermine the
state of the three bodies with respect to the mowefeyence system will be the two coordinates
of Ay, the two coordinates &%, time, and finally, the six components of the veiesitofA; and
Az, which makes 11 quantities, although they will be couplethéywo relationg =1,¢ =0.

Now suppose that we have made a choice of correspantetween each three-body state
and a moving reference frame by one of the preceding laasyosther law imaginable, and let:

di, G, ..., Qo

be the nine quantities that determine the state of thee tlmodies with respect to the
corresponding moving reference system. The state dhthe bodies will be determined with
respect to a fixed reference system if one knows, alathgaw ..., qo, the four parameters, u,,

us, W that define the position of the moving reference systéiimrespect to the fixed reference
system. These four parameters will be, for exanthéethree parameters that depend on the nine
direction cosines and the ratio of the moving unit ogtarto fixed unit of length. Finally, the
guantities (19 in number, but reducing to 13):

Xi,yi,Zi,Xi',yi',Zi’,t

that fix the state of the three bodies with resgecthe fixed reference system are definite
functions of the 13 quantities:
1, O, -0,  Ug, U2, Uz, Us.

Conversely, the latter are definite functions of thenter. Howeverwhen the9 quantities
Ji, ..., 0o are considered to be functions of the %, z ,x ,y/,Z , t they will obviously be

invariant under each of the infinitesimal transformation$,A., A.f, because performing one of
these transformations amounts to changing the fixetbsysf reference and then altering the
guantitiesus, Uy, Us, Us that define the relation between the moving referenséesyand the
fixed reference system, but without altering the quastdi that define the state of the three
bodies with respect to the moving reference system.

One may also say that if one looks for all of timedir differential forms imlx , dy;, ...,dy

that enjoy the property of being annulled when one repldwesymbold in them with the
symbolsAi f, ..., Asf then one will find all of the linear combinationsdq,, ...,dg, and uniquely
at that.

In particular, equations (8) for the characteristidemysof Q have left-hand sides that are
linear indq, ...,dg. Since they are 8 in number, these equations (6) mpuythato the form:

dg -Cidgp=0 (=12,..,8),
and, since they are completely integrable @hédepend only on thg . In other words, we say

that system (6) is a system of ordinary differentiplagions ing, ...,gs. It therefore defines the
motion of the three bodies with respect to the moving reference.fram
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179. It is now easy to effectively form the equationssg$tem (6). In order to do this, we
start with the relative integral invariaftz; in which we have set:

w:2@+cosed¢,
4

and imagine that we have expressed all of the dgieant , vi, ...,z , t in terms of they, ..., do,

Ui, ..., Us. First of all, we know that the differentiadsy, duw,, dus, duw cannot appear in the
defining expression fav', which can be constructed in terms of the lineamsdg — Ci dg,
uniquely. As a result, in order to calculateve can regardy, ..., us as fixed parameters.
Moreover, when the coefficients of the fawhare expressed in terms of tleq, ..., dgp they
cannot contain the variables, ..., us, since then the exterior derivatoeéwould not be zero
then. In order to carry out the calculation, oae therefore not only regard, ..., us as fixed
parameters, buine can also give them arbitrary numerical valués.particular, one may thus
give them numerical values that correspond to @®edn which the fixed reference system
agrees with the moving reference system. In otledsyin order to formw' , one may give the
values X Y, ...,Z', T, which define the state of the three bodies wéspect to the moving

reference system, to the quantitiesy; , ...,z', tin . As we have seen, these thirteen quantities
reduce down to nine.

180. In particular, we examine the case in which tlving unit of length is chosen in such
a manner as to redugdy one unit (the moving unit of length is thenrduo be fixed). In this
case, one has:

w=2a + cosfdg.

If one adds an exact differential then one witl e relative integral invariahtv+ cosgddg
for the desired differential equations.

Since thez-axis is assumed to be normal to the plane of hheetbodies, and theaxis is
assumed to be parallel BA, , for example, the position of the triangle willpdad on three
quantitiesé;, &, &. However, one will have:

w+ cos@dg =>m (X dX +Y' dY)-HdT+ co¥dg

=mdé& + nd& + n3dés + nadé — H dt,
in which we have set:

é=¢, na=cosb.
The desired equations of relative motion are then:

%:a_H’ %:—G_H 021,2,3,4)_
dt  on dt  o¢
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They are canonical and admit the first inte¢tad const.

For example, one may tafe &, & to be the lengths of the sides of the trianglaAs .

If one supposes that the motion is planar tBevill be zero, and there will be no more than
six unknown functions, &, &, 71, 2, 1.

181. Once the motion of the three bodies with respedhé moving reference system is
known, the absolute motion will be determined by a quadratindeed, if we first know the
projections of the kinetic mome@S onto the moving axes then we will know the raticthod
moving units to the fixed ones by giving it the constant nurGodat measure®Swith respect
to the fixed reference. One may then t&keto be the fixedz-axis, where the position of the
fixed axes depends on an unknown angle. This angléowigliven by a quadrature. Indeed, it
suffices to remark that the invariant foram (when expressed by means of tixed coordinates)
is an exact differential when one takes into accountelaions that are assumed to be obtained,
and which define the relative motion. Indeed, the foamul

, HuldH, dHJ +{ H, dH, dH] + Hf dH, dH |,

y2

shows that under these conditios} is zero (sincéd; andH, are zero). The integration is thus
accomplished by means of the formula:
[ ay = const.

20, = = 2{%0)4}

One may remark that this quadrature may be performed wieehas determined the motion
from only the geometric viewpoint without having found tivee (by a quadrature, as one
knows). In other words, the two quadratures that give {imehe relative motion) and the
orientation that defines the fixed axes with respecth® moving axexan be performed
independently of each other.

[ll. - Case in which the area constants are all zero.

182. The preceding theory essentially assumed #Hat-HZ+HZ#0. We study the

motions for which all three area constants will leeoz In this case, it is necessary to suppose
that the 18 quantities:

Xi,yi,Zi,Xi’,yi',Zi’
are not only coupled by the relations:
2mx =0, 2my;=0, 2Xmz=0,
2mx=0, Xmy =0, Xmz=0,

but also by the relations:
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>m(y z-zy)=0, >Xm(zZ x-x2z)=0, 2m(XxYi—y x)=0.

It is easy to show that the plane of the triamajléhe three bodies remains fixed, because the
components of the three velocities that are normdhé¢ plane are all zero, at least if the three
bodies are not all in a straight line.

We may thus suppose that theand thez are zero, and there then remain five relations

between the 12 quantiti&s yi, x , y; , namely:

Xmx =0, 2my; =0,
>m x' =0, >my =0,
Xm(Xyi—y %) =0.

All totalled, there are then seven dependent variablésoaae independent variable (time).
However, ', which is of even rank, cannot have a rank that is etuahe number of
differential equations of motionTherefore, the characteristic systemafdoes not agree with
that of the equations of motion.

Here we have three infinitesimal transformatida§ Asf, A4 f with:

W (Ao, ) =H, w (A3 9=0, (A4 )=
The seven differential equations of motion can thepuiento the form of Pfaff equations:

=0, =0, .., =0,
and one may suppose that:
@A) = ... =ak(As) = 0, r(As) = 1.

The formw', which can be expressed by means ofdahe.., @y, certainly does not contain
a;, since otherwise the fornw' (As, d would not be identically zero. As a resuthe
characteristic system ab’ will be the completely integrable system:

a=ah=..=ams=0.

It gives the motion of the three bodieslependently of the orientation of the triangle of the
three bodies around the center of gravit9nce this system is integrateke integration will be
given by a quadraturelndeed, the relatioor(As) = 1 assures us that; will have the property
of being an invariant form for the differential equateon= 0.

Now, return to the formv' of rank 6. Its characteristic system admits the infmitesimal
transformations’\ f andA4 f, which give rise to two invariant linear fornag = dH, which we
denote by, andaw, which we denote by, We assume, as is permissible, that onex{as)
= (A4 = 0 for each of the formgg, ..., @k. A calculation that is analogous to the one that was
made in the general case gives:

: 1 1
w :_ﬁ[mlmz] +Q =—ﬁ[5H (DJ +Q,
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in whichQ has rank 4 and is formed from, n, s, @ .
As we saw above, one h@s= 2w, = 2w,, and, as a result:

- Lol ,
Q —2(U;+[ H mz} \/ﬁ(\/ﬁmz) .

The form%\/ﬁ [@Q is therefore an exact derivative; as a resulliihigs the following equations:

(7) B=0h=0% =0k =0

for its characteristic system.
This system may be integrated by some equationsdef:

4, 2, 0.

By definition, the equations of motion will be giv by operations of order 4 and 2 after two
gquadratures.

We remark that from the expression (1) éar= @, the form\/ﬁwz, which plays the role of
relative invariant for system (7), is equal to:

JHm, =AY m(x 5%+ y5y+% 9’(5ix+—; 45 Y+ B Y.

System (7) is easy to interpret: It gives the owtof the three bodies with respect to a
moving reference system, which one may make teespaond with each state of the three bodies
according to a determined lawr which the origin of time no longer is necessarily fixdebr
example, one may choose the actual instant fomthang time origin, and fix the unit of length
by the condition that the energlywill have a given fixed numerical value. The eguas of the

system are obtained by starting with the faflo, in which one includes thenoving
coordinates. Obviously, under the hypotheses emad, one may substitute the form:

Xm(x &ty o).

Here, the quantities of motion of the three bodfliem a system of vectors that is equivalent
to zero. One may thus regard the quantity of motbmhe bodiesA; as the resultant of two
vectorsu; anduy that are directed along the side#\ andA A; and counted positively when they
are projections of\x A; andA; Ai. One then has, upon denoting the three sidesedfiangle by
l1, o, I'3:

W=U X1 +U >+ U303.

One has, moreover:
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1 r2+r2-r?
:ﬁ[u22+u32+u2%—2 — j+

r.2 3

_ f(mzrn3+m3n1+ mmj: ]
rl r2 r3

The equations of relative motion are then:
dr, _dr, _dr, _—-du _—du, _-dr,
OH "OH “OH “OH T oH T OH
ou, du, du, OJr  Odr, Ory,

V. - Case in which the vis viva constant is zero.

183. The preceding theory implicitly supposed thatisevivaconstant was non-zero. If we
suppose that it is zero then the variables will be stilbigea new relation:

ST MmO+ ¥ -u=o.

There are now only six dependent variables and one indeptvariable. The invariant
form o' (Ao, 9), is identically zero here, just as the fatn{As, 9) is.
The system of equations of motion may be put intodhm:f

o=ap=..=w=0,
and one may suppose (s&63) that:

@i(Ao) = @(Ao) = ... =am(Ao) = O, a(Ao) =1,  a@s(Ao) =0,
@i(As) = @p(As) = ... = am(As) =0, as(Az) =1,  as(As) =0.

When the fornav' is expressed in terms of tie, it will obviously contain neithess nor ax .
Finally, suppose that:
(A1) = aB(Az) = an(Az) =0, @i(Ag) = 1,
andw' (A4, 9 = a@». One will have:
W =20w,= [y + [wsa)].
The forma, is of the second type, and the equations:
om=m;k=up=0

form a completely integrable system that is char@tiefor the equatiormsz = 0. They define
the motion of the three bodies with respect to a ngpveference system whose time origin is
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variable. Here, for example, one may choose thersidé the triangle to be a unit of length.
The equations to be integrated then constitute the dhasiic system of the Pfagiquation:

2 d(Ul ri+ur+ U3) —u;dry —usdry, =0,

in which the quantitiess, Uy, Us, r1, I, are coupled by the relation:
12, 2 _gMmm  mm —
%(u2 U2 +2U, U, COS A) + -+ f[—rl+r—2+ mm|=C
If one sets:

rI=X Tr2=y, Wifrt+r+Ww=2 Ww=2p Ww=24q

then one will be reduced to the integration of the @rster partial differential equation:

2 2
Z{L +ij p2 + 2(_1 +_lj q2 +_2ilpq

m m m n Xy
+(z—2px—2q>b[£xz+l_ Y, 4y+1- ij
m, X m y
1.1 mm. mm
+Z| —+— [(z=2px-2qyf - f[ + + jzo.
Z(mi mzj i x oy ¢

Once this equation has been integrated, one will obtiaen general solution of the
characteristic system af by differentiations because onag has been put into the forf dY;
+ Z,dY, , one will deduce the first integrafs, Y», Z1, Z, of this system from it by differentiation.
However, the equations of motion are not, moreovanpbetely integrable. It is necessary
to integrate the equations:

as = ak = 0.

They constitute a system of differential equatiohat tadmit the two infinitesimal
transformationg\, f, A; f, and the matrix:

@5(Ao) (A
Ts(Ao) @A)

10
0 1|’

precisely. On the other hand, because one has:

is reduced to its normal form:

Ao (Asf) = As(Aof) = 0,
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the two transformation&, f, A2 f will be interchangeable, and one will then have:

As a result, the integration is accomplished by meanwm independent quadratures: One
gives the orientation of the triangle A; Az , and the other one gives the time.



CHAPTER XVIII

INTEGRAL INVARIANTS AND THE CALCULUS OF VARIATIONS

l. - Extremals attached to a relative integral invariant.

184. We have already seen in chapter 1 (&cthat the differential equations for the
extremals of the integral:

=] F(u i G, g D) dt

agree with the characteristic equations of the reddtitegral invarianf «y when one sets:

w= 23—5 9 [Zq——Fj

i=1

and regardsy, ...,0h,q, ..., G,, t, as 21 + 1 independent variables.

In the calculus of variations, one regadds..., g» as arbitrary functions dfand q, ..., .,
as their derivatives. In the+ 1-dimensional space oy ...,qn, t), any extremal will enjoy the
property that when the integrais taken over a given arc of that curve it will beistary when
compared to the arcs of infinitely close curves that aithisame origin and the same extremity.
However, one may also place oneself in the+2L-dimensional space odii ...,0n, ¢, ---, G, ,
t). An extremal curve will then enjoy the property thditenl| is taken over a given arc of that
curve it will be stationary when compared to infinitelgse curves for which the initial and final
valuesof only the coordinates:g...,qn, t are the same as for the given extremal. If okestéhe
second point of view themy, ..., g, will be functions oft that have no relationship to the

derivatives ofy, ...,Qn with respect ta, a priori.

185. More generally, start with a linear differentiatfowin 2n + 1 variables. Suppose that
the form &' is of rank 2 and finally suppose that of the coefficients of the differentials
are identically zero. We may therefore set:

w=ad+ad+ .. +a, &, — b &,

since the quantities, ...,a,, b are functions of ther?+ 1 independent variables, ..., X, yi, ..,

Vn, L.
The characteristics of the relative integral invariar- or, what amounts to the same thing,

the quadratic exterior form’' — are given by a system of ordinary differential equations:
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(1) N _x Ny
dt t

if one supposes, as we do, tha not a first integral of the characteristic equations
Having said this, consider an arc of a curve nn+21-dimensional space that connects the

point M (x°, y°,1°) to the pointM (X', y*,t"), and form the integral:

I :J'“:A:aldxl+ a, dx+---— bdt.

We calculate the variation of that integral whee @asses from the arc of the curve under
consideration to an arc of a curve infinitely closetlte given one that connects the point

(X +0x°, Yy’ +0 Y, t°+ 1% to the poin(x +IX, Yy +I Y, t+It). We will have:

d=[als+[, (G -dw) @)} +[, Ad g .

If we would like the integral to be stationaryate to all of the curves that are infinitely
neighboring close to the given curve then it wdltecessary to have:

w(d =0

when one displaces along the arc of the given ctovany dx , dyi, & In other wordsit is
necessary that the arc of the curve must beloragdbaracteristic of the fornraw'. The value of
the integral will be stationary for all the arcstbé infinitely close curves on whidsis zero at
the origin and the curve extremity; i.e., the asoswhichx, ..., X%, t has the same initial and
final values as the arc of the given curve.

186. Now suppose that we restrict the field of curtlet are infinitely close to the given
curve to curves for which the functiors y; , andt satisfy the firsh characteristic equations:

dx
2 — =X..
@) dt '

We assume that thefunctionsXy, ..., X, are independent of thg, ...,y,, which permits us
to takearbitrary functions oft for thex;. Finally, we suppose that the initial and finalues of
yi, .-, Yn, t @re the same for the varied curves as for theipwancurve. With these conditions,
one has:

d=-[w (@, 9

It is easy to see that there is no terndyy ..., dy, in«' (d, ). Indeed, the coefficient ady;
will be:
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a;aldxl+a;a? d)$+ +a;a” d)ﬁ —@ dt.
0y, oy, 0y, oy

If one takes the characteristic equations (2) into @ucthen this coefficient will necessarily
be annulled. It is therefore zero when one displatagyahe extremal. Since onbki, ..., o,
enter under thd sign in the expression fall, the coefficients ofx, ..., &, , & will become
zero. As a resultthe extremals will be given by the characteristic equations’ of

Il. - The least-action principle of Maupertuis.

187. Suppose that the Hamiltonian functibinis independent of time. Consider the set of
motions for which the functiolhl has a given constant valbe The corresponding trajectories

are the characteristics of the linear integral invarfan with:

wzip,ch - hot

i=1

or, what amounts to the same thing, of the inteigrariant | @, with:

(UZZF),5)§.

i=1

Indeed, the fornau differs fromwonly by an exact differential. This formmis constructed
from 2n variables, which are coupled by the relation:

H=h,

and onlyn of these coefficients are zero. The characterjuations are:

dq _ _dq9, _-dn_ _-dn
oH ~ oH oH ~  oH -

As a result, the trajectories are extremals ofritegral:

| prday + ... +pndoy,

in the 2r — 1 dimensional spacei(, pi), whether one considers all of the curves for Wrtize
initial and final values ofj, ...,g, are given or only those curves that satisfy theaigns:
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dg _ . _da
OH  oH’
o op

and, of course, the condition tHat= h.

188. Take the second viewpoint, for example. Suppose tlaftlare the position
parameters of the system, and thatghare the components of the quantity of motion. If one
denotes thesis viva by 2T and decomposes it into terms of second degree, first ejegnel
degree zero, iy, ..., g, then one will have:

H :Zq;%—T—U =T,-T,-U
Substitute the variableg for thep;. By hypothesis, one has:

Tz(q') =To+U+h,

AT N OT,
w=) —og =) —206q+T(dq).
2 oq 24 2 aq 29 HS

Finally, suppose that one has:

dg _dg _ _dq _yT,(d9 _ {T,(d9

q d JT(d) L+U+h’

The quantity under tHesign in the integrdlis:

=y ¢ 9% o vT(d9 _
Wy _zqi aqi, D\/.m+-l-1(dcp_\/2(-g+ U+ DDZ-E( dq+ -1r( dﬂ

Therefore, if one sets:
2T=>a,qd+2) hd+2T

then one will arrive at the following theorem, wihiconstitutes th@rinciple of least action in
the sense of Maupertuis:

Trajectories are extremals of the integral:

j(\/Z('I'O+U+h)@a]. dg dg+> b q@
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relative to all of the infinitely close trajectories, subjéatthe constraints that they have the
same initial and final position of the system and satisfy the wastkeorem H=h, with a given
Vis viva constant.

One recovers the principle in its classical formwhe=Ty; =0

189. EXAMPLE. - In the case of a free moving point that is referredixed axes, the
trajectories will be extremals of the integral:

j 2U +h)ds

If the point is referred to axes that are rotaingundOz with a constant angular velocity
and if, moreover, the time-independent force fisldirected along the axes then one will have:

2 =m(x +ay)’ + (y - a)? +27]
=m(X?+y?+2?%) - 2ma (xy —yx') + ma? (¢ + Y.

For a point of mass 1, the trajectories will ber@xals of the integral:

j\/az(x2+ y?)+2U +2hds-a(xdy ydx

lll. - Generalizations.

190. Everything that was done in the case where tioesdot explicitly enter intél can
also be done in the case whétaloes not contain one of the other varialgjeandp; . To fix
ideas, take the case of a free material point afsniathat is subject to a central force that is a
function of the distance. Consider all of the mosi that it makes around the given plane, which
we take to be thgy-plane, and which obey the law of areas with amgigenstantC. The real
motions are given by a system of differential equmat that admit the relative integral invariant:

jw:j[r'dr +r 28’59—(%r "+l g2y )]J :
which obviously reduces to:

CZ
Iw:Ir’Jr —(%r'2+—§?—u jd’dt.

The form w depends upon only the variables’, andt, and one of its characteristic
equations is:
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dr
—=r'

dt

Iresults from this that if one is given the valugandt, for initial conditions and; andt, for
final conditions then the actual motion that satsstieese conditions will be the one that makes

the integral:
C? 8 dry ,c?
L jl’ dl’ ( +—%r—_U jdt —{[{%(aj _—zr—_U }dt

stationary relative to all of the infinitely closeotions that satisfy the same conditions at the
limits and verify the law of areas with the areastantC

V. - Application to the propagation of light in an isotropic medium.

191. Consider an isotropic medium whose index of reiach is known at each point.
Fermat’s principle then leads us to define light res/the extremals of the integrals:

[nds=] ny d%+ dj+ dZ
If one introduces an auxiliary varialilehen one will be dealing with the case of an integral:

'[ Fx,v,zx,y,Z,1),

F=nyxX*+y*+ 2°

The linear relative integral invariaftcy whose light rays are then the characteristics, is
defined by the formula:

oF oF oF (GF JOF  ,OF Fja

with:

=—O0X+—0Yy +—5 X—+ y—+ z2—~—
ox' oy 0X yay 0z

which becomes:

=n X OX+ y oy+ Z Z |,
’X12+y12+22 ){2+y2+ 22 [k2+ y2+ rZZ

or furthermore:

w=n(ax+pBoy+yad),

in which a, £, ydenote the directions cosines of an arbitrary tisac The formw therefore
depends upon 5 variables, in reality. It is easfotm its characteristic equations and to show
that they contain, in particular, the equations:
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The direction &, £, )) is obviously nothing but the tangent to the light ragierrconsideration.

192. The property of] w that it is a relative integral invariant leads to fiteperty of a
pencil of light rays that says that if one describedosed curveQ) that encircles the pencil then
when the integraln cos9 & is taken over that curve it will be independent @ thosen curve,
in which we have let denote the angle between the tangenCloaf a pointM and the tangent
to the pencil of light that passes through One may easily prove that the necessary and
sufficient condition for the rays of a congruencelidbe normal to the same surface is that this
integral must be zero for any pencil of rays that kemafrom the congruence. This corresponds
to the theorem of Malus that the rays of a congruémateare normal to a surface will be normal
to an infinitude of surfaces. The condition for thisbeothe case is that the quadratic exterior
forma' must be zero, or, more precisely, that the altergdiitnear fornw' (4,0") must be zero,
in which one considerdto be the symbol of differentiation with respect te @fthe parameters
of the congruence amdto be the symbol of differentiation with respect te tther parameter.

The light rays that propagate in the medium under dersiion depend on the four
parametersi;, U, Us, Us. One calls a transformation that is performed osdhmarameters that
changes any congruence of rays that are normal tswigce into another congruence of rays
that are normal to another surfacéMalus transformation. As we have seen, the forhis
expressible in terms of the and their differentials. The most general Malus gfammation is
obviously defined by the equation:

w (U, du) =ka' (u, du),

in whichk is an unknown function. Taking the exterior dative of both sides of this equation
immediately gives:
[dk '] = 0.

Sincew' is of rank 4, this is possible onlydk = 0; i.e., ifk is aconstant. As a result, the
desired transformation can be obtained by exprgsbmidea that the linear form:

w(u',du) = kw(u, du)
must be an exact differential:

n(x,y,zZ)a'd<+p'dy+ y'dZ) =k nxy, 2(adx+ Bdy + yd2 +dV.

For example, define a light ray by the coordindkgsy,) of a point where it intersects thg
plane, and the direction cosines of its tangetttiatpoint byao, 5, . One will have:

N( Xy, Yo Zo)(ag dx,+ B, dyy) — kn(Xo, Yo, 0)(@odxo + Sodyo) = dV.
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1% Case.— There is no relation betweexj, y,,z,. In this casey is a known function o%o,
Yo, % Ys, and one has:

ov ov
_k ’ ’ :_l _k ’ ’0 :_l
n(%, %, 2)a, ox. n(%, ¥%,0)5, 3y,
ov ov
) ’0 . :_1 ’ ’0 : =—.
N0, ¥, 0)ag ox. N0, Y, 0)B, Y,

The first two equations give, and y,; the last two then give, andg;.
2" Case.— There is one and only one relation betwegnyx, x,, andy, . Let:

F(Xo, Yo; %, ¥) =0

be that relation. If one denotes an arbitrary fiomcV of X, Yo ,X,,Y, and introduces an
auxiliary parameted then one will have:

ov oF ov oF
-kn(x%, y,0)a,=—+A—, —kn(>, %,0)8,=—+A—,
(%, %,0)a, ox ox n(%, %, 0)5, oy, oy,
ov oF ov oF
] ’0 ’:_+A_l ] ,0 ’:_+A_

When the first two of these four equations are lwoed with the equatiok = 0 they will
give %, Y,, andA; the last two then give, andg; .

3% Case.- x, and y, are given functions ofpandyp:

%= (X0 Yo),  Yo= 9(Xo, Yo).

V is then a function ofy, Yo, and one has:

, Of .0 oV
n(%, ¥,0) aoawoi = KNk, 3,006

of ag oV
n(x, ¥,0) a,—+ B,— | = kn( %, ¥,0)8,+—;
(%: ¥%.0) By /o’oayo n(%, ¥%,0)8, oy,

these equations then determij@and, .
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193. The form «' is invariant, and we have seen above the charaatepsbdperty of
congruences of rays for which that form is identicakyoz The invariant forrn%a)’2 has
applications in optics. Its developed expression is:

=n[dn(a X+ By + yd)(da K+ B + dy &)
-n?([9B Iy dy o + [dyda & &K + [da IB & &)).

For example, take all of the light rays that tragessgiven surface elemedtr and whose
tangents at the points of intersection are paralltHedines that are interior to an infinitely small
nappe of a condaw The rays under consideration will depend on four pararsu, Uy, Us, Us,
where the first two, for example, define the positadrihe point of intersection of the element
do, and the last two define the orientation of the tangétihat point. Take thstateeach light
ray to be characterized by the corresponding point efsattion X, y, 2) and the direction
cosines @&, £, )) of the tangent to that point. The first three qii@stx, y, zdepend upon only;
andu, , so any cubic exterior form idx, dy, oz is zero. As a result, up to a sign, the invariant
1w'? reduces to:

Lf?=n*([9B Sy dy & + [y da & & + [dar IB & ).

However, if one denotes the direction cosines ohtirenal to the elemewlo by A, 4, vthen
one will have:
[y o = Adg, [0z & = udo, [X dy] = vdo,
[BOY = adu [dyoa] = fdw [oa of = ydw

As a result:
1w?=n* (A a+pu B+ vy dodw=n’cosd dodw

in which & denotes the angle between the normal to the surfaté¢ha (mean) direction of the
light rays that traverse the surface.

Having said this, if one considers an arbitrary set ditligays that depend upon four
parameters then one can take the point on each raw \ilhegt ray pierces a given surfa&. (
All of the rays that pass through this same point foreola cone, and the integral invariant

j 1 a? that relates to the given set may be given by thata:

I :j n° cosd dodw

in whichdo denotes the surface elementSpanddwdenotes the nappe of an elementary cone of
rays that starts from the same poinSa@nd makes an angéwith the normal t&

For example, take the set of light rays that treeex volume bounded by a closed surf&e (
and take each ray at the point whereavesthe volume. For that set, one will have:
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I:j nZdUJ cosd dw

However, if one takes the longitugeand co-latituded on a sphere of radius 1 to be the
coordinates then the integfalos 8 dwwill be equal to:

[| sin6cos6 d6 dg,
which is taken over the hemisphérsé?s]—;; it is thus equal taz As a result, one has:

|=n[] r’do

If the medium has index 1 then the rays will beilieear, and the integralwill be equal
to the product of the area of the surface wmith
194. As an application of the general methods of integmatinat were discussed in chapter
XVI, we propose to determine the path of light rayannsotropic medium in which the index of
refractionn depends upon only one of the rectangular coordinateslere, one knows the
invariante', as well as three infinitesimal transformations thatrespond to a translation
parallel toOx, a translation parallel tOy, and a rotation arour@dz

of

of of of
PR + —
1)

of of
, f=—, f=x—-y—+a— —_—
A, oy A oy y B

f=
A ox dfp oa

Since these three transformations leave the form:
ws=n(ax+py+ydx)
invariant, the linear invariant formag (o, A) will reduce to:

ocfAr) = dn a),
oufA2) = dn p),
OufAs) = dn(Bx - ay)].

One thus has three first integrals:

na, ng  n(Bx- ay).
Set:

na=a, nB=b, p[x—-ay=c.

The last relation shows that any light ray is inlanp parallel tdOz As a result, one has
that:
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a)(,:é(ax+by+j\/rf— ga-8 d%

L O P R
\An?—a?-p? Nh-a&- i
As a result, one has:

!

a,

x:aj dz + y:bJ' dz + g
Jn?-a?-p? Jn?-a?- b’

for the trajectories of the light rays.



CHAPTER XIX

FERMAT'S PRINCIPLE
AND THE INVARIANT PFAFF EQUATION OF OPTICS

l. - Fermat’s principle.

195. In the preceding chapter, we considered an integral antaoif the optics of isotropic
media, while supposing that the index of refraction iwdependent of time.

Now take an arbitrary medium, in which we suppose tafpropagation of light waves is
defined by a Monge equation:

() F(x,y,zt,dx dy,dzdt)=0

that is homogeneous d@x, dy, dz dt. This signifies that the wave emanating from a |gghal
that is emitted at the instainat the pointX, y, 2) will have:

FXy,zt; X=x,Y-y,Z-2dt)=0

for its equation at the instant dt.
As one knows, relative to the point ¥, zZ) and at the instarttthe wave surface has:

FXy,zt; X-xY-y,Z-21)=0
for its equation.

In such a medium, a light ray is defined by taking, zto be three functions afthat satisfy
equation (1) and, moreover, a supplementary conditionctihadtitutes what one calermat’s
principle. Among all of the curves that satisfy equation<{1gr, as on says among all of the
integral curvesnf the Monge equation (1), the light ray that emanfites a given pointx, yi,

z) is the one that minimizes the time- to that is necessary for the light to go from the first
point to the second. In other wordght rays are extremals of the Mayer problem that is
defined by the Monge equati@h).

196. We briefly recall how Fermat’s principle leads e formation of differential equations
that define the light rays. Imagine a light ray tsi@rts from a point<, yo, z) at the instanty
and reaches the pointi(yi1, z;) at the instant;. If one is given an arbitrary integral curve of
equation (1) that is infinitely close to the light rdyeh one can suppose thaty, z t are
expressed as functions of a parametéor the light ray, as well as the integral curve, sttt
the values 0 and 1 of that parameter correspond to thentis$, andt; for the light ray,
respectively. Let:

X+X y+o, z+d t+a

be functions ofi that relate to the varied curve. Denote the dexgatofx, y, z t with respect to
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ubyx',y',Z ,t". If one writes equation (1) in the form:
(2) Fx,y,ztx,y,zZ,t')=0
and varies that equation then one will obtain:

6_F5 +6—F5y+a—F5 +6—F5t+a—F5’ a—F5y+a—F5 2+6—F5t 0.
0X oy 0z ot 0 X oy 0z 0't

We multiply the left-hand side of the latter eqgoiatby A du, with A being a given function of
u, and integrate from 0 to 1. We have:

1
j/l—a +;|—5y+/16—F5 A9 5t O 59X, 4 OF 5y
5 oy 0z ot o0X du o0y d

LY Lo )lﬁdit}d u=0,
0Z du ot d

or, after integrating by parts:

MO o+ 5y +9F 524 a—Fat
ox . ay 07 ot )|

i{ ‘Z_)F(_%( Z_Zﬂa {A%—%’(}l%ﬂcﬂ}duzo.

If the integral curve in a neighborhood of théhtigay satisfies the initial and final conditions
that were imposed then one will have:

3)

()0 = (¥)o= (Ao = (H)1=()1=()1=0

and, as a result:

(aFj (3t), + j{aa—F—i(/la—Fﬂax +- {AG—F—E()IG—FHét}du=O.
217 ax dul” ax ot dul” ot

One may specify the function®, dy, Jz arbitrarily, provided that they are annihilatedla
limits of the interval. We then determine the fume A by the condition that the coefficient &f
in the quantity under tHesign must be zero. In order faf); to be zero for any varied integral
curve, it is necessary and sufficient that the famehts of &x, dy, dz in the quantity under
the] sign must also be zero.

In other wordsijf one introduces an auxiliary quantig/thenthe light rays will be given
by equation(2), whencombined with the equations:
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JOF _d [ OF

- A— =0,

ox dul o0X
SLA IPEA

u

) 6::/ d oF
A——-——| 1— |=0,

0z dul 02
a_F— d Aa_F =0.

ot dul ot

Moreover, besides equation (2), the eliminatiod gfves the three equations:

OF _d (9F) OF _ d(aFj OF _d(9F) oF_d(9F

ox du(axj: dy duldy)_ 9z dia zj: 9t d£6’tj
oF oF oF oF ’
ox o7 02 at

(4)

to which, we agree to append:

!

dx_ ., dy_ ., dz__, dt_
=X, , =7,
du du du du

One immediately sees that when equation (2) isrdifteated with respect to then along

with equations 4'), this will give d?f (jj—{ dd—f g—t as four equations of the first degree, and
u

the values that one derives will not dependuonrAs is natural, the parametemappears only in
the final equations, which are of the form:

dx _dy_dz_ dt dx_ dy dz d
x'ytiYZT’

in which X, Y, Z, T are given functions of vy, z, t,x",y',Z ,t' that are homogeneous of second
degree inx',y',Z ,t"and satisfy:

O g R

0x az at 0 X 0't
In reality, the differential equations of light rays are fikstder ordinary differential
equations in xy, z ttitltz and these seven quantities are assumed to be cbbyle

relation (2).
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Il. - The invariant Pfaff equation of optics.

197. Now consider a family of light rays that depend upgmarameten, and take each of
the light rays in an interval of timey(t;) that depends oa and correspond to a point of
departureXo, Yo, ) that varies withor and a point of arrivalx{, y:, z;) that likewise varies with
a. If, for each light ray, one denotes the arbitramyiliary function that figures in equations (4)
by A, and applies formula (3) to it then one will obtain:

A(25) e (2 e 5 e ) ]
-{[52) 20 57) o032 (3

From this, it results that whehe differential equation of the light raysconsidered to be a

: , tytz that are coupled by (2}t will

first-order system of differential equationsxny, z, t

admit the invariant Pfaff equation:

oF oF oF oF
wW; E— O0X+—0y+—0z+—0t=0.
N oy Y at

U

This Pfaff equation, which also depends upon d¢héyrelations between,y',z', t', is a

function of six variables. Its characteristic gystis a system of ordinary differential equations,
which, as a result, can only be identical to theagiqns of the light rays.
We thus arrive at the conclusion thia light rays are characteristics of the Pfaff atjon:

(5) 9F 5x+ 9 5y+ OF 524 F 51=0.
ox oy Y a2%% ot

This is the invariant Pfaff equation of optics.

198. In practice, the Monge equation (1) is writterthia form:

dx dy dz dx dy d
(xyz,r,—x—y j F(x Y, 2t 2

dt dt dt dt dt dt
By setting:
dx _ . dy_ dz _ .
—=X, —=y, —=2,
dt dt dt
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it is easy to form the invariant Pfaff equation. Irdlezne has:

X’a_F+ya_F+za_F+f_a_F:0_
ox Tay a7z ot

As a result, equation (5) can be written:

t’a—F5x+t’a—F5y+fa—F52— Xa—F+ ya—F+ za—F o 0.
ox oy 07 0X oy 0z

Since the left-hand side is homogeneousg' jiy',Z', t', one can replace its arguments
byx, V, z, 1, respectively. One thus has the form:

(6) 992 x4 92 5y 2 5 502, (02, 92 5 g
0X oy 0z 0Xx "0y 07z

for the invariant Pfaff equation.

For example, take a medium in which the wave serfia a sphere, and let/ n be the
velocity of propagation of light, where is the velocity in a vacuum and is the index of
refraction (which is a function of vy, z t). Here, the Monge equation is:

(ECRCIRE

and the invariant Pfaff equation is:

N*(XOx+ Yo y+ 20 ¥— & £0.
Upon setting:

it becomes:
nNadx+pLoy+yd)—-cda=0.

a, [, yare then the direction cosines of the tangerttedight rays.
If n does not depend on time then the law of propagatidight will admit the infinitesimal
transformationgit, and, as a result, the differential equations gt the light rays will admit

the invariantorm:
St —%(a5x+,[>’5y+ Y37 .



214 Lessons on integral invariants

The differential equations that give the (geometricyes that are described by the light rays
admit, in turn, theelative integral invariant:

| nax+py+ya).

We thus recover the viewpoint of the preceding chapter 184).

199. As one knows (sed52), the characteristic equations of the Pfaff invar@raptics can
be converted into the characteristic equations ofs&-dirder partial differential equation. (The
converse is also true, but we shall leave it at)that.

The existence of an integral invariant will be assured any timethef propagation of light
admits an infinitesimal transformatiorin all of these cases, one may convert the sdardight
rays into a problem in thardinary calculus of variations.

For example, take the case in which the law of propagaf light is given by the Monge
equation:

n?(d¥ + dy? + d7) - ?df? = 0,

where the index of refraction can dependxpw t, but not on z One then has the infinitesimal
transformation:
A=
0z
The form:
W9) _N@dy+poy+yo3 :5z+£5x+£5y——cdt

W(A) ny 4 4 v

is an invariant form. Once the coordinatendy are known as a function gfone will getz by
a quadrature. As for the differential equatiora dnivex andy as functions of, they will admit
the relative integral invariant:

jZ5x+£5y—£5t,
4 4 ny

or, what amounts to the same thing, the integrariant:
| ¢x+ny-¢a
in which é, n, { are three quantities that are coupled by theioaiat
2
2

n
1+52+/72=Fc :

In particular, the equations of the charactesstionsist of the equations:
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n2
dx dy —dt \/dtz—cz(dx2+dyz)

?nnzZ n

C Cc

The light rays render the integral:

j—fdx—xy dy+¢ dtzj\/ﬁ—z dt - d&k- dy

stationary.
lll. - Fermat’'s principle is independent of the spacetime framing.

200. It is important to remark that the invariant Pfadiuation of optics is coupled to the
Monge equation that defines the law of propagation of igld manner that i;mdependent of
the framing chosen for space and time.other words, the equation:

a—':5x+a—':5y+a—|:5z+a—|:5t: 0
ox oy 07 ot
is acovariantof the equation:

Fix,y,zt, X,y ,Z,t')=0

relative to any change of variables performed ory,xz, t. This result is basically Fermat’s
principle itself. However, one also recover thggation in the following manner, in which
nothing distinguishes one of the variabley, z t from the others.

Consider the Pfaff system:

(19 — === =

such that, vy, z t, xyz are assumed to be coupled by relation (2), ankl fimothederived

r g

system of (7). It is the system that is compoddefaff equations that are linear combinations of
equations (7), and which enjoy the property thatekterior derivative of their left-hand side is
zero on account of equations (7). If one sets:

as above, then any linear combination of equati@ysvill be of the form:

u(dx—xdd)+ ( dy- 'ydt+ W dz  zytO0.
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If one takes equations (7) into account then the extdaadvative of the left-hand side will
reduce to:

[dt(udx+ vdy+ wdy .
On account of equations (7) and the derivative of equ@Biprthe condition for this to be
zero is:
[dt (u dx+ Vv dy+w dz)(dx—x dt)(dy- y dt)(dz—z dt) dF] =0,

or, upon simplifying:

dxdydzdf udx vy Wd@_z &l - afF ,HFO_

oy 0z
This gives:
u _ v _w
oF " oF "ok
X ay 0z

The system derived from system (7) is therefargli the Pfaff equation:
P (ax- sy + 2 (dy- yop+ 2 ( dz " 290,
0X oy 0z

whose characteristics are the light rays.

It results from this that, even in optics, the d@imoordinate does not play a role that is
essentially different from the one that is playgdlie spatial coordinates. The fundamental laws
of optics are not necessarily related to the atassiotions of space and time, and they behave
just as they do in the theory of relativity.

201. For example, if one chooses a convenient frarfanghe universe (i.e., spacetime) then
the laws of propagation of light in a gravitatiofiald that is produced by a unique mass (which
is reduced to a point) will be furnished by the Balzschild equation:

dr?

,_2m
r

+r2(d92+sin29d¢2)—(1—2—mj dt?= 0.
r

These laws admit the infinitesimal transformat%];tm When the light rays are considered

from only the space point of view, they will thue Hefined as realizing an extremum of the
integral:
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| | ar? ,1°(d6°+sin’6dg?)
_ .
r r

Propagation takes place in a plane that passesghrthe center of attraction, and if one
supposes that this plane is definedgby O then one will have to realize an extremum for t
integral:

By taking advantage of the existence of the ibdsimal transformatiog%, the integration

offers no difficulty, and gives:
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