
 

CHAPTER VI 
 

RELATIVISTIC, SPINLESS PARTICLES  
 
 

 One of the first criticisms of Schrödinger’s wave equation was the fact that it was 
non-relativistic; that is, it was not Lorentz-invariant in form.  The first steps that were 
taken towards relativistic quantum mechanics [1] were made by Oskar Klein [2] and 
Walter Gordon [3], who replaced the non-relativistic expression for the total energy of a 
point mass with its relativistic formulation.  They then applied the same process of 
canonical quantization to the classical energy and momentum observables with the same 
first-order partial differential operators as before and arrived at a relativistic wave 
equation for spinless particles that related to the usual linear wave equation in the same 
way that the Helmholtz equation of geometrical optics relates to the Laplace equation of 
potential theory.  In fact, since the (spatial) Helmholtz equation is derived from the 
(space-time) wave equation by separating the time and space variables, one can add yet a 
fifth dimension to space-time and convert the Klein-Gordon equation into a five-
dimensional wave equation with no mass term.  Interestingly, that line of inquiry can lead 
to a Kaluza-Klein formulation of space-time geometry and mechanics, and the paper by 
Klein that was just cited was one of the two seminal papers along that line, along with the 
earlier paper by Theodor Kaluza [4].  One of the more extensive elaborations upon the 
five-dimensional picture was made by the Russian Yurii Rumer in his book Studies in 
Five-Optics [5], which actually had more to do with quantum theory than the unification 
of electromagnetism and gravitation. 
 
 One often finds that the relativistic formulation of the mathematical models of 
physics can be more concise than the non-relativistic formulation.  This is especially true 
in the context of wave mechanics, since it is probably true that the concept of a wave and 
its motion through space are more rooted in relativistic concepts, which grew out of the 
motion of electromagnetic waves, in particular.  Hence, we shall basically follow the 
general flow of ideas in Chapter II, while introducing the relativistic form of the same 
basic notions that were treated in their non-relativistic form in that chapter. 
 
 
 § 1. The massless, complex scalar wave equation. – Before we go on to the Klein-
Gordon equation, we shall first see how things work for the massless, complex scalar 
wave function, which is the limiting case of the Klein-Gordon wave for vanishing rest 
mass.  However, we shall find that many of the essential features of the continuum-
mechanical interpretation of the quantum wave function are already present in the 
massless case.  In particular, the essence of the so-called “quantum potential” already 
appears in the absence of mass, but one finds that the constraint that the frequency-wave 
number 1-form k must be light-like will make it vanish.  Hence, the non-vanishing of the 
quantum potential will be contingent upon the non-vanishing of the mass of the wave.  
Since the solutions of the massless, complex scalar wave equation must satisfy the 
aforementioned constraint on k, one sees that in order to be dealing with a non-trivial 
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extension of the wave equation, one must be dealing with solutions to its real form that 
do not necessarily correspond to the solutions to its complex form, since they might obey 
an enlarged version of the original dispersion law. 
 
 a.  Canonical quantization.  The basic dispersion law for a massless linear wave is: 
 

k2 = ηµν kµ kν  = 0,      (1.1) 
 
with the frequency-wave number 1-form k being defined by: 
 

k = kµ dxµ = ω dt – ki dxi,     (1.2) 
 

in which ω is the frequency of the wave (in radians per second), and ki dxi is its spatial 
wave number.  This differs from the definition in the non-relativistic case (Chapter IV) 
by the opposite choice of sign convention, since the previous choice was made simply for 
the sake of agreement with the usual equations of non-relativistic quantum mechanics. 
 In (1.1), we have introduced the Minkowski space scalar product in the form: 
 

ηµν = diag [+ 1, – 1, – 1, – 1],    (1.3) 
 
which has the advantage of making the norm-squared of time-like velocities positive, so 
proper time does not become imaginary. 
 
 The basic association of ω with − i ∂ / ∂t and ki with i ∂ / ∂xi (or, more concisely, ∂ / 
∂xµ, ↔ ikµ) will then turn the algebraic expression k2 into the d’Alembertian operator (x0 
= ct): 

□  = ηµν ∂µ
 ∂ν  = 

2 2 2 2

2 2 1 2 2 2 3 2

1

( ) ( ) ( )c t x x x

∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂

.   (1.4) 

 
 Hence, if Ψ(xµ) is a complex-valued wave function then the wave equation that is 
associated with the dispersion law (1.1) is the usual linear wave equation: 
 

□Ψ = 0,       (1.5) 
 
which implies the complex conjugate wave function Ψ* will also satisfy an analogous 
equation: 

□Ψ* = 0,       (1.6) 
 
since □  is a real operator (i.e., its coefficients are real). 
 
 b.  Lagrangian formulation of the massless, scalar wave equation.  The most common 
Lagrangian density for the equations above is defined by: 
 

L0(Ψ, Ψ*) = 1
2 || dΨ ||2 = 1

2 ηµν ∂µ
 Ψ ∂ν Ψ*.   (1.7) 
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 The canonical forces and momenta are then (1): 
 

 f  = 0∂
∂Ψ
L

 = 0,  Πµ = 0

( )µ

∂
∂ ∂ Ψ
L

= ηµν ∂ν
 Ψ*,   (1.8) 

 

f * = 0∂
∂Ψ
L

 = 0,  Π*µ = 0

( )µ
∗

∂
∂ ∂ Ψ
L

= ηµν ∂ν
 Ψ*.   (1.9) 

 
One then verifies that the wave equation for Ψ* and Ψ can be obtained from: 
 

0 = 0δ
δΨ
L

 = f − ∂µ
  Πµ = − ηµν ∂µ

 ∂ν
 Ψ* = − □Ψ*,   (1.10) 

 
and its complex conjugate, respectively. 
 The action functional for L (as well as L itself) has the basic phase symmetry Ψ → 

eiα Ψ, Ψ* → e−iα Ψ*, whose infinitesimal generators are: 
 

δΨ = iα Ψ,  δΨ* = − iα Ψ*,   (1.11) 
 
and its associated Noether current is the vector field: 
 

Jµ = Πµ δΨ + Π*µ δΨ* = iηµν (Ψ ∂ν
 Ψ* − Ψ* ∂ν

 Ψ) α.  (1.12) 
 
 When one compares this to the corresponding current in the Schrödinger case in 
Chapter II, one sees that the spatial part of the latter is / 2mℏ  times the present 
expression for J i, while the temporal part has changed fundamentally. 
 The fact that L0 is independent of xµ shows that the action functional will be 

translationally invariant, and the canonical energy-momentum tensor will take the form: 
 
 T µ

ν  =  Πµ ∂ν
 Ψ + Π*µ ∂ν

 Ψ* − 0
µ

νδL  

= ∂µ Ψ* ∂ν
 Ψ + ∂µ Ψ ∂ν

 Ψ* − 1
2

κ µ
κ νδ∗∂ Ψ ∂ Ψ ,   (1.13) 

 
which can also be expressed in the form: 
 

T µ
ν  = Re 2 [∂µ Ψ* ∂ν

 Ψ] − 1
2 || dΨ ||2 µ

νδ .   (1.14) 

 

                                                
 (1) In performing calculations that involve complex-valued wave functions, one must be careful to note 
that: 

∂

∂Ψ
(… Ψ*…) = (… 1 …)*,  

( )µ

∂

∂ ∂ Ψ
(… ∂νΨ*…) = (… µ

νδ …)*, etc. 
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 The associated doubly-covariant tensor field Tµν is symmetric, which is consistent 
with the fact that since the field space of Ψ is the complex number plane, the only 
representation of the Lorentz group on it is the trivial one; i.e., Ψ has spin zero. 
 The trace of T µ

ν  is easily seen to be: 

 
T µ

µ  = 0,     (1.15) 

 
which is consistent with the fact that L depends upon only ∂µ

 Ψ and  ∂µ
 Ψ*, but not Ψ and 

Ψ*. 
 The conserved current that is associated with the scale invariance of the action 
functional is: 

jµ = L0 x
µ − Πµ Ψ − Π*µ Ψ* = 1

2 || dΨ ||2 xµ − ηµν ∂ν
 || Ψ ||2.  (1.16) 

 
It divergence is then: 

∂µ j
µ = T µ

µ + xµ ∂µ L0 ,      (1.17) 

 
which vanishes because of (1.15), along with the fact that L0 is not a function of xµ, at 

least directly. 
 When one takes the divergence of the tensor field T µ

ν , one will get: 

 

T µ
µ ν∂  = 0 0 0

( ) ( )

( ) ( )x x x
µ µ
ν ν ν

µ µ

∗

∗

∂ ∂ Ψ ∂ ∂ Ψ∂ ∂ ∂+ −
∂ ∂ Ψ ∂ ∂ ∂ Ψ ∂ ∂
L L L = 0,  (1.18) 

 
which consistent with the facts that L0 = L0 (∂µΨ, ∂µ Ψ*), and there are no external forces 

that act upon the wave. 
 
 c.  The Madelung-Takabayasi form of the massless, complex wave equation. – If one 
makes the basic transformation of Ψ that amounts to expressing its values in polar form: 
 

Ψ = R eiθ,  Ψ* = R e−iθ    (1.19) 
then since: 

∂µΨ = 
R

i
R
µ

µθ
∂ 

+ ∂ Ψ 
 

, ∂µΨ* = 
R

i
R
µ

µθ
∂ 

− ∂ Ψ 
 

*, 

one will have: 

∂µνΨ = 
1

( )
R

i R R
R R
µν

µ ν µν µ ν µ νθ θ θ θ θ
∂  − ∂ ∂ + ∂ + ∂ ∂ + ∂ ∂ Ψ    

, (1.20) 

 
which will make the d’Alembertian operator take the form: 
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□Ψ = 2 2
( ) ,

R
d i dR d

R R
θ θ θ  − + + < > Ψ    

□
□ .  (1.21) 

 
 The complex linear wave equation then splits into a pair of real equations: 
 

(dθ)2 = 
R

R

□
,  

2
,dR d

R
θ θ+ < >□  = 0.   (1.22) 

 
 We can convert the second of (1.22) into a more suggestive form by multiplying it by 
R2, which will then allow us to put the Madelung-Takabayasi equations into the form: 
 

(dθ)2 = 
R

R

□
,  div (R2 grad θ) = 0.    (1.23) 

 
In the present form, one can see that the vector field whose components are R2 ∂µθ 
represents a conserved current.  The expression for the divergence that we are using is, of 
course, the four-dimensional one: 
 

div v = ∂µ vµ = 
0

0

i

i

v v

x x

∂ ∂−
∂ ∂

.     (1.24) 

 
 If we set k = dθ then according to (1.1), k2 will have to be zero, and the first of 
equations  (1.23) will reduce to: 

R□  = 0.      (1.25) 
 
Hence, R must be a solution to the linear wave equation; a simple case in which that 
would be true is if R were constant.  We shall find that this situation is also relevant to the 
massive case later. 
 In order for the consideration of solutions of (1.23) to not essentially trivialize the 
appearance of a non-zero right-hand side, one must therefore consider solutions to (1.23) 
that do not correspond to solutions of (1.5) in the strict sense, but ones that will have 
“quantum fluctuations of the light-cone” as their dispersion laws.  One must then shift 
one’s emphasis from the complex form of the wave equation as being the fundamental 
form to considering the real form as more fundamental, and enlarging the scope of the 
basic equations to include solutions to the real form that do not correspond to solutions of 
the complex form. 
 
 Since we see that the right-hand side of the first of equations (1.22) takes the form of 
the square of some “rest wave number kR” (i.e., one that is present even when dθ = ω dt),  
that would suggest that (1.22) can be given the form: 
 

2
Rk = 

2

R

c

ω 
 
 

 = 
R

R

□
.     (1.26) 
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If 2
Rk  is a constant then an R that satisfies this equation will be an eigenfunction of the 

d’Alembertian operator, and its eigenvalue will be 2
Rk . 

 
 Introducing the polar substitution (1.19) into the Lagrangian (1.7) makes: 
 

L0 = L0 (R, dR, dθ) = ( )2 2 21
2 ( )dR R dθ +
 

.   (1.27) 

 
Note that for any solution to the complex wave equation, the second term will vanish.  
That does not make the term identically zero, though, and one must realize that the 
calculus of variations is more concerned with how extremal wave functions lie in the 
space of neighboring non-extremal ones than it is with the values of L itself. 

 It we treat R and θ as the generalized coordinates in field space then the canonical 
forces and momenta of L0 will be: 

 

fR = 0

R

∂
∂
L

= R (dθ)2, R
µΠ  = 0

( )Rµ

∂
∂ ∂
L

 = ηµν ∂ν R,    (1.28) 

 

fθ = 0

θ
∂
∂
L

= 0,  µ
θΠ  = 0

( )µθ
∂

∂ ∂
L

 = ηµν R2 ∂ν θ .   (1.29) 

 
Clearly, these expressions are not merely the polar forms of (1.8) and (1.9).  In particular, 
one of the canonical forces is now non-zero. 
 The first set of equations gives: 
 

0 = 0

R

δ
δ
L

 = fR − R
µ

µ∂ Π  = R (dθ)2 − R□ ,   (1.30) 

 
which is equivalent to the first of (1.23), and to (1.25) when one imposes the light-like 
constraint upon dθ. 
 Varying L0 with respect to θ will then give: 

 

0 = 0δ
δθ
L

 = fθ − µ
µ θ∂ Π  = − ∂µ (R2 ∂µθ).   (1.31) 

 
which is essentially the second of (1.23). 
 In fact, the real symmetry that corresponds to the phase invariance of the complex 
field Lagrangian is simply the translational invariance of θ by a constant α : 
 

δθ = α.      (1.32) 
 

 The corresponding conserved current à la Noether’s theorem is: 
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Jµ = µ
θΠ δθ = (R2 ∂µθ) α,    (1.33) 

 
which is, for all practical purposes, the vector field R2 ∂µθ . 
 If one introduces polar coordinates into the previous expression (1.12) for Jµ then one 
will see that the present expression is the same as the polar form of (1.12). 
 The canonical energy-momentum tensor now takes the form: 
 
 T µ

ν  = 0R Rµ µ µ
ν θ ν νθ δΠ ∂ + Π ∂ −L   

= ( )22 2 21
2 ( )R R R dR R dµ µ µ

ν ν νθ θ θ δ ∂ ∂ + ∂ ∂ − +
 

.  (1.34) 

 

 As before, Tµν is symmetric, since the field space is still C. 

 If one makes the polar substitution in the complex energy-momentum tensor (1.13) 
then one will get: 
 

T µ
ν  = ( )22 2 21

22 ( )R R R dR R dµ µ µ
ν ν νθ θ θ δ  ∂ ∂ + ∂ ∂ − +   

,  (1.35) 

 
which is not the same as T µ

ν in (1.34); then again, the canonical momenta are not 

consistent with polar substitution, either. 
 The trace of T µ

ν  [as in (1.34)] is: 

 
T µ

µ  = − 2 L0 ≠ 0,     (1.36) 

 
which is not consistent with (1.15).  That discrepancy arises from the fact that L0 is now a 

function of one of the field variables now, namely, R, so it has lost its scale invariance. 
 The individual sub-matrices of T µ

ν  take the form: 

 
0

0T  = 1
2 [(∂0R)2 + (dsR)2 + R2 (∂0θ)2 + R2 (dsθ)2] ≡ H,    (1.37) 

0
iT = ∂0R ∂iR + R2 ∂0θ ∂iθ,      (1.38) 
0

iT = ∂0R ∂i R + R2 ∂0θ ∂iθ,      (1.39) 

Tij = ( )22 2 21
2 ( )i i i

j j jR R R dR R dθ θ θ δ ∂ ∂ + ∂ ∂ − +
 

.   (1.40) 

 
 If one takes the divergence of (1.34) then one will get: 
 

T µ
µ ν∂  = 0.       (1.41) 

 
Of course, this is consistent with the fact that only force that is present – viz., fR – is an 
internal force, as well as being consistent with the complex result (1.18). 
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 d.  Density form of the Madelung-Takabayasi equations.  So far, we have said nothing 
about the physical nature of the complex wave function Ψ or its polar coordinates R, θ .  
In order to introduce some physical significance, we take our inspiration from 
conventional quantum wave mechanics and associate || Ψ ||2 = R2 with a density and p  = 

dθℏ  with an energy-momentum 1-form. 
 However, since the statistical interpretation of the quantum wave function makes R2 
the probability density function for finding a point-like particle in a region of space-time, 
and we are looking for extended-matter interpretations, we shall treat n = R2 as a number 
density; when integrated over a spatial region, it will give the fraction of the total 
object(s) that is contained in that region.  Hence, we shall not necessarily normalize n to 
have unity for its total spatial integral. 
 Similarly, since ( )p t  has more to do with the total energy-momentum of a point-like 

particle, we shall treat p(t, xi) = ( , ) ( )in t x p t  as the energy-momentum density 1-form for 
the extended object whose extent in space-time is defined by the support of Ψ (or R, θ). 
 If we then multiply the first of (1.23) by 2 2nℏ  and the second one by ℏ  then we will 
get: 

p2 = n2 2 R

R
ℏ
□

,  div p = 0.    (1.42) 

 
The first of these tells us what would happen to the conservation of energy-momentum 
density if the amplitude function R were not wave-like, while the second one is a 
statement of relativistic dynamical incompressibility. 
 The expression 2 /R Rℏ □  is 2m0 times the “quantum potential” that is usually first 
introduced in the context of the massive wave equation (i.e., Klein-Gordon) when the rest 
mass of the point particle is m0 .   
 In anticipation of a table that we shall define later on, we now introduce the following 
set of definitions, which are also four-dimensional extensions of the corresponding spatial 
definitions in Chapter IV. 
 

Table VI.1.  Dynamical variables associated with the polar coordinates. 
 

Action function  S  = θℏ  
Energy-momentum 1-form p  = dS = dθℏ  
Energy-momentum density 1-form  p  = np= nℏ  dθ 
Dilatation potential  η  = 

2
n
ℏ

 = 2

2
R
ℏ

 

Dilatation pressure 1-form  π  = dη = 
2

dn
ℏ

 = ℏR dR 

 
In particular, our present sign convention now makes: 
 

ε = n ∂t S, pi = − n ∂i S.     (1.43) 
 
 We can the rewrite equations (1.42) in the form: 
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p2 = 2η div ππππ − π2,  div p = 0.    (1.44) 
 

 We can now examine the vorticity and compressibility for the 1-forms p and π and 
their associated vector fields.  In the former case, one will have: 
 

d^p = ℏ dn ̂  dθ = 
1

η
π ^ p, div p = 0,    (1.45) 

d^π = 0,   div ππππ  =
1

2η
(p2 + π2).  (1.46) 

 
Hence, the flow of the flow of p will be vorticial, but incompressible, and the source of 
the vorticity will be the non-collinearity of p and π.  Meanwhile, ππππ will be irrotational, 
but compressible, and the compressibility will vanish iff p and π both vanish. 
 Since the Frobenius 3-form vanishes for both π and p, the flows of ππππ and p will both 
be hypersurface-orthogonal, while the hypersurfaces will be the level surfaces of η (or n, 
for that matter). 

 
 If one multiplies the Lagrangian density (1.27) by 2ℏ  then one will get: 
 

0( , , , )S pη πL  = 2 21
( )

2
p π

η
+ .   (1.47) 

 
(Note the fact that the “gradient” variable that is associated with S is p = dS, not p = n 
dS). 
 One can then rewrite (1.46) as: 

0L  = div ππππ ,      (1.48) 

 
at least for a solution to the first of equations (1.44). 
 The canonical forces and momenta are now: 
 

fS  = 0

S

∂
∂
L

= 0,        S
µΠ  = 0

pµ

∂
∂
L

= 
2

pµ

ℏ
,        (1.49) 

  

 fη  = 0

η
∂
∂
L

= 2 2
2

1
( )

2
p π

η
− , µ

ηΠ  = 0

µπ
∂
∂
L

= 
µπ

η
.  (1.50) 

 
 One can verify the following relationships between these quantities and the previous 
ones (1.28), (1.29): 

0L  = 02ℏL , S
µΠ  = 2 µ

θΠ , µ
ηΠ  = 

2
RR
µΠ  .    (1.51) 

 
 The Euler-Lagrange equations that follow from this new Lagrangian density are: 
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p2 = − π2 + 2η div ππππ,  0 = div p,   (1.52) 
 
which agrees with (1.44). 
 The conserved current that is associated with the phase invariance of 0L  is still 

proportional to µ
θΠ , and we can use: 

Jµ = pµ.     (1.53) 
 Since we also have that: 
 

∂ν S = ℏ ∂ν θ,  ∂ν η = π = Rℏ ∂ν R,    (1.54) 
that will make: 

T µ
ν  = 0S Sµ µ µ

ν η ν νη δΠ ∂ + Π ∂ −L = 2 T µ
νℏ ,   (1.55) 

 
in which T µ

ν  is the expression in (1.34).  That will make: 

 

T µ
ν = 

1

η
[pµ pν + πµ πν] − 0

µ
νδL .    (1.56) 

 Hence, we can see that: 
T µ

µ = − 02L  = 2 T µ
µℏ ,     (1.57) 

 
which amounts to a rescaling of (1.36). 
 The rescaling has not changed the (non-) existence of external forces, so: 

 
T µ

µ ν∂ = 0.      (1.58) 

 
 
 § 2.  The time-varying Klein-Gordon equation.  The first fundamental difference 
between non-relativistic and relativistic physics that must be addressed in quantum 
mechanics is the fact that non-relativistic quantum mechanics relies heavily upon the 
Hamiltonian formulation of non-relativistic motion – i.e., the total energy of the system – 
while energy, by itself, is not a Lorentz-invariant physical observable, nor is linear 
momentum.  Rather, it is the energy-momentum 1-form: 
 

p  = pµ  dxµ = E dt – ip dxi    (2.1) 

 
that is Lorentz-invariant.  In this, we have defined: 
 

x0 = ct,  0p = E / c.     (2.2) 
 
Hence, E represents the total energy for the point-like particle under scrutiny, while ip dxi 
represents the spatial projection of the energy-momentum 1-form. 
 If m0 is the rest mass of the moving matter then the relativistic form for the 
conservation of energy-momentum will be: 
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2p = ηµν p pµ ν = (E / c)2 – δ ij i jp p = 2 2
0m c .   (2.3)   

 
 It is important to note that the use of the constant m0 implicitly assumes that one is 
dealing with point-like matter, since otherwise one would have to introduce p as the 
energy-momentum density and couple it to the rest mass density ρ0 of the extended matter 
distribution.  As we have said before, the fact that early quantum mechanics chose the 
path of the statistical interpretation over the continuum-mechanical one is probably 
related to the fact that they wanted the classical limit of wave mechanics to be point 
mechanics, not continuum mechanics. 
 If one uses the de Broglie relation for matter waves to associate p  with a 
corresponding frequency-wave number 1-form, namely: 
 

E = ωℏ , ip = ikℏ ,    (2.4) 

 
which can then be concisely expressed as: 
 

p  = kℏ ,     (2.5) 
 
then one can also associate (2.3) with a dispersion law for massive waves, namely: 
 

k2 = 2
0k ,     (2.6) 

in which: 

k0 = 0m c

ℏ
     (2.7) 

 
is the Compton wave number that is associated with the mass m0 .  (It is interesting that 
such a dispersion law also shows up in the propagation of electromagnetic waves in 
certain plasmas.) 
 Again, one should note that this equation is well-defined only if both of the 1-forms 
involved have the same domain in which they are non-zero; i.e., the same support.  
Hence, since k presumably relates to a spatially-extended wave function, in order to be 
consistent, p  should refer to something spatially extended, as well.  Of course, that issue 
was never addressed specifically in early quantum physics, which had a distinctly 
heuristic character to it. 
 As we have pointed out before, one can also regard (2.5) as type of constitutive law 
for wave mechanics, as long as one regards k as a kinematical concept that is, in a sense, 
dual to velocity, while p  is a dynamical one, as usual.  This has the intriguing 
consequence that Planck’s constant then plays the role of the constitutive map, much like 
the way that mass associates linear momentum with velocity. Moreover, if k and p  are 
spatially-extended then there is no reason to assume that ℏ  is not, as well.  Its 
“constancy” is probably due to the fact that conventional quantum mechanics also treats 
energy and momentum as point-like observables, so one might be simply integrating the 
equation (2.5) over all space in such a way that ℏ  gets integrated along with everything 
else. 
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 So far, the E in (2.3) is basically just kinetic energy.  If one wishes to include 
potential energy, which would suggest that the mass m0 is interacting with a conservative 
external force, then there are basically two ways of doing that, depending upon the nature 
of the external force: If the interaction involves a charge on the particle with an external 
electromagnetic field then one can minimally couple the electromagnetic potential 1-form 
A = Aµ dxµ to the energy-momentum 1-form p ; we shall deal with that case in a later 

section.  If the potential energy of the interaction U(xµ) is more general, such as gravity or 
the various step potentials that one encounters in non-relativistic quantum mechanics, 
then one can also introduce the potential energy as a contribution to the rest energy of the 
particle (see Bethe and Jackiw [1]) (1): 
 

2
0m c  = m0 c

2 + 2U,      (2.8) 

which would make: 

( )m x  = 0 2

2 ( )U x
m

c
+ ;     (2.9) 

i.e., one could replace m0c with: 

0m c= 0

2U
m c

c
+ .     (2.10) 

 
However, one would have to replace 2 2

0m c  in (2.3) with 2
0 0m m c : 

 
2 2
0m c = 2 2

0 02m c m U+ ,    (2.11) 

 
which is not equal to 2

0( )m c  if one uses (2.10). 
 
 a.  Canonical quantization.  In order to turn (2.3) into a partial differential equation 
for a wave function, one can apply the canonical quantization rules for energy and linear 
momentum, viz.: 

E ↔ 
i t

∂
∂
ℏ

, ip  ↔ 
i

i
x

∂
∂
ℏ ,    (2.12) 

 
to (2.3) and then apply the resulting operator equation to a complex wave function Ψ(xµ).  
One will get the (time-varying) Klein-Gordon equation: 
 

2
0kΨ + Ψ□  = 0,      (2.13) 

 
in which □  ≡ ηµν ∂µ ∂ν is the d’Alembertian operator, and k0 represents the Compton 
wave number for the particle of rest mass m0 , as above. 
 If one wishes to couple in a general potential energy U(x) of interaction then, from 
(2.11), one can simply replace 2

0k  with: 

                                                
 (1) The reason for the factor of 2 will become apparent when we treat the stationary Klein-Gordon 
equation.  Moreover, the introduction of U to rest energy in the cited reference took the form of a suggested 
problem, not an explanation.  
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2
0k = 2 0

0 2

2m U
k +

ℏ
.     (2.14) 

 
Of course, that would mean that 0k  would now be space-time function, and not a 

constant. 
 The modified form of the Klein-Gordon equation would then be: 
 

2 0
0 2

2m U
k
 Ψ + + Ψ 
 ℏ

□  = 0.     (2.15) 

 
 b. Klein-Gordon equation and 5-optics. − As we mentioned above, if k0 can be treated 
as a numerical constant, and not a space-time function, then it can be regarded as the 
separation constant that one introduces in order to separate the fifth coordinate x4, which 
we shall identify with proper time by way of x4 = cτ, from the space-time coordinates t, 
xi. 

 The extension of the metric to R5 is still Minkowskian in character: 

 
η5 = ηAB dxA dxB = c2 (dt)2 – δij dxi dxj – c2 (dτ)2,   (2.16) 

 
so the dispersion law (2.6) will become homogeneous: 
 

k2 ≡ η5 (k, k) = η AB kA kB = 0,    (2.17) 
 
as long as one defines the fifth component of k to be: 
 

 k4 = k0 .      (2.18) 
 
Note that this implies that the only physically-meaningful inhabitants of M5 will live on 

its light-cone. 
 One extends the four-dimensional d’Alembertian operator to a five-dimensional one: 
 

5□  = 
2

2 2

1

c τ
∂−

∂
□ ,     (2.19) 

 
and the space-time wave function Ψ(xµ) to a five-dimensional function Ψ5(x

µ, τ), as well. 
 If one now starts with a massless five-dimensional wave equation: 
 

5 5Ψ□ = 0     (2.20) 
and sets: 

Ψ5(x
µ, τ) = Τ(τ) Ψ(xµ)     (2.21) 

 
then the five-dimensional massless wave equation (2.20) will give: 
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Ψ

Ψ
□

=
2

1

c

′′Τ
Τ

. 

 
 If one sets both sides equal to the separation constant − 2

0k  then the resulting equation 

for Ψ will be the time-varying Klein-Gordon equation (2.13), while the fifth-dimensional 
factor Τ of the wave function Ψ5 will take the sinusoidal form: 
 

Τ = 0ieω τ  (ω0 ≡ k0 c).     (2.22) 
 
 Analogously, when one starts with the massless, four-dimensional, linear wave 
equation Ψ□ = 0 and separates the time coordinate t from the spatial ones xi, while 
introducing the separation constant − κ 2, one will get the Helmholtz equation: 
 

∆ψ + κ 2ψ = 0      (2.23) 
 
for the spatial part ψ(xi) of Ψ.  That equation is used extensively in wave optics, since the 
main physical obstruction to separating the time coordinate from the spatial ones would 
be whether the optical properties of the medium (i.e., c or the index of refraction c0 / c) 
were constant in time, and conventional optical materials are usually assumed to have 
that property. 
 Similarly, if one assumes that k = dθ (in its five-dimensional form) then the nonlinear, 
first-order partial differential equation for θ that the dispersion law (2.17) defines, 
namely: 

0 = η5 (dθ, dθ) = η AB ∂Aθ ∂Bθ,    (2.24) 
 
will still have the same form as the four-dimensional eikonal equation, which also plays 
an important role in geometrical optics. 
 Yet another aspect of the present situation that has an important interpretation in 
geometric optics is that geodesics of the metric that η defines in M4 that are time-like in 

that space will become light-like geodesics of η5 . 
 
 c. Lagrangian formulation of the time-varying Klein-Gordon equation.  The 
Lagrangian density for the free (i.e., U = 0) time-varying Klein-Gordon equation can take 
the form: 

L(Ψ, Ψ*, ∂µΨ, ∂µΨ*) = 1
2 ηµν ∂µΨ∂νΨ* − 21

02 k ΨΨ* = L0 + Lm , (2.25) 

 
in which is L0 the Lagrangian density for the massless case, and: 

 
Lm (Ψ, Ψ*) = − 21

02 k ΨΨ*     (2.26) 

 
is the contribution from the mass.  In order to include U, one needs only to replace 20k  

with 2
0k , which then has the effect of adding another Lagrangian density: 
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LU (x
µ, Ψ, Ψ*) = − 0

2

2
( )

m
U xµ

ℏ
ΨΨ*.   (2.27) 

 
 Of course, the form (2.13) for the Klein-Gordon equation is kinematical, not 
dynamical, and the dimensions of L are basically Ψ2 / (length)2.  The way to give L the 

dimensions of an energy density is to multiply it by 2
0/ mℏ , which will give: 

 

L (Ψ, Ψ*, ∂µΨ, ∂µΨ*)  = 
2

02m

ℏ ηµν ∂µΨ∂νΨ* − 21
02 m c ΨΨ* = 0 m+L L , (2.28) 

 
in which the previous Lagrangian densities L0 and Lm have been rescaled the same way.  

Similarly, LU would get rescaled to UL  = − 2U || Ψ ||2. 

 The canonical forces and momenta that are associated with this rescaled Lagrangian 
density are then: 
 

f   = 
∂
∂Ψ
L

 = − 2
0m c ∗Ψ ,  Πµ   = 

( )µ

∂
∂ ∂ Ψ
L

 = 
2

0m

ℏ ηµν ∂νΨ*, (2.29) 

 

f * = ∗

∂
∂Ψ
L

 = − 2
0m c Ψ ,  Πµ * = 

( )µ
∗

∂
∂ ∂ Ψ
L

 = 
2

0m

ℏ ηµν ∂νΨ. (2.30) 

 
 The addition of mL , which depends upon only Ψ and Ψ*, will not affect the canonical 

momenta that were defined in the massless case by (1.8) and (1.9), which have only been 
rescaled, along with L0 .  However, it has changed the character of the canonical forces, 

which previously vanished. 
 The Euler-Lagrange equation for Ψ will take the form (2.13) when one varies the 
wave function Ψ*: 

0 =
δ
δ ∗Ψ
L

 = f * − ∂µ Πµ *.     (2.31) 

 
When one varies Ψ, one will get the complex conjugate equation. 
 One can already see that (2.25), like (1.7), is again invariant with respect to the 
replacement of Ψ with eiα Ψ and Ψ* with e−iα Ψ*, as long as α is a real constant; that is, it 
is phase-invariant.  The corresponding infinitesimal transformations of the wave 
functions will still be (1.11), and the conserved current that is associated with that 
symmetry will be: 

Jµ = Πµ δΨ + Πµ *δΨ* = 
2

0

i

m

ℏ ηµν (Ψ ∂µΨ* − Ψ* ∂µΨ) δα ,  (2.32) 
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although the factor of δα is generally omitted.  The only difference between this vector 
field and the massless one (1.12) is the constant factor of 2

0/ mℏ .  

 One of the early objections to the use of the time-varying Klein-Gordon equation as 
the proper relativistic form of the time-varying Schrödinger equation was based upon the 
fact that the temporal component of this conserved current, namely: 
 

J 0 = 
2

02

i

m

ℏ
(Ψ ∂tΨ* − Ψ* ∂tΨ),    (2.33) 

 
did not have to be a positive function, and would therefore be unsuitable as a probability 
density function.  Of course, one could also treat that as a reductio ad absurdum of the 
statistical interpretation for Ψ if one were willing to consider alternative hypotheses.  
That was why Pauli and Weisskopf [6] resurrected the Klein-Gordon equation in the 
context of meson wave functions by interpreting J0 as an electric charge density, which 
could then take on an arbitrary sign. 
 The canonical energy-momentum-stress tensor that one derives from the Lagrangian 
density (2.25) is: 

T µ
ν  = 

2

0
mt

m
µ µ

ν νδ−ℏ
L  = 

m

t Tµ µ
ν ν+ ,   (2.34) 

 

in which t µ
ν  is the (unscaled) expression (1.13) for the massless case and 

m

T µ
ν  = − m

µ
νδL  

is derived from mL , so an immediate consequence of this is that Tµν will still be a 

symmetric tensor: 
Tµν  = Tνµ .     (2.35) 

 
Of course, that is also consistent with the fact that Ψ has zero spin.  Hence, the canonical 
angular momentum tensor that is associated with L must vanish identically. 

 The trace of T µ
ν  is now: 

T µ
µ  = − 4 mL  = 2m0 c

2 || Ψ ||2,    (2.36) 

 
which differs from (1.15) by the addition of the rest-mass energy term.  Therefore, the 
non-vanishing of m0 would obstruct the scale invariance of L .  (In fact, the vanishing of 
m0 would reduce the Klein-Gordon equation to the linear wave equation.)   
 The traceless part of T µ

µ  is then simply: 

 
o

T µ
ν  = t µ

ν .     (2.37) 

 
 The divergence of the energy-momentum-stress tensor is: 
 

T µ
µ ν∂  = 0,      (2.38) 



§ 2.  The time-varying Klein-Gordon wave equation. 209 

which is zero, as it was in the massless case, since the additional contribution 
m

T µ
ν  to T µ

ν  

has not introduced any external forces, and it is still independent of x. 
 The individual sub-matrices of T µ

ν  take the forms: 

 
0

0T = 0 2 21
0 02 || ||t m c+ Ψ ,     (2.39) 

0
iT = 0

it , 0
iT  = 0

it ,      (2.40) 
i
jT  = 2 21

02 || ||i i
j jt m c δ+ Ψ .     (2.41) 

 
Hence, the only effect of the inclusion of mass has been to alter the diagonal elements of 
the (rescaled) massless tensor t µ

ν  by the addition of the rest energy density 2 21
02 || ||m c Ψ .  

An analogous statement would apply to the addition of the Lagrangian density UL ; 

however, the introduction of an external force would alter the vanishing of the divergence 
in (2.38) by the appearance of ∂µ U || Ψ ||2. 
 
 
 § 3.  The Madelung-Takabayasi form of the time-varying Klein-Gordon 
equation.  One finds that the mathematics of the Madelung-Takabayasi form of wave 
mechanics become more natural and concise when one goes on to relativistic wave 
mechanics.  That is because the “soul” of relativity is the dispersion relation for 
electromagnetic waves in the classical vacuum, which gives one the Minkowski scalar 
product.  Predictably, the result of the Madelung-Takabayasi transformation must be 
interpreted in terms of relativistic continuum mechanics. 
 
 a. The basic transformation. The basic transformation that takes one from the time-
varying Klein-Gordon equation (2.13) to a set of continuum-mechanical equations is still 
basically the introduction of polar coordinates on the complex plane, which is the field 
space in which the wave function takes its values.  As before, one sets: 
 

Ψ(xµ) = R(xµ) ( )i xe
µθ   (µ = 0, …, 3).   (3.1) 

 
That will first put the equation in question into the form: 
 

0 = 2
0kΨ + Ψ□  = 2 2

0( ) 2 ,
R dR

d k i d
R R

θ θ θ
  − + + +  

  

□
□  Ψ, 

 
and upon equating the real and imaginary parts to zero individually, one will get the 
following pair of equations: 
 

(dθ)2 = 2
0

R
k

R
+□ ,  2 ,

dR
d

R
θ θ+□  = 0.    (3.2) 
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The only difference between these equations and the massless ones (1.22) is the addition 
of the constant 20k  to the right-hand side of the dispersion law. 

 As a first conversion, one can replace dθ with k, and if one multiplies the second 
equation by R 2 = n then this system of equations can be put into the form: 
 

k2 = 2
0

R
k

R
+□ ,   div(n k) = 0.    (3.3) 

 
 Here, we can raise the same issue that we raised in regard to the massless case: If k is 
the same as it was for the Klein-Gordon equation in complex form [viz., (2.6)] then we 
would again need to have the vanishing of R□ .  Hence, in order for the modification of 
the dispersion relation to be non-trivial, we would have to be dealing with a solution to 
the Madelung-Takabayasi equations that no longer obeyed the same dispersion law as a 
solution to the Klein-Gordon equation.  Thus, the solutions to the former set of equations 
are potentially broader in scope than the solutions to the latter one, which are defined by 
the subspace for which R is wave-like. 
 The fact that we might be dealing with a “quantum potential” is clear from a 
comparison of the first of equations (3.3) with equation (2.14), which showed one way of 
coupling a potential function to the dispersion law.  One might perhaps think of the 
present potential as being something that relates to the virtual work that must be done 
while deforming a wave-like amplitude function R into a non-wave-like one.  The fact 
that one might wish to consider such a deformation relates to the fact that R is essentially 
an amplitude for the wave, and one can easily imagine real-world wave envelopes that 
are not wave-like in character. 
 
 In the form (3.3), we see that we are dealing with purely kinematical equations, the 
first of which takes the form of a modified dispersion law for the matter wave, and the 
second of which suggests some sort of relativistic conservation law, although the vector 
field k is only proportional to the four-velocity v.  If one compares (3.3) to (1.23) then 
one will see that the only essential difference is the addition of 2

0k  on the right-hand side.  

The fact that k2 is non-vanishing is no longer an issue for the massive case, but the fact 
that the right-hand side of the dispersion law in (3.3) is not a constant, but a space-time 
function, does change the basic physical picture. 
 The first step in making the equations (3.3) into dynamical equations is to apply 
Planck’s constant as a mechanical constitutive law; i.e., the de Broglie rule for matter 
waves p  = kℏ .  That will make (3.3) now take the form: 
 

2p  = 2 2 2
0

R
m c

R
+ ℏ □ ,  div(n p ) = 0.    (3.4) 

 
 b. The balance of energy-momentum.  The first equation in this pair takes the form 
of an extension of the balance of energy-momentum (2.3) to something of the form 2p = 

2 2
0 02m c m U+

ℏ
, with a “quantum potential: 
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U
ℏ
= 

2

02

R

m R

ℏ □
,     (3.5) 

 
which agrees with the definition that is given by Takabayasi [7] (1).  Of course, as we 
have already pointed out, the appearance of U

ℏ
 has nothing to do with the introduction of 

m0 , because it is only a rescaling of an expression that appeared in the massless case. 
 The new rest energy will then take the form: 
 

2
0m c  = 2

0 2m c U+
ℏ
.     (3.6) 

 
 c. The conservation of mass.  The second of equations (3.4) takes the form of a 
statement of relativistic dynamical incompressibility of the motion that is described by 
the energy-momentum density 1-form: 
 

p = n p = ρ0 u,      (3.7) 
 

in which the rest mass density ρ0 and covelocity 1-form v will then be defined by: 
 

ρ0 = m0 n, u = 
0

1
p

m
=

0

d
m

θℏ
.    (3.8) 

 
Hence, the kinematical vorticity Ωk = d^u will vanish, although the dynamical vorticity 
will be: 

Ωd = dρ0 ^ u = m0 dn ̂  u,     (3.9)  
 
which will be non-vanishing as long as n is not constant in space-time. 
 Since both the kinematical and dynamical Frobenius 3-forms vanish, the congruences 
of their trajectories will both be hypersurface-orthogonal.  In particular, the hypersurfaces 
will then be the level surfaces of θ i.e., the isophases. 
 (3.6) will now take the form: 
 

ρ0 u
2 = ρ0 c

2 + 2n U
ℏ
.     (3.10) 

 
 As for the kinematical incompressibility, the vanishing of the divergence of p will 
imply that: 

div u = −
0

1

ρ
uρ0 ,     (3.11) 

 
which will vanish iff ρ0 is constant along the flow of u. 
 

                                                
 (1) The sign of this U

ℏ
 is actually consistent with the sign of the non-relativistic expression, since if R 

were time-independent then ne would have R□ = − ∆R. 
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 d. Lagrangian formulation of the Madelung-Takabayasi equations.  If one 
substitutes the basic polar form (3.1) of Ψ into the Lagrangian density (2.25) then the 
result will be the Lagrangian density for the Madelung-Takabayasi form of the Klein-
Gordon equations: 

L(R, θ, dR, dθ) = 1
2 [R2 (dθ) 2 – 2

0k R2 + (dR)2].   (3.12) 

 
Table VI.2.  Definitions of continuum-mechanical quantities in terms of  

quantum-mechanical ones. 
 

 
Number density 

 
n  

 
R2 

 
Rest mass density 

 
ρ0 

 
m0 n = m0 R

2 

 
(Co)velocity potential 

 
ζ 

0m
θℏ  = 

0

S

m
 

 
Covelocity 1-form 

 
u dζ = 

0

d
m

θℏ
=

0

k
m

ℏ
  

 
energy-momentum density 1-form 

 
p 

 
ρ0 u = n kℏ  

 
Dilatation potential 

 
η 2

n
ℏ

 = 2

2
R
ℏ

= 0
02m

ρℏ  

 
Dilatation pressure 

 
π 

dη = 
2

dn
ℏ

 = R dRℏ = 0
02

d
m

ρℏ
 

 
Specific dilatation pressure 

 
υ 

0

π
ρ

= 
02

dn

m n

ℏ
= 

0

dR

m R

ℏ
 

 
 So far, this Lagrangian is purely kinematical, with the dimensions of R2 / (length)2.  In 
order to obtain a dynamical Lagrangian density, we multiply the latter expression by 

2
0/ mℏ : 

L  = 2 2 2 2 2
0

0

1
[ ( ) ( ) ( ) ]

2
R d k R dR

m
θ − +ℏ ℏ ℏ  = 0 m+L L ,  (3.13) 

 
in which the two Lagrangian densities in the final expression, 0L  and mL , refer to polar 

form of (2.28); that will give the L  the dimensions of energy density. 
 Similarly, the inclusion of U will result in the addition of the polar form of UL . 

 
 In order to arrive at a completely classical (i.e., non-quantum) expression for 
something that describes a continuum-mechanical situation, we need introduce a set of 
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definitions that will effectively eliminate ℏ  and m0 from L .  We basically continue the 
definitions that we made above by assuming that the energy density that is associated 
with dR (or dn) amounts to a dilatation stress that is associated with the dilatation strain 
that R (or n) represents.  We summarize the definitions in Table VI.2 above. 
 In particular, one can derive some useful relations from this table: 
 

π = ρ0 υ ,  υ = 
0

ln
2

d n
m

 
 
 

ℏ
,  dρ0 = 02m π

ℏ
.   (3.14) 

 
 We can also examine the vorticity and compressibility for the 1-forms π and υ and 
their associated vector fields.  In the former case, one will have: 
 

d^π = 0,  div ππππ = η□ = 
2

n
ℏ□ .   (3.15) 

 
Hence, the flow of ππππ will be irrotational, but compressible, and the compressibility will 
vanish only when the number density n is a solution of the linear wave equation. 
 As for υ, one will have: 
 

d^υ = 0,  div υυυυ = 0
0

1
( )η ρ

ρ
−□ υυυυ ,  (3.16) 

 
which will also be irrotational and compressible, as compared to p, for which: 
 

d^p = 
0

1

ρ
dρ0  ^ p , div p = 0.     (3.17) 

 
(The second equation will be derived below.) 
 Hence, since the Frobenius 3-form vanishes for p, π and υ, the flows of p, ππππ, and υυυυ 
will be hypersurface-orthogonal, while the hypersurfaces will be the level surfaces of ζ, 
η, and η, resp. (or n, for that matter, in the last two cases). 
 
 The new form of L  will now be: 
 

( , , , )uζ η πL  = 1
2 ρ0 (u

2 – c2 + υ2) = 
0

1

2ρ
(p2 + π2) − 1

2 ρ0 c
2.   (3.18) 

 
 One can then express the new Lagrangian density in the form: 
 

L = 0
02 mm

+ℏ
L L ,     (3.19) 

 
in which 0L  takes the previous form (1.47) for the massless case and: 
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mL  = − 1
2 ρ0 c

2.      (3.20) 

 
 L  has a particularly simple form, since it seems to consist of a sum of three energy 
densities of kinetic type, namely (kinetic – rest + dilatation pressure).  The kinetic energy 
density can also be regarded as the dynamic pressure when the medium in question is a 
fluid.  One also notices that this Lagrangian density no longer contains ℏ  or m0 
explicitly, while the role of quantum potential has been absorbed into the last term. 
 The canonical forces and momenta that are associated with L  are: 
 

fζ = 
ζ

∂
∂
L

= 0,    µ
ζΠ  = 

uµ

∂
∂
L

= ρ0 u
µ = pµ, (3.21) 

 

fη = 
η

∂
∂
L

 = 0

2

ρ
η

(u2 – c2 − υ2),  µ
ηΠ  = 

µπ
∂
∂
L

= υµ,  (3.22) 

 
 When one compares these expressions to the massless ones (1.49), (1.50), one will 
find that the only essential difference, besides a rescaling and redefinition of the 
variables, is the addition of the term − ρ0 c

2 / η to fη .  In particular, we have made the 
following replacements besides (3.19): 
 

∂νζ = �

0

1

m νζ∂ ,  µ
ζΠ  = ˆ

2
µ
ζΠℏ ,  ∂νη = �νη∂ , µ

ηΠ  = 
0

ˆ
2m

µ
ηΠℏ , (3.23) 

 
in which the caret denotes the previous expressions in the massless case. 
 One then sees that the new Madelung-Takabayasi form of the time-varying Klein-
Gordon equation can be obtained from varying L  with respect to ζ and η.  When one 
varies L  with respect to ζ, one will get: 
 

0 = 
δ
δζ
L

= − ∂µ (ρ0 u
µ).     (3.24) 

 
When one then varies η, one will get: 
 

0 = 
δ
δη
L

 = 2 2 20 ( ) div
2

u c
ρ υ
η

− − − υυυυ  

or 
ρ0 u

2 = ρ0 c
2 + ρ0 υ2 + 2η div υυυυ    .   (3.25) 

 
 When one compares this to the expression (3.18) for L , one will see that for a 
solution (ζ, η) to the Madelung-Takabayasi equation, the Lagrangian density will reduce 
to: 

L  = ρ0 υ2 + η div υυυυ    .     (3.26) 
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 To summarize, the pair of real equations that is equivalent to the Klein-Gordon 
equation is: 

ρ0 u
2 = ρ0 c

2 + ρ0 υ2 + 2η div υυυυ, 0 = div p.   (3.27) 
 
 Since the first equation takes the form of a conservation of energy density law, if we 
take the exterior derivative (i.e., differential) of both sides, we will get the corresponding 
analogue of Newton’s second law: 
 

ρ0 a = ρ0 α + 2η d (div υυυυ),    (3.28) 
 
in which we have define the convected acceleration a and the acceleration of the 
amplitude α by the Lie derivatives: 
 

a = Luu = du2,  α = Lυυυυυ = dυ2.   (3.29) 
 
(These definitions use the fact that d^u and d^υ both vanish.) 
 
 e. Relationship to the quantum potential. – Let us examine the form of the “quantum” 
correction to the rest energy-density, and compare it to the quantum potential that was 
defined above: 
 

η div υυυυ     = 2

2
R

 
 
 

ℏ

0

R

m R

µ

µ
 ∂∂  
 

ℏ
 = 

2
2

02

R
R

m R

µ

µ
 ∂∂  
 

ℏ
= 

22
2

02

R dR
R

m R R

  −  
   

ℏ □
. 

 
Upon comparing (3.5) and the definition of υ, we see that this is: 
 

η div υυυυ     = nU
ℏ
− 1

2 ρ0 υ2    (3.30) 

or 
2nU

ℏ
 = 2η div υυυυ     + ρ0 υ2.     (3.31) 

 
Basically, we have converted the total potential energy due to a point-like particle into a 
potential energy density for an extended one.  Note that (3.31) is essentially the negative 
of the corresponding relationship that was obtained for the spatial version of the quantum 
potential in Chapter IV; that is simply due to the fact that our present sign convention on 
the Minkowski scalar product makes the spatial part of the d’Alembertian negative. 
 We can then express the first of (3.27) in the form: 
 

ρ0 u
2 = ρ0 c

2 + 2nU
ℏ
,     (3.32) 

which is also (3.10). 
 We can then put (3.26) into the form: 
 

L  = 2nU
ℏ
 − η div υυυυ     (3.33) 

 
for any solution to the Madelung-Takabayasi equations. 
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 If we divide out 2n from both sides of (3.31) then we will get: 
 

U
ℏ
 = 

2

ℏ
 div υυυυ     + 1

2 m0 υ2,     (3.34) 

and this will make: 
n dU

ℏ
 = 1

2 ρ0 α + η d (div υυυυ),    (3.35) 

with α as in (3.29). 
 If one now takes the exterior derivative of (3.32) then one will get the “F = ma” form 
of that equation: 

ρ0 a =2n dU
ℏ
.      (3.36) 

 
One can see the equivalence of this with (3.28) by considering (3.35). 
 
 f. Noether currents for the Madelung Lagrangian.  The real symmetry of L  that 
corresponds to the phase-invariance of the Klein-Gordon equation is the replacement of θ 
with θ + α ; which is equivalent to saying that one can replace ζ with ζ + α.  One can 
then express the basic infinitesimal symmetry as: 
 

δη = 0,  δζ = α.     (3.37) 
 
 Hence, the conserved Noether current that corresponds to δζ will be: 
 

Jµ = µ
ζΠ  α = (ρ0 u

µ) α,    (3.38) 

 
which can just as well be identified with p.  Hence, the introduction of mass has changed 
only the basic definition of the energy-momentum density vector field, but not the 
character of the conserved current that is associated with phase invariance. 
 
 g. The quantum stress tensor.  The canonical energy-momentum-stress tensor for L  
takes the form: 

T µ
ν  = µ µ µ

η ν ζ ν νη ζ δΠ ∂ + Π ∂ −L , 

which will become: 
T µ

ν  = 2 2 21
0 0 02 ( )u u u cµ µ µ

ν ν νρ υ υ ρ ρ υ δ+ − + − .  (3.39) 

 
Tµν = Tµκ

κνη  is, of course, symmetric, which is consistent with the vanishing of spin for 

the original field Ψ. 
 If we take into account the substitutions in (3.23) then we can express the new T µ

ν  in 

terms of the massless one t µ
ν  as [compare (2.34)]: 

 
T µ

ν  = 21
02t cµ µ

ν νρ δ+ ,     (3.40) 

 
in which we can now express t µ

ν  in the form: 
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t µ
ν = ρ0 u

µ uν + ρ0 υµ υν − 1
2 (u2 + υ2) µ

νδ .    (3.41) 

 
 Hence, the trace of T µ

ν  is [compare (2.36)]: 

 
T µ

µ  = 2(ρ0 c
2 − 0L ) = ρ0 c

2 − 2L .    (3.42) 

 
 The traceless part of T µ

ν  can now be expressed as [compare (2.37)]: 
 

0

T µ
ν  = 21

04 ( 2 )T cµ µ
ν νρ δ− − L .     (3.43) 

  
 The absence of external forces is consistent with the fact that [compare (2.38)]: 
 

T µ
µ ν∂  = mt µ

µ ν ν∂ + ∂ L  = 0,    (3.44) 

 
since 0( )m ρL  is only indirectly a function of x. 

 The individual submatrices of T µ
ν  are then: 

 
0

0T  = 0 21
0 02t cρ+ ,     (3.45) 

0
iT  = 0

it , 0
iT  = 0

it     (3.46) 
i
jT  = 21

02
i i

j jt cρ δ+ .     (3.47) 

 
Thus, except for the rescaling of the massless tensor, the main difference that mass has 
made is to increase all of the diagonal elements by the same rest-energy density, namely, 

21
02 cρ . 

 
 h.  The Takabayasi quantum stress tensor. – Takabayasi [7] defines a different 
quantum stress tensor that does not include the kinetic part of T µ

ν .  For him, the quantum 

potential U
ℏ
 first defines a quantum force dU

ℏ
, and then a quantum force density: 

 
f
ℏ
 = ndU

ℏ
.      (3.48) 

 
Note that, in general, this force will not be conservative, unless: 
 

dn ^ dU
ℏ
= 0,       (3.49) 

 
which is equivalent to saying that the quantum force f

ℏ
 would have to be collinear with 

dn. 
 The Takabayasi quantum stress tensor µ

νσ  is then defined to make: 
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,f νℏ = µ
µ νσ∂ ,      (3.50) 

namely: 

σµν = 
2

02m

ℏ
[R ∂µνR – ∂µR ∂νR] = 

2

04m

ℏ
n ∂µν ln n.   (3.51) 

 
 It relationship to our present set of definitions is then quite simple: 
 

σµν = η ∂µ υν .      (3.52) 
 In particular, we get: 

µ
µσ  = η div υυυυ    .      (3.53) 

 
 Since the equations of motion (3.36) take the form: 
 

,f νℏ = ρ0 aν = ∂µ (p
µ uν) (∂µ p

µ = 0),  (3.54) 

 
one can construct an energy-momentum-stress tensor that will give these equations from 
the vanishing of its divergence in the form of: 
 

µ
νT  = pµ uν − η ∂µ υν  .     (3.55) 

 
 This tensor field differs from the canonical one above by a tensor with vanishing 
divergence, since the divergences of both µ

νT  and T µ
ν  vanish individually. 

 Although the canonical energy-momentum-stress tensor is the one that follows most 
naturally from the calculus of variations, one can also see from (3.52) that there is a 
fundamental simplicity about the Takabayasi tensor that suggests that for some purposes 
it might be preferable to use it. 
 
 At the end of this chapter, we shall return to the question of finding a relativistic 
quantum strain tensor that couples to the relativistic quantum stress tensor by way of a 
mechanical constitutive law. 
 
 
 § 4.  The stationary Klein-Gordon equation.  When one separates the time 
coordinate from the spatial ones for the time-varying Klein-Gordon wave function: 
 

Ψ(t, xi) = T(t) ψ(xi),      (4.1) 
 
one will convert the latter equation into the form: 
 

2
0k

ψ
ψ
∆ −  = − 

T

T

′′
. 
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 If one sets both sides equal to the separation constant – (ω / c)2 then the temporal 
function will take the sinusoidal form eiωt, while the remaining spatial equation will be 
the stationary Klein-Gordon equation: 
 

∆ψ + 
2

2
0k

c

ω   −  
   

ψ = 0,     (4.2) 

 
and if one uses the dispersion law for k: 
 

k2 = 
2

2
sk

c

ω  − 
 

 = 2
0k      (4.3) 

 
in which ks = ki dxi (ki constants), then the equation can be put into the form: 
 

∆ψ + 2
sk ψ = 0.      (4.4) 

 
 This equation is of Helmholtz type, but in order to compare it to the stationary 
Schrödinger equation, let us first replace ks with /sp ℏ  ( sp  = ip dxi) and factor out 2

ℏ / 

2m0.  Equation (4.4) will then take the form: 
 

− 
2

02m
ψ∆ℏ  = 

2

02
sp

m
ψ.   `  (4.5) 

 
The expression that precedes the ψ on the right-hand side has the form of kinetic energy, 
so one is still dealing with an eigenvalue equation of the form Hψ = Eψ for the energy 
levels E that correspond to the eigenfunctions ψ, although this time there is no potential 
energy contribution to the Hamiltonian. 
 If we introduce U as a contribution to the rest energy of m0 then we can say that: 
 

2
sp = (E/c)2 − 2 2

0 02m c m U+ = 2m0 [ E  − U],    (4.6) 
with: 

2E  = 
2

2
02

0

E
m c

m c
−  =

2
0

2

21

m v

v

c
−

,      (4.7) 

 
in which we have replaced the relativistic kinetic energy E with: 
 

E = 
2

0

2

21

m c

v

c
−

.      (4.8) 
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As long as U is not time-varying, one can now put (4.4) into the “relativistic stationary 
Schrödinger” form (1): 

∆ψ + 0
2

2m

ℏ
[ E  − U]ψ = 0.     (4.9) 

 
The relativistic correction to the non-relativistic wave equation then takes the form of a 
correction to the energy eigenvalue E.  In the non-relativistic limit (c → ∞), E  becomes 
the non-relativistic kinetic energy E. 
 
 The Lagrangian density for the stationary Klein-Gordon equation (4.4) now takes the 
form: 

L(ψ, ψ *, ∂iψ, ∂iψ *) = 1
2 (δ ij ∂iψ ∂jψ * − 2

sk ψψ *).   (4.10) 

 
We convert it into an energy density as above and get the Lagrangian density for (4.9): 
 

L (ψ, ψ *, ∂iψ, ∂iψ *) = 
2

02m

ℏ δ ij ∂iψ ∂jψ * − [ E  − U] ψψ *.  (4.11) 

 
 The canonical forces and momenta will then be: 
 

f = − 2[E  − U]ψ *,  Πi = 
2

0m

ℏ δ ij ∂jψ *,   (4.12) 

 

f * = − 2[ E  − U]ψ,  Πi* = 
2

0m

ℏ δ ij ∂jψ .   (4.13) 

 
Up to sign, Πi, Πi* are just the spatial components of the time-varying expressions in 
(2.29), (2.30). 
 Equation (4.4) is then obtained by varying the field ψ *; varying the field ψ will 
produce the complex conjugate equation. 
 The Lagrangian density (4.10) is still phase-invariant, and the conserved current that 
is associated with that symmetry is now: 
 

J i = 
2

0

i

m

ℏ δ ij (∂jψ ψ * − ∂jψ *ψ).    (4.14) 

 
This is also the spatial part of the time-varying expression (2.32), up to sign. 
 The stress tensor that is associated with L  will take the form i

jσ  = δ ik σkj , with: 

 

                                                
 (1) As promised before, one now sees the necessity of introducing the factor of 2 when one couples U to 
the rest mass.  
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σij = 
2

0m

ℏ
(∂iψ ∂jψ * + ∂jψ ∂iψ*) − L δij,   (4.15) 

 
which is again symmetric: 

σij = σji .      (4.16) 
 The trace of i

jσ  is: 
i
iσ  = 24( ) || ||E U ψ+ −L .    (4.17) 

 
 When one takes the divergence of i

jσ , one will get: 

 
i

i jσ∂  = 2|| || jUψ ∂ .     (4.18) 

 
 The appearance of the term in ∂jU on the right-hand side is consistent with the fact 
that external forces are now present. 
 
 
 § 5.  The Madelung-Takabayasi form of the stationary Klein-Gordon equation.  
The only difference between the previous introduction of polar coordinates into the 
complex number plane that was described by (3.1) and the present case is that the wave 
function ψ is not a function of time now: 
 

ψ (xi) = R(xi) ( )ii xeθ ,     (5.1) 
 
which will put the stationary Klein-Gordon equation (4.2) into the form: 
 

0 = 2 0
2

2
( ) ( ) 2 ,s

s s

m d RR
d E U i d

R R
θ θ θ

  ∆ − + − + ∆ +  
  ℏ

. 

 
Equating the real and imaginary parts to zero individually will give the system: 
 

(dθ)2 = 0
2

2
( )

mR
E U

R

∆ + −
ℏ

, 2 ,s
s

d R
d

R
θ θ∆ +  = 0.   (5.2) 

 
After multiplying the first equation by 2 0/ 2mℏ , identifying ks = dsθ, and multiplying the 

second equation by ℏR2/m0, one will get the system: 
 

E = 1
2 m0 v

2 + U + U
ℏ
ɶ , divs(ps) = 0,    (5.3) 

 
in which we have defined: 

U
ℏ
ɶ = −

2

02

R

m R

∆ℏ
,  ps = ρ0 v .   (5.4) 
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U
ℏ
ɶ  then amounts to the quantum potential when R is not a function of time; that is also 

consistent with the definition in Chapter IV. 
 In order to get the Lagrangian density for this system, one can apply the 
transformation (5.1) to the Lagrangian density (4.11), which will give: 
 

L (ζ, η, v, πs) = 1
2 ρ0 (v

2 + 2
sυ ) − n( )E U− .   (5.5) 

 
 The canonical forces and momenta will then be [compare (3.21), (3.22)]: 
 

fζ = 
ζ

∂
∂
L

= 0,     i
ζΠ  = 

iv

∂
∂
L

 = ρ0 v i,   (5.6) 

 

fη = 
η

∂
∂
L

= 2 21 1
0 02 2

2
( )sm v m E Uυ− − +
ℏ

, i
ηΠ  = 

iυ
∂
∂
L

= υ i,   (5.7) 

 
which are not merely the real forms of the expressions (4.12), (4.13), which is analogous 
to the time-varying case. 
 The Euler-Lagrange equations will take the form: 
 

0 = 
δ
δζ
L

= − divs (ρ0 v),      (5.8) 

 

0 = 
δ
δη
L

= 2 21 1
0 02 2

2
( )sm v m E Uυ− − +
ℏ

 − divs υυυυ .  (5.9) 

 
 The first of these two equations becomes the vanishing of the spatial divergence of 
the spatial momentum vector field ps , which implies spatial dynamical incompressibility 
for steady flow.  By contrast: 

divs v = −
0

1

ρ
vρ0 ,     (5.10) 

 
so the flow will be kinematically incompressible iff the mass density is constant along the 
flow of v. 
 The second Euler-Lagrange equation (5.9) can be converted into a more transparent 
form when one multiplies everything by / 2nℏ : 
 

0 = 2 21 1
0 02 2 ( )sv n E Uρ ρ υ− − −  − η divs υυυυ . 

 
Hence, we can express the pair of Madelung-Takabaysi equations that result from the 
stationary Klein-Gordon equation in a form that should be compared with (3.27): 
 

n E= 2 21 1
0 02 2 sv nUρ ρ υ+ − −η divs υυυυ,  divs ps = 0.   (5.11) 
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If one observes [compare (3.31) and the corresponding non-relativistic relationship in 
Chapter IV] that: 

21
02 sρ υ + η divs υυυυ = n 

2

02

R

m R

 ∆
 
 

ℏ
= − nU

ℏ
ɶ    (5.12) 

 
then the first of equations (5.11) can be given the form: 
 

ε = 21
02 ( )v n U Uρ + +

ℏ
ɶ ,    (5.13) 

 
which is the first Madelung-Takabayasi equation (5.3) when one multiplies both sides by 
n. 
 One can also say that due to the first of (5.11), the Lagrangian density will take the 
form [compare (3.26)]: 

L  = 2
0 sρ υ + η divs υυυυ     (5.14) 

 
for any solution to the Madelung-Takabayasi equations. 
 When one compares this with the expression for the total energy of a point particle of 
mass m0 interacting with an external potential U, one will see that one is now dealing 
with the total energy density of an extended object of mass density ρ0 interacting with an 
external potential U, when one corrects for the internal potential energy that is associated 
with the non-vanishing of the density gradient. 
 The Lagrangian density (5.5) is still phase invariant with respect to ζ, but not η, since 
ρ0 and n depend upon η.  The Noether current that is associated with the infinitesimal 
symmetry: 

δζ = α       (5.15) 
will then be: 

Jµ = i
ζ δζΠ  = piα ,     (5.16) 

 
which is essentially the spatial momentum vector field. 
 The stress tensor now takes the form: 
 

i
jσ  = i i i

j j jζ ηζ η δΠ ∂ + Π ∂ −L  = ρ0 (v i vj + υ iυ i) − i
jδL .   (5.17) 

 
 If one notes that the present real form of L  is the same as its previous complex form, 
but that: 

i i
j jψ ψ∗ ∗Π ∂ + Π ∂ = 2( )i i

j jζ ηζ ηΠ ∂ + Π ∂  

 
then one will see that (5.17) is not the real form of (4.15); once again, a similar situation 
prevailed in the time-varying case. 
 The doubly-covariant form of this σij is symmetric, since we are still dealing with a 
field with zero spin. 
 The trace of i

jσ  is [compare to (4.17)]: 
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i
iσ  = ρ0 v 2 + ρ0 2

sυ  − 3L = 2 ( )n E U− + −L ,  (5.18) 
 
so one-third of this represents the mean pressure. 
 The divergence of i

jσ  is [compare (4.18)]: 

 
i

i jσ∂  = n ∂jU.      (5.19) 

 
 
 § 6.  Coupling to an external electromagnetic field. – The coupling of the quantum 
wave function for a charged particle to an external electromagnetic field is actually more 
transparent in the relativistic case than it was in the non-relativistic case.  That is because 
a choice of electromagnetic potential 1-form: 
 

A = Aµ dxµ = φ dt – Ai dxi     (6.1) 
 
can be regarded as something that is proportional to an energy-momentum 1-form, 
namely: 

pA = 
q

c
A,      (6.2) 

 
which can be combined with the purely mechanical one. 
 As usual, we emphasize that conventional quantum mechanics actually deals with 
point masses and point charges, not extended ones, so the charge q will have to be 
regarded as the total charge when we go from point-like to extended matter. 
 
 a. Coupling the electromagnetic field to the wave function. – When one makes the 
minimal electromagnetic coupling of pA to the mechanical energy-momentum 1-form p 
and then applies canonical quantization, one will get: 
 

(p + pA)µ = 
i µ∂ℏ + qAµ = 

i

ℏ (∂µ +
iq

cℏ
Aµ) = 

i

ℏ ∇µ ,   (6.3) 

 
in which we have introduced the notation: 
 

∇µ = ∂µ +
iq

cℏ
Aµ      (6.4) 

 
for the so-called “covariant derivative” operator when one regards the 1-form /iq cℏ  A as 
a connection 1-form with its values in the Lie algebra of U(1), namely, the imaginary 
line. 
 The complex conjugate of the operator then takes the form: 
 

µ
∗∇  = ∂µ − iq

cℏ
Aµ ,     (6.5) 
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which can also be obtained from ∇µ by simply inverting the sign of the charge q. 
 Indeed, this is, perhaps, the root of the relationship between charge conjugation and 
complex conjugation, since in the present situation, the complex conjugate wave function 
Ψ* will satisfy a wave equation that also involves coupling the wave function to the 
opposite charge.  Note that this would still be true in the case of vanishing mass, 
although, to date, no real-world examples of massless charged particles have been 

observed.  If F (M4; C) is a space of complex-valued wave functions on Minkowski 

space (e.g., smooth, square-integrable, etc.), and Ψ is a solution to a wave equation of the 
form D(+ q, A) Ψ = 0, where D(+ q, A) is a differential operator that depends upon q and 

A, then an operator C : F (M4; C) → F (M4; C), Ψ ֏ΨC that takes a solution of the + q 

wave equation to a solution ΨC of  D(− q, A) ΨC = 0, which is the – q wave equation, can 
be regarded as a “charge conjugation” operator. 

 The reason that the wave function must take its values in C, at the very least, goes 

back to the fact that the 1-form iA takes imaginary values, which would not produce a 
real numbers if it were to multiply a real number.  Hence, a real wave function cannot 
carry charge. 
 
 The tensor square of the operator ∇µ  then becomes: 
 

∇µ ∇ν   = (∂µ ∂ν −
2

2 2

q

cℏ
Aµ Aν) +

iq

cℏ
(2Aµ ∂ν + Aν ∂µ).   (6.6) 

 
Note the factor of 2 in the last pair of parentheses, which is due to the fact that, as an 
operator, when ∂µ Aν is applied to a function f, the result will be: 
 

∂µ (Aν f) = (∂µ Aν) f +  Aν ∂µ f. 
 
 The minimally-coupled d’Alembertian operator will then take the form: 
 

A□ = □  − 
2

2 2

q

cℏ
A2 + 

iq

cℏ
(2Aµ ∂µ + Aµ ∂µ),   (6.7) 

 
which is usually represented by: 
 

A□ = ηµν ∇µ ∇ν  = (∂µ + 
iq

cℏ
Aµ)2.     (6.8) 

 
Its complex conjugate will then be represented by: 
 

A
∗□ = ηµν µ ν

∗ ∗∇ ∇  = (∂µ − 
iq

cℏ
Aµ)2.     (6.9) 
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 b. The minimally-coupled, time-varying, Klein-Gordon equation. – When the wave 
function Ψ is assumed to describe a point charge q of rest mass m0 that is coupled to an 
external electromagnetic field that is described by the potential 1-form A, the minimally-
coupled, time-varying, Klein-Gordon equation will take the form: 
 

0 = 2
0A kΨ + Ψ□ = (∂ − iq

cℏ
A)2 Ψ + 

2

0m c 
 
 ℏ

Ψ .   (6.10) 

 
 The change in its Lagrangian density is, analogously, due to the minimal coupling of 
the electromagnetic 1-form to the energy-momentum 1-form: 
 

L (Ψ, Ψ*, ∇Ψ, ∇Ψ*) = 1
2 || ∇Ψ ||2 − 21

02 k || Ψ ||2.   (6.11) 

 
However, one should be careful to interpret || ∇Ψ ||2 as the complex modulus-squared, 
and not the square of ∇Ψ, as in (6.6); i.e.: 
 

|| ∇Ψ ||2 = ηµν ∇µΨ ν
∗ ∗∇ Ψ  = ηµν (∂µΨ +

iq

cℏ
AµΨ)(∂ν Ψ* − iq

cℏ
Aν Ψ*) 

= || dΨ ||2 + 
2

q

c
 
 
 ℏ

A2 || Ψ ||2 + 
iq

cℏ
Aµ (Ψ ∂µ Ψ* − Ψ* ∂µ Ψ). 

 
 We can further simplify this expression by the introduction of the vector field: 
 

jµ (A, Ψ, Ψ*) = 
2

iq

cℏ
(Ψ ∂µ Ψ* − Ψ* ∂µ Ψ) + 

2
1

2

q

c
 
 
 ℏ

Aµ || Ψ ||2,   (6.12) 

 
which will make (1): 

1
2 || ∇Ψ ||2 = 1

2 || dΨ ||2 + Aµ j
µ.    (6.13) 

 
 This means that one can also treat the coupling of an external electromagnetic field to 
the wave function Ψ as a simple addition of a Lagrangian density Lq to the uncharged 

Lagrangian density that we discussed above, and which we shall re-notate by L0 (which 

suggests zero charge, not zero mass, this time): 
 

L = 1
2 || ∇Ψ ||2 − 1

2
2
0k || Ψ ||2 = L0 + Lq ,    (6.14) 

with 
L0 = 1

2 || dΨ ||2 − 1
2

2
0k || Ψ ||2,   Lq = Aµ jµ.  (6.15) 

 

                                                
 (1) This form for the coupling of Aµ to the wave function to somewhat illusory, since the current jµ also 
depends upon Aµ . 



§ 6.  Coupling to an external field. 227 

One can see that the additional Lagrangian density Lq will vanish when either the charge 

q vanishes or the external field A does. 
 In order to discuss canonical forces and momenta, we first rescale L to have the 

dimensions of an energy density, which we do by way of the factor 2
0/ mℏ : 

 

L  = 
2

0m

ℏ
(L0 + Lq) = 0 q+L L ,    (6.16) 

 
in which 0L  is the rescaled zero-charge Klein-Gordon Lagrangian density, and qL  is the 

rescaled contribution from the interaction of the charge and the external electromagnetic 
field: 

qL  = Aµ j µ ,      (6.17) 

so the rescaled current vector field: 
 

j µ  = 
2

0m

ℏ
jµ = 

02

i q

m c

ℏ
(Ψ ∂µ Ψ* − Ψ* ∂µ Ψ) +

2

2
02

q

m c
Aµ || Ψ ||2  (6.18) 

 
will now take the form of q /2 cℏ  times the vector field (2.32) that was associated with 
the phase invariance of the zero-charge Klein-Gordon Lagrangian density, plus a term 
that is proportional to the electromagnetic potential 1-form.  Hence, we can reasonably 
interpret this vector field as an electric current density, although we shall justify that 
interpretation later on. 
 The canonical forces and momenta will then change by the addition of terms that are 
due to qL : 

fq = q∂
∂Ψ
L

=
0

i q

m c

ℏ
Aµ (∂µ + iq

cℏ
Aµ )Ψ* = 

0

i q

m c

ℏ
Aµ

µ∗ ∗∇ Ψ ,  (6.19) 

 

q
µΠ  = 

( )
q

µ

∂
∂ ∂ Ψ
L

= −
0

i q

m c

ℏ
Aµ Ψ*,     (6.20) 

 

qf
∗ = q

∗

∂
∂Ψ
L

= −
0

i q

m c

ℏ
Aµ

µ∇ Ψ ,     (6.21) 

 

Πµ* = 
( )

q

µ
∗

∂
∂ ∂ Ψ
L

= 
0

i q

m c

ℏ
Aµ Ψ.     (6.22) 

 
 In particular, the new expressions for the total momentum densities (i.e., the ones that 
are due to both 0L  and qL ) can be expressed concisely as [compare (2.29), (2.30)]: 
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Πµ =
2

0m
µ∗ ∗∇ Ψℏ

, Πµ * =
2

0m
µ∇ Ψℏ

;  (6.23) 

 
hence, the only difference from the uncharged case is the replacement of partial 
derivatives with covariant ones. 
 If one computes the variational derivative of qL  with respect to Ψ* then one will get: 

 

qδ
δ ∗Ψ
L

= qf
∗ − ∂µ Πµ* = −

2
2

0

2
iq iq

A A A
m c c

µ µ
µ µ

 ∂ + ∂ + Ψ  

ℏ

ℏ ℏ
, 

 
and if one compares this to (6.7) then one will see that: 
 

qδ
δ ∗Ψ
L

 = −
2

0m

ℏ
( A□ − □ )Ψ, 

and since: 

0δ
δ ∗Ψ
L

 = −
2

0m

ℏ
(□+ 2

0k )Ψ, 

 
it will be clear that, in fact, the two contributions are complementary with respect to the 
minimally-coupled, time-varying, Klein-Gordon equation (6.10). 
 
 One will also find that the combined Lagrangian density L  (and hence, the action 
functional) still has phase invariance, since both 0L  and qL  are phase invariant 

separately.  The associated Noether current will then be the vector field: 
 

Jµ = 0 qJ Jµ µ+ ,  qJ µ  = q
µΠ δα + q

µ∗Π δα∗ = 2

0

|| ||
q

A
m c

µ 
Ψ 

 

ℏ
 α . (6.24) 

 
Thus the total conserved current will take the form: 
 

Jµ = 
2

0

i

m

ℏ
( Ψ ∂µ Ψ* − Ψ* ∂µ Ψ) + 2

0

|| ||
q

A
m c

µ Ψℏ
= 

2

0

i

m

ℏ
(Ψ ∇µ∗ Ψ* − Ψ* ∇µ Ψ),  (6.25) 

 
from which we have suppressed the α.  If one compares this to the uncharged expression 
(2.32) then one can characterize the effect of the external electromagnetic field as either 
an additional term in the current or the minimal coupling of the field to the derivative.  
Note that this vector field Jµ is not the same as the one in (6.18), and in fact: 
 

j µ = 2

0

|| ||
2

q q
J A

c m c
µ µ 

− Ψ 
 

ℏ

ℏ
.   (6.26) 

 



§ 6.  Coupling to an external field. 229 

 In addition to the phase invariance of the wave function Ψ, one also has the gauge 
invariance of the electromagnetic field, which amounts to replacing A with A + dλ, where 
λ is a smooth function.  In order to get the conserved Noether current that is associated 
with that invariance, we simply differentiate L (i.e., qL ) with respect to A: 

 

qJ µ = q

Aµ

∂
∂
L

= 
q

J
c

µ

ℏ
.     (6.27) 

 
Hence, this current is collinear with the one that is associated with phase invariance, but 
rescaled by the total charge of the moving particle.  One then sees that it can be 
reasonably identified with an electric current density. 
 From (6.17), we can relate this latest current vector field to the one j µ  that was 

introduced into qL  by the fact that when one differentiates qL  with respect to Aµ , one 

will get: 

qJ µ = 
2

2
2

0

|| ||
2

q
j A

m c
µ µ+ Ψ .    (6.28) 

 
 The energy-momentum-stress tensor can now take the minimally-coupled form: 
 

T µ
ν = µ µ µ

ν ν νδ∗ ∗Π ∇ Ψ + Π ∇ Ψ −L  = 
2

0

( )
m

µ µ µ
ν ν νδ∗ ∗ ∗∇ Ψ ∇ Ψ + ∇ Ψ∇ Ψ −ℏ

L .  (6.29) 

 
 The doubly-covariant form Tµν is still symmetric, since the field space of Ψ has not 
changed. 
 The trace of T µ

ν is: 

T µ
µ  = 2 m0 c

2 || Ψ ||2,     (6.30) 

 
so the coupling of the charge to the external electromagnetic field has not changed the 
obstruction to scale invariance that is solely due to the non-vanishing mass. 
 The divergence of T µ

ν is: 

Tν
ν µ∂  =Fµν qJν ,     (6.31) 

 
so the breakdown of the conservation of linear energy-momentum is due to the Lorentz 
force that acts upon the moving charge. 
 One can also express T µ

ν  in the decomposed form: 

 

T µ
ν = 

o q

T Tµ µ
ν ν+ ,     (6.32) 
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in which 
o

T µ
ν  is the previous (energy-scaled) expression in the uncharged case, and 

q

T µ
ν is 

the additional term that is due to Lq , namely: 

 
q

T µ
ν = q q q

µ µ µ
ν ν νδ∗ ∗Π ∇ Ψ + Π ∇ Ψ −L = 2( ) ( )A j A j A jµ µ κ µ

ν ν κ νδ+ − .  (6.33) 

 
 The trace of this matrix is: 

q

T µ
µ = 0,      (6.34) 

 
which is to be expected since the mass term in L is carried by 0L , not qL . 

 The individual sub-matrices of T µ
ν  are equal to the uncharged values plus the 

contributions from the charge, which take the form: 
 

0
0

q

T = 0
04A j A j κ

κ− ,     (6.35) 

0
q

iT = 0 02( )i iA j A j+ ,     (6.36) 

0

q
iT = 0 02( )i iA j A j+ ,     (6.37) 

q
i
jT =2( ) ( )i i i

j j jA j A j A j κ
κ δ+ −  .   (6.38) 

 
 c. The Madelung-Takabayasi form of the minimally-coupled wave equation. – With 
the introduction of polar coordinates on the field space of Ψ, the main difference between 
the previous Madelung-Takabayasi form of the Klein-Gordon equation and its present 
minimally-coupled form will amount to the replacement of the partial derivatives with the 
corresponding covariant derivatives, but only for the phase variable: 
 

∇ν (R eiθ) = ∂ν (R eiθ) + iq

cℏ
 Aν R eiθ = 

R
i

R
ν

νθ∂ + ∇ Ψ 
 

,  (6.39) 

 
in which we have introduced the notation: 
 

∇ν θ = ∂ν θ +
q

cℏ
Aν .     (6.40) 

 
The main difference between this operator ∇ν  and the previous one is that the former is a 
real operator that acts upon only the phase angle of the wave function, while the latter 
operator is a complex one that acts upon both the amplitude and phase of the wave 
function Ψ.  In particular, this means that the external electromagnetic field does not 
couple to the amplitude of the wave function, but only its phase. 
 We can then compute the tensor square of the operator to be: 
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∇µ∇νΨ = 
1

( )
R

i R R
R R

µν
µ ν µ ν µ ν µ νθ θ θ θ θ

 ∂    − ∇ ∇ + ∂ ∇ + ∂ ∇ + ∂ ∇ Ψ    
   

. (6.41) 

 
 This makes the minimally-coupled d’Alembertian operator take the form: 
 

A□  = 2 2
( ) ,

R
i dR

R R
µ

µθ θ θ   − ∇ + ∂ ∇ + < ∇ >      

□
,   (6.42) 

 
in which we have introduced the 1-forms: 
 

dR = ∂µR dxµ,  ∇θ = ∇µθ dxµ = dθ +
q

cℏ
A.   (6.43) 

 
 The minimally-coupled Klein-Gordon operator will then take the form: 
 

2
0A k+□  = 2 2

0

2
( ) ,

R
k i dR

R R
µ

µθ θ θ   − ∇ + + ∂ ∇ + < ∇ >      

□ .  (6.44) 

 
 This will vanish iff: 
 

(∇θ)2 = 2
0

R
k

R
+□ , 0 = 2

R
R

µ µ
µ µθ θ∂ ∇ + ∂ ∇ ,   (6.45) 

 
the second of which can be put into the form: 
 

0 = 2( )R µ
µ θ∂ ∇ .     (6.46) 

 
 When one compares the present Madelung-Takabayasi form of the minimally-
coupled, time-varying, Klein-Gordon equation to the previous zero charge form (3.2), 
one will see that the only difference is the replacement of dθ with ∇θ.  Following 
Takabayasi [6], we then introduce the frequency-wave number 1-form k as: 
 

k = ∇θ  = dθ +
q

cℏ
A.      (6.47) 

 
Note that this 1-form is no longer exact, since: 
 

d^k =
q

cℏ
F.       (6.48) 

 
(We shall defer a discussion of the normal form for k until the next section.) 
 If we follow the usual set of associations with k and set the covelocity 1-form u equal 
to: 
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u = 
0m

ℏ
k = 

0m

ℏ ( dθ +
q

cℏ
A) = 

0

ˆ
q

u A
m c

+  ( û  = 
0

d
m

θℏ
)  (6.49) 

 
then we will find that the new kinematical vorticity is: 
 

Ωk = d^u = −
0

q

m c
F,      (6.50) 

 
so the flow of the four-velocity vector field u will not be irrotational any more. 
 If R2 = n, ρ0 = m0 n, p = ρ0 u, as before, then one can deduce from (6.49) that the 
minimally-coupled energy-momentum density 1-form will become 
 

p = p̂ A
c

σ+   ( p̂  = 0ûρ , σ = q n),   (6.51) 

 
whose dynamical vorticity will also be non-vanishing: 
 

Ωd = d^p = 0

0

dρ
ρ

^ p + 
c

σ
F.     (6.52) 

 
Note that unlike Ωk, which is merely proportional to d^k by way of a constant, that is no 
longer the case for Ωd, since p is proportional to k by way of a function on space-time. 
 Equations (6.45) can be put into the form: 
 

u2 = c2 + 
2

2
0

R

m R

ℏ □ ,  div p = 0.    (6.53) 

 
 The first one of these has a kinematical character, while the second has a dynamical 
character, so we multiply both sides of the first one by ρ0 to get: 
 

ρ0 u
2 = ρ0 c

2 +2nU
ℏ
,  div p = 0,    (6.54) 

 
in which the definition of the quantum potential U

ℏ
 has not changed. 

 Hence, the present Madelung-Takabayasi form of the minimally-coupled, time-
varying, Klein-Gordon equation is the same as the zero-charge form, except that the 
covelocity 1-form u has different properties, since the frequency-wave number 1-form is 
no longer exact.  However, one still has the same form for the dispersion law [compare 
(3.3)]: 

k2 = 2
0

R
k

R
+□ .     (6.55) 

 
 If one imposes polar coordinates on the values of Ψ then the Lagrangian density 
(6.11) will take the form: 
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L(xµ, A, R, θ, ∂µR, ∂µθ) = 1
2 [R2 (∇θ) + (dR)2 – 2

0k R2],   (6.56) 

 
which differs from the zero-charge form (3.12) only by the replacement of dθ with ∇θ.  
Hence, when we convert it to an energy density by multiplying it by 2

0/ mℏ  and 

introduce the definitions of Table VI.2, we will get: 
 

L(xµ, ζ, η, uµ , πµ) = 1
2 ρ0 (u

2 – c2 + υ2) = 1
2 ρ0 (u

2 – c2) − η div υυυυ + nU
ℏ
. (6.57) 

 
 Once again, the only difference from the uncharged case is in the properties of u, so 
the expressions for the canonical forces and momenta, the Euler-Lagrange equations, and 
the conserved current associated with phase invariance will remain the same (at least, 
formally). 
 One thing that will change is the “F = ma” form of the first equation in (6.54).  When 
one takes the exterior derivative of it, one must remember that since u is rotational this 
time, the convected acceleration will have an extra term in it: 
 

a = Lu u = iu d^ u + du2 = −
0

q

m c
iu F + du2.    (6.58) 

 That will make: 

ρ0 a = −
c

σ
iu F + 2ndU

ℏ
.    (6.59) 

 
The right-hand side now includes a contribution from the Lorentz force of interaction 
between the charge density and the external electromagnetic field. 
 
 In addition to phase invariance, the Lagrangian density (6.57) will have gauge 
invariance, and the conserved current will take the form: 
 

qJ µ = 
Aµ

∂
∂
L

= 
c

σ
uµ.     (6.60) 

 
In this form, the conserved current that is associated with gauge invariance clearly takes 
on the character of an electric current density. 
 
 The energy-momentum-stress tensor T µ

ν  will have the same form as in the uncharged 

case, namely: 
T µ

ν = p uµ µ µ
ν ν νπ υ δ+ −L .    (6.61) 

 
Hence, the trace will not change from before [compare (6.30), as well]: 
 

T µ
µ = − 2L + ρ0 υ2 .     (6.62) 
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Once again, the reason that this is not consistent with the corresponding expression (6.30) 
in the complex case, which would amount to 2ρ0 c

2, is due to the fact that the kinetic part 
of L now depends upon a field variable in the form of R. 

 
 It is when one takes the divergence of T µ

ν  that one encounters a significant difference 

from the zero-charge case, since the presence of external forces suggests that energy-
momentum will not be conserved, this time.  Actually, the only difference in the 
calculation of that divergence comes from the fact that since d^u does not vanish now, 
one must use: 

∂µ uv = ∂ν uµ − 
0

q

m c
Fµν .     (6.63)  

 
That will now make [compare (6.31)]: 
 

Tν
ν µ∂  =

c

σ
Fµν u

ν,      (6.64) 

 
which is the Lorentz force density. 
 One can also expand u2 as: 

u2 = 2

0 0

2
ˆ ˆ ,

2

q q
u u A A

m c m c
+ < + >    (6.65) 

and thus represent T µ
ν  as a sum: 

T µ
ν = 

o q

T Tµ µ
ν ν+ ,     (6.66) 

 

in which 
o

T µ
ν  is the uncharged expression (with û  and p̂  in place of u and p), and: 

 
q

T µ
ν  = ( )j A A j A jµ µ κ µ

ν ν κ νδ+ − ,   (6.67) 
in which we have defined: 

j µ  = 
0

ˆ
2

q
u A

c m c
µ µσ  

+ 
 

.    (6.68) 

Therefore, 
q

T µ
ν  represents the contribution to energy-momentum and stress that comes 

from the charge.  Its trace is: 
q

T µ
µ  = − 2A j µ

µ  = −2 qL ,    (6.69) 

 
and its individual sub-matrices will then take the form: 
 

0
0

q

T  = 0
02 j A A j κ

κ− ,     (6.70) 

0
q

iT = 0

q
iT  = 0 0

i ij A A j+ ,    (6.71) 
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q
i
jT  = ( )i i i

j j jj A A j A j κ
κ δ+ + .   (6.72) 

 
The only thing in equations (6.66) to (6.72) that differs from the analogous complex ones 
[viz., (6.32) to (6.38)] is the definition of the current vector field j µ . 
 
 
 § 7.  The introduction of vorticity. – Now that we have examined the case of an 
external electromagnetic field that gets coupled to the motion of the charged extended 
object that is described by a complex quantum wave function, we have seen the most 
tangible physical example in which the covelocity 1-form u ceases to be irrotational, 
since its vorticity is coupled directly to the external electromagnetic field strength F.  
Hence, there is no lapse of reality associated with dealing with a vorticial 1-form u more 
generally.  Indeed, since u is merely proportional to k by way of a constant, and p is 
proportional to it by a function, the fundamental 1-form to examine is k. 
 One of the first key differences between the non-relativistic case of motion and the 
relativistic case is that the additional dimension to space-time allows for more 
possibilities in the type of vorticial 1-forms that one can have beyond the Clebsch 
expansion.  If k is exact then its normal form will be dθ, but if d^k ≠ 0 then k can be put 
into one of the following normal forms: 
 

λ dµ,      dθ + λ dµ,      λ1 dµ1 + λ2 dµ2. 
 

In three dimensions, one had only the first two possibilities, the second of which 
described the introduction of Clebsch variables. 
 The exterior derivatives of these four 1-forms then take the forms: 
 

0, dλ ^ dµ,      dλ ^ dµ,      dλ1 ^ dµ1 + dλ2 ^ dµ2, 
 
respectively.  Hence, there will be only three distinct types of non-zero 2-forms, which 
then correspond to ranks 0, 2, and four, respectively. 
 The Frobenius 3-forms k ^ d^k then take the possible forms: 
 

0, 0, dθ ^ dλ ^ dµ, λ2 dµ2 ^ dλ1 ^ dµ1 + λ1 dµ1 ^ dλ2 ^ dµ2, 
 
respectively, and the corresponding 4-forms d^k ^ d^k will take the forms: 
 

0, 0, 0, − 2 dλ1 ^ dλ2 ^ dµ1  ^ dµ2, 
respectively. 
 We can now substitute the expression above (6.48) for d^k and see what the Frobenius 
3-form and the 4-form will take: 
 

k ^ d^k = 
q

cℏ
k ^ F, d^k ^ d^k = 

2
q

c
 
 
 ℏ

F ^ F.   (7.1) 
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Hence, the integrability of the exterior differential system k = 0 will revert to the 
character of the electromagnetic field strength 2-form. 
 In the event that the first differential form in (7.1) vanishes – i.e., if k ^ F vanishes – 
the system will be completely integrable, so the normal form of k will be either dθ or λ 
dθ.  In either case, the integral submanifolds of k = 0 (viz., the isophases) will be level 
hypersurfaces of θ, so the flow of the vector field k will be hypersurface-orthogonal. 
 If k ^ F does not vanish then one must go onto the second differential form in (7.1), 
whose vanishing comes down to the vanishing of F ^ F.  If that 4-form vanishes then F 
will need to have rank 2, which will give it the form F = α ^ β for some (non-unique) 
linearely-independent 1-forms α and β.  At the same time, k will take on the normal form 
dθ + λ dµ, which is used in the Clebsch approach to three-dimensional vorticity.  In such 
a case, the isophases will be the level surfaces of the pair of functions θ, µ, so their 
dimension will have been reduced by one from the previous case. 
 Finally, if F ^ F does not vanish then F will have rank 4, and must therefore take the 
form α ^ β + ρ ^ σ for four linearly-independent 1-forms α, β, ρ, σ.  The 1-form k will 
then have the normal form λ1 dµ1 + λ2 dµ2, which will make the isophases two-
dimensional, as in the previous case. 
 An analogous analysis of the integrability of the exterior differential system u = 0 will 
follow from the analysis of k = 0, since u is proportional to k by a constant.  However, if 
one looks at the situation for p = 0, one sees that since the proportionality to k is by way 
of a (differentiable) function, so d^p is no longer proportional to d^k, but includes an extra 
term that is proportional to dρ0 ^ p, as in (6.52), which will vanish iff the space-time 
gradient of the rest mass density is collinear with the energy-momentum vector field. 
 The Frobenius 3-form and the 4-form d^p ^ d^p are then: 
 

p ^ Ωd = 
c

σ
p ^ F,  Ωd ^ Ωd  = 0

0

2
d

c

σ ρ
ρ

^ p ^ F + 
2

c

σ 
 
 

F ^ F,  (7.2) 

 
respectively.  The first of these expressions is still proportional to the corresponding 
expressions for k and u (by a function), so the situation regarding the complete 
integrability of p = 0 has not changed from the previous situations for k and u.  However, 
the second expression is not merely proportional to the corresponding expressions for k 
and u, which were proportional to the second term on the right-hand side, so its vanishing 
will also have to involve the relationship of dρ0 to p and F.  It is even conceivable that Ωd 
^ Ωd might vanish when F ^ F does not.  That would happen iff: 
 

F ^ F = − 0
0

2c
dρ

ρ σ
^ p ^ F,     (7.3) 

which could happen when: 

F = − 0
0

2c
dρ

ρ σ
^ p.      (7.4) 

 
 One notes that if one uses the electromagnetic potential 1-form A as a model for the 
addition of 1-forms to dφ that will make it non-closed then that will implies that in a four-
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dimensional space-time, there will be only so many (normal) forms that A can take (up to 
a choice of gauge), namely, two: 
 

A = λ dµ and A = λ1 dµ1 + λ2 dµ2, 
 
which will give 2-forms: 
 

F = dλ ^ dµ and      F = dλ1 ^ dµ1 + dλ2 ^ dµ2, 
resp. 
 The first one represents an F of rank 2, while the second one represents an F of rank 
4.  The former case includes the physically-significant cases of elementary static fields 
and electromagnetic wave fields. 
 
 
 8. The quantum strain tensor. – The origin of the relativistic quantum strain tensor 
that gives the relativistic quantum stress tensor by way of a mechanical constitutive law 
has not changed fundamentally from the previous non-relativistic case in Chapter V.  
That is because one is still dealing with the strain on tangent frames to objects that comes 
about as a result of the dilatation that multiplication by the number density n represents.  
The main difference then comes about from the fact that one must take partial derivatives 
of n with respect to t, in addition to xi. 
 If one goes back to the basic non-relativistic explanation in Sec. 4 of Chapter V then 
one will recall that the basic object is the local homothety of tangent frames that is 
defined by e2λ = n (or eλ = R).  It, in turn, defines a connection on frames with values in 

the Lie algebra of (R+, ×) whose 1-form is: 

 
ω = dλ   [ωµ = ∂µ λ].    (8.1) 

 
Hence, the only thing that has changed from before is the number of values that the 
indices can take. 
 The infinitesimal frame strain tensor that is associated with this frame deformation is 
then: 

ϖ = dω = d 2λ   [ϖµν = ∂µν λ].    (8.2) 
 
 If we go back to the Takabayasi stress tensor (3.51) then we see that it can be put into 
the form: 

σµν = 
2

02m

ℏ
n ∂µν λ = 

2

02ρ
h ϖµν ,    (8.3) 

 
in which we have used our densitized version of ℏ , namely, h = nℏ .  This clearly takes 

on the form of a mechanical constitutive law that couples the infinitesimal frame strain 
tensor to the Takabayasi tensor by way of a function that is defined entirely in terms of 
densities. 
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CHAPTER VII 
 

NON-RELATIVISTIC, SPINNING PARTICLES 
 
 

 One of the early challenges to the successes of the Schrödinger equation as a way of 
modeling atomic and sub-atomic phenomena was the experimental discovery in 1922 of a 
magnetic dipole moment to the electron by Stern and Gerlach [1].  Furthermore, not only 
was the electron possessed of a non-zero magnetic dipole moment in its rest space (but 
not apparently an electric dipole moment), but the possible states of that magnetic dipole 
moment in the presence of a magnetic field seemed to be “quantized” into two possible 
states, which were thought of as the “up” and “down” states.  Thus, it became 
immediately clear that the scope of the Schrödinger equation needed to be expanded in 
order to account for the newly-discovered quantum phenomenon. 
 Actually, the existence of a magnetic dipole moment for the electron had been 
discovered implicitly before Stern and Gerlach in the form of the “anomalous Zeeman 
effect.”  In essence, the normal Zeeman effect, which had been discovered in 1897 [2], 
related to the splitting of atomic spectral lines in the presence of a magnetic field as a 
result of the coupling of that field to the orbital angular momentum of the atomic electron 
that was making the level transition that produced the spectral line.  The fact that there 
was a further splitting in the magnetic field was originally simply referred to as the 
“anomalous” Zeeman effect.  However, it was not until after the concept of electron spin 
was introduced that the definitive quantum explanation for that anomalous effect could be 
given by Heisenberg and Jordan [3], and that is what we shall discuss next. 
 
 
 § 1.  Electron spin. −−−− A first step towards the expansion in scope of the Schrödinger 
equation came from Uhlenbeck and Goudsmit [4] in 1925 when they suggested that the 
magnetic dipole moment of the electron might be coupled to an “intrinsic angular 
momentum” or “spin” of the electron that also existed in two (up/down) states in the 
presence of a magnetic field.  Moreover, if µs represents the magnitude of the spin 
magnetic dipole moment and s represents the magnitude of the spin then the relationship 
between them would be: 

µs = − e

mc
s .      (9.1) 

 
 This should be contrasted with the corresponding expression for the coupling of an 
orbital magnetic moment to the orbital angular momentum l of an atomic electron (1): 
 

µl = −
2

e

mc
l .       (9.2) 

 

                                                
 (1) An excellent discussion of the classical and quantum theory of the spinning electron can be found in 
Chap. VI of the textbook by Kramers [5].  
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This discrepancy of a factor of two was the reason for referring to the “anomalous” 
Zeeman effect, as opposed to the normal one. 
 When one gives s the value of 12 ℏ , the (absolute value of the) corresponding value of 

ms will be defined to be the Bohr magneton: 
 

µB = 
2

e

mc

ℏ
 = 0.93 × 10−20 e.s.u.    (9.3) 

 
 Actually, by their own admission, Uhlenbeck and Goudsmit were not the first to 
suggest that the electron might have such an intrinsic angular momentum, since Arthur 
Compton had previously published a paper [6] in 1921 that proposed such a thing in a 
more classical context, and Ralph Kronig had made some unpublished remarks in the 
quantum context in the same year as Uhlenbeck and Goudsmit.  The latter remarks were 
concerned with Pauli’s implicit introduction of spin into his discussion of the emission 
spectra of alkali atoms in 1924, and the reason that Kronig chose not to publish his 
observations was that he attributed the spin to a proper rotation of the electron about an 
axis, while Pauli criticized the idea on the grounds that such a rotation would need to 
have a superluminal tangential velocity. 
 That argument is simple enough to present: The presence of a magnetic dipole 
moment (but not any higher magnetic multipole moments) and the absence of any electric 
multipole moments would be consistent with assuming that the electric and magnetic 
fields of the electron were produced by a charged, spinning sphere of radius re with a 
total charge of – e, total mass me, and total angular momentum 1

2 ℏ .  According to Bohm, 

Schiller, and Tiomno [7], the classical expression for the magnetic dipole moment of 
such a spinning charge distribution should be: 
 

µ = e

v
er

c
λ ,      (9.4) 

 
in which λ is an empirical constant of order unity that accounts for the actual distribution 
of charge. 
 If one sets this latter expression for µ equal to a Bohr magneton (9.3) and uses the 
classical electron radius of re = 2.8 × 10−12 cm then one will get: 
 

v

c
 = 

137

λ
≫  1.      (9.5) 

 
 Indeed, one of the problems with the concept of intrinsic angular momentum in its 
early days was precisely that tendency to take the concept all too literally and attempt to 
model it by means of classical rotational mechanics.  That is, just as Bohr had proposed 
that electrons orbited the atomic nucleus like planets, the next step was to add a rotation 
of the electrons about their axes, also like the planets.  However, just as the planetary 
model of the atom eventually reached its limits as a fundamental statement of atomic 
matter, similarly, the concept of a proper rotation to an extended electron also ran into 
numerous complications.  For one thing, unless one postulated some sort of physically-
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debatable rigidity to the mass/charge distribution of the rotating electron, one would 
expect that the rotation would produce a figure of equilibrium that would be ellipsoidal or 
perhaps toroidal, depending upon the angular speed.  However, such a charge distribution 
would then have a non-vanishing electric dipole moment, which was not observed 
experimentally. 
 In time, the nature of “spin” changed radically, especially by the introduction of the 
four-(real)-dimensional Pauli algebra of 2×2 complex matrices, which we shall discuss 
shortly.  For now, we point out that when one goes on to variational field theory and the 
Belinfante-Rosenfeld theorem, it will become clear that the so-called “spin” of an 
elementary particle was more intimately related to the weight of the representation of the 
gauge group in the field space than it was to any sort of proper rotation of a source charge 
distribution.  That is, the spin of the (non-relativistic) electron had more to do with the 
difference between the representation of the Lie group of three-dimensional Euclidian 
rotations by 2×2 unitary matrices and its representation by 3×3 real direction cosine 
matrices, which accounts for the two-fold nature of spin. 
 
 
 § 2.  The Pauli algebra. – The Pauli algebra is basically a matrix representation of 

the four-dimensional algebra H of real quaternions, which includes the Lie group SU(2) 

as its unit sphere.  The latter group, in turn, is the simply-connected covering group of 

SO(3; R), which is the Lie group of proper, three-dimensional, real Euclidian rotations.  

Hence, we shall review the algebra of real quaternions and then show first how it gets 
represented by 2×2 complex matrices and then how it relates to such rotations. 
 

 a.  The algebra H (1).  An algebra is special case of a ring that is defined over a 

vector space V.  That is, one has a bilinear, binary operation V × V → V, (a, b) ֏ ab 
defined upon V that one thinks of as a multiplication of vectors.  The demand that it must 
be bilinear is another way of saying that vector multiplication must left and right 
distribute with the vector addition: 
 

a (b + c) = ab + ac, (a + b) c = ab + ac, 
 
along with the demand that scalar multiplication of each factor individually must 
commute with their multiplication: 
 

(λa) b = a (λb) = λ ab, 
 
which is not defined for general rings. 
 Due to bilinearity, in order to define the multiplication of any two vectors, it is 
sufficient to define the multiplication of all pairs of basis vectors for any choice of basis.  

                                                
 (1) For more details on this subsection, the ambitious reader might confer the author’s survey [8] on the 
application of the various kinds of quaternions to the representation of physical motions. 



242 Chapter VII – Non-relativistic, spinning particles 

Thus, if {ei , i = 1, …, n} is a basis for V then any product ei ej can be expressed uniquely 
in terms of the basis as: 

ei ej = 
1

n
k
ij k

k

a
=
∑ e ,    (10.1) 

 
in which the constants kija  are referred to as the structure constants of the algebra for that 

choice of basis.  The matrix of products ei ej that (10.1) defines is usually called the 
“multiplication table” for the algebra in question. 
 One can always polarize any product ab into a commutator and an anti-commutator 
product: 

ab = 1
2 { a, b} + 1

2 [a, b], 

in which: 
{ a, b} ≡ ab + ba, [a, b] ≡ ab – ba. 

 
 This polarization gives us two immediate examples of broad classes of algebras, 
namely, the Lie algebras, for which {a, b} = 0 in any case and the commutator bracket 
must satisfy the Jacobi identity: 
 

[a, [b, c]] + [a, [b, c]] + [a, [b, c]] = 0, 
 
and the Clifford algebras, for which: 
 

{ a, b} = 2 <a, b> 1 
 

for some scalar product on V.  Note that this does not imply any immediate restrictions 
upon [a, b], but it does imply that the algebra must have a unity element 1 that is also one 
of the basis elements. 
 When one applies polarization to the products of elements of a chosen basis, one can 
also polarize the structure constants accordingly: 
 

k
ija  = k k

ij ijb c+ ,  k
ijb  ≡ 1

2 ( )k k
ij jia a+ , k

ijc  ≡ 1
2 ( )k k

ij jia a− . 

 
 The algebra of real quaternions is easiest to define using the standard basis {eµ , µ = 0, 

1, 2, 3} for R4, which consists of the vectors: 

 
e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0), e3 = (0, 0, 0, 1). (10.2) 
 
 We then introduce the standard notations 1, i, j, k for the elements of that basis, so 

any element q of R4 can be written in the form: 

 
q = qµ eµ  = q0 + q1 i + q2 j + q3 k.    (10.3) 

 
 We reserve the use of bold-face letters for the “spatial” part of q: 
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q = q1 i + q2 j + q3 k,      (10.4) 
so: 

q = q0 + q;      (10.5) 
 
q0 is then the “scalar” part of q, and not the “temporal” part, as one might expect in 
physics.  In fact, the components of a quaternion are more related to the homogeneous 

coordinates of the projective space RP3. 

 This decomposition of a quaternion into a scalar part and a vector part defines a 

direct-sum decomposition of the vector space H = R ⊕ R3 and two projection operators 

onto the summands: 
S(q) ≡ q0, V(q) ≡ q.     (10.6) 

 
 For the algebra of real quaternions, we see that it is sufficient to define the products 
of all 16 ordered pairs of basis elements: 
 

1 e = e 1 = e, where e = 1, i, j, k, 
i2 = j2 = k2 = − 1, 

ij = − ji = k,    jk = −  kj = i,    ki = − ik = j. 
 

 The first relations say that 1 is a unity element for H; i.e., a multiplicative identity.  

The second set extends the usual definition for the imaginary i by two more extra basis 

elements.  That is, the subalgebra of H of all elements of the form a + ib is isomorphic to 

C, along with the subalgebras of all a + jb and all a + kb.  (In the early days of the theory 

of algebras, they were referred to as “hypercomplex” number systems, for that reason.)  
One then sees that the last set of definitions is borrowed from the usual definition of the 
vector cross product, except that the cross product of any vector with itself is always 
zero, which is not true for the product of spatial quaternions. 
 The easiest way to represent the general product of two quaternions q and r is to first 
put both of them into “scalar + vector” form: 
 

q = q0 + q, r = r0 + r . 
 One will then get: 

qr = q0 r0 + q0r  + r0q + qr . 
 
 The only term in this sum that needs further clarification is the last one, and from the 
rules above, one sees that: 

qr  = − <q, r> + q × r , 
which makes: 

qr = (q0 r0 − <q, r>) + q0r  + r0q + q × r .    (10.7) 
 
Thus, the scalar and vectors parts of qr are: 
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S(qr) = q0 r0 − <q, r>,  V(qr) = q0r  + r0q + q × r ,   (10.8) 
 

respectively.  It is intriguing that even though the algebra H is most directly linked to 

three-dimensional Euclidian rotations, nevertheless, S(qr) defines the Minkowski scalar 

product on R4.  Once again, this relates to the projection of homogeneous coordinates for 

RP3 onto inhomogeneous ones, but we shall let that pass, for now. 

 Although the quaternion product is associative, it is not commutative, since: 
 

rq = (r0 q0 − <r , q>) + r0q + q0r  + r  × q = (q0 r0 − <q, r>) + q0r  + r0q − q × r  ≠ qr. 
 
 If one polarizes the product qr then one will find that: 
 

{ q, r} = 2 ((q0 r0 − <q, r>) + q0r  + r0q), [q, r] = 2 q × r . 
 
 When one restricts these products to spatial quaternions, one will get: 
 

{ q, r} = − 2<q, r>, [q, r ] = 2 q × r . 
 
 Thus, the antisymmetric part of the product defines a Lie algebra on the spatial 

quaternions that differs from the Lie algebra of the vector cross product on R3 [which is 

isomorphic to so(3; R)] by a factor of 2, while the symmetric part of the product says that 

the product has much in common with the Clifford algebra of the orthogonal space E3 = 

(R3, <.,.>), in which the scalar product is Euclidian.  However, that Clifford algebra is 23 

= 8-dimensional, not four. (As it turns out, H is the “even” subalgebra of that Clifford 

algebra.) 

 One might wonder whether H has “divisors of zero,” which would be two non-zero 

quaternions q and r such that qr = 0.  From the expressions above, that would imply that: 
 

0 = q0 r0 − <q, r>,  0 = q0r  + r0q + q × r , 
or 

q0 r0 = <q, r>,  q0r  + r0q = r  × q . 
 
However, the second one is possible iff q = r  = 0, so the first one would say that q0 r0 = 0, 

and since the algebra R has no divisors of zero, that would mean that either q0 or r0 

would have to vanish.  Hence, H has no divisors of zero, either. 

 Of particular interest is the case in which qr = rq = 1, which would make r the 
multiplicative inverse of q.  From the expressions above, that would imply: 
 

1 = q0 r0 − <q, r>,  0 = q0r  + r0q + q × r  = q0r  + r0q − q × r . 
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The second condition says that one must have q × r  = 0, which implies that r  = α q for 
some real scalar α, which might be zero.  It also implies that q0r  + r0q = 0, or r0 = − α q0, 
and when both conditions are substituted into the first equation, one will get: 
 

1 = − α ((q0)2 + <q, q>), 
or 

α = − 
0 2

1

( ) ,q + < >q q
, 

 
as long as (q0)2 + <q, q> does not vanish.  However, that will happen iff q = 0.  Hence, 
every non-zero quaternion q will have an inverse that is given by: 
 

q−1 = 2

q

q
,     (10.9) 

in which: 
q  = q0 – q, || q ||2 = (q0)2 + <q, q>.  (10.10) 

 
One customarily calls q  the conjugate of the quaternion q. 
 One can also see that: 

qq  = qq= || q ||2.     (10.11) 
 

 We now see that H* = H – {0} defines a non-Abelian multiplicative group in the 

same way that C* defines an Abelian one.  Thus, H defines a (real) division algebra or 

skew field.  In fact, the only real division algebras, up to isomorphism, are R, C, H, and 

O, which is the eight-dimensional algebra of octonions, and which is also called the 

Cayley algebra. 

 In particular, the unit quaternions, for which || q || = 1, form a subgroup H1 of H* 

whose point-set is a real three-sphere, and in fact, the group H* is isomorphic to R* × H1 .  

We shall see shortly that the group H1 is isomorphic to SU(2). 

 

 b.  The representation of H by 2×2 complex matrices. – One of the most important 

classes of algebras is defined by the matrix algebras.  In general, if M(n; K) is the set of 

all n×n matrices with elements in the field K (which will be R or C for us) then one can 

define an n2-dimensional K-vector space structure over M(n; K) by matrix addition and 

scalar multiplication, and for the present purposes, as long as K contains R as a sub-field, 

one can also produce an n2-dimensional real vector space by restricting the scalars to the 
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real numbers.  In order to then define an algebra, one needs only to verify that the usual 

matrix multiplication is, in fact, a K-bilinear product on the vector space M(n; K). 

 In particular, the vector space M(2; C) of 2×2 complex matrices is four-dimensional 

as a complex vector space and the multiplication of matrices is C-bilinear.  However, the 

algebra H is a real algebra of real dimension four, while M(2; C) has a real dimension of 

eight.  Hence, we cannot expect to get an actual isomorphism of the real algebra H with 

the complex algebra M(2; C), but we might expect to define a real algebra in it. 

 In fact, all that one needs to do is to define a suitable basis {τµ , µ = 0, 1, 2, 3} for the 

(complex) vector space M(2; C) and establish a one-to-one correspondence between the 

basis {1, i, j, k} for H and the basis elements τµ .  When one forms all real scalar 

combinations of the τµ , one will define a real, four-dimensional subspace of M(2; C).  

However, the hard part is to find a basis for M(2; C) that will give the same (real) 

structure constants as those of the basis {1, i, j, k} for H. 

 As it turns out, one can use the basis: 
 

τ0 = 
1 0

0 1

 
 
 

, τ1 = 
1 0

0 1
i
 
 − 

, τ2 = 
0 1

1 0

 
 − 

, τ3 = 
0 1

1 0
i
 
 
 

,  (10.12) 

 
and one will find that the products of the basis elements give: 
 

τ0τµ = τµτ0 = τµ , τiτj = − δijτ0 + εijkτk .    (10.13) 
 
 Hence, if one associates 1 with τ0 and i, j, k with τ1, τ2, τ3, respectively, then one will, 
in fact, have the same multiplication table for the basis elements, and associating the real 
quaternion q = q0 + i q1 + j q2 + k q3 with the matrix: 
 

[q] = qµ τµ =  
0 1 2 3

2 3 0 1

q iq q iq

q iq q iq

 + +
 − + − 

 = q0τ0 + 
1 2 3

2 3 1

iq q iq

q iq iq

 +
 − + − 

  (10.14) 

 

will define an isomorphic copy of the real algebra H in the algebra M(2; C) 

 One notes that the “spatial” basis matrices τi , i = 1, 2, 3 are anti-Hermitian; i.e.: 
 

†
iτ  = −τi ,      (10.15) 

 
and their anti-commutators and commutators are: 
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{ τi, τj} = − 2δijτ0, [τi, τj] = 2εijkτk ,    (10.16) 
respectively. 
 Hence, the spatial part of the algebra is closely related to the Clifford algebra of 

Euclidian R3 (up to a sign), as well as the Lie algebra of so(3; R).  One can then define an 

isomorphism τ : so(3; R) → su(2), ϖi 1
2 iτ֏ , where {ϖi , i = 1, 2, 3} are the elementary 

rotations around the x, y, z axes, resp. 
 

 c. – Spin and the weights of the representations of so(3, R). – At this point, we can 

see how the integer or half-integer s that gets called the spin of a wave function in 
quantum mechanics relates to the weights of the representation of the rotation group (in 
the non-relativistic case) in the field space of the wave function.  Basically, in order to get 
the weight(s) of a representation of a Lie group – or in the present case, its Lie algebra 

so(3, R) – one must choose a maximal Abelian sub-algebra (i.e., a Cartan subalgebra).  

One then represents an element a in that Cartan subalgebra as a linear transformation 

(i.e., matrix) D(a) that acts upon the vector space V of the representation.  The weights of 

the representation D are then eigenvalues of the linear transformation D(a); since the 

elements of a Cartan subalgebra all commute with each other and a homomorphism such 
as D will preserve commutatitivity, they will all have the same eigenvalues. 

 In the present case of so(3, R), the Cartan subalgebras are all one-dimensional, and 

are basically all lines through the origin of its underlying vector space.  If one chooses 
one of them (say an elementary infinitesimal rotation ϖz = ϖ3 about the z-axis) and 
represents it as a real, antisymmetric 3×3 matrix (viz., the defining representation) then 
one will see that the eigenvectors of that matrix will all lie along the rotational axis.  
Since that axis is, by definition, fixed by the rotation, the eigenvalues will be ± 1; for a 
proper rotation, only + 1 will be relevant.  That number is then the weight of the defining 

representation of so(3, R); i.e., it has spin 1. 

 When one represents so(3, R) in su(2) by the linear homomorphism above that will 

take ϖ3 to 1
32τ , since the eigenvalues of τ3 are also ± 1, the eigenvalues of 1

32τ  will be 

± 1
2 .  Therefore, the weight of the representation of so(3, R) in su(2) is 1

2 ; i.e., it has spin 

1
2 . 

 
 d. The Pauli matrices. – In order to get to the matrices {σi , i = 1, 2, 3} that Pauli 
actually used in [9] one must convert the anti-Hermitian matrices into Hermitian ones by 
multiplying by i and permuting the 1 and 3 axes: 
 

τ1 = iσ3, τ2 = iσ2, τ3 = iσ1 .    (10.17) 
Thus: 
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σ1 =
0 1

1 0

− 
 − 

, σ2 = 
0

0

i

i

 
 − 

, σ3 =
1 0

0 1

− 
 
 

.   (10.18) 

 
These matrices now satisfy the commutation rules: 
 

[σi , σj] = − 2i εijk σk .      (10.19) 
 
 The eigenvalues of all three matrices are ± 1, so if one defines the Pauli spin matrices 
by: 

si = 1
2 iσℏ      (10.20) 

 
then they will all have eigenvalues of 12± ℏ . 

 One sees another key difference between these spin operators and the ones that 
represent orbital angular momentum in quantum mechanics: 
 

L1 = ( )z yy z
i

∂ − ∂ℏ
, L2 = ( )x zz x

i
∂ − ∂ℏ

, L3 = ( )y xx y
i

∂ − ∂ℏ
,  (10.21) 

 
namely, that the latter are linear differential operators that act upon complex-vector-
valued wave functions, while the former are linear algebraic ones that act upon only the 
field space. 
 The matrix that represents the conjugate of q takes the form: 
 

[ ]q  = 
0 1 2 3

2 3 0 1

q iq q iq

q iq q iq

 − − −
 − + 

 = q0τ0 –
1 2 3

2 3 1

iq q iq

q iq iq

 +
 − + − 

 = [q]†,   (10.22) 

 
and the determinant of the matrix [q] is: 
 

det [q] = || q ||2,    (10.23) 
so the inverse of q will go to: 
 

[q−1] = †1

det[ ]
q

q
 =

0 1 2 3

2 3 0 1

1

det

q iq q iq

q q iq q iq

 − − −
 − + 

.  (10.24) 

 

 Thus, if we restrict ourselves to the unit sphere in H (which we know to be a group 

under multiplication) then we will see that it gets mapped isomorphically to the group of 
2×2 complex matrices with unit determinant whose inverses are their Hermitian 
conjugates – i.e., the group SU(2), which is a real Lie group of dimension three whose 
underlying manifold is, as we have already seen, the real three-sphere. 
 
 e.  The representation of rotations by unit quaternions and matrices in SU(2). – The 
easiest way to get from the elements of SU(2) to the corresponding real, proper, three-
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dimensional Euclidian rotations in SO(3; R) is to note that at the level of manifolds, the 

two-to-one covering projection SU(2) → SO(3; R) is simply the map that takes each point 

of a real 3-sphere to either the line through the origin of R4 and that point to the pair of 

antipodal points of the sphere that includes that point; that is, one is mapping from S3 to 

RP3. 

 As we have seen, the unit 3-sphere in H can be given a group structure that is 

isomorphic to SU(2) and a manifold structure that looks like S3, so if one associates any 
unit quaternion u with the pair of antipodal points {u, − u} or the line through the origin 
that connects them then one will have the basis for the association of elements of SU(2) 
with real, proper, three-dimensional Euclidian rotations.  Furthermore, under the 
association of u with the matrix [u] as in (10.14), one sees that – q will go to – [u], so the 
antipodal points {u, − u} will go to the pair of 2×2 unitary matrices ± [u]. 
 The way that one models the action of Euclidian rotations on three-dimensional, real, 

Euclidian space E3 using real quaternions is to first embed E3 in H as the spatial 

quaternions; i.e., the vector vi ei goes to the spatial quaternion v = v1 i + v2 j + v3 k.  One 
then models the rotation R(u) itself by a unit quaternion u (or its negative) and the action 
of that rotation on v by the map: 
 

R(u)(v) = u uv .     (10.25) 
 
One immediately notices that due to the quadratic nature of this action, both u and – u 
will produce the same effect upon v.  Hence, it is really the pair {u, − u} of antipodal 
points that act upon v. 
 In order to see that this action really does produce a real, proper, three-dimensional, 
Euclidian rotation of v, one first verifies that is clearly invertible, since the inverse action 
is: 

R−1(u)(v) = R(u−1)(v) = u uv .     (10.26) 
 
 In order to verify that R(u)(v) is a spatial quaternion, one notes that a spatial 
quaternion always has the property that v  = − v, so one tests v′ = R(u)(v) for that 
property: 

    ′v  = u uv  = u uv = − u uv = − v. 
 
 In order to show that the transformation (10.25) is actually a rotation, one needs to 
show that the Euclidian length of v is the same as the Euclidian length of v′; that would 
be equivalent to showing that || v′ ||2 = 2|| ||v : 
 

|| v′ ||2 = ′ ′v v  = u uu uv v = u uv v = 2|| || u uv = 2|| ||v . 
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 Hence, the action (10.25) truly represents the action of real, proper, three-
dimensional, Euclidian rotations on points of three-dimensional Euclidian space. 
 Under the association of unit quaternions u with unitary 2×2 matrices [u] and spatial 
quaternions v with anti-Hermitian 2×2 matrices: 
 

[v] = 
1 2 3

2 3 1

iv v iv

v iv iv

 +
 − + − 

,    (10.27) 

 
one will get a corresponding action of SU(2) on E3: 
 

[v′] = [ ][ ][ ]u uv .     (10.28) 
 
This is the usual way that quantum mechanics introduces the representation of rotations 
by matrices in SU(2). 
 
 f.  Pauli 2-spinors.  When one looks at the 2×2 complex matrices by themselves, one 
will see that there are two other natural actions that they define by way of their defining 

representation as either the matrices of complex-linear maps of C2 to itself or the 

transposed action of C2* to itself.  If one represents an element of C
2 by a column vector 

ψ = 
1

2

z

z

 
 
 

 and an element of C2* by a row vector ψ T = [z1, z2], and [u] ∈ SU(2) then those 

actions will be [u]ψ and ψ T[u], respectively.  Actually, it is more customary to replace 
[u] its inverse [u]  † and ψ T with its complex conjugate ψ †. 
 The elements of C2 and C2* then become the basis for the introduction of the Pauli 2-

spinors, and a wave-function ψ(t, xi) that takes its values in C2 or C2* becomes a Pauli 2-

spinor field. 

 One way of thinking of Pauli 2-spinors geometrically is to consider that when C2 is 

given the Hermitian inner product: 
 

(ψ, ψ′ ) = 1 1 2 2z z z z∗ ∗′ ′+ ,    (10.29) 
 
one can define an oriented, unitary 2-frame by specifying one of its members.  This is 
analogous to the way that an oriented, orthonormal 2-frame in E2 can be defined by 
specifying one of its members; for example, one can specify the first member and obtain 
the second one by a counter-clockwise rotation through a right angle. 

 The difference is that if u is a unit vector in C2 then one must not only rotate u 

through 90o, but take its complex conjugate, as well: 
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u⊥ = J u  = 
1

2

0 1

1 0

u

u

−   
  

   
 = 

2

1

u

u

 −
 
 

.    (10.30) 

 
This situation is illustrated in Fig. 7.1. 

 

z1 

z2 
 (u1, u2) 

2 1( , )u u−  

 
Figure 7.1.  Extending a Pauli spinor to an oriented, Hermitian 2-frame. 

 
One can then form a matrix that belongs to SU(2) from u and u⊥ : 
 

U ≡ [u |  u⊥] = 
1 2

2 1

u u

u u

 −
 
 

,     (10.31) 

so, in particular: 

U−1 = U† = 
1 2

2 1

u u

u u

 
 − 

, det U = || u1 ||2 + || u2 ||2.   (10.32) 

 

Geometrically, one can then think of U as an oriented, Hermitian frame in C2, which will 

then cover an oriented, orthonormal 3-frame in R
3, along with – U. 

 Hence, a non-zero Pauli 2-spinor ψ can also be associated with a matrix in SU(2): 
 

1 2

2 1
|| ||

u u

u u
ψ

 −
 
 

, 

 

and if ψ is a unit spinor – so || ψ || = ψ†ψ = 1 – then the association of unit spinors in C
2 

with matrices in SU(2) will be a one-to-one correspondence.  In that sense, a Pauli 2-
spinor is something of an abbreviation for a unitary 2-frame. 
 One can represent Pauli 2-spinors by real quaternions (see, [8]) by finding a 

decomposition of H into two two-dimensional left or right ideals that would behave like 

C ⊕ C under the left and right multiplication by unit quaternions, but we shall have no 

further use for that fact in the present discussion, so we shall leave it at that. 
 
 g. The matrix aj

biD . – For the later calculation of the intrinsic angular momentum 

tensor that is associated with the Pauli Lagrangian density, it will be essential to have an 
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explicit expression for the components of the linear Lie algebra isomorphism D : so(3; 

R) → su(2) as it relates to the association of traceless, anti-symmetric, real, 3×3 matrices 

i
jω  in so(3; R) with the traceless, anti-Hermitian, complex 2×2 matrices a

bω  in su(2) that 

represent them.  That is, we seek the four-index array aj
biD  such that: 

 
a
bω  = 1

2
aj i
bi jωD .    (10.33) 

 

 Abstractly, if {εi , i = 1, 2, 3} is a basis for so(3; R) and {τi , i = 1, 2, 3} then the 

matrix of D with respect to those two bases will be jiD = j
iδ .  That is, if ω i are the 

components of ω with respect to εi then ω i will also be the components of D(ω) with 

respect to {τi , i = 1, 2, 3}. 

 In order to go from ω i to i
jω , one uses the adjoint representation of so(3; R), which 

will make: 
i
jω  = εijk ω k  or  ω i = 1

2
ijk j

kε ω .   (10.34) 

 
 In order to go from ω i to a

bω , one uses the τ matrices that were defined above: 

 
a
bω  = i a

ibω τ ,     (10.35) 

 
in which the array a

ibτ  refers to the components of the matrix τi ; i.e., a
ibτ  = [ ] a

i bτ . 

 If one combines the two transformations (10.34) and (10.35) then one will get: 
 

aj
biD  = 1

2 ε ijk a
kbτ = 1

4 [ , ]a
i j bτ τ .    (10.36) 

 
 
 § 3.  Rotational mechanics with Pauli matrices.  Rotational mechanics can be first 
approached in two basic steps: the motion of a rigid-body (i.e., an orthonormal frame) 
about a fixed point and motions of deformable bodies for which one can treat the motion 
of an orthonormal frame at each point as that of a spatial distribution of infinitesimally-
rigid bodies.  One can then divide the first step into rigid-body kinematics and rigid-body 
dynamics. 
 In this section, we shall treat the representation of the motion of oriented, 
orthonormal frames about a fixed point in three-dimensional Euclidian space by Pauli 

matrices – i.e., oriented, unitary 2-frames in C
2.  The extension to a spatial distribution of 

infinitesimally-rigid bodies will then be the implicit objective of the Pauli wave equation 
that will be discussed in the next section. 
 



§ 3. – Rotational mechanics with Pauli matrices. 253 

 a. Rotational kinematics with Pauli matrices.  There are basically four ways of 

representing three-dimensional Euclidian rotations about a fixed point in R3 (e.g., the 

origin) that will be of immediate interest in what follows: 
 
 1. An oriented, orthonormal 3-frame {ei , i = 1, 2, 3} at that point. 
 

 2. The direction cosine matrix ijR  ∈ SO(3; R) that ei defines with respect to a chosen 

oriented, orthonormal frame (e.g., the standard frame {δδδδi, i = 1, 2, 3} on R3): 

 
ei = j

j iRδδδδ .     (11.1) 

 

 3. An oriented, unitary 2-frame {εεεεa , a = 1, 2} at the origin of C2; we shall call these 

Pauli frames. 
 
 4. The matrix a

bU  ∈ SU(2) that εεεεa defines with respect to a chosen oriented, unitary 

2-frame (e.g., the standard frame {δδδδa, a = 1, 2} on C2): 

 
εεεεa = b

b aUδδδδ .     (11.2) 

 
 One can regard the columns of the matrix i

jR  as the components of the frame ei with 

respect to δδδδi and the columns of the matrix abU  as the components of the frame εεεεa with 

respect to δδδδa .  Hence, there are two manifolds that could serve as configuration spaces for 

the Euclidian rotations: the group manifold SO(3; R), which also parameterizes the set of 

all oriented, orthonormal 3-frames, and the group manifold SU(2), which also 
parameterizes the set of all oriented, unitary 2-frames.  The latter manifold is 

diffeomorphic to S 3, while the former is diffeomorphic to RP3.  We shall use SO(3; R) 

and SU(2) as the generic cases for the configuration manifolds, while referring to their 
elements as either matrices or frames according to the context. 
 A motion of a rigid body about a fixed point will then be either a smooth curve [t0, t1] 

→ SO(3; R), t ֏ ( )i
jR t  or a smooth curve [t0, t1] → SU(2), t ֏ ( )a

bU t .  Of course, since 

SU(2) projects onto SO(3; R) smoothly, a smooth curve in SU(2) will project to a smooth 

curve in SO(3; R).  One might wish that the curve should pass through the identity matrix 

when t = 0 (i.e., (0)i
jR = i

jδ  or (0)a
bU  = a

bδ ), but that would amount to saying that the 

reference frame is the initial frame, which is not always necessary. 
 From now on, we shall refer to only the SU(2) picture of the motions. 
 There are two ways of describing the velocity of the curve ( )a

bU t : 
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 1. Inertial angular velocity: 

( )U tɺ  = 
t

dU

dt
.     (11.3) 

 2. Non-inertial angular velocity: 
 

ω(t) = 1( ) ( )U t U t −ɺ  = †( ) ( )U t U tɺ .   (11.4) 
 
 The first kind of angular velocity describes the rotation of the Pauli frame that is 
represented by U(t) with respect to the reference frame δδδδa and belongs to the tangent 
space TU(t)SU(2).  The second kind of angular velocity replaces the fixed reference frame 
δδδδa with the moving reference frame εεεεa  and belongs to the tangent space TISU(2), which is 
identified with the Lie algebra su(2).  Hence, the matrix ω is anti-Hermitian, and it has a 

zero trace: 
ω† = − ω, a

aω  = 0.     (11.5) 

 
 Since ω ∈ su(2), it can be expressed in terms of its components with respect to the 

basis of matrices {τi, i = 1, 2, 3}, although it is more conventional in quantum mechanics 
to use the basis of Pauli matrices: 

ω (t) = ω i(t)τi .     (11.6) 
 

 One can rewrite the definition (11.4) of ω in such a way that if ω is given then the 
linear, first-order, ordinary differential equation: 
 

dU

dt
 = ωU      (11.7) 

 
can be used as the equation of the moving frame that is defined by U(t) when one chooses 
an initial U(0).  It can be solved by: 
 

U(t) = U(0) exp 
0

( )
t

dω τ τ 
  ∫ .    (11.8) 

 
 One can also distinguish two types of angular acceleration: 
 
 1. Inertial angular acceleration: 

( )U tɺɺ  = 
2

2
t

d U

dt
.     (11.9) 

 2. Non-inertial acceleration: 
α (t) = †( ) ( )U t U tɺɺ .    (11.10) 

 
 This last definition can be put into a form that refers to ω (t), instead of ( )U tɺ , since: 
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Uɺɺ  = ( )
d

U
dt

ω  = U Uω ω+ ɺɺ  = ( )Uω ω ω+ɺ ,   (11.11) 

namely: 
α = ω ω ω+ɺ .     (11.12) 

 
One then sees the appearance of a centripetal acceleration ωω that accounts for the non-
inertial character of the moving frame.  However, (ωω)† = ωω, so ωω is Hermitian. Since 
ωɺ  is anti-Hermitian, the matrix α will generally be neither Hermitian nor anti-Hermitian. 
 If α(t) is given then (11.10) will become the linear, second-order, ordinary differential 
equation for U(t) when one knows U(0) and (0)Uɺ : 
 

Uɺɺ  = α U.      (11.13) 
 
 One sees that the inertial angular acceleration belongs to the second tangent space 

( )( ) (2)U tU t
T T SUɺ , and the non-inertial kind can be thought of as belonging to Tω(t) su(2). 

 If one wishes to relate the kinematical data that was just expressed in terms of Pauli 

frames then one will simply embed R3 in the (real, four-dimensional) vector space M(2; 

C) of 2×2 complex matrices by taking the components vi of any vector in R3 to the matrix 

[v] = vi σi .  Hence, since each member of the oriented, orthonormal frame {ei, i = 1, 2, 3} 

is itself a vector in R3, one can represent that frame by the set of three matrices {[ei], i = 

1, 2, 3}. 

 The action of SU(2) on R3 by way of its representation in M(2; C) then implies a 

corresponding action of SU(2) on oriented, orthonormal frames that takes [ei] to U†[ei]U.  
If U(t) is a rotational motion then one can represent the moving frame ei(t) by way of 2×2 
complex matrices as: 

[ei(t)] = U†(t)σi U(t), i = 1, 2, 3.    (11.14) 
 Differentiation gives: 
 

ieɺ  = † †
i iU U U Uσ σ+ɺ ɺ = † †( )i iU Uω σ σ ω+ = − †[ , ]iU Uω σ .  (11.15) 

 
 However, if ω = ω j iσj then since [σj , σi] = − 2i εijk σk , the last equation will become: 
 

ieɺ  = − 2 εijk ω j †
kU Uσ = 2 ej

j
iω ,   (11.16) 

 
in which we have defined j

iω = εikj ω k.  One then sees that the angular velocity of the 
Pauli frame and the oriented, orthonormal 3-frame differ by a factor of 2.  That goes back 

to the fact that whenever you complete a great circle in RP3 once, you complete a great 

circle in S 3 twice. 
 A second differentiation of (11.15) will give: 
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ieɺɺ  = † † †2i i iU U U U U Uσ σ σ+ +ɺɺ ɺ ɺ ɺɺ  = † †( 2 )i i iU Uα σ σ α ωσ ω+ − . (11.17) 

 
 We shall think of the kinematical state of the moving Pauli frame as being composed 
of either Ψ(t) = (t, U(t), ( )U tɺ )  or Ψ(t) = (t, I, ω(t)).  The former combination of functions 

then takes the form of an integrable section of the jet manifold projection J1(R; SU(2)) → 

R,  (t, U, Ut) ֏  t.  The latter is obtained by shifting that section by the right action of 

U(t)† on it.  An infinitesimal kinematical state of the Pauli frame is then a virtual 
displacement (i.e., variation) of the kinematical state, so it is a vector field δΨ on the 
section Ψ(t) that is vertical under the aforementioned projection: 
 

δΨ| t = ( ) ( )i i
j ji i

j j

U t U t
U U

δ δ∂ ∂+
∂ ∂

ɺ
ɺ

 or δΨ| t = ( ) ( )i i
j ji i

j j

I t t
I

δ δω
ω

∂ ∂+
∂ ∂

. (11.18) 

 
 b. Rotational dynamics with Pauli matrices.  Dynamical variables are dual to 
infinitesimal kinematical states with respect to the duality pairing of virtual work, which 
includes kinetic energy as a particular case.  Hence, dynamical variables belong to the 
vector space su(2)* that is dual to the Lie algebra su(2); typically, one does not introduce 

a Lie algebra structure on su(2)*, though.  A useful theorem in that regard is: 

 
 Theorem: 
 

 Any linear functional φ(A) on M(n; C) can be represented as: 

 
φ(A) = Tr(BA) 

for some unique B ∈M(n; C). 

 
 Proof: 

 Define the map i : M(n; C) → M(n; C)*, B ֏  Tr(B ⋅⋅⋅⋅ ) and show that it is a C-linear 

isomorphism. 
 The fact that it is linear follows from a basic property of the trace.  In order to show 
that it is one-to-one, one needs only to show that the kernel of i is 0 identically.  That 

kernel consists of all B ∈ M(n; C) such that Tr(BA) = 0 for all A ∈ M(n; C).  However, if 

B ≠ 0 then there will always be at least one A such that Tr(BA) ≠ 0.  That is because if ijB ′
′  

≠ 0 then one can define A to be the elementary matrix ijE  whose elements are all 0, 

except for j
iE ′
′ = 1.  One will then have that Tr(AB) = i

jB ′
′ ≠ 0.  Hence, ker (i) = 0.  Since 

M(n; C) is finite-dimensional, and M(n; C)* has the same dimension as M(n; C), i must 

also be onto. 
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 Hence, the elements of su(2)* can all be represented as traces of the form Tr(BA) for 

some unique B ∈ su(2). 

 In particular, when the elements of su(2) are thought of as angular velocities ω, the 

linear functional KE(ω) of rotational kinetic energy will have (1/2) angular momentum L 
as its trace kernel: 

KE(ω) = 1
2 L(ω) = 1

2 Tr(Lω).    (11.19) 

 
In components, one can represent rotational kinetic energy in two forms then: 
 

KE(ω) = 1
2 Liω i = 1

2
j i
i jL ω .    (11.20) 

 
 When the elements of su(2) are thought of as infinitesimal rotations δθ (virtual 

rotations), the dual functional in su(2)* will be the virtual work δW(δθ) that is done by 

that virtual rotation, and its trace kernel will be torque τ (also called force-couple and 
moment): 

δW(δθ) = τ (δθ) = Tr(τ δθ).    (11.21) 
 
 The component forms of this are then: 
 

 δW = τi δθ i =  j i
i jτ δθ .     (11.22) 

 
 In order to get from su(2) to su(2)*, one will need a mechanical constitutive law, in 

the form of some invertible map from su(2) to su(2)* whose definition is purely empirical 

in nature.  Of course, the definition of such a map is a very open-ended topic in the eyes 
of theoretical mechanics, and for the case of torque, the most debatable issue is the 
linearity of the map under finite displacements.  However, since we are only concerned 
with infinitesimal ones, it is easier to justify making both constitutive laws for angular 
momentum and torque linear isomorphisms, as is customary. 
 The linear isomorphism that takes angular velocity to angular momentum takes the 
form of the moment of inertia I : su(2) → su(2)*, ω ֏ L = I(ω), so: 

 
Li = I ijω j or i

jL  = ik l
jl kI ω .    (11.23) 

 
 The simplest of these isomorphisms is obtained for isotropic and homogeneous rigid 
bodies, for which one then has: 
 

I ij = I δij ( ik
jlI  = ik

jlI δ )    (11.24) 

 
for some unique positive scalar I.  That will then make: 
 

Li = I ωi ( i
jL  = i

jI ω ).    (11.25) 
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 When one looks at the form (10.20) of the Pauli spin matrices (namely, si = / 2ℏ σi) 
one sees that if the σi matrices (or really, the τi matrices) are regarded as elementary unit 
angular velocities along the three directions of space then one can treat / 2ℏ  as a moment 
of inertia for an isotropic, homogeneous rigid body.  Once again, ℏ  seems to be asserting 
itself as a rudimentary quantum constitutive law, just as it did before in the Madelung 
interpretation of the Schrödinger equation. 
 As for torque, we shall simply assume that it can be an su(2)-valued function τ (t, U, 

Uɺ ) of time, U, and Uɺ  or τ (t, I, ω) for now; i.e., it is still independent of position in 
space.  For instance, viscosity can couple torques to the angular velocity of rotating 
bodies in viscous fluids. 
 The equations of motion for Pauli frames can then be expressed in two forms: 
 
 1. Inertial: 

τ = 
dL

dt
.      (11.26) 

 2. Non-inertial: 

τ = 
dL

dt
− [L, ω].     (11.27) 

 
 For a rigid body whose moment of inertia is constant in time, one can then put these 
into the forms: 

τ = I(α) τ = I(α) − [I(ω), ω].    (11.28) 
 
For an isotropic rigid body, these equations become the same, but for an anisotropic one, 
there can exist non-constant rotational modes in the absence of external torques, since 
[I(ω), ω] will not have to vanish in such a case.  In the case of the Earth’s rotation, one 
has precession of the rotational axis (or the line of equinoxes) due to the effect of torque 
from the Moon’s gravitational pull and nutation, which is the rotational mode that follows 
from the fact that the Earth’s mass distribution is not perfectly spherical, but represents 
an oblate spheroid, to the next degree of approximation. 
 
 
 § 4.  The Pauli equation.  The first definitive attempt at extending the scope of the 
Schrödinger equation to include the spin of an electron was made by Pauli [9] in 1927.  
Indeed, he did not extend the perfectly-general form of the Schrödinger equation, but 
only the one that pertained to the wave function of a charged point particle in an external 
electric and magnetic field, namely (cf., Chap. IV): 
 

i
t

∂Ψ
∂
ℏ  = 

22

2 ii

iq
A q

m x c
φ

 ∂ − + + Ψ  ∂   

ℏ

ℏ
≡ 

2

2
ij

i j q
m

δ φ 
− ∇ ∇ + Ψ 
 

ℏ
,  (12.1) 

 
in which m is the mass of the particle, q is its charge, Ai are the components of the 
magnetic potential 1-form, and φ is the potential of the external electric field; we are once 
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more using the notation for the spatial covariant derivative operator that we introduced in 
Chapter IV.  For the sake of convenience, we recall that notation: 
 

∇i = ∂i +
iq

cℏ
 Ai , 

†
i∇  = ∂i −

iq

cℏ
Ai .    (12.2) 

 
 One sees that although one could simply replace the usual Schrödinger wave function 

ψ, which takes its values in C, with something that takes its values in C2 and still be 

dealing with a quantum wave equation, unless one changes the Hamiltonian operator that 
acts upon ψ to include some term that coupled the two components of that wave function, 
all that one would arrive at would be an independent pair of complex scalar wave 
equations.  The rotation that would be described by the unitary 2-frame that is defined by 
ψ could only exhibit a constant angular velocity, so in order to produce a non-constant 
angular velocity, one would have to couple a torque to the unitary 2-frame that is defined 
by ψ. 
 
 a. Pauli’s extension of the Schrödinger equation. − The motivation for the Pauli 
equation was the behavior of the spinning electron in an external magnetic field B.  
Namely, B will exert a torque ττττ on an electron by coupling to its magnetic dipole moment 
µµµµ, which we now regard as a three-vector whose length is µs : 
 

ττττ = µµµµ × B,       (12.3) 
 
and the work that is done by ττττ on µµµµ will be: 
 

Uµ = 1
2 µµµµ ⋅⋅⋅⋅ B .       (12.4) 

 
 When one replaces µµµµ with its quantum (i.e., operator) form: 
 

µi (op) = − µB σi = −
2

e

mc

ℏ σi ,     (12.5) 

 
one will get the spin-magnetic field coupling contribution to the Hamiltonian operator: 
 

Uµ (op) = −
4

e

mc

ℏ
Bi σi .      (12.6) 

 
 The extension of (12.1) that Pauli arrived at was then: 
 

i
t

∂Ψ
∂
ℏ  = 

22

2 4
i

i ii

ie e
A e B

m x c mc
φ σ

 ∂ − − − + Ψ  ∂   

ℏ ℏ

ℏ
,   (12.7) 

 
in which Ψ(t, xi) is now a 2-component Pauli spinor wave function. 
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 As long as the external electric and magnetic fields are constant in time, one can 
separate the time and space variables in Ψ(t, xi) = T(t) ψ(xi) and arrive at a stationary 
Pauli equation: 

− 
22

2 4
i

i ii

ie e
A e B

m x c mc
φ σ ψ

 ∂ − + −  ∂   

ℏ ℏ

ℏ
 = Eψ.   (12.8) 

 
 b. Lagrangian formulation of the time-varying Pauli equation.  Deducing a 
Lagrangian density for the Pauli equation (12.7) or its stationary form (12.8) mostly 
amounts to adapting the corresponding Schrödinger Lagrangian density (cf., Chap. IV) to 
the fact that Ψ now has two components, instead of one, and that there is now a 
contribution from the coupling of the spin to the external magnetic field. 
 The first adaptation comes from replacing the complex conjugate of the one-
component wave function with the Hermitian conjugate of the two-component one.  
Hence, the wave function Ψ and its Hermitian conjugate Ψ† will now be treated as 
independent dynamical variables. 
 The second adaptation is achieved by defining: 
 

Ls = − †( )
4

i
i

e
B

mc
σΨ Ψℏ

.    (12.9) 

 
If one compares this to (12.6)  then one will see that we are effectively defining a spin 
density vector from the wave function: 
 

Si = †1
( )

2 iσΨ Ψℏ  = †
isΨ Ψ ,    (12.10) 

 
which will make the magnetic dipole moment take the form: 
 

µi = − i

e
S

mc
.      (12.11) 

 
 Hence, we now have a Lagrangian density of the form: 
 

 L  = 
2

† † † † † †( ) , ( )
2 2 4

i
i

i e
e B

m mc
φ σΨ Ψ − Ψ Ψ − < ∇ Ψ ∇Ψ > + Ψ Ψ − Ψ Ψℏ ℏ ℏɺ ɺ . (12.12) 

 
 One sees that one can represent this Lagrangian density as: 
 

L  = L0  + Ls ,      (12.13) 

in which: 

L0 = 
2

† † † † †( ) ,
2 2

i
e

m
φΨ Ψ − Ψ Ψ − < ∇ Ψ ∇Ψ > + Ψ Ψℏ ℏɺ ɺ   (12.14) 
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is the previous expression from Chap. IV, and Ls is the expression in (12.9). 

 Except for the change in the field space from C to C2, L0 is just the Lagrangian 

density in the non-relativistic, spinless case with an external potential energy of – eφ, 
while Ls represents the contribution from the interaction between the spin of the wave 

function Ψ and the external magnetic field. 
 The generalized force densities and conjugate momenta to the partial derivatives of L 

are (1): 

f = 
∂
∂ Ψ
L

= − † † † † †

2 2 4
i i

i i

i ie e
A e B

mc mc
σΨ + ∇ Ψ + Ψ − Ψℏ ℏ ℏɺ ,   (12.15) 

 

Πt = 
∂
∂Ψɺ
L

= 
2

iℏ Ψ†,  Πi = 
( )i

∂
∂ ∂ Ψ
L

 = −
2

† †

2
ij

jm
δ ∇ Ψℏ

,  (12.16) 

 

f †  = 
†

∂
∂ Ψ
L

=
2 2 4

i i
i i

i ie e
A e B

mc mc
σΨ − ∇ Ψ + Ψ − Ψℏ ℏ ℏɺ ,    (12.17) 

 

 Πt† = 
†

∂
∂Ψɺ
L

= − 
2

iℏ Ψ,      Πi† =
†( )i

∂
∂ ∂ Ψ
L

 = −
2

2
ij

jm
δ ∇ Ψℏ

.       (12.18) 

  
Hence, the expressions for f †, Πt†, Πi† are, in fact, Hermitian conjugates of the 
corresponding expressions without the dagger. 

 Formally, all that has changed from the spinless case is the addition of s∂
∂ Ψ
L

 and 

†
s∂

∂ Ψ
L

 to the respective generalized forces. 

 One can get (12.7) by annulling the variational derivative of L with respect to Ψ†: 

 

0 = 
†

δ
δ Ψ
L

= † † †t i
t if − ∂ Π − ∂ Π     (12.19) 

 
and the Hermitian conjugate of that equation by annulling the variational derivative with 
respect to Ψ. 
 The Lagrangian density L (as well as the action functional that it defines) is still 

invariant under the action of global phase transformations of Ψ: 
 

δΨ = iε Ψ, δΨ† = − iε Ψ†,    (12.20) 

                                                

 (1)  This time, one must be careful to note that 
†∂Ψ

∂Ψ
= 

†∂Ψ

∂Ψ

ɺ

ɺ
= 

( )

( )
i

j

∗∂ ∂ Ψ

∂ ∂ Ψ
= 0, etc. 
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since the only extra term that we have added is invariant in that way, so there will still be 
a conserved current that is associated with that infinitesimal transformation.  One sees 
that the extra spin term does not contribute to this current, since it does not involve the 
derivatives of the wave function.  Hence: 
 

J 0 = Ψ†Ψ,  J i = † † †( )
2

ij
i jmi

δ Ψ ∇ Ψ − ∇ Ψ Ψℏ
,  (12.21) 

 
from which, we have dropped the constant factor of − εℏ . 

 The gauge-invariance of L then implies the conserved current: 

 
0
eJ  = 

φ
∂
∂
L

= e Ψ†Ψ, i
eJ  = 

iA

∂
∂
L

= † † †( )
2

ij
i j

e

mci
δ Ψ ∇ Ψ − ∇ Ψ Ψℏ

, (12.22) 

 
so one can say that: 
 

0
eJ  = e J 0,  i

eJ  =
e

c
J i.      (12.23) 

 
so it is once more an electric current vector field. 
 The canonical energy-momentum-stress tensor for L becomes: 

 

T µ
ν  = † †µ µ µ

ν ν νδΠ ∇ Ψ + ∇ Ψ Π −L  = 
o

sT µ µ
ν νδ−L ,   (12.24) 

 
which differs from the spinless case only by the subtraction of s

µ
νδL  and the fact that the 

wave functions have two complex components now.  We can the express the total T µ
ν  as 

a sum: 

T µ
ν  = 

o s

T Tµ µ
ν ν+ .     (12.25) 

 

In this sum, 
o

T µ
ν  is the formal analogue of the corresponding tensor for spinless wave 

functions with two-component wave functions replacing the one-component ones, the 
Hermitian conjugate replacing the complex conjugate, and care being taken to be sure 
that Hermitian conjugate expressions always appear to the far right.  The other tensor is: 
 

s

T µ
ν = − s

µ
νδL  = †( )

4
i

i

e
B

mc
µ

νσ δΨ Ψℏ
.   (12.26) 

 
 The specific components of T µ

ν  are then: 

 
        0

0T  = † †t t
t tΠ ∂ Ψ + ∂ Ψ Π −L  
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= ( )
2

† † † †,
2 4

i
i

e
e B

m mc
φ σ< ∇ Ψ ∇Ψ > − Ψ Ψ + Ψ Ψℏ ℏ

 = H,   (12.27) 

 

 0
jT  = † †t t

j jΠ ∇ Ψ + ∇ Ψ Π  = 
2

iℏ
(Ψ† ∇jΨ − † †

j∇ Ψ Ψ ) = − m Ji ,   (12.28) 

 

0
iT  = † †i i

t tΠ ∂ Ψ + ∂ Ψ Π  = −
2

† † †( )
2

i i

m
Ψ ∇ Ψ + ∇ Ψ Ψℏ ɺ ɺ ,          (12.29) 

 

i
jT  = † † †i i i

j j jδΠ ∇ Ψ + ∇ Ψ Π −L = −
2

† † † †( )
2

i i i
j j jm

δ∇ Ψ ∇ Ψ + ∇ Ψ ∇ Ψ −ℏ
L .       (12.30) 

 
 Note the symmetries in the doubly-covariant components: 
 

T0i ≠ Ti0, Tij = Tji .     (12.31) 
 The trace of T µ

ν  is then: 

T µ
µ  = 

o
†( )i

i

e
T B

mc
µ
µ σ− Ψ Ψℏ

.    (12.32) 

 
 Naturally, since external forces are acting upon the moving charge, one would not 
expect linear momentum to be conserved, so one will have: 
 

f0 ≡ 0T µ
µ∂  = 

o

0 0

s

T Tµ µ
µ µ∂ + ∂ = 0

2
i i

e i e i

e
J A J B S

mc
φ + +ɺ ɺ ɺ   (12.33) 

 

fi ≡ iT µ
µ∂  = 

o s

i iT Tµ µ
µ µ∂ + ∂  = 0 ( )

2
j j

i e ij e i j

e
E J B J B S

mc
+ + ∂   (12.34) 

 
In these expressions, we can see that the power transferred from external field to the 
moving charge is due to the time derivative of the electromagnetic potentials and the 
magnetic field, while the force that the external field exerts upon the charge is a 
combination of the usual Lorentz force and another contribution that comes from the 
coupling of the spatial inhomogeneity of the magnetic field and the spin of the particle. 
 The total angular momentum tensor is given by: 
 

λ
µνL = L Sλ λ

µν µν+ ,     (12.35) 

 
in which orbital angular momentum density tensor is given by: 
 

Lλ
µν = T x T xλ λ

µ ν ν µ− ,     (12.36) 

 
so its individual components will take the form: 
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0
0 jL = 0 0

0 0j jT x T x−  = H xj + m Jj t,  0
i

jL = 0
i i

j jT x T t− ,  (12.37) 

 
0
ijL = 0 0

i j j iT x T x−  = − m (Ji xj – Jj xi),  
i
jkL = i i

j k k jT x T x− .  (12.38) 

 
One can see that 0ijL  is the negative of the usual orbital angular momentum, while i

jkL  is 

due solely to internal stresses. 
 
 It is necessary to give only spatial components of the intrinsic angular momentum 
density Sλ

µν , since the others will vanish: 

i
jkS = † †( )aj i b b i

bk a aΠ Ψ − Ψ ΠD  = 
2

† † †( )
4

i l l i
jklm

ε τ τ∇ Ψ Ψ − Ψ ∇ Ψℏ
. (12.39) 

 
 Since there are external torques that act upon the charge by way of its magnetic 
dipole moment, total angular momentum will not conserved, but: 
 

λ
λ µν∂ L = Mµν + mµν ,     (12.40) 

 
in which the external force moment Mµν  will take the form: 
 

M0j = 0
0 0

i
t j i jL L∂ + ∂  = 0 0 0j j j jf x f t T T− + − ,    (12.41) 

 
Mij = 0 k

t ij k ijL L∂ + ∂  = i j j i ij jif x f x T T− + − = i j j if x f x− ,  (12.42) 

 
in which we have employed (12.31). 
 The first equation in this set takes the form of the impulse-momentum theorem.  As 
for the second one, it clearly represents the moment of force. 
 The only potentially non-zero components of the internal torque density tensor will 
be: 

mjk = i
i jkS∂ = εjkl ( )l le

S
mc

 + ×  
S Bɺ  = εjkl ( )l lS − × Bɺ µµµµ ,  (12.43) 

 
in which we have substituted (12.11).  If we define ml to be ε jkl

 mjk then this can be 

expressed in the vectorial form: 
 

Sɺ = m + µµµµ × B = m + τ τ τ τ ,    (12.44) 

with the substitution (12.3). 
 
 c.  Lagrangian formulation of the stationary Pauli equation.  The Lagrangian that 
corresponds to the stationary Pauli equation (12.8) is: 
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L = 
2

† † † †, ( ) ( )
2 4

i
s s i

e
e E B

m mc
ψ ψ φ ψ ψ ψ σ ψ< ∇ ∇ > − + +ℏ ℏ

.  (12.45) 

 
 As in the time-varying case, one can express L as a sum L0 + Ls , where: 
 

L0 = 
2

† † †, ( )
2 s s e E
m

ψ ψ φ ψ ψ< ∇ ∇ > − +ℏ
, Ls = †( )

4
i

i

e
B

mc
ψ σ ψℏ

  (12.46) 

 
represent the spinless case (with a different field space) and the contribution from the 
interaction between the spin of the wave function and the external magnetic field, resp. 
 The fact that L is time-invariant has the immediate effect of making the temporal 
components of the conjugate momenta vanish: 
 

Πt = 0,  Πt† = 0.     (12.47) 
 
However, the generalized forces and the spatial components of the conjugate momenta 
have the same form as before, but with ψ in place of Ψ: 
 

f = − † † † †( )
2 4

i i
i i

ie e
A e E B

mc mc
ψ φ ψ ψ σ∇ − + +ℏ ℏ

, Πi =
2

† †

2
ij

jm
δ ψ∇ℏ

, (12.48) 

 

f † = + ( )
2 4

i i
i i

ie e
A e E B

mc mc
ψ φ ψ σ ψ∇ − + +ℏ ℏ

,   Πi† =
2

2
ij

jm
δ ψ∇ℏ

. (12.49) 

 
 The stationary Pauli equation is then obtained from annulling the variational 
derivative of L with respect to the conjugate field ψ†: 

 

0 = 
†

δ
δ ψ
L

= † †i
if − ∂ Π ,    (12.50) 

 
and the Hermitian conjugate wave equation comes from varying with respect to ψ. 
 The Lagrangian is still invariant under phase transformations of ψ and ψ†: 
 

δΨ = iε Ψ, δΨ† = − iε Ψ†,    (12.51) 
 
and the corresponding conserved current now takes the form: 
 

J 0 = 0,  J i = † † †( )
2

ij
j jmi

δ ψ ψ ψ ψ∇ −∇ℏ
.  (12.52) 

 
 The gauge-invariance is not affected by the time-invariance, so the conserved current 
that is associated with that symmetry will remain unchanged, although its temporal 
component will no longer be proportional to J 0. 
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 The canonical energy-momentum-stress tensor takes the form: 
 

0
0T  = − L, 0

iT  = 0
jT  = 0, i

jT  =
2

† † † †( )
2

i i i
j j jm

ψ ψ ψ ψ δ∇ ∇ +∇ ∇ −ℏ
L . (12.53) 

 

This, too, takes the form of 
o s

T Tµ µ
ν ν+ , where 

o

T µ
ν  is the corresponding spinless tensor, 

and: 
s

T µ
ν  = − s

µ
νδL       (12.54) 

 
represents the contribution from the interaction between the spin the external magnetic 
field. 
 One has the symmetry of the doubly-covariant form of i

jT : 

 
Tij = Tji .       (12.55) 

 Its trace is: 

T µ
µ  = 

2
† † 2 †4( ) || || ( )i i

i i

e
e E B

m mc
ψ ψ φ ψ ψ σ ψ∇ ∇ − − +ℏ ℏ

.  (12.56) 

 
 The divergence of T µ

ν  has the form: 

 

0T µ
µ∂ = ∂tH = 0, i

i jT∂ = fj ,    (12.57) 

 
in which the external force density fj will differ from its time-varying form (12.34) only 
by the fact that now E = − dφ, since Aɺ = 0.  The first of these equations expresses 
conservation of total energy (density), while the second is the equilibrium equation for 
the internal stresses that are provoked by the external forces. 
 The non-zero components of the total angular momentum density tensor are the 
spatial ones: 

i
jkL  = i i

jk jkL S+ ,     (12.58) 

with: 

i
jkL  = i i

j k k jT x T x− , i
jkS  =

2
† † †( )

4
i l l i

jklm
ε τ τ∇ Ψ Ψ − Ψ ∇ Ψℏ

.  (12.59) 

 
The latter tensor has not changed from the time-varying case, except for the fact that its 
components are no longer functions of time. 
 The balance of angular momentum then takes the form: 
 

i
i jk∂ L  = fj xk – fk xj + mjk .    (12.60) 

 
Once again, we have used the symmetry of Tij . 
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 This last equation clearly represents an equilibrium equation for the total couple-
stresses that are provoked by the applied external force moment and spin torque mjk , 

which still has the same basic form as (12.43), except that the spin vector must be 
constant; i.e.: 

mjk = − εjkl ( )l×Bµµµµ .    (12.61) 

 
Hence, if i

i jk∂ L  vanishes then one must have: 

 
f × r  = ×Bµµµµ .     (12.62) 

 
Hence, the force moment that is due to the Lorentz force, plus the coupling of the 
inhomogeneity in B to S, must balance the torque that is due to the coupling of the 
magnetic dipole moment to B. 
 
 
 § 5.  The Bohm, Schiller, and Tiomno form of the Pauli equation. – In the paper 
of Bohm, Tiomno, and Schiller [7] (which we shall abbreviate by the acronym BST), the 
authors did not proceed in a precise analogy with the Madelung-Takabayasi 
transformation of the Schrödinger and Klein-Gordon transformations, which basically 
amounts to the introduction of polar coordinates into the field space and applying the 
wave operator to the wave function in that form.  Rather, they started by expressing the 

Pauli spinor wave function in terms of the Euler angles of SO(3; R) and introducing the 

wave function in that form into the expression for the conserved current that is associated 
with phase symmetry, which produced an expression in which the role of the Euler angles 
was seen to be closely analogous to the velocity potential and Clebsch variables for a 
vorticial fluid, and with the minimal electromagnetic coupling of the magnetic potential 
1-form A to the linear momentum 1-form, one could conceivably be dealing with a 
charged, vorticial fluid in an external electromagnetic field.  Hence, we shall first discuss 
that purely classical example in order to show how it relates to the Pauli equation. 
 
 a.  Charged, vorticial fluid in an external electromagnetic field. – One first expresses 
the flow covelocity 1-form v in terms of a velocity potential S / m, the Clebsch variables ξ 
and η, and the magnetic potential 1-form A (1): 
 

v = 
1

( )
e

dS d A
m c

ξ η+ − .     (13.1) 

 
Notice how if one is trying to deal with a purely hydrodynamical problem then the 
numbers e and m seem out of place, since they pertain to point-like matter, not extended 
matter.  If one desires to start with extended matter then one will need to start with the 

                                                
 (1) Since this chapter is non-relativistic in scope, we shall abbreviate that spatial part of the differential 
ds by simply d. 
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charge and mass densities σ and ρ, respectively, and introduce e and m as spatial 
integrals of the densities over the subset of space on which the densities are non-zero. 
 If one wishes to eliminate the point-like contributions then one can define a velocity 
potential ψ = S / m and absorb m into the definition of η.  If one assumes that: 
 

ρ = mn  and  σ = en,     (13.2) 
 
where n is the number density of the matter, then e / m = σ / ρ, and one can write: 
 

v = dψ + ξ dν – A
c

σ
ρ

,    (13.3) 

 
which no longer includes any point-like parameters. 
 One sees that the net kinematical vorticity of such a flow will be: 
 

Ωk = d^v = 
e

d d B
mc

ξ η∧ − .    (13.4) 

 
Hence, if this vanishes then one will get a direct coupling of the kinematical vorticity of 
the fluid motion to the applied magnetic field: 
 

dξ ^ dη = e

mc
B.      (13.5) 

 
 One must introduce the vanishing of Ωk as an explicit constraint, which Takabayasi 
[10] refers to as “quasi-irrotationality.”  The sense in which the use of the prefix “quasi” 
is justified is that v represents an “effective” flow velocity, while dψ + ξ dη represents 
the “true” flow velocity. 
 One defines an action functional for the motion of the fluid: 
 

S = ( , , , , , , , , , , , , , )i
t t t t i i i it x n n n dV dtψ ξ η ψ ξ η ψ ξ η∫ L ,  (13.6) 

 
in which the Lagrangian density takes the explicit form: 
 

L = 21
2n m mv e

t t

ψ ηξ φ ∂ ∂  + + +  ∂ ∂  
+ f (n),   (13.7) 

 
in which φ is the potential function of the external electric field, and f (n) is a pressure 
potential; i.e., if π is the pressure in the fluid then: 
 

π = 
df

dn
.     (13.8) 
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Once again, one can eliminate the explicit reference to the point-like variables by using 
(13.2), and defining: 

L = 21
2 v

t t

ψ ηρ ξ ρ σφ∂ ∂ + + + ∂ ∂ 
+ f(n) .   (13.9) 

 
 If one calculates the variational derivatives with respect to the configuration variables 
then one will initially get: 
 

 
n

δ
δ
L

= 21
2m mv e

t t

ψ ηξ φ π∂ ∂ + + + + ∂ ∂ 
, 

 

 
δ
δψ
L

 = − [∂t ρ + div (ρ v)], 

 

 
δ
δξ
L

= ρ (∂t η + vη) = 
d

dt

ηρ , 

 

 
δ
δη
L

= − [∂t ρ + div (ρ v)] ξ − d

dt

ξρ , 

 
so when all of these expressions are assumed to vanish, one can put the Euler-Lagrange 
equations into the form: 
 

0 = ( ) 21
2t tm mv eψ ξ η φ π∂ + ∂ + + + , 0 = ∂t ρ + div (ρ v) = 

d

dt

ξ
= 

d

dt

η
. (13.10) 

 
One can clear the point-like parameters in the first one by multiplying everything by n 
and get: 

0 = ρ (∂t ψ + ξ ∂tη) + 1
2 ρv2 + σφ + nπ.   (13.11) 

 
 This equation has the form of a balance of energy density.  If one expresses v in the 
form: 

v = v0 + ξ dη  (v0 = dψ − e

mc
A),    (13.12) 

 
which splits the flow velocity into a part without the Clebsch variables and a part that 
includes them, then the resulting split in the kinetic energy will be: 
 

1
2 ρv2 = 21

02 vρ  + KEΩ ,  KEΩ ≡ ρξ [<v, dη> − 1
2 ξ (dη)2].   (13.13) 

 
 When one combines this with the second term in (13.11), the net effect will be the 
total energy density that is due to the Clebsch variables: 
 



270 Chapter VII – Non-relativistic, spinning particles 

εΩ = ρξ [∂tη + <v, dη> − 1
2 ξ (dη)2] = − 1

2 ρ (ξ dη)2,   (13.14) 

 
in which we have used the equation of motion for η.  Thus, the contribution from 
vorticity appears to take the form of a kinetic energy density with an effective covelocity 
of vΩ = ξ dη. 
 The remaining part of the total energy density will then be: 
 

ε0 = ρ ∂t ψ + 21
02 vρ + σφ + π,     (13.15) 

 
in which we have redefined nπ to be π, which amounts to a redefinition of f (ρ) to 
something that makes df  / dρ = π with the new definition. 
 The force density 1-form that ε0 will imply is: 
 

− F0 = dε0 = 0

n

ε
dn + ρ (∂t dψ + <v0, dv0>) + σ dφ + dπ.  (13.16) 

 
If one substitutes dψ = v0 + e / mc A then one will get: 
 

− F0 = dε0 = 0

n

ε
dn + ρ a0 + σ E + dπ,    (13.17) 

 
into which we have introduced the convected acceleration 1-form: 
 

a0 = ∂t v0 + <v0, dv0> = 
0 0L vv ,     (13.18) 

 
which amounts to the rate of change of v0 along the flow of v0 . 
 One should note that F0 does not include any coupling to the magnetic field B = d^A, 
such as the Lorentz force.  That suggests that the BST model for a charged, vorticial fluid 
in and external electromagnetic field is fundamentally incomplete, since one would 
expect that a moving charged fluid would represent an electric current density, so the 
presence of a magnetic field that permeates the fluid would have to imply the Lorentz 
force. 
 The force density 1-form that εΩ contributes to F0 will be: 
 

FΩ = − dεΩ = 1
2

2vΩ  dρ + ρ <vΩ, dvΩ> .     (13.19) 

 
 b.  The BST approach to the Pauli equation. – In the paper [7], the authors departed 
slightly from the Madelung-Takabayasi program, which amounts to introducing polar 
coordinates into the complex plane, and started by expressing the Pauli spinor wave 
function in terms of Euler angles (θ, ψ, ϕ): 
 

Ψ = R 
1

2

u

u

 
 
 

  (|| u1 ||2 + || u2 ||2 = 1),     (13.20) 
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with: 

u1 = cos 
2

θ
 exp[i (ψ + ϕ) / 2],     (13.21) 

u2 = i sin 
2

θ
 exp[i (ψ − ϕ) / 2].     (13.22) 

 This makes: 
n ≡ Ψ† Ψ = R2,      (13.23) 

 
as we had previously with the complex-valued wave functions. 
 We shall depart slightly from the argument in the cited article in order to stay closer 
to the program that we are attempting to establish in this book and substitute this form of 
the wave function into the Pauli Lagrangian density (12.12).  In order to make the effect 
of that substitution clearer, we shall specify the way that the individual terms in the Pauli 
Lagrangian density are changed: 
 

† †( )
2

i Ψ Ψ − Ψ Ψℏ ɺ ɺ  = − cos
2

n
t t

ψ ϕθ∂ ∂ + ∂ ∂ 

ℏ
,     (13.24) 

 

  −
2

2m

ℏ
<∇Ψ†, ∇Ψ>  

= −
22

2 2 2 22
( cos ) ( ) sin ( )

8

dn e
n d d A d d

m n c
ψ θ ϕ θ θ ϕ

   + + − + +  
   

ℏ

ℏ
,  (13.25) 

 
eφ Ψ† Ψ = en φ = σ φ   (σ ≡ e n)     (13.26) 

 

−
2

e

mc

ℏ
Bi (Ψ† σi Ψ) = 

2

e

mc

ℏ
n (− B1 sin θ sin ϕ, B2 sin θ cos ϕ, B3 cos θ). (13.27) 

 
 We remove an overall minus sign and then arrange these terms into three sub-
Lagrangian densities: 

L = LKE + Lpot + Ls ,      (13.28) 

with: 
 LKE 

= cos
2

n
t t

ψ ϕθ∂ ∂ + ∂ ∂ 

ℏ
+

2
22

( cos )
8

e
n d d A

m c
ψ θ ϕ + −  

ℏ

ℏ
,      (13.29) 

 

Lpot = 
2 2( )

8

dn

m n

ℏ + en φ = 
2 2( )

8

dn

m n

ℏ − σ φ  (σ ≡ − e n),  (13.30) 

 

Ls =
2

2 2 2( ) sin ( ) ( )
8

e
n d d B

m mc
θ θ ϕ 

 + −  
 

S
ℏ

,    (13.31) 
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in which we have defined the total spin vector field by: 
 

S ≡ 
2

ℏ
u, u = (− sin θ sin ϕ, sin θ cos ϕ, cos θ).  (13.32) 

 
 We can then compare these terms to the corresponding terms in the Lagrangian 
density (13.9) for the charged, vorticial fluid. 
 The first term LKE is basically a kinetic energy density, and can be identified with the 

first two terms of (13.9) by the substitutions: 
 

ψ → S ≡ 
2

ψℏ ,  ξ ≡ cos θ, η ≡ 
2

ϕℏ ,   (13.33) 

 
and the introduction of the total momentum 1-form: 
 

P ≡ dS + ξ dη – 
e

c
A = m v,      (13.34) 

 
with the corresponding momentum density 1-form: 
 

p ≡ ρ v.       (13.35) 
 
 One also introduces the “quasi-irrotationality” constraint upon v; i.e., that the 
kinematical vorticity of the flow should vanish.  That will imply that: 
 

dξ ^ dη = 
e

c
B.      (13.36) 

 
 The second term Lpot is a potential energy density in which the first term plays the 

role of a pressure potential if one sets: 
 

f (n) = 
2 2( )

8

dn

m n

ℏ
= 

2
2( )

2
dR

m

ℏ
,     (13.37) 

 
which is consistent with the previous expression in the Madelung-Takabayasi case. 
 Finally, the third term Ls consists of a kinetic energy density that is due to the 
vorticity: 

KEΩ = 21
2 vρ Ω ,  vΩ ≡ 21

1
2

d d
m

ξ ξ η  − +  
  

ℏ
  (13.38) 

 
and a term that couples the spin that one derives from the Euler angles to the external 
magnetic field.  (This term was absent from the charged, vorticial fluid model that was 
considered by BST.) 
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 The equations of motion for each of the fundamental configuration variables S, n, ξ, η 
that follow from the L in (13.28) are then: 

 
S:  ∂t n + div (n v) = 0,        (13.39) 

 

n:  0 = 
22

2 21 1 1
2 2 2

1
( )

4 2

S n dn
mv e mv B

t n n t

ηφ ξ
ρ Ω

 ∂ ∆ ∂ + + − + + + −  ∂ ∂   

ℏ µµµµ , (13.40) 

 

ξ :  
d

dt

η
= − 

1 s

n

δ
δη
L

,       (13.41) 

 

η :  
d

dt

ξ
= 

1 s

n

δ
δξ
L

.        (13.42) 

 
 The first of these expresses the conservation of number density, while the second one 
is the balance of total energy, with three terms at the end that represent the contribution 
of the vorticity and the coupling of spin to the magnetic field.  The last two equations 
have a “quasi-Hamiltonian” form when one regards ξ, η as phase space variables, and the 
authors of BST point out that the equations have the same form as a system of equations 
that was derived by Schönberg in [11]. 
 One should note that the differential of the unit vector field u can be regarded as three 
1-forms: 

du1 = − cos θ sin ϕ dθ – sin θ cos ϕ dϕ,   (13.43) 
du2 =    cos θ cos ϕ dθ – sin θ sin ϕ dϕ,   (13.44) 
du3 = − sin θ dθ.      (13.45) 

 
(Of course, they are not linearly-independent.) 
 In order to derive equations of motion for the total spin vector S, one needs to first 
cull out all of the terms in L that involve θ, ϕ, and their derivatives. (It is not necessary to 

include the third Euler angle ψ, since u is a function of only θ and ϕ.)  That sub-
Lagrangian density will then take the form: 
 

LS = 
2

2 2 2 2cos ( cos ) ( ) sin ( )
2 8

i
i

e en
n n d d A d d B S

t m c mc

ϕθ ψ θ ϕ θ θ ϕ∂  + + − + + − ∂  

ℏ ℏ .    (13.46) 

 
 One now needs to express the term of LS in terms of S.  One first observes that: 
 

2

1

u

u
 = − tan ϕ,  u3 = cos θ ,    (13.47) 

 
which will then imply that: 
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∂t ϕ = 
1

∆
(u2 ∂t u

1 − u1 ∂t u
2),  dϕ = 

1

∆
(u2 du1 − u1 du2),  (13.48) 

 
in which we have defined: 

∆ = (u1)2 + (u2)2 = 1 – (u3)2.    (13.49) 
 
 Since the expressions ∂t ϕ and dϕ are homogeneous of degree zero in the components 
of u, they can be expressed as functions of S i instead; we then tacitly replace all u’s with 
S’s. 
 That allows us to define: 
 

cos
2 t

ϕθ ∂
∂

ℏ
=  

3S

∆
(S2 ∂t S

1 − S1 ∂t S
2),      (13.50) 

PS ≡ cos
2

dθ ϕℏ
= S 3 dϕ = 

3S

∆
(S2 dS1 − S1 dS2) .    (13.51) 

 
 The total momentum 1-form can now be expressed as: 
 

P = dS + PS − 
e

c
A ,     (13.52) 

 
so the quasi-irrotationality constraint will take the form: 
 

Ωk = 
1

m
d^PS = 

e

mc
B,      (13.53) 

in which: 

d^PS = dS3 ^ dϕ = 1 2 3 2 3 11
S dS dS S dS dS ∧ + ∧ ∆

.   (13.54) 

 
Hence, one can express the kinematical vorticity solely in terms of the components of S i 
and its spatial differentials.   
 The Frobenius 3-form that goes with vS = PS / m will then be: 
 

2

1

m
PS ^ d^PS = 

2

1

m ∆
 S 3 dϕ ^ dS 3 ^ dϕ  = 0.   (13.55) 

 
Therefore, the flow of the vector field vS will be surface-normal. 
 
 If one represents the system (13.43)-(13.45) as simply: 
 

dui = 
i

a

u

θ
∂
∂

 dθ a (θ 1 ≡ θ, θ 2 ≡ ϕ)   (13.56) 

 
then one can define the norm || du || by way of: 
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 || du ||2 ≡ δij 
i

a

u

θ
∂
∂

j

b

u

θ
∂
∂

 <dθ a dθ b> = 
2 2

3 3
2 2

1 1

( ) ( )
i i

i i

u u
d dθ ϕ

θ ϕ= =

   ∂ ∂+   ∂ ∂   
∑ ∑ , (13.57) 

with: 
<dθ a dθ b> = δ ab,    (13.58) 

which will make: 
 || du ||2 = (dθ)2 + sin2 θ (dϕ)2.          (13.59) 

 Since: 

dθ = i
i
dx

x

θ∂
∂

, dϕ = i
i
dx

x

ϕ∂
∂

, <dxi, dxi> = δ ij, 

one can also say that: 

|| du ||2 = δij δ kl 
i

k

u

x

∂
∂

j

l

u

x

∂
∂

= 
i

j

u

x

∂
∂

i

j

u

x

∂
∂

,    (13.60) 

 
which is essentially the form that this expression takes in BST. 
 This means that the last two terms in the square bracket in LS can be written in the 

form: 
2

8m

ℏ
n [(dθ)2 + sin2 θ (dϕ)2] = 

2
2|| ||

8
n d

m
u

ℏ
 = 21

|| ||
2

n d
m

S .  (13.61) 

 
 This expression has the unit of an energy density, so one can define vΩ (which is not a 
vector, but a second-rank mixed tensor) by way of: 
 

vΩ ≡ 
1

d
m

S  = 
2

d
m

u
ℏ

,     (13.62) 

and express (13.61) in the form: 

qΩ = 21
|| ||

2
ρ Ωv ,     (13.63) 

 
which we shall call the dynamic pressure due to the spin gradient.  If we compare this to 
(13.38) then we will see that although vΩ is not the same thing as the 1-form vΩ, 
nonetheless, one does still have that || vΩ ||2 = 2vΩ  .   
  
 Ultimately, one can rewrite the total Lagrangian density that depends upon S and its 
derivatives as: 
 

LS (Si , ∂t Si , ∂j Si) = n 
3

2 1 1 2 2 2( || ||
2

i
t t i

S n en
S S S S P d B S

m mc

 
 ∂ − ∂ + + −   ∆ 

S . (13.64) 

 
 The variational derivative of LS will then be: 
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S
iS

δ
δ
L

= fi − t i
t i j i∂ Π − ∂ Π , 

in which: 

fi = 
1 2

ii i

dS dS en
n B

S dt S dt mc

α β ∂ ∂+ − ∂ ∂ 
,    (13.65) 

 

1
tΠ  = α n,  2

tΠ  = β n,  3
tΠ = 0,    (13.66) 

 

1
jΠ  = 1( )j jn

P S
m

α + ∂ , 2
jΠ  = 2( )j jn

P S
m

β + ∂ , 1
jΠ  = 1

jn
S

m
∂ .  (13.67) 

 
 To abbreviate, we have introduced the coefficients: 
 

α = 
2 3

1 2 2 2|| || || ||

S S

S S+
,  β = − 

1 3

1 2 2 2|| || || ||

S S

S S+
.  (13.68) 

 
 The Euler-Lagrange equations that are associated with S i will initially take the form: 
 

Sij

jdS

dt
 = eff

i

e
B

mc
,     (13.69) 

 
in which we have introduced the coefficient matrix: 
 

Sij = 

1 2 1 3

1 2 2 3

3 3

2

2

0

S S S S

S S S S

S S

α α β α

α β β β

α β

∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ −
 ∂ ∂ ∂ ∂
 ∂ ∂ 
 ∂ ∂ 

    (13.70) 

 
and the effective magnetic field: 
 

eff
iB = Bi +

1
( )j

j in S
ρ

∂ ∂ .    (13.71) 

 
 The second term on the right-hand side of this expression comes about solely due to 
the fact that the total spin vector field is not spatially homogeneous, and is generally 
thought of as the spin analogue of the quantum potential that arises from the spatial non-
homogeneity of the mass density.  One can also express that term in the form: 
 

BS =
,

2

dn d

m n

< > ∆ +  

u
u

ℏ
,    (13.72) 
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which is similar in form to the expression for the quantum potential, although the present 
“quantum” term comes about due to the inhomogeneity in the spin vector field, rather 
than the inhomogeneity in the number density. 
 The matrix Sij is invertible, and its inverse takes the form: 
 

S ij = ε ijk Sk = ad(S)ij,      (13.73) 
 
so the final form of the equations of motion for S will be: 
 

idS

dt
= ijk eff

j k

e
S B

mc
ε ,     (13.74) 

or, as it is often represented: 
d

dt

S
= 

e

mc
S × Beff.      (13.75) 

 
Hence, one can also think of the quantum magnetic field BS as contributing a “quantum 
torque,” as well: 

ττττS = 
e

mc
S × BS  = 2

1
,

e
dn d

m c n
 × ∆ + < × >  
S S S S .   (13.76) 

 
 As usual, one can get from the balance of energy to the balance of momentum by 
taking the spatial differential of the former equation.  When written in terms of S, it will 
become:  

− 
S

t

∂
∂

 = 2 21 1
2 2( ) ( )

e
mv U e mv B

t mc

ηφ ξ Ω
∂+ + + + −
∂

S
ℏ

,  (13.77) 

 
 Taking the spatial differential of this will give: 
 

idP

dt
  = − ∂i (Uℏ

+ eφ) + ( )j j
i j j i

e
B S B S

mc
∂ + ∂  + ∂iξ 

t

η∂
∂

+ ξ 
( )i

t

η∂ ∂
∂

+ mvΩ ⋅⋅⋅⋅ ∂i vΩ ,     

(13.78) 
 
which shows that the quantum force, which is due to the inhomogeneity of the number 
density, gets combined with another quantum force that relates to the inhomogeneity of 
the external magnetic field.  One should recall that it was essential to the Stern-Gerlach 
experiment to use such a magnetic field. 
 
 
  6.  The method of bilinear covariants. – In Pauli’s original article [9], the way that 
classical (i.e., real, tensorial) physical observables were obtained from the 2-spinor wave 
function Ψ was by way of the method of bilinear covariants (although the actual 
covariance will be introduced in the context of the Dirac equation).  In some sense, one 
can think of Ψ as an “encrypted signal” that contains the classical observables as 
information, so the method of bilinear covariants is a “decryption algorithm” in that 
sense. 
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 If one thinks of the information that is being encrypted as taking the form of linearly-
independent real functions of space-time then one will see that there are four such 
functions that can be encrypted into Ψ in a linear way.  One can extend that by 
encrypting information in the successive differentials of Ψ, although when one introduces 
certain physically-reasonable constraints on Ψ, one will find that bilinear expressions in 
the second derivatives reduce to linear combinations of expressions in the first 
derivatives, and therefore all higher derivative expressions will be likewise dependent 
upon the expressions of orders zero and one. 
 The easiest way to get four linearly-independent real functions out of Ψ is by forming 
the four expressions: 

Ψ†σ µ Ψ = {Ψ†Ψ, Ψ†σ iΨ, i = 1, 2, 3},    (14.1) 
 
in which we have implicitly defined σ0 to be the identity matrix. 
 We have already identified n = Ψ†Ψ with the number density of an extended mass 
distribution.  The remaining spatial vector: 
 

(Ψ†σ i Ψ) ∂i = n u      (14.2) 
 
can be associated with the spin density of the wave function: 
 

s = n S = n 
2
 
 
 

u
ℏ

,     (14.3) 

 
in which S then takes the form of a total spin operator.  In the components of n u – 
namely, Ψ†σ i Ψ – are proportional to what we used for the components of the spin vector 
in the Pauli model.  They are not, however, as closely related to the canonical spin tensor 
that comes from the Pauli Lagrangian density, which also involves the differentials of the 
wave functions. 
 One can then put the term in the Pauli Lagrangian density that couples the spin to the 
external magnetic field into the form: 
 

 – B(s) = − Bi s
i.      (14.4) 

 
 We have already seen the most common example of a bilinear expression that one can 
derive from dΨ in the form of the conserved current: 
 

Ji = 
1

2i
(∂iΨ†Ψ − Ψ†∂iΨ)    (14.5) 

 
that is associated with the phase invariance of the Pauli action functional by Noether’s 
theorem.  Since any constant scalar multiple of J will also be a conserved current, one 
can multiply J by ℏ  to get a momentum density 1-form: 
 

p = 
2i

ℏ
(∂iΨ†Ψ − Ψ†∂iΨ),    (14.6) 
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and divide it by ρ = mn to get a flow covelocity 1-form. 
 

v = 
p

ρ
= 

† †

†

( )

2
i i

mi

∂ Ψ Ψ − Ψ ∂ Ψ
Ψ Ψ

ℏ
,   (14.7) 

which is what BST did. 
 In Takabayasi’s approach [10] to the hydrodynamical formulation of the Pauli 
equation, he used the method of bilinear covariants to convert Ψ into a corresponding set 
of classical, hydrodynamical observables, which we shall write as {ρ, v, s}, with: 
 

ρ = m Ψ†Ψ, vi = 
† †

†

( )

2
i i

mi

∂ Ψ Ψ − Ψ ∂ Ψ
Ψ Ψ

ℏ
,  si = 

2

ℏ (Ψ†σi
 Ψ),  (14.8) 

as above. 
 He then imposed the following constraints upon these classical variables: 
 
 a. The magnitude of S should be constant; in particular: 
 

|| S || = 12 ℏ .      (14.9) 
 
That implies that the components Si are no longer algebraically independent. 
 
 b. The kinematical vorticity should couple to the spin and the external magnetic field 
B according to: 

Ωk = d^v = 1
2 εijk S i du j ^ duk − e

mc
B   (S ≡ 1

2 uℏ ).  (14.10) 

 
 Hence, the quasi-irrotationality constraint could just as well be expressed in the form: 
 

1
2 εijk S i du j ^ duk = 

e

mc
B.     (14.11) 

 
 In order to obtain the equations of motion for the total linear momentum mv, 
Takabayasi then started with the Pauli Lagrangian density (12.12) in terms of Ψ and 
derived the gauge-invariant, symmetric energy-momentum-stress tensor from it, and 
obtained the equation of motion from the divergence of that tensor: 
 

m idv

dt
= Fi − iU∂

ℏ
+ eff j

i j

e
B S

mc
∂ ,    (14.12) 

 
in which F = − e (E + 1/c v × B) is the Lorentz force.  He also derived the usual 
conservation law for n. 
 Takabayasi then derived the equations of motion for s by starting with: 
 

†( )it
σ∂ Ψ Ψ

∂
=  

†
†

i it t
σ σ∂Ψ ∂ΨΨ + Ψ

∂ ∂
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and substituting the Pauli equation and its Hermitian conjugate for the derivatives.  That 
gave the same equation that BST had derived. 
 An interesting aspect of the equations of motion that Takabayasi points out is that the 
quantum terms that appear in the total forces and torques both take the form of 
divergences, so when one averages the linear and angular momentum densities over all 
space (which is assumed to have no boundary), the quantum terms will vanish and the 
resulting equations of motion: 
 

idP

dt
 = Fi + eff j

i j

e
B S

mc
∂ , 

d

dt

S
= S × e

mc
B    (14.13) 

 
will be classical.  That then gives an intriguing new perspective on Ehrenfest’s theorem 
of quantum mechanics, which says that the quantum equations should give the classical 
equations when one takes means (i.e., expectation values). 
 
 
 7.  A more geometric conversion of the Pauli equation. – Ever since the early days 
of quantum physics, spinors have always been regarded as a somewhat abstruse encoding 
of the basic physical information that is being carried by a wave.  In order to master the 
introduction of spinor wave functions into quantum wave mechanics, one must get used 
to dealing with a large number of basically formal rules for symbol manipulation that 
often seem to be divorced from any actual physical or geometric intuition. 
 That is unfortunate, since the basic Lie group SU(2) has a very direct and elementary 
interpretation in terms of Euclidian rotations in a real, three-dimensional space.  In fact, 
as we mentioned above, if one represents a Pauli spinor wave function Ψ in the form Ru, 

in which R is a real function and u = [u1, u2]T is a unitary vector in C2, when given the 

Hermitian inner product, then one can complete an oriented, Hermitian 2-frame in C2 in a 

manner that is analogous to the way that one can take a unit vector in Euclidian R2 and 

complete an oriented, orthonormal 2-form by rotating the initial vector through 90o in 
some established sense (e.g., counter-clockwise). 
 If we multiply the special unitary matrix U by the real space-time function R(t, xi) 
then the resulting matrix-valued function RU = [Ru |  Ru⊥] will contain the Pauli spinor 
wave function Ru as its first column, while the other column will not contain any data 
that is essentially distinct from Ru.  We then define our matrix-valued wave function to 
be: 

Ψ ≡ RU,      (15.1) 
 

in which U can then be regarded as the matrix of an oriented, Hermitian 2-frame field (1). 

                                                
 (1) It would probably be best to think of Ψ as a locally-defined frame field, if one is to avoid the 
inevitable topological considerations about whether global sections of the relevant bundle of SU(2) frames 
actually exist without singularities, which might, in fact, represent the sources of the waves. 
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 Note that since Ψ takes its values in a group (wherever R ≠ 0), namely, R* × SU(2), 

where R* is the multiplicative group of non-zero real numbers, there will be a subtle 

difference between Ψ−1 and Ψ†: 
 

Ψ−1 = †1
U

R
,   Ψ† = R U†.    (15.2) 

 
 When one forms the bilinear expressions Ψ†σµΨ, µ = 0, …, 3, one will get: 
 

Ψ†σ0Ψ = R2 σ0 , Ψ†σi Ψ = Si σ3 + [Ti ],    (15.3) 
 
in which Si are the same components that one will get from a Pauli wave function (i.e., 
Ψ†σi Ψ), and: 

 [Ti] = 
0

0
i

i

T

T

 
 
 

,     (15.4) 

 
which is then a linear combination of σ1 and σ2 .  Specifically, one has: 
 

T1 = − (u1)2 + (u2)2, T2 = − (u1)2 − (u2)2, T3 = 2u1u2.   (15.5) 
 
Since these are all real, iT = Ti , which can be removed from the matrix as scalar 

multiples: 

[Ti] = 
0 1

1 0iT
 
 
 

 = Ti σ1,    (15.6) 

which makes: 
Ψ†σi Ψ = Si σ3 + Ti σ1 .    (15.7) 

 
 The second equation in (15.3) suggests that the z-axis in su(2) plays a privileged role 

for this type of wave function, along with the plane that it is normal to.  This is strongly 
evocative of the relationship between the wave vector k for an electromagnetic wave and 
the plane of oscillation (which contains the E and B fields) to which it is normal, so 
perhaps the components Ti have some corresponding physical interpretation in terms of 
circular or elliptical polarization. 
 If one forms the analogue of the conserved current that is associated with the phase-
invariance of the Pauli action then one will find that: 
 

† 1 † †1
( ) ( )

2
d d−Ψ Ψ Ψ Ψ − Ψ Ψ  = dU†U .    (15.8) 

 
One can also arrive at the expression on the right, which takes its values in the Lie 

algebra su(2), by way of the pull-back of the Maurer-Cartan form on R* × SU(2): 
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 dΨ−1Ψ = − 1

R
dR + dU†U = − Ψ−1 dΨ.   (15.9) 

 
 If one represents U in the form: 
 

U = eiθ,  θ = θ aσa   (a = 1, 2, 3),   (15.10) 
 
which is essentially a higher-dimensional, non-Abelian extension of the U(1) definition 
that one uses in the Madelung-Takabayasi conversion, then the su(2)-valued 1-form: 

 
ω = dU†U = − U†dU = − i dθ = − i dθ aσa   (15.11) 

 
will take the form of a higher-dimensional, non-Abelian extension of the frequency-
wave-number 1-form k = dθ that appeared in the Madelung-Takabayasi case.  Hence, we 
define a set of three such 1-forms: 
 

ka = dθ a = ω a dt − a i
ik dx , a = 1, 2, 3,    (15.12) 

 
and identify k3 as the same thing as k in the U(1) case. 
 Of course, the physical interpretation of the other two ka is still debatable.  Since k 
eventually turned into the energy-momentum density 1-form p, and energy density and 
momentum flux have the same units as stress, perhaps the 3×3 matrix a

ik  is analogous to 

a stress tensor.  That is, when one evaluates a
i ak n  for a unit covector n, one will get a 

wave number 1-form a
i ak n dxi that corresponds to n; in particular, it does not have to be 

collinear with n. 
 If n = R2, as usual, then one can define three corresponding energy-momentum 
density 1-forms in the usual way: 
 

pa = nℏ ka = nℏ ω a dt − a i
in k dxℏ ,    (15.13) 

 
and three spatial velocity vector fields va, a = 1, 2, 3, whose components are 
 

(va)i =
1

m
δ ij a

jP  = 
1

m
δ ij a

jkℏ .     (15.14) 

 
 The idea that wave motion might be associated with different velocities in different 
directions is entirely conventional in the optics of anisotropic media, so this is still not a 
difficult stretch of the imagination in the eyes of physical interpretation. 
 In order to stay consistent with the Madelung-Takabayasi program of introducing 
“spherical” coordinates into the field space (1), let us set: 
 

                                                
 (1) One can find a more detailed discussion of the relationship between the Madelung-Takabayasi 
program and the introduction of generalized spherical coordinates in the author’s paper [12]. 
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Ψ = R exp(iθ aσa)     (15.15) 
 
and substitute this into the Pauli equation (12.7) to see what happens. 
 First, let us do some of the elementary calculations explicitly: 
 

∂tΨ = ϖt Ψ,  ϖt ≡ 
1

t RR
∂ + i ∂tθ aσa ,    (15.16) 

∂iΨ = ϖi Ψ,  ϖi ≡ 
1

i RR
∂ + i ∂iθ aσa ,    (15.17) 

∆Ψ = 
1 2

( )a i a a i
i a i aR i R

R R
θ θ σ θ θ ∆ + ∆ + ∂ ∂ − ∂ ∂ Ψ  

.  (15.18) 

 
 That makes the kinetic energy term in the Pauli equation take the form: 
 

 −
22

2

ie
A

m c
 ∂ − Ψ 
 

ℏ

ℏ
 = 

22 2
21

2 2 2
i i

i a

R e
A

m R m m c
θ θ

 ∆  − + ∂ ∂ +   
   

ℏ ℏ
 

+ 
2 22

2 2
i i i a a i a

i i i a i a

ie e
A A R A i R

mc R mc m mR
θ σ θ θ σ

   ∂ + ∂ + ∂ − ∆ + ∂ ∂ Ψ  
    

ℏ ℏ ℏ ℏ
. 

 
 The Hamiltonian operator will then take the form of an algebraic operator on Ψ: 
 

H = 
22 2

21

2 2 2
i i

i a

R e
A e

m R m m c
θ θ φ

 ∆  − + ∂ ∂ + −  
   

ℏ ℏ
+ 

2

2
i i

i i

ie
A A R

mc R
 ∂ + ∂ 
 

ℏ
 

− ( )
2 2

2
2 2

i a a a i a
i a i a

e
A B i R

mc m mR
θ σ θ θ σ 

∂ + − ∆ + ∂ ∂ 
 

ℏ ℏ ℏ
.  (15.19) 

 
 Note that there are four distinct sets of real components, which correspond to the four 
brackets on the right-hand side.  If one calculates: 
 

i
t

∂Ψ
∂
ℏ = at

t a

R
i

R
θ σ∂ − ∂ Ψ 

 
ℏ ℏ      (15.20) 

 
and equates corresponding terms in this and (15.19) then one will initially get four 
equations: 

0 = 
22 2

21

2 2 2
i i

i a

e R
A e

m m c m R
θ θ φ ∆ ∂ ∂ + − − 

 

ℏ ℏ
,   (15.21) 

 

∂tR =
2

e

mc
(R ∂i A

i + 2 Ai ∂i R),      (15.22) 
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∂tθ a = 
2

e

mc
(2Ai ∂iθ a + Ba),       (15.23) 

 

0 = ∆θ a + 
2

R
∂i R ∂ iθ a.       (15.24) 

 
 The second and fourth equations can be further converted by multiplying the former 
by 2R and the latter by R, which will ultimately give: 
 

∂t n = i
i

en
A

mc
 ∂  
 

, 0 = ∂i (n ∂ iθ a)    (15.25) 

in their places. 
 We immediately note how the extension of angles from θ to θa has also brought about 
a splitting of the basic equations into smaller pieces.  That is simply because when θ 3 
was θ, and there was no θ 1 or θ 2, there was also no need to introduce the σa , which 
were responsible for the splitting.  Hence, if we single out σ3 as the axis in su(2) that 

gives the usual Pauli expressions then it is not unreasonable to consolidate the equations, 
although it is important to realize that the separate vanishing of both sides of an equation 
is a stronger demand than their simple equality. 
 If we start with (15.23), specialize it to a = 3, and multiply both sides by − ℏ  then we 
will get: 

E = −ℏ ∂tθ 3  = ℏω 3 = −
2

e

mc
(2Ai ∂iP

3 + B3).    (15.26) 

 
When both sides are added to (15.21) the result can be put into the form: 
 

E = 
2 2

3 1 2 2 2 31 1
[( ) ( ) ]

2 2 2 2i i

e R e
P A e P P B

m c m R m mc
φ ∆ − − − + + − 

 

ℏ ℏ
.  (15.27) 

 
The first three terms on the right are the total kinetic energy, potential energy, quantum 
potential when one introduces the effective velocity 1-form as: 
 

v3 = 31 e
P A

m c
 − 
 

.     (15.28) 

 
 The quasi-irrotationality constraint then takes the form: 
 

3
kΩ  = d^v

3 = 
e

mc
B.      (15.29) 

 
 The last two terms in the right-hand side of (15.27) represent the total kinetic energy 
in the plane that is normal to v3 and the energy that is due to the coupling of B3 to S3. 
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 One can also combine the two equations in (15.25) when one sets a = 3 and multiplies 
the second one by an overall minus sign, and the result will be: 
 

dn

dt
 = 0,      (15.30) 

as usual. 
 The remaining equations to be dealt with are (15.23) and the second of (15.25), when 
both are restricted to a = 1, 2.  The former can be multiplied by − ℏ  to give two energy 
equations that relate to motion in the plane transverse to σ3, while the latter can be 
multiplied by ℏ / m to give transverse versions of the conservation of number density.  
Putting everything together will give the following form for equations (15.21)-(15.24): 
 

E = 
2 2

3 1 2 2 2 31 1
[( ) ( ) ]

2 2 2 2i i

e R e
P A e P P B

m c m R m mc
φ ∆ − − − + + − 

 

ℏ ℏ
,  (15.31) 

 

0 = 
dn

dt
,         (15.32) 

 

E a = −ℏ ∂tθ a  = ℏω a = − ,a i
i

e
Av

c
 −

2

e

mc

ℏ
Ba  (a = 1, 2),   (15.33) 

 
0 = ∂i (n va,i)      (a = 1, 2).   (15.34) 

 
 The first and third equations in this set can be converted to density form by 
multiplying both sides by n, which will give: 
 

E = 
2

2 1 2 2 2 31 1
2 [( ) ( ) ]

2 2

R
v v v B

R c

σ
ρ σφ ρ

ρ ρ
∆− − + + −

h h
,   (15.35) 

 

E 
a = − ,a i

iAv
c

σ
 −

c

σ
ρ
h

Ba    (a = 1, 2),   (15.36) 

 
respectively. 
 Note that in the present context, the conversion of ℏ  into a density (namely, h  = ℏ n 

/ 2) makes physical sense, since it now plays the role of a spin density. 
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Chapter VIII 
 

RELATIVISTIC ROTATIONAL MECHANICS 
 

 
 The purpose of this chapter is not so much to give a general treatment of relativistic 
rotational mechanics as to discuss some of the topics in it that pertain to the basic 
question of the precession of the spin of spinning particles, such as the electron.  Hence, 
the first section will have a more heuristic character and will serve mostly to establish 
some formulas that will reappear in the context of the relativistic wave equations for 
spinning particles, namely, the relativistic Pauli equation and the Dirac equation, which 
will be discussed in the next chapter. 
 
 Perhaps the first definitive attempts to model a spinning electron in a classical, but 
relativistic, way were those of the Englishman Llewelyn Thomas in 1926 [1a] and the 
Russian Joseph Frenkel in 1926 [2], which was followed by a second attempt by Thomas 
in 1927 [1b]. Both of them still basically assumed a point-like electron and then 
introduced the rotational aspects heuristically, without attempting to explain how a point 
can rotate, unless it represents a point in a rigid body.  (One can also find a good survey 
of the Thomas-Frenkel electron in Halbwachs [3].) 
 Along the way, Thomas also introduced a concept that is basically independent of any 
electron model and is called “Thomas precession.”  It has a purely relativistic origin in 
the fact that product of two pure boosts in different directions will not be another pure 
boost, but a product of a boost with a rotation, which accounts for the precession.  It was 
later recognized that Thomas precession could also be described as the “Fermi-Walker 
transport” of the spin polarization vector along the curve of motion.  It also emerges that 
model for spin precession in an external homogeneous electromagnetic field by Valentine 
Bargmann, Louis Michel, and Valentine Telegdi [4] is closely related to the Frenkel 
model for such an external field, but is not precisely identical to it. 
 
 
 § 1.  Basic definitions and equations. – We shall briefly introduce the basic notions 
that will be used in what follows.  In particular, it is essential to understand the way that 
elements of the Lie algebra so(1, 3) can be represented by bivectors on Minkowski space, 

while elements of its dual vector space so(1, 3)* can be represented by 2-forms. 

 
 a. The association of bivectors with infinitesimal Lorentz transformations. – We 

start with Minkowski space M4 = {R4, ηµν}, where ηµν = diag[+1, − 1, − 1, − 1] is the 

component matrix for the scalar product in an orthonormal frame.  We denote the vector 

space of bivectors over R4 by Λ2R
4, or just Λ2 , for short.   

 There are two types of bivectors in Λ2 : decomposable ones, which take the form of a 
^ b for some vectors a, b ∈ Λ2 , and non-decomposable ones, which cannot be put into 
that form and take the form of (finite) linear combinations of decomposable bivectors.  In 
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particular, if {eµ , µ = 0, …, 3} is a basis for R4 then the set {all eµ ^ eν , µ < ν} will 

consist of six linearly-independent basis elements for Λ2 , and any bivector B in can be 
expressed as a linear combination of the basis elements in the form: 
 

B = 1
2 Bµν eµ ^ eν ,     (16.1) 

 
in which summation over doubled indices is implied. 
 The 4×4 real matrix Bµν  is called the component matrix of the bivector B, and due to 
the antisymmetry of the exterior product, it will be an antisymmetric matrix.  Hence: 
 

Bµν + Bνµ = 0.       (16.2) 
 
 Now, if the basis eµ is orthonormal and one uses the component matrix ηµν to lower 
an index (say, ν) then the resulting matrix: 
 

Bµ
ν = ηνκ B

µκ      (16.3) 
will have the property that: 

Bµ
κ ηκν + Bν

κ
 ηκµ = 0.      (16.4) 

 
The matrix ηµν is, of course, the inverse of the matrix ηµν (i.e., ηµκ ηκν = ηνκ ηκµ = µ

νδ ), 

so it will then define a scalar product on R4*. 

 However, one can think of Bµ
ν as the component matrix of a mixed tensor B in R4 ⊗ 

R
4*, namely: 

B = Bµ
ν eµ ⊗ θν,     (16.5) 

 

in which {θµ, µ = 0, …, 3} is the reciprocal basis for R4*, so θµ (eν) = µ
νδ .  Hence, B can 

also be regarded as a linear transformation from R
4 to itself that takes any vector Xν to 

Bµ
ν X

ν . 
 Similarly, the matrix Bν 

µ = ηνκ B
κµ 

  = − Bµ
ν can be thought of as the component 

matrix of a mixed tensor B* in R4* ⊗ R4, namely: 

 
B* = Bµ 

ν  θµ
 ⊗ eν .     (16.6) 

 

Hence, B* can be regarded as a linear transformation from R
4* to itself that takes a 

covector Xν to Xν Bµ 
ν. 

 If one goes back to (16.4) then one will see that the equation that is satisfied by the 
matrix Bµ

ν (or Bν 
µ, if one inverts the order of indices) is the same as the condition for a 

matrix to represent an infinitesimal Lorentz transformation.  Hence, there is a linear map 
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Λ2 → so(1, 3), Bµν ֏Bµ
ν  .  Since the matrix ηµν is invertible, and both vector spaces are 

six-dimensional, the linear map will be an isomorphism, as well. 

 Dually, if Λ2 is the six-dimensional vector space of exterior 2-forms over R4 (i.e., the 

bivectors over R4*) then one can define a basis for Λ2 by way of {all θµ ^ θν, µ < ν}, and 

any 2-form B ∈ Λ2 can be expressed in the form: 
 

B = 1
2 Bµν θµ ^ θν.     (16.7) 

 
One can then use ηµν to define a dual linear isomorphism Λ2 → so(1, 3)* that takes Bµν to 

Bµ
ν, which is the transpose of the matrix Bµ

ν .  Hence, any element of the dual of the Lie 
algebra of infinitesimal Lorentz transformations can be represented as a 2-form. 
 It is important to point out that the linear isomorphisms that were just defined are not 
algebra isomorphisms; that is, they do not take exterior products to Lie brackets.  
However, one can define a Lie bracket on the vector space Λ2 that makes the linear 
isomorphism an algebra isomorphism.  One starts with the definition that pertains to so(1, 

3): 
[ , ]A B µ

ν  = A B B Aµ κ µ κ
κ ν κ ν−     (16.8) 

and raises indices accordingly: 
 

[A, B]µν = A B B Aµ κν µ κν
κ κ− = ( )A B B Aµκ λν µκ λν

κλη − .  (16.9) 

 
One can put this into a component-free form: 
 

[A, B] = i iκ λκλη
θ θ

∧A B .    (16.10) 

 
In fact, any other choice of orthonormal frame will produce the same expression for [A, 
B]. 
 Typically, one does not introduce a Lie bracket on the dual space so(1, 3)*.  However, 

there is a canonical bilinear pairing so(1, 3)* × so(1, 3) → R, (AT, B) ֏  AT(B) = Tr AB, 

in which we have taken advantage of the fact that any square matrix can be regarded as 
an element of the Lie algebra gl(n) or its dual space, depending upon whether one uses 

the matrix to left-multiply elements of Rn or right-multiply elements of Rn*.  In 

components, one will have: 
Tr AB = A Bµ κ

κ µ .     (16.11) 

 
This also allows us to define a bilinear form on elements of both so(1, 3) and its dual by 

way of: 
<A, B>CK = 1

2 Tr AB, <AT, BT > CK = 1
2 Tr ATBT = 1

2 Tr AB.  (16.12) 
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in which the subscript CK refers to the fact that this is the Cartan-Killing form.  Since 
so(1, 3) is semi-simple, the Cartan-Killing form will be non-degenerate, and will in fact 

define a scalar product on both vector spaces.  Its signature type is (+ 1, + 1, + 1, − 1, − 1, 
− 1), so the orthogonal group that preserves the scalar product will be SO(3, 3). 
 Note that the last relation in (16.12) shows that matrix transposition is an isometry for 
the Cartan-Killing form. 
 
 b. Kinematics. – An element of so(1, 3) represents an infinitesimal Lorentz 

transformation, which will generally be linear sum of an infinitesimal Euclidian rotation 
and a pure boost.  In order to get a decomposition of so(1, 3) into a direct sum of vectors 

spaces so(3) ⊕ b(3), where b(3) is the vector space of pure boosts (which is not, however, 

a Lie subalgebra, as we shall see in the next section), one first needs to split R4 into a 

direct sum [t] ⊕ Σ of a one-dimensional time line [t] and a three-dimensional spatial 
hyperplane Σ, which is typically assumed to be orthogonal to [t], as well. 
 If the orthonormal basis {eµ , µ = 0, …, 3} is adapted to ηµν , such that e0 is a time-
like unit vector and {ei , i = 1, 2, 3} are space-like ones that are orthogonal to e0 , then one 
can define [t] to consist of all vectors of the form a e0 , while Σ is spanned by the basis {ei 

, i = 1, 2, 3}.  One can also restrict the Minkowski scalar product to the spatial hyperplane 
and get a Euclidian scalar product, although with a minus sign: 
 

ηij = − δij .      (16.13) 
 

 The time+space splitting of R4 into [t] ⊕ Σ is associated with a corresponding 

splitting of the vector space Λ2 into a direct sum that takes the form of [t] ^ Σ ⊕ Λ2Σ .  
That is, all elements of the temporal subspace [t] ^ Σ are decomposable bivectors that 
take the form t ^ a, where a ∈ Σ, while all elements of the spatial subspace Λ2Σ are 
bivectors over the vector space Σ.  In terms of the basis {eµ ^ eν , µ < ν} for Λ2, one can 
span [t] ^ Σ with the basis {e0 ^ ei ,  i = 1, 2, 3} and then span Λ2Σ with the other three 
basis elements {ei ^ ej ,  i < j = 1, 2, 3}.  Hence, a given bivector B will split into a sum of 
corresponding temporal and spatial bivectors that will take the forms: 
 

Bt = B0i e0 ^ ei , Bs = 1
2 Bij ei ^ ej ,    (16.14) 

respectively. 
 When one lowers an index using ηµν , the component matrices B0i and Bij will go to 
matrices of the forms: 

0
iB = 

0

0

0

0

i

i

B

B

 
 
  

, i
jB = 

0 0

0 ijB

 
 
 

,   (16.15) 

respectively. 
 Since 0

iB  is symmetric and i
jB  is antisymmetric, they represent the matrices of 

infinitesimal boosts and infinitesimal rotations, resp.  Hence, the time-space splitting of 
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R
4 implies a time-space splitting [t] ^ Σ ⊕ Λ2Σ of the bivectors on Minkowski space that 

corresponds to the splitting b(3) ⊕ so(3) of infinitesimal Lorentz transformations into 

sums of pure boosts and pure rotations. 
 Going in the opposite direction (viz., starting from an element Ω ∈ so(1, 3) and 

associating it with a bivector ΩΩΩΩ in the aforementioned way), if so(1, 3) has been given a 

specific direct sum splitting into b(3) ⊕ so(3), so: 

 
Ω = b + ωωωω = bi Ki + ω i Ji ,     (16.16) 

 
then one can split ΩΩΩΩ into corresponding temporal and spatial components: 
 

ΩΩΩΩ = b + ωωωω = e0 ^ bi ei + 1
2 ε ijk ωk ei ^ ej ;    (16.17) 

i.e.: 
Ω0i = − Ωi0 = b i, Ωij = − Ωji = ε ijk ωk .    (16.18) 

 
Note that strictly speaking one must regard the rotational part of ΩΩΩΩ as the spatial dual of a 
spatial covector in order for the indices to be consistent. 
 One can regard a bivector such as ΩΩΩΩ that corresponds to an infinitesimal Lorentz 
transformation as a “generalized angular velocity,” since it also includes boosts in 
addition to the rotations.  If τ is the time-like covector that is metric-dual to the time-like 
vector t then one can pick off the boost part and the rotational part of ΩΩΩΩ relative to τ by 
way of: 

b = t  ̂iτ ΩΩΩΩ , ωωωω = ΩΩΩΩ – b = ΩΩΩΩ – t ^ iτ ΩΩΩΩ .    (16.19) 
When 

iτ ΩΩΩΩ = 0     (16.20) 
 
one can rightfully characterize ΩΩΩΩ as being purely rotational, at least with respect to τ.  In 
terms of components, that condition will take the form: 
 

τµ Ωµν = 0.      (16.21) 
 
 The basic kinematical equation that relates to ΩΩΩΩ is the equation of a moving 
Lorentzian frame eµ (τ) along a curve x(τ).  If one thinks of each frame eµ (τ) as being 
related to an initial frame eµ (0) by a Lorentz transformation (1): 
 

eµ (τ) = eν (0) ( )Lν
µ τ     (16.22) 

 

                                                
 (1) We can say this with full rigor, since we are only considering Minkowski space, which is an affine 
space, so the parallel translation of the frame eµ(0) at x(0) to a corresponding frame at x(τ) is well-defined.  
In a more general Lorentzian manifold, we would have to introduce a metric connection in order to define 
parallel translation along curves. 
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such that (0)Lν
µ  = µ

νδ  then if one differentiates this with respect to τ, and evaluates it at 

an arbitrary τ, one will get: 
d

d
µ

τ
e

= eν (0) ( )Lν
µ τɺ = eν (τ) ( )ν

µ τΩ ,   (16.23) 

in which one has defined: 
( )ν

µ τΩ = ( ) ( )L Lν κ
κ µτ τɶ ɺ ,     (16.24) 

 
and the tilde refers to the inverse of the matrix. 
 Note that since boosts are defined by relative velocities, while rotations are defined 
by relative angles, the temporal components 0

jΩ , 0
iΩ  of ν

µΩ  will have the character of 

linear accelerations, while the spatial components ijΩ  will have the character of angular 

velocities. 
 
 c. Dynamics. – If one gives the bivector ΩΩΩΩ the interpretation of a generalized angular 
velocity then one might think of a 2-form: 
 

S = 1
2 Sµν θµ ^ θν     (16.25) 

 
in Λ2 as representing a “generalized angular momentum” with respect to the bilinear 
pairing: 

S (ΩΩΩΩ) = 1
2 Sµν Ωµν = S0i Ω0i + 1

2 Sij Ωij    (16.26) 

 
if one interprets the value of that number as the total kinetic energy of motion.  One sees 
that one is combining the kinetic energy due to boosts with the kinetic energy due to 
rotations. 
 That interpretation is consistent with the linear isomorphism between Λ2 and so(1, 

3)*, which makes the corresponding bilinear pairing: 
 

S (ΩΩΩΩ) = 1
2 Sµ

ν Ωµ
ν = 1

2 Tr S Ω;    (16.27) 

i.e., the Cartan-Killing form. 
 The splitting of so(1, 3) into b(3) ⊕ so(3) has a corresponding dual splitting of so(1, 

3)* into b(3)* ⊕ so(3)*, which then begets a splitting of Λ2 into [τ] ^ R3* ⊕ Λ2 Σ*.  This 

time, the line [τ] in R4* is generated by any 1-form τ that annihilates Σ; i.e., τ (v) = 0 for 

any v ∈ Σ.  Hence, Σ* will consist of the space of all 1-forms that annihilate t.  A 
consequence of this is that one must have the non-vanishing of τ (t). 
 Only the so(3)* part of S ∈ so(1, 3)* will actually correspond to an angular 

momentum, in the rotational sense, while the b(3)* part will be more like a linear 

momentum, since it corresponds to an infinitesimal boost.  The time-like vector field t 
can be used to pick off the boost part of S: 
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Sb = τ ^ i t S,      (16.28) 
 
so if i t S vanishes, one can think of S as being purely rotational.  The angular part Sω is 
then: 

Sω = S − τ ^ i t S,     (16.29) 
in general. 
 In order to preserve the reciprocal relationship ( )µ

νθ e = µ
νδ , if a Lorentz 

transformation Lµ
ν  acts upon eµ from the right then its inverse must act upon θµ from the 

left.  Hence, if θµ(τ) is a Lorentzian coframe moving along the curve x(τ) then there will 
be a Lorentz transformation ( )Lµ

ν τɶ  that makes: 

 
θµ(τ) = ( )Lµ

ν τɶ θν (0).    (16.30) 

  
By differentiating with respect to τ, we will get the equation of the moving coframe: 
 

µθɺ = − µ ν
νΩ θ ,     (16.31) 

since: 

L Lµ κ
κ ν
ɺɶ  = − L Lµ κ

κ ν
ɶ ɺ  = − µ

νΩ .   (16.32) 

 
This last relationship is derived by differentiating the basic identity L−1 L = I. 
 If one expresses the generalized angular momentum 2-form S in the form (16.25) and 
differentiates, while taking (16.31) into account, then one will get: 
 

Sɺ  = 1
2 ∇τ Sµν θµ ^ θν,    (16.33) 

in which we have defined: 
∇τ Sµν = S S Sκ κ

µν νκ µ µκ ν+ Ω − Ωɺ .   (16.34) 

 
If we raise the µ index and switch the positions of κ in the second term on the right then 
this will take the form: 

∇τ S
µ

ν = S S Sµ µ κ µ κ
ν κ ν κ ν+ Ω − Ωɺ ,   (16.35) 

or more concisely: 
∇τ S = [ , ]S S+ Ωɺ .    (16.36) 

 
Hence, the balance of angular momentum will take the form: 
 

τ = Sɺ + [Ω, S]     (16.37) 
 
in an anholonomic (i.e., non-inertial) coframe, where τ is the external torque that acts 
upon S.  Hence, torque will also take its values in the dual space so(1, 3)*. 
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 For a holonomic (i.e., inertial) coframe field, such as θµ = dxµ, one will have ( )Lµ
ν τ  = 

µ
νδ , so one will also have µ

νΩ  = 0, and the balance of generalized angular momentum 

will take the form: 
τµ

ν = Sµ
ν
ɺ .     (16.38) 

 
 

 § 2. Thomas precession. – The innovation that Thomas introduced was to account 
for the discrepancy of a factor 2 between the two expressions for the gyromagnetic ratio 
that was mentioned by Uhlenbeck-Goudsmit.  He basically showed that it was purely 
relativistic in origin, and essentially arose because the product of two pure boosts in 
different directions will not be a pure boost, but will include a rotation.  Hence, when one 
considers an orbiting electron, two one-parameter families of pure boosts in different 
directions will give rise to a one-parameter family of rotations that one calls Thomas 
precession.  It is important to realize that although Thomas precession first shows up as a 
relativistic effect, nonetheless, it will still persist in the non-relativistic limit as c becomes 
infinite. 
 The most direct way to see this is to first consider the commutation relations for the 
basis vectors {Ji , Ki , i = 1, 2, 3} for the Lie algebra so(3, 1), namely: 

 
[Ji , Jj] = εijk Jk , [Ji , Kj] = εijk Kk , [Ki , Kj] = − εijk Jk .   (17.1)  

 
 Now suppose that B(τ) is a differentiable curve in the identity component of SO(1, 3) 
– i.e., the proper, orthochronous Lorentz group.  Assumes that it only goes through pure 
boosts, but it does not have to go through the identity matrix. 
 The general form for a boost from one Lorentzian frame to another that moves with a 

relative (non-relativistic, spatial) velocity of v = v i ∂i = γ ui ∂i , with γ =( ) 1/ 22 21 || || /c
−

− v : 

 

B(v) = 
/

/ ( )
j

i i
j

v c

v c B

γ γ
γ

− 
 − v

,  ( )i
jB v  ≡ 

2

2( 1)
i i
j jv v

c

γδ
γ

+
+

,  (17.2) 

 
which can be expressed more concisely for the sake of calculation as: 
 

B(u) = 
/

/ ( )
j

i i
j s

u c

u c B

γ − 
 − u

,  ( )i
j sB u  ≡ 2

1

( 1)
i i
j ju u

c
δ

γ
+

+
.  (17.3) 

 
 The inverse of this boost is then obtained by replacing v with – v (i.e., us with − us), 
which will not change γ or ( )i

j sB u  since they are quadratic in us .  That will give: 

 

B−1(u) = 
/

/ ( )
j

i i
j s

u c

u c B

γ 
 
 u

.     (17.4) 
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 If one lets u be a differentiable function of proper time τ then the proper time 
derivative of B(u) will be: 
 

Bɺ  = 
/

/
j

i i
j

u c

u c B

γ − 
 − 

ɺ ɺ

ɺɺ
, i

jBɺ  ≡ 2

1
( )

( 1) 1
i i i

j j ju u u u u u
c

γ
γ γ

+ −
+ +

ɺ
ɺ ɺ . (17.5) 

 
 In performing the calculations, it is useful to have the following facts at hand: 
 

uk u
k = c2 (γ 2 – 1),  k

ku uɺ = c2γ γɺ .    (17.6) 

 
 One then calculates the element Ω(τ) of so(1, 3) that is obtained by left-translating the 

tangent vector ( )B τɺ  to SO(1, 3) at B(τ) back to the identity element using B−1(τ): 
 

Ω = 1B B− ɺ .      (17.7) 
 
One finds that its explicit components are: 
 

0
0Ω = 0,  0

jΩ = 0
jΩ =

1

1j ju u
c

γ
γ

 − + + 

ɺ
ɺ ,  i

jΩ = 2

1

( 1)
i i

j ju u u u
c γ

 − +
ɺ ɺ .     

(17.8) 
 
 If one raises the j in i

jΩ using ηij = − δ ij and takes advantage of the fact that: 

 

iuɺ = 
idu

dτ
= 2i iu aγ γ+ɺ ,  a i ≡ 

idv

dt
    (17.9) 

 
then one can express Ωij as the components of a spatial bivector: 
 

ΩΩΩΩ = − γ ωωωωT ,  ωωωωT =
2

2( 1)c

γ
γ

∧
+

a v     (17.10) 

 
whose corresponding element of so(3) is the usual expression for the angular velocity of 

the Thomas precession.  (We have factored out γ in the expression for ΩΩΩΩ in order to 
convert from a proper-time derivative to a time-coordinate one.) In the non-relativistic 
limit as v goes to 0, ωωωωT will take the somewhat-simpler form: 
 

ωωωωT = 2

1

2c
∧a v .      (17.11) 

 
We have thus shown what we originally asserted, namely, that Thomas precession does 
not disappear in the non-relativistic limit. 
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 There is another more Lie-algebraic way of accounting for the Thomas precession 
that we shall mention, although the rest of this subsection can be safely skipped if one is 
not so morbidly curious. 
 If one starts with B(τ), as above, then there will then be a differentiable curve: 
 

αααα    (τ) = α i (t) Ki       (17.12) 
 
in so(1, 3) that does not have to go through 0 and has the property that: 

 

B(τ) = exp αααα (τ) = 
0

1
[ ( )]

!
n

n n
τ

∞

=
∑ αααα .    (17.13) 

 
Now differentiate the curve B(τ) to find its velocity vector: 
 

dB

dτ
 = 

0

1

!

n

n

d

n dτ

∞

=
∑

αααα
.     (17.14) 

 
 Since the multiplication that gives the powers of αααα is matrix multiplication, which is 
not commutative, in general, one cannot use the same power law that one uses for real 
functions.  Rather, one will have, in general: 
 

nd

dτ
αααα

= 1 1n n− −+ +ɺ ɺ⋯αα α ααα α ααα α ααα α α .    (17.15) 

 
One can commute the product ɺαααααααα  by way of: 
 

ɺαααααααα  = [ , ]+ɺ ɺαα α ααα α ααα α ααα α α ,     (17.16) 
so one will have: 

21

2!

d

dτ
αααα

= 1
2 [ , ]+ɺ ɺαα α ααα α ααα α ααα α α .    (17.17) 

 
The next derivative is obtained from: 
 

ɺαααααααααααα = 2 [ , ]+ɺ ɺα α α α αα α α α αα α α α αα α α α α , 2ɺα αα αα αα α  = 2 2 [ , ] [[ , ], ]+ +ɺ ɺ ɺα α α α α α α αα α α α α α α αα α α α α α α αα α α α α α α α ,  (17.18) 
 
which makes: 

31

3!

d

dτ
αααα

= 21 1 1
[ , ] [[ , ], ]

2! 2! 3!
 + + 
 

ɺ ɺ ɺα α α α α α α αα α α α α α α αα α α α α α α αα α α α α α α α .  (17.19) 

Summing gives: 

 
0

1

!

n

n

d

n dτ

∞

=
∑

αααα
 = 1 1

2! 3!
0

1
( [ , ] [[ , ], ] )

!
n

n n

∞

=

  + + + 
 
∑ ɺ ɺ ɺ ⋯α α α α α α αα α α α α α αα α α α α α αα α α α α α α  

 = 1 1
2! 3!exp ( [ , ] [[ , ], ] )+ + +ɺ ɺ ɺ ⋯α α α α α α αα α α α α α αα α α α α α αα α α α α α α . 
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If one defines the (left) adjoint map for αααα by (adL αααα)(ββββ) = [ββββ, αααα], with (adL αααα)0 = I then 
one can express this in the form: 
 

d

dτ
exp αααα (τ) = exp αααα exp[(adL αααα)] ( )ɺαααα .    (17.20) 

 
 So far, we have derived a form for the velocity vector to the curve B(τ) in SO(1, 3) at 
B(τ).  If we left-translate that velocity back to the identity then we will get an element of 
so(1, 3), namely: 

 

Ω ≡ exp(− αααα) exp ( )
d

d
τ

τ
 
  

αααα  = exp[(adL αααα)] ( )ɺαααα = 1 1
2! 3![ , ] [[ , ], ]+ +ɺ ɺ ɺα α α α α αα α α α α αα α α α α αα α α α α α + ...  

(17.21) 
 

 Since we have assumed that αααα = α i Ki is a pure boost, ɺαααα  = jαɺ Kj will also be a pure 
boost, and from the last relation in (17.1), we will have: 
 

[ , ]ɺα αα αα αα α = i jα αɺ [Ki , Kj] = − εijk 
i jα αɺ Jk = − ( )k×ɺα αα αα αα α Jk ,  (17.22) 

 
which will be a pure infinitesimal rotation. 
 Hence, to first order in αααα, one will have: 
 

Ω = 1
2 ( )i i

i iK Jα − ×ɺ ɺα αα αα αα α ,     (17.23) 

 
so the element of so(1, 3) that will correspond to the velocity of the curve exp αααα (τ) when 

αααα (τ) consists of only pure infinitesimal boosts will consist of an infinitesimal boost plus 
an infinitesimal rotation: 

ωωωωT  = − 1
2 ( )i

iJ×ɺα αα αα αα α .     (17.24) 

 
 One sees the origin of the relativistic factor of 1/2 that shows up in the Thomas 
precession of electron spin.  Of course, if the curve αααα(τ) is a straight line then there will 
be no precession. 
 
 
 § 3. Fermi-Walker transport. – The concept of Thomas precession is related closely 
to an alternate form of parallel transport of tangent vectors along curves that was first 
introduced into general relativity by Enrico Fermi in 1922 [5] and later given a somewhat 
more mathematically concise form by Arthur Walker in 1932 [6].  The discussion here 
roughly follows the first section of Walker’s presentation (1). 

                                                
 (1) More recent treatments of Fermi-Walker transport than Walker’s can be found in Møller [7] and 
Misner, Thorne, and Wheeler [8]. 
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 Suppose that one has a C2 time-like curve x(τ) in a Lorentzian manifold (M, g) (1) that 
is parameterized by proper time, and its proper-time velocity is: 
 

u(τ) = 
dx

dτ
= uµ (τ) ∂µ .     (18.1) 

 
The uµ (τ) are the components of u(τ) with respect to a natural coframe field {∂µ , µ = 0, 
…, 3} that is defined by a local coordinate chart (U, xµ). 
 Hence, one will have: 
 

u2 = g(u, u) = c2, g(u, a) = 0, a = ∇uu ,    (18.2) 
 
in which the acceleration a is defined by the Levi-Civita connection µνΓ  that is associated 

with g by way of: 

aµ = ( )
du

u
d

µ
µ ν
ντ

+ Γ u = 
du

u u
d

µ
µ λ ν
λντ

+ Γ .   (18.3) 

 
In the last expression, we have expanded the 1-form µ

νΓ , which takes its values in the Lie 

algebra so(1, 3), into its components µλνΓ  with respect to a natural coframe field {dxλ, λ = 

0, …, 3} that is defined by the local coordinate chart (U, xλ).  In short: 
 

µ
νΓ  = dxµ λ

λνΓ .      (18.4) 
 
 The parallel translation of a vector field X(t) along the curve x(t) with respect to the 
Levi-Civita connection is defined by: 
 

0 = ∇uX
µ = ( )

dX
X

d

µ
µ ν
ντ

+ Γ u = 
dX

u X
d

µ
µ λ ν
λντ

+ Γ .   (18.5) 

 
 Since this kind of parallel translation is due to a metric connection, it will preserve the 
length of any tangent vector and the angles between any two vectors.  Now, the space of 
all metric connections [when regarded as 1-forms with values in so(1, 3)] is an infinite-

dimensional affine space, so although the sum of two connections is not generally another 
connection, nonetheless, the difference between any two metric connections can still be 
defined.  For instance, if µ

νω  is an arbitrary metric connection then one can define the 

difference 1-form Aµ
ν  by way of: 

µ µ
ν νω − Γ = Aµ

ν  = A dxµ λ
λν .    (18.6) 

                                                
 (1) Of course, the only such manifold that is of interest to us in this book is Minkowski space M4, for 

which the contribution to the acceleration of the curve from the Levi-Civita connection Γ will vanish.  
Hence, if the reader does not feel comfortable with the more general geometry, they can safely skip ahead 
to the conclusion of this subsection. 
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Hence, the vector space upon which the affine space of all metric connections is based 
will consist of all 1-forms on space-time with values in so(1, 3). 

 In order to get Fermi-Walker transport along x(τ), one weakens the constraint on µ
νω  

to only that the length of any vector X must be preserved, along with the angle between it 
and the velocity vector field u, or rather g(u, X).  One can then say that such a translation 
will satisfy: 

0 = dXµ + ( )Xµ ν
νω u ,     (18.7) 

or: 
∇uX

µ = − ( )A Xµ ν
ν u = − A u Xµ λ ν

λν .   (18.8) 

 
We shall refer to the right-hand side of (18.7) as the Fermi-Walker derivative of the 
vector field X along the curve x(τ); i.e.: 

FWD X

d

µ

τ
 = dXµ + ( )Xµ ν

νω u .    (18.9) 

 
Hence, Fermi-Walker transport is the parallel-transport with respect to the connection 

µ
νω , which is, of course, defined only along x(τ). 

 The way that Walker arrived at the explicit form for Aµ
ν  was to require that u itself 

should be an “auto-parallel” of the connection µ
νω , which would make: 

 
aµ = ∇uu

µ = − ( )A uµ ν
ν u  = − A u uµ λ ν

λν .   (18.10) 

 
 The simplest solution to this equation is: 
 

( )Aµ
ν u = 

2

1
[ ]

c
µ
ν∧u a =

2

1
( )g u a u a

c
µ λ λ µ

λν − .   (18.11) 

 
[As a quick check on this, one can compute: 
 

( )A uµ ν
ν u = 

2

1
[ ( , ) ( , ) ]g u g a

c
µ µ−a u u u  

and substitute from (18.2).] 
 One can then express the components Aµ

λν  in the form: 

 

Aµ
λν = 

2

1
( )a g a

c
µ µ
λ ν λνδ − .     (18.12) 

 
 The antisymmetric part of this will then be: 
 

Sµ
λν = [ ]Aµ

λν =
2

1
( )

2
a a

c
µ µ
λ ν ν λδ δ− .    (18.13) 
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 Although the Fermi-Walker connection is defined only along x(τ), if that curve were 
only one of a congruence of curves that filled up a space-time world-tube then one could 
regard Sµ

λν  as the components of the torsion 2-form for the metric connection µ
νω .  The 

fact that it must have torsion follows from the fact that it is not the Levi-Civita 
connection, which is the unique metric connection with vanishing torsion. 
 
 The Fermi-Walker transport of a vector field X(τ) along x(τ) will then satisfy: 
 

∇uX
µ = 

2

1
[ ] X

c
µ ν
ν∧a u =

2

1
[ ( , ) ( , ) ]g a g u

c
µ µ−u X a X .   (18.14) 

 
 One can then express the Fermi-Walker derivative in the form: 
 

FWD X

d

µ

τ
= ∇uX

µ +
2

1
[ ] X

c
µ ν
ν∧u a .    (18.15) 

 
 For Minkowski space, one will have µλνΓ = 0, and this will reduce to: 

 

FWD

dτ
X

= 
2

1
[ ( , ) ( , ) ]

d
g g

d cτ
+ −X

a X u u X a .   (18.16) 

 
The relationship between ( )Aµ

ν u , as described in (18.11), and the corresponding 

expression for Thomas precession in (17.10) is straightforward then. 
 
 Fermi-Walker transport is sometimes characterized by saying that it defines a 
“relativistic gyroscope.” 
 
 
 § 4. The Frenkel electron. – This section is basically a review of the key points in 
Frenkel’s paper [2] on the relativistic spinning electron. 
 
 a. The electromagnetic moment 2-form. – Frenkel began by attempting to give 
Thomas’s discussion of the equations of motion in [1a] a more relativistic (i.e., four-
dimensional) formulation.  He began by assembling the electric dipole moment p, which 

is a spatial covector, and the magnetic dipole moment m, which is a spatial 2-form, into a 

space-time 2-form: 
µ = c dt ^ p – m,      (19.1) 

 
in a manner that is analogous to the way that one assembles the spatial electric field 
strength 1-form E and the spatial magnetic field strength 2-form B into the space-time 
electromagnetic field strength 2-form: 
 

F = c dt ^ E – B.      (19.2) 



§ 4.  The Frenkel electron. 301 

 One then calls the space-time 2-form µ the electromagnetic moment 2-form.  In the 
case of a point-like charge, it will then be well-defined only along the world-line that 
represents the trajectory of that point.  One sometimes calls a charged point that is 
associated with an electromagnetic moment an electromagnetic pole-dipole (1). 
 If the particle that is being described were spatially-extended, rather than point-like, 
then the field p would represent the zero-field electric polarization, and m would 

represent the zero-field magnetization. 
 One can recover p and m from µ by using the temporal vector field ∂0 = 1 / c ∂t that is 

metric-dual to the temporal 1-form dx0 = c dt: 
 

p = 
0

i µ∂ , m = c dt ^ p − µ .     (19.3) 

 More generally, if: 
 

 u = u0 ∂0 + us = γ (∂t + v), γ = 
dt

dτ
 =

2 2

1

1 /v c−
, || u ||2 = c2 (19.4) 

 
is a time-like, proper-time parameterized velocity vector field then one can define a 
different splitting of µ into an electric dipole moment p′ and a corresponding magnetic 

dipole moment m′: 
 

p′ = iuµ = u0 p – c p(u) dt – ium = γ [− <p, v> dt + (p – ivm)], 

 
whose temporal and spatial projections are: 
 

0′p  = − γ <p, v>, s
′p  = γ (p – ivm),    (19.5) 

 
respectively.  Note that if s′p  vanishes then so will 0′p , since p = ivm will imply that: 

 
<p, v> = ivp = ivivm = 0. 

 
 However, if 0′p  vanishes then one can generally say only that the projection of s

′p  in 

the direction of v (i.e., <v, s
′p > = si ′vp ) must vanish. 

 
 In order to specialize µ to the case of an electron, Frenkel then imposed the constraint 
that the electric dipole moment should vanish in the rest system, but not necessarily the 
magnetic dipole moment, which was consistent with the experimental data.  That is: 
 

p = 
0

i µ∂ = 0.       (19.6) 

                                                
 (1) For more details on the pole-dipole model for the classical, relativistic, spinning electron, see Hönl 
and Papapetrou [9].  The 1940 paper by Bhabha and Corben [10] includes the radiation reaction, along with 
the Frenkel model. 
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Hence, from (19.5), the electric dipole moment in any other system with a relative 
velocity of v will be: 

′p = s
′p = – γ  ivm .      (19.7) 

 
 The Lorentz-invariant way of characterizing the Frenkel constraint is then: 
 

iuµ = 0.       (19.8) 
 
 The Uhlenbeck-Goudsmit hypothesis then took the form of assuming that there was a 
space-time 2-form: 

S = c dt ^ f – s      (19.9) 

 
that one could call the intrinsic angular momentum (or spin) 2-form, and that it related to 
µ by way of the gyromagnetic ratio: 
 

µ = 
02

eg

m c
S.      (19.10) 

 
(For Frenkel, one would have g = 2.) 
 Hence, the Frenkel constraint takes the form of saying that: 
 

0 = f′ ≡ iuS = γ [– <f, v> dt + (f – ivs)].    (19.11) 

Therefore, if f = 0 then: 

f′ = – γ iv s.       (19.12) 

 
If the spatial 2-form s is the spatial dual of the vector s: 
 

s = #s s = isVs       (19.13) 

 
then the vanishing of f′ will be equivalent to having v be parallel to s. 
 
 c.  The Frenkel equations of motion. – In order to derive the equation of motion for 
the spin 2-form S = 1

2 Sµν dxµ ^ dxν, Frenkel started heuristically with the basic balance 

principle (16.38): 
Sɺ  = τ = [µ, F]  ( Sµ

ν
ɺ  = F Fµ κ µ κ

κ ν κ νµ µ− ), 

 
and projected it into its temporal and spatial parts: 
 

ɺa  = − [p, B] – [m, E],  ɺs  = [p, E] + [m, B].    (19.14) 

 
However, due to the Frenkel constraint, these equations are not independent, so they can 
be solved only when that constraint is satisfied. 
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 Rather than summarize Frenkel’s largely-heuristic derivation of the equations of 
motion, we shall go on to his attempt to derive the equations of motion from a variational 
principle by defining the Lagrangian 4-form: 
 

L(xµ, xµɺ , ω ) = − 1 1
2 2^ #

e
A S F

c
ω µ+ ∧ + ∧xɺ ,  (19.15) 

 
in which A is a choice of electromagnetic potential 1-form (so F = d^A), V is the space-
time volume element, and ω = 1

2 ωµν dxµ ^ dxν is the relativistic angular velocity 2-form; 

hence, ωµν = ηµκ 
κ
νω , with 

µ
νω  = L Lµ κ

κ ν
ɶ ɺ ,     (19.16) 

 
for the one-parameter family L(t) of Lorentz transformations that represents the motion of 
a Lorentz frame along x(τ). 
 However, in order to get around the fact that ω is not actually the proper-time 
derivative of some corresponding matrix of angular coordinates, Frenkel then implicitly 
switched to a virtual-work formulation, instead of a formulation that started with the 
action functional.  That is, Frenkel tacitly admitted that he was using anholonomic 
constraints by the introduction of a non-Abelian Lie group of motions, so the definition 
of an action functional would then become invalid. 
 In order to give the equations a virtual work formulation, one can start with the 
obvious force, torque, linear energy-momentum, and angular momentum that one would 
expect for a relativistic, spinning point charge-magnetic dipole in an external 
electromagnetic field, namely: 
 

f = − e

c
iuF, τ = [µ, F], m0 u, S, resp. 

 
 The kinematical state is defined by s(τ) = (τ, xµ(τ), uµ(τ), µ

νδ , ( )µ
νω τ ), with the 

integrability condition uµ = xµɺ , although there is no corresponding constraint on ( )µ
νω τ .  

However, the variations of the coordinates of the kinematical state are assumed to satisfy: 
 

δuµ = ( )
d

x
d

µδ
τ

, µ
νδω = ( )

d

d
µ
νδ

τ
Ω ,   (19.17) 

 
in which µ

νδ Ω  represents an infinitesimal Lorentz transformation of the frame that is 

chosen in the tangent space to the identity element of the Lorentz group. 
 Corresponding to the variation of the kinematical state, one varies the dynamical state 
elements according to: 

δF = dF(δx), δS = [δ Ω, S], δµ = −
02

eg

m c
 δS.   (19.18) 

 



304 Chapter VIII – Relativistic rotational mechanics 

 Since the potential energy of the magnetic dipole that is described by µ in the external 
electromagnetic field F is 1

2 ( )F µµµµ , one can vary this to get: 

 

 1 1
2 2( ) ( )F Fδ δ+µ µµ µµ µµ µ  = 1

2
0

( )( ) Tr( [ , ])
4

eg
dF x F S

m c
δ δ− Ωµµµµ  

     = 1
2

0

( )( ) Tr([ , ] )
4

eg
dF x S F

m c
δ δ− Ωµµµµ . 

 

 Hence, this will contribute 1
2 ( )dF µµµµ  to the force and −

0

[ , ]
4

eg
S F

m c
to the torque. 

 However, one also has the state constraints: 
 

u2 = c2,  iuS = 0, 
 

which imply the corresponding constraints on the variations: 
 

u(δu) = 0, iδuS + iuδS = 0.    (19.19) 
 
 One introduces the Lagrange multipliers mc (τ) and c−2 a(τ), which are a scalar 
function of τ and a vector field along the world-line x(τ) of the point-dipole, respectively 
(1).  then one can define (vanishing) virtual works that are done by the constraints: 
 

mcu (δu), 
2

1

c
(iaiδuS + ia iuδS). 

 
The first of these expressions contributes a linear momentum mcu to the fundamental 1-
form, while the second expression will contribute both a linear momentum and a torque.  
One has to rearrange the term in parentheses in latter expression into: 
 
  − iaS (δu) + δS (u ^ a) = − iaS(δu) + Tr([δΩ, S][u ^ a]) 
    = − iaS (δu) + Tr(δ Ω S [u ^ a] – S δS [u ^ a]) 
    = − iaS (δu) + Tr((S [u ^ a] – [u ^ a] S) δ Ω) 
    = − iaS (δu) + Tr([S, u ^ a]δ Ω). 
 
Hence, the contribution to the linear momentum is the 1-form − c−2 iaS, while the 
contribution to the torque is the matrix c−2 [S, u ^ a]. 
 Combining all of the contributions, we will get a total increment of virtual work that 
is due to the virtual displacement δs of the kinematical state: 
 

 δW  =
1

( )
2

e
i F dF

c
 − +  

u µµµµ (δx) + P( xδ ɺ ) −
02

eg

m c
[S, F′ ])(δ Ω) + ( )S δΩɺ , (19.20) 

                                                
 (1) The factor of 1 / c2 is introduced into the definition of a for consistency with a later equation.  
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in which we have defined the effective linear momentum 1-form: 
 

P = (m0 + mc) u − c−2 iaS     (19.21) 
 
and the effective electromagnetic field strength 2-form: 
 

F′ = F − 0m

ec
u ^ a.      (19.22) 

 
 When one applies the product rule to the proper-time derivatives, this will become: 
 

δW = 1
2 ( )

e
i F dF P

c
 + −  

u
ɺµµµµ (δx) − (

02

eg

m c
[S, F′ ] +Sɺ )(δ Ω) +

d

dτ
[P(δx) + S(δΩ)].  

(19.23) 
 
 When one integrates δW(τ) dτ along a natural trajectory, while assuming that δx and 

δΩ either vanish at the end points or are transverse to the velocity, one will see that the 
vanishing of that integral (viz., the total virtual work along the trajectory) for all 
variations δx and δΩ that are consistent with the constraints will produce the equations of 
motion (1): 

Pɺ  =
e

c
iuF + 1

2 ( )dF µµµµ ,      (19.24) 

Sɺ = −
02

eg

m c
[S, F] +

2

1

c
[S, u ^ a] = −

02

eg

m c
[S, F′ ].   (19.25) 

 
 Note that the zero-field equations give a rectilinear motion for P, but S will precess 
with an angular velocity of Ω = c−2 u ^ a, which is due to Thomas precession.  However, 
although Pɺ  will vanish in that case, it does not follow that a must vanish, as well, or 
even be collinear with u. 
 
 d. Transverse momentum. − One can see from (19.21) that the effective linear 
momentum consists of a part (m0 + mc)u that is collinear with u and a part: 
 

p⊥ = − c−2 iaS      (19.26) 
 
that is transverse (indeed, orthogonal) to u, since: 
 

η(u, p⊥) = − c−2 η(u, iaS) = − c−2 iu iaS = c−2 ia iuS = 0. 
 

Hence, one refers to p⊥ as the transverse momentum for the motion.  As well shall see, 
the Dirac electron and the Weyssenhoff fluid also exhibit that novel feature. 

                                                
 (1) Although we are using – e for the charge of the electron, the components of iuF will be uµ Fµν , while 
one usually sees the component expression Fµν u

ν = − uν Fνµ   in the literature. 
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 e.  The nature of the Lagrange multipliers. − One can get an explicit expression for 
mc from equations (19.21) and (19.24).  One first differentiates the expression (19.21) for 
P to get: 

Pɺ = 2 2
0( )c cm u m m u c i S c i S− −+ + − −a aɺ

ɺɺ ɺ  

 
and then contracts this with u: 
 

( )P uɺ  = 2 2 2
0( ) ( )c cm c m m u c i i S c i i S− −+ + − −u a u au ɺ

ɺɺ ɺ = 2
2

1
( )cm c S

c
+ ∧u aɺɺ , 

 
since u2 = u(u) = c2 implies that ( )u uɺ  = 0, and i i Su aɺ = − i i Sa uɺ = 0. 
 Contracting the right-hand side of the equation of motion (19.24) for P, as well, will 
then give: 
 

2
2

1
( )cm c S

c
+ ∧u aɺɺ  = 

e

c
iu iuF + 1

2 ( )( )i dFu µµµµ = 1
2 ( )

dF

dτ
µµµµ  = 1 1

2 2( ( )) ( )
d

F
d

µ
τ

− Fɺµµµµ , 

so: 
2

cm cɺ = 1 1
2 2( ( )) ( )

d
F

d
µ

τ
− Fɺµµµµ −

2

1
( )S

c
∧u aɺ = 1 1

2 2
0

( ( )) ( )
2

d eg
F S

d m cτ
′+ Fɺµµµµ . 

 
(The bivector field F is the metric dual of the 2-form F.) 
However, the last term vanishes, from the equation of motion for S: 
 

( )S ′Fɺ  = −
02

eg

m c
Tr ([S, F′ ] F′ ) = −

02

eg

m c
Tr (S [F′, F′ ]) = 0. 

Hence: 
2( )c

d
m c

dτ
 = 1

2[ ( )]
d

F
dτ

µµµµ . 

 
 Integrating this with a vanishing integration constant will give: 
 

mc c
2 = 1

2 F(µµµµ) = −
04

eg

m c
F(S),    (19.27) 

 
which has a ring of physical reasonableness to it, since it says that the potential energy of 
the magnetic dipole µ in the external electromagnetic field F will contribute to the rest 
energy of the particle. 
 We can then rewrite the definition (19.21) of P as: 
 

P =  meff u −
2

1

c
iaS, meff ≡ m0 + 2

1

2c
F(µµµµ).   (19.28) 
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 In order to obtain a, Frenkel began by differentiating the Frenkel constraint to get: 
i Su
ɺ = − i Suɺ ,      (19.29) 

 
and since the second of (19.25) gives: 
 

i Su
ɺ  = iu(−

02

eg

m c
[S, F] +

2

1

c
[S, u ^ a]) = iJ S,  J ≡ −

02

eg

m c
iuF + a, 

 
if that also equals − i Suɺ  then one can say that: 

 

0 = iJ′′′′µ, J′ ≡ −
02

eg

m c
iuF +uɺ + a.    (19.30) 

 
 If this were true for all S (hence, all µ) then that would make: 
 

a = 
02 u

eg
i

m c
−F uɺ .     (19.31) 

 
 Since the usual Lorentz force law for a non-spinning charge of − e (g = 2) is: 
 

uɺ  =
0

e
i F

m c u ,       (19.32) 

 
one sees that a should vanish in that case.  Hence, the non-vanishing of a would have to 
represent a contribution to the Lorentz force law that was due to the spin of the electron.  
If we recall the Frenkel equation (19.24) for Pɺ and the expression for P in (19.28) then 
we will see that the expression for a will involve more than just 12 F(µµµµ).  At this point, we 

still do not have an explicit expression for a. 
 
 
 § 5. The Bargmann-Michel-Telegdi equations. – We just saw how Frenkel 
developed a classical set of equations for the time evolution of the linear energy-
momentum and intrinsic angular momentum of a point-like spinning charge in an 
arbitrary external electromagnetic field.  Some time later, in 1959, Valentine Bargmann, 
Louis Michel, and Valentine Telegdi [4] (which we shall abbreviate by BMT) derived a 
similar set of equations under the assumption that the external field was homogeneous, 
namely: 

sɺ= −
2

0

1
1 ( )

2 2s

e g g
i F

m c c

  + − ∧  
  

F s u u .   (20.1) 

 
(The 1-form s is the metric dual of the vector s.) 
 In the BMT paper, the motivation was to derive a relativistic, classical equation of 
motion for the spin polarization vector s for the case of a homogeneous external 
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electromagnetic field that would behave like the quantum equation of motion when one 
takes expectation values, à la Ehrenfest’s theorem. 
 s is a space-like spin polarization vector, which relates to the relativistic spin 2-form 
S by way of: 

#s = isV = u ^ S,      (20.2) 
 
so s amounts to the Pauli-Lubanski spin vector.  This implies that: 
 

iu #s = iu isV = − iu^sV = − #(u ^ s) = c2 S − u ^ iuS, 
 
so if S satisfies the Frenkel constraint then one can reconstruct S from u and s by way of: 
 

S =
2

1

c
#(s ^ u).      (20.3) 

 
 As a result of the definition of s, one will have: 
 

u ^ #s = u ^ u ^ S = 0,      (20.4) 
but: 

u ^ #s = u ^ isV = (isu) V =  g(u, s) V,     (20.5) 
 
so that makes the vector s orthogonal to u: 
 

g(u, s) = 0.       (20.6) 
 

 BMT assumed that the Lorentz force law (for a homogeneous F) would have the 
form: 

uɺ =
0

e
i F

m u ,      (20.7) 

 
which would not coincide with the Frenkel equation (19.24) when one assumes that dF = 
0, since the P on the left-hand side is not precisely m0 u, but includes a contribution from 
the spin [confer (19.28)] that will still remain. 
 Because of (20.6), we can convert part of the second term on the right-hand side of 
(20.1) into: 

−
0

e

m c
F(s ^ u) u = (is a) u = (is a) u – (is u) a = is(a ^ u),   (20.8) 

 
which will allow us to convert (20.1) into the form: 
 

sɺ= −
2

0

1
+ ( )

2 s s

eg
i i

m c c
′ ∧F u a ,    (20.9) 

 
with the “effective” electromagnetic field F′ defined by: 
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F′ = F − 0m

ec
∧u a ,     (20.10) 

 
which is the metric-dual of the Frenkel expression (19.22), although in the Frenkel the 1-
form a was not interpreted as the proper-time acceleration, but simply a Lagrange 
multiplier that had the units of acceleration. 
 Hence, one can also put the BMT equations into the form: 
 

sɺ  + 2

1

c
is(a ^ u) = −

02 s

eg
i

m c
′F .    (20.11) 

 
The left-hand side has the form of the Fermi-Walker derivative of s, which accounts for 
Thomas precession, while the right-hand side describes the Larmor precession. 
 
 In order to get the corresponding equation of motion for the spin 2-form S, one first 
differentiates (20.3) and substitutes from (20.9), which will give: 
 

Sɺ = 
2

1
#( )

c
∧ + ∧s u s aɺ  

=
2 2 4

0

1 1 1
#( ) #( ^ ) #[ ( )]

2 2s s

eg
i i

c c m c c

 
′∧ − − + ∧ ∧ 

 
s a u F u a u . 

 
 We can now address the nature of each term.  First, we have: 
 

#(s ^ a) = ia isV = ia #s = ia(u ^ S) = − u ^ iaS , 
while: 
 

[S, a ̂  u] = ( )i S i a u
µ ν

µνη ∧ ∧e e = ( )i S a u u a
µ

µν
ν νη ∧ −e = i S u i S a∧ − ∧a u = #(s ^ a), 

 
in which some steps have been omitted that are easy to replace. 
 Next (1): 

− 
2

1

c
#(u ^ isF′) = [S, F′ ]. 

 Finally: 
u ^ is(a ^ u) = u ^ isa ^ u − u ^ a ̂  isu = 0. 

 
 Combining everything will give: 
 

Sɺ  = −
2

0

1
[ , ] [ , ]

2

eg
S F S a u

m c c
′ + ∧ .   (20.12) 

 
                                                
 (1) Although this result looks reasonable, trying to prove it rigorously is harder than one would expect.  
Hence, we shall simply trust Plahte [11a] when he says “it can be shown.” 
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which should be compared with the second of the Frenkel equations (19.25).  One sees 
that the second term on the right-hand side of (20.12), which is already implicitly 
contained in F′, appears to be superfluous in this case or missing in the Frenkel case. 
 If one sets g = 2 then (20.12) will become: 
 

Sɺ  = −
0

[ , ]
e

S F
m c

,     (20.13) 

 
which includes only the Larmor precession, since in the BMT case, the terms that yield 
the Thomas precession will cancel when g = 2. 
 Therefore, we can see that when one restricts the Frenkel equations to the case of a 
homogeneous external field, the resulting equations of motion for the linear energy-
momentum P and the spin 2-form S will be closely related to the one that BMT proposed, 
but not identical. 
 Other attempts have been made to deduce classical, relativistic equations of motion 
for charged, spinning point particles in external electromagnetic fields.  Typically, they 
used the results of WKB expansions of the Dirac equation or the relativistic Pauli 
equation to various orders of ℏ .  A particularly definitive attempt of that kind was made 
by E. Plahte [11a, b] in 1966 in which he arrived at a generalization of the BMT 
equations to inhomogeneous external fields that closely resembled the Frenkel equations 
by starting with the relativistic Pauli equation and applying a WKB expansion.  The 
equation for energy-momentum P to first order in ℏ  was essentially the Frenkel equation, 
with the same definition of P, while the equation for the spin 2-form S to second order in 
ℏ  was also that of Frenkel.  An essential difference was that he also provided an equation 
for the acceleration uɺ  that was valid to first order in ℏ , and which was missing from 
Frenkel’s treatment.  It took the form: 
 

uɺ =
2

2 2 2 2 2 2
0 0 0 0

1 ( ) ( )
4 2 4

e eg e g d e g
F u F S S F u F F u

m c m c m c d m c
ν ν κλ κ λ ν

µν µ ν κλ µκ λ µντ
 + ∆ ∂ + − + 
 

S , 

(20.14) 
 
in which the operator ∆ was defined to be the projection onto the space orthogonal to u: 
 

∆ ≡ I −
2

1

c
u ⊗ u.      (20.15) 

 
 We shall come back to the subject of classical relativistic equations in the next 
chapter after we have discussed the relativistic quantum wave equations for spinning 
matter. 
 

 

 § 6. The extension from SU(2) to SL(2; C). – If one thinks of the transition from 

non-relativistic quantum mechanics to relativistic quantum mechanics as something that 

is described by the transition from SU(2) to SL(2; C) then one will see that this transition 
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can be effected without needing to alter the space of representation of the former group, 

namely, C2.  That is because the defining representation of SL(2; C) is also a group of 

invertible 2×2 complex matrices, which then act on C2 and include the Lie group SU(2) 

as a proper subgroup. 
 However, a subtlety has been introduced by that extension, namely, that SU(2) was 

not truly a complex Lie group, since the underlying manifold – viz., RP3 – does not admit 

a complex structure, while SL(2; C) is, in fact, a bona fide complex Lie group, and its 

underlying manifold is CP3, which is the complexification of RP3.  In fact, at the level of 

Lie algebras, su(2) lives in sl(2; C) in essentially the same way that R3 sits in C3. 

 Hence, if the basic requirement of a relativistic wave equation for spinning particles is 

that one must have a space of representation for SL(2; C) then one can see that C2 is 

certainly a simpler choice than C4, which is what the Dirac equation chooses.  Indeed, 

since C4 = C2 × C2, the Dirac wave functions are often referred to as bi-spinors. 

 In order to see how SU(2) relates to SL(2; C), one needs only to consider the complex 

form of polar decomposition, as is described in, say, Chevalley [12].  Basically, every 

element of GL(2; C) can be expressed uniquely as the product UH of a unitary matrix U 

in U(2) and an invertible Hermitian matrix H.  Now, although the unitary matrices form a 

subgroup of GL(2; C), the Hermitian matrices do not, since, in particular, the product of 

two Hermitian matrices does not have to be Hermitian; i.e.: 
 

(H1 H2)
† = † †

2 1H H = H2 H1,     (21.1) 

 
which equals H1 H2 iff the two matrices commute. 
 When one restricts the polar decomposition to matrices with unity determinant, one 

will get U ∈ SU(2) and det(H) = 1.  Hence, SU(2) lives in SL(2; C) as a proper subgroup, 

and one can express the linear action of SU(2) on C2 as the composition of the linear 

action of SL(2; C) on C2 (i.e., the defining representation) with the inclusion of SU(2) in 

SL(2; C). 

 One can just as easily extend the action of SU(2) on M(2; C) by conjugation to an 

action of SL(2; C) by the same composition.  That is, if L ∈ SL(2; C) and M ∈ M(2; C) 

then the action of L on M takes M to L−1ML.  If one expresses an element vµ of R4 as the 

2×2 complex matrix: 
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[v] = vµ σµ = 
0 3 1 2

1 2 0 3

v v v iv

v iv v v

 + +
 − − 

    (21.2) 

 

then one will also have an action of SL(2; C) on R4 by way of its action on M(2; C): 

 
L−1 [v] L = vµ L−1σµ L = vµ

µσ ,    (21.3) 

 
in which we have defined the four matrices: 
 

µσ  = L−1σµ L.       (21.4) 

 
 In order to see that we have, in fact, preserved the Lorentzian scalar product on M4, 

note that: 
det [v] = (v0)2 − (v1)2 − (v2)2 − (v3)2 = η(v, v),  (21.5) 

so, since  
det (L−1 [v] L) = det (L−1) det [v] det (L) = det [v], 

 

the action of SL(2; C) on R4 will preserve the Lorentzian structure. 

 Once again, one sees that the quadratic nature of the action implies that both L and 
L− will produce the same effect on vectors in Minkowski space.  Hence, since it is the 

pair {L, − L} of elements in SL(2; C) that acts upon v, and there is a two-to-one 

homomorphism SL(2; C) → SO+(3, 1) that takes {L, − L} to a proper, orthochronous 

Lorentz transformation [i.e., an element of the identity component in O(3, 1)], we see that 
the action of L on [v] is equivalent to the action of a proper, orthochronous 
transformation on v. 

 The polar decomposition of elements in SL(2; C) is even easier to explain at the 

infinitesimal level.  Namely, if l ∈ sl(2; C) is a 2×2 complex matrix with trace zero then 

in order to express it uniquely as a sum of an element u ∈ su(2) and another matrix h, one 

needs only to polarize l with respect to the operator †: 

 
l = u + h, u = 1

2 (l − l †), h = 1
2 (l + l †).   (21.6) 

 
 Hence, u is anti-Hermitian, which makes it an infinitesimal unitary transformation, 

and h is Hermitian, which makes it an infinitesimal Hermitian transformation; in both 

cases, they also have trace zero.  One now sees a fundamental limitation to the common 
practice in non-relativistic quantum mechanics of replacing the anti-Hermitian matrices 
that generate one-parameter subgroups of unitary matrices with Hermitian ones, namely, 
in relativistic quantum mechanics, one must use both types of matrix at the same time, 
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and it is more intrinsic to the structure of the Lie algebra sl(2; C) to regard anti-Hermitian 

matrices as the generators of one-parameter families of unitary matrices, instead of 
Hermitian ones.  Therefore, in order to avoid confusion, we shall use the convention that 
is intrinsic to the Lie algebra sl(2; C). 

 If one wishes to use the (Hermitian) Pauli matrices σi , i = 1, 2, 3 as a complex basis 
for the vector space sl(2; C) then if the components of l with respect to that basis are l i = 

u i + i h i, one will have: 
l = (h i + i u i) σi = h i σi + iu iσi  = h + u, 

 
which will make iu i the components of u, and h i, the components of h with respect to 

that basis.  (Recall that i σi will be anti-Hermitian matrices.) 
 

 It is essential to see that the polarization of matrices in sl(2; C) with respect to the 

Hermitian conjugation operator is directly analogous to the polarization of 3×3 complex 

orthogonal matrices in so(3; C) by means of the complex conjugation operator; i.e., 

decomposing them into a real and an imaginary part.  Hence, if o ∈ so(3; C) then one can 

express it in the real + imaginary form: 
 

o = r + i r′,    r = 1
2 (o + o*),    r′ = 1

2 (o − o*).   (21.7) 

 
One then finds that both r and r′ represent infinitesimal three-dimensional real Euclidian 

rotations. 

 In fact, one has that the Lie algebra sl(2; C) is isomorphic to the Lie algebra so(3; C), 

so the imaginary rotations will represent pure boosts.  This is closely analogous to the 
way that the hyperbolic functions can be expressed as circular functions of imaginary 
angles.  For instance: 

cosh θ = cos iθ, sinh θ = − i sin iθ. 
 
 In order to specify the isomorphism, one needs only to associate the three complex 

basis vectors ̂iτ  =
1

2
τi for sl(2; C) with the three elementary real, anti-symmetric 3×3 

matrices I i to see that one has a complex linear isomorphism D: sl(2; C) → so(3; C) of 

the vector spaces, and the complex bilinearity of the Lie bracket in both cases will make 
that a Lie algebra isomorphism, as well.  Hence, if l = ˆi

il τ , so D(l ) = l i Ii then one will 

also have: 
 

[D(l ), D(l′ )] = [ , ]i j
i jl l I I′ = ( )i j

ijk kl l Iε ′  = ˆ( ) ( )i j
ijk kl lε τ′ D = D[l, l′ ]. 

 
(The last step includes some steps that were omitted, but quite straightforward.) 
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 The fact that sl(2; C) is isomorphic to so(3; C) has the somewhat amusing 

consequence that one does not actually need to abandon the vector cross product on R3 in 

order to talk about special relativity, since the complexification of R3 to C3 will imply 

that the corresponding vector cross product defines the structure of the Lie algebra so(3; 

C) on C3, which is then isomorphic to the Lie algebra of infinitesimal Lorentz 

transformations.  Furthermore, the action of so(3; C) on C3 that amounts to the defining 

representation also has considerable significance in the context of bivectors and 2-forms 

on C3, such as one encounters in the complex formulation of electromagnetism. 
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CHAPTER IX 
 

RELATIVISTIC, SPINNING PARTICLES 
 
 
 In this chapter, we shall attempt to summarize the facts concerning the Dirac equation 
that will relate to the continuum-mechanical formulation, which will be the subject of the 
next chapter.  Although the first section on the relativistic Pauli equation is historically 
out of sequence, it is logically appropriate.  We will then discuss the aspects of the 
Clifford algebra of Minkowski space that bear upon the definition and interpretation of 
the Dirac equation, and in the section after that we will discuss the Dirac equation, 
including some of the traditional topics, such as the Gordon decomposition of the Dirac 
current, zitterbewegung, and the WKB approximation.  Finally, we shall review some of 
the alternative ways of formulating the Dirac equation that had been proposed along the 
way. 
 
 
 § 1. The relativistic Pauli equation. – After the experimental discovery of electron 
spin and Pauli’s non-relativistic attempt to include it in wave mechanics, the next big 
challenge to quantum theory was to make the wave equation for a spinning electron 
Lorentz-invariant.  What evolved was the Dirac equation, although some time later, 
Richard Feynman pointed out [1] that perhaps if quantum physicists had developed the 
relativistic Pauli equation first, they might not have found it necessary to develop the 
Dirac equation.  That was not the way that events transpired historically, but nonetheless, 
this author shall include some of his own, more recent, thoughts [2] on the formulation of 
a relativistic Pauli equation. 
 Another way of referring to the relativistic Pauli equation that is found more 
frequently in the quantum physics literature is “the squared Dirac equation.”  Once we 
have introduced the Dirac equation, we will justify that terminology. 
 
 a.  Lorentz-invariant matrix-valued wave functions. – In order to extend Pauli spinors, 

which correspond to SU(2), to something that corresponds to SL(2; C), one should note 

that since the latter group acts naturally upon C
2, just as the former one does, it would, at 

first, seem to be unnecessary to change the field space of the wave functions.  However, 
if one considers a two-component Pauli spinor [Ψ1, Ψ2]T to be a shorthand notation for a 
real function R times a 2×2 special unitary matrix U then one can see that the extension 

should be to a complex function λ times a matrix in SL(2; C): 

 

Ψ = 
1 1

2 2

ϕ χλ
ϕ χ
 
 
 

.     (1.1) 
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Note that since det Ψ = λ2, one can also say that (1.1) represents the decomposition of a 

matrix Ψ in GL(2; C) into the product of (det Ψ)1/2 and a matrix ̂Ψ  ∈ SL(2; C), namely, 

(det Ψ)−1/2 Ψ. 
 
 This should be contrasted with the usual Dirac bi-spinor, which effectively amounts 
to setting Ψ = λ [ϕ1, ϕ2, χ1, χ2]T.  Such spinors take their values in a four-complex-

dimensional vector space – namely, C
4 – but unlike the four-complex dimensional vector 

space M[2; C], the field space of Dirac bi-spinors lacks the structure of an algebra that 

one finds on M[2; C]. 

 Furthermore, one can naturally speak of the determinant of any element Ψ of M[2; 

C], which will be || λ || when Ψ has the form (1.1).   In the case where λ vanishes, the 

matrix Ψ will either be zero identically or it will have rank one, in which case, it will 
reduce to a two-component Pauli spinor.  When it does not vanish, one can think of the 

matrix 
1 1

2 2

ϕ χ
ϕ χ
 
 
 

, which belongs to SL(2; C), as a relativistic spin frame; that is, the 

columns of the matrix define a unit-volume frame for C2, while the rows define a unit-

volume frame for C2*.  The reduction to Pauli spinors can also come about then when one 

restricts the relativistic spin frame to be unitary, as well as having unit-volume, in which 
case, one must have χ1 = − ϕ2*, χ2 = ϕ1*. 
 The idea that quantum wave functions should be matrix-valued has the advantage that 
it leads more naturally into generalized Madelung-type conversions, since the iθ in the 
expression Reiθ can be generalized to any square matrix. 
 
 b. One form of the relativistic Pauli equation. – Actually, the justification for the 
following form that is given here (which is discussed at length in [2]) is easier to follow 
when one starts with the Dirac equation, but one can present it naively with a certain 
degree of plausibility, which is what we shall do here. 
 The minimally-coupled Klein-Gordon operator ηµν ∇µ ∇ν + κ2 can be generalized to 
something that acts upon any C2 wave function on space-time that takes its values in a 
complex vector space of any dimension by letting the operator act upon each complex 
component function individually.  However, unless there is something to relate the 
various component functions to each other – i.e., a coupling term – there is really nothing 
to say that one is dealing with anything but the concatenation of a number of independent 
wave functions, which can then be solved independently, as well. 
 In the case of the (non-relativistic) Pauli equation, the coupling came about in the 
term that represented the potential energy of the distribution of magnetic dipoles that the 
electron entailed in the presence of an external magnetic field.  However, in the eyes of 
special relativity, a magnetic field is not a Lorentz-invariant concept, but must be 
combined with the electric field into a Lorentz-invariant object in the form of the 
Minkowski electromagnetic field strength 2-form F.  Hence, a first place to look for the 
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extension of the Pauli equation to something that would be Lorentz-invariant would be to 
extend the coupling of the electron’s magnetic moment to an external magnetic field to a 
coupling of the electron’s electromagnetic moment µ to an external electromagnetic field 
F. 
 Of course, we have already discussed that in the context of the Thomas-Frenkel 
electron, and we reiterate the expression for that potential energy density: 
 

U = − 1
2 µ ^ F = − 1

2 F(µµµµ) V.     (1.2) 

 
 The non-relativistic expression in Chap. VII for the representation of the magnetic 
moment of the electron as a quantum operator was: 
 

 µi (op) = − µB σi      (1.3) 
 
(µB = Bohr magneton = 0/ 2e m cℏ ), which made the spin-magnetic moment coupling to 

the Hamiltonian operator take the form: 
 

Uµ (op) = − i
B iBµ σ .    (1.4) 

 
As a linear, algebraic operator, this acted on the Pauli wave function Ψ on the left or on 
its Hermitian conjugate Ψ† on the right: 
 

− i
B iBµ σ Ψ , − †i

B iBµ σΨ . 

 
 The issue is now how to extend these matrix expressions to ones that are Lorentz 
invariant.  As explained in [2], one will find that it is most convenient to first extend the 
Pauli spinor wave function Ψ = λ [ϕ1, ϕ2]

T to a 2×2 complex matrix: 
 

[Ψ] = 1 1

2 2

ϕ χ
λ

ϕ χ
 
 
 

= λ [ϕ, | χ],   (1.5) 

 
in which either λ is non-zero and the matrix [ϕ, | χ] has unity determinant or λ = 1 and 
the matrix [ϕ, | χ] has zero determinant, which is then a degenerate case. 
 In order to represent the 2-form F by a 2×2 complex matrix, one resorts to the 
complex form of F (1) – namely, Fi = Ei + iBi – and defines its matrix representation to 
be: 

[Fi] = 
0

0
i i

i i

E iB

E iB

+ 
 − + 

 = Ei σ1 + iBi σ0 .   (1.6) 

 

                                                
 (1) The complex formulation of electromagnetism goes back to some lectures of Riemann on partial 
differential equation, and has reasserted itself repeatedly in the work of Ludwik Silberstein, Ettore 
Majorana, and J. Robert Oppenheimer, among others.  It has considerable significance in the application of 
complex projective geometry to the theory electromagnetism (see the author’s book [3]). 
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 The coupling term can then be expressed as the operator: 
 

Uµ (op) [Ψ] = − i [ ][ ]i
B iFµ σ Ψ ,    (1.7) 

 
and when this is combined with the minimally-coupled Klein-Gordon operator, one gets 
the ultimate form for the relativistic Pauli equation: 
 

2 2[ ][ ]κ∇ + Ψ  = [ ][ ]i
i

ie
F

c
σ Ψ

ℏ
    (1.8) 

and its (Dirac) conjugate: 

2 2[ ][ ]κ∗Ψ ∇ +  = [ ][ ] i
i

ie
F

c
σΨ

ℏ
,   (1.9) 

in which: 

[ ]Ψ  = [Ψ]†σ1 = 
†

†

χ
ϕ
 
 
  

.    (1.10) 

 
 c.  The Lagrangian form of the relativistic Pauli equation – As discussed in [2], 
equation (1.8) can be formulated as a variational problem when one starts from an action 
functional.  The Lagrangian density for that action functional takes the form: 
 

L = 21
2 Tr [ ] [ ] [ ][ ] [ ] [ ][ ]i

i

ie
F

c
µν

µ νη κ σ∗ ∇ Ψ ∇ Ψ − Ψ Ψ − Ψ Ψ 
 ℏ

. (1.11) 

 
 One has generalized forces and momenta (1): 
 

f = 
[ ]

∂
∂ Ψ
L

= 21
2 Tr [ ] [ ][ ] [ ]i

i

ie
F

c
κ σ  − Ψ + Ψ ⋅  
  ℏ

,   (1.12) 

 

f  = 
[ ]

∂
∂ Ψ
L

= 21
2 Tr [ ] [ ] [ ][ ]i

i

ie
F

c
κ σ  − ⋅ Ψ + Ψ  
  ℏ

,   (1.13) 

µΠ  = 
( [ ])µ

∂
∂ ∇ Ψ
L

= { }1
2 Tr [ ][ ]µν

µη ∗∇ Ψ ⋅ ,    (1.14) 

 
µΠ  = 

( [ ])µ
∗

∂
∂ ∇ Ψ
L

= { }1
2 Tr [ ] [ ]µν

µη ⋅ ∇ Ψ ,    (1.15) 

 
in which the [⋅] notation signifies that these expressions act on 2×2 complex matrices as 
linear functionals by substituting the matrix for the symbol [⋅]. 

                                                
 (1) In (1.12), we have taken advantage of the fact that Tr AB = Tr BA in order to put [Fi] on the left end 
of the matrix product.  
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 One gets the field equations for [Ψ] and [ ]Ψ  by varying L with respect to [ ]Ψ  and 

[Ψ], respectively: 
 

0 = 
[ ]

δ
δ Ψ
L

= f µ
µ
∗− ∇ Π , 0 = 

[ ]

δ
δ Ψ
L

= f − ∇µ Πµ.   (1.16) 

 
In order to obtain the form (1.8) and its conjugate equation for [ ]Ψ  from the expressions 
(1.12)-(1.15), it is permissible to simply drop the reference to the trace and the matrix [⋅] 
and regard the canonical expressions in (1.12)-(1.15) as simply linear functionals on a 
vector space of matrices; i.e., covectors. 
 
 The Lagrangian density L is clearly invariant under an arbitrary global phase 

transformation that replaces [Ψ] with e−iα [Ψ] and [ ]Ψ  with [ ]ieα Ψ , where α is a real 
phase constant.  Hence, the corresponding variations are: 
 

δ [Ψ] = − iα [Ψ],  [ ]δ Ψ  = [ ]iα Ψ ,   (1.17) 
 
and the corresponding conserved current will be: 
 

Jµ = Πµ δ [Ψ] + [ ] µδ Ψ Π  = { }1
Tr [ ][ ] [ ] [ ]

2
µν

ν νη ∗∇ Ψ Ψ − Ψ ∇ Ψ
ℏ

,  (1.18) 

 
in which we have dropped the constant − iα and divided by ℏ . 
 
 L is also gauge-invariant, and the conserved (electric) current (density) will be 
proportional to the latter current: 
 

eJ µ  = 
Aµ

δ
δ
L

 = − { }Tr [ ][ ] [ ] [ ]
2

e

c
µν

ν νη ∗∇ Ψ Ψ − Ψ ∇ Ψ
ℏ

= − e

c
Jµ.  (1.19) 

 
 The energy-momentum-stress tensor that one gets from L is: 
 
  T µ

ν   = [ ] [ ]µ µ µ
ν ν νδ∗Π ∇ Ψ + ∇ Ψ Π −L  

  = { }1
Tr [ ] [ ] [ ] [ ]

2
µκ µ

κ ν ν κ νη δ∗ ∗∇ Ψ ∇ Ψ + ∇ Ψ ∇ Ψ −L .   (1.20) 

 
 It is clear that Tµν is symmetric, as opposed to the non-relativistic case (see Chap. 
VII), for which the time-space components were asymmetric. 
 We find that: 

Tν
ν µ∂  = 1

2 ( )eF J Fν κλ
µν µ κλ µ+ ∂ ,    (1.21) 
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in which we have defined the relativistic electromagnetic moment bivector µµµµ to have the 
components: 

µµν = − 
0

e

m c
sµν,  sµν = iℏTr [ ]Ψ σµν [Ψ].  (1.22) 

 
[Recall that σµν ≡ 1

2 (σ µσ ν – σ νσ µ).] If we compare (1.21) to the first of Frenkel’s 

equations of motion in Chap. VIII then we will see that the balance of linear momentum 
for the relativistic Pauli equation reproduces Frenkel’s equation for the balance of linear 
momentum precisely. 
 
 However, if we assume that all components, as well as the Pauli matrices, refer to a 
rest frame then the fact that σ0 is the identity, which commutes with all Pauli matrices, 
will imply that: 

σ 0i = − σ i 0 = 0, σ ij = 2i ε ijk σ k,   (1.23) 
 
which will automatically impose the Frenkel constraint on both sµν and µµν : 
 

s 0i = − s i 0 = µ 0i = − µ i 0 = 0,    (1.24) 
and we can also say that: 
 

sij = ε ijk sk,  sk = − 
2

ℏ
Tr [ ]Ψ σk [Ψ].  (1.25) 

 
 The second term on the right-hand side of (1.21) will then reduce to: 
 

1
2 F κλ

ν κλ µ∂ = 1
2

ij
ijFν µ∂ = 1

B2
ijk k

ijB sνµ ε ∂ = − ( ) k
kBν µ∂ ,  (1.26) 

 
with the obvious definition for µk (= − e /m0c sk).  Thus, we see that actually the absence 
of an electric dipole moment for the electron would imply that only the external magnetic 
field would couple to the spin. 
 Hence, the balance of linear momentum makes the divergence of the energy-
momentum-stress tensor equal to the sum of the Lorentz force on the moving charge and 
the force that is due to the inhomogeneity in the external magnetic field coupling to its 
spin. 
 
 In order to discuss the balance of angular momentum for the particle that is described 
by the wave function [Ψ], we must first discuss the way that the Lorentz group acts upon 

the field space – i.e., M(2; C).  Basically, if L ∈ SO(1, 3) is a Lorentz transformation, and 

D: SO(1, 3) → SL(2; C), L ֏D(L) is a representation of the Lorentz group in SL(2; C) 

then the action of SL(2; C) on the matrix [Ψ] is left translation, while its action on the 

matrix [ ]Ψ  is right translation by the inverse of D(L): 
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[Ψ] → D(L)[Ψ], [ ]Ψ  → 1[ ] ( )D L−Ψ . 
 

 If D : so(1, 3) → sl(2; C), ω ֏D(ω) is the corresponding representation of the Lie 

algebra then the action of D(ω) on [Ψ] and [ ]Ψ  is essentially the same, except that the 

element of so(1, 3) that corresponds to L−1 will be – ω (if L = exp ω): 

 
[Ψ] → D(ω)[Ψ], [ ]Ψ  → − [ ] ( )ωΨ D . 

 
 Hence, in order to be more specific about the variations: 
 

δ [Ψ] = D(ω)[Ψ], [ ]δ Ψ  = − [ ] ( )ωΨ D , 

 
we need to get an expression for the matrix a

b
µ
νD  of the representation D, which will then 

take a matrix µ
νω  in so(1, 3) to a matrix a

b
µ ν
ν µωD  in sl(2; C).  In order to get the matrix 

a
b

µ
νD , we start with the fact that D must take a basis of so(1, 3) to a basis of sl(2; C).  We 

choose the basis {Ji , Ki , i = 1, 2, 3} for so(1, 3) and the (real) basis {iσi , σi , i = 1, 2, 3} 

and make the obvious association: 
 

Ji → iσi , Ki → σi . 
 
If we put the matrix indices on both sets of basis elements then this will take the form: 
 

[ ]iJ µ
ν  → [ ] a

i biσ , [ ]iK µ
ν  → [ ] a

i bσ . 

 
The matrix a

b
µ
νD  can be obtained from the sum of tensor products: 

 

a
b

µ
νD = 

3

1

[ ] [ ] [ ] [ ]a a
i i b i i b

i

i J Kµ µ
ν νσ σ

=
+∑  = 

3

1

( [ ] [ ] )[ ] a
i i i b

i

i J Kµ µ
ν ν σ

=
+∑ .  (1.27) 

 
 We can be more specific about the components of [ ]iJ µ

ν  and [ ]iK µ
ν : 

 
[ ]iJ µ

ν  = ε0iµν ,  [ ]iK µ
ν  = 0

0
i

i
µ µ

ν νδ δ δ δ+ .   (1.28) 

 Hence: 

a
b

µ
νD = 

3
0

0 0
1

{ }[ ]i a
i i i b

i

i µ µ
µν ν νε δ δ δ δ σ

=
+ +∑ .   (1.29) 

 
 It is generally more convenient to lower the µ and produce an expression abµνD that is 

antisymmetric in µν.  If we now suppress the matrix indices then we will have: 
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Dµν = 
3

0
0 0

1

{ }[ ]i
i i i

i

i µν µ ν µ νε η δ η δ σ
=

+ +∑ .   (1.30) 

 
If we consider the boost and rotational components independently then we will get 
simply: 

D0i = [σi],  Dij = [ ]ijk ki ε σ .   (1.31) 

 
 We can then proceed with the definition of the spin tensor for [Ψ]: 
 

Sµ
κλ  = Tr{ [ ] [ ] }µ µ

κλ κλΠ Ψ − Ψ ΠD D .    (1.32) 

 
With the substitutions (1.14) and (1.15), that will become: 
 

Sµ
κλ  = 1

2 Tr{ [ ] [ ] [ ] [ ]}µ µ
κλ κλ

∗∇ Ψ Ψ − Ψ ∇ ΨD D ,  (1.33) 

 
in which we have omitted the matrix indices that pertain to the field space. 
 The boost and rotation components then take the forms: 
 

0iSµ  = 1
2 Tr{ [ ] [ ] [ ] [ ]}i i

µ µσ σ∗∇ Ψ Ψ − Ψ ∇ Ψ ,   (1.34) 

ijSµ  = 1
2 Tr{ [ ] [ ] [ ] [ ]}ijk k ki µ µε σ σ∗∇ Ψ Ψ − Ψ ∇ Ψ ,  (1.35) 

respectively. 
 We can now take the divergences of those expressions: 
 

0iSµ
µ∂ = Tr{[ ][ ] [ ] [ ] [ ][ ]}

2 ijk j k k j

e
F F

c
ε σ σΨ Ψ − Ψ Ψ

ℏ
,   (1.36) 

ijSµ
µ∂  = Tr{[ ][ ] [ ] [ ] [ ][ ]}

2 i j j i

ie
F F

c
σ σΨ Ψ − Ψ Ψ

ℏ
.   (1.37) 

 
 Since our L had kinematical units, in order to make these equations have dynamical 

units, we first multiply both sides by 2 0/ mℏ  (but keep the same notation for Sµ
κλ ).  If we 

define the matrix form of sk as in (1.25) and the corresponding matrix for µk by: 
 

[sk] = − [ ] [ ]kσΨ Ψ , [µk] = − µB [sk] = µB [ ] [ ]kσΨ Ψ ,  (1.38) 

 
respectively, then equations (1.36) and (1.37) will take the forms: 
 

0iSµ
µ∂ = εijk Tr[τjk ],  ijSµ

µ∂  = i Tr [τij ],   (1.39) 

 
resp., in which we have defined the torque matrix to be: 
 

[τij] = [[µi], [Fi]],      (1.40)  
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which will be consistent with the vectorial expression ττττ = µµµµ × B when one imposes the 
Frenkel constraint upon [µi]. 
 However, we see that we have a problem, here, since Tr [τij ] = 0, due to the fact that 
Tr AB = Tr BA, which will make Tr[A, B] = Tr AB – Tr BA = 0 in any event.  It would 

appear that if we were to make the left-hand sides into matrices in sl(2; C) and drop the 

trace on the right-hand side then we would have non-trivial balance laws of the expected 
form. 
 
 
 § 2. The Clifford algebra of Minkowski space. – In order to address the Dirac 
equation without having to interrupt the discussion for a separate discussion of the 
Clifford algebra of Minkowski space C(4, η), we shall first discuss that topic in a purely 

mathematical way. 
 
 a. Basic definitions and properties. – The Clifford algebra C(4, η) of Minkowski 

space M4 (1) is defined to be the free algebra over M
4 that satisfies the constraint that: 

 
{ v, w} = vw + wv = 2 <v, w>    (2.1) 

for every v, w ∈ M4. 

 Since C(4, η) is a free algebra, the vectors of Minkowski space represent the 

generators of the algebra, not the underlying vector space.  The latter space will actually 
be 16-dimensional, since one must expand the original vector space in order to account 
for all products of the forms vw, uvw, …  In reality, the relation (2.1) makes it 
unnecessary to form products of more than four vectors, as we shall see. 
 Note that under the polarization of the algebra product: 
 

vw = 1
2 (vw + wv) + 1

2 (vw − wv) = <v, w> + 1
2 (vw − wv),   (2.2) 

 
the relation (2.1) does not specify what the antisymmetric part of the product is.  Hence, 

that relation by itself would specify only a class of algebras that are defined over R4 and 

not a unique one.  In order to make the algebra unique, one must also specify the form of 
[v, w] = vw – wv.  As it stands, the way that one will define [v, w] is to make it a new 
element of the algebra that is not contained in the subspace that represents Minkowski 
space.  Note that the commutator bracket will define a Lie algebra iff it also satisfies the 
Jacobi identity.  For instance, if the algebra product that gives one vw is associative then 
the commutator bracket will define a Lie algebra. 
 One says that the Clifford algebra C(4, η) is defined over M4, rather than on it, since 

a basis {eµ , µ = 0, …, 3} for R4 will define a minimal set of generators of the algebra 

                                                
 (1) The literature of Clifford algebras has grown quite vast by now, but a good modern reference that 
discusses the physics, as well as the mathematics, is [4]. 
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C(4, η).  An actual basis for C(4, η) will then be obtained from all linearly-independent 

products of the basis vectors for R4 when one imposes the constraint: 

 
{ eµ , eν} = eµ eν + eν eµ = 2 <eµ , eν> = 2 ηµν .   (2.3) 

In particular: 
 

(e0)
2 = 1, (ei)

2 = − 1  (i = 1, 2, 3), ei ej = − ej ei   (i ≠ j).   (2.4) 
 

The last constraint has the effect of reducing the infinitude of higher-order products of 
basis vectors to, perhaps, the following set of sixteen: 
 

{1, eµ , e0 ei , εijk ej ek , εijk e0 ej ek , e1 e2 e3 , e0 e1 e2 e3}.  (2.5) 
 
(No summation is implied in these expressions.) 
 Another way of enumerating these same basis elements that is more adapted to 
Poincaré duality is the following one: 
 
 E0  = 1, 
 Eµ+1  = eµ  (µ = 0, …, 3), 
 E4+i  = e0 ei (i = 1, 2, 3), E8 = e1 e2 , E9 = e3 e1 , E10 = e2 e3 , 
 E11  = e0 e1 e2 , E12 = e0 e3 e1 , E13 = e0 e2 e3 , E14 = e1 e2 e3 , 
 E15  = e0 e1 e2 e3 . 
 
 The multiplication table for C(4, η) with this choice of basis (i.e., the structure 

constants A
BCa , A, B, C = 1, …, 16) is given in Appendix D, along with the sub-tables that 

define the symmetric and anti-symmetric parts of the product (i.e., the structures 
constants A

BCb = A
CBb  and A

BCc = − A
CBc ).  Note that (2.2) implies the following relations 

between the structure constants: 
 

A
BCa = A

BCb + A
BCc , A

BCb = 1
2 ( A

BCa + A
CBa ), A

BCc = 1
2 ( A

BCa − A
CBa ).  (2.6) 

 
 Some basic features of the algebra C(4, η) can be derived from the tables by 

inspection: 
 
 1. The square of any basis element is equal to ± 1. 
Hence, every basis element EA has a multiplicative inverse, which will be equal to ± EA . 
 
 2. Any product of basis elements will either commute or anti-commute.  In 
particular: 
 
 3. There are no divisors of zero amongst the basis elements. 
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However, the algebra C(4, η) itself can have divisors of zero.  For example: 

 
(E0 + E6)(E0 – E6) = (E0)

2 – (E6)
2 = 1 – 1 = 0. 

 
Hence, the ring that C(4, η) defines is not an integer domain, and therefore, not a division 

algebra; in particular, not every element of C(4, η) will have a multiplicative inverse, but 

only the units, which will define a multiplicative group.  From the first observation, that 
group will not be trivial. 
 
 4. From 2, one will always have either: 
 

EA EB = 1
2 {EA , EB} or EA EB = 1

2 [EA , EB]. 

 
 5. If B is fixed and A ranges from 1 to 16 then EA EB (or EB EA) will range through 
the entire basis set.  (This was pointed out by Pauli in [5].)  That is, left (or right) 
translation by any EA will permute the basis elements, up to sign.  In particular: 
 
 6. The structure constants ABCa  are always equal to ± 1 (this was also observed by 

Pauli, loc. cit.), and: 
 
 7. Left (or right) translation by any EA will define a linear isomorphism of the 16-
dimensional vector space that underlies C(4, η).  Hence: 

 
 8. For every ordered pair (EA, EB), the map CA,B : C(4, η) → C(4, η) that takes any 

element a ∈ C(4, η) to EA a EB will be a linear isomorphism. 

 
 9. Right-multiplying each EA by E15 produce E15−A for all A = 0, …, 16, and left-
multiplication by E15 will produce ± E15−A (+ : A = 0, 5−10, 15.  − : A = 1−4, 11−14). 
 
 As we shall see, this last property of the algebra C(4, η) is closely analogous to the 

way that the Hodge * operator acts upon the exterior algebra over Minkowski space. 
 

 b.  Relationship between C(4, η) and the exterior algebra over R4. – Since the 

underlying vector space of C(4, η) and that of the exterior algebra Λ*(R
4) over R4 are 

both 16-dimensional, a linear isomorphism will always exist.  Indeed, the simplest way to 
accomplish that is to define a basis for each space and associate corresponding basis 
vectors. 

 If one starts with a basis {eµ , µ = 0, …, 3} for R4 then, for the present purposes, a 

convenient basis for the underlying vector space to C(4, η) will be defined by (2.5); of 
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course, since the basis {EA, A = 0, …, 15} that was subsequently defined above is simply 
a permutation of those elements, it too can be used, if convenient. 

 One can also define a basis for Λ*(R
4) from all (linearly-independent) exterior 

products of the basis vectors eµ for R4 : 

 
{1, eµ , eµ ^ eν , eλ ^ eµ ^ eν , e0 ^ e1 ^ e2 ^ e3},   (2.7) 

 
in which λ < µ < ν in every case. 

 The obvious linear isomorphism between C(4, η) and Λ*(R
4) is then to associate: 

 
1 ↔ 1,  eµ  ↔ eµ , eµ eν ↔ eµ ^ eν , eλ eµ eν ↔ eλ ^ eµ ^ eν , 

e0 e1 e2 e3 ↔ e0 ^ e1 ^ e2 ^ e3 . 
 
 Note that as long as the basis eµ is orthonormal, the Clifford products of distinct basis 
vectors will always be completely antisymmetric: 
 

e[µ … eν] = eµ … eν .     (2.8) 
 

Hence, one can just as well denote the basis vectors by the expressions on the right-hand 
side of this. 
 Although the association of basis vectors above will define a linear isomorphism of 
the two real vector spaces, it will not define an isomorphism of the algebras, despite the 
fact that the Clifford product of distinct orthonormal basis vectors will be completely 
antisymmetric, as will their exterior product.  Indeed, one can actually regard the algebra 

Λ*(R
4) as a degenerate case of a Clifford algebra for which the scalar product of any two 

vectors in R4 is zero, since one must have: 

 
v ^ w + w ^ v = 0  (= 2 <v, w>)    (2.9) 

in every case. 

 The vector space Λ*(R
4) is graded with respect to the exterior product.  That is, it can 

be expressed as a direct sum of linear subspaces: 
 

Λ*(R
4) ≅ Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ Λ3 ⊕ Λ4 , 

 
whose dimensions are 1, 4, 6, 4, 1, resp.  (That is, the dimensions are equal to the 

binomial coefficients 
4

k

 
 
 

, k = 0, …, 4).  One then finds that a basis for each can be 

given by 1, {eµ }, { eµ ^ eν }, { eλ ^ eµ ^ eν },  e0 ^ e1 ^ e2 ^ e3, resp.  The sense in which 
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Λ*(R
4) is graded with respect to the exterior product is that if α is a k-vector and β is an l-

vector then α ^ β will always be a k + l-vector. 
  Although one can define a corresponding direct sum decomposition of C(4, η) into 

linear subspaces that are spanned by the corresponding basis elements, nonetheless, it 
will not be graded with respect to the Clifford algebra, since the analogue product αβ of a 
k-vector and a l-vector in C(4, η) does not have to be a k+l-vector; e.g., e0e1 and e1e2 are 

both “2-vectors,” but their product e0e1e1e2 = − e0e2 is another “2-vector,” not a “4-
vector.” 
 However, the Clifford algebra can be graded into a direct sum C(4, η) = Codd ⊕ Ceven, 

since the product of odd-order elements will always be odd-order, and the product of 

even-order elements will always be even-order.  The corresponding subspaces of Λ*(R
4) 

will then be Λ1 ⊕ Λ3 and Λ0 ⊕ Λ2 ⊕ Λ4 , respectively.  In both the cases, the subspaces 
are 8-dimensional. 
 
 c.  Matrix representations of the algebra C(4, η). – A (faithful) matrix representation 

of C(4, η) is a vector space M(n; K) (K = R or C) of n×n matrices and a set of four 

linearly-independent matrices {γµ , µ = 0, …, 3}  has: 
 

γµ γν + γν γµ  = 2ηµν I,      (2.10) 
 
in which I represents the n×n identity matrix.  Hence, if one associates the members of an 
orthonormal basis eµ on Minkowski space with the corresponding matrices γµ , and then 
extends to corresponding products, one should get a linear isomorphism of C(4, η) into a 

subspace of M(n; K) such that the Clifford product in C(4, η) goes to the matrix product 

in M(n; K). 

 Since M(n; K) acts upon Kn, one can also think of a matrix representation of C(4, η) 

as a linear action C(4, η) × Kn → Kn, (a, Ψ) ֏ aΨ.  Hence, for every a, the left-

translation map La : K
n → Kn, Ψ ֏ aΨ will be linear. 

 The question of finding matrix representations for the Clifford algebra C(4, η) is 

closely related to the question of choosing the field space for the Dirac wave function Ψ, 

since the matrices will have to act upon Ψ.  Dirac himself chose to use C4 as the field 

space, which meant that the γ µ coefficients would have to be represented by 4×4 complex 

matrices.  However, the complex dimension of the vector space M(4; C) is 16, so its real 

dimension will be 32.  Hence, one cannot expect to find a faithful representation of the 

16-real-dimensional algebra C(4, η) in the entire 32-real-dimensional algebra M(4; C), 
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but only as a 16-dimensional real sub-algebra of it.  Thus, C(4, η) will sit in the matrix 

algebra M(4; C) in a manner that is analogous to the way that su(2) sits in sl(2; C). 

 Already, one begins to suspect that perhaps C
4 is not the proper choice for a field 

space.  Nonetheless, several ways of representing the γ matrices as 4×4 complex ones 
arose. 
 The form that Dirac himself used in [6] was: 
 

γ 0 = 
0

0

I

I

 
 − 

, γ i = 
0

0

i

i

σ
σ

 
 −  

.   (2.11) 

 
 In his monumental work on the theory of groups and quantum mechanics [7], which 
was first published in the same year as Dirac’s seminal paper, Hermann Weyl gave the γ 
matrices the representation: 
 

γ 0 = 
0

0

I

I

 
 − 

, γ i = 
0

0

i

i

σ
σ
 −
 
  

.    (2.12) 

 
 Ettore Majorana [8] gave the γ matrices the representation: 
 

γ 0 = 
2

2

0

0

σ
σ
 
 
  

,  γ 1 = 
3

3

0

0

i

i

σ
σ

 
 −  

,  γ 2 = 
2

2

0

0

σ
σ
 −
 
  

,  γ 3 = 
1

1

0

0

i

i

σ
σ

 −
 −  

, (2.13) 

 
which has the advantage of simplifying the charge conjugation operator that acts upon the 
wave function to simply charge conjugation.  The so-called “Majorana spinors” will then 
be real-valued wave functions in the Majorana representation. 
 

 As an alternative to C4, Alexandru Proca [9] pointed out that the Clifford algebra C(4, 

η) acts upon itself by left or right multiplication, so there would be nothing 
mathematically inconsistent about using C(4, η) itself as the field space.  That would have 

the advantage of allowing one to “encode” even more physical observables in the wave 
function without needing to change the wave equation.  In his later years, Sir Arthur 
Stanley Eddington developed that suggestion even further (see the posthumous book 
[10]).  Some other researchers who followed up on Proca’s suggestion were Ernst 
Stueckelberg [11] and Nicholas Kemmer [12]. 
 
 
 § 3.  The Dirac equation. – In Paul Dirac’s landmark 1928 treatise [6], his stated 
purpose was to devise a quantum wave equation for the electron that was both Lorentz-
invariant and correctly incorporated the spin of the electron.  He began by looking for a 
square root of the Klein-Gordon operator, although really he was defining a square root 
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of the d’Alembertian operator, since he started with a linear, first-order partial differential 
operator of the form: 

iℏ (∂0 + α i ∂i) – mcβ  (x0 = ct),    (3.1) 
 

whose coefficients α i, β were not necessarily scalars, but were expected to commute 
with the partial derivative operators.  He then multiplied this by its “conjugate” operator: 
 

iℏ (− ∂0 + α i ∂i) + mcβ, 
which resulted in the operator: 
 

2 2 2 2 21
0 2[ ( ) ] ( )i j j i i i

i j ii mc m cα α α α α β βα β∂ − + ∂ ∂ − + ∂ +ℏ ℏ . 

 
In order for this to equal the Klein-Gordon operator, one would need to have: 
 

1
2 ( )i j j iα α α α+ = δ ij,  i iα β βα+ = 0,  β 2 = 1. 

 
 The last condition implies that if β is an element of an algebra with a unity element 
then β will not only be invertible, but it will also be its own inverse.  Hence, if one left-
multiplies the operator (3.1) by β then if one defines γ 0 = β, γ i = βα i, i = 1, 2, 3, as well 
as the Compton wave number κ = mc / ℏ , and divides the operator (3.1) by iℏ , one can 
express that operator in the form: 
 

∂ + iκ = γ µ ∂µ + iκ  (µ = 0, …, 3), 
 
while its conjugate will take the form: 
 
     ∂ − iκ = γ µ ∂µ − iκ. 
 
 The product of the last two operators will be the Klein-Gordon operator iff: 
 

γ µ γ ν + γ ν γ µ = 2 ηµν  (µ, ν = 0, …, 3).   (3.2) 
 
 If that is the case then the equation: 
 

( ∂ + iκ) Ψ = 0,      (3.3) 
 

in which the wave function Ψ takes its values in a vector space upon which acts the 
algebra to which the coefficients γ µ belong, will be the Dirac equation in its “covariant” 
form, while the equation: 

 (∂0 + α i ∂i + iκ β) Ψ = 0    (3.4) 
 

will be the Dirac equation in its “Hamiltonian” form, or more precisely: 
 



§ 3.  The Dirac equation. 331 

i
t

∂Ψ
∂
ℏ = Hop Ψ,  Hop ≡ 2

0
i

i
c m c

i x
α β∂ +

∂
ℏ

.  (3.5)  

 
 The Dirac equation that is conjugate to (3.3) is then: 
 

Ψ ( ∂



− iκ) = (∂µ Ψ ) γ µ  − iκ Ψ = 0,     (3.6) 
 

in which the Dirac conjugate of Ψ is defined to be: 
 

Ψ  = Ψ†γ 0.      (3.7) 
 
 Of course, the conditions that are expressed in (3.2) amount to the statement that the 
coefficients of the partial derivative operator in the Dirac equation must define a matrix 
representation of the Clifford algebra C(4, η).  Various representations have been used in 

the physics literature, but we shall show the form that (3.3) takes with the Dirac and Weyl 
representations that were defined above in (2.11) and (2.12), respectively.  The Dirac 
representation gives the following pair of two-component spinor equations: 
 

0

0

,

,

i
i

i
i

i
x x

i
x x

ϕ χσ κϕ

χ ϕσ κχ

∂ ∂ + = − ∂ ∂
∂ ∂ + = +
∂ ∂ 

    (3.8) 

 
while the Weyl representation gives: 
 

0

0

,

,

i
i

i
i

i
x x

i
x x

ϕ ϕσ κχ

χ χσ κϕ

∂ ∂ + = − ∂ ∂
∂ ∂ − = −
∂ ∂ 

    (3.9) 

 
which has the advantage of allowing one to essentially “decouple” the up and down 
components in Dirac wave functions as far as the differentiation is concerned into a pair 
of equations for which the coupling is algebraic. 
 
 b. The Lagrangian formulation of the Dirac equation. – The Dirac equation for the 
wave function of a free electron and its Dirac conjugate can be obtained from the 
following Lagrangian density: 

L = ( 2 )
2

i c
iκΨ ∂ Ψ − Ψ ∂ Ψ + ΨΨ

� 
ℏ
.   (3.10) 

 
(The arrows over the Dirac operator in this expression indicate which wave function they 
act upon.)  Note that L = 0 whenever the wave function Ψ and its Dirac conjugate satisfy 

the Dirac equations. 
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 The generalized forces and the momenta that are conjugate to dΨ and dΨ  are: 
 

f = 
∂
∂Ψ
L

= − ( 2 )
2

i c
iκΨ ∂ − Ψ


ℏ
, f  = 

∂
∂Ψ
L

 = ( 2 )
2

i c
iκ∂ Ψ + Ψ

�ℏ
, (3.11) 

 

µπ =
,µ

∂
∂Ψ
L

= 
2

i c µγΨℏ ,  µπ = 
,µ

∂
∂Ψ
L

= − 
2

i c µγ Ψℏ
.  (3.12) 

 
One gets the equation for Ψ when one varies L with respect to Ψ , and vice versa. 

 
 c.  Dirac current. – The Lagrangian density L is invariant under phase 

transformations, which replace Ψ with e−iα Ψ and Ψ  with ieα Ψ .  The variations of the 

wave functions Ψ  and Ψ  will then take the form: 
 

δΨ = − iα Ψ, δΨ  = iα Ψ . 
 
 The Noether current that corresponds to this takes the form: 
 

Jµ = µ µπ δ δ πΨ + Ψ  = c µγΨ Ψ ≡ c Sµ,   (3.13) 
 
in which we have defined the basic “bilinear covariant”: 
 

Sµ = µγΨ Ψ ,      (3.14) 
 
which then defines the components of a vector field S = Sµ ∂µ , and omitted a superfluous 
multiplicative constant.  S has the property that its Minkowski norm-squared ρ : 
 

ρ = ηµν S
µ Sν = 2

2

1
J

c
= ( )( )µ ν

µνη γ γΨ Ψ Ψ Ψ   (3.15) 

 
is real and can thus represent a matter density. 
 In fact: 

S0 = Ψ Ψ ,      (3.16) 
 

which will equal ρ in the rest system, for which S i = 0. 
 
 d. Gordon decomposition. – Walter Gordon (of Klein-Gordon fame) defined an 
intriguing decomposition of the spatial part J i of the Dirac current in [13] into a sum: 
 

J i = i i
c pJ J+ ,      (3.17) 
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in which i
cJ  represented the components of a “convection current,” and i

pJ  represented 

the components of a “polarization current,” both of which were conserved individually: 
 

i
i cJ∂  = i

i pJ∂  = 0.      (3.18) 

 
 Although Gordon’s decomposition seemed manifestly rooted in the electromagnetic 
properties of the electron field, actually most of it survives the removal of an external 
electromagnetic field.  The first step in making the transformation of J i is not actually 
purely algebraic, and amounts to using the Dirac equation and its Dirac conjugate to 

replace Ψ with (i / κ) ∂ Ψ
�

and Ψ  with – (i / κ) Ψ ∂



 in S i separately, which will produce 
two expressions: 
 

 iS = ii λ
λγ γ

κ
Ψ ∂ Ψ  = 0

0( )i i j
j

i γ γ γ γ
κ

Ψ ∂ Ψ + Ψ ∂ Ψ  = ( )i j
j

i γ γ
κ

Ψ ∂ Ψ , 

 

 iS = − ii λ
λ γ γ

κ
∂ Ψ Ψ  = − 0

0( )i j i
j

i γ γ γ γ
κ

∂ Ψ Ψ + ∂ Ψ Ψ  = − ( )j i
j

i γ γ
κ

∂ Ψ Ψ . 

 
If one adds these together then one will get: 
 

 S i  = [ ]i j j i
j j

i γ γ γ γ
κ

Ψ ∂ Ψ − ∂ Ψ Ψ   

 = [ ] [ ]i i i i i j j i
i i j j

i j

i iγ γ γ γ γ γ γ γ
κ κ≠

Ψ ∂ Ψ − ∂ Ψ Ψ + Ψ ∂ Ψ − ∂ Ψ Ψ∑  

 = [ ] [ ]i j j i
i i j j

i j

i i γ γ γ γ
κ κ≠

∂ Ψ Ψ − Ψ ∂ Ψ + Ψ ∂ Ψ − ∂ Ψ Ψ∑ . 

 
If one then uses the fact that when i ≠ j, one will have: 
 
  [γ i, γ j] = 2γ i γ j 
 
then one can express S i as a sum i i

c pS S+ , in which: 

 

i
cS = [ ]i i

i

κ
∂ Ψ Ψ − Ψ ∂ Ψ , i

pS = ∂j Ωji,    (3.19) 

with: 

Ωij = [ , ]
2

i ji γ γ
κ

Ψ Ψ .     (3.20) 

 
 In order to get to the Gordon expressions from these, one must minimally-couple the 
external electromagnetic field and multiply both i

cS  and i
pS  by a scaling constant that 

gives those currents electromagnetic units.  In anticipation of the subsection below in 
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which we minimally-couple the electromagnetic field to the Dirac wave function and 
define the conserved current eJ µ = − e Sµ that corresponds to the gauge invariance of the 

action functional, we will then get: 
 

i
cJ =

0

[ ]i i

ie

m c
∗Ψ ∇ Ψ − ∇ Ψ Ψℏ

, i
pJ = ij

i e∂ Ω , ij
eΩ  = −

0

[ , ]
2

i jie

m c
γ γΨ Ψℏ

. (3.21) 

 
Here, we see the Bohr magneton reappear in both expressions as a coupling constant. 
 
 e.  Velocity operator. – The question of how to associate a velocity with the Dirac 
wave function, whether as a space-time vector field (preferably time-like) or as an 
operator on wave functions, is more problematic that it might first sound. 
 As Fock [14] observed, if one puts the Dirac equation into its Hamiltonian form (3.5)
then from the fact that if F(t, xi) is a differentiable operator then: 
 

dF

dt
= op[ , ]

F i
H F

t

∂ +
∂ ℏ

,    (3.22) 

one can conclude that: 

V i ≡
idx

dt
= op[ , ]i

i
H x

ℏ
= cα i.     (3.23) 

 
 Hence, at the quantum level, the velocity of the matter wave that is described by Ψ 
will be a set of three matrix operators V i.  Therefore, it will be a linear algebraic operator 
on wave functions, not a linear differential operator, like momentum, and one sees that 
the velocity operator does not relate to the momentum operator in the classical manner of 
P i = mV i.  That is: 

ii x

∂
∂
ℏ ≠ mc α i.      (3.24) 

 
 Furthermore, the eigenvalues of V i will all be ± c, which is perplexing, since when Ψ 
is the wave function of a massive particle, one expects that it should have a time-like 
velocity as a wave, not a light-like one.  The discreteness of the eigenvalues of V i also 
conflicts with the continuous spectrum of momentum eigenvalues for massive traveling 
waves. 
 Breit [15] made some observations that were similar to those of Fock by putting the 
Dirac Hamiltonian operator into the form (1): 
 

Hop = α 0 m0 c
2 + cα i Pi ,     (3.25) 

 
and drawing an analogy with the relativistic Hamiltonian for a moving point: 
 

H = mc2 = (1 – β 2) mc2 + v i mvi ,    (3.26) 

                                                
 (1) We are now substituting the notation α0 for the matrix β in order to avoid confusion with the scalar β 
= v / c. 



§ 3.  The Dirac equation. 335 

in which m = m0 (1 – β 2)−1/2 is the relative mass when β = v / c.  Under that analogy, one 
will get the association of v i with cα i directly, as well as the association of v0 = (1 – 
β 2)1/2 with α 0. 
 
 f. Zitterbewegung. – As Schrödinger point out [16], an interesting aspect of the 
velocity operator V i = cα i is that the corresponding acceleration operator: 
 

idV

dt
= 

ic

ℏ
[H, α i] = 

2ic

ℏ
(m0 c [α 0, α i] + [α j Pj , α i]) 

 
does not generally vanish, so the motion of the free particle that is described by the wave 
function Ψ will not actually be rectilinear. 
 Schrödinger then decomposed the velocity operator into two parts: 
 

V i = iV + ξ i (t),     (3.27) 
in which: 

 iV = c2 H−1 Pi = 
1 iP
m

    (3.28) 

 
represents the rectilinear part of the velocity that one would expect from classical 
considerations, and: 

ξ i (t) = 2 /
0
i iHtc eη − ℏ      (3.29) 

 
represents a time-periodic contribution to the velocity that he attributed to 
Zitterbewegung (“jittering motion”). 
 The frequency of zitterbewegung will then be 2H /ℏ  and its amplitude will be 

1
02
ic

H
i

η−ℏ
, which Schrödinger estimated to be of order ℏ / 2mc, or half the Compton wave 

length of the particle in question. 
 
 g.  Energy-momentum-stress tensor. – The energy-momentum-stress tensor for the 
Dirac equation was first discussed in 1928 by the Dutch physicist Hugo Tetrode [17].  
However, his construction was heuristic and was not based upon a field Lagrangian. 
 If one starts with the Dirac Lagrangian L above (3.10) then the energy-momentum-

stress tensor will take the general form: 
 

T µ
ν  = a a

a a
µ µ µ

ν ν νπ π δΨ + Ψ −L  = a a
a a
µ µ

ν νπ πΨ + Ψ ,  (3.30) 

 
in which the fact that L = 0 for a solution has produced the last equality. 

 With the substitutions (3.12), one will get: 
 

T µ
ν  = ( )

2

i c µ µ
ν νγ γΨ ∂ Ψ − ∂ Ψ Ψℏ

,    (3.31) 



336 Chapter IX – Relativistic, spinning particles. 

which is essentially the Tetrode result, if one ignores the coupling to an external 
electromagnetic field, which we shall introduce later. 
 Since T µ

ν  are all real, we must have: 

 
i µ

ν γ∂ Ψ Ψ = − i µ
νγΨ ∂ Ψ ,    (3.32) 

which will make: 
Tµν = i c µ νγΨ ∂ Ψℏ .     (3.33) 

 
 One sees that the linear momentum in, in fact, conserved: 
 

T µ
µ ν∂ = 0,       (3.34) 

 
which is consistent with the absence of external forces.  
 The antisymmetric part of Tµν is then equal to: 
 

T[µν]  = [ ]i c µ νγΨ ∂ Ψℏ  = ( )
2

i c
µ ν ν µγ γΨ ∂ Ψ − ∂ Ψ Ψℏ

,  (3.35) 

 
which does not generally vanish, and suggests the existence of a non-vanishing spin to 
the field Ψ, which was to be expected. 
 If we recall the definition of the canonical momentum π µ in the first of equations 
(3.12) then we can express T[µν] in the form: 
 

Tµν − Tνµ = πµ ∂ν Ψ − πν ∂µ Ψ = (π ^ dΨ)µν ,   (3.36) 
 
which is somewhat reminiscent of the term a ^ u in the Frenkel equation for spin 
precession, although dΨ is not precisely a generalized force, in such a way that it might 
be proportional to an acceleration in the same way that π is proportional to a velocity. 
 

 h. Dirac spin tensor. – The Lie algebra homomorphism D: so(1, 3) → gl(4, C) 

represents the infinitesimal Lorentz transformation µ
νω  by the 4×4 complex matrix: 

 
( )a

b ωD = a
b
ν µ
µ νωD . 

 
 In the present case, since ωµν = − ωνµ , we have: 
 

Dµν = −
8

i
[γµ , γν] = −

4

i γµ γν , 

 
in which we have suppressed the a-b indices, which belong to the gamma matrices, and 
lowered the ν. 
 The total angular momentum tensor is: 
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M λ
µν  = L Sλ λ

µν µν+  

with: 
Lλ

µν  = T x T xλ λ
µ ν ν µ− ,      (3.37) 

Sλ
µν  = λ λ

µν µνπ πΨ + ΨD D = 
4

c λ
µ νγ γ γΨ Ψℏ

.  (3.38) 

 
 Note that as long as one is dealing with only distinct sets of indices the corresponding 
tensor whose components are Sλµν will be completely antisymmetric.  Hence, one can 
define a 3-form by way of: 

S = 
1

3!
 Sλµν dxλ ^ dxµ ^ dxν .     (3.39) 

 
However, it is important for the conservation laws to note that: 
 

Sµ
µν  = − Sµ

νµ  = 
4

c µ
µ νγ γ γΨ Ψℏ

=
4

c
νγΨ Ψℏ

 ≠ 0;   (3.40)  

 
i.e., Sλµν is not completely antisymmetric, but only when one considers distinct indices. 
 If we take the divergence of Lλ

µν  then we will get: 

 
Lλ

λ µν∂  =Tµν – Tνµ ,      (3.41)  

 
since linear momentum is conserved. 
 Meanwhile, the divergence of Sλ

µν  is: 

 
Sλ

λ µν∂  = − (Tµν  – Tνµ),     (3.42) 

  
which is consistent with the Belinfante-Rosenfeld theorem. (This result also appeared in 
Tetrode.)  Hence, the spin will precess even in the absence of an external torque, which 
sounds reminiscent of Thomas precession. 
 Therefore, we have: 

M λ
λ µν∂ = 0,       (3.43) 

 
which is consistent with the absence of external torques acting upon the matter wave.  
 We summarize the conservation laws that we have obtained up to now: 
 

0 = ∂µ  Jµ, 0 = T µ
µ ν∂ , 0 = Sλ

λ µν∂ + Tµν − Tµν ,  (3.44) 

 
the last of which can also be expressed in the form (3.42). 
 
 i. Coupling to an external electromagnetic field. – Since the Dirac equation is 
Lorentz-invariant, one can couple to an external electromagnetic field by the usual 
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minimal electromagnetic coupling prescription and replace the partial derivative operator 

∂µ with ∇µ = ∂µ +
ie

cℏ
Aµ  in the case of an electron.  The Dirac equation will then become: 

 
( ∇ + iκ) Ψ = 0,      (3.45) 

 
and its Lagrangian density will become: 
 

L = †( 2 )
2

i c
iκΨ ∇ Ψ − Ψ ∇ Ψ + ΨΨ

� 
ℏ
,   (3.46) 

 
which will also be equal to zero for a solution. 
 One can also regard L as the sum: 

 
L = L0 – eA µ

µ γΨ Ψ ,     (3.47) 

 
in which L0 is the zero-field Dirac Lagrangian (3.10).  We will see below that the 

additional term takes the form + eA Jµ
µ , in which eJ µ  is the conserved current that is 

associated with gauge invariance; i.e., the electric charge-current density. 
 The generalized forces and the momenta that are conjugate to ∇Ψ and ∇Ψ  are: 
 

f = 
∂
∂Ψ
L

= − ( 2 )
2

i c
iκΨ ∇ − Ψ


ℏ
, f  = 

∂
∂Ψ
L

 = ( 2 )
2

i c
iκ∇ Ψ + Ψ

�ℏ
, (3.48) 

 
µΠ  =

( )µ

∂
∂ ∇ Ψ
L

= 
2

i c µγΨℏ ,  µΠ  = 
( )µ

∗

∂
∂ ∇ Ψ
L

= − 
2

i c µγ Ψℏ
.  (3.49) 

 
When one compares these to the corresponding zero-field expressions (3.11), (3.12), one 
will see that the generalized forces f and f  have picked up contributions of (e / 

2) A µ
µ γΨ and ( / 2)e A µ

µγ Ψ , resp., while the conjugate momenta have not changed. 

 One will get the wave equation for Ψ when one varies L with respect to Ψ , and vice 

versa. 
 
 When we omit the superfluous multiplicative constant, the conserved current that is 
associated with global phase invariance of L is now: 

 
Jµ = µ µδ δΠ Ψ + Ψ Π  = c µγΨ Ψ ≡ c Sµ,   (3.50) 

 
which has not changed from (3.13), and the conserved electric current density that is 
associated with the gauge-invariance of L will then be: 
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eJ µ  = 
Aµ

∂
∂
L

= − e µγΨ Ψ = − e
J

c
µ .    (3.51) 

 
 The energy-momentum-stress tensor that is associated with L can be obtained from 

the zero-field one (3.31) by minimal coupling of the external field: 
 

T µ
ν  = ( )

2

i c µ µ
ν νγ γ∗Ψ ∇ Ψ − ∇ Ψ Ψℏ

 = i c µ
νγΨ ∇ Ψℏ ,   (3.52) 

 
which can also be expressed in the form of a sum: 
 

T µ
ν  = 

o

( )T eAµ µ
ν ν γ− Ψ Ψ  = 

o

eT A Jµ µ
ν ν+ ,   (3.53) 

 

in which 
o

T µ
ν  now represents the zero-field expression (3.31). 

 The conservation of energy-momentum will now take the form: 
 

Tν
ν µ∂  = eF Jν

µν ,     (3.54) 

 
in which the Lorentz force has made its predictable appearance. 
 
 The balance of orbital angular momentum takes the form: 
 

Lλ
λ µν∂  = T x T xλ λ

λ µ ν λ ν µ∂ − ∂ + Tµν − Tµν = fµ xν – fν xµ + Tµν − Tµν ,  (3.55) 

 
in which we have abbreviated the Lorentz force eF Jν

µν  to fν . 

 This time: 
T[µν]  = [ ]i c µ νγΨ ∇ Ψℏ = πµ ∇νΨ − πµ ∇νΨ = (π ^ ∇Ψ)µν ,  (3.56) 

 
as opposed to (3.36). 
 The zero-field expression (3.38) for the spin tensor involved only the conjugate 
momenta, which have not changed by the introduction of an external field, so the spin 
tensor will be the same as before, and we will still have: 
 

Sλ
λ µν∂ = − (Tµν − Tµν).      (3.57)  

 
The balance of total angular momentum will then take the form: 
 

M λ
λ µν∂ = fµ xν – fν xµ = (f ^ x)µν ,   (3.58) 

 
which is missing a contribution from the coupling of the external magnetic field to the 
magnetic dipole moment, despite the fact that “square” of the Dirac equation (i.e., the 
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relativistic Pauli equation) includes such a coupling term as a result of the differentiation 
of the electromagnetic potential 1-form A, combined with the algebraic properties of the 
gamma matrices.  In particular: 

( )( )i iκ κ∇ − ∇ +  = 2 2κ∇ + ,    (3.59) 
with: 

2∇ Ψ =
2

[ ( ) ]
ie ie

A A A A A
c c

µ ν
µν µ ν ν µ µ ν µ νγ γ  ∂ Ψ + ∂ Ψ + ∂ Ψ + ∂ Ψ +  

 ℏ ℏ
.  (3.60) 

 
When one polarizes the matrix product according to: 
 

γ µ γ ν = ηµν + σµν,     (3.61) 
one will get: 

2∇ Ψ = (∇2 + )
2

ie
F

c
µν

µνσ
ℏ

Ψ,     (3.62) 

 
which already includes the coupling of the anomalous magnetic moment to the external 
electromagnetic field (i.e., the Pauli term), up to a factor. 
 By contrast, if one wishes to introduce the Pauli term into the Dirac equation, one 
must do it “by hand”: 

2
02

ie
i F

m c
µν

µνκ σ
 

∇ + + Ψ 
 

 = 0.   (3.63) 

 
This implies a corresponding alteration to the minimally-coupled Dirac Lagrangian 
density LD that was defined in (3.46): 

 

L′ = LD + LP,  LP = 2
0

ie
F

m c
µν

µν σΨ Ψ .  (3.64) 

 
Since the wave equation has changed, along with the Lagrangian density, we will still 
have that: 

L′ = 0      (3.65) 

for a solution to (3.63). 
 That means that the energy-momentum-stress tensor that is derived from L′ will not 

change from the one that was derived from LD, which was constructed from only 

canonical momenta, and LP will not alter the latter.  Of course, we emphasize that the 

vanishing of L′ for a solution does not imply that it vanishes identically.  In particular, 

∂νL′ does have to vanish for a solution, so when looks at the balance of linear 

momentum, one will pick up a contribution from: 
 

fν = − ∂ν LP = − 
2

0

[ ( ]
ie

F F
m c

κλ κλ
ν κλ κλ νσ σ∂ Ψ Ψ + ∂ Ψ Ψ ,  (3.66) 
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whose first term belongs to the Frenkel equation. 
 
 j. – WKB approximation to the Dirac equation. – One can use the WKB method to 
get both the BMT equations for a homogeneous external electromagnetic field and, more 
generally, the Frenkel equations.  Although that approach is not precisely along the lines 
of what we are trying to understand in this survey, nonetheless, it does overlap with it to 
some extent, so we shall briefly summarize some of its main advances. 
 The first researcher to apply the WKB method to the Dirac equation was Pauli in 
1932 [18].  Rather than employ an asymptotic series of the form: 
 

Ψ = 0
1

exp
n

n
n

i
R S S

i

∞

=

    +   
     

∑
ℏ

ℏ
,   (3.67) 

 
Pauli chose to expand the amplitude in a series, instead: 
 

Ψ =
0

exp( / )
n

n
n

R iS
i

∞

=

  
  

   
∑
ℏ

ℏ .    (3.68) 

 

Hence, the Rn are wave functions with their values in C4. 

 He started with the minimally-coupled Dirac equation (with no anomalous magnetic 
moment term) in the Hamiltonian form: 
 

0 0( )k
k m c

i
α β ∇ + ∇ − Ψ  

ℏ
 = 0.    (3.69) 

 
If one introduces the abbreviations: 
 

π0 = ∂0 S − e

c
φ,  πk = − ∂k S − e

c
Ak    (3.70) 

 
then with the substitution (3.68), (3.69) will give rise to a series of equations for each 
power of ℏ : 

[π0 − πk α k − m0 c β] R0 = 0,      (3.71) 
[π0 − πk α k − m0 c β] R1 = (∂0 + α k ∂k) R0 ,    (3.72) 
…………………………………………… 
[π0 − πk α k − m0 c β] Rn = (∂0 + α k ∂k) Rn−1 .   (3.73) 

 
 This is a recursive system of linear algebraic equations for the successive complex 4-
vectors Rn .  Moreover, the matrix on the left-hand side: 
 

Π = [π0 − πk α k − m0 c β]    (3.74) 
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is the same in each case, as is the linear differential operator on the right when n > 0.  The 
first system will then have non-trivial solutions iff the matrix is not invertible; i.e., if the 
determinant of Π vanishes.  That condition is equivalent to: 
 

3
2 2
0

1
k

k

π π
=

−∑ = 2 2
0m c ,     (3.75) 

 
which is the Hamilton-Jacobi equation for the action function S. 

 Now, the rank of Π is actually two, so there will exist two linearly-independent 
solutions 0R± = 0R± (π0 , πk) to (3.71) that one can regard as “spin up” and “spin down.”  

Hence, the general solution will be a linear combination of them: 
 

R0 = C (xµ) 0R+ + C′ (xµ) 0R− .     (3.76) 

 
 Solving the successive equations for R1, … is more involved, and although Pauli does 
make some illuminating transformations of the equations, he eventually admits that he 
had yet to actually solve the resulting equations.  He does, however, show that they 
should lead to equations of motion that would correspond to a spinless point particle.  Of 
course, one should recall that he was not including the term in the Dirac that would take 
the anomalous magnetic moment of the electron (i.e., spin) into account to be begin with. 
 In 1937, Vladimir Fock [19] showed how to simplify Pauli’s discussion of the WKB 
approximation to the Dirac equation by means of the “proper-time” formulation of the 
Dirac equation.  Some time later in 1952, de Broglie [20] expanded upon the role of the 
geometrical optics approximation in the context of the Dirac equation.  He criticized 
Pauli’s method by pointing out that since spin has units of / 2ℏ , in the classical limit, 
spin should vanish, and one would not expect to find a classical coupling of spin with an 
external electromagnetic field.  It was later in 1959 that Bargmann, Michel, and Telegdi 
derived their formula for the relativistic precession of a spin polarization vector in a 
homogeneous electromagnetic field. 
 In 1963, S. I. Rubinow and Joseph Keller [21] showed that, in truth, both Pauli and de 
Broglie were correct, although Pauli’s procedure was valid only at finite distances from 
the field regions, but when the distance became comparable to 1/ℏ , one would have to 
take the de Broglie argument into account.  They then applied the WKB method to the 
Dirac equation, including the anomalous magnetic moment coupling term: 
 

0 2
0

1
2 2

g ie
i m c F

m c
µν

µνσ
  ∇ + − − Ψ  

  

ℏ
ℏ  = 0.   (3.77) 

 
 The resulting system of equations in successive order of ℏ  was then: 
 

0 0[ ]i m c Rµ
µπ γ +  = 0,      (3.78) 
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0 1[ ]i m c Rµ
µπ γ + = 02

0

1
2 2

g e
F R

m c
µν

µνσ
  ∂ + −  

  
,  (3.79) 

…………………………………………… 

0[ ] ni m c Rµ
µπ γ + = 12

0

1
2 2 n

g e
F R

m c
µν

µνσ −

  ∂ + −  
  

.  (3.80) 

 
 As before, the solubility of first one will imply the Hamilton-Jacobi equation for S: 
 

π2 = 2 2
0m c .     (3.81) 

 
Rubinow and Keller went one step beyond Pauli, though, and showed that the condition 
for the solubility of the first-order system led to the BMT equation, at least for a 
homogeneous electromagnetic field. 
 A year later (1964), Kenneth Rafanelli and Ralph Schiller [22] showed that one could 
simplify the derivation of the BMT equation by using Fock’s proper-time technique.  
However, they also started with the relativistic Pauli equation, instead of the Dirac 
equation. 
 In 1965, Marius Kolsrud [23] introduced a transformation of the Dirac equation into a 
“semi-classical” form that would be valid as long as one regarded ℏ  as small.  He 
showed that to first-order in ℏ , one would have: 
 

uɺ  = −
0

e
i F

m u ,  Sɺ = 
2

0

1
[ , ] 1 [ , ]

2 2

eg g
F S S u u

m m
 − − ∧ 
 

ɺ ,  (3.82) 

 
along with the conditions: 

iuS = 0,  (S, S) = const.     (3.83) 
 
These are then equivalent to the BMT equations. 
 A year later (1966), E. Plahte [24a] built upon the results of Kolsrud to show that by 
applying the aforementioned transformation of the Dirac equation to semi-classical form 
and going to second order in ℏ , one could extend the equations of motion to 
inhomogeneous electromagnetic fields.  The resulting equations were basically the 
Frenkel equations, completed by a separate differential equation for uɺ , in addition to the 
one for the energy-momentum 1-form p.  He discussed that association in more detail in a 
follow-up article [24b], along with a discussion of “classical zitterbewegung.” 
 Much later (1977), John Stachel and Jerzy Plebanski [25] obtained the BMT 
equations from the Dirac equation by applying the WBK expansion to the Dirac 
Lagrangian and then looking at the resulting Euler-Lagrange equations. 

 
 

 § 4.  Other forms of the Dirac equation. – From the outset, one of the big objections 
that the physics community had to Dirac’s proposed equation was precisely the fact that 
the concept of Clifford algebras was so unfamiliar and esoteric to them that everyone 
suspected that there must be a simpler way of expressing the same equation. 
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 a. Darwin form of the Dirac equation. – The physicist Charles Galton Darwin 
(grandson of the naturalist) published a widely-cited article [26], which also appeared in 
1928, and in which he simply presented the explicit form for the Dirac equation as a 
system of four linear, first-order partial differential equations with complex coefficients 
for the four complex-valued wave functions that represented the components of the Dirac 
wave function Ψ.  The Darwin form of the Dirac system is then essentially (3.8) when 
one substitutes the explicit components of the σi, ϕ, and χ.  At this point in the history, it 
would not be productive to give that form explicitly, since there is more algebraic 
structure to those quantities than would be apparent in four equations in four complex 
functions.  Madelung [27] also commented on the problem of simplifying the Dirac 
equation. 
 However, in regard to the Darwin form of the Dirac equation, it is important to 
emphasize that it illustrates the fact that the Dirac equation cannot be truly regarded as a 
first-order partial differential equation in a single complex-valued wave function, like the 
Klein-Gordon equation, but rather a first-order partial differential system for four 
complex-valued wave functions.  Since any nth-order partial differential equation in a 
single complex-valued function can be converted into a system of first-order equations 
for more than one complex-function, in effect, the order of the Klein-Gordon equation 
has not been reduced by one.  For instance, if one introduces the intermediate variables: 
 

Ξµ = ∂µ Ψ 
 
then one can express the Klein-Gordon equation as the equivalent system of five linear, 
first-order partial differential equations in the five complex functions Ψ, Ξµ : 
 

∂µ Ψ = Ξµ , ηµν ∂µ  Ξν = − κ 2 Ψ.   (4.1) 
 
In the language of jets, the replacement of Ψ with Ψ, Ξµ  amounts to the “1-jet 
prolongation” of Ψ. 
 
 b.  Tensor forms of the Dirac equation. – Much of the discussion of so-called “tensor” 
forms of the Dirac equation traced its roots back to the paper of Edmund Taylor 
Whittaker [28], which was, to some extent, inverse to the paper of Otto Laporte and 
George Uhlenbeck [29], which discussed the spinor formulation of Maxwell’s equations.  
The sense in which the former paper was inverse to the latter is that what Whittaker was 
defining was the equivalence of two-component Pauli spinors with self-dual, 

decomposable 2-forms on C4 (or self-dual decomposable bivectors, for that matter), 

while Laporte and Uhlenbeck were trying to define the opposite equivalence (at least, in 
effect). 

 The map that Whittaker defined started with [φ1, φ2] ∈ C2 and defined the (complex) 

components of a 2-form on C4 by: 

 
F01 = (φ1)

2 – (φ2)
2, F02 = − i [(φ1)

2 + (φ2)
2], F03 = − 2φ1 φ2 ,  (4.2) 

and 
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Fij = − i εijk F0k .      (4.3) 
 One notes that: 

(F01)
2 + (F02)

2 + (F03)
2 = 0,     (4.4) 

 
so, in effect, the component F03 is somewhat superfluous. 
 Indeed, one can invert the transformation by using only F01 and F02 : 
 

φ1 = 01 02

1

2
F iF+ ,  φ2 = 01 02

1

2
F iF− + .  (4.5) 

 

Hence, one sees that the self-dual 2-forms on C
4 that have vanishing invariant (4.4) 

represent only a 2-complex-dimensional submanifold of the vector space of all self-dual 
2-forms, namely, a complex 2-sphere of radius 0. 
 The form that the correspondence took in Laporte and Uhlenbeck was to associate 

symmetric, 2×2 complex matrices 11 12

12 22

φ φ
φ φ
 
 
 

 with complex components F0i by way of: 

 
F01 = φ11 – φ22 , F02 = − i [φ11 + φ22],  F03 = − 2φ12 ,   (4.6) 

 
along with (4.3).  Note that the set of all matrices of the kind in question is a complex 
vector space of complex dimension three, so the scope of the Laporte-Uhlenbeck 
association is strictly broader than that of Whittaker. 
 The way that (4.2) is included in this is to look at the matrix of the tensor product of 
[φ1, φ2] with itself: 
 

[ ]1 1 2

2

φ φ φ
φ
 
 
 

 = 1 1 1 2

1 2 2 2

φ φ φ φ
φ φ φ φ
 
 
 

  (i.e., φab = φa φb).   (4.7) 

 
This matrix will then have the basic property that det [φa φb] = 0.  Hence, it would have 
rank 1 as a complex matrix; i.e., it will have two linearly-independent components.  More 
generally, the matrix of φa ψb when φa and ψb are linearly-independent will have a 
determinant of  φ1 ψ1 + φ2 ψ2 − φ1 ψ2 − φ2 ψ1, which does not have to vanish.  In the non-
vanishing case, the rank of the matrix will be 2, and it will have four linearly-independent 
components, as would the most general Dirac bi-spinor. 
 One can define a much more direct association of symmetric, 2×2 complex matrices 
with 2-forms by first associating their three independent components with three complex 
numbers with the notation: 
 

φ11 = E1 + i B1 , φ22 = E2 + i B2 , φ12 = E3 + i B3 ,  (4.8) 
 
in which the Ei and Bi are real.  One then associates the complex covector field: 
 

Fi = Ei + i Bi       (4.9) 
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with the real 2-form: 
F = dt ^ E + #s B,     (4.10) 

in which: 
E = Ei dxi, #s B = 1

2 εijk B
i dx j ^ dxk.    (4.11) 

 
 This last step is, of course, the complex representation of the electromagnetic field 
strength 2-form that was first discussed by Riemann, and then developed by Silberstein, 
Majorana, and Oppenheimer. 
 One might also confer the discussions of the tensor form of the Dirac equation that 
are given in Ruse [30] and Taub [31]. 
 
 c.  The Dirac equation in terms of differential forms. – An elegant way of seeing how 
the Dirac equation relates to the calculus of exterior differential forms is to note that 
d’Alembertian operator □  admits a square root in the form of the operator ∧∂  = d^ + δ : 
 

2
∧∂ = (d^ + δ)(d^ + δ) = δd^ + d^δ = □ , 

 
since both 2d∧ and δ 2 must vanish. 

 Note that the operator ∧∂  will turn an k-form α into the (formal) sum of a k−1-form 

δα and k+1-form d^α ; i.e., a tensor field of mixed rank.  Hence, the vanishing of α∧∂  is 

equivalent to the system of two first-order linear partial differential equations for α: 
 

δα = 0,  d^α = 0. 
 
 Hence, one can consolidate Maxwell’s equations into simply: 
 

F∧∂  = 4π J.      (4.12) 

 
 Trying to represent the actual Dirac equation using this operator is harder than it 
sounds, though, since no homogeneous exterior form will go to another homogeneous 
form of the same rank under the action of ∧∂ , much less a multiple of itself, and in fact, 

the only kind of exterior form that could go to another one of the same type would be the 
formal sum of a 0-form, a 1-form, a 2-form, a 3-form, and a 4-form.  Hence, this form of 
the Dirac operator is generally useful only in the massless case. 
 
 d. The Dirac equation for matrix-valued wave functions. – When one uses matrix-
valued wave functions (cf., [2]), one can express the Dirac equation while using only 
Pauli matrices for coefficients.  Namely, when the wave function Ψ has the form (1.1), 
one can express the Dirac equation in the form: 
 

3
0

i
ix x

σ σ∂ ∂Ψ + Ψ
∂ ∂

 = − iκ Ψ σ 2,    (4.13) 
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and its Dirac conjugate will take the form: 
 

3
0

i
ix x

σ σ∂ ∂Ψ + Ψ
∂ ∂

 = iκ σ 2 Ψ .   (4.14) 

 
 Although there is much to say about the Dirac equation in this form, since we shall 
have no further need for it in the remainder of this book, we shall have to be satisfied 
with those cursory remarks.  We will, however, point out that in order to get from (4.13) 
to the relativistic Pauli equation, one needs only to replace the partial derivatives with 
covariant derivatives, rewrite (4.13) in the form: 
 

[∇0 (.) + σ i ∇i (.) σ 3 + iκ (.) σ 2] Ψ = 0,    (4.15) 
 
and left-multiply by the operator: 
 

[∇0 (.) − σ i ∇i (.) σ 3 − iκ (.) σ 2], 
 
while taking into account the multiplication rules for Pauli matrices. 
 
 
 § 5.  Discussion. – Something that appears to have been simplified considerably in 
the usual discussions of quantum wave equations is the difference between the 
kinematical state of a wave and its dynamical state.  That is because the association of a 
dynamical state with an infinitesimal kinematical state comes about by way of a 
mechanical constitutive law, and so far quantum mechanics makes that association by 
way of a fundamental constant in the form of ℏ .  Hence, the difference between a wave 
equation as a differential equation for the time evolution of a kinematical state and a 
differential equation for the evolution of a dynamical state becomes the rather trivial 
difference between two equations that differ by an overall multiplicative constant. 
 Of course, in order for that difference to be trivial, one must generally be considering 
linear differential operators, which one typically does for free particles.  When one goes 
on to the time evolution of the states of interacting particles, which is usually treated in 
the scattering approximation by quantum field theory, one must expect that the linearity 
of the operator would break down. 
 Another aspect of the relationship between kinematical and dynamical states of waves 
that we have been emphasizing all along is that treating ℏ  as a constant is subordinate to 
the assumption that the matter being described by the wave function is point-like, which 
amounts to the statistical interpretation.  As we have discussed before, when one 
considers the matter to be spatially-extended, it is conceivable that ℏ  will take the form 
of a density function, not a constant. 
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CHAPTER X 
 

THE CONTINUUM-MECHANICAL FORM  
OF THE DIRAC EQUATION  

 
 
 In this final discussion of the existing continuum-mechanical models for the quantum 
wave equations, we come to the models that followed from Dirac’s quantum theory of the 
electron.  Here, one finds that the most-developed continuum-mechanical models did not 
follow from the introduction of polar coordinates into the field space, as in the case of the 
treatment of the Schrödinger equation by Madelung and Takabayasi and the treatment of 
the Klein-Gordon equation by Takabayasi and others, or generalized polar coordinates for 
higher-dimensional complex vector spaces, as in the treatment of the Pauli equation by 
Bohm, Schiller, and Tiomno.  Rather, the most explicitly hydrodynamical treatment of 
the Dirac equation was by Takabayasi, who chose to use bilinear covariants, as he did for 
his treatment of the Pauli equation. 
 Consequently, in this chapter, we shall take a slightly more casual approach to 
surveying the literature, since the best way of converting the Dirac equation into a set of 
continuum-mechanical equation has yet to be agreed upon to the same extent as the 
Madelung-Takabayasi transformation.  In particular, that conversion does not seem to 
come about by introducing “generalized spherical coordinates” in the field space.  The 
particular attempts to convert the Dirac equation that we shall discuss are the ones that 
were described by Jacques Yvon [1] and Takabayasi [2].  Bohm, Halbwachs, Lochak, 
and Vigier [3] made a similar attempt that proved to be equivalent to that of Takabayasi. 
 A purely classical (but relativistic) model for a relativistic spinning fluid was 
constructed by Jan Weyssenhoff and Antoni Raabe in 1947 [4] that amounted to a 
simplification of the Dirac electron in the sense that its energy-momentum-stress tensor 
included the same kinetic part as that of the Dirac electron, but none of the internal 
stresses.  In 1960, Francis Halbwachs (a student of de Broglie, along with Yvon, Costa da 
Beauregard, Proca, Lochak, and Vigier) expanded upon the general theory of relativistic 
spinning fluids in a book [5] that also included his own theory of general models for such 
media that also included internal stresses. 
 Among the internal stresses that one finds in the Dirac electron are the internal couple 
stresses (i.e., torque stresses).  Non-relativistic media with such internal couple stresses 
had been discussed as early as 1887 by Woldemar Voigt [6] in the context of 
ferromagnetic crystals and expanded into a more general theory by Eugene and François 
Cosserat in their ground-breaking 1909 book [7].  The physical first principle at work 
was based in action functionals for continuous media that were invariant under the action 
of Euclidian rigid motions, and the ones in which one found internal couple stresses came 
to be called “Cosserat media.”  As the author pointed out [8], the basic ideas of non-
relativistic Cosserat media can be generalized to relativistic ones, and those relativistic 
Cosserat media include the Dirac electron, as well as Weyssenhoff fluids, as examples.  
Hence, the chapter will conclude with a discussion of the approach to the Dirac electron. 
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 § 1.  Bilinear covariants of the Dirac wave function. – AS we mentioned in regard 
to the Pauli equation (Chap. VIII), the “decoding” of physical observables from the Dirac 
wave functions Ψ and Ψ  is traditionally achieved by way of the method of “bilinear 
covariants.”  If C(4, η) is the Clifford algebra of Minkowski space, and {EA, A = 1, …, 

16} is a basis for the underlying vector space of C(4, η), which is represented in the 

matrix algebra M(4, C), then one can form 16 real scalar expressions Ψ EAΨ (A = 1, …, 

16), which are bilinear in Ψ, and are then called the bilinear covariants that are defined 
by Ψ. 
 
 a. Basic set of covariants. – The most common way of defining the basis EA is by 
distinct products of γ-matrices (with some choice of representation), and the traditional 
covariants that one deduces from Ψ in that way [9] are listed in the following table: 
 

Table 10.1 Bilinear covariants of a Dirac wave function Ψ. 
 

 
Type of object 

 
A 
 

 
EA 

 
Symbol 

 
Definition 

 
Dual definition 

Scalar 0 I Ω Ψ Ψ  
(Co-) Vector 1-4 γµ jµ Ψ γµ

 Ψ * jλµν = Ψ γ5 γλ γµ γν
 Ψ 

Second-rank tensor 5-10 γµ γν mµν i Ψ γ [µν]
 Ψ *mµν = i Ψ γ5γ [µν]

 Ψ 
Pseudo-(co-) vector 11-14 γλ γµ γν sλµν i Ψ γλ γµ γν

 Ψ *sµ  = i Ψ γ5γµ
 Ψ 

Pseudo-scalar 15 γ5 κλµνΩ  Ψ γκ γλ γµ γν
 Ψ Ω    =Ψ γ5Ψ 

 
In this table, we have defined: 
 

γ [µν] ≡ 1
2 [γµ , γν] = γµ

 γν    (µ ≠ ν),  (5.1) 

and 
γ5 γµ = 1

3! εµνκλ γν γκ
 γλ = 1

3! εµνκλ γ[νκλ]  (ν, κ, λ distinct),  (5.2) 

using: 
γ5

 ≡ γ 0 γ 1 γ 2 γ 3 = 1
4! εµνκλ γ µ γ ν γ κ γ λ .   (5.3) 

 That will make: 
*sκ = 1

3! εκλµν  s
λµν

 , Ω  = 1
4! ε µνκλ 

κλµνΩ .   (5.4) 

 
 It is essential that the components that are obtained from the bilinear covariants 
should all be real numbers.  That means that they must all coincide with their complex 
conjugates: 

A( E )∗Ψ Ψ  = † †
0 A( E )γΨ Ψ  = † † †

A 0E γΨ Ψ  = AEΨ Ψ .   (5.5) 

 
Whether or not this is true or only true up to sign will depend upon whether † †

A 0E γ  equals 

plus or minus γ0 EA .  That will, in turn, depend upon both the sign convention that is 



352 Chapter X – The continuum-mechanical form for the Dirac equation 

used for the Minkowski space scalar product and the representation that is chosen for the 
gamma matrices.  We have chosen the (+ − − −) sign convention, while many quantum 
theorists prefer the “imaginary time” convention.  The main issue with the choice of 
representation is whether the matrix γµ proves to be Hermitian or anti-Hermitian.  With 
the three representations that we discussed before (viz., Dirac, Weyl, Majorana), one 
gets: 

†
0γ  = 0

0

Dirac, Majorana,

Weyl,

γ
γ


 −

 †
iγ  = − γi  (all reps).   (5.6) 

 
In the cases where A( E )∗Ψ Ψ = − AEΨ Ψ , one must multiply by i in order to produce a 

real number.  Hence, the definitions that we gave above are consistent with the Dirac and 
Majorana representations. 
 A useful property of γ5 is that since µ must be equal to either 0, 1, 2, or 3, and γ µ will 
anti-commute with every γν for which ν  ≠ µ, but commute with itself, one must have: 
 

γ5 γµ = − γµ γ5 .      (5.7) 
 
 Some other useful properties of the matrix γ5 are: 
 

(γ5)
2 = − I,  †

5γ  = 5

5

Dirac, Majorana,

Weyl.

γ
γ


 −

  (5.8) 

 
 One can also define the corresponding contravariant components by means of the 
isomorphism that the Minkowski space scalar product defines (i.e., raising the indices).  
Equivalently, one can simply raise the indices on the basis elements EA in the same way 
and form the bilinear expressions that the resulting expressions EA define.  For an 
orthonormal frame on Minkowski space, that means that EA and EA will differ by at most 
a sign, as matrices. 
 Clearly, the components mµν are antisymmetric in their indices.  Hence, one can 
define a dual to mµν by means of: 
 

*mµν = i Ψ γ 5γ [µν]
 Ψ,     (5.9) 

with: 
γ 5γ [µν] = 1

2 εµνκλ γ [κλ]
 ,    (5.10) 

 
but one will see that *mµν cannot be linearly-independent of  mµν , since: 
 

*mµν = 1
2 εµνκλ m

κλ
 .     (5.11) 

 
 In the case of the pseudo-vector *sµ  (or really, pseudo-covector), from (5.4), one can 
just as well think of it as being defined by the components sλµν of a trivector #−1*s, and if 
one lowers the indices, the components sλµν of a 3-form. 
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 Similarly, also from (5.4), one can also regard the pseudo-scalar Ω  as the same thing 
as the dual of a four-form: 

κλµνΩ  =Ψ γ κ γ λ γ µ γ ν  Ψ = εκλµν Ω .   (5.12) 

 
 Therefore, the bilinear covariants can be used as the components of a scalar field Ω, a 
1-form j, a 2-form m, a 3-form s, and a 4-form ∗Ω , as follows: 
 

j = jµ dxµ,      m = 1
2 mµν dxµ ^ dxν ,      s = 1

3! sλµν dxλ ^ dxµ ^ dxν, ∗Ω  = VΩ , (5.13) 

 
respectively.  In effect, the prefix “pseudo” indicates that one is dealing with the Hodge 
dual of the geometric object. 
 
 In order to assign physical interpretations to the bilinear covariants, one must keep in 
mind that two of them are already associated with Noether currents (up to a scale factor).  
In particular, jµ is associated with both the currents that come from the phase invariance 
of the zero-field Dirac action functional and the gauge invariance of the minimally-
coupled Dirac action functional.  Similarly, sλµν is associated with the internal angular 
momentum (i.e., spin) tensor that relates to Lorentz invariance.  As a result, one must also 
expect to find the conservation laws (or balance principles) that follow from Noether’s 
theorem amongst the equations of motion that govern the bilinear covariants, at least in 
some form. 
 
 If one thinks of the basis elements EA as algebraic operators that act upon wave 
functions Ψ, while the wave function Ψ represents the state of an electron then the 
bilinear covariants AEΨ Ψ  will amount to densities that give the expectation values of 

the observables that the EA represent when the electron is in the state Ψ when they are 
integrated over all space; i.e.: 

<Ψ | EA | Ψ> = AE dVΨ Ψ∫∫∫ .   (5.14) 

 
Hence, this approach to converting quantum equations of motion into “classical” ones is 
essentially Ehrenfest’s theorem.  One should then be careful to distinguish the subtle 
difference between the equations that one first obtains in terms of “mean-value densities” 
(as de Broglie called them) and the ones that one gets in terms of mean values.  It is 
essentially the difference between equations of extended matter and equations of point-
like matter, respectively. 
 
 b. Basic algebraic identities. – Although the basis elements EA are all linearly-
independent, they are not algebraically-independent, since twelve of them are defined in 
terms of four of them (viz., the generators of the algebra).  This also leads to some 
algebraic dependencies between the bilinear covariants, as well, some of which were first 
mentioned in 1931 by Otto Laporte and George Uhlenbeck [10], expanded upon by de 
Broglie [11] in 1934, and then expanded upon further by Pauli [12] in 1935 and 1936 and 
his student Walter Kofink [13] in his 1940 dissertation.  Olivier Costa de Beauregard 
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discussed them in his 1943 doctoral dissertation [14] under de Broglie, and they were 
simplified somewhat by Gerard Petiau in 1946 [15]. 
 The most elementary ones are: 
 

j2 = − *s2 = Ω2 + 2Ω , <j, *s> = 0, (Ω2 + 2Ω ) m = Ω (j ^ *s) − Ω *( j ^ *s).   (5.15) 
 
Hence, j is timelike, s is spacelike, and the two covectors are orthogonal at each point.  
One already sees that the 2-form j ^ s seems to play a fundamental role in its own right. 
 One typically introduces a real density n such that, by definition: 
 

Ω2 + 2Ω  = n2.       (5.16) 
 
As a consequence, one will have: 
 

|| j  || = || *s || = n.      (5.17) 
 
One can then define unit vectors: 
 

ĵ  = 
1

n
j , ŝ= 

1

n
∗s    (5.18) 

 

that will make the pair of vector fields ˆ ˆ{ , }j s  an orthonormal 2-frame field: 
 

|| ĵ  ||2 = 1, || ̂s || = − 1, ˆ ˆ,< >j s  = 0.    (5.19) 
 
Similarly, their metric duals ̂ ˆ{ , }j s  will define an orthonormal 2-coframe field. 
 The last of the basic identities in (5.15) can then be given the simplified form: 
 

m = − Ωσ̂ − σ̂Ω∗ ,     (5.20) 
so: 

*m = σ̂Ω  − Ω σ̂∗ ,     (5.21) 
 
in which we have defined the basic 2-form: 
 

σ̂  ≡ ˆ ˆ*( )j s∧       (5.22) 
and its Hodge dual: 

 σ̂∗  ≡ − ˆ ˆj s∧ ,      (5.23) 
 
which will then have the properties: 
 

ˆ ˆi σ
j

= ˆ ˆi σs  = 0,  ˆ ˆi σ∗
j

 = − ŝ , ˆ ˆi σ∗s  = ĵ .   (5.24) 
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Hence, with this definition, ̂σ  has much in common with the spin 2-form σ = *(u ^ S) 
that we defined in Chapter VIII, § 5. 
 One can see from (5.20) that the 2-form m is not a truly fundamental field that one 
can derive from Ψ, since it is an algebraic combination of the more elementary bilinear 
covariants {Ω, j, s, Ω }.  These, in turn, are not algebraically independent, since they are 
related by the first three identities in (5.15).  That will leave seven independent 
components for those remaining four fields, which is still one short of the necessary 
number, since Ψ has eight real components.  However, that will necessitate going on to 
the differential identities, not looking for further algebraic identities. 
 Nonetheless, some further algebraic identities can be derived from these basic ones 
using the properties of the exterior algebra over Minkowski space, without having to refer 
back to the Clifford algebra.  For instance, one has: 
 

2 ˆn σ  = − Ω m − Ω *m,  2 ˆn σ∗  = − Ω m + Ω*m,  (5.25) 
 

ˆi m
j

 = ŝΩ , ˆ *i m
j

 = ŝΩ ,  ˆi ms  = − ĵΩ , ˆ *i ms  = ĵΩ ,  (5.26) 

 
<m, m> =2Ω Ω ,   (m, m) = Ω2 − 2Ω  .    (5.27) 

 
 This already allows one to form an electromagnetic analogy if one regards m as the 
electromagnetic field strength 2-form F and ĵ  as a unit vector that points in the time 

direction.  Basically, that will make Ω  the magnitude of the electric field strength 1-form 
E = ŝΩ , while Ω will be the magnitude of the magnetic field strength 2-form B = Ωσ̂ .  

However, the fact that Ω and Ω  collectively give F two degrees of freedom says that one 
is not defining a perfectly general F, but a special class of them.  If the scalar products 
<m, m> and (m, m) vanished then one would be dealing with an electromagnetic field that 
might be wave-like, but since they typically will not both vanish for the general Ψ, one 
must conclude that if Ψ describes a massive wave then (5.27) would have to characterize 
its basic invariants. 
 The relation (5.16) allows one to think of Ω and Ω  as the Cartesian coordinates of a 
point in a plane, so one can convert to polar coordinates (n, θ), where the angle θ is the 
usual argument of the vector from the origin to the point (Ω,Ω ).  One can then say that: 
 

Ω = n cos θ, Ω  = n sin θ  (so tan θ = /Ω Ω ).  (5.28) 
 
 As a consequence of these definitions, since: 
 

Ω  = n cos (θ − π / 2),     (5.29) 
 
one can just as well regard Ω  are something that can be obtained from Ω by a change of 
the phase angle θ. 
 As mentioned elsewhere in this book, for Minkowski space, the Hodge * 
isomorphism defines an almost-complex structure on 2-forms (or bivectors), since one 
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has *2 = − I.  That also allows one to define a complex structure on the real vector space 
Λ2 by way of: 

C = A + i B = A + *B.      (5.30) 
 
 That also means that one can think of the two real densities Ω and Ω  as defining a 
complex number density: 

Ω + i Ω  = n (cos θ + i sin θ) = n eiθ,   (5.31) 
 
which then means that the real density n has been given a phase. 
 One can then put (5.20) into the complex form: 
 

m = − (Ω + i Ω )σ̂  = − n eiθ σ̂ ,   (5.32) 
 
 Furthermore, the nine relations (5.15) are also sufficient to derive all of the other 
ones.  As a result, one can say that the sixteen bilinear covariants have been reduced to 
seven independent ones.  Hence, the eight real components of the complex wave function 
Ψ contain slightly more information than the information that will show up in the bilinear 
covariants.  Since we have exhausted the algebraic possibilities, the usual way of getting 
more information out of Ψ is to include differential identities, as well. 
 
 c. Basic differential identities. – Some elementary differential identities can be 
derived from the Dirac equation and its Dirac conjugate immediately.  Recall that those 
equations are: 

γ µ ∂µΨ + iκ0 Ψ = 0,  0iµ
µ γ κ∂ Ψ − Ψ = 0.    (5.33) 

 
 If one left-multiplies the Dirac equation by Ψ EΑ and right-multiplies its conjugate 
(5.33) by EΑ Ψ then that will give: 
 

Ψ EΑγ µ ∂µΨ + iκ0 Ψ EΑ Ψ = 0, µ∂ Ψ γ µ EΑ Ψ − iκ0 Ψ EΑ Ψ = 0. 

 
Adding and subtracting will give: 
 

 µ∂ Ψ γ µ EΑ Ψ + Ψ EΑγ µ ∂µΨ = 0,    (5.34) 

 µ∂ Ψ γ µ EΑ Ψ − Ψ EΑγ µ ∂µΨ = 2iκ0 Ψ  EΑ Ψ.  (5.35) 

 
 Note that when one sums over all µ, as long as EΑ is not I, at each step of the 
summation, γ µ will coincide with one of the matrices γ ν in the product that defines EΑ.  
In that case, one can replace each such pair of γ µ and γ ν with ± ηµν and then add to it the 
sum over µ when one treats the superscripts in the products γ µ EΑ and EΑγ µ as if they 
were distinct.  In those sums, one can simply anti-commute the matrices in the products 
as follows: 
 
γ ν γ µ = − γ µ γ ν, γ κ γ ν γ µ = γ µ γ κ γ ν,  γ κ γ λ γ ν γ µ =  − γ µ γ κγ λ γ ν,   (5.36) 
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along with (5.7). 
 As a result, one will get three types of expressions involving the derivatives: 
Divergences of bilinear covariants: 

∂µ ( Ψ γ µ EΑ Ψ),    (5.37) 
expressions of the form: 

 µ∂ Ψ γ µ EΑ  Ψ − Ψ γ µ EΑ∂µΨ,   (5.38) 
 

which we shall call skew divergences, and expressions that come from the terms that 
include the ηµν, which will come from both terms in the left-hand sides of (5.34) and 
(5.35). 
 It is useful in calculations to generalize the skew divergences to skew differentials 
(which are not the same as exterior derivatives), such that skew divergences become 
contractions of the differentials.  In particular, we will then have: 
 

dν Ω    = ( )i ν ν∂ ΨΨ − Ψ∂ Ψ ,    (5.39) 

dν j
µ    = ( )i µ µ

ν νγ γ∂ Ψ Ψ − Ψ ∂ Ψ ,   (5.40) 

dν m
µκ = µ κ µ κ

ν νγ γ γ γ∂ Ψ Ψ − Ψ ∂ Ψ ,   (5.41) 

dν s
µκλ = µ κ λ µ κ λ

ν νγ γ γ γ γ γ∂ Ψ Ψ − Ψ ∂ Ψ ,  (5.42) 

dν *sµ  = 5 5µ µ
ν νγ γ γ γ∂ Ψ Ψ − Ψ ∂ Ψ ,   (5.43) 

dν Ω    = 5 5( )i ν νγ γ∂ Ψ Ψ − Ψ ∂ Ψ .   (5.44) 

 
 When an external electromagnetic field is minimally coupled to the wave function, 
one simply replaces ν∂ Ψ  with ∇νΨ, ν∂ Ψ  with ν

∗∇ Ψ , and changes the notation dν to ν
∗d . 

 We then get 32 equations in terms of the 16 bilinear covariants, which we exhibit in 
the form of the following Table: 
 

Table 10.2 – Differential identities associated with the basis elements. 
 
 
A 

 
EA 

 
Divergence equation  

(a) 
 

 
Skew divergence equation 

(b) 

 

0 I  ∂µ j
µ = 0  dµ j

µ = 2κ0 Ω (5.45) 

1-4 γ ν ∂µ m
µν = − 2κ0 j

ν − dν Ω  dµ m
µν = − ∂ν

 Ω (5.46) 

5-10 γ λγ ν ∂λ s
λµν = − (dµ jν − dν jµ) dλ s

λµν = 2κ0 m
µν 

                  − (∂µ jν − ∂ν jµ) 

(5.47) 

11-14 γ κγ λγ ν µ∂ Ω = 2κ0 *sµ − 3!
i εµκλν d

κ mλν ν Ωd = ∂µ*mµν  (5.48) 

15 γ 5 ∂µ *sµ = 2κ0 Ω    dµ *sµ = 0 (5.49) 

 
 These equations apparently go back to a 1935 paper [16] by Walter Franz on the 
methodology of the Dirac equation.  They were also discussed by Costa de Beauregard, 
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in his 1943 doctoral dissertation [12a] under de Broglie, who included his own discussion 
of them in his 1952 book [11b] on the Dirac electron. 
 Let us look at the divergence equations: (5.45)(a) says that the vector field j  is a 
conserved current, which we already know from Noether’s theorem when it is applied to 
either the phase or gauge invariance of the Dirac action functional. 
 (5.46)(a) is strongly evocative of Maxwell’s second equation for the electromagnetic 
excitation bivector field H if one interprets the jν as the usual electric current-density 

vector field, although the physical meaning of dν Ω as a current would still need to be 

considered in more detail.  Of course, one should recall the previous comments about 
whether m is a fundamental field, which suggests that the table of equations above is 
already somewhat redundant. 
 If one expresses sµλν as the components of the inverse Poincaré dual of the 1-form *s 
(sµλν = εµλνκ *sκ) then (5.47)(a) can also be seen as a constraint that is imposed upon the 
exterior derivative d^*s : 

∂µ *sν − ∂µ *sν = − 1
2 εµνλκ (d

λ jκ − dκ jλ).  (5.50) 

 
 However, we shall shortly see that the equation in question can also be interpreted as 
a direct consequence of the conservation of the Noether currents. 
 (5.48)(a) couples the gradient of the pseudo-scalar Ω  to the 1-form *s and the Hodge 
dual of the skew differential of m. 
 (5.49)(a) says that the vector field *s is not actually a conserved current under the 
motion that is dictated by the Dirac equation, but has a source that relates to the non-
vanishing of Ω . 
 In order to interpret the “skew” divergence equations, it helps to go back to the 
Noether currents that were derived from the Dirac Lagrangian density when it is not 
scaled to give an energy density [namely, L = 0( ) 2i κΨ∂Ψ − ∂ΨΨ − ΨΨ ]. 

 Since L = 0 for a solution, from (5.40), that will make the energy-momentum-stress 

tensor take the form: 
 

µ
νt  = µ µ

ν νΠ ∂ Ψ + Π ∂ Ψ  = ( )i µ µ
ν νγ γΨ ∂ Ψ − ∂ Ψ Ψ = − dν j

µ.  (5.51) 

That will make: 
µ
µt = − dµ j

µ,      (5.52)     

tµν − tνµ = dµ jν  − dν jµ .          (5.53) 

 
 If we refer to equations (5.45)(b) then we will see that (5.52) implies that: 
 

µ
µt  = − 2κ0 Ω,      (5.54) 

 
while the (5.47)(a) and (5.53) imply that: 
 

∂µ s
µλν = − (tλν − tνλ).     (5.55) 
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 If we recall the definition of the Dirac spin trivector field that was derived in Chapter 
IX, § 3, namely: 

Sκλµ = [ ]

4

c κ λ µγ γ γΨ Ψℏ
 = 

4

cℏ
sκλµ,   (5.56) 

 
then the trivector field sµλν will clearly be proportional to the tensor of internal couple-
stresses for Ψ.  The equation (5.55) is then typical of the conservation of total angular 
momentum for a relativistic Cosserat medium, which we shall discuss at the end of this 
chapter. 
 Following Takabayasi [2], and using (5.43), we define the “dual” to µ

νt  by way of: 

 
µ

νt = 5 5( )i µ µ
ν νγ γ γ γΨ ∂ Ψ − ∂ Ψ Ψ  = − dν *sµ,   (5.57) 

which will make: 
µ

µt = − dµ *sµ,      (5.58) 

 

µν νµ−t t  = dµ *sν − dν *sµ .    (5.59) 

 
When one compares equations (5.58) and (5.59) to equations (5.52) and (5.53), 
respectively, one will see that the “duality” that relates them is the somewhat weaker 
duality of j  and *s, although, in fact, they are algebraically independent of each other. 
 If we refer to the second of (5.49) then we will see that (5.58) implies that: 
 

µ
µt = 0.       (5.60) 

 
 If we take the Poincaré duals of both sides of (5.59) then that will give: 
 

dλ s
λµν = 1

2 ( )µνκλ
κλ λκε −t t ,    (5.61) 

 
which is essentially “skew-dual” to the equation (5.55) (up to sign). 
 From (5.47)(b), we will also have: 
 

dλ s
λµν = 2κ0 m

λν − (∂λ jν − ∂ν jλ), 

or 

µν νµ−t t  = 1
2 εµλκν [2κ0 m

λκ − (∂λ jκ − ∂κ jλ)] = [2κ0 *m − *d^ j]µν .   (5.62) 

 
 We summarize these changes to Table 10.2 in the form of Table 10.3.  This table still 
leaves the skew-gradients dµ

 Ω, µΩd , and the skew-differential dκ m
λν unaccounted for.  

We shall return to that issue in a later section on Takabayasi’s treatment of the Dirac 
equation.   
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Table 10.3 – Revised differential identities associated with the basis elements. 
 
 
A 

 
EA 

 
Divergence equation  

(a) 
 

 
Skew divergence equation 

(b) 

 

0 I  ∂µ j
µ = 0  µ

µt  = − 2κ0 Ω (5.63) 

1-4 γ ν ∂µ m
µν = 2κ0 j

ν − dν Ω  dµ m
µν = − ∂ν

 Ω (5.64) 

5-10 γ λγ ν ∂λ s
λµν = − (tµν − tνµ) µν νµ−t t =  

            − *[2κ0 m
 + d^ j]µν 

(5.65) 

11-14 γ κγ λγ ν µ∂ Ω = − 2κ0 sµ − 3!
i εµκλν d

κ mλν µΩd = ∂ν *mνµ (5.66) 

15 γ 5 ∂µ s
µ = − 2κ0 Ω    µ

µt  = 0 (5.67) 

 
 c. Pauli-Kofink identities. – What Pauli [12] first established was that all of the 
algebraic identities between the bilinear covariants could be derived from the basic 
operator relation (note the permutation of the lower indices): 
 

16

A A
A 1

[E ] [E ]κ µ
λ ν

=
∑  = 4 κ µ

ν λδ δ .    (5.68) 

 
That spawned fifteen other such identities by way of left or right multiplication by a pair 
of basis elements (EB , EC); e.g.: 
 

16

B A C A
A 1

[E E ] [E E ]κ µ
λ ν

=
∑  = B C4[E ] [E ]κ µ

ν λ .   (5.69) 

 
One then gets identities in the bilinear covariants from these operator invariants by 
evaluating (5.69) on two Dirac wave functions Ψ, Ψ′ and their Dirac conjugates Ψ , ′Ψ , 
resp., by way of: 

16

B A C A
A 1

( E E )( E E )
=

′ ′Ψ Ψ Ψ Ψ∑  = B C4( E )( E )′ ′Ψ Ψ Ψ Ψ .  (5.70) 

 
In order to get back to the form of the basic identities above, one restricts this 
construction to the case in which Ψ = Ψ′, Ψ = ′Ψ .  In that sense, the Pauli identity (5.68)
becomes a generalization of the basic identities, and Kofink [13a] basically expanded 
upon the consequences of that fact in his thesis under Pauli. 
 Since the product B C4( E )( E )Ψ Ψ Ψ Ψ is really just the product of two real numbers, 

the order of B and C is irrelevant.  Hence, the number of possible algebraic identities will 
be 136 =1

2 (16)(17).  However, in truth, only nine of them can be independent, and 

expressing the Dirac equation as an equivalent system of continuum-mechanical 
equations generally depends upon making a good choice of those identities, along with a 
good choice of differential covariant.  Similarly, in order to make physical sense out of 
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the purely algebraic expressions and identities that we have introduced, one must also 
make a judicious choice of physical interpretation for the various bilinear covariants, 
which usually amounts to rescaling them by means of empirical parameters. 
 As long as one evaluates the formula (5.69) for the latter restricted case, one can think 
of it as being expressed more concisely as: 
 

16

B A C A
A 1

(E E ) (E E )
=

⊗∑ = B C4E E⊗ .   (5.71) 

 
 Petiau [15a] refined Pauli’s result by saying that since the gamma matrices were, in 
turn, direct products of Pauli matrices (including σ0 = I), one could replace (5.68) with 
the somewhat simpler relation: 
 

1 2 1 2

1 2 1 2

3

1

[ ] [ ]a a c c
p b b p d d

p

σ δ σ δ
=
∑  = 2 1 2 1

2 1 2 1

3

1

[ ] [ ]a a c c
d p d b p b

p

δ σ δ σ
=
∑ .  (5.72) 

 
The sense in which this is simpler is that the identities that one derives from (5.69) will 
have at most seventeen terms to them, while the ones that come from (5.72) will have at 
most six.  Of course, one now has to evaluate the identity on four distinct Pauli wave 
functions, instead of two Dirac ones. 
 
 Pauli [12], Koffink [ 13b, c, d], and Petiau [15b] also expanded the list of differential 
identities accordingly. 
 
 
 § 2. Yvon form of the Dirac equation. – In 1940, Jacques Yvon [1a] attempted to 
apply the same basic transformation to the Dirac wave function that Madelung had 

applied to the Schrödinger wave function.  However, since the complex vector space C4 

was not typically regarded as something that admitted generalized polar coordinates in 

the same way as C and C2 (1) at the time, he mostly reverted to the use of bilinear 

covariants and the algebraic identities that had been set down by de Broglie in [11a]. 
 Yvon’s physical interpretation of the covariants started by saying that the density n 
was a number density.  He then associated the vector field j  with an electric current 
vector field of the moving electron that had convective type: 
 

Jc ≡ − ec j = ρe u (ρe = − e n),     (6.1) 
in which: 

u ≡ 
c

n
 j  .     (6.2) 

                                                
 (1) That is not to say that no such coordinates exist.  Indeed, if one regards C4 as the underlying vector 

space for the algebra of complex quaternions then it becomes natural to describe its non-zero points by 
means of a complex number that represents the length of a complex quaternion and three complex 
coordinates that describe a point on the complex unit sphere that the quaternion projects to. 
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Since: 
u2 = c2,      (6.3) 

 
the vector field u could then be interpreted as the proper-time velocity of the electron, so 
ρe would become its electric charge density.  One would then have || Jc || = | ρe | c. 
 Yvon then interpreted the 2-form m as being proportional to the electromagnetic 
polarization density µ of the electron by way of the Bohr magneton µB : 
 

µ = − µB m = − 
02

e

m c

ℏ
m.     (6.4) 

 
 That also suggests that one can interpret the 2-form [cf., (5.20)]: 
 

σ =
2

ℏ
m = 

2

ℏ
[ σ̂Ω  − Ω σ̂∗ ]    (6.5) 

 
as the spin density 2-form of the electron. 
 µ then gave rise to an electric polarization current: 
 

JP = div µµµµ ( PJν  = ∂µ µ µν),    (6.6) 
 
so to Yvon, the “true” electric current that was associated with the motion of the electron 
was: 

J = Jc – JP = ρe u − div µµµµ    .    (6.7) 
 
Similarly, the dual 2-form *m gave rise to a magnetic polarization current: 
 

JM = − div *µµµµ .      (6.8) 
 
 The pseudo-vector *s (i.e., the 3-form s) was then assumed to be proportional to the 
spin density covector: 

S ≡
2

ℏ
*s = ˆ

2

n
s

ℏ
 (|| S || = / 2nℏ ).  (6.9) 

 
 By rescaling (5.15), the following relations exist between the various covariants, and 
they are derived immediately from the identities in (5.15): 
 

<Jc , S> = 0,       (6.10) 
 

n2 = 
2

21
cJ

ec
 
 
 

= −
2

22
S

 
 
 ℏ

,    (6.11) 

 

µ = − µB m = −
2

0

1

m n
[ Ω Jc ^ S – Ω *(Jc ^ S)].   (6.12) 
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One will also have: 
<u, S> = 0.      (6.13) 

 
Hence, the spin density vector is orthogonal to the four-velocity. 
 The relation (6.12) can then be put into the form: 
 

µ = − µB n [sin θ (u ^ *s) – cos θ *(u ^ *s)],    (6.14) 
so one will also have: 

∗µ = − µB n [cos θ (u ^ *s) + sin θ *(u ^ *s)].   (6.15) 
 
 One can also write (6.15) in the complex form: 
 

i µ = − µB n eiθ (u ^ *s),     (6.16) 
which would make: 

µ = µB n i eiθ (u ^ *s),      (6.17) 
 
which would be consistent with (6.14). 
 
 By rescaling the basic differential identities, one can derive the basic result that J is a 
conserved current: 

div J = 0  [or div (n u) = 0]   (6.18) 
from (5.45)(a) and: 

div S = − 2m0 c Ω       (6.19) 
 
from (5.49)(a).  This last relation shows that the flow of the spin density S vector field 
will be relativistically incompressible precisely iff Ω  vanishes.  If one were to think of 
Ω  as n sin θ then that would be equivalent to saying that sin θ would have to vanish, 
such as when θ vanishes.  Hence, the somewhat-mysterious angle θ seems to relate to the 
conservation of spin density in this interpretation. 
 Yvon then makes a Madelung-type substitution for the Dirac wave function: 
 

Ψ = eiϕ ψ,     (6.20) 
 
although from that point onward, the logic of the mathematics becomes somewhat vague 
and contrived.  By his own admission, the seven-component vector aA (A = 1, …, 7) that 
he defines in terms of linear combinations of the bilinear covariants is not a true vector, 
in the sense of its transformation properties.  We shall only take his word that the 
resulting flurry of calculations actually does converge to the equation: 
 

m0 n sin θ uµ + 0m c

e
(sin θ div µµµµ + cos θ  div *µµµµ)µ = Sν ∂µ uν .  (6.21) 

 
 We recognize the first term in parentheses as being the true number flux (i.e., the true 
electric current divided by – e, which then gets combined with the magnetic polarization 
current, also divided by – e.  Multiplying that number flux by m0 will then give it the 
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character of an energy-momentum density.  Hence, we are basically dealing with a 
coupling of energy-momentum density with the spin density. 
 Yvon then defines an energy-momentum density vector field by way of: 
 

p = n P = n (m0 cos θ u − e

c
A ) + 0m c

e
(cos θ div µµµµ – sin θ div *µµµµ).  (6.22) 

 
Clearly, this energy-momentum density is not typically collinear with the velocity u, or 
even the usual electromagnetically-coupled momentum m0 u – (e / c) A, but involves a 
contribution from the polarization current, after a complex rotation. 
 Yvon then manages to derive the following equation: 
 

d^P = 
2

u u

s s
dx dx

s u

s u

α β

α α

β β

 
 
 − ∧
 ∂ ∂
 

∂ ∂  

ℏ
    (6.23) 

 
from the fact that 2d ϕ∧  must vanish identically.  This equation then takes the form of a 

coupling of the dynamical vorticity of flow of the vector field P with the spin of the 
electron. 
 Yvon then shows that equations (6.21) and (6.22) are equivalent to: 
 

P = m0 cos θ u − 
e

c
A + #[

n

n
θ ∇ ∇ − 

 
 ^ u ^ S],   (6.24) 

 
dS

dτ
= iu dS = − iS d^u + #(∇θ ^ u ^ S),    (6.25) 

respectively. 
 The full set of equations that one derives from the Dirac equation is then defined by 
(6.18), (6.19), (6.21), (6.23), with the definition of P that is given in (6.22) or (6.24).  
Hence, every wave function Ψ that is a solution to the minimally-coupled Dirac equation 
will imply a solution to the latter system of equations for n, θ, u, S, µµµµ.  However, as Yvon 
points out, the converse is not true. 
 In the classical limit (i.e., ℏ→ 0), one will have sin θ = 0, so cos θ = ± 1, ∇θ = 0.  
Equations (6.22) and (6.23) will then become: 
 

P = ± m0 u − e

c
A, d^P = ± m0 d^u − e

c
F = 0,   (6.26) 

 
resp.  Hence, P will become the usual electromagnetically-coupled energy-momentum 
vector field for a point-particle, with a sign on the rest mass, while (6.23) says that the 
flow of P is irrotational, which will lead to a coupling of the kinematical vorticity of the 
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flow of u with the external electromagnetic field that Takabayasi calls “quasi-
irrotationality.” 
 In the classical limit, S and µµµµ will vanish, although (6.25) will still maintain some 
meaning in the form of: 

dS

dτ
 = − iS d^u ,     (6.27) 

which can also be given the form: 
dS

dτ
 = [*(u ^ S), d^u].     (6.28) 

 
Upon substituting the second of equations (6.26), one will then get: 
 

dS

dτ
= 

0

e
i F

m c S∓ ,    (6.29) 

 
which is the equation for the Larmor precession of the spin density vector. 
 The electromagnetic polarization density becomes: 
 

µ = 
0

e

m c
∓ *(u ^ S) = − µB *(u ^ *s),     (6.30) 

 
which suggests that the 2-form *(u ^ S) can represent the generalized angular momentum 
of the electron.  If we compare (6.30) to the Pauli relation (6.4), we see that in order to be 
consistent, we would need to have m = *(u ^ *s), which is not true, from (5.20).  Hence, 
we might already begin to suspect the Yvon model for its association of m with the spin 
2-form, rather than a “complex scalar multiple” of the spin. 
 That notwithstanding, one can then put the equation (6.29) for spin procession into 
the form: 

d

d

σ
τ

= [µ, F],      (6.31) 

 
which is the same as the one in Kramers [17], as Yvon observes.  One can also go 
directly from (6.28) to (6.31) by using the second of equations (6.26), along with (6.30). 
 
 One convenient aspect of Yvon’s form of the Dirac equation is that when one goes to 
the non-relativistic, quantum limit (but with a magnetic field H along the z-axis), the 
quasi-irrotationality constraint on electromagnetically-coupled energy-momentum P will 
imply that (locally) that 1-form will be exact, so there must be a differentiable function S 
such that P = dS, and in the non-relativistic approximation, that will give: 
 

ds S = m0 v − s

e
A

c
.    (6.32) 

That function S must satisfy: 
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0 = ∂t S – eφ + || dsS + s

e
A

c
||2 −

2

0 02 2 z

n e
H

m m cn

 ∆
+  

 

ℏ ℏ
,  (6.33) 

 
which is the Madelung equation for conservation of energy, when one adds the final term, 
which accounts for the coupling of the electron spin to the external magnetic field.  If one 
combines that with the equation for the conservation of number density then one will 
have the full set of Madelung equations. 
 In [1b], Yvon continued to examine his form of the Dirac equation in the non-
relativistic approximation and found that he could also arrive at essentially the same 
results that Bohm, Schiller, and Tiomno derived for the Pauli equation, which we 
discussed previously in Chapter VII.  Of course, the method that the latter researchers 
used was closer in spirit to the introduction of generalized spherical coordinates into the 
field space of the wave functions. 
 
 
 § 3. Takabayasi form of the Dirac equation. – For Takabayasi [2], the seven 
independent quantities could be chosen to be either the original ten quantities {Ω, Ω , j , 
*s}, when reduced by the three identities (5.15), or the ten derived quantities {n, θ, u, ŝ}, 
when they are reduced by the three identities: 
 

u2 = c2,  2ŝ = − 1, <u, ŝ> = 0.    (7.1) 
  
 a. Quantities of the first kind. – What Takabayasi was calling “quantities of the first 
kind” were the bilinear expressions of the form AEΨ Ψ .  The physical interpretations 
that Takabayasi then gave to them were then: 
 
 n  Particle number density 
 u  Particle velocity 
 j   Particle number density-current 

 M  ≡ 
2

m
ℏ

 Spin bivector 

 S  ≡
2

∗s
ℏ

 Spin density vector  [see (6.9)] 

 Ŝ ≡ ˆ
2

s
ℏ

 Spin per particle vector [see (6.9)] 

 
 First, note that the three quantities in the first set are all purely kinematical, while the 
second set is composed of all dynamical quantities.  However, the effect of multiplying 
the basic quantities *s, ŝ, m by / 2ℏ  is to convert the latter quantities, which all have the 
units of angular velocity, from kinematical quantities to dynamical ones. 
 Takabayasi chose to defer the physical interpretation of θ to a later point in the 
treatise.  Moreover, he pointed out that although some authors (e.g., Yvon) chose to 
identify the bivector field m with the electromagnetic moment density tensor of the 
electron, he did not think that was actually necessary. 
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 b. Quantities of the second kind. – In order to account for the remaining one 
independent quantity by way of a differential identity, Takabayasi introduced the 
“quantities of the second kind,” which were bilinear expressions in Ψ, Ψ , and their 
differentials.  He first defined a differential operator d that acted upon the quantities of 

the first kind and agreed with our previous definitions in (5.39)-(5.44), along with its 
minimally-coupled form that acts on bilinear expressions by way of (1): 
 

A( E )∗ Ψ Ψd  ≡ A AE E∇Ψ Ψ − Ψ ∇Ψ     (7.2) 
 

when an external electromagnetic field is present. 
 That allowed Takabayasi to associate each of the quantities of the first kind with a 
corresponding quantity of the second kind.  We summarize them in the following table: 
 

 1-form:   j ≡ 
0

1

2κ
dΩ, 

 Second-rank tensor:  T ≡ 
0

1

2κ
dj , 

 Second-rank pseudo-tensor: T ≡ 
0

1

2κ
∗sd , 

 Third-rank tensor:  N ≡
0

1

2κ
dm, 

 Pseudo-vector:  j ≡ 
0

1

2κ
Ωd , 

 
in which κ0 is the Compton wave length of the particle in question.  (The minimally-
coupled expressions are then obtained by replacing d with d*.)  These expressions differ 

from our previous definitions by a factor of 1 / 2κ0 , so in particular: 
 

T =
0

1

2κ
t, T =

0

1

2κ
t .    (7.3) 

 
Furthermore, we have now associated the three skew differentials dΩ, dm, Ωd  with 

symbols.  Of course, that is still not a physical interpretation. 
 The quantities j and j  are coupled by the relation: 

 

Ω − Ωj j  = 
0

1

2κ
Z,     (7.4) 

in which we have defined: 
Z ≡ <*s, dj> = − <d*s, j>.    (7.5) 

                                                
 (1) We are suppressing the possible leading factor of i in this, for brevity.  
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Hence, either j or j  can serve as the eighth quantity, although, to be precise, either one 

represents four independent quantities.  Thus, there must be three identities if one is to 
reduce that number to one. 
 The identity that Takabayasi chose was based upon another combination of j and j : 

 
 K ≡ Ω + Ωj j ≡ n2 k,         (7.6) 

 
which makes k the per-particle quantity.  The identity is then: 
 

d^k = − ˆ
0

1
ˆ ˆ[ ]

2
i d u d u d s d s

κ ∧ ∧ ∧ ∧∧ ∧ − ∧u s ,   (7.7) 

 
which he compared to the quasi-irrotationality constraint that he had introduced in the 
context of the Klein-Gordon equation.  If one minimally couples an external 
electromagnetic field F to the electron then (e / m0c

2) F will get subtracted from the right-
hand side. 
 Of course, (7.7) actually represents six identities, not three.  In order to reduce the six 
to three, one first observes that since the left-hand side is an exact 2-form, it must be 
closed.  The condition that d^d^k = 0 then gives four identities, which reduces the number 
of independent functions to two.  However, d^k is exact, so k is defined only up to an 
exact 1-form dλ for some 0-form λ.  Thus, one can say that, in effect, the only degree of 
freedom left for k is the one degree of freedom that it gets from λ. 
 Hence, Takabayasi proposed that one could use either the set {Ω, Ω , j , *s, j} with the 

identities (5.15) and (7.7) or the equivalent set {n, θ, u, ŝ, k} with the identities (7.1) and 
(7.7) to be the basic set of eight independent variables (viz., seven of the first kind and 
one of the second kind) that one derives from Ψ.  From now on, we shall refer to the set 
{Ω, Ω , j , *s, j} as the “first set of basic variables” and the set {n, θ, u, ŝ, k} as the 
“second set of basic variables.” 
 Furthermore, since either set of eight basic quantities is presumably complete, one 
can express all kinematical and dynamical quantities, including the remaining quantities 
of the first and second kind, in terms of those eight.  For instance, the energy-momentum 
density 1-form can be expressed as: 

p = m0 c n k.      (7.8) 
 

 The spin 2-form ̂σ  (per particle) can be obtained from ĵ  and ŝ, and the first set of 
basic variables by way (5.22): 

σ̂ = # ( ĵ  ^ ŝ) =
1

c
# (u ^ ŝ) ,    (7.9) 

 
and its density is obtained upon multiplying this by / 2nℏ : 
 

σ = ˆ
2

nσℏ = 1

c
# (u ^ S) .    (7.10) 
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 If we define the 2-form: 

M ≡
2

ℏ
m      (7.11) 

then, from (5.32), that will make: 
 

M = − eiθ σ = − cos θ σ − sin θ *σ.    (7.12) 
 
 Hence, the 2-form M (and therefore the basic covariant m) differs from the spin 2-
form by the somewhat-enigmatic phase rotation through an angle of θ. 
 The energy-momentum-stress tensor T and its dual T  can be expressed in terms of 
the first set of basic quantities in the form: 
 

n2 T = K ⊗ j +
0

1

2κ
[Q ⊗ *s + ˆ( )dj dxλ ν

νλσ⊗ ],  (7.13) 

 

n2 T  = K ⊗ *s +
0

1

2κ
[Q ⊗ j + ˆ( ) ( )d s dxλ ν

νλσ∗ ⊗ ],  (7.14) 

with: 
Q ≡ d dΩ Ω − Ω Ω  = n2 dθ.    (7.15) 

 We also get: 

n2 N = K ⊗ m +
0

1

2κ
(− Z ⊗ *m + Ω Y + YΩ ),  (7.16) 

 
with Z defined as in (7.5), and: 
 

Y ≡ j ^ d^j − s d s∧∗ ∧ ∗ , Y ≡ 1
,2 *( )Y dx dx dxµ ν λ

µν λ ∧ ⊗ .  (7.17) 

 
 In terms of the second set of basic variables, one will get: 
 

T =
2

n

c
{ c k ⊗ u +

0

1

2κ
[c2 dθ ⊗ ŝ  +

1
ˆ( )du dx

c
λ ν

νλσ⊗ ]},  (7.18) 

T =
2

n

c
{ c k ⊗ ŝ  +

0

1

2κ
[c dθ ⊗ u + ˆ( ) ( )d s dxλ ν

νλσ∗ ⊗ ]},  (7.19) 

and 

N = n [k ⊗ m +
0

1

2κ
(− z ⊗ *m + y cos θ – y sin θ )],   (7.20) 

with: 

y ≡
2

1
Y

n
= u ^ d^u – ŝ  ^ d^ ŝ ,   y ≡ 

2

1
Y

n
. z = 

2

1
Z

n
  (7.21) 

 
Dually, one has: 



370 Chapter X – The continuum-mechanical form for the Dirac equation 

N =
0

1
[ * ( sin cos )]

2
n k m z m y yθ θ

κ
⊗ + ⊗ + + .   (7.22) 

 
 c.  Equations of motion. – The approach that Takabayasi took to obtaining equations 
of motion for the basic quantities was the one that was described above in the subsection 
(§ 1.c) on differential identities.  One can re-express these latter 32 equations in terms of 
Takabayasi’s first set of basic quantities, which are essentially the same as the ones in 
Table 10.3, so we revise it again: 
 

Table 10.4  Equations of motion for Takabayasi’s first set of basic variables. 
 
 
A 

 
EA 

 
Divergence equation (a) 

 

 
Skew divergence equation (b) 

 

0 I  div j  = 0  T µ
µ  = − Ω (7.23) 

1-4 γ ν ∂ν m
νµ = 2κ0 (j

µ − jµ)  ∂µ Ω = − 2κ0 N
ν
, µν  (7.24) 

5-10 γ λγ ν ∂λ s
λµν = − 2κ0 (T

µν − Tνµ) (d^j)µν  = 2κ0 (T Tµν νµ− − mµν) (7.25) 

11-14 γ κγ λγ ν µ∂ Ω  = 2κ0 ( ,Nν
µν − *sµ) mνµ

ν∂ ∗  = − 02 µκ j  (7.26) 

15 γ 5 div *s = − 2κ0 Ω   T µ
µ  = 0 (7.27) 

 
 When these equations are converted into the second set of basic variables, one can 
select a complete, but minimal, set of equations of motion in the form of: 
 

0

02

0

ˆ 02

ˆ

div( ) 0, ( )

ˆdiv( ) 2 sin , ( )

1 1
ˆ ˆ[ *( ) 2 ( , cos )], ( )

ˆˆ ˆ*( ) 2 , , ( )

1 1
ˆ ˆ ˆ( ) ( ) [ ( ) 2 *( )], ( )

ˆ ˆ*( ), ( )

n a

n n b

u s d u c
c c

u s d s d

dn i d nu i d ns ni u s u s k e
c c

s i d u u s d f

κ θ

θ κ θ

θ κ

κ

θ

∧

∧

∧

=
= −

= − ∧ ∧ + < > +

= − ∧ ∧ − < >

+ − = ∧ + ∧ ∧

− = ∧ ∧

u zs

s

u

s

s u k

u s k

u

  (7.28) 

 
along with the constraints (7.1) and (7.7). 
 Although on the surface of things, (7.28) appears to represent 12 component 
equations, in reality, (e) and (f) each involve two independent equations, due to the 
subsidiary conditions (7.1).  Hence, we have a set of eight equations for the eight 
independent components of the original Dirac wave function Ψ. 
 



§ 3. – Takabayasi form of the Dirac equation. 371 

 d. Lagrangian formulation. – In order to obtain a Lagrangian density for the 
equations of motion (7.28), Takabayasi started with the basic minimally-coupled Dirac 
Lagrangian with no anomalous magnetic moment term: 
 

LD = − 0( ) 2i µ µ
µ µγ γ κΨ ∇ Ψ − ∇ Ψ Ψ − ΨΨ , 

 
which can be expressed in terms of the first set of variables in the form: 
 

LD = − m0 c
2 (T µ

µ + Ω),    (7.29) 

 
after rescaling by / 2cℏ .  Note that LD = 0 for a solution, which was also true for LD in 

its wave function form. 
 When LD is expressed the result in terms of the second set of basic variables using 

(7.18), it will become: 

LD = − E0 2
0

1 1 1
ˆ ˆ( ) [ ( )] cos

2
k d u

c c
θ θ

κ ∧

 
+ + + 

 
u s σσσσ ,   (7.30) 

 
in which we have set E0 ≡ m0 n c2. 

 In order to incorporate the constraints (7.1) and (7.7), Takabayasi then introduced 
Lagrange multipliers λa , a = 1, 2, 3, and Λµν = − Λνµ so he could define: 
 

LI = 1
2 λ1 (u

2 – c2) + 1
2 λ 2 (

2ŝ + 1) + 1
2 λ 3 ŝ (u),     (7.31) 

 

LII = 1
2 m0c

2 [d^k +
0

1

2κ ˆi ∧u s (d^u ^ d^u − d^ ŝ   ̂d^ ŝ ) – 
2

0

e

m c
F] (ΛΛΛΛ).   (7.32) 

 
 His total Lagrangian density then took the form: 
 

L (n, θ, u, ŝ , k, λa , Λ, …) = LD + LI + LII .    (7.33) 

 
 The relationship between the variations of L and the equations in (7.28) is as follows: 

Varying n gives (c), and varying θ gives (b).  Varying k gives: 
 

∂ν Λνµ = −  n uµ,     (7.34) 
 
which implies (a), since Λνµ = − Λµν. Varying u and ŝ  eventually give (e) and (f), 
respectively, while varying the Lagrange multipliers will yield the constraint equations, 
as usual.  In order to get (d), one can form the linear combination ŝ  ^ [δu] + u ^ ˆ[ ]sδ  of 

the equations (viz., [δu] and ˆ[ ]sδ ) that one obtains directly by varying u and ŝ , 
respectively. 
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 e. Balance laws. – The canonical energy-momentum-stress tensor that Takabayasi 
obtains from L is the previous one Tµν , as it was defined in (7.18), but rescaled to give it 

the dimensions of energy density: 
 

T = m0 c
2 T = m0 cn k ⊗ u + c dθ ⊗ S + 

1

c
duλ ⊗ [*( u ^ S)νλ dxν],  (7.35) 

 
into which we have re-introduced the 1-form S = ( / 2) s∗ℏ .  We can further introduce the 

energy-momentum density 1-form p from (7.8) and the spin 2-form σ that was defined in 
(7.10) and put (7.35) into the form: 
 

T = p ⊗ u + c dθ ⊗ S + duλ ⊗ (σλν dxν) .   (7.36) 

 
The covariant components of T are then: 
 

Tµν = pµ uν + c ∂µθ Sν + ∂µ uλ σλν .    (7.37)  
 

 The resulting conservation of linear energy-momentum then takes the form: 
 

ν
ν µ∂ T  = 0.      (7.38) 

 
When one minimally couples the charge of the wave function to an external 
electromagnetic field, the right-hand side will become n fL, which is, of course, the 
Lorentz force density. 
 One can think of T as being composed of a kinetic term plus a stress tensor Θ : 
 

T  = Tkin + Θ,      (7.39) 
in which: 

Tkin ≡ p ⊗ u,       (7.40)  

  Θ ≡ c dθ ⊗ S + duλ ⊗ (σλν dxν).    (7.41) 
 
The covariant components of Θ are then: 
 

Θµν = c ∂µθ Sν + ∂µ u
λ σλν  .     (7.42)  

 Since: 
S(u) = 0 and σνλ u

ν = 0, 
 
the stress tensor Θ is “right-spatial,” in the sense that: 
 

Θµν u
ν = 0.       (7.43) 

 
 As for the left contraction, that will be: 
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uµ Θµν = (cθɺS + iaσ)ν ,    (7.44) 
in which: 

θɺ  ≡ d

d

θ
τ

, aλ ≡ 
du

d

λ

τ
.    (7.45) 

 
Hence, part of the stress tensor comes from a coupling of the proper-time acceleration to 
the spin, while the other part couples the proper-time velocity to the dual of the spin. 
 Furthermore, it is clear that Θ will vanish along with S. 
 Since T is not symmetric, neither is T.  Its antisymmetric part gets a contribution from 

both terms in the sum and defines a 2-form: 
 

1
2 (Tµν − Tνµ) dxµ ^ dxν = p ^ u + c dθ ^ S + duλ ^ (σλν dxν).  (7.46) 

 
Hence, the non-vanishing of this involves both the possibility that p is not collinear with 
u, as well as the possibility that S is non-vanishing. 
 From the first of (7.25), one will have: 
 

T
µν – Tνµ = −

2

cℏ ∂λ s
λµν,     (7.47) 

 
which suggests that we can define the spin tensor to be the 3-form: 
 

S = 
2

cℏ
s = c *S,     (7.48) 

so that: 
(δS)µν = λ

λ µν∂ S = − (Tµν – Tνµ).   (7.49) 

 
The balance of total angular momentum will then take the form: 
 

[ ]x xλ λ λ
λ µ ν ν µ µν∂ − +T T S = 0,     (7.50) 

 
but from (7.49), this will become an identity.  Hence, in the absence of external torques, 
such as one would get from an anomalous magnetic moment term, the essence of the 
conservation of angular momentum is contained in (7.49), which relates to only the 
coupling of internal torque stresses to internal angular momentum – i.e., spin. 
 
 f. The detailed nature of the energy-momentum-stress tensor. – One gets the energy-
momentum density from T by way of: 

 
Tµ 0 = (H, c Gi) = pµ u0 + c ∂µθ S0 + ∂µ u j σj0 ,  (7.51) 

so 
H = u0 p0 + ∂tθ S0 ,         (7.52) 
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Gi = u0 pi + c ∂i θ S0 + ∂i u j σj0 .    (7.53) 

 
The last term in the expression for Gi takes the form of a coupling of the rate of 

deformation to the temporal part of σj0 . 
 The trace of T takes the form of the particle rest energy times the trace of T, which is 

− Ω [see (7.23)(b)]: 
µ

µT = − m0 c
2 n cos θ = − E0 cos θ.    (7.54) 

 
Due to the presence of cos θ as a factor, this trace can take on values that are positive, 
negative, and zero, instead of simply negative values, as is more customary in relativistic 
hydrodynamics. 
 From the fact that Θ is right-spatial, one will have: 
 

m0 c kµ =
2

1

nc
Tµν u

ν,     (7.55) 

 
so in the rest frame (u0 = c, S0 = <S, u> = 0): 
 

m0 c k0 = 0

0n c

H
 , m0 c ki = 

0

1

n
Gi .    (7.56) 

 

Hence, one is justified in regarding: 
P ≡ m0 c k      (7.57) 

 
as the energy-momentum 1-form of the particle when it is regarded as point-like and: 
 

p = nP = m0 cn k      (7.58)  
 
as the corresponding energy-momentum density when it is regarded as extended, which is 
what we did in (7.8). 
 If one thinks of: 

µ =
2c

H
      (7.59) 

 
as the mass density of the particle when it is regarded as extended then one can also think 
of its proper mass density as taking the form: 
 

µ0 = 4

1

c
T (u, u) =

4

1

c
Tµν u

µ uν,   (7.60) 

and from (7.55), that will give: 

µ0 = 
1

c
m0 n k (u).      (7.61) 
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The fact that LD = 0 for a solution and (7.30) will then give: 

 

µ0 = − m0 n cos θ − 1

c
[Sθ + d^u (*σ)].   (7.62) 

 
Takabayasi points to the possibility of what he calls “ass-like” behavior in this type of 
dynamics, namely, momentum pointing in the opposite direction to velocity due to 
negative mass. 
 The proper mass density µ0 can differ from the rest particle density: 
 

ρ0 ≡ m0 n      (7.63) 
 
in more conventional relativistic hydrodynamics when there is internal stress present 
[18], so (7.61) and (7.62) give the precise form that the difference takes in the present 
case. 

µ0 =
1

c
ρ0 k (u) = − ρ0 cos θ − 1

c
[Sθ + d^u (*σ)].  (7.64) 

 
In particular, the proper mass density can also take on values that are positive, negative, 
or zero, according to the nature of θ and S. 
 Takabayasi defined the internal energy density of the medium to be: 
 

E ≡ µ0 c
2 = p (u)     (7.65)  

 
[using (7.64)], along with its specific internal energy: 
 

ε = 
2

0c

n

µ
= − m0 c

2 cos θ − c [* sθ + 
1

n
d^u (*σ)].  (7.66) 

 
 If one goes back to the definition of k in (7.6) and substitutes the values of j and j  

that one gets from (7.24)(a) and (7.26)(b) then one will get: 
 

kµ = 
1

(cos sin )
n

µθ θ+j j  =
1

c
{cos θ uµ – 

0

1

ρ
[∂ν σνµ + ∂νθ *σνµ]}.   (7.67) 

  
From (7.58), one can then express the energy-momentum density 1-form p in the form of: 
 

pµ = ρ0 cos θ uµ – ∂ν σνµ – ∂νθ *σνµ.   (7.68) 
 
 The projection of p onto u is then: 
 

pu = 
1

( )p
c

u  = ρ0 c cos θ + 
1

c
d^u (σ) + Sθ .   (7.69)  
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Hence, the transverse component to p will be: 
 

tpµ = pµ − 1
( )p

c
u uµ = −{ ∂ν σνµ + ∂νθ *σνµ +

2

1

c
[d^u (σ) + c Sθ ] uµ}, (7.70) 

 
that is mostly due to a contribution from the spin, along with one from dθ.  Note the 
coupling of spin to the kinematical vorticity of u by way of d^u (σ). 
 One can further decompose the stress part of T into: 

 

Θ = 
2

1

c
u ⊗ q + τ      (7.71) 

by defining: 
q = iuΘ    (qν = uµ Θµν),    (7.72) 

τ ≡ Θ −
2

1

c
u ⊗ q .      (7.73) 

From (7.44), that will make: 
q = c θɺS + iaσ,     (7.74) 

or 
qν = c θɺSν + aµ σµν .      (7.75) 

  
 This makes q into a spacelike 1-form that is orthogonal to u : 
 

q(u) = iu Θ(u) = uµ uν Θµν = 0.    (7.76) 
 
In the rest frame (viz., d / dτ = ∂t ), q will take the form: 
 

q0 = (∂t θ) S0 = 0, qi = c (∂t θ) Si + a j σji  .  (7.77) 
 

Since qi amounts to an energy flux, Takabayasi suggests that one might regard q as 
representing heat flux.  Explicitly, one has: 
 

q = c2{( m0  n) k − *[ u ^ d^s]}.    (7.78) 
 
 As for the remaining tensor τ, it is purely spatial: 
 

uµ τµν = τµν u
ν = 0,      (7.79) 

 
so Takabayasi identifies it with the mechanical stress that acts in the medium. 
  He also derives an expression for the first law of thermodynamics (i.e., conservation 
of energy) in the form: 

0 = n 
d

d

ε
τ

+ div q + <p, a> + τ µν ∂µ uν ,    (7.80) 
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which, he feels, further justifies the interpretation that he gave for q and τ.  One should 
observe that the last term takes the form of power dissipated by viscosity. 
 One can derive a hydrostatic pressure Π from τ by way of: 
 

Π = 1
3

µ
µτ  = 1

3 [Sθ + d^u(u ^ S)],     (7.81) 

 
and it relates to the internal energy density by way of: 
 

E = n ε = − ( )µ µ
µ µτ−T  = E0 cos θ + 3Π,   (7.82) 

in which: 
E0 = m0c

2 n       (7.83) 
 

is the rest-energy density that is solely due to the rest mass. 
 
 
 § 4.  The Weyssenhoff fluid. – After the end of World War II, the Polish physicist 
Jan Weyssenhoff, with the assistance of his doctoral student Antoni Raabe, published a 
series of papers starting in 1947 [4] (1) in which he defined the kinematics and dynamics 
of a relativistic, spinning fluid that hearkened back to the Frenkel electron and 
represented a simplification of the Dirac electron.  The model then attracted perhaps more 
attention in the relativistic hydrodynamical community than it did in the relativistic 
quantum mechanical community, but it did at least attract the early attention of the de 
Broglie school of quantum theory.  It was discussed in 1949 by de Broglie’s student 
Olivier Costa de Beauregard in his book on special relativity [14b], as well as by de 
Broglie himself in his first book on the theory of spin-1/2 particles [11b] in 1952, and in 
1960, another student of de Broglie, namely, Francis Halbwachs published a book on the 
relativistic theory of spinning particles [5], in which he attempted to summarize the 
various aspects of the problem and add some of his own generalizations.  The 
Weyssenhoff theory also had considerable overlap with the “pole-dipole” approximation 
to extended matter that had been introduced by another Polish physicist – namely, Myron 
Mathisson – and developed by Hönl and Papapetrou (2). 
 
 a. Basic fields. – The Weyssenhoff fluid can be defined by the following set of fields 
on a region R in Minkowski space: 
 
  ρ0  a mass density 
  u  a flow velocity vector field 
  p  an energy-momentum 1-form 
  σ  a spin 2-form 
 

                                                
 (1) As a tragic footnote to the first paper in the series, Weyssenhoff pointed out that Raabe had been 
captured by the Gestapo during the war and ultimately died at Auschwitz. 
 (2) For the references to Frenkel, Mathisson, Hönl, and Papapetrou, one can confer the bibliography to 
the introductory chapter in this book in which classical electron models were discussed. 
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 The support of ρ0 is R itself, which one thinks of as a time-like world-tube, while the 
supports of the other fields are subsets of R.  That will leave open the possibility that they 
might still have zeroes, although in the case of u, a zero would be a fixed point in space-
time, which is more problematic than a mere fixed point in space. 
 There are various algebraic constraints that relate the basic fields.  The first two come 
from the usual restrictions on u that it must represent the four-velocity of a massive 
distribution (i.e., it must be time-like) and that it should be parameterized by proper time: 
 

u =
d

dτ
x

, u2 = η (u, u) = c2.     (8.1)  

 
Its covelocity 1-form is then defined as usual: 
 

u = iuη = (ηµν u
µ) dxν.     (8.2) 

 
 The energy-momentum 1-form p is not assumed to be convective, as usual, but 
includes a transverse momentum contribution π : 
 

p = ρ0 u + π,  π (u) = πµ u
µ = 0.    (8.3) 

 
As a consequence of the definition, one can obtain ρ0 from: 
 

p (u) = pµ u
µ = ρ0 c

2.      (8.4) 
 
One then refers to ρ0 as the rest mass density of inertia, while the rest mass density µ0 
that one gets from: 

p2 = η (p, p) = 2 2
0 cρ + π2 ≡ 2 2

0 cµ     (8.5) 

 
is referred to as the rest mass density of momentum (1). 
 Since π is orthogonal to u, and u is time-like, π will be space-like; i.e., π2 < 0.  Since: 
 

π2 = 2 2 2
0 0( )cµ ρ− ,     (8.6) 

that will imply that: 
0 < µ0 < ρ0 .       (8.7) 

 
(Both densities are assumed to be positive at the interior points of their supports.) 
 The relationship in (8.6) carries with it the corollary that the Minkowski norm of the 
1-form π will take the form: 

|| π || = µ0 c 

1/22
0
2
0

1
µ
ρ

 
− 

 
,    (8.8) 

which will clearly vanish iff µ0 = ρ0 .   
 The spin 2-form is once more subjected to the Frenkel constraint: 

                                                
 (1) These notations are the opposite of the ones used by Takabayasi.  
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iuσ = 0.      (8.9) 
 
 Hence, it will be a purely “magnetic” (i.e., spatial) 2-form, and if one defines the 1-
form: 

S = c iu *σ      (8.10) 
then one will have: 

σ = 
1

c
*(u ^ S) = #(u ^ S).     (8.11) 

 
 Since σ is purely magnetic, its basic invariants will be: 
 

<σ, σ> = 0, (σ,σ) = − S2, [S2 = η (S, S) < 0].   (8.12) 
 
The last relation amounts to the statement that the spin vector field S or its metric-dual 1-
form S are space-like, which is why the middle relation has a minus sign on the right-
hand side. 
 No other constraints are imposed upon the kinematical vorticity and compressibility 
of u or the dynamical vorticity and compressibility of p at this point. 
 
 b. Dynamical tensors. – We shall derive the equations of motion for the Weyssenhoff 
fluid from the conservation laws for proper mass, energy-momentum, and angular 
momentum in the manner of relativistic dynamics.  First, we need to define the energy-
momentum-stress (EMS) tensor T and the intrinsic angular momentum (i.e., spin) tensor 
S. 

 The EMS tensor is given possibly the simplest form next to the basic dust cloud form 
(viz., ρ0 u ⊗ u), namely: 

T = p ⊗ u  (T µ
ν = pν u

µ).   (8.13) 

 
If one compares this definition of T with the corresponding one (7.39) for the Dirac 
electron then one will see that the Weyssenhoff version of T basically drops the 
contribution from Θ, which represents the internal stresses. 
 With the substitution (8.3) for p, T will take the mixed-tensor form: 
 

T = ρ0 u ⊗ u + Σ (Σ ≡ π ⊗ u),    (8.14) 
or the doubly-covariant form: 

T = ρ0 u ⊗ u + Σ (Σ ≡ π ⊗ u).    (8.15) 
  
 One gets the trace of T immediately from (8.13): 
 

T µ
µ = pµ u

µ = ρ0 c
2,      (8.16) 

 
which, from (8.4), can then be regarded as the rest energy density of inertia.  One should 
compare this expression for the trace of T with the corresponding expression in the Dirac 
case (7.54), which also contains the phase factor – cos θ. 
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 One gets the symmetric and antisymmetric parts of T from its doubly-covariant form 
(8.15): 

T(µν) = ρ0 uµ uν + 1
2 (πµ uν  + πν uµ),  T[µν] = 1

2 (πµ uν  − πν uµ). (8.17) 

 
The antisymmetric components of Tµν can also be regarded as one-half the components of 
the 2-form π ^ u; i.e.: 

Tµν − Tνµ = (π ^ u)µν .      (8.18) 
 
 One sees that T(µν) consists of a contribution that takes the usual dust cloud form and 
one that represents an internal stress contribution that is solely due to the existence of 
transverse momentum, while T[µν] will vanish with that transverse momentum. 
 In a comoving frame, u0 = c, ui = 0, so u = c ∂t , u = c dt, and T µ

ν  will take the form: 

 

T µ
ν  = 

2
0

0 0
jc cρ π 

 
  

.    (8.19) 

 
 The orbital angular momentum tensor L is: 
 

Lλ
µν = x T x Tλ λ

µ ν ν µ−  = (xµ pν − xν pµ) uλ = (xµ πν − xν πµ) u
λ ,  (8.20) 

 
which can be expressed in the form: 
 

L = (r ^ π) ⊗ u  (r ≡ xµ dxµ).   (8.21) 
 
 The spin tensor S is defined to be simply: 

 
S = σ ⊗ u  (Sλ

µν  = σ µν u
λ).  (8.22) 

 
Sλ

µν will then be antisymmetric in its lower indices, although its triply-covariant form Sλµν 

will not necessarily be completely antisymmetric, as in the Dirac case. 
 
 c. Equations of motion. – The conservation of mass takes the usual form: 
 

0 = ∂µ (ρ0 u
µ),      (8.23) 

 
which is generally distinct from the vanishing of the divergence of p, which would imply 
that: 

∂µ (ρ0 u
µ) = − ∂µ πµ .      (8.24) 

 
 At this point, Weyssenhoff introduces the density derivative of a function f : 
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dτ f ≡ ∂µ (f uµ) = 
df

dτ
+ χk f .    (8.25) 

 
 The origin of this derivative is that when one defines the integral of f over any space-
like cross-section Σ(τ) of the world-tube that is swept out by u, whose spatial volume 
element is then Vs, one will get a function of proper time: 
 

F(τ) = ( , )i
sf x Vτ

Σ∫      (8.26) 

 
such that its proper-time derivative will be: 
 

dF

dτ
= ( ) #d fτΣ∫ u .     (8.27) 

 
 Hence, we can also write the conservation of mass in the form: 
 

dτ ρ0 = 0.      (8.28) 
 

 As for the conservation of energy-momentum, if we take the divergence of T µ
ν  then 

we will get: 

T µ
µ ν∂  = uµ ∂µ pν + pν ∂µ u

µ = 
dp

d
ν

τ
+ χk pν = dτ pν ,   (8.29) 

 
in which we have introduced the kinematical compressibility χk of u.  Hence, the density 
derivative of pν will agree with its proper-time derivative iff u is kinematically 
incompressible, in the relativistic sense. 
 When energy-momentum is conserved, the divergence of Lλ

µν  will take the form: 

 
Lλ

λ µν∂  = Tµν – Tνµ = πµ uν  − πν uµ .     (8.30) 

 
 The divergence of Sλ

µν  takes the form: 

 
Sλ

λ µν∂ = uλ ∂λ σµν + ∂λ u
λ

 σµν = dτ σµν .    (8.31) 

 
 Hence, the divergence of the total angular momentum will be: 
 

( )L Sλ λ
λ µν µν∂ +  = dτ σµν + πµ uν  − πν uµ .    (8.32) 

 
 The combined conservation laws for proper mass, energy-momentum, and total 
angular momentum will then take the Weyssenhoff form: 
 

dτ ρ0 = 0, dτ pν = 0, dτ σµν + πµ uν  − πν uµ = 0.   (8.33) 
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 If one contracts the last equation with uv then one will get an expression for the 
transverse momentum: 

πµ  = −
2

1

c
uv dτ σµν = −

2

1

c

d

d
µνσ

τ
 uv = −

2

1

c
 σµν a

v .   (8.34) 

 
In the last step, we have differentiated the Frenkel constraint in order to shift the proper-
time derivative from spin to velocity.  Since that will make p take the form: 
 

p = ρ0 u –
2

1

c
iaσ,      (8.35) 

 
one sees that energy-momentum will be proportional to proper acceleration, as well as 
velocity.  That has the effect of raising the equation of motion for energy-momentum 
from a second-order equation in the proper-time derivatives of position to a third-order 
equation, which leads to some problems in the name of causality. 
 The Weyssenhoff model is sometimes touted as a classical model in which one still 
finds a form of “Zitterbewegung,” due to the fact that the trajectories of free spinning 
mass distributions can take the form of helices, although it has been pointed out on 
numerous occasions that if one uses the numerical values that correspond to the electron 
then one will get a radius for the circular part of the motion that is unphysically large, if 
not macroscopic, while one expects the corresponding quantum phenomenon to take 
place at the scale of the Compton wave length.  However, as we pointed out, the 
Weyssenhoff EMS tensor is actually a simplification of the Dirac electron in that part of 
the internal stress contribution is missing – or rather, only the part that is due solely to the 
transverse momentum is present.  Perhaps the missing contribution to the internal stresses 
might reduce the effective radii of the helices in some way. 
 
 d. Halbwachs extension. – In Halbwachs’s book [5] on relativistic spinning fluids, he 
included a chapter that summarized his own work on the general theory of 
hydrodynamical models, which was largely based upon the work that Takabayasi had 
done along those lines. 
 Although it would take us too far afield from the current survey to present the details 
of Halbwachs’s analysis, we will say that the classification was based in giving the 
energy-momentum-stress and spin tensors their most general forms as sums of 
elementary terms and examining the physical consequences of including only simpler 
combinations of those terms. 
 
 
 § 5.  Relativistic Cosserat media. – If we return to form of the fundamental 
dynamical tensors and their conservation equations for the free Dirac electron and the 
Weyssenhoff fluid then we will see that in both cases we are dealing with an example of 
a relativistic Cosserat medium, as it was defined by the author in [8]. 
 In order to be talking about a Cosserat medium, in general, one typically needs only 
to justify that there are internal couple-stresses at work that manifest themselves in the 
form of an antisymmetric contribution to the energy-momentum-stress tensor.  One can 
also attribute the form of the equations of motion/equilibrium to the demand that the 
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action functional must be invariant under the action of the group of rigid motions, in the 
non-relativistic case, and the Poincaré group, in the relativistic case. 
 Since we seem to be dealing with media that fall within the purview of Cosserat 
media, it will be undoubtedly informative to pursue the extension and application of the 
growing volume of results that have been derived for non-relativistic Cosserat media to 
the relativistic case, with especial attention given to the Dirac electron.  However, that 
research could potentially expand into a future book in its own right. 
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EPILOGUE  
 

 Throughout the foregoing, we have been tacitly assuming that the quantum wave 
equations that we were discussing had a truly fundamental character to them.  However, 
despite their continuing popularity, which is based in their many successes in regular 
practice, especially the successes of the Schrödinger and Dirac equations, there are 
actually some fundamental limitations to the quantum equations that will eventually need 
to be addressed if one is to advance the corresponding continuum-mechanical 
interpretation accordingly.  We shall first simply list some of those limitations and then 
discuss them in more detail in separate sections. 
 
 1. Quantum wave equations are linear wave equations. 
 
Hence, the only interaction of waves that they can describe is simple linear superposition, 
which can still lead to interference and diffraction effects.  Furthermore, due to that 
linearity, there is no spatial confinement mechanism that would keep the support of the 
wave function of an electron localized as it evolved in time. 
 
 2. To date, there is no adequate theory of the wave function of the photon. 
 
Naturally, that might seem difficult to fathom, since electromagnetic waves were an 
established fact of physics long before matter waves. 
 
 3. Ultimately, everything goes back to one’s conception of the quantum vacuum at 
the fundamental level and its mathematical modeling. 
 
In particular, if one thinks that quantum physics started out life as the study of 
electromagnetic phenomena at the atomic-to-subatomic scale then the deeper issue is how 
one conceives and models the electromagnetic vacuum state at that scale. 
 
 
 § 1.  The introduction of nonlinearity. – When one is looking at natural phenomena 
empirically, one must accept that nonlinearity is a more “natural” situation than linearity, 
which invariably appears only as an approximation that pertains to a limited parameter 
regime.  Quite often, that parameter regime amounts to the realm of “small 
displacements,” in some general sense of the term. 
 For instance, all that one has to do to see that Hooke’s law in elasticity is a linear 
approximation to something more involved is to browse the first chapter of any 
elementary textbook on the strength of materials.  Similarly, one rapidly finds that Ohm’s 
law of electricity does not apply to all materials (for instance, semi-conductors are an 
obvious counterexample), and even when one is dealing with “ohmic” materials, 
typically as the current in a resistor increases, so will its temperature, which will, in turn, 
change the resistance, and with it, the linearity of the voltage vs. current curve.  
Furthermore, Fourier’s law of heat conduction and Fick’s law of diffusion have the same 
sort of character as being simplifying approximations to more involved empirical 
situations. 
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 Of course, there is a reason for those simplifications, and it is simply that nonlinear 
mathematics is a more ill-defined class of problems and techniques than linear 
mathematics.  In the mathematical language of categories, one can define a unique “linear 
category” whose objects are linear spaces (i.e., sets with linear structures) and whose 
morphisms are linear maps (i.e., maps that preserve the linear structure).  However, one 
cannot define a unique “nonlinear category,” since there are many candidates for 
structures that are not linear structures, and even in the case of “nonlinear” maps between 
linear structures, one must decide whether the nonlinear maps should include the linear 
ones, as well.  In effect, the logical complement to a well-defined concept is typically an 
ill-defined one. 
 A further reason for the introduction of linearity that essentially follows from the last 
one is that the methods for solving systems of nonlinear equations, whether algebraic or 
differential, become increasingly algorithmic in character and lack the intuitive appeal of 
closed-form solutions, which exist only in what one might call “toy models.”  Indeed, in 
the case of nonlinear partial differential equations, solutions might not even exist locally, 
since that is already true for the linear case. 
 
 a. Nonlinear wave equations. – If one wishes to address the issue of extending the 
quantum wave equations from the linear to the nonlinear domain then one should start by 
looking at some of the nonlinear extensions of those equations that have found a place in 
regular practice. 
 The equation that goes by the name of the nonlinear Schrödinger equation [1] is 
clearly one of many possibilities, and basically amounts to an equation that governs only 
waves in one-dimensional spaces.  Typically, the way that one introduces nonlinearity 
into the Schrödinger equation is by defining potential functions V (t, x, Ψ) that depend 
upon the wave function Ψ in addition to time and spatial position.  The choice that is 
typically made for the nonlinear Schrödinger equation is: 
 

V = 1
2 α || Ψ ||2.     (9.1) 

 
Hence, even in the stationary case, the resulting Hamiltonian form of the Schrödinger 
equation: 

H (x, p, Ψ) Ψ = E Ψ,    (9.2) 
 
will no longer be a linear eigenvalue equation, but a nonlinear one, since the Hamiltonian 
operator H will also depend upon Ψ. 
 Another popular nonlinear extension of a basic quantum wave equation is the so-
called sine-Gordon equation [2]: 

2sin ( )κΨ + Ψ□  = 0,     (9.3) 
 
which is also typically applied to one-dimensional wave propagation.  This equation will 
be approximated by the usual linear Klein-Gordon equation when the wave number κ is 

small enough that one can justify approximating sin κ2 = κ2 – 
1

3!
(κ2)3 + … by its first 

term.  One would then expect that the domain in which (9.3) would become unavoidable 
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would be the domain of large wave numbers, which would correspond to large momenta, 
under the de Broglie relations.  (Recall that the Compton wave number of an electron has 
on the order of 1010 waves per cm.) 
 The sine-Gordon equation has a fundamental physical basis in that if linear waves 
propagate in media that are defined by coupled systems of linear harmonic oscillators 
then the sine-Gordon medium will be a coupled system of physical pendula.  Hence, the 
extension is not purely mathematical and heuristic in character, since the physical 
pendulum can be approximated by a simple harmonic oscillator for small enough angular 
displacements. 
 Gerard Petiau did many years of work along analogous lines [3] by considering the 
extension of the linear harmonic oscillator to the anharmonic oscillator, which amounts to 
extending Hooke’s linear law F = − k ∆x to the next term in the Taylor series for an odd 
function of displacement ∆x: 

F = − k ∆x + 1
3! b ∆x3.      (9.4) 

 
Unlike the exact solutions of the nonlinear Schrödinger and sine-Gordon equations, 
Petiau was addressing wave functions in three-dimensional space, not one-dimensional 
spaces.  The use of elliptic functions entered crucially into the study of those solutions. 
 Werner Heisenberg considered a nonlinear extension of the Dirac equation (cf., [4]), 
which was, nonetheless, restricted to massless fermions: 
 

2 5
5( )l µ

µγ γ γ γ∂ Ψ + Ψ Ψ Ψ = 0.    (9.5) 

 
Note that coefficient of Ψ in the second term includes the bilinear covariant 5µγ γΨ Ψ  

that we called (*s)µ previously.  Heisenberg foresaw great possibilities for this nonlinear 
massless Dirac equation, which has also been called the Heisenberg equation, in terms of 
its role in strong interaction physics. 
 
 b. Nonlinear electromagnetism [5]. – It has long been this author’s strongest 
suspicion that the path from classical physics to quantum physics is most definitively 
paved by the transition from linear to nonlinear electromagnetism.  Some of the reasons 
for that are the fact that the earliest experimental anomalies that pointed to quantum 
theory were basically electromagnetic phenomena, such as black-body radiation and the 
energy levels of atomic electrons, and the fact that one must expect that the field 
strengths for the electric and magnetic fields of elementary charge distributions and 
magnetic dipoles must be quite intense at the quantum scale of distances (i.e., atomic-to-
subatomic).  Although many advocate simply abandoning the classical methods and 
restarting one’s theory in the realm of quantum electrodynamics, one must note that the 
fact that most of the established theory of quantum electrodynamics is subordinate to the 
scattering approximation for the interaction of elementary charges will give the 
methodology of quantum electrodynamics an unavoidably algorithmic and 
phenomenological character.  However, despite that fact, quantum electrodynamics can 
still be regarded as a valid heuristic probe into the enigma of “what’s inside the box,” 
when the box (i.e., the realm of quantum phenomena) is usually too small to be addressed 
directly.  In particular, the “effective models” that one derives from loop expansions in 
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QED give one strongly-worded hints concerning the most definitive nonlinear extensions 
of Maxwellian electrodynamics. 
 Since reasoning by analogy (i.e., mutatis mutandum) is one of the most powerful tools 
in the theoretical toolbox, it is probably best to consider some of the established nonlinear 
models in classical electromagnetism.  It is essential to understand that the difference 
between linear and nonlinear electromagnetism is inevitably something that goes back to 
the nature of the electromagnetic constitutive for the medium in question; that is, the law 
that associates electromagnetic excitations H = H (D, B) with electromagnetic field 

strengths F = F (E, H). 
 Two of the nonlinear extensions of electromagnetism that are rooted in the demands 
of quantum electrodynamics are the Heisenberg-Euler model and the Born-Infeld model.  
In the former case, what Heisenberg and his doctoral student Hans Euler were attempting 
to do [6] was find a solution to the Dirac equation that would represent the interaction of 
an electron with a background electromagnetic field.  Nowadays, the resulting model is 
regarded as a one-loop effective model for that quantum interaction that includes the 
possibility of vacuum polarization taking place at very high field strengths. 
 The latter model, which was developed by Max Born and Leopold Infeld [7], came 
about more heuristically as a way of investigating what modifications to Maxwellian 
electromagnetism would be necessary in order to make the static fields of a point-like 
charge and magnetic dipole finite at the sources, rather than becoming infinite as with 
Coulomb’s law of electrostatics and the inverse-cube law that pertains to the magnetic 
field of a point-like dipole.  The Born-Infeld model also had the advantage of starting 
with the most general electromagnetic Lagrangian density that would be both Lorentz-
invariant and gauge-invariant. 
 
 c. Nonlinear optics. – One of the most-developed realms in the experimental and 
applied physics of nonlinear waves, and nonlinear electromagnetic waves, in particular, is 
that of nonlinear optics [8].  One not only finds applications of both the nonlinear 
Schrödinger equation and the sine-Gordon equation, with associated optical phenomena 
(1), but one also finds that one of the most fundamental experiments in QED that has yet 
to be configured satisfactorily is the one that allows experimental physics to investigate 
the process of “photon-photon” scattering. 
 The latter quantum phenomenon is a form of nonlinear superposition that includes the 
possibility that when the combined field strength of the interacting photons is high 
enough, they will temporarily produce virtual electron-positron pairs (if not muon-anti-
muon, pion-anti-pion pairs, et al.) that change the nature of the interaction from linear to 
nonlinear superposition and presumably produce a scattering process that exhibits 
corresponding quantum anomalies.  The possibility of photon-photon scattering was 
suggested by Hans Euler [9] and Fritz Sauter [10] almost immediately in the wake of 
Heisenberg and Euler’s theory of electrons interacting with external fields.  Although the 
field strengths at which photon-photon scattering takes place continue to lie beyond the 
state-of-the-art in laser technology, those experimenters have been optimistic for decades.  
That is perhaps because a closely-related phenomenon called Delbrück scattering, which 

                                                
 (1) Interestingly, the roles of time and space seem to get permuted in the optical applications of the 
nonlinear Schrödinger equation.  
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involves the nonlinear interaction of a photon with the electrostatic field of an atomic 
nucleus, has already been observed experimentally. 
 
 d. Solitons [11]. – One of the recurring physical properties of elementary particles 
(however one regards that concept) is that they seem to be highly-localized in space, as 
well as stable, in the sense that their spatial localization does not seem to change in time, 
at least in the absence of external agencies interacting with those particles. 
 One finds that this is not a property of linear waves, in general.  Typically, unless a 
wave is monochromatic, the existence of dispersion in the ambient medium would tend to 
give the various frequency-wave number components of the wave packet different speeds 
of propagation, which would lead to a change in shape of the wave packet over time, and 
typically a flattening of the wave function over an increasing spatial support. 
 However, when one looks at nonlinear wave propagation, one finds that the existence 
of nonlinearity can conspire with the existence of dispersion to produce stable wave 
functions of localized spatial support.  Since many of those wave solutions maintain their 
shape under interaction, they are referred to a solitons, in general. 
 Perhaps the earliest example of a soliton was given in 1895 by the Dutch 
mathematician Diederik Korteweg and his student Gustav de Vries [12], who were 
considering an approximate, but nonlinear, model for the propagation of waves in 
shallow water.  They found that there were solutions of their equation: 
 

∂t Ψ + 3
x∂ Ψ − 6 Ψ ∂x Ψ = 0    (9.6) 

 
that maintained the same shape after encountering an obstacle, such as a ship in the 
water.  This one-dimensional wave equation is now referred to as the KdV equation, as an 
abbreviation, and it is both nonlinear and dispersive. 
 The nonlinear Schrödinger, sine-Gordon, and Petiau equations also exhibit solitonic 
solutions (cf., [11]), such as “kinks,” and an active field of research in strong-interaction 
physics is the study of solitonic solutions to the Yang-Mills field equations for quantum 
chromodynamics.  In particular, Tony Skyrme suggested such things in 1962 [13], and 
nowadays solitons of the kind that he described are referred to as Skyrmions.  Unlike 
many of the exact solutions to nonlinear wave equations, his solitons are three-
dimensional, not one-dimensional. 
 
 
 § 2. The photon wave function. – Since the concept of electromagnetic waves 
predated the concept of matter waves by several decades, it is surprising to find that the 
wave equations that one employs for the modeling of quantum matter waves do not seem 
appropriate for the modeling of photons, which are essentially the quantum analogue of 
electromagnetic waves, even when one assumes a vanishing mass. 
 One of the ways of establishing that fact is based in the statistical interpretation of 
quantum wave functions.  If one assumes that the modulus-squared || Ψ ||2 of the photon 
wave function Ψ represents the probability density function for the presence of a point-
like photon in a given region of space then one will encounter problems when applies 
Heisenberg’s uncertainty principle, in the form ∆x ∆k ≥ 1, to that, since the only way that 
the position x of the photon can be localized is if its wave number k is smeared over a 
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large spectrum.  Conversely, if that wave number is defined precisely then one cannot 
localize a photon in space. 
 Of course, the main purpose of this book has been to make physicists rethink the 
wisdom of the statistical interpretation and reconsider other interpretations, such as 
continuum-mechanical ones.  Hence, there is good reason to simply regard traditional 
quantum mechanics as being fundamentally incomplete in that it gives one a better 
picture of the behavior of the matter waves that define the sources of fundamental 
electromagnetic fields (electrons, positrons, etc.) than it does of those fields themselves.  
Since the interaction between the source and its field includes the basis for the theory of 
electromagnetic radiation (most of which never leaves the comfort zone of linear 
electromagnetism, which allows one to continue to use the Fourier transform with 
impunity), and the theory of radiation at the quantum level was one of the early 
anomalies that asserted itself in quantum theory (e.g., the stability of the orbits of atomic 
electrons when they should have been radiating energy due to their centripetal 
acceleration, the existence of a non-zero ground state), there is clearly room for the 
theory to grow at that level. 
 One of the earliest attempts to develop a quantum theory of the photon began in 1934 
and was due to the work of the venerable and ubiquitous Louis de Broglie [14].  That 
search for a quantum theory of the photon was a recurring quest of his for the rest of his 
research career.  That work was also discussed in 1938 by his student Jules Géhéniau 
[15].  The work of Cornelius Lanczos [16] on obtaining a system of equations that would 
include both the Dirac equation and the Maxwell equations was particularly definitive as 
an attempt to unify the wave theories of the electron and the photon.  It was also 
distinguished by its crucial reliance upon the use of complex quaternions, in place of the 
usual Clifford algebra of Dirac matrices. 
 
 
 § 3.  The electromagnetic vacuum and its constitutive law. – As mentioned before, 
the classical, linear electromagnetic vacuum is regarded as a continuous ensemble of 
coupled simple harmonic oscillators.  However, that picture really pertains to the 
“frequency-wave number” space that comes about under Fourier transformation, rather 
than the “configuration space” in which the wave motion takes place.  One should note 
that typically the classical electromagnetic vacuum does not seem to exhibit such a thing 
as a “natural frequency” and does not seem to interfere with the propagation of 
electromagnetic waves in a manner that depends upon their frequency or wave number.  
Indeed, the classical electromagnetic vacuum, whose dispersion law is k2 = 0, does not 
exhibit any dispersion in the sense of a dependency of the speed c of propagation of 
electromagnetic waves upon the wave number of the wave. 
 
 a. The quantum electromagnetic vacuum [17]. – By contrast, the quantum 
electromagnetic vacuum is sometimes characterized by a continuous ensemble of coupled 
quantum harmonic oscillators.  Such oscillators are distinguished from the classical 
simple harmonic oscillators by two key facts: 
 
 1. Quantum harmonic oscillators have a discrete (but very closely spaced) spectrum 
of energy levels, not a continuous one. 
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 2. The quantum harmonic oscillator has a non-zero (but very small) ground-state 
energy of 12 nωℏ , where ωn is the natural frequency of the oscillator. 

 
The spacing of energy levels is then nωℏ .  Since ℏ  equals 1.054×10−34 J-s/rad, one can 

see that an oscillator with a natural frequency of 1 rad/s will have a ground state energy 
of 0.527 ×10−34 J and a level spacing of 1.054×10−34 J.  If it also had an amplitude of 1 
cm and a mass of 1 g then its energy would be on the order of 10−7 J, which is many level 
spacings above the ground state. 
 The existence of a non-zero ground state conspires to make it impossible for the 
ensemble of quantum harmonic oscillators that comprise the quantum wave to have a 
finite number for its ground-state energy.  That is because one is essentially adding 
together an infinitude of finite numbers that are all equal to 1

2 nωℏ .  Clearly, something 

needs to be rethought in that construction.  Typically, correcting for the infinite ground-
state energy of the quantum electromagnetic vacuum is a job for regularization and 
renormalization, but one should really think of that process as basically an “error-
correcting algorithm,”; i.e., a kludge. 
 Presumably, once one has found a more suitable way of defining that quantum 
electromagnetic ground state, one will arrive at what is usually called the “zero-point 
field.”  The Casimir effect [18] is usually cited as experimental support for its existence, 
but some physicists have suggested that the attraction of two perfect capacitor plates in 
the absence of an applied potential difference might also be due to unmodeled Van der 
Walls forces that originate in the atomic ions of the crystal lattice. 
 Another definitive property of the quantum electromagnetic vacuum is the existence 
of vacuum polarization.  That usually takes the form of the creation and annihilation of 
“virtual” particle/anti-particle pairs in the intermediate stages of particle interactions, 
such as the formation of electron-positron pairs during the collision of high-energy 
photons.  The reigning model for such a vacuum state is the “Dirac Sea,” which amounts 
to an infinitude of negative-energy states (i.e., positrons) that are all filled with electrons 
in their ground state.  Once again, the existence of an infinitude of electrons in the ground 
state makes the total mass and charge infinite, as well, which leads to the necessity of 
charge and mass renormalization, resp. 
  
 b. Electromagnetic constitutive laws [19]. – The classical electromagnetic vacuum is 
characterized by two constitutive constants, namely, the electrostatic dielectric strength ε0 
and the magnetic permeability µ0 .  That will lead to the speed of propagation of 
electromagnetic waves in that medium: 
 

c0 = 
0 0

1

ε µ
      (11.1) 

and the linear dispersion law: 
k2 = 2 2

0
ij

i jc k kω δ−  = 0,    (11.2) 

which can be solved for ω : 
ω = c0

i
ik k .      (11.3) 

  



392 Epilogue 

 The use of the word “linear” in the context of (11.2) refers to the fact that the 
electromagnetic constitutive law that is associated with the constants ε0 and µ0 is the 
simplest-possible linear electromagnetic constitutive law: 
 

D = ε0 E, B = µ0 H.     (11.4) 
 

 Such a medium is thought of as “unpolarized,” in the sense that no electric or 
magnetic dipoles actually form in response to the imposition of E and H.  For more 
general electromagnetic constitutive laws: 
 

D = D (E, H),  B = B (E, H),     (11.5) 
 
one regards the differences: 
 

P (E, B) = D − ε0 E,  M  (E, B) = B − µ0 H    (11.6) 
 
as measures of the densities of electric and magnetic dipoles that have formed (relative to 
the classical vacuum). 
 The classical electromagnetic vacuum is not just based upon a linear constitutive law 
then, but it must also be electrically and magnetically isotropic in order for there to be 
only two functions ε (t, x) and µ (t, x) after diagonalization, and it must be time-invariant 
and homogeneous in order for ε (t, x) and µ (t, x) to reduce to the constants ε0 and µ0.  
Furthermore, in order for that diagonalization to be possible, there can be no Faraday 
rotation or optical activity going on.  Ultimately, in order to justify proposing a purely 
algebraic constitutive law, such as (11.5), even a nonlinear one, a medium cannot exhibit 
dispersion in an entirely different sense of the word, namely, the dependency of the local 
state of the medium on past states or spatially-neighboring ones.  That would then make it 
necessary to use integral operators to map E and H to D and B, instead of algebraic ones. 
 One can get “strongly-worded hints” regarding the electromagnetic constitutive law 
of the quantum vacuum from looking at what one gets in the Heisenberg-Euler and Born-
Infeld cases.  However, sooner or later, someone will have to make a first attempt at a 
fundamental model that is not purely phenomenological or heuristic in character.  The 
fact that nobody has made any definitive attempts in that regard only shows that the 
problem in question is one of the most perplexing in all theoretical physics. 
 Another subtle issue that is associated with the classical electromagnetic vacuum is 
that even though it is at the basis for the geometry of Minkowski space, which is the soul 
of the theory of relativity, nonetheless, the concept of ε0 and µ0 being constants has no 
Lorentz-invariant character to it.  For one thing, they only come about when one makes a 
time+space splitting of space-time, and for any other choice of such a splitting, ε and µ 
would not be constant, in general.  The only thing that does have a relativistically-
invariant significance is their combination (11.1) in the form of c0 .  It is therefore 
interesting to go back to early discussions of the special theory of relativity, such as the 
treatment that it was given in the first volume of Max von Laue’s lecture notes [20], 
which was very much rooted in the electrodynamics of moving media. 
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