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On thelines of curvature of the wave surface
By EDOUARD COMBESCURE

Translated by D. H. Delphenich

1. The equations of the normal to the painty, z of an arbitrary surface can be
written:

X—X=RA, y-Y=Ry, z-2Z=Rv;

A, i, v denote the direction cosines of that line, &dknotes the distance from the point
X, Y, zto another arbitrary poirX, Y, Z on the interior part of that same line. If thedatt
point is such that when one proceeds along the sutfaeenfinitely-close normal meets
the first one at the same poktY, Z then the preceding equations must persist when one
variesx, y, z infinitely little, and in turn,A, 4, v, while the other quantitieR, X, Y, Z
remain constant. One will then have the following eiguatfor the lines of curvature:

(1) dx=R d4, dy =R dy, dz=R dv
These equations obviously reduce to two, due to the relation:
Add+udu+vdr=0,
and when one eliminate’, they will reproduce the usual equation for the lines of
curvature. However, it can be advantageous to keepptesent form, since it seems to

relate to the particular question that |1 have in mind anall questions where the
equation of the surface refers to the coordingtgsz symmetrically.

2. Upon setting:

2) X +y+Z=a, aX +by +cZ =4,
a(b+c)X+b(c+a)y’+c(a+h)Z=y

the equation for the wave surface will become theo¥alig one: (see Lamélh. de
I'Elasticité, page 245):
f=af - y+abc=0,
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in whicha, b, ¢ are written here instead af, b? c?, for simplicity [']. Upon considering
a, b, c to be positive or negative in the relations (2), onk giwe rise to two new
varieties of surfaces that relate to the wave surfacepme extent, in the same way that
the hyperboloids with one and two sheets relate toetlgsoid, at least, with certain
affectations of form, so | shall not presently occupyself with anything more than the
fourth-order surfaces, which are such that each of tiee tboordinate planes cut them
along two disjoint second-order curves that are situategh iarbitrary manner in those
plane and whose study is not devoid of interest.

One deduces from the preceding equations that:

ﬂ = a%+ﬁ%-$’:

Xlaa+ G—-a(b+0),
dx dx dx dx [ P ( )

and as a result:

/l=%[aa+/3—a(b+ Jl,
3) u=%[ba+ﬁ—b(0+ 3,

v=%[ca+/3—0(a+ ],

in which, one necessarily ha [

D?=Sx¥ [aa+B-a(b+0)]%
If one sets:
atb+c=A, ab+bc+ca=B, abc=C,
to abbreviate, and keeps in mind the identities:
a’=aA-a(b+c), a’(b+c)=Ba-GC

a’(b+c)*=Ba(b+c) + Ca—AC,
which implies:

(a) Sa=A8-y Sa(b+c)x*=BB-Ca, Sa’(b+c)x*=By+CB-ACy,
then one will easily find, upon taking the relatipa af + C into account, that:
D= (aB+C) (8- +Aa - B).

It results immediately from the preceding expressiondte cosines, while keeping the
identities @) in mind, that:

[l Translator: This practice is not generally advisable
[] The “S” notation refers to a type of summation whpseeise definition is not always clear.
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Six= ”ﬁD_C , Sa/]x:B(ﬁ—a2 +Aa—B),

or, upon choosing a definite sign for

SAX: af-C SMX:ﬁ\/ﬁ_a2+M_B
’ af-C '

If one setgp = S Ax thenp will represent the length of the perpendicular absdissa
the origin to the tangent plane, and second of the egsatioove will give:

Sa)lxzé,
p
o)

Sadi:d%—Sa/ldx

However, from the expressions (3), one will have:
Saldx= %(adSazxzw dS# ¥~ dS&( b ¥ A),
and consequently, upon taking the relatiamsiiito account, one will obtain:
Sal dx= %((ﬁ—az +Aa-B) dB-(aB- O &) ==L -Zpda.

Moreover, equations (1) immediately provide:

Sal dx=R Sax dj,
or:

1dB=R Sax di,
SO, upon substituting:

db:R(%+ pda—Z,Bd—gj.
p p

settingp® = v, R/\/_ = 6, and observing that:

dp=Sx d -1 Syxax=tdg,
R 2R
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one will get the following definitive group that relatesthe lines of curvature of the
wave surface:

_v(@*-Ag+B)-C

4) da=6dy, dﬁz@(vchMj, V: —

\Y

where the last equation is nothing but the onedhfihesp® or v when it is solved fop.

3. If one setss = const. then it will result from these equatithat a = const., and
also thatf = const. However, the simultaneous hypotheses const.,v = const.
generally determines only a limited number of peioh the wave surfaces. For this
double hypothesis to be true, it is necessaryitlsftould correspond, in reality, to a line
of curvature whose corresponding valuegGa$ indeterminate. That can happen only for
three simultaneous values, and in particulara = a, b, ¢, which correspond to the three
circular sections that are given by the plane coatds. The three elliptic sections by the
same planes must also satisfy equations (4), whiehsy to verify. If one actually sgfs
= bc (which will give x = 0) then equations (4) will become:

da=6dv, Vda=bcdy or dE:—d—a,
v bc
and the value that satisfies the third of (4) viidcomev = ML here. That
c-a

particular solution includes the circular solutidoi@cause upon making = c in it, one
will get v=c. One then knows three particular solutions:

_ bc _ca _ab
vV —M— vV —— Vs ——.
b+c-a ct+ta-a a+b-a

From what we just said, we see that the develepsiniface circumscribes the wave
surface and has a concentric sphere (which isfacgufor whichv, and thereforez, is
constant) cannot touch the wave surface alongeadincurvature of the latter, except
under the hypotheses that were pointed out abdves confirms the inexactitude that
was pointed out and established beyond any douBelyand on page 817 of Comptes
Rendus (1858) and Brioschi on page 135 of AnnalMdiematica (1859); Cayley, in
turn, returned to that inexactitude in the May 1&s@ie of the Quarterly Journal.

4. If one letsl denote a symmetric product of three factors thes will deduce
from the third of equations (4) that:

_ —dvll(a-a+ d{(2a- A\?+( B—az)— ¢
B (v-a)? !

dg
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or rather:
_—dvl(@-a+ da{N( v a- ¢ va)3
dg= 5 :
(v-a)
So:
dB+v da= dal(v-a- dvl(a - a).

(v-a)’

The first and second of equations (4) give:
dB+vda= 6{dﬁ+vda+(v—£j d\},
%
and upon eliminating from the first one:

(dB+vda) (dv—-) = (v—éj dv da;
moreover:

\Y

_B _(avV-O(v-a)-Vi(a- 3
v av(v-a) '

From these values, one will have:

da’ M(v-a+dvna- a)+dadv{

(v-a)’(av’-C) v(a-g+aN(w 3 _o
av a

for the isolated equation of the lines of curvatuvkich reduces to:

da dv

(5) da’ M(v-a+ dv N(a- 3+ {a(-2P +AZ—C) + AP — BV + 3C\} = 0,

or, if one prefers, upon setting= 1 /u, to:

da’ ul(@-auw+ duM(@- 3+duda{a(CP—Au+2)— T+ 2Bu—A} = 0.

One can consider the Euler equation that relatéset@ddition of elliptic functions to be
a particular case of this or the other more geregahtion:

F(U) da + Fi(a) du’ +f(u, @) du da = 0,

in whichF, F4, f denote fourth-degree functions. That agreemenhtlzan existence of the
particular solutions that | pointed out, as wellaa®ther solution that | will soon say a
few words about, can lead one to think that theegdrintegral is an algebraic function;
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however, until we have more ample information, thaist be considered to be a
simplistic argument.

Upon dividing the differential equation ir and v above byll(v — 8 and then
decomposing the coefficient afa dv into simple fractions, one will easily give that
equation the following form, whossuperior and inferior symmetry (if | may be
permitted to call it that) makes it simple to remember:

2
®) (d_aj _(sﬁ_zj%mu _ 0.
dv v—a V) dv V- 8

If one considersy and a to be the abscissa and ordinate of a plane curye, @ one
takes three pointd, B, C on the bisector of the angle between the positiadinate

axesOv andOa, such thaDA=a,/2, OB=b,/2, OC=c./2, if one letsM denote an

arbitrary point of the locus that corresponds to theqaimg differential equation, and
joins M to the point®, A, B, C then that equation can be written:

2
(i_aj (tan @, + tang, + tangs — tang) + ?j_a + tang, tang, tangs = 0,
v Y

in which ¢, @1, @2, @3 denote the angles that the four lines subtend witk-thas. If, in
addition, one lets tani, tana denote the two values dtr/ dv that relate to the poifl
then one will get the following geometric relations:

tana + tanaw + tang = tang; + tang, + tangs,
tanw tanw = tang; tang, tangs.

That will result in a certain geometric means of cartding the points of the locus of
pointsM.

In the case wherb = a, equation (6) will become illusory, as far as the lioés
curvature of the wave surface are concerned. However,io@mining that it refers to a
plane curve and supposing, in addition, thatO, it will give:

da _ a-a(li /1_2)
dv v—a \Y;

from which, one will easily deduce that:

a_ i[z—ij upon taking n=Hy v(a—v)+§,

v.n n

in whichH is an arbitrary constant. Finally, one can pouut the particular solutioor =
v, which verifies equation (6) and has no relatigmsbd the lines of curvature of the wave
surface.
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5. The equations of the normal will give:

X2=x - RIx+R?12, etc.,
if one then sets:
Sx?=A  Sx?=B, Sa((+c)X?=C,
so one will have:
A=a-DPR+ 3R,
B=4-2RSax +AR,
C=y-2RSalb +c) X} + BR.

From the identitiesd) and the expressions £, v, one finds at once that:

a(@f-C)-Cla’-ra+B-f) _,, C.

Sa(b+c)Ax=
D p

upon recalling the value of &/ in no. 2, one will get:
A=a—-26+ 367
B = S— 280+ Av&?,
C=y-2(v +C) 6+ 2Bv6*
Upon combining these with equation (6), or:

92—{5” 2 ”}e +nf8 -9
v—-a V v—a

and

v(a?- Ao+ B)-C
v-a ’

:8:

the elimination off, a, v, &from these five equations will give an equatioi\jB, C for
the locus of centers of principal curvature.

6. Here, | will add some differential relations tlcain be useful. If one sets:
A=@-B(b-9(c-9
then one will know, and one can easily deduce fegpmtions (1), that:

22 a— b

= 2C@-ap-bg,  v=2a-nE-ca, =2 (a-9(B-an.

Upon differentiating these expressions and consigehe identities:
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Sa’(b-9=-4A, Sbcbb-9=-4A, Sa®*-73)=A,
Shc(b*— &) =-AA, sa®(b-9 =-AA,
Sb’c?(b—-9=-BA, sa’ (b*- &) =-BA,

one will easily find that the expression for the squasze of an arbitrary curve element
that is traced on the wave surface:

—_— 2— — — — —
4ds =4 Ax+B ’Bdaz+c—ad,[>’2.
M(a-a) Mn(g-bo

If one now observes that the equations of the gaodiees of an arbitrary surface can be
written:
d? = NA d<, d?y = Ny d<, d’z=Nvd<,

in which N is an indeterminate, and that here the relatiors§ Sa, Sax = £ will give
successively:

Sx dx=1da, Sx d*=ida-dZ,

Sax dx=1dg, Sax d* = 3d*B-Sa dZ,

then one will first have:
Sx dfx =N d€ SAx =Np d,

Saxdzx:Nd§Sa)lx:N€ d<,

and then:
1 ffa-d§=Npds

1 p-Ssa d%zN% ds,

and thus:
dPa-2ds = ([d?8 - 2 Sa dxX),

for the equation of the geodesic lines, in whicle sabstitutes the preceding expressions
for d& and Sa dx¥, and in which one then takes whatever one likdsetthe independent
variable.

Paris, 25 August 1859.
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Some observationson the latter question

By Prof. FRANCESCO BRIOSCHI

1. In an interesting paper by Combescure, it resultsiftioaie considers the point of
the wave surface whose coordinatesxang z, and lets denote the square of the radius
vector for that point, and lefsdenote the square of the length of the perpendiculdueto
tangent plane then the equation between the variabldsdines of curvature of that
surface will be the following one [see equation (5)]:

(1) 4 () [ﬁj Lo+ p-D-dPEBo - T =0,
dp p dp

in which:

¢(p) = (t-a(t-b(t-o9.

One easily passes from the equation above to:

dr ) d (p-NJp
a - 2 —1 <o oo
¢(p)[dpj pr)+2¢0 () (p—1) dp{ 5(0) j

and from this, if one replaceswith the variablecy which is coupled to the latter by the

equation:
|09M =
Vo(p)
to:
(2) & (p) (Z—wj -(e"+e™) +d¢/_(2p):
p dp

in which, one has se#(p) = / p#(p) , for brevity.

2. Let Vi, V, denote the two propagation velocities of a plameeay and letd, u, v
denote the cosines of the angles that the nornthlatovave makes with the axes, so one
can consider the wave surface to be the surfadeigtenveloped by the planes (Lamé,
Théorie de I'Elasticitepage 242):

(3) AX+uy+vz=Vs,.

Setu =V, v = V,7; equation (3) will obviously givep = u, and one will have, as is
known (Lamé, page 243):
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X=A(Jﬁ+ faj,y:u(Jﬁ+a§5) Z=V(JG+—£—)

u u—c
in which:
D= ¢(u)
(v-uy/u’

and if one observes that [Lamé, page 238, egs. (37), (39)]:

S Az -0 S Az - v—Uu
u-a (u-a?* 4(u)
then one will have:
r=u+ _¢(u) .
u(v-u)

The variables, p are then coupled ta v by:

$(u)

r=u+ :
u(v-u)

®)
1
c

From this, one deduces the relations:

-5 0 :
Jop)  u-wfu’ v Pe(p) = Jug(y),

(u- v)\/_u _
log —T(U) 6

w=-6, WUp) = Y u).

If one now substitutes these values in equatiortH@&y one will obtain the equation for
the lines of curvature of the wave surface in thgablesu, v. However, that equation
obviously has the same form as (2). Therefore,l@sethe singular property that if one
replaces the variables p in Combescure’s equation (1) with the variahles then the
resulting equation will be that of the lines of wature of the wave surface in those latter
variables ().

or if one sets:

then the following ones:

() Rouché presented a note to the session of the AcadeffdsScienze (Institut. no. 1228) on 13 June
1859 in which he announced that he had found the equation fiangbef curvature of the wave surface in
a finite, algebraic form when one assumes that the itieloof propagation are the variables. A retraction
then followed, due to the fact that the paper includedtan i calculation. Observe that the lines on the
wave surface for which = const.v = const. are not orthogonal, as was asserted inotieeon page 135 of
year 2 in these Annali. Equation (3) in that note iscradition for the orthogonality only in the case for
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If one sets&: k, for brevity, then one will get the following foutas for the

p(r - p)
values of the coordinatesy, z of an arbitrary point on the wave surface as fonst of
the quantities, p:

-a -b -C
x=AfpE—2, y=pfpd=,  z=vfpE—<,
p-a p-b p-c
in which:

#=Ppoav, =P 20-bk, =P p-cek,

D-
#'(a) (b) #'(c

N—r

Pavia, November 1859.

which equation (2) is verified. Therefore, (3) cannotvakd for linesu = const.,v = const. that do not
verify the condition (2).



