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Preface 

 

 In 1891, Paul Stäckel (1) posed the problem: “Which Hamilton-Jacobi equations can be 

integrated by means of separating the variables?” That was a generalization of a question that 

Liouville had posed many years before. Stäckel found a noteworthy solution (namely, in the 

orthogonal case) and gave the conditions for the solution to be possible. 

 Years later (2), Levi-Civita deduced those conditions in a more convenient form by separating 

the terms that involved the potential from the other ones and solved the problem in another 

noteworthy case. 

 In 1908 (3), I myself exhausted the problem in three variables by fortuitous artifices, but 

laborious calculations. 

 Only a year later, Burgatti (4), guided by a brilliant intuition “more than by rigorous logic” (as 

he phrased it), gave n + 1 types of solutions to the problem in n variables without, however, 

succeeding in proving that they would be the only possible ones “although I have no doubt of that 

(he stated).” 

 We shall revisit the problem in order to solve it with the rigor that would ensure the complete 

exhaustion of the argument and recover all of Burgatti’s types, and only them. 

 
 (1) P. Stäckel, “Ueber die Integration der HAMILTON-JACOBI’schen Differentialgleichung mittels Separation 

der Variablen,” Habilitationsschrift, Halle a. S., 1891. 

 (2) T. Levi-Civita, “Sulla integrazione della equazione di HAMILTON-JACOBI per separazione di variabili,” 

Math. Ann. 59 (1904), 383-397. 

 (3)  F. A. Dall’Acqua, , “Sulla integrazione della equazione di HAMILTON-JACOBI per separazione di variabili,” 

Math. Ann. 67 (1908), 398-415. 

 (4) P. Burgatti, “Determinazione dell’equazione di HAMILTON-JACOBI integrabili mediante la separazione 

delle variabili,” Rend. R. Accad. Lincei (Roma), vol. XX, 1st semester 1911, pp. 108-111. 
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 If (as is natural) we say geodetic to mean the cases in which no forces are acting (i.e., the cases 

in which the trajectories of motion are geodetic) then, with Levi-Civita, we will find that: If a 

dynamical problem with constraints that are independent of time is the one being studied then it 

will only be the corresponding geodetic problem in which the potentials are annulled with no 

further analysis. 

 As is known, the converse proposition is not true. There exist geodetic problems that cannot 

be attributed a potential, although they have the type that we have proposed to study (i.e., types in 

which the potential is actually zero). I call them essentially geodetic, and I shall prove that the only 

essentially geodetic case is the Levi-Civita case. 

 I shall also prove that: In the other cases, the most generic expression for the potential depends 

upon a certain number of arbitrary functions, each of which has only one variable, and that 

number characterizes those cases. 

 If that number is n, i.e., if the potential can depend upon all of the variables, then one will have 

the Stäckel case. 

 As for the methods: We shall take from Burgatti the idea of determining n first integrals of 

the equation rather than the coefficients of the equation: Eliminating n – 1 constants from them 

will lead to the desired equation. I shall benefit from the divisibility criteria of entire (intere) 

functions that proved so fruitful for Levi-Civita, and finally I shall recall from my own research 

into the subject the idea of obtaining the arbitrary constants and the arbitrary functions of only one 

variable by annulling all, or all but one, of the independent variables: Those constants and 

functions will then be determined in a more obvious way, and an intimate link with the problem 

being treated will result from that. 

 

 

The equations of the problem. 

 

 1. – Let: 

1 2

1 2

, , , ; , , ,n

n

W W W
H x x x

x x x

   
 

   
 = h0 

 

(h0 = const.) be the Hamilton-Jacobi equation. To say that it is integrable by separation of 

variables is to say that any W / xr depends upon only xr . That being the case, if p(r) denotes a 

function of only xr then one writes: 

r

W

x




 = p(r) . 

 

 Recall the conditions that H must satisfy. Differentiate it with respect to xr and observe that H 

depends upon xr both directly and by way of p(r) , so one will have: 

 

( )

( )

r

r r r

dpH H

x p dx

 
+

 
 = 0 . 
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If one sets (5): 

( )

:
r r

H H

x p

 

 
 = r , 

for brevity, then that can be written: 

(1)  
( )r

r

dp

dx
 = − r . 

 

Differentiate this once more with respect to xr (s  r) and observe that since r depends upon x both 

directly and by way of p(r) : 

( )

( )

rr r

s r s

dp

x p dx

  
+

 
 = 0 , 

so from the preceding: 

(2)      
( )

r r
s

s rx p

 


 
−

 
 = 0 . 

 

 That must be satisfied for any value of x. In addition, since (1) defines the derivatives, the p do 

not allow any arbitrariness beyond their initial values, and they must remain arbitrary precisely 

when W is a complete integral of H = h0, as one supposes. Since the p must be independent, (2) 

must be satisfied identically for any values of the x and p. 

 

 2. – From now on, suppose that the equation H = h0 corresponds to a dynamical problem whose 

constraints do not depend upon time. Denote the vis viva of the system by: 

 

T = 1
2

,

rs r s

r s

a x x  , 

 

as usual, and let ( )rsa  denote the coefficients of the reciprocal form to 2 T, and set: 

 

(3)  K = ( )1
( ) ( )2

,

rs

r s

r s

a p p . 

 

 As is known, if one denotes the force potential by U then one will have: 

 

(4)  H = K – U  

 

and 

(5)      
( )r

H

p




 = 

( )r

K

p




 = rx  , 

which will give: 

 
 (5) Suppose, as is legitimate, that one has H / p(r)  0 in the domain considered. 
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(6)  r = : r

r

H
x

x





. 

 

 3. – It is obvious that the functions 2 r
r

s

x
x





, 2

( )

r
r

s

x
p





, s sx   are entire functions in the p. When 

equation (2) is multiplied by r sx x  , it will then become entire: 

 

(7)     2 2 2

( )

( )r r
s r r s s

s s

x x x x
x p

 


   
   −   

     

 = 0 . 

 

 However, that must be verified for any value of the p : Meanwhile, one can annul the parts of 

varying degrees separately. One soon sees that the terms that do not contain the U are all of a 

certain degree (viz., four), while the ones that contain it have lower degree. One can then annul 

the part that does not contain the U, while neglecting the ones that do. That is equivalent to setting 

the potential equal to zero. 

 With Levi-Civita, we conclude that: 

 

 If a dynamical problem with the characteristic function H = K – U is integrable by separation 

of variables then the same property will be true of the equation K = h0 that defines the geodesics. 

 

 We then say (as I already mentioned in the preface) that the problem is geodetic when K = h0 

(U = 0), and essentially geodetic when it is not possible to associate it with any potential function 

with K = h0 . 

 

 

The essentially-geodetic case and the cases that admit a potential. 

 

 4. – The left-hand side of (7) is an entire function of the p, and therefore of the x , as well, but 

since the first term in it is obviously divisible by sx , as well, that will also be true of the second 

one, and that will present two possible cases for any value of s according to whether one or the 

other of the two factors that constitute those terms is divisible by sx . 

 One can also separate the indices into two groups: 

 

 Group 1: The ones for which the function s sx   is divisible by sx  (or zero). 

 

 Group 2: The ones for which that function is non-zero and not divisible by sx . 

 

(One of the two groups might possible be missing.) 

 For the first group, if Ls denotes an entire function of the p then: 
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(I)       s = Ls   (s from group 1), 

 

or, from (6), (4), if one isolates the parts of different degrees in the p : 

 

(a1)      
s

U

x




 = 0 

(s from group 1),   

(b1)      
s

K

x




 = s sx L . 

  

As is obvious (since the left-hand side is homogeneous of degree two in the p), Ls will be a 

homogeneous linear function in the p. 

 

 As is shown by (a1), if group 2 is missing then the problem will be essentially geodetic, and 

(b1) is characteristic of the Levi-Civita case (6). 

 

 5. – I propose to prove that: 

 

 The Levi-Civita case is the only essentially-geodetic one. 

 

 More precisely, I will prove that: 

 

 Any ( )qqa  (in which q is an index from group 2) will satisfy the condition equations for a 

potential and can then be assumed to be such a thing. 

 

 If s belongs to group 2 (so s sx   will not be divisible by sx ) then 2

( )

r
r

s

x
p





 will be divisible by 

sx . That is, if Mrs denotes a suitable function that is entire in the p then one will have: 

 

(II)      2

( )

r
r

s

x
p





 = s rsx M   (s is from group 2, r  s). 

 

When one recalls (4), (5), (6) and separates the parts of differing degree in the p, that will give: 

 

(a2)     
( )rs

r

U
a

x




 = 0 , 

(s in group 2, r  s)   

 
 (6) Cf., Levi-Civita, loc. cit. (2), § 5, page 388. 
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(b2) 
2

( )

( )

rs

r

r s r

K K
x a

x p x

 
 −

  
 = s rsx M  . 

 

(b2) shows immediately that the M are homogeneous linear in the p. If one then substitutes the 

expressions that were given by (b2) in (7) then one can split (7) into (7): 

 

(a3) 
2 2

( )

r rs

r s r s r s

U U U U
x M

x x x x p x

   
 − −

     
 = 0 , 

(s in group 2, r  s)  

(b3) 
2 2

( )

r rs

r s r s r s

U U U U
x M

x x x x p x

   
 − −

     
 = 0 . 

 

 6. – When one differentiates the last one and (b2) and eliminates the higher-order derivatives 

[i.e., differentiates (b2) with respect to xs and (b3) with respect to p(s) and subtracts], that will give: 

 

(8)   
2 2 2

( )

( ) ( ) ( )

2 2 rsrs

s s r s s r r s

MK K K K
a

x p x p x p x x

   
+ −

       
 = rs

s

s

M
x

x





 (s in group 2, r  s), 

 

which can be associated with the preceding ones. 

 

 7. – It will also be convenient to determine the functions M. 

 If one differentiates (b2) with respect to p(s) then one will have: 

 

  
( )ss

r

r

a
x

x





 = ( )

( )

ss rs
rs s

s

M
a M x

p


+


  (s in group 2, r  s), 

 

and differentiating once more (with respect to p(s), as always) will give: 

 

(9)  
( )

( )
ss

rs

r

a
a

x




 = ( )

( )

2 ss rs

s

M
a

p




   (s in group 2, r  s), 

 

and one will have the desired expression for the M: 

 

(10) Mrs = 
( )

( ) ( )

( )2

1
(2 )

2

ss
ss rs

r rss

r

a
a x a x

a x


 −


  (s in group 2, r  s). 

 

 

 
 (7) Separate the terms of varying degree and annul them separately, as usual.  



Dall’Acqua – The Hamilton-Jacobi equations that can be solved by separating the variables. 7 

 

Simplifying the calculations. 

 

 8. – One can simplify the calculations that are still missing by observing that the right-hand 

side of (8) is divisible by sx . That will then be true of the functions on the left-hand side. However, 

when one replaces 
2

r s

K

x x



 
, 

2

( )r s

K

x p



 
, and M, and their derivatives with the expressions that are 

given by (b3), (b2), (10), and (9), respectively, it will reduce (neglecting the terms that are already 

divisible by sx  each time) to: 

  
( )

( )

( )

3 1

2

ss
rs

ss

s r

K a
a

x a x

 

 
   (s in group 2, r  s), 

 

which must either be divisible by sx  or equal to zero. 

 However, none of its factors is divisible by rx  (8). The term will then be zero identically, and 

therefore its first three factors cannot be, so one will have: 

 

  
( )

( )
ss

rs

r

a
a

x




 = 0    (s in group 2, r  s). 

 

Mrs (if one examines its expression) is then divisible by rx , and therefore from (b2), 
( )rs

r

K
a

x




 is 

either divisible or zero: It is divisible if r belongs to group 1 and zero (9) if r belongs to group 2. 

 

 9. – I say that 
( )ss

r

a

x




 = 0 in the first case (r is in group 1, s is in group 2). If ( )rsa   0 then that 

will be obvious from the previous equation: One can then make ( )rsa  = 0, and it will suffice to 

differentiate (b1) twice with respect to p(s) and recall that 
( )

r

s

x

p




 = ( )rsa  =  0, and that Lr is linear in 

the p. 

 If q denotes an index from group 2 then one can write: 

 

(11) 
( )qq

r

a

x




 = 0  (r from group 1, q from group 2). 

 

 

 (8) The only factor that contains the p, and therefore the x , is K / xs , and that is neither divisible by 
s

x  nor zero 

when s is an index in group 2. 

 (9) Cf., the preceding footnote.  
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 In the second case (r belongs to group 2, ( )rs

r

K
a

x




 = 0), one has: 

 

(12) ( )rsa  = 0 (r, s from group 2, r  s). 

 

 First (10) and then (b2) will then give: 

 

2( )b  

( )

2 ( )

( )

log
,

log
,

ss

rs r

r

rr

r

s r s

a
M x

x

K a
x

x p x

 
=




  =
   

 (r, s from group 2, r  s) 

 

from which (a3), (b3) will take the form (when one divides by rx ): 

 

3( )a  
2 ( ) ( )log logrr ss

r s r s s r

U U a U a

x x x x x x

    
− −

     
 = 0 , 

(r, s from group 2, r  s) 

3( )b  
2 ( ) ( )log logrr ss

r s r s s r

K K a K a

x x x x x x

    
− −

     
 = 0 . 

 

When the last one is differentiated twice with respect to p(q), that will give: 

 

(13) 
2 ( ) ( ) ( ) ( ) ( )log logqq qq rr qq ss

r s r s s r

a a a a a

x x x x x x

    
− −

     
 = 0 

 

(q, r, s are from group 2, r  s). 

 

 10. – We are then in a position to show that: 

 

 The function U = ( )qqa  (q is from group 2) satisfies all the conditions (a) that the potential must 

satisfy, so that can be assumed. 

 

 Indeed, we have: From (11), (a1) is satisfied, and when r belongs to group 1, (a2) will be. From 

(13), 3( )a  will be satisfied, and therefore (a3), while the remaining one (a2) (when r belongs to 

group 2) will reduce to an identity by virtue of (12). 

 

 Therefore, if the second group of indices exists (even if it consists of only one index) then the 

problem will admit a potential and will not belong to the essentially-geodetic type then: The only 

such type is then the Levi-Civita type, as was stated before. 
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The solution in the essentially-geodetic case. 

 

 11. – Mark the functions that either depend upon (at most) one variable xr or will become such 

things when one equates all of the other variables to zero with an index |(r) that is included in 

parenthesis (as we already did for the p). Analogously, denote the constants or the functions that 

will become constant when one annuls all of the variables that they depend upon by the index |0 

(as we already did with h0). 

 

 12. – In particular, if one denotes the initial values of the p(r) by cr (they are, so to speak, 

arbitrary constants) then one will have: 

p(r)0 = cr . 

 

 For the p in the first group, one will have 
( )

:
r

r r

r r

dp K
x L

dx x

 
= = − 

 
: 

 

(14) 
( )r

r

r

dp
L

dx
+  = 0 . 

 

It is easy to see that Lr is independent of the p in the second group. Indeed, (11) shows that [cf., 

(10)]: 

  Mrs = 0 (r from group 1, s from group 2). 

 

(b2) will then reduce to its left-hand side, and when one expresses the K / xr in terms of Lr, to: 

 

  
( )

r

s

L

p




 = 0 (r from group 1, s from group 2), 

which proves my assertion. 

 If b p(r) denotes the terms in Lr that contain the p(r) and r denotes the remaining terms then 

(14) will become: 

( )

( )

r

r r

r

dp
b p

dx
+ +  = 0 , 

 

and when one sets all of the variables equal to zero, while singling out the thr  one: 

 

( )

( ) ( ) ( )

r

r r r

r

dp
b p

dx
+ +  = 0 , 

 

in which the (r), which is already homogeneous linear in the p of group 1, except for p(r), will then 

be homogeneous linear in their initial values (viz., the first group of constants). 

 Multiply that by (r) = 
( )r rb dx

e   0, and integrate between 0 and xr : 
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( ) ( ) 0 ( )

0

rx

r r r r rp c dx − +   = 0 . 

  

 If  denotes the first group of constants and f(r) () denotes a linear form in the constants of 

that group (which is a form that depends upon only the variable xr) then that will be an equation 

of the type: 

 

(A)       p(r) = f(r) () . 

 

 If the second group is missing then (A) will give the necessary conditions for all of the p. They 

are also sufficient (as we will see later) and solve the essentially-geodetic problem. 

 

 

The solution in the general case. 

 

 13. – In order to get the p from the other group, we shall try to obtain a general expression for 

the p from which we can easily deduce the Hamilton-Jacobi equation under our hypotheses. 

 Indeed, that equation is written: 

 
( )

( ) ( )

,

st

s t

s t

a p p  = 2 U + 2 h0 . 

 

If one annuls all of the x except for the thr  one then p(r) will be unaltered, while the remaining p 

will change into their arbitrary initial values, and all other functions will change into functions of 

only xr . Highlight the terms in the summation that contain p(r) [while at most changing the 

parameters conveniently (10)] and set: 

f(r) = − ( )

( )

rs

r s

s r

a c


 , 

(r) = ( )

( )

,

ss

r s t

s t r

a c c


 , 

 

for brevity, and the aforementioned equation will assume the form: 

 

(15)    2

( ) ( ) ( ) ( ) ( ) 02 2 2r r r r rp p f U h− + − −  = 0 . 

 

 14. – We shall attempt to specify when r belongs to the second group by means of the functions 

f(r) and (r) . 

 

 (10) If one changes the parameter xr then one can replace 
( )rr

a  with 
( ) ( )

( )
:

rr rr

r
a a . When one annuls the x that are 

different from xr, that will become 
( ) ( )

( ) ( )
:

rr rr

r r
a a  = 1. 
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 For the f (recalling that ( )rsa  = 0 when r and s are distinct indices of the second group), one 

has: 

f(r) = f(r) () , 

 

in which the f(r) () have meanings that are analogous to the ones that they had in the preceding 

number. 

 As for the , if  and  denote summations that extend over only indices in the first group 

and only indices in the second group, respectively, then one can decompose them into sums of 

three terms: 

 

(16) (r) = ( ) ( ) ( )

( ) ( ) ( )
, ,

2st st st

r s t r s t r s t
s t s t r t s r

a c c a c c a c c
 

+ +       . 

 

 The first summation is a quadratic form in the constants of the group  [call it 
( ) ( )r  ] and 

as one sees, it does not need to be specified any further. The second one will reduce to 
( ) 2

( ) ,ss

r s
s r

a c

  

from the observation that was made before about the ( )rsa . The third one must be transformed, as 

we shall soon see. 

 

 15. – If one recalls that K / p(s) = sx  [form. (5), § 2] then 2( )b  can be written: 

 

  
log s

r

x

x




 = 

( )log ss

r

a

x




  (r, s from group 2; r  s) 

or more simply: 

  
( )( ; )ss

s

r

x a

x




 = 0  (r, s from group 2; r  s). 

 Differentiate that with respect to p(t) and invert the derivatives ( )

( )

sts

t

x
a

p

 
=   

: 

 

  
( ) ( )( : )st ss

r

a a

x




 = 0  (r, s from group 2; r  s). 

 

 If one annuls all of the x except for the thr  one and integrates from 0 to xr then that will give: 

 
( ) ( )

( ) ( ):st ss

r ra a  = ( ) ( )

0 0:st ssa a , 

 

or also when one observes that ( )

( )

ss

sa  = 1 will make ( )

0

ssa  = 1: 

 

  ( )

( )

st

ra  = ( ) ( )

( ) 0

ss st

ra a   (r, s from group 2; r  s). 
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One can replace ( )

( )

st

ra  with the expression that was just found in the third summation in (16). 

 One can then write: 

(r) = 
( ) 2 ( )

( ) ( ) 0( ) [ 2 ]ss st

r r s s t
s r t

a c a c c


 + +    . 

 

 The quantities enclosed in square brackets are constants. There are just as many constants in 

the second group as there are independent functions (as is easy to verify): They can then be usefully 

substituted for the latter. If one denotes the group by , and 
( ) ( )r   denotes a linear form in them 

with coefficients that depend upon only xr then one will have: 

 

 (r) = 
( ) ( )( ) ( )r r    + . 

 

 16. – It remains for us to determine h0 . When all of the variables have been annulled, the 

Hamilton-Jacobi equation will give only (11): 

 
( )

0

,

st

s t

s t

a c c  = 2 h0 . 

 Thus, 2h0 can also be written: 

 

(C)    

( ) ( ) ( )

0 0 0 0
, , , ,

2 ( )

0 0 0 0
,

2 2

( ) [ 2 ] ( ) ( ).

st st st

s t s t s t
s t s t s t s t

st

s s t
s t t

h a c c a c c a c c

c a c c   

 = + +



  =  + + =  +


      

  
 

 

 If (15) is substituted for f, , and h0, and the expressions that are found are solved for p(r) then 

that will give: 

 

(B)     p(r) = ( ) ( ) ( ) ( )( ) ( ) ( )r r r rf F u    + +  

 

for the p in the second group, in which the terms that are quadratic in the  and linear in the  are 

collected into the terms F and , respectively, and u(r) is the term that is independent of the 

constants  and . 

 

 

The problem is solved. 

 

 17. – One can, if one prefers, give (C) a more convenient form. Indeed, it is easy to see that a 

homogeneous linear substitution of the constants of the group  can give the orthogonal form 
2  to 0

 , while leaving the type of (A), (B) invariant. 

 

 
 (11) The right-hand side will be 2 U0 + 2 h0 , but if one includes U0 in h0 then it can take the form that is written. 
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 One can then write: 

 

(A)     p(r) = f(r) ()     (r is from group 1), 

 

(B)     p(r) = ( ) ( ) ( ) ( )( ) ( ) ( )r r r rf F u    + +  (r is from group 2), 

 

(C)     2 h0 = 2 +  . 

 

That will solve the problem under the conditions that the discriminants of the two systems that are 

comprised of the f(r) (r is an index from group 1) and the (r) are both zero. 

 

 Indeed, under those hypotheses, (A) will give the constants of the group  as expressions that 

are linear and homogeneous in the p and therefore quadratic (and homogeneous) in the 2 . 

Therefore, when one isolates the radical in the right-hand side and squares it, (B) will give linear 

equations that are soluble for the  that will prove to be, on the one hand, homogeneous quadratic 

in the p and of degree zero in the p, on the other, and the same thing will be true of their sum and 

therefore the expression for 2h0 . 

 

  Therefore, the elimination of the constants of the groups  and  from (A), (B), (C) will give 

a Hamilton-Jacobi equation that is integrable by separation of variables, and since (A), (B), (C) 

represent necessary conditions, our problem is solved completely. 

 

 18. – We add only that: The absence of the group  characterizes the Stäckel type. The absence 

of the group  characterizes the Levi-Civita type. Our equations reduce to the form of the ones in 

Burgatti, with which these coincide substantially, so one solves (C) with respect to a constant of 

group  in the Levi-Civita case and with respect to group  in any other case, while replacing (A) 

with the expression thus found in the first case and replacing (B) in the others. 

 

 Mantua, 10 March 1912. 

 

F. A. DALL’ACQUA   

 

____________ 


