Excerpted from G. Darboux:econs sur la theorie des surfacextc., Part IV, Notes by the author,
Gauthier-Villars, Paris, 1896, pp. 466-488.

NOTE VIII.

ON THE ASYMPTOTIC LINESAND LINES OF CURVATURE
OF THE FRESNEL WAVE SURFACE.

Translated by D. H. Delphenich

1. Ever since Fresnel and Ampeére, a great number of geonteteespublished
important works on the wave surface. A complete mompdgoa that surface deserves to
be undertaken. However, one must not try to disguisdatt that it would have to be
quite lengthy, because it would have to draw upon manferdiit theories, and in
particular, analysis and geometry. In this brief note,only propose to define and study
the differential equations of the asymptotic lines andslimecurvature upon considering
the wave surface to be tapsidalof an ellipsoid with three unequal axes.

In Book VIII, Chapter VIIl, we saw how one could afta certain contact
transformations to the consideration of two equatiois,[equations (17) on page 172]
in the coordinateg, y, z X, Y, Z of two corresponding point®, M. If one takes those
two equations to be the following two:

(1) X*+y+7Z- X- Y- Z2=0,
Xx+Yy+ Zz=0,

in which the coordinates of the two points enter symuedtyi, then from the theory that
we just developed, one must add the four relations:

) X+ pz—-A( X+ p3j =0, 3) X+PZ+A(x+ P2=0,
{ y+0z-A(Y+ q3 =0, Y +QZ+A(y+ Q3=0,

which are derived from equations (21) and (22) that were gwepage 174, and in
which P, Q, p, q have the significance that was pointed out alreadyhes@ new
equations, when combined with the preceding ones (1), ddfmdransformation to
which one gives the name apsidal transformatiorcompletely In order to know the
properties of that transformation, it will sufficeitderpret it geometrically.
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Always let §) be the surface that is described by the pointand let § be the
corresponding surface that is described by the pdintEquations (2) express the idea
that the normal togf admits:

X—=AX y—=AY, zZ-AZ

for its direction parameters, and equations (3) likewiggess the idea that the direction
parameters of the normal t6) @re:

X+AX Y+ Ay, Z+Az.

One deduces the following well-known properties of gh&dal transformation from
these remarks:

Let the two equal and perpendicular radius vectors OM, Om that joilorigan to
the corresponding points, along with the normals at M and m, be four linbs isate
plane.

The normals at M and m will be perpendicular.

2. If we assume all of those properties, which obviouslyndethe transformation,
then we can point out some simple formulas thatnaflme to pass from a surface to its
transform.

If X, y, zdenote the coordinates of an arbitrary paidf a surfaced) then one writes
the equation of the tangent plane in the form:

(4) pX+qY+rzZ=1;

p, g, r will be tangential coordinates that verify the foliag two relations:
(5) px+ qy+ rz=1,
pdx+ ydy+ rdz=0.

If one now introduces three new quantifigy, r' by the relations:

qz-ry+ p=0,
(6) rx—pz+d=0,
py—-gx+r=0

thenp, g, r, p', d, r' will be the six coordinates of the normal (189).

Therefore, the nine quantitiesy, z, p, q, r; p', , r' determine the point, the tangent
plane, and the normalThe surface that is described by the pdmtq, r) is the polar
reciprocal to the proposed one with respect to the sphere that isrtdnde the origin
and has a radius equal to unity.he differential equation of the asymptotic lines is:
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(7) dp dx+ dqg dy+dr dz= 0,
and that of the lines of curvature (i89) is:
(8) dpdp +dgdd+drdr =0.
Let the quantities that are analogous to the precedieg ba denoted by capital
letters and let the transformed surfaces be denoteg byOhe must adjoin the following

equations to equations (1):

px+ qy+ rz=1, PX+ Q¥ RZ1,
(9) Xp+Yq+ Zt=0, Pp+ Qb+ Rr=0,
Pp+Qqg+ Rr=0, Ppt Qg RFDO,

from which one will deduce the following values:

(10) =", v=F

r=Pd-a8

NN

in which G is defined by the equation:

The preceding formulas lead to the two relations:

Pp+ Qg+ Rr=0,
(12) { P?+Q*+ RR= i+ i+ I

which, when compared with formulas (1), exhibit a well-knggvoperty of the apsidal
transformationWhen two surfaces correspond under that transformation, the same thing
will be true for their polar reciprocals with respect to any sphéead has its center at the
pole of the transformation.

3. Apply these general properties to the case in whiclsuhiace §) is an ellipsoid
(E) that is defined by the equation:



Darboux — Note VIII. Fresnel wave surface. 4

X,y
13 o+l + S =,
(13) 5

Here, one will have:

_Y _Z

b’ c

(14) “
p'=(b-9ar, d=(c-39gpr ft=(a B pc

Takef anda to be curvilinear coordinates, which are the sgudithe radiu©mand
the square of the distance from the center toathgent plane at; i.e., set:

X2+y2+22:ﬁ,

15 2 2
(15) p2+q2+r2=§+L+é

From the properties of the apsidal transformattbese variablesr and S keep the
same significance when one passes fromo the corresponding poiM; however, they
have the inconvenience that they do not lead t@lsirexpressions ix, y, z Upon
solving equations (13) and (15), for example, onded to expressions such as the
following one for the coordinatesy, z

2 _ a’ B:_ _
g '(a—b)(a—c)(a ° °+ﬁj'

In order to avoid that difficulty, we introduce awew variablesx” and ', whose
geometric significance we shall see later on, ahethvare related to the preceding ones
by some relations that one can combine into tHeviahg identity:

The equation:

(16) $E-BE-B)-T()=M(-a) ({-a)
in which M is independent &f and {¢) is the polynomial of degree three:
(17) f(=(-a)(§-b)(§-0),
must be true for all values &f
Indeed, if one sets:
(18) atb+c=h, ab+ac+bc=k, abc=1,

to abbreviate, then the identity (16) is equivalerthe relations:
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Maa' =1,
(29) M(a+a')=k-L3,
M=h-8-7,

which determineM, a’, B’ as functions ofa and 8. One can, moreover, do the
calculations by appealing to that identity. If one replafegth a in it then one will
have:

f(a)
(20) a'—ﬁ': 77
a(a-p)
to determinegs.
Since equations (19) give:
(21) M=h-a-4", a’ = !

"~ Ma’
In what follows, we shall simultaneously emplo flour variablesr, g, a’, §’, and

return, whenever it becomes necessary, to the gireceelations or to the identity (16),
which contains all three. In particular, we sludlen appeal to the following relations:

(22) { ’U(C'Y—ﬁ)(a’—ﬁ:)= f(a’), 23) { f(,B):—M'(,B—a)(ﬁ—a’),'
a(a-p)a-pF)=1(a) F(B)=-M(B -a)(p -a),

which are obtained by replaciddoy a, S, a’, £, in turn, and the relations:

a(a-p)(a-pF)= M(a-a)(a-a’),
(24) b(b-B)(b- ') = M(b-a)(b-a’),
c(c-p)(c-B) = M(c-a)(c-a’),

which are likewise are obtained by replacéwith a, b, c, resp.

4. Upon taking all of these relations into accoamte will easily find the following
expressions fop, g, r, X, ¥, z, p', d, r “in the form of products:

=Xz [(B-a) B -3 :\/ I(a-a')(B-a)
a (a-a)f'(a ara'(a-p) f(3'

25) q=Y- [B=a)B=b _ [(-a)(B=-a)
a (a—-Db) f'(b ra'(b-p6) (B

o2 (ﬁ—a)(ﬁ'—c):\/ (c-a')(B-a)
a (@-0 f'(9 @a'(c-p) (9
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0= K a-a |
\ @-p8)f'(a)
. b-a
0 I To)
r =K /i,
(c=B)f(9
in whichK has the value:

(27) K=(3-a) | ‘ff((c'f;') : é\/ #(/J’—G)(/J"—a’) .

If one substitutes these values g, r, p', ', r’in the fundamental formulas (10)
and remarks that here one has:

(28) G=p?+q?+r?

,[>’a
a

then one will find the following values for the mlentsX, Y, Z, P, Q, R that relate to the
wave surface:

x = P(a=p) :\/ I(a-B)(a-a’)
JG aa' f'(a)

_9(b=p) _ | I(b=-p)(b-a’)
(29) Y= NS \/ o T
7-1Cc=Fh) _ \/l( -p)(c-a’)

JG ca' f'(c)

p-P@-a)_ [(F-a)a-3d

\/7 af'@

a)_ | (B-bla-b

(30) Q= J_ J e

R:r(c—a):\/(ﬁ’—c)(a—c)

JG a f'(c)

in which, as we have sed?, Q, R are equal te', ¢, r' in any case.

5. One deduces a great number of relations fromptkeeding formulas, among
which we point out the following ones:
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X24+Y?2+ 2=, X ? . Y? . s .
(31) pL-a [-b pB-c
axX®> by  cZ _ a¥X bY cZ_
+ + =0, + + =0,
B-a pB-b p-c B-a B-b pB-c
and also:
P2+Q2+R2:£, X? + Y? + Z° -1
(32) a pf-a [-b pB-c
P2+Q2+R2:O’ P2+Q2+R?:0.
a-f b-p c-pf a—a b-a ca

The elimination of3 from the two equations in the first row of (31), foample, will
give the equation of the surface. The analogy betweznther two equations (31) will
show the geometric significance af immediately. The extended r&M will cut the
surface at a second poit, and one will have:

(33) oM=a', since OM=./S.

Thus, S and a’” are the squares of the two radius vectors that ageted along the
diameterOM.
Equations (32) can be deduced from the preceding onesiiéplaees:

XY, Z a b, ¢ [ a,
with
1
ﬁl

P, Q R i %

1 1
b a
respectively. The surface that is described by the p@jr@,(R) is then the wave surface

that relates to the ellipsoitt ():
(34) aX+by+cZ=1.

Since that ellipsoidE") is the polar reciprocal of the ellipsoit)(relative to the sphere
of radius 1 that has its center at the origin,dtreeeding result is simply a consequence of
the general proposition that was pointed out altbserelated to the apsidal of the polar
reciprocal.

One then sees that if one draws a tangent plaribetdirst wave surface that is
parallel to the tangent plane Mdtthen the distance from the origin to the tangdang

will be / 5.
Therefore,/a , \/ 8 are the distances between two parallel tangent plafies.two

remarks that we just made thus attach the variableg’ that were introduced to the
original variablesry andS.
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6. Having established those points, we shall first defieedifferential equation of
the asymptotic lines of the wave surface:

(35) dP dX+dQ dY+dR dZ= 0.

In order to perform the calculations most simply, wakenuse of formulas such as the

following one:

(36) PX = (a—ﬁ?(a—ﬁ) _ M(a—a’)(a—a)
f'(a) af'(a)

which the reader can establish with no difficult$ince one can write the equation (35)

in the form:
Sex E% -0,

upon employing formulas (29) and (30), one will thet differential equation:

pr{ dg , ada’ M 45, adr }0

a-f a(a-a") || a-f a(a-a)

Upon utilizing the two different expressions (36) PX, one will obtain the following
result:

a-p ~B o dn
37 ad dB’= 0.
(37) f() ﬁf()aﬁ

The two relations (22) further permit one to eliatmf(a), f(a’), and to convert the
preceding equation into the form:

dadB __ da'dp

(38) = .
al@-p)  a(a-p)

However, that differential equation will always ¢ain four variablesr, g5, a’, 5. We
shall see how one can eliminate two of them.
From the identity (16)a and a”will be roots of the equation:

tt-p t-45)-1f(t)=0

which has degree two in Totally differentiate this equation. Upon dangtits left-
hand side by (t), we will have:

g’ di=t(t-p)ds+t(t-pds

for each of its two roots, which will give us:
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g(a)da=a(a-p)dB+a(a-p)ds,

(39) { N At — ot o :
¢'(a)da' =a'(a'-p)df+a'(a - p)ds,

upon replacind with @ anda’, in turn. One will have, moreover:

(40) pO)=— (t—a)(t—a),
aq
and as a consequence:
(41) b(d)=-¢'(a’) = (i,——lj.
a a

Upon then dividing the two sides of the two equati¢39), one will have:

da __ a(@-pg)dB+a(a-p)dp

da’ a(a-p)dB+a'(a -p)dB"’

which establishes a homographic relationship batwbe two differential coefficients
da/da’,dg/dp. Upon canceling the denominators, one will findtt

a'(a-F)dadB+a(a-pPda’df’'+a’(a’-pfdadB’ +a(a- L) da’dB=0.

The first two terms have a zero sum for the asyhgptmes, so by virtue of equation
(38), one will see that this equation is furtheunigglent to the following one:

dadf __ da'dp
a(@-pB) ad@-p)

(42)

All that remains is to multiply or divide the cosponding sides of the two equations (38)
and (42) in order to obtain the following two:

2 12

da da

Fa-pla-B) aXa-pa-5)

dﬁz _ dﬁlz
(@-B)a'-p) (a-B)a'-B)

and upon taking the identities (22) and (23) intgoant, this will come down to the
following ones:

(43)

2 12

da _ da
af(a) af@)’
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(44) g _ dF”
(B 1B

in which the variables have been separated. Qimgnezes that either of these equations
are Euler’s equation, whose integrals can takeuarforms.

Therefore, the asymptotic lines of the wave s@face algebraic curves. That
important result is due to Lie, who pointed it emithis note: “Sur une transformation
géométrique,” which was presented to the Académie $Sciences in 1870 (Comptes
rendus, t. LXXI, pp. 579). Lie established it fidummer surfaces, which include the
wave surface as a special case. The asymptotes fi that surface were studied by
Klein and Lie in a note: “Ueber die Haupttangentemen der Kummer’'schen Flache
vierten Grades mit 16 Knotenpunkten,” which was eited into the Berlin
Monatsberichten 1870 on pp. 891-899.

7. Before studying the integral of the precedingatiun, we shall extend the results
that were obtained somewhat, while always keegedgidur variablesr, 5, a’, £, which
are coupled by the identities (22) and (24), ararcde for surfaces for which the six
variablesX, Y, Z, P, Q, R are expressed by the following formulas:

X=CAla~a)"(a-a)"(a B "(a )",
(45) Y=CAb-a)"(b-a)"(b-p)"(b-8)",
Z=C,A(c-a)"(c-a")"(cB)"(cB)"

CAf(a)(a a)"(a-a’) "(a- B "(a-B) ",
(46) Q= CAf( )(b a)"(b-a') " (b= By "(b-B)" ",
CAf()(C a)"(c-a') " (=B (e BT,

in which A denotes an arbitrary function of two of the valesla, 5, a’, §’; C, C1, Cz, m,
n, m, n" are arbitrary constants. These formulas inclingeones that relate to the wave
surface as a special case. It is necessary afidiesolf that the preceding values verify
the two relations:
PX+ QY +RZ =1,

P dX+QdY+R dz=0,

identically.
The first one results immediately from the fornaula
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oy = (a=B)(a=B)
f'(a)
_(b=p)(b-5)
(47) Q="
Rz = (€= Bc-B)
f'(c)

which are consequences of equations (45) and (46).
As for the second one, after a simple calculatibnyill give us the following
condition:

dA, W@=B@=B) s @ =B -F) 4 _ 0.
A f(a) f(a')

or, upon taking the identities (22) into account:

%.{- mﬂ.{- n‘iﬂ’ =0.
A a a
One can then take:

A=gMg™,

and one will then have the definitive formulas tloe desired surface:

X =C[a‘”j [a;,‘"j (a-B)"(a-B)",

a
(48) Y=q[b‘”j [b‘,‘"j (b-B)"(b-B)",
a a
Z=Cz[°_“j [C‘,‘"j (c=B)(c=B)".
a a
— 1 a-a B a-a' o - Y W, AN i
P—Cf,(a)[ a j ( = j (a- A" (a-B)",
1 (b=aY"(b=a'\" i i
(49) Q-le,(a)[ a j ( - j (b-B)"(b-8)"",
— 1 c-a B c-a - _ A\~ N
R_sz’(a)( a j ( a j (e=Ay (=)

In particular, one will recover the wave surfagetdking:
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m=0, m:i, n=—=, Nn=0;
2 2
(50) ) \/T B \/T B \/|’
C=—>__ C=—F+1_,C="rpt__.
Jaf'(a Jbf(b cf(9

We apply the method that used in the case of a wavecesuttathese more general
formulas (48) and (49) and define the differential equatidheasymptotic lines:

Z(a—,[:’)(a—,[z”){ ndgg , fdf . mad | maa'}

f'(a) L—-a f-a a@-ad a(a-39
@-ndf, (A-r)ds _madr _rthad | _
B-a B-a al@-a a@-3

We perform the summations, while replacing the prodact f)(a — 3’) with the
equal quantity:
l(@a-a)(a-a’)

I

aaa

in all of the terms where one finds only the diffietials da, da’. We will get the
differential equation:

“n(-n) (B-F) f(ﬁﬁ)—n(l— ) (8- mf(’;)
+m@2n- 1)7(”0'/;) +mn —1) ,O('”,d/; 5
da'dg . da'dfg
m (2 1 m(@2n -1
ey e )
Im? N da?  Im? dr'?
+T(a—a) +—,2(a' -q) —=
a’a f(a) aa f(a’)

Now replaceda, da’ with their values that are deduced from equat{@83, in which
one replace®’ (), ¢’ (a’) with their expressions (41). After the reducsipthe term in
dg, dg’will contain a numerical coefficient that will be:

2M-M(MmM+m +n+n —1).
If one desires that the differential equation stagdain have separated variables then the
preceding coefficient must be zero. Discardinghtyyeothesism = m', which will lead to

the surfaces that were studied already in148.[l, pp. 142], we suppose that:

(51) m+m+n+n =1
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After one suppresses the factor:

(m+ n(m+ A(a-F)a -p)+(m H( M Jla-p)a -F)

a-a'

the differential equation will reduce even further tosimaple form:

(52 P
(5 16

which is identical to the one that we obtainedh@& tase of the wave surface, for which,
moreover, the relation (51) is found to be veriflgdthe corresponding values of n,

m', n'. We then obtain a class of surfaces that arelathto the wave surface whose
asymptotic lines are all determined by integratimg Euler equation. Those surfaces will

be algebraic, as well as their asymptotic linesenever the exponents, n, nf, n" are
measurable.

8. Among the different processes of integrationtfee Euler equations, here is the
one that seems to us to be the most conveniepufosubject:

If 8, &, & denote functions of two variables then considerfémily of curves that
are defined by the equation:

(53) b c,+0,/c,+04c, =0,
in whichcy, ¢, ¢; denote three constants whose sum is zero:
(54) ci+Cc+c3=0.

The differential equation of that family of curvean be defined with no difficulty,

since one has:
ddyc +dd, ¢+ By ¢ =0,

which gives:
Jo - Ve _ o
6,d6,-6,d6, 6,d6-6d6, 6d6,-6,d6, ’
and in turn:
(55) (6 d6 - 6,dG)* + (G dG - 6 dG)* + (6 dG - 6 dG)* = 0,

or furthermore:
(55) (62 + 62 +62)(d62 + A2+ dO2) — (B G + 6, A6 + G dG)* = 0.

If one supposes that one has:
o2 +6;+67 =1
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then the differential equation will take the even denjform:

(56) dHf + d6?22 + d6?32 =0,
and if one sets:

g = J (a-p)(a-5)
f'(a)
(57) ez=J—<b‘§”?§§)‘f”'>,
6= J (c=B)(c=B)
f'(c)
it will become:
f(B) f(B)

This is precisely the equation that we met befanel whose integral can, in turn, be put
into the form:

(59) JPX{(a-R(b- 9+ QW (B X e ay{ Rg( € )k a) =0,

in whichk denotes an arbitrary constant, and in which wes ltaken formulas (47) above
into account.

9. The geometric interpretation of the latter equais easy to give if one introduces
the complex to which all of the normals to a fanufyhomofocal ellipsoids belong, and
which is composed of all of the lines that cut tineee symmetry planes and the plane at
infinity at four points whose anharmonic ratio @nstant. We call such a complex a
Chasles complexand we can then translate the result that we glsained into a
geometric form:

The tangent plane to the surface at every point of every asymptetio Ithe surface
is tangent to the cone of a Chasles complex whose fundamental tetraheclvonpssed
of the symmetry planes and the plane at infinity.

If one wishes to obtain, for example, the two gstotic lines that pass through a
point of the surface then one constructs the twaprsg-order cones that have their
summits at that point and pass through the foumsitsof the fundamental tetrahedron
and which are tangent to the tangent plane of tiface at that point.Each of those
cones corresponds to a Chasles complex and one of the two asymptotibdinase
sought.

10. It is natural to demand that the preceding cowcsitn should apply to other
surfaces. Upon returning to the Monge notationd mow lettingp andq denote the
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derivatives ofz, when it is considered to be a function»findy, the problem can
obviously be formulated as follows:

Find the surfaces for which the equation:

(60) Jaz+-Bpx+-yay=0,

in which the constants, S, ysatisfy the relation:

(61) a+pf+y=0,

is the general integral of the differential equation of the asympinés.

We saw above in n@ how one eliminates the constaatsg, y» One is then led to
the differential equation:

62) {dzz_(dp%_(dqv

} (z - px—qy=[d (z — px — g)}>.
z pX ay

Now one has:

dp dx+ dqdy=0,
(63) { pdx+ dqdy=

dp” = (- rdy, dd=(3- fdx dpdg—( & )t dx¢
and as a result:
(64) [d(z — px — a)* = (& —rt) (x dy — y d¥.

Taking these various relations into account, onepcarthe differential equation (62)
into the following form:

(65) [(S-r)xyz+ pd = px qy{( 7 p% tx( -z )q% a2 xyd%zo.

Here, one must choose between two quite distinct hgpeth If the first factor is
non-zero then the second one must be identical tpaly@omial:

r dx@ + 2s dx dy+ t dy?,

which will give the two relations:

y(z- Py _ x(z—qy _ -xy
qr pt s

which can be integrated by inspection, and whicle gss:
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q_p
66 Z—pXxX— — =
(66) p CI)FY, X'

in which X and Y denote functions ok andy, respectively. These two first-order
equations are integrated in turn and, as the reader vgilyesee, lead toLamé’s
tetrahedral surfacefno. 112) and their limits.

11. However, one can satisfy equation (65) in anothemeranlt suffices that the
first factor should be zero. One is then led to thégalifferential equation:

(67) € —rt) xyz+pq(z-px —qy =0,

which will make known a very extensive class of sudabtat enjoy the stated property.
That equation, whose characteristics are the asympibtée desired surfaces, can
be integrated completely and in an elegant manner. Wdemt ourselves with
interpreting it geometrically.
Let ao, (o, W be the direction cosines of the normal, which aréned by the
relations:

(68) cosa, _ COsB, _ cosy, _ 1

p q -1 J1+p+f

The coordinateX Y, Z of a point that is situated at a distaht&om the foot of the
normal will be given by the formulas:

(69) X -=x=Ncosa, Y —-y=Ncos, Z — z=Ncos,

from which, one deduces thatNf, Ny, N,, & denote the segments of the normal that are
limited by the three coordinate planes and thegaotagn of the origin onto the normal
then one will have:

N, =———, N,=——, N,=—=,
(70) cosa, ’ co®, cos,

T =—XC0Sa, — Yy cOPB,— Z COB, ;

w further denotes the distance from the origin te tangent planehut with a well-
defined sign.
On the other hand, p” and p” denote the principal radii of curvature then onké w
have:
2 2\2
(71) plpll - (1+ p +2(q ) .
rn-s

Upon taking all of these relations into accoume avill see that equation (67) can be
replaced with the geometric relation:
(72) awp’ p” =Ny Ny N,
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which is, in turn, verified for all wave surfaces.
Upon looking for the tetrahedral surfaces that corresporite first hypothesis and
satisfy that relation, one will find that for the sacé that is represented by the equation:

HRGRCE

one will have:
(74) wp’ p” = (mM—1F NeNy N, .

Therefore, among the tetrahedral surfaces, only tbendedegree surfaces satisfy
equation (67).

Moreover, among the surfaces that solve the prolfatinwas posed, the tetrahedral
surfaces are the only ones for whitte generator of the contact of the cone of the
complex that is defined above relative to a point of the surface and thataigee at
that point will coincide with an asymptotic tangent to the surface.

12. After that digression relating to an entire classwfaces whose asymptotic lines
are determined like the ones on the wave surface, twenro that particular surface in
order to study and determine its lines of curvature (if thadossible). We recall the
original notations and employ the formulas of OlindedRgues in order to form the
differential equation of the lines of curvature.

Here, the direction cosines of the normal are:

pJa, Qfa, rJa.

The desired equations are then presented in the sinmpie fo

dX+pd(R/a)=0,
(75) dY+p dQ/a)=0,
dz+pd(R/a)=0,

in which p denotes the principal radius of curvature.
Add the preceding equations, after multiplying them Xy 2Y,2Z, respectively. We
find the relation:
dg+2p0d{a =0,
from which, one will deduce:

(76) r :—\/E%

da

That expression is in perfect accord with the onéweagave in no1071, in which
we have already employed the system of curvilineardinatesa, S for an arbitrary
surface.
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Upon substituting the expression j@mto the first equation in (75), for example, we
will have the differential equation for the lines aieature in the form:

dX - \/E%d(P\/E) = 0.
ReplacingX andP with their values will give:
a@-p@-p)dada’-a’(a—a)(a—a’)dgds’ =0,
or, upon taking one of equations (24) into account:

ldada’ ,
(77) ——— =dgds.

aaq

This is the desired differential equation, but it corgdour variables. One easily
eliminatesa’andf’, for example, and one will then be led to the followaeogiation:

f(a)
a

(78) f(B) da? +f(a) dB? - {Zf @)+ (ﬁ—a)[f’(a)— }} da dB=0,

which has some analogy to the Euler equation. Sinceliffe¥ential equation (77) is

symmetric inS and ', one can keep the variablesand ', and one will then be led to
the equation:
(79) f(8’) da? +f(a) dB’? - {Zf @)+ (B —a)[ f '(a)—%}} dadg’=0,
which is entirely similar to the preceding one.

These equations admit particular solutions that areet&fy the relations:

f(a) =0, f(p) =0, f(6’) =0, @-p(a-p)=0,

which correspond to the lines of curvature that are evidanthe wave surfaces, the
principal sections, and the circle of the surface, resp.

If one replaced 3/ da with its expression as a function @in equation (78) then one
will have the second-degree equation:

)
a

(80) f(a)p2+\/E{Zf(a)ﬂﬁ—a)[f'(a)— }}[H af(p =0,

which will make the principal radii of curvature knownesdch point. That equation
permits one to verify the relation (72) that was eshbtl already and to find a new one.
Indeed, one now has, while preserving the notations angentons of nol11:
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N :——x = - a;ﬁ
“ PJa a-a’
(81) N :—L:— aﬂ, (U:—\/E,

Thus, ifp”’andp” denote the two principal radii of curvature then on¢ hale:

N, N
(82) p/p// - aff (ﬁ) - Xy 'z .
(a) w

This is the formula that was established abovee Will similarly have:

ptp’=-2Ja -Ja(B-a {M—E]

f(a) a
which will give:

(83) p'+p”:Nx+Ny+Nz—§,

which is an entirely geometric relation, singe the square of the radius vector.

13. Let us return to the differential equation (78)is more complicated that that of
Euler, but it is close to the latter equation ia #ense that, like the latter, it is defined by
means of a polynomid{a) whose coefficients do not appear in the equatidfe shall
first perform some transformations that will be fuséo us.

If one sets:

t

(84) B=a+—,
a

upon substituting the variabidor S, then the equation will become:

t

(85) #(a) jaz - ¢'(a)t£ +tg(a) +§¢"(a) +—97@)=0,

in which ¢ (a) denotes the polynomial:
(86) ¢ (a) = af(a).

Now, replacd by the variable:
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(87) u= @.
The equation will take the form:
d2U o ﬂ 3 E " _lj ?) —
(88) ¢(a) g ¢'(a)u vl ¢"(a)+ > 4¢(a)¢ (a) =0.

These various transformations permit us to establihe following curious
proposition:

The differential equatiorf78) will be integrated as soon as the polynomiat)f—
which is of degree three, in general — reduces se@nd-degree polynomial

Indeed, in that case, the degree of the polynog(a), which is defined by formula

(86), will reduce to three. The last term in eiqpra{88) will disappear, and one can give
it the following form when one divides it ffu / do”:

(89) ¢(a_ud_aj+u2(d3a+ d%?j — 0’
du

du  dd

upon supposing (as is permissible) that the caeffiofx’ in ¢(x) is equal to unity™).
If one then performs the substitution that is niedi by the formulas:

da da _

90 — =1, a—-u—=>¢
(90) a7 10 $
which gives us:

dé

91 u=- —,

(91) an
then the equation will take the form:

d3
(92) b= dni (7 + 17,

which can be integrated immediately by separatiegvariables and will give us:

[

93
) 49,

- '[,7—2/3(1+,7)—1/3d,7.

One will then have:

() If ¢ (x) has degree less than three then one must suppressrthiatl “a / du?, which will again
facilitate the integration.
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a=f—f7£,
dn
(4) f f d
pear 1@, T@dp
u dé

The integral is thus presented in a very compddbrm, and it is not algebraic, in
general.

14. We shall now see what the geometric consequericdee preceding analytical
result are. One of them is almost obvious.

First, suppose that the ellipsoifl) (reduces to a cylinder whose ax'y‘s_c increases
indefinitely. The wave surface will become theidpkof an elliptic cylinder. In order to
know what the differential equation of the linescofvature then becomes, one can take
the coefficient ofc in equation (78), which amounts to replacfig) with the second-
degree polynomial:

(95) f(a)=(a—4 (a-b).

Therefore,one knows how to determine the lines of curvature of the apsidal surfac
of a surface, and these lines of curvature are not algebraic.

When one has integrated equation (100), the coatel of a point on the surface will
be determined as functionswfanda by the formulas:

x:\/(al_al)(al_al_ul)

(a-b)(a-h)

(101) Y = \/(bral)(bral— uy)
(b -b)(h - b)

7= J(cl—al)(cl—al—ul).
(c.-b)(c-b)

These values, which satisfy the relation:
XZ+Y?2+Z72=1,
show that the surface then reduces to a sphere.
15. One will obtain the same result by supposing timdy two of the axes a andb,

for example — tend to become equal, while the thimdc will remain different from the
first two. The wave surface will decompose intoedlipsoid and a spherex and S will
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differ only slightly from the radius of the spherea the component that approaches a
sphere. One will thus be led to further set:

a=1l+ea,
(102) b=1+¢h,
a=1+ea,,
(103) p(@)=e*(h—a) (n—b) (1 =) +...=€%p(n) + ...

u will remain finite, and equation (88) will reduce to thédwing one:

u du , U
— U +—

d ! " —
¢1(al)d_alz_¢1(al)u dal 5 ¢1(0']) =0,

which is nothing but equation (88), with a change of natatin which the degree @f
(@) no longer reduces to three, but to two.

Therefore:When the wave surface decomposes into an ellipsoid and a sphere, one
will know how to determine the limiting position of the lineswf¥ature on the sphere.

16. Although we cannot obtain a determination of the linesuovature in finite
terms in the general case, nevertheless, the precadalgsis provides several essential
results. We see, not only that the lines of curvatmeenot algebraic, but furthermore
that if those lines are of some interest in thecapstudy of the surface then we can make
them known to a sufficient approximation, since the wawdaces that relate to various
crystals are only slightly different from the sphea@d above all they always have at
least two of their axes only slightly different fraime other one. The reader will easily
convince himself of that if he directs his attentionhe following table, which gives the
indices of some crystals (relative to the By

Gypsum................ 1.529 1.522 1.520
Orthoclase............. 1.526 1.523 1.519
Aragonite.............. 1.685 1.681 1.530
Diopside............... 1.700 1.678 1.671
Stilbite................. 1.500 1.498 1.494
Oligoclase............ 1.542 1.538 1.534
Amblygonite......... 1.597 1.593 1.578
Sphéne................ 2.009 1.894 1.888
Epidote............... 1.768 1.754 1.730
Staurotide............ 1.746 1.741 1.736

The lines of curvature of the wave surface have beealjeet of a large number of
studies, moreover. Following an inexact confirmatiort thase lines are the contact
curves of a developable that circumscribes the surfack aarconcentric sphere,
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Combescure defined their differential equation in an elegdicle that was inserted into
volume II of Annali di Matematican 1859 on pp. 278. In some remarks that followed
that article, Brioschi showed that the differentiajuation that was obtained by
Combescure could be reduced to the form:

d’w - ,
v e’+e”—y’(p),

w(p)

in which one sets:

wp) = o(p) = p(p-a(p-HB(p- 9.

However, all of the research that has been done upwoto obtain the complete
solution to the problem has stalled completely.



