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I. 

 

 In a short article “Sur la résolution de l’équation 
2 2

dx dy+  = 
2

ds et de quelques équations 

analogues” that was inserted in tome XVIII (2nd series, pp. 236) of this Journal in 1873, I 

successively considered some differential equations that were all of the following type: 

 

(1)      f (dx1, dx2, …, dxn) = 0 , 

 

in which f denotes an arbitrary homogeneous function with constant coefficients of the differentials 

dx1, dx2, …, dxn , and I showed how one can integrate those equations by supposing that x1, x2, …, 

xn are unknown functions of the same independent variable. I propose to return to the results that 

I indicated in order to complete them and deduce some new consequences. 

 First of all, it is necessary to make the problem that was posed more precise. Obviously, one 

can either give x3, x4, …, xn as functions of x2 or give x2, x3, …, xn as functions of a parameter t. 

Equation (1) will then give dx1 as a function of x2 and dx2 in the fist case and as a function of t and 

dt in the second, and as a result x1 will be determined by a quadrature. Such solutions will be 

excluded in the rest of this article, and we propose to express the most general expressions in x1, 

…, xn that satisfy equation (1) as functions of an arbitrary parameter when those expression do not 

contain any quadrature signs. That is how Euler integrated the first equation: 

 
2 2dx dy+  = 

2ds  

 

and J.-A. Serret integrated the analogous equation: 

 
2 2 2dx dy dy+ +  = 

2ds . 

 

[See tome XIII (1st series, pp. 353) of this Journal.] 
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  In order to solve equation (1) in that way, we set: 

 

(2)    dx1 = a1 dxn ,      dx2 = a2 dxn ,      …,      dxn−1 = an−1 dxn . 

 

a1, a2, …, an−1, must verify the equation: 

 

(3)     f (a1, a2, …, an−1, 1) = 0 . 

 

Now introduce the quantities bi that are defined by the relations: 

 

(4)     

1 1 1

2 2 2

1 1 1

,

,

.......................

.

n

n

n n n n

a x x b

a x x b

a x x b− − −

− =


− =


 − =

 

 

If one differentiates those relations while taking into account equations (2) then they will give: 

 

(5)     1

1

db

da
 = 2

2

db

da
 = … = 1

1

n

n

db

da

−

−

 = xn . 

 

The proposed question is then found to come down to the following one: Determine the most 

general functions ai, bi of a certain parameter that satisfies equations (3) and (5). Once those 

functions are known, one will have: 

xn = i

i

db

da
 , 

 

and one can then determine x1, x2, …, xn−1 from equations (4). It is easy to recognize that formulas 

(4) and (5) lead to equations (2), and when they are combined with the relation (3), they will give 

equation (1), which amounts to a solution. 

 Take n – 1 functions a1, a2, …, an−1 of a certain parameter t that is subject to verifying equation 

(3). It remains for one to express the most general values of b1, b2, …, bn−1 that satisfy the relations: 

 

(6)      1

1

db

da
 = 2

2

db

da
 = … = 1

1

n

n

db

da

−

−

 

 

without any integral sign. Now for a long time, geometry has taught us how to solve that problem, 

at least in the case where n – 1 is equal to 2 or 3. 

 Set: 
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(7)     U = 

1 2 1

11 2

22 2

11 2

2 2 2

22 2

11 2

2 2 2

n

n

n

nn n

n

n n n

b b b

dada da

dt dt dt

d ad a d a

dt dt dt

d ad a d a

dt dt dt

−

−

−

−− −

−

− − −

 . 

 

If one develops that determinant in the elements of the first row then one will have: 

 

(8)     U = 1 b1 + 2 b2 + … + n−1 bn−1 , 

 

in which the functions  verify the relations: 

 

(9)     

1 1 1 1

2 2

1 1 1 1

2 2

1 1 1 1

0,

0,

........... ......... .........................

0

n n

n n

n n

n n

da da

d a d a

d a d a

 

 

 

− −

− −

− −

− −

+ + =


+ + =


 + + =

 

 

from the elementary properties of determinants. One encounters that set of formulas in either the 

theory of contact or in the theory of linear differential equations. As one knows, one can deduce a 

series of equations of the following type by repeated differentiations: 

 

(10) 
1 1 2 2 1 1

i k i k i k

n nd d a d d a d d a   − −+ + +  = 0 , 

 

in which one has: 

i + k < n – 1 ,  k  1 ,  i  0 . 

 

When i is equal to 0, one must replace 0

hd   with h . 

 Let us write out all of those relations for which k is equal to 1. We will get the system: 

 

(11)    

1 1 1 1

1 1 1 1

3 3

1 1 1 1

0,

0,

............ .......... .........................

0 .

n n

n n

n n

n n

da da

d da d da

d da d da

 

 

 

− −

− −

− −

− −

+ + =


+ + =


 + + =

 

 

If we now replace the differentials da1, … with the differentials db1, … then we will be led to the 

following system: 
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(12)    

1 1 1 1

1 1 1 1

3 3

1 1 1 1

0,

0,

......................................................,

0 ,

n n

n n

n n

n n

db db

d d d db

d db d db

 

 

 

− −

− −

− −

− −

+ + =


+ + =


 + + =

 

 

which will lead us to the desired result. 

 Indeed, if one differentiates equation (8) while successively taking into account the various 

formulas (12) then one will get the following system: 

 

(13)    

1 1 1 1

11
1 1

222

11
1 12 2 2

222

11
1 12 2 2

,

,

,

,

n n

n
n

n
n

nnn

n
nn n n

U b b

dddU
b b

dt dt dt

ddd U
b b

dt dt dt

ddd U
b b

dt dt dt

 







− −

−
−

−
−

−−−

−
−− − −

= + +

 = + +



= + +



 = + +


 

 

and it will obviously suffice to solve those n – 1 equations with respect to b1, b2, …, bn−1 in order 

to obtain the values of the unknowns when expressed in terms of the completely-arbitrary function 

U and its first n – 2 derivatives. 

 First, suppose that the determinant: 

(14)      = 

1 1

11

22

11

2 2

n

n

nn

n

n n

dd

dt dt

dd

dt dt

 





−

−

−−

−

− −

 

 

is non-zero. Formulas (13) will then provide well-defined values for b1, b2, …, bn−1 . However, 

none of the minors of  with respect to the elements of the last row can be zero, moreover, so 

equations (11) and (12) will also unambiguously determine the mutual ratios of the da1, da2, …, 

dan−1 or the db1, db2, …, dbn−1 . Formulas (12) can be considered to be a simple consequence of 

equations (13). For example, it suffices to differentiate the first equation in (13). One will recover 

the first of formulas (12) upon taking into account the second one, and so on. A comparison of the 

relations (11) and (12) will then immediately show that the differentials of the quantities b1, …, 

bn−1 that are determined by the formulas (13) are proportional to those of a1, …, an−1 . The problem 

that we posed is then solved completely. 
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 In the case where the quantities a1, a2, …, an−1, which must satisfy only equation (3), have been 

chosen in such a manner that the determinant  is zero, one can argue in the following way: 

 Let: 

(15)     = 

1 2 1

11 2

22

11

2 2

n

n

nn

n

n n

a a a

dada da

dt dt dt

d ad a

dt dt

−

−

−−

−

− −

 . 

 If one sets: 

(16)    Ai,k = 1 11 1

1

i ki k

n n

i k n k

d d ad d a

dt dt dt dt

 − −

−
+ +  

then one will have: 

 = 

00 01 0, 2

10 1, 2

2,0 2, 2

n

n

n n n

A A A

A A

A A

−

−

− − −

 . 

 

 By virtue of formula (10), one will have: 

 

Ai, k = 0 , 

whenever i and k satisfy the inequalities: 

 

i + k < n – 1 , k  1, i  0 . 

One will then have: 

(17)     = 

00

10 1, 2

20 2, 3 2, 2

2,0 2,1 2, 2

0 0

0 0

0

n

n n

n n n n

A

A A

A A A

A A A

−

− −

− − − −

 

and consequently: 

 

(18)     =  A00 A1, n−2 A1, n−3 … An−2, 1 . 

 

 If one now applies the obvious formula: 

 

ikdA

dt
 = Ai+1, k + Ai, k+ 
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to the elements A0, n−2 , A1, n−3 , …, A1, n−3 , which are zero, then one will have: 

 

A1, n−2 + A0, n− = 0 , 

A2, n−3 + A1, n− = 0 , 

……………………, 

An−2, 1 + An−  = 0 , 

i.e.: 

An−2, 1 = − An−  = … =  A1, n−2 =  A0, n− . 

 

 The product  will then take the very simple form: 

 

(19)      =  A00 (A0, n−)n−2. 

 

 In order for  to be zero, it is necessary that one must have either: 

 

A00 = 1 a1 + … + n−1 an−1 = 0 

or 

A0, n− = 
11

11
1 11 1

nn

n
nn n

d ad a

dt dt
 

−−

−
−− −

+ +  = 0 . 

 

 If one refers to the definition of the quantities  by formulas (7) and (8) then that will give the 

first condition: 

1

11

22

11

2 2

n

n

nn

n

n n

a a

dada

dt dt

d ad a

dt dt

−

−

−−

−

− −

 = 0 . 

 

 As one knows, one deduces from that the existence of one or more linear homogeneous 

relations with constant coefficients between the quantities ai . 

 Similarly, the second condition then gives: 

 

11

11

11

1 1

n

nn

n

n n

dada

dt dt

d ad a

dt dt

−

−−

−

− −

 = 0 , 
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and it also expresses the idea that there exist one or more linear relations with constant coefficients 

between the ai . However, those relations are no longer necessarily homogeneous. 

 In summary, one sees that the exceptional case in which the determinant of equations (13) is 

zero can present itself only if there exist one or more relations of the form: 

 

k1 a1 + k2 a2 + … + kn−1 an−1 + kn = 0 

 

between the quantities ai , in which k1, …, kn denote constants. Upon replacing the ai with their 

values that are deduced from formulas (2), one will have: 

 

k1 dx1 + … + kn dxn = 0 , 

or, upon integrating: 

k1 x1 + … + kn xn = k . 

 

 One can then eliminate a certain number of the quantities xi from the proposed equations (1) 

by means of those relations. One will then be led to solve an equation of the same form that 

contains fewer variables and for which the exceptional case does not present itself. 

 One can replace the preceding argument, which offers the advantage of exhibiting an 

interesting relation between the determinants , , with the following one, which is much simpler. 

If one has: 

 = 0 

 

then, as one knows, one will get one or more linear homogeneous relations between the quantities 

i . Let: 

h1 1 + h2 2 + … + hn−1 n−1 = 0 

 

be any one of them. Upon replacing the  with their values, one will have: 

 

1 2 1

1 2 1

2

1

2 2

1 1

n

n

n n

n

h h h

da da da

d a

d a d a

−

−

− −

−

 = 0 . 

 

 That relation keeps the same form, while only the values of the constants hi change, when one 

performs an arbitrary linear substitution on the ai . We choose that substitution in such a way that 

all of the constants except for h1 reduce to zero. The equation will become: 

 

2 1

2 2

2 1

n

n n

n

da da

d a d a

−

− −

−

 

 

 = 0 . 
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In that form, one immediately recognizes that there must exist at least one linear relation between 

the quantities ia , and as a result, between the quantities ai . 

 

 

II. 

 

 We shall first apply the preceding general method to the Euler equation: 

 

(20) 2 2dx dy+  = 2ds . 

 

 One solves that equation algebraically by setting: 

 

(21)    dx = ds cos  ,  dy = ds sin  . 

 

One then sets: 

(22)     
cos ,

sin ,

x s a

y s b





− =


− =
 

 

and upon differentiating, one will have: 

(23)     s = 
cos

db

d 
 = 

sin

da

d 

−
. 

 

 In order to determine a and b, one takes: 

 

(24)     a cos  + b sin  = U , 

 

and when that equation is differentiated and one takes the preceding one into account, that will 

give: 

(25)     − a sin  + b cos  = 
dU

d
. 

 

 The formulas thus-obtained determine a, b, s, x, y as functions of . One then deduces the 

system: 

(26)     
2

2

2

2

sin cos 0,

cos sin 0,

,

dU
x y

d

d U
x y

d

d U
s U

d

 


 





− + =




+ + =



= +
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which has been known and employed for some time now. 

 Since one has: 

(27)    
tan ,

cos sin ,

dy

dx

U s x y



 


=


 = − −

 

 

one sees that for any algebraic curve whose arc-length is algebraic, U is necessarily an algebraic 

function of the trigonometric lines of . The Euler formulas then exhibit all of the algebraic planar 

lines whose arc-length is an algebraic function of the coordinates of the contact point. 

 Every algebraic curve whose arc-length is algebraic obviously has involutes (développantes) 

that are all algebraic. One will then get all of the algebraic curves that are algebraically rectifiable 

by considering all of the developments (développées) of the algebraic curves. However, one can 

take a very different viewpoint in the search for those curves, and propose, for example, to 

determine all of the planar curves of given class or degree that are algebraically rectifiable. We 

shall be content to point out that interesting question to the geometers, whose solution will 

undoubtedly be made possible by the beautiful propositions that are due to Halphen on the 

developments of algebraic plane curves. 

 Now consider the equation: 

 

(28)     
2 2 2dx dy dz+ +  = 

2ds , 

 

which was the subject of the studies of J.A.- Serret, as we recalled already. 

 We set: 

(29)    
dx

ds
 = x0 , 

dy

ds
 = y0 , 

dz

ds
 = z0 , 

 

and take x0 , y0 , z0 to be three functions of the same parameter t that are subject to the single 

condition that they must verify the equation: 

 

(30) 2 2 2

0 0 0x y z+ +  = 1 . 

 

Conforming to the general method, we then set: 

 

(31)     

0 0

0 0

0 0

,

,

.

x x s X

y y s Y

z z s Z

= +


= +
 = +

 

Upon differentiation, we will have: 

(32) − s = 0

0

dX

dx
 = 0

0

dY

dy
 = 0

0

dZ

dz
 . 
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 In order to determine the functions X0, Y0, Z0 without quadrature, it will suffice to interpret the 

preceding relations geometrically. The two curves (0), which is described by the point (X0, Y0, 

Z0), and (0), which is described by the point (x0, y0, z0), must have parallel tangent planes at each 

instant, and as a result, parallel osculating planes. Therefore, the curve (0) will be the edge of 

regression of a developable surface whose tangent planes are all parallel to the osculating planes 

of (0). From that, if one considers the equation: 

 
2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2

dy d z dz d y dz d x dx d z dx d y dy d x
X Y Z

dt dt dt dt dt dt dt dt dt dt dt dt

     
− + − + −     

     
 − U =  = 0 , 

 

in which U is an arbitrary function of t, then the values of X, Y, Z that are deduced from the three 

equations: 

(33)     = 0 ,  
d

dt


 = 0 , 

2

2

d

dt


 = 0 

 

will be precisely those of X0, Y0, Z0 . The geometric method agrees completely with our general 

theory here. 

 Once the values of X0, Y0, Z0 have been determined, the formulas will exhibit s and x, y, z as 

functions of the variable parameter t. 

 For any algebraic curve whose arc-length is algebraic, x0, y0, z0 will obviously be algebraic 

functions of one conveniently-chosen parameter. The same will be true for X0, Y0, Z0, by virtue of 

formulas (31), and consequently U as well. Therefore, in order to obtain all of the skew algebraic 

curves whose arc-length is algebraic, one must take U, x0, y0, z0 to be algebraic functions of the 

same parameter that are subject to the single condition that they must verify equation (30). 

 We can recover the solution that we just gave along an entirely geometric route and establish 

with no calculation the relations that exist between the curves (0), (0), and the desired curve (C), 

which is the locus of the point (x, y, z). If we are given the spherical curve (0) then, as was indicated 

above, we construct the curve (0) whose tangents are parallel to those of (0). The osculating 

planes to the corresponding points of the two curves will be parallel. As a result, the contingency 

angles and the torsion that relate to two infinitely-close corresponding arcs will be equal. Now, 

one knows that in order to obtain an arbitrary development of a skew curve, one must draw a 

normal to each point of that curve that an angle that is equal to: 

 

ds

  

 

with the principal normal, in which ds denotes the differential of arc-length and  is the radius of 

torsion. 

 It will then follow that if one draws two parallel normals at two corresponding points of (0) 

and (0), one of which touches a development of (0), while the other envelopes a development of 
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(0). In particular, consider those of the developments of (0) that reduce to a point, namely, the 

center of the sphere on which (0) is described. We will then be led to the following proposition: 

 

 Given the spherical curve (0) and the arbitrary curve (0), whose tangents are parallel to 

those of (0), through each point of (0), draw that parallel to the radius of the sphere that contains 

(0) and passes through the corresponding point of the latter curve. That parallel will envelope a 

development of (0). 

 

 That development is precisely the curve (C) that the preceding analytical method showed us 

how to determine. Conversely, if we are given a curve (C) whose arc-length is expressed with no 

quadrature then we construct one of its involutes (0) and draw parallels to the tangents of (C) 

through the center of a sphere of radius 1 that determine the curve (0) on the sphere. It is clear that 

(C) is deduced by means of (0) and (0) by the construction that we just indicated, and as a result, 

that construction will indeed give all of the curves whose arc-length is expressed without 

quadrature. 

 It remains for us to indicate how we will determine the definitive values of x, y, z, s as functions 

of t. Equations (33) have the form: 

 

(34)   

0 0 0 0 0

0 0 0 0 0

IV IV

0 0 0 0 0 0 0 0

( ) ,

( ) ,

( ) .

X y z z y U

X y z z y U

X y z z y y z z y U

   − + =


    − + =
       − + − + =

 

 

When solved for X0, Y0, Z0, they will always give values for those quantities that we always write 

in the following manner: 

(35)    

0 0 0 0

0 0 0 0

0 0 0 0

,

,

,

X x x x

Y y y y

Z z z z

  

  

  

  = + +


  = + +
   = + +

 

 

in which , ,  are chosen conveniently. In order to determine those three parameters, we 

substitute the values of X0, Y0, Z0 in the equations that they must verify and obtain the following 

result: 

(36)    

(123) ,

(123) ,

(123) (124) (134) ,

U

U

U





  

=


− =
 − − =

 

 

in which we denotes the determinant: 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i k l

i k l

i k l

x x x

y y y

z z z

 , 
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which is defined by the derivatives of order i, k, l of x, y, z, by (ikl), to abbreviate. 

 Set: 

 

(37)     (123) =  , (134) = D . 

 

 Upon differentiating the first of those equations, we will have: 

 

   (124)  = , 

 (134) + (125)  = , 

and formulas (36) will then give us: 

 

(38)    

2 2 2

,

,

.

U

U

U U DU d U DU

dt







 −
=




=


      
= − + = + 

     

 

 

 Upon substituting those values in , ,  in equations (35), we will have: 

 

(39)    

0 0
0 02

0 0
0 02

0 0
0 02

,

,

.

U x U xd U DU
X x

dt

U y U yd U DU
Y y

dt

U z U zd U DU
Z z

dt

     
= + − +        

      
= + − +        

     
 = + − +        

 

 

 It remains for us to find the value of s. We differentiate the last of equations (34) while 

replacing dX0, dY0, dZ0 with their values – s dx0 , – s dy0 , – s dz0 . We find that: 

 

s  = − U  + 2 (124) – 2 (234) –  (125) –  (135) . 

 The equation: 

(134) = D, 

which serves to define D, will give us: 

(135) + (234) = D  

upon differentiation, or: 

(135) = D  − E 

upon setting: 

(234) = E . 
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 The expression for s then takes the form: 

 

(40)  s = − 
2 2 3 2 3 2 2

2 2 2U D D E D
U U U

           
 + + − − + − −   

          
 , 

or, more simply: 

(40.cont.)   s = − 
2

2 2 2

d U d U D DU

dt dt

   
− −   

     
 . 

 

 It will now suffice to substitute the values of s, X0, Y0, Z0 in formulas (31) in order to obtain 

the definitive expressions for x, y, z. 

 

 

III. 

 

 The general method that we just applied to the two remarkable examples can be modified in 

an advantageous manner in certain special cases. As an example, we choose the equation: 

 

(41) 
2 2 2dx dy dz+ +  = 2 2 2

1 1 1dx dy dz+ +  , 

 

on the subject of which, we must modify and complete the results that were given in our previous 

work. 

 One can solve it by taking: 

(42)     

1 1 1

1 1 1

1 1 1

,

,

,

dx a dx a dy a dz

dy b dx b dy b dz

dz c dx c dy c dz

 = + +


 = + +
  = + +

 

 

in which a, b, c, … are functions of one parameter t that are subject to verifying the equations: 

 

(43) 
2 2 2 1, 0,

........................ .............................

a b c aa bb cc   + + = + + =



 

 

In what follows, we shall suppose that the determinant of the nine quantities a, b, c, … is equal to 

1. If it were otherwise, it would suffice to change of the signs of x1, y1, z1 . 

 We introduce the arbitrary , ,  that are defined by the relations: 

 

(44)     

1 1 1

1 1 1

1 1 1

,

,

,

x a x a y a z

y b x b y b z

z c x c y c z







 = + + +


 = + + +
  = + + +

 

 

and differentiate those relations. Upon taking the preceding ones (42) into account, we will have: 
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(45)    

1 1 1

1 1 1

1 1 1

0 ,

0 ,

0 .

x da y da z da d

x db y db z db d

x dc y dc z dc d







 = + + +


 = + + +
  = + + +

 

 

 From some well-known propositions, one can express the differentials da, db, … as functions 

of three arbitrary parameters p, q, r using the relations: 

 

(46)  

( ) , ( ) , ( ) ,

( ) , ........................... ............................

( ) , ........................... ............................

da br cq dt db cp ar dt dc aq bp dt

da b r c q dt

da b r c q dt

= − = − = −


  = −
   = −

 

 

If one substitutes those values in equations (45) then one will have, upon taking into account 

formulas (44): 

(47)     

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

d
q z r y

dt

d
r x p z

dt

d
p y q x

dt


 


 


 


− − − =




− − − =



− − − =


 

 

 In order for the proposed equation (41) to be verified, it will then suffice for x, y, z ; x1, y1, z1 

to satisfy equations (44) and (47). However, it is important to remark that , ,  cannot be chosen 

arbitrarily. Indeed, if one adds the preceding equations, after multiplying them by p, q, r, 

respectively, then one will get the condition: 

 

(48)     
d d d

p q r
dt dt dt

  
+ +  = 0 

that , ,  must satisfy. 

 In order to get the values of , ,  that verify the preceding equation with no quadrature, it 

will suffice to set: 

 

(49)     p  + q  + r  = U . 

 

 Upon differentiating that and taking equations (48) into account, one will have: 

 

(50)     
dp dq dr

dt dt dt
  + +  = 

dU

dt
, 

 

and the values of , ,  must verify the last two equations, in which U is an entirely arbitrary 

function. 
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 In summary, one takes a, b, c ; a , b , c ; a , b , c  to be arbitrary functions of t that are 

subject to the single condition that that they must verify the well-known conditions (43) between 

the nine cosines. One chooses , ,  to be three new functions that satisfy the two equations (49) 

and (50). The values of x, y, z will be given by the system (47), and those of x1, y1, z1 by the system 

(44). Since the three equations (47) reduce to two and cannot determine x, y, z completely, it is 

necessary to add an arbitrary relation to them: 

 

f (x, y, z) = 0 

 

that will permit one to determine x, y, z. Hence, the curve that is locus of the point (x, y, z) can be 

traced on an arbitrary surface. 

 A very simple geometric interpretation will shed much light on the preceding solution. 

 If one regards x, y, z and x1, y1, z1 in the equation to be solved as the rectangular coordinates of 

two points then the problem that was posed can be stated in the following manner: Determine 

(without quadrature) two curves in space that correspond point-by-point in such a manner that 

the corresponding arc-lengths of the two curves are equal. 

 Let us now examine the solution. Consider x, y, z in formulas (44) to be the coordinates of a 

point in space when referred to moving axes Ox, Oy, Oz, and consider x1, y1, z1 to be the coordinates 

of the same points when referred to fixed axes O1 x1, O1 y1, O1 z1 . Those formulas define a 

displacement in which the variable t plays the role of time, and at each instant, the quantities p, q, 

r denote the components of the infinitely-small rotation of the moving system when taken with 

respect to the moving axes. Having said that, equations (42), which served as the starting point, 

express the idea that there exists a curve (C) of the moving figure that rolls along a curve (C1) in 

the fixed system, and that consequently, the contact point of the two curves at the instant 

considered will necessarily have a zero velocity. In order for that to be true, it is obviously 

necessary that all of the successive infinitely-small motions of the moving system should not be 

helicoidal motions but should reduce to simple rotations. That is the condition that is expressed by 

equation (48), which one can obtained immediately by writing out that the velocity of the origin 

of the moving axes is perpendicular to the direction of the axis of rotation. 

 We have indicated the means for solving that equation without quadrature, and we thus know 

the motions in which each infinitely-small displacement is equivalent to a rotation. As one knows, 

one will get all of those motions by rolling a ruled surface (K) on another ruled surface (K1) that is 

applicable to the first one. The equation of the surface (K) will result from the elimination of t from 

the two equations to which the system (47) reduces. One will get the surface K1 by eliminating t, 

x, y, z from equations (44) and (47), or what amounts to the same thing, by eliminating t from the 

equations: 

(51)   

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

d
q c x c y c z r b x b y b z

dt

d
r a x a y a z p c x c y c z

dt

d
p b x b y b z q a x a y a z

dt








   + + − + + =




   + + − + + =



   + + − + + =
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which likewise reduce to two. 

 One deduces a first consequence from the preceding remarks that deserves to be pointed out: 

One can obtain (without quadrature) the most general equations of two ruled surfaces that are 

applicable to each other. 

 We now cut the ruled surface (K) with an arbitrary surface: 

 

f (x, y, z) = 0 . 

 

We will get a certain curve (C) that rolls on the corresponding curve (C1) of the surface (K1). The 

two curves (C) and (C1) are precisely the ones that our analytical solutions showed us how to 

determine. 

 In conclusion, we recall a solution to the same question that is completely different from the 

one that we gave. 

 If one sets: 

(52)     

1

1

1

,

,

,

x x X

y y Y

z z Z

− =


− =
 − =

 

 

(53)     

1 1

1 1

1 1

,

,

x x X

y y Y

z z Z

+ =


+ =
 + =

 

 

in equation (41) then it will take the form: 

 

(54)    dX dX1 + dY dY1 + dZ dZ1 = 0 . 

 

 Take X1, Y1, Z1 to be arbitrary functions of one parameter t, and set: 

 

(55)    X dX1 + Y dY1 + Z dZ1 =  U dt . 

 

If one differentiates that equation, while taking the preceding one into account then one will have: 

 

(56)    2 2 2

1 1 1X d X Y d Y Z d Z+ +  = dU dt , 

 

and conversely, the two equations (55) and (56) will imply the relation (54). 

 It will then suffice to take X, Y, Z to be functions that satisfy the two equations (55) and (56). 

That will permit one, for example, to determine one of them arbitrarily or to give an arbitrary 

relation between X, Y, Z : 

 (X, Y, Z) = 0 

a priori. 
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 To point out one application, suppose that one would like to find two curves whose arc-lengths 

are equal, and the corresponding points are always found at the same distance l from each other. 

One sets: 

 

(57)     2 2 2X Y Z+ +  = 
2l , 

 

and one will have to solve the three equations (55), (56), and (57). 

 Take the auxiliary unknown to be the determinant: 

 

(58)    

1 1 1

2 2 2

1 1 1

2 2 2

dX dY dZ

dt dt dt

d X d Y d Z

dt dt dt

X Y Z

  =  . 

 

 If one squares that and sets: 

2

1ds  = 2 2 2

1 1 1dX dY dZ+ + , 

2 2 2
2 2 2

1 1 1

2 2 2

d X d Y d Z

dt dt dt

     
+ +     

     
 = 2H , 

 

to abbreviate, then one will find that: 

 

2 = 

2 2

1 1 1

2

2
21 1

2

2

ds ds d s
U

dt dt dt

ds d s dU
H

dt dt dt

dU
U l

dt

 
 
 

 . 

 

  will then be known, and in order to determine X, Y, Z, it will suffice to append the first-

degree equation (58) to the equations (55) and (56). 

 One can further combine those two equations, which give the solution to the problem that was 

posed, with an arbitrary relation between X, Y, Z ; X1, Y1, Z1 . Suppose, for example, that one 

demands to determine the two curves (C), (C1) in such a manner that two arbitrary corresponding 

points of the two curves are always at the same distance from the origin. One will have: 

 
2 2 2x y z+ +  = 2 2 2

1 1 1x y z+ +  

or 

X X1 + Y Y1 + Z Z1 = 0 . 
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 That relation, when combined with equations (55) and (56), will give X, Y, Z with no difficulty. 

  

____________ 

 


