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CHAPTER XIII 
 

NORMAL LINES TO A SURFACE. 
 
 

Direct theory for rectilinear congruences. – Condition for lines that start at different points of a surface to 
be normal to another surface. – Remark by Hamilton. – Partial differential equation for a family of 
parallel surfaces. – Applications. – Malus’s theorem. – Propositions of Dupin relating to the case in 
which the developables formed by the incident rays are not destroyed by reflection.  Definition of the 
optical axes of a surface. – In order for incident rays that are normal to a surface to have their 
developables preserved by reflection, it is necessary and sufficient that those developables should cut out 
a conjugate net from the reflecting surfaces. – Dupin’s catoptric umbilics. – Particular examples. – Case 
in which the incident rays emanate from a unique point. – Case in which the reflecting surface has degree 
two. 
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 417.  In the preceding chapter, we attached the theory of rectilinear congruences to 
some propositions that apply to more general congruences.  One can also treat them 
directly in the following manner: 
 Trace out an arbitrary surface (S) in space that is subject to only the condition that it 
is not composed of lines of the congruence.  The direction cosines u, v, w of any of the 
lines of that congruence are well-defined functions of the rectangular coordinates x, y, z 
of the point where that line meets the surface (S).  We shall show that the necessary and 
sufficient condition for the lines to be normal to the same surfaces is that the expression: 
 

u dx + v dy + w dz 
 
must be an exact differential expression for all of the displacements that are performed 
on the surface (S). 
 That condition is necessary, since it is satisfied whenever the lines are normal to a 
surface (Σ).  Indeed, let X, Y, Z be the coordinates of the point where the line of the 
congruence is normal to (Σ).  One will have: 
 
(1)      u dX + v dY + w dZ = 0 
for all displacements considered. 
 Moreover, one can write: 
(2)     X = x – u ρ, Y = y – v ρ, Z = z – w ρ, 
 
in which ρ denotes the distance between two points (x, y, z), (X, Y, Z).  If one replaces X, 
Y̧  Z with these values in equation (1) then one will find: 
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(3)     dρ = u dx + v dy + w dz ; 
 
the right-hand side is therefore the differential of the function ρ. 
 Conversely, if the right-hand side is the exact differential of a certain function ρ then 
the point defined by equations (2) will verify the relation (1), and all of the lines of the 
congruence will be normal to the surface that is the locus of points (X, Y, Z).  The 
proposition that just stated is then found to be established. 
 
 
 448.  The preceding proof leads naturally to the following remarks, which are due to 
Hamilton. 
 Imagine that one draws a line through each point (x, y, z) of space.  The direction 
cosines of that line are given, but arbitrary, functions of x, y, z, and the line will depend 
upon three parameters, in general.  In a paper that we shall soon cite, Malus considered 
such assemblages of lines for the first time, which had been known since the work of 
Plücker and which have been given the name of complexes.  Having accepted those 
definitions, here is what Hamilton’s proposition consists of: 
 
 The necessary and sufficient condition for the lines to form a congruence (instead of a 
complex) and to be normal to a surface is that the expression: 
 
      u dx + v dy + w dz 

 
must be an exact differential for all of the possible displacements of the point (x, y, z). 
 
 The condition is necessary.  In order to see that, it will suffice to repeat the proof that 
we just made.  All that will then remain is to prove that it is sufficient. 
 Since one has, by hypothesis: 
(4)      u dx + v dy + w dz = dθ, 
one can write: 

(5)     u = 
x

θ∂
∂

, v = 
y

θ∂
∂

, w = 
z

θ∂
∂

, 

which will then give: 

(6)      
22 2

x y z

θ θ θ ∂ ∂ ∂   + +    ∂ ∂ ∂    
= 1. 

 
 Hamilton’s proposition then amounts to the following one, which is well-known: 
 
 If one is given a function θ that satisfies the preceding equation then the surfaces: 
 
(7)       θ = const. 
will all be parallel to each other. 
 
 Furthermore, one can prove that proposition directly in the following way: Draw 
some parallel tangent planes to the surfaces that are represented by equation (7).  The 
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contact points of those planes will be distributed along the curves that are represented by 
the equations: 

(8)     u = 
x

θ∂
∂

 = const., v = 
y

θ∂
∂

 = const. 

 
 As one sees immediately, these curves are orthogonal trajectories to the family of 
surfaces (7).  Indeed, one has: 
 

u u u

x x y y z z

θ θ θ∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = 
2 2 2

2x x y x y z x z

θ θ θ θ θ θ∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 = 0, 

 
since the right-hand side is nothing but the derivative with respect to x of the left-hand 
side of equation (6). 
 Like the plane that is tangent to an invariant direction at the points where all the 
surfaces (7) are cut by the lines (8), these orthogonal trajectories will necessarily reduce 
to lines, and as a result, equation (7) will represent a family of parallel surfaces.  
Moreover, the line that is drawn through an arbitrary point in space and is defined by the 
direction cosines u, v, w will obviously be the normal to the particular parallel surface 
that passes through that point, and it will consequently be the common normal to all of 
the surfaces.  Hamilton’s remark is then found to be justified completely. 
 
 
 449.  The preceding propositions are very convenient to employ in applications.  For 
example, suppose that the equations of a line are written in the form: 
 

(9)      
,

,

x az p

y bz q

= +
 = +

 

 
in which a, b, p, q are functions of two parameters.  If one considers the point of the line 
that is found in the xy-plane and which has the coordinates p, q, 0 then one will have: 
 

(10)    u dx + v dy + w dz = 
2 2 1

a dp b dq

a b

+
+ +

 

 
here, and that expression must be an exact differential for all normal congruences. 
 If the line is defined in the most general manner by the equations: 
 

(11)     

0,

0,

0,

bz cy a

cx az b

ay bx c

′− + =
 ′− + =
 ′− + =

 

 
which were given in no. 130 [I, pp. 194], then one will have: 
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u

a
= 

v

b
 = 

w

c
 = 

2 2 2

1

a b c+ +
. 

 
 Upon replacing the expression: 

u dx + v dy + w dz 
with the following one: 

x du + y dw + z dw, 
 
which is, like the former, an exact differential, one will be led to the expression: 
 

(12)    (a2 + b2 + c2)−3/2 

da db dc

a b c

a b c′ ′ ′
, 

 
which must be an exact differential for all normal congruences. 
 
 
 450.  One can deduce a celebrated theorem from the preceding results whose original 
idea goes back to Malus, but which was established completely only by the combined 
efforts of Dupin, Gergonne, and Quetelet.  Here is its statement: 
 
 If light rays are normal to a surface then they will not cease to possess that property 
after an arbitrary number of reflections and refractions. 
 

 

H 
B 

C 

M 
A 

Q 

P 
P′ 

H 

 
 

Figure. 30. 
 

 Since reflection can be regarded as refraction with index – 1, it is obviously sufficient 
to prove the theorem for the case of refraction.  Here is how one can state Descarte’s law: 
 Give the incident ray (Fig. 30) a length of MA = 1 and its refracted ray a length of MB 
= n, where n denotes the index of refraction.  Compose MA, MB with the parallelogram 
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law, so the resultant MC will be normal to the interface.  Indeed, for the triangle MBC, 
one will have: 

     
sin

BC

BMC
= 

sin

MB

MCB
, 

 
or, what amounts to the same thing: 
 
(13)    sin AMK = n sin BMH. 
 
This is the known law of refraction. 
 Let α, β, γ, u, v, w, u′, v′, w′ be the direction cosines of the normal to the surface, the 
incident ray, and the refracted ray, resp.  Upon equating the projection of MC to the sum 
of the projections MA, MB, one will have: 
 

(14)     

,

,

,

nu u

nv v

n w w

λα
λβ
λγ

′ + =
 ′ + =
 ′ + =

 

 

in which λ denotes the length of MC .  Let x, y, z be the rectangular coordinates of M.  
One has: 
(15)     α dx + β dy + γ dz = 0 
 
for any displacement of M on the interface, or, upon eliminating α, β, γ by means of the 
preceding equations: 
(16)   u dx + v dy + w dz = − n (u′ dx + v′ dy + w′ dz). 
 
Having said that, suppose that the incident rays are normal to a surface (Σ).  The left-hand 
side will be the differential of a function ρ that is, as we say above, the distance from the 
point M to the point P where the ray cuts the surface (Σ) normally.  By virtue of the 
preceding formula: 

u′ dx + v′ dy + w′ dz 
 
will also be an exact differential – d(ρ / n), and as a result, the refracted rays will also be 
normal to surface (Σ′).  One will obtain the point P′ where the refracted ray cuts (Σ′) 
normally by moving along the refracted ray through a distance of – ρ / n in the sense that 
is determined by its sign.  One easily verifies that the planes that are normal to the two 
rays − viz., incident and refracted − at P and P′, resp., must intersect along a line that is 
situated in the plane that is tangent to the interface at M.  That relation between the 
tangent planes to the three surfaces is, moreover, obvious in the system of oscillation.  
One then deduces that if p, p′, and δ denote the terms that are all known in the equations 
of the tangent planes at P, P′, and M to the surfaces (Σ),(Σ′), and the interface then one 
will have: 
(14)′     n p′ + p = λ δ, 
 



Darboux – Normal lines to a surface. 6 

in which λ has the same value as in formulas (14). 
 The normal surfaces to the refracted rays have been given the name of anti-caustics; 
the preceding results can then be stated thus: 
 
 If the incident rays are normal to a surface (Σ) then consider that surface to be the 
envelope of spheres that have their centers on the interface.  In order to obtain the anti-
caustic that relates to the refracted rays, one must take the envelope of all the spheres 
that one obtains by reducing the radius of the preceding in the ratio of unity to the index 
of refraction (1). 
 
 It results from this construction that it will, in general, be impossible to analytically 
separate two systems of refracted rays that correspond to equal values and opposite signs 
of the index of refraction. 
 
 
 451.  In his study of the preceding theorem, which he proved only for the case of 
reflection, Dupin posed the following question, which gave rise to some interesting 
research: 
                                                
 (1) Here are some facts on the subject of the discovery of that beautiful proposition:  In a paper that bore 
the simple title “Optique” and was inserted into the XIVth letter of the Journal de l’École Polytechnique in 
1808, Malus proved for the first time an interesting property of these assemblages of lines to which we give 
the name of complexes.  Imagine that each point of space corresponds to a line that passes through that 
point according to some law, and let M be an arbitrary point through which a line (d) of the system passes.  
If one seeks the points M′ that are infinitely close to M and for which the corresponding line meets (d) then 
one will find that the locus of directions MM′  is a second-degree cone.  After establishing that proposition, 
the illustrious physicist studied the assemblages of lines that depend upon two parameters – i.e., 
congruences − and he showed that one can, in general, distribute the lines of the congruence into two 
families of developable surfaces.  He sought the condition for those two families of developables to cut at a 
right angle, and he recognized that it will be satisfied when the lines are normal to a surface. 
 Upon then applying these general principles to optics, Malus proved that when the incident rays that 
emanate from a fixed point are reflected by an arbitrary surface, they will remain normal to a surface after 
reflection. 
 In the second part of his paper, which was inserted into page 84 of the same letter, Malus extended that 
proposition to the case of a unique refraction, and attempted (pp. 101) to extend it to the case of several 
refractions; however, deluded by an error in calculation, he believed that light rays generally cease to be 
normal to a surface after a second refraction. 
 It was Dupin who deserved the credit for having stated the general theorem for the first time in a 
“Mémoire sur les routes de la lumiére” that we shall cite later on and for having given a very simple 
geometric proof of it, but only for the case of reflection.  Moreover, as Dupin pointed out, Cauchy reprised 
and corrected Malus’s calculations in such a way that no doubt remained in regard to the importance and 
generality of the theorem.  Dupin was content to regard it, in the case of refraction, as a simple corollary to 
some propositions that he gave in his theory of cutting and filling (déblais et remblais).  That view is exact, 
but the theorems to which Dupin appealed have been proved only incompletely. 
 Several years later, Quételet introduced a new idea into that theory by replacing the caustics, whose 
determination is very arduous, with secondary caustics, or better, the anti-caustics, which are normal to the 
reflected or refracted rays.  It is thanks to his efforts and those of Gergonne that the theorem has finally 
been proved simply and completely.  (See volume I of Correspondence mathématique et physique, 1825, 
volume XVI of Annales de Gergonne and Nouveaux Mémoires de l’Académie de Bruxelles, t. III and IV, 
1826 and 1827, resp.) 
 In the study that we cited above [pp. 237], Lévistal extended the Malus-Dupin theorem to the case of 
double refraction. 
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 If the light rays are normal to a surface then one can assemble them into two families 
of orthogonal developables.  The reflection on a given surface generally transforms these 
developables into skew surfaces.  Dupin gave some beautiful propositions that related to 
the case in which the incident rays that form a developable are reflected along rays that 
likewise form a developable, and he recognized that the traces of the two series of 
developables on the reflecting surface must form a conjugate system.  Dupin’s proofs rest 
upon the properties of the indicatrix and upon those of second-degree surfaces of 
revolutions (1).  One can replace them with the following ones, which will, moreover, 
give us some new results: 
 We begin by considering some light rays that form just one developable and seek the 
condition for the reflected rays to likewise generate a developable surface. 
 Let AA′, … be a line of curvature of the developable that is formed by the incident 
rays.  The generators that pass through the points A, A′, … meet the reflecting surface (Σ) 
at M, M′, … and reflect along the rays MB, M′ B′, …  Take MB = MA, MB′ = MA′, …  
The curve BB′… will be an orthogonal trajectory of the reflected rays, and as a result, it 
will necessarily be a line of curvature if those reflected rays also form a developable.  
The spheres with centers M, M′, …, and radii MA, MA′, … envelop a surface (S) with 
circular lines of curvature), and the two curves AA′, .., BB′, … must be non-circular lines 
of curvature on that surface.  As a result, the tangents to those two lines at the 
corresponding points A and B will be two generators of a cone of revolution that is 
circumscribed by the surface (S) along a circle, and it will necessarily meet it.  Now, 
consider the ruled surface (∆) that is generated by the line AB.  From the property that we 
just proved, it will be a developable surface, since it will admit the same tangent plane to 
the two distinct points A and B.  Let AB, A′B′ be two consecutive positions of AB.  Since 
they are perpendicular to the two tangent planes to the reflecting surface (Σ) at M and M′, 
respectively, they will also be perpendicular to the intersection Mt of those two planes, 
which is the conjugate tangent to MM′.  Thus: 
 The developable (∆) that is generated by the line AB has its tangent plane 
perpendicular to the tangent Mt at every instant. 
 As a result, the normal plane to the developable of the incident ray that is drawn 
through MA (which is a plane that is obviously perpendicular to the tangent at A to the 
line of curvature AA′, … of that developable) will cut the tangent plane to the reflecting 
surface at M along the line that is perpendicular to the tangent at A – i.e., along the 
tangent Mt.  In other words: The tangent plane to the developable along the incident rays 
and the normal plane that contains that ray must cut the tangent plane to the reflecting 
surface along two conjugate rays. 
 That condition, which is necessary, is also sufficient: In order to see that, it will 
suffice to recall the preceding argument in the opposite order.  One will then deduce the 
following consequence: 
 The tangent to the curve of incidence and its conjugate tangent are found in the two 
rectangular planes that contain the incident ray.  Those two planes are obviously the 
conjugate diametral planes to any cylinder of revolution that has the incident ray for its 

                                                
 (1) Consult the Quatrième Mémoire in Applications de Géométrie et de Méchanique, which was 
entitled: “Sur les routes suivies par la lumière et par les corps élastiques, en générale, dans les phénomèmes 
de la réflexion et de la refraction.”  (Presented to the Academy of Sciences in 22 January 1816.) 
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axis.  As a result, the lines considered will be conjugate diameters to the section of the 
cylinder that goes through the tangent plane at M. 
 From that, if one is given an arbitrary incident ray that cuts the reflecting surface at M 
then there will be only two possible directions for the tangent to the curve of incidence at 
M: They will the directions of the two conjugate diameters that are common to the 
indicatrix of the surface and the section of the tangent plane by the cylinder of revolution 
whose axis is the incident ray. 
 One must remark that that there is an analogy between that theory and the theory of 
lines of curvature; moreover, the two theories will coincide if one supposes that the 
incident ray is normal to the reflecting surface (1). 
 
 
 452.  The preceding construction leads us to consider lines that possess some 
remarkable optical properties.  Suppose that the conics that were employed in that 
construction are similar; i.e., that the incident ray is the axis of one of the four cylinders 
of revolution that contain the indicatrix.  The directions of the curve of incidence will no 
longer be determined then.  Thus: 
 
 If one considers the four lines at each point of a surface that are axes of cylinders of 
revolution that cut the tangent plane along the indicatrix, or loci of points where one sees 
two arbitrary conjugate tangents define a right angle, then those lines will form four 
systems of rectilinear rays whose developables reflect along developables. 
 
 Those lines will be imaginary if the indicatrix is hyperbolic; in the case of an elliptic 
indicatrix, there will be two of them that are real: They will be the asymptotes of the focal 
hyperbola.  They will be in the principal plane, which contains the two foci of the 
indicatrix and will be placed symmetrically with respect to the normal.  They will form 
two different systems, and each of them will be obtained by reflecting the other one on 
the surface.  We call them optical axes, to abbreviate.  One can also construct them as 
follows: 
 Draw a plane tangent to the circle at infinity through the two asymptotic tangents to 
the reflecting surface.  Those four planes intersect along four lines that are placed pair-
wise symmetric with respect to the tangent plane, and which will be the four optical axes 
relative to the point considered. 
 It follows from this that in the case of a second-degree surface, the optical axes of the 
surface will be the rectilinear generators of the second-degree surface that is homofocal 
to the proposed one.  One can determine the developables that are formed by these lines 
with no integration, since one knows that they are the double tangents to the developable 
in which all of the homofocal surfaces are inscribed.  Now, when some lines of a 
congruence are the double tangents to a developable, it will be obvious that there will be 
                                                
 (1) The results that were established by our method include that ones that Dupin relied upon, because, if 
the reflecting surface is a second-order surface of revolution with two foci F, F′ then the light rays that 
emanate from F will be reflected towards F′.  Construct the cone that is formed from the incident rays that 
meet the section of the surface through a plane (P).  The normal plane along each generator must contain 
the conjugate tangent to the tangent to the plane section, and as a result, it must pass through the pole to the 
plane (P).  Now, a cone is obviously one of revolution when its normal plane passes through a fixed point.  
Therefore, all plane sections will appear to be circles when viewed from a focus.  
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an infinitude of them in each tangent plane to the developable.  Indeed, that plane touches 
the developable along a line (d) and cuts it along a curve (C).  All of the tangents to (C) 
will be double tangents to the developable and must be considered to form a developable 
surface, in their own right.  Therefore, in the case of second-degree surfaces, we will 
have to distribute the optical axes into two series of developables.  Moreover, we remark 
that these two series of developables will be imaginary. 
 
 
 453.  In any case, the optical axes enjoy a remarkable property: Imagine that light 
rays emanate from a point of one of these lines and form an infinitely small pencil around 
the line.  From the property of optical axes, the reflected rays – no matter how one 
assembles them – must be considered as forming a developable surface, and 
consequently, the reflected pencil will also seem to emanate from a unique point. 
 One can establish that conclusion in a more rigorous manner by giving the 
complement according to our first proposition.  Imagine a ray AM that meets the reflected 
surface at M and reflects from it along a ray MB, and suppose that AM belongs to a 
developable that reflects along a developable.  When one passes from AM to the 
infinitely-close ray A′M′, the plane AMB will be replaced with a plane A′M′B′ that cuts 
the first one along a line αµβ, where α¸ µ, β are the points of that line that are situated on 
AM, the normal to M, and on BM, respectively.  Since the planes AMB, A′M′B′ pass 
through two infinitely-close generators of the developable that is generated by AM, the 
limiting position of α will be the contact point of the ray AM with the curve that it 
envelops, and similarly β will be the contact point of the reflected ray BM with the edge 
of regression of the developable that is generated by that ray.  As for µ, it is obviously the 
point where the normal to the point M of the curve of incidence that is infinitely close to 
M cuts the plane AMB.  We thus have the following theorem: 
 
 When a developable is reflected along a developable, the line that joins the points of 
contact of the incident and reflected rays with the curves that they envelop will cut the 
normal to the reflecting surface at the point where the skew surface that is formed by the 
normals at all points of the curve of incidence is tangent to the plane of the incident and 
reflected rays. 
 
 In particular, when one is dealing with an optical axis (which is necessarily situated in 
a principal plane), all of the normals that are infinitely close to the normal will cut that 
plane at a point whose limiting position coincides with that of the two principal centers 
where the principal plane is tangent to the surface of the centers.  If γ denotes that center 
then one will see that β must be on the line αγ, and that construction will always be the 
same, no matter what the developables that are formed by the incident rays are.  Thus, if 
they emanate from α then the reflected rays will seem to emanate from β. 
 
 The properties that were established give rise to a certain number of consequences, 
and it is not futile to state them explicitly. 
 If the incident rays are formed by a system of optical axes of the surface then the 
incident developables will reflect along other developables, such that the incident rays 
will or will not be normal to a surface.  Except for that exceptional case, one can say that 
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if the reflection does not destroy the two series of developables (which are assumed to be 
distinct) that are formed from the incident rays then they will necessarily be normal to a 
surface.  Indeed, we have seen that if the incident ray is given then the only two lines that 
must be the tangent at M to the trace of a developable on the reflecting surface will be in 
two rectangular planes that pass through the incident ray.  Thus, if the two distinct series 
of developables that are formed from the incident rays are to persist after the reflection 
then it will be necessary for them to cut at a right angle and for them to cut out a 
conjugate system on the reflecting surface.  These two conditions are sufficient, 
moreover.  Therefore: 
 
 Whenever the two series of developables that are formed by the incident rays are all 
reflected along developables, the incident rays will be normal to a surface, unless it 
constitutes one of the four systems of optical axes of the surface. 
 In order for the incident rays that are normal to a surface to have their developables 
preserved by the reflection, it is necessary and sufficient that these developables cut out a 
conjugate system on the reflecting surface. 
 
 
 454.  For example, consider a surface (Σ), which we assume to be arbitrary, and some 
light rays that emanate from a point O.  These light rays, which form a system (I), reflect 
on (Σ) and give a system (R) a reflected rays that are normal to a surface (Σ1) that is 
enveloped by spheres that pass through the point O and have their center on (Σ).  That 
surface (Σ1) is obviously homothetic to the (podaire) of the point O with respect to (Σ), 
because it is the locus of the symmetric images of the point O with respect to all the 
planes that are tangent to (Σ).  Suppose that the eye is placed at a point O′ on the direction 
of the reflected ray.  It will receive a pencil of rays that emanate from O and reflect into 
the region of (Σ) that neighbors the point M.  That pencil of reflected rays, which is 
formed from normals to (Σ1), will generally have two focal lines that are mutually-
perpendicular and are placed at the two centers of principal curvature of (Σ1) that are on 
the normal O′M.  The image of the luminous point for an observer that is placed at O′ 
will be more or less indistinct.  That observer will refer it to a point that cannot be 
determined by any rule.  However, in the particular case where the line OM is one of the 
optical axes of the point M, all of the reflected rays will appear to emanate from a unique 
point that we have learned how to construct.  The image of the light point will become 
clear, and the reflected rays will have a focus that can be real or virtual.  Dupin gave the 
point M the name of catoptric umbilic, by the analogy that it presented with ordinary 
umbilics, which they will coincide with, moreover, when the incident ray is normal to the 
surface.  If the surface (Σ) has degree two then there will be twelve catoptric umbilics for 
each point O, four of which will be real and situated at the intersection of that surface 
with two rectilinear generators of the homofocal hyperboloid that passes through the 
point O. 
 Here, the incident rays (no matter how one assembles them) will always form cones, 
and as a result, developables.  We propose to determine the cones that are formed by the 
incident rays that correspond to reflected rays that form a developable.  From the 
preceding propositions, these cones must cut out two systems of conjugate lines from the 
reflecting surface that seem to cut at a right angle when one regards them from the point 
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O.  Moreover, the determination of these cones is equivalent to that of the lines of 
curvature of the surface (Σ1), or – what amounts to the same thing – to the podaire of (Σ) 
relative to the point O.  Thus: 
 
 If one is given a surface (Σ) and a point O then the lines of curvature of the podaire 
of (Σ) relative to the point O will correspond to two systems of conjugate lines that are 
traced on (Σ) and which seem to cut at a right angle for an observer that is placed at O. 
 
 That proposition, which the reader can establish in a very simple manner, permits one 
to determine the developables that are formed by the reflected rays when the surface (Σ) 
has degree two.  One then obtains the following construction, which we will be content to 
state: 
 
 The curves of incidence of the cones that reflect along the developables are, at the 
intersection of (Σ) and the cones of degree two, with their summit at O, homofocal to the 
cone with the same summit that is circumscribed by (Σ); they are also the curves of 
contact of the developables that are circumscribed by (Σ) and any of the second-degree 
surfaces that pass through the intersection of (Σ) and the sphere of radius zero that has 
its center at the point O. 
 
 
 455.  In two notes that were published in 1872 (1), Ribaucour pointed out some very 
interesting applications of Dupin’s theorem.  They rest essentially upon the following 
remark, which is almost obvious: 
 
 In order for the developables of a congruence to cut out a conjugate net from a 
second-degree surface, it is necessary and sufficient that the two focal planes of each line 
of the congruence should be conjugate with respect to that surface; i.e., that each of them 
must contain the pole of the other (2). 
 
 Since the preceding condition is independent of the point where each line of the 
congruence cuts the surface, one will first of all deduce the following proposition: 
 
 If the developables that are formed by lines of a congruence cut out a conjugate net 
on a second-degree surface when they enter it then they will also cut our a second 
conjugate net when they leave it. 
 
 Now, consider the case in which the developables intersect at a right angle.  One will 
then have a congruence of normals (I) whose developables will, by hypothesis, cut out a 

                                                
 (1) RIBAUCOUR, “Sur la théorie des lignes de courbure,” Comptes rendus, t. LXXIV, pp. 1489 and 
1570, 1st semester 1872.  
 (2) Indeed, let M be a point of the surface, let (d) be the line of the congruence that passes through that 
point, and let Mt, Mt′ be the traces of the two focal planes of that line on the plane that is tangent at M.  As 
one knows, the focal plane that passes through Mt has its pole on the conjugate tangent to Mt.  In order for 
the two focal planes to be conjugate, it is therefore necessary and sufficient that Mt and Mt′ must be 
conjugate tangents. 
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conjugate net from the second-degree surface (S).  Since they are both normal and 
conjugate with respect to (S), the two focal planes of each line (d) of the congruence will 
also be conjugate with respect to all of the surfaces (Si) that are homofocal to (S).  
Consequently, the developables of (I) will cut out conjugate nets from all of the surfaces 
(Si), either when they enter or when they leave.  If one imagines that the lines of the 
congruence form a system of incident rays (I) then one can make those rays reflect from 
any one (S1) of the surfaces (Si).  One will then have a first system of reflected rays (I1) 
whose developables correspond to those of (I), and since they cut out the same conjugate 
net on (S1) as the developables of (I), they will again cut out conjugate nets on all of the 
homofocal surfaces.  Now, one can make the pencil (I1) reflect on another homofocal 
surface (S2), and so on.  Upon continuing in that manner, one will obtain a sequence of 
congruences of normals (I), (I1), (I2), … that is generally unlimited and whose 
developables mutually correspond and cut out conjugate nets on all of the homofocal 
surfaces.  If one follows one of the incident rays then one will easily recognize that the 
two homofocal surfaces that are tangent to that ray will also remain tangents at all of their 
successive positions. 
 We felt that these elegant properties seemed worthy of being pointed out to us.  In the 
following chapter, we shall pursue the study that will permit us to complete the results 
that were given above on the geodesic lines of second-degree surfaces, moreover. 
 
 

__________ 
 

 
 
 


