Excerpted from G. Darbouxgecons sur la théorie générale des surfaces et les applicajé@raétrique du
calcul infinitésimal Book 1V, Gauthier-Villars, Paris, 1889.

CHAPTER XI11

NORMAL LINESTO A SURFACE.

Direct theory for rectilinear congruences. — Conditianlines that start at different points of a surfexe
be normal to another surface. — Remark by HamiltonartidP differential equation for a family of
parallel surfaces. — Applications. — Malus’s theorem. ep®&sitions of Dupin relating to the case in
which the developables formed by the incident rays atedastroyed by reflection. Definition of the
optical axes of a surface. — In order for incident rays #ie normal to a surface to have their
developables preserved by reflection, it is necessargufidient that those developables should cut out
a conjugate net from the reflecting surfaces. — Dupirtgptac umbilics. — Particular examples. — Case
in which the incident rays emanate from a unique peiase in which the reflecting surface has degree
two.

417. In the preceding chapter, we attached the theoryotfinear congruences to
some propositions that apply to more general congruen€ese can also treat them
directly in the following manner:

Trace out an arbitrary surfac®) (n space that is subject to only the condition that it
is not composed of lines of the congruence. The direcsineay, v, w of any of the
lines of that congruence are well-defined functions ofréa¢angular coordinates y, z
of the point where that line meets the surfege We shall show that the necessary and
sufficient condition for the lines to be normal to Hane surfaces is thie expression:

u dx+vdy+wdz

must be an exact differential expression for all of the displaceriexitsre performed
on the surfacgs).

That condition is necessary, since it is satisfidgebwever the lines are normal to a
surface E). Indeed, letX, Y, Z be the coordinates of the point where the line of the
congruence is normal t&). One will have:

(1) udX+vdY+wdz=0
for all displacements considered.
Moreover, one can write:
(2) X=x—-up, Y=y-vp Z=z-Wp,

in which p denotes the distance between two poity,(2), (X, Y, Z). If one replaceX,
Y, Z with these values in equation (1) then one will find:
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3) do=udx+vdy+wdz

the right-hand side is therefore the differentiathef functiono.

Conversely, if the right-hand side is the exact ddffieial of a certain functiop then
the point defined by equations (2) will verify the relatidn), and all of the lines of the
congruence will be normal to the surface that is tledoof points X, Y, Z). The
proposition that just stated is then found to be estadalis

448. The preceding proof leads naturally to the following ndsiawhich are due to
Hamilton.

Imagine that one draws a line through each poiny,(2) of space. The direction
cosines of that line are given, but arbitrary, fundionx, y, z, and the line will depend
upon three parameters, in general. In a paper that wlessloal cite, Malus considered
such assemblages of lines for the first time, which heghtknown since the work of
Plucker and which have been given the namearhplexes. Having accepted those
definitions, here is what Hamilton’s proposition cetsiof:

The necessary and sufficient condition for the lines to form a congr@iestsad of a
complex) and to be normal to a surface is that the expression:

u dx+ v dy+wdz
must be an exact differential for all of the possible displacenoénl® pointx, y, 2).

The condition is necessary. In order to see thatll suffice to repeat the proof that
we just made. All that will then remain is to provatth is sufficient.

Since one has, by hypothesis:
(4) u dx+v dy+wdz=d§g,
one can write:
5) u= %, V= %, - 90

ox oy 0z

which will then give:

2 2 2
(6) [%j + 98 +(%j _1
0x ay 0z
Hamilton’s proposition then amounts to the followimgepwhich is well-known:

If one is given a functioflthat satisfies the preceding equation then théases:

(7) 6= const.
will all be parallel to each other.

Furthermore, one can prove that proposition directlyhe following way: Draw
some parallel tangent planes to the surfaces thatepresented by equation (7). The
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contact points of those planes will be distributedhglthe curves that are represented by
the equations:

(8) u= 99 =const.,, v= 99 = const.
ox oy

As one sees immediately, these curves are orthog@ecttories to the family of
surfaces (7). Indeed, one has:

06 du 66’6u 06 du 69629+68 9°0 69 9%0 _

axax 6y6y 0z0z 0xo0xX ayaxay 9209

since the right-hand side is nothing but the derivativia waspect tox of the left-hand
side of equation (6).

Like the plane that is tangent to an invariant dioecat the points where all the
surfaces (7) are cut by the lines (8), these orthogomalktories will necessarily reduce
to lines, and as a result, equation (7) will represerianaily of parallel surfaces.
Moreover, the line that is drawn through an arbitrarywpm space and is defined by the
direction cosines, v, w will obviously be the normal to the particular parallelfsce
that passes through that point, and it will consequélyhe common normal to all of
the surfaces. Hamilton’s remark is then found to béfipdtcompletely.

449. The preceding propositions are very convenient to emplapplications. For
example, suppose that the equations of a line are wirittée form:

©) { X=az+ p

y=bz+ g

in whicha, b, p, g are functions of two parameters. If one considezgthint of the line
that is found in th&y-plane and which has the coordingbesg, 0 then one will have:

adp+ bdg

here, and that expression must be an exact differémtiall normal congruences.
If the line is defined in the most general manner by theteamsa

(10) udx+vdy+wdz=

bz- cy+ a=0,
(12) cx—az+ Bb=0,
ay- bx+ ¢=0,

which were given in nal30 [I, pp. 194], then one will have:
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Upon replacing the expression:
u dx+vdy+wdz
with the following one:
x du+y dw+ z dw

which is, like the former, an exact differential, oml be led to the expression:

(12) @+b*+c)>?|a b ¢/,

which must be an exact differential for all normahgouences.

450. One can deduce a celebrated theorem from the preaeduigs whose original
idea goes back to Malus, but which was established coshplenly by the combined
efforts of Dupin, Gergonne, and Quetelet. Here istdatement:

If light rays are normal to a surface then they will not cease to pssbat property
after an arbitrary number of reflections and refractions.

H
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Figure. 30.

Since reflection can be regarded as refraction with irdexit is obviously sufficient
to prove the theorem for the case of refraction.eHehow one can state Descarte’s law:
Give the incident ray (Fig. 30) a lengthMA = 1 and its refracted ray a length\dB

= n, wheren denotes the index of refraction. Compd4sa, MB with the parallelogram
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law, so the resultari1C will be normal to the interface. Indeed, for thertgke MBC,
one will have:
BC MB

sinBMC  sinMCB'’

or, what amounts to the same thing:
(13) SiNAMK =n sinBMH.

This is the known law of refraction.

Leta, B, y,u, v, w, U, vV, W be the direction cosines of the normal to the suyfdme
incident ray, and the refracted ray, resp. Upon equétmgrojection oMC to the sum
of the projection®A, MB, one will have:

nu+u=A1a,
(14) nv+v=Ap,
nw+w=Ay,

in which A denotes the length d¥IC. Letx, y, z be the rectangular coordinateshdf
One has:
(15) adx+ fSdy+ ydz=0

for any displacement dfl on the interface, or, upon eliminatiag 5, y by means of the
preceding equations:
(16) udx+vdy+wdz=-n(u dx+Vv dy+w d2.

Having said that, suppose that the incident rays are heorassurfaceX). The left-hand
side will be the differential of a functignthat is, as we say above, the distance from the
point M to the pointP where the ray cuts the surface (ormally. By virtue of the
preceding formula:

u dx+Vv dy+w dz

will also be an exact differentialdo/ n), and as a resulthe refracted rays will also be
normal to surfacgZ'). One will obtain the poinP’ where the refracted ray cuts')
normally by moving along the refracted ray through aadist of -0/ n in the sense that
is determined by its sign. One easily verifies thatglanes that are normal to the two
rays— viz., incident and refracted at P andP’, resp., must intersect along a line that is
situated in the plane that is tangent to the interftdel. That relation between the
tangent planes to the three surfaces is, moreovemusbin the system of oscillation.
One then deduces thatpif p', andddenote the terms that are all known in the equations
of the tangent planes & P’, andM to the surfaces(),(Z'), and the interface then one
will have:

(14y np+p=A439
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in which A has the same value as in formulas (14).
The normal surfaces to the refracted rays have been the name odnti-caustics
the preceding results can then be stated thus:

If the incident rays are normal to a surfa®) then consider that surface to be the
envelope of spheres that have their centers on the interface. Intordetain the anti-
caustic that relates to the refracted rays, one must take théopevef all the spheres
that one obtains by reducing the radius of the preceding in the ratio of arthy index
of refraction(%).

It results from this construction that it will, in geak be impossible to analytically
separate two systems of refracted rays that corredpoggual values and opposite signs
of the index of refraction.

451. In his study of the preceding theorem, which he proved famlyhe case of
reflection, Dupin posed the following question, which gase to some interesting
research:

() Here are some facts on the subject of the discafehat beautiful proposition: In a paper that bore
the simple title “Optique” and was inserted into the Xitter of theJournal de I'Ecole Polytechniquia
1808, Malus proved for the first time an interesting propefthese assemblages of lines to which we give
the name otomplexes.Imagine that each point of space corresponds to ahatepasses through that
point according to some law, and Mtbe an arbitrary point through which a lirdy 6f the system passes.
If one seeks the poinM ’that are infinitely close tM and for which the corresponding line meefstlien
one will find that the locus of directioddM ’ is a second-degree cone. After establishing thaigiton,
the illustrious physicist studied the assemblages ofs litat depend upon two parameters — i.e.,
congruences- and he showed that one can, in general, distributdirntee of the congruence into two
families of developable surfaces. He sought the condiiothose two families of developables to cut at a
right angle, and he recognized that it will be satisfiedwihe lines are normal to a surface.

Upon then applying these general principles to optalus proved that when the incident rays that
emanate from a fixed point are reflected by an argisarface, they will remain normal to a surface after
reflection.

In the second part of his paper, which was insertedpage 84 of the same letter, Malus extended that
proposition to the case of a unique refraction, and atesim(pp. 101) to extend it to the case of several
refractions; however, deluded by an error in calculatienbélieved that light rays generally cease to be
normal to a surface after a second refraction.

It was Dupin who deserved the credit for having statedgéneral theorem for the first time in a
“Mémoire sur les routes de la lumiére” that we shak titer on and for having given a very simple
geometric proof of it, but only for the case of refiest Moreover, as Dupin pointed out, Cauchy reprised
and corrected Malus’s calculations in such a way thaloutt remained in regard to the importance and
generality of the theorem. Dupin was content to regard the case of refraction, as a simple corollary to
some propositions that he gave in his theory of cuttimfidling (déblais et rembla)s That view is exact,
but the theorems to which Dupin appealed have been prowethoompletely.

Several years later, Quételet introduced a new ideathatotheory by replacing theaustics whose
determination is very arduous, wislecondary caustic®r better, thanti-caustics which are normal to the
reflected or refracted rays. It is thanks to his &ffand those of Gergonne that the theorem has finally
been proved simply and completely. (See volumeCafrespondence mathématique et physidu25,
volume XVI of Annales de GergonrendNouveaux Mémoires de I’Académie de BruxelieBl and IV,
1826 and 1827, resp.)

In the study that we cited above [pp. 237], Lévistal extendedvtalus-Dupin theorem to the case of
double refraction.
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If the light rays are normal to a surface then caie assemble them into two families
of orthogonal developables. The reflection on a gagface generally transforms these
developables into skew surfaces. Dupin gave some beautifobsitions that related to
the case in which the incident rays that form a develepatd reflected along rays that
likewise form a developable, and he recognized that #eedrof the two series of
developables on the reflecting surface must form a conjsgatem. Dupin’s proofs rest
upon the properties of the indicatrix and upon those obrgkdegree surfaces of
revolutions f). One can replace them with the following ones, whigh moreover,
give us some new results:

We begin by considering some light rays that form qut developable and seek the
condition for the reflected rays to likewise generatieeelopable surface.

Let AA, ... be a line of curvature of the developable that ismém by the incident
rays. The generators that pass through the pAjiAS ... meet the reflecting surfacg)(
atM, M’ ... and reflect along the raydB, M’B’, ... TakeMB = MA, MB' = MA', ...
The curveBB'... will be an orthogonal trajectory of the reflected raa3d as a result, it
will necessarily be a line of curvature if those reflectays also form a developable.
The spheres with centeld, M, ..., and radiiMA, MA’, ... envelop a surfaceS with
circular lines of curvature), and the two curyes .., BB’, ... must be non-circular lines
of curvature on that surface. As a result, the tangemtgshose two lines at the
corresponding point& and B will be two generators of a cone of revolution that is
circumscribed by the surfac®)(along a circle, and it will necessarily meet it.owy
consider the ruled surfacl)(that is generated by the lidd. From the property that we
just proved, it will be a developable surface, since itadmit the same tangent plane to
the two distinct point& andB. Let AB, A'B' be two consecutive positions AB. Since
they are perpendicular to the two tangent planes teeflecting surface¥) atM andM
respectively, they will also be perpendicular to thersgctionMt of those two planes,
which is the conjugate tangentMM . Thus:

The developable &) that is generated by the linAB has its tangent plane
perpendicular to the tanget at every instant.

As a result, the normal plane to the developable efithident ray that is drawn
throughMA (which is a plane that is obviously perpendicularh® tangent af to the
line of curvatureAA, ... of that developable) will cut the tangent plane tor#ftecting
surface atM along the line that is perpendicular to the tangem at i.e., along the
tangentMt. In other wordsThe tangent plane to the developable along the incident rays
and the normal plane that contains that ray must cut the tangent plane tefléeting
surface along two conjugate rays.

That condition, which is necessary, is also sufficien order to see that, it will
suffice to recall the preceding argument in the oppasitier. One will then deduce the
following consequence:

The tangent to the curve of incidence and its conjugaigent are found in the two
rectangular planes that contain the incident raynos€ two planes are obviously the
conjugate diametral planes to any cylinder of revolutitat has the incident ray for its

() Consult theQuatriéme Mémoirdn Applications de Géométrie et de Méchaniquéiich was
entitled: “Sur les routes suivies par la lumiére et parcbrps élastiques, en générale, dans les phénomemes
de la réflexion et de la refraction.” (Presented toAbademy of Sciences in 22 January 1816.)



Darboux — Normal lines to a surface. 8

axis. As a result, the lines considered will be conjugaeeters to the section of the
cylinder that goes through the tangent plané.at

From that, if one is given an arbitrary incident ragttcuts the reflecting surfaceMt
then there will be only two possible directions for thlegent to the curve of incidence at
M: They will the directions of the two conjugate diamgtéhat are common to the
indicatrix of the surface and the section of the tangkme by the cylinder of revolution
whose axis is the incident ray.

One must remark that that there is an analogy betwes theory and the theory of
lines of curvature; moreover, the two theories will cade if one supposes that the
incident ray is normal to the reflecting surfate (

452. The preceding construction leads us to consider linas ghssess some
remarkable optical properties. Suppose that the conicswbet employed in that
construction are similar; i.e., that the incident myhe axis of one of the four cylinders
of revolution that contain the indicatrix. The diieas of the curve of incidence will no
longer be determined then. Thus:

If one considers the four lines at each point of a surface that areocfxgtinders of
revolution that cut the tangent plane along the indicatrix, or loci of poinesevbne sees
two arbitrary conjugate tangents define a right angle, then those linedommi four
systems of rectilinear rays whose developables reflect alongogatdds.

Those lines will be imaginary if the indicatrix is hypelic; in the case of an elliptic
indicatrix, there will be two of them that are reBfiey will be the asymptotes of the focal
hyperbola. They will be in the principal plane, whicmt@ns the two foci of the
indicatrix and will be placed symmetrically with respeztthe normal. They will form
two different systems, and each of them will be oletiby reflecting the other one on
the surface. We call theoptical axesto abbreviate. One can also construct them as
follows:

Draw a plane tangent to the circle at infinity throdlgd two asymptotic tangents to
the reflecting surface. Those four planes interskectgafour lines that are placed pair-
wise symmetric with respect to the tangent plane, andhwill be the four optical axes
relative to the point considered.

It follows from this that in the case of a second-degu&face, the optical axes of the
surface will be the rectilinear generators of the seéategree surface that is homofocal
to the proposed one. One can determine the developbbteasré formed by these lines
with no integration, since one knows that they asedbuble tangents to the developable
in which all of the homofocal surfaces are inscribedowNwhen some lines of a
congruence are the double tangents to a developable, iendbvious that there will be

() The results that were established by our method in¢had@nes that Dupin relied upon, because, if
the reflecting surface is a second-order surfaceewblution with two fociF, F”then the light rays that
emanate fronk will be reflected towardE”. Construct the cone that is formed from the incidays that
meet the section of the surface through a pl&)e The normal plane along each generator must contain
the conjugate tangent to the tangent to the plane seatidrgs a result, it must pass through the pole to the
plane P). Now, a cone is obviously one of revolution when itswad plane passes through a fixed point.
Thereforeall plane sections will appear to be circles when viewed fxdotus.
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an infinitude of them in each tangent plane to the dpedlle. Indeed, that plane touches
the developable along a lind) (and cuts it along a curv€). All of the tangents toQ)
will be double tangents to the developable and must baedeved to form a developable
surface, in their own right. Therefore, in the cateserond-degree surfaces, we will
have to distribute the optical axes into two seriedevelopables. Moreover, we remark
that these two series of developables will be imaginary.

453. In any case, the optical axes enjoy a remarkable gyoperagine that light
rays emanate from a point of one of these lines and dorinfinitely small pencil around
the line. From the property of optical axes, the rédl@aays — no matter how one
assembles them — must be considered as forming a developatice, and
consequently, the reflected pencil will also seem torateafrom a unique point.

One can establish that conclusion in a more rigorousnemraby giving the
complement according to our first proposition. ImagarayAM that meets the reflected
surface atM and reflects from it along a rayB, and suppose tha&M belongs to a
developable that reflects along a developable. When osseparomAM to the
infinitely-close rayA’'M’, the planeAMB will be replaced with a plan&M'B' that cuts
the first one along a lineys, wherea, u, [ are the points of that line that are situated on
AM, the normal toM, and onBM, respectively. Since the planés1B, AM'B' pass
through two infinitely-close generators of the developabét is generated b&M, the
limiting position of a will be the contact point of the rafM with the curve that it
envelops, and similarlyg will be the contact point of the reflected i with the edge
of regression of the developable that is generated byahatAs for, it is obviously the
point where the normal to the poivt of the curve of incidence that is infinitely close to
M cuts the planAMB. We thus have the following theorem:

When a developable is reflected along a developable, the line that joipsitie of
contact of the incident and reflected rays with the curves thateheglop will cut the
normal to the reflecting surface at the point where the skew sutiate formed by the
normals at all points of the curve of incidence is tangent to the plathe aficident and
reflected rays.

In particular, when one is dealing with an optical &wikich is necessarily situated in
a principal plane), all of the normals that are inélyitclose to the normal will cut that
plane at a point whose limiting position coincides wviftht of the two principal centers
where the principal plane is tangent to the surfacbeteénters. Ifydenotes that center
then one will see thgf must be on the liney, and that construction will always be the
same, no matter what the developables that are form#tehbgcident rays are. Thus, if
they emanate frorr then the reflected rays will seem to emanate ffom

The properties that were established give rise to aicemmber of consequences,
and it is not futile to state them explicitly.

If the incident rays are formed by a system of optivads of the surface then the
incident developables will reflect along other developaldesh that the incident rays
will or will not be normal to a surface. Except fbat exceptional case, one can say that
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if the reflection does not destroy the two series okttgables (which are assumed to be
distinct) that are formed from the incident rays thegytwill necessarily be normal to a
surface. Indeed, we have seen that if the incident rgiyes then the only two lines that
must be the tangent Bt to the trace of a developable on the reflecting sunfaltdoe in
two rectangular planes that pass through the incidgnt Taus, if the two distinct series
of developables that are formed from the incident ragst@ persist after the reflection
then it will be necessary for them to cut at a trighgle and for them to cut out a
conjugate system on the reflecting surface. These twalittuns are sufficient,
moreover. Therefore:

Whenever the two series of developables that are formed by the inagemtre all
reflected along developables, the incident rays will be normal to &aerunless it
constitutes one of the four systems of optical axes of the surface.

In order for the incident rays that are normal to a surface to libhe& developables
preserved by the reflection, it is necessary and sufficientlikae developables cut out a
conjugate system on the reflecting surface.

454. For example, consider a surfagg, (which we assume to be arbitrary, and some
light rays that emanate from a po®t These light rays, which form a systel)) (eflect
on ) and give a systenR| a reflected rays that are normal to a surfagg that is
enveloped by spheres that pass through the @ihd have their center oR)( That
surface &;) is obviously homothetic to thepddaire of the pointO with respect to¥),
because it is the locus of the symmetric images ofptiet O with respect to all the
planes that are tangent &) ( Suppose that the eye is placed at a @@imn the direction
of the reflected ray. It will receive a pencil of/sathat emanate froi®@ and reflect into
the region of X) that neighbors the poiitl. That pencil of reflected rays, which is
formed from normals to3), will generally have two focal lines that are mutually
perpendicular and are placed at the two centers ofipaihcurvature ofY;) that are on
the normalO'M. The image of the luminous point for an observet ihalaced a’
will be more or less indistinct. That observer wifer it to a point that cannot be
determined by any rule. However, in the particular cdserevthe linéDM is one of the
optical axes of the poil, all of the reflected rays will appear to emanatenfeounique
point that we have learned how to construct. The intdgle light point will become
clear, and the reflected rays will have a focus thatbezeal or virtual. Dupin gave the
point M the name otatoptric umbilic by the analogy that it presented with ordinary
umbilics, which they will coincide with, moreover, whthe incident ray is normal to the
surface. If the surfac&) has degree two then there will be twelve catoptmbilics for
each pointO, four of which will be real and situated at the intet®n of that surface
with two rectilinear generators of the homofocal hyodwid that passes through the
point O.

Here, the incident rays (no matter how one assentes) will always form cones,
and as a result, developables. We propose to deternesirmomies that are formed by the
incident rays that correspond to reflected rays tham far developable. From the
preceding propositions, these cones must cut out tweresgnf conjugate lines from the
reflecting surface that seem to cut at a right andlenrone regards them from the point
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O. Moreover, the determination of these cones is e@nvabo that of the lines of
curvature of the surface{), or — what amounts to the same thing — to the podaf(E)of
relative to the poin®. Thus:

If one is given a surfacg) and a point O then the lines of curvature of the podaire
of (2) relative to the point O will correspond to two systems of conjugag¢s that are
traced on(Z) and which seem to cut at a right angle for an observer that is placed at O

That proposition, which the reader can establishverg simple manner, permits one
to determine the developables that are formed by thected rays when the surfac®) (
has degree two. One then obtains the following congtryathich we will be content to
state:

The curves of incidence of the cones that reflect along the developab)est the
intersection of%) and the cones of degree two, with their summit at O, homofocal to the
cone with the same summit that is circumscribed2)y they are also the curves of
contact of the developables that are circumscribe@yand any of the second-degree
surfaces that pass through the intersectiori29fand the sphere of radius zero that has
its center at the point O

455. In two notes that were published in 1878 Ribaucour pointed out some very
interesting applications of Dupin’s theorem. They restentially upon the following
remark, which is almost obvious:

In order for the developables of a congruence to cut out a conjugate net from a
second-degree surface, it is necessary and sufficient that thedalgfanes of each line
of the congruence should be conjugate with respect to that surfaceyateeatch of them
must contain the pole of the otH@.

Since the preceding condition is independent of the pelm@re each line of the
congruence cuts the surface, one will first of all dedhedollowing proposition:

If the developables that are formed by lines of a congruence cut out a comegate
on a second-degree surface when they enter it then they will also cat second
conjugate net when they leave it.

Now, consider the case in which the developables ettet a right angle. One will
then have a congruence of norma)swhose developables will, by hypothesis, cut out a

() RIBAUCOUR, “Sur la théorie des lignes de courbure,irptes rendus, t. LXXIV, pp. 1489 and
1570, T semester 1872.

() Indeed, leM be a point of the surface, lef) (be the line of the congruence that passes through that
point, and leMt, Mt' be the traces of the two focal planes of that line emthne that is tangentsit As
one knows, the focal plane that passes thrddghas its pole on the conjugate tanger¥ito In order for
the two focal planes to be conjugate, it is therefareemssary and sufficient thstt and Mt'" must be
conjugate tangents.
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conjugate net from the second-degree surf&e (Since they are both normal and
conjugate with respect t&); the two focal planes of each lind) @f the congruence will
also be conjugate with respect to all of the surfg@sthat are homofocal toS).
Consequently, the developables Dfwill cut out conjugate nets from all of the surfaces
(S), either when they enter or when they leave. K anagines that the lines of the
congruence form a system of incident raysiien one can make those rays reflect from
any one &) of the surfacesS). One will then have a first system of reflectedsrdg)
whose developables correspond to those¢)phd since they cut out the same conjugate
net on §) as the developables dj),(they will again cut out conjugate nets on all af th
homofocal surfaces. Now, one can make the pehgilré¢flect on another homofocal
surface &), and so on. Upon continuing in that manner, one atithin a sequence of
congruences of normaldl)( (I1), (1), ... that is generally unlimited and whose
developables mutually correspond and cut out conjugate neddl oh the homofocal
surfaces. If one follows one of the incident raysntlone will easily recognize that the
two homofocal surfaces that are tangent to that ithalso remain tangents at all of their
successive positions.

We felt that these elegant properties seemed wofthging pointed out to us. In the
following chapter, we shall pursue the study that willnpieus to complete the results
that were given above on the geodesic lines of secon@@lsgrfaces, moreover.



