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NOTE XI 

_____ 

 

ON THE AUXILIARY EQUATION 
_______ 

 

 

 1. – In an article that was inserted on March 1883 in volume XCVI of the Comptes rendus (1), 

I introduced a notion that seems useful to me, namely, that of the auxiliary equation of an ordinary 

differential equation or of a partial differential equation that contains an arbitrary number of 

independent variables. Since the auxiliary equation intervenes in the study of two problems of 

geometry that defined the main subject of the last part of this book, I would like to say a few words 

about it, without entering into a detailed study and expanding upon its various applications, 

moreover. 

 To fix ideas, consider an arbitrary differential equation, whether ordinary or partial, that is 

defined for a function z of one or more independent variables. If one replaces z with z z + , 

develops that in powers of , and equates the coefficient of  to zero then one will have a 

homogeneous linear equation with respect to z  that I shall call the auxiliary equation of the 

proposed equation. The auxiliary equation defines solutions that are infinitely close to a given 

solution. Consequently, it has a significance that does not depend upon the choice of independent 

variables in any way and will persist after an arbitrary change of variables. 

 The notion of auxiliary equation can be generalized with no difficulty and can be extended to 

any system of ordinary or partial differential equations. Each system of unknown functions or 

independent variables of that type, no matter what the number of equations in it, admits an 

auxiliary system that defines what one can call all of the solutions that are infinitely close to a 

given solution. In order to obtain the auxiliary system, one replaces each unknown function ui with 

i iu u + , and equates the derivative of each equation with respect to  to zero while setting  = 0 

after the derivation (2). 

 

 

 2. – When one knows how to completely integrate a system of ordinary or partial differential 

equations, one will obviously know how to integrate the auxiliary system. In order to do that, it 

will suffice to replace each of the finite equations that constitute the integral with its first variation, 

which is obtained by varying all of the arbitrary constants or functions that enter into that equation 

 
 (1) G. DARBOUX, “Sur les équations aux dérivées partielles,” C. R. Acad. Sci. Paris 96 (19 March 1883), pp. 

755. 

 (2) One can generalize that notion of an auxiliary system by varying not only the unknown functions in the 

equations, but also certain arbitrary constants or functions. However, one can reduce that more general method to the 

one that we employ in the text by introducing some new unknowns.  
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and all of the unknown functions ui, and one then replaces the variations ui with iu , conforming 

to the notation that was used before. For example, if one is dealing with a second-order differential 

equation whose general integral is defined by the formula: 

 

u = f (x, c, c1) 

 

then its auxiliary equation will have the integral: 

 

u  = 1

1

f f
c c

c c

 
 +

 
 , 

 

in which c  and 1c  denote two new constants that are independent of c and c1 . 

 On the contrary, if one is dealing with a partial differential equation that admits an integral that 

is defined by equations of the following form: 

 

  z = [ , , ( ), ( ), , ( ), ( ), ]f             , 

  x = 1 [ , , ( ), ( ), , ( ), ( ), ]f             , 

  y = 2 [ , , ( ), ( ), , ( ), ( ), ]f             , 

 

 

in which  (),  () denote two arbitrary functions, then one will have to combine those three 

equations with the following ones: 

 

  z  = ( ) ( )

0 0( ) ( )
( ) ( )

( ) ( )

i k

i k

f f f f
     

     

   
 + + +

   
  , 

 0 = ( ) ( )1 1 1 1
0 0( ) ( )

( ) ( )
( ) ( )

i k

i k

f f f f
     

     

   
 + + +

   
  , 

 0 = ( ) ( )2 2 2 2
0 0( ) ( )

( ) ( )
( ) ( )

i k

i k

f f f f
     

     

   
 + + +

   
  , 

 

in which  (),  () denote two new arbitrary functions, and eliminate the variations  ,    of 

 and , resp., from them (1). We shall represent the complete derivatives with respect to  and  

by 
f






, 

f






, … 

 

 

 
 (1) One can likewise use all of the incomplete solutions, provided that they contain arbitrary constants or functions 

that one can vary.  
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 3. – Since the auxiliary system is linear, it is relatively easy to study it, and it can provide some 

precise conclusions relative to the proposed system. For example, suppose that one is given just 

one partial differential equation, and one demands that the equation must admit a general integral 

in which some arbitrary functions appear, along with their derivatives up to orders that are defined 

for each of the functions, but with no integration sign. The same thing must be true for the auxiliary 

equation in z  when one replaces z with an arbitrary solution of the proposed equation. 

 As we have seen for the case of two independent variables, that condition translates analytically 

into certain relations between the invariants of the auxiliary equation. Upon writing out those 

relations, we will obtain some new partial differential equations in z that must be verified at the 

same time as the proposed equation. The solution to the question that was posed can thus be 

reduced to simple eliminations. 

 

 

 4. – Leaving aside the numerous applications that one can make of those remarks, I shall study 

the following two problems of geometry, more especially. 

 Consider a surface () and look for all of the infinitely-close surfaces that can form a Lamé 

family with (), i.e., a family of a triply-orthogonal system. Let , 1, 2 denote the parameters of 

the three families that comprise an orthogonal system, and let the linear element of space is given 

by the formula: 
2ds  = 2 2 2 2 2 2

1 1 2 2H d H d H d  + + , 

 

in which H, H1, H2 satisfy some relations in second-order partial derivatives that we proved already 

in no. 149 (1). Suppose that the surface () belongs to the family whose parameter is 2 . Since the 

surfaces of the parameters  and 1 intersect along lines of curvature, one can say that the variables 

, 1, and the functions H and H1 can be regarded as known at each of its points, and in order to 

solve the problem that was posed, it will suffice to determine, at all points of (), the function H2 

that will give the distance from each point of () to the desired infinitely-close surface when it is 

multiplied by the constant d2 , which is a surface that we shall call (). Now, the function H2 

satisfies (nos. 149, 1039) the equation: 

 

(1)     
2

2

1

H

 



 
 = 2 1 2

1 1 1

1 1H H HH

H H   

  
+

   
, 

 

which is both necessary and sufficient, which we shall assume here, for brevity, in such a way that 

the problem will reduced to the complete integration of that partial differential equation in H2 .  

 That equation is one of the ones to which one can reduce the following problem: 

 

 Find all of the surfaces that admit the same spherical representation as the surface (). 

 

 
 (1) See also nos. 1039, 1047, and 1054.  
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 That is because if one assumes that it has solutions x, y, z then it will be nothing but the point-

like equation relative to the conjugate system that is composed of lines of curvature of () and does 

not differ from, for example, equation (6) of no. 948 (see also no. 950). 

 We shall then establish a relation between two problems that seem, on first glance, to be 

completely different: On the one hand, the determination of all surfaces that admit the same 

spherical representation as (), and on the other, the determination of the surfaces () that are 

infinitely-close to () in any Lamé family. The explanation for that fact will seem to be immediate 

when one recalls the theorem of Ribaucour that was proved no. 972. From that proposition, the 

osculating circles to the orthogonal trajectories of the surfaces of a Lamé family at the points where 

those trajectories meet one of the () will form a cyclic system. As a result, the given surface () 

and the desired surface () can be considered to be two infinitely-close trajectories of the circles 

that belong to a cyclic system, and the following way of generating () will result from that: 

 

 Construct the most general cyclic system that is composed of circles normal to (), and the 

desired surface () will be the ones that we learned how to construct in nos. 951, et seq., and are 

normal to all of the circles in the system. 

 

 Since one knows that the search for all of the previous cyclic systems reduces to the 

determination of all surfaces that admit the same spherical representation as (), the desired 

explanation is thus provided in a complete manner, and the relation that is established between the 

two problems conforms a result that was established already by following a different path (no. 

981), but which becomes obvious here: Once the problem of spherical representation has been 

solved for a surface (), the same thing will be true for all of the surfaces that are inverse to (). 

 

 

 5. – Now consider a different problem: the search for surfaces that can be mapped (†) to a 

given surface (). If we begin by looking for the surfaces that can be mapped to () and the ones 

that are infinitely-close to () then we know that the solution to the problem reduces, by definition, 

to the integration of an equation in equal invariants: 

 

(2)  
2

 



 
 = k  . 

 

 The surfaces for which one knows how to solve that problem can be divided into different 

classes. For each of them, one knows the expressions for the rectangular coordinates x, y, z of a 

point on the surface as functions of the parameter  and  of the asymptotic lines. The expressions 

contain at least four arbitrary functions of  and . For the surfaces of class p, the general integral 

of the equation in  consists of two arbitrary functions of  and , with their derivatives up to order 

p – 1, and the expressions for x, y, z contain 2p + 4 arbitrary functions (or 2p + 2, if one chooses 

the parameters  and  suitably). Now, it is clear that if one considers all of the surfaces that can 

 
 (†) Translator: The sense of the word “map” here is that is that of “isometry,” in particular. 
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be mapped to a given surface that are determined by equations that contain only arbitrary functions, 

along with their derivatives up to a well-defined order, then the problem of the infinitely-small 

deformation can be solved by some formulas that always have the same form and the same nature 

for each of them. All of those surfaces must then belong to one of the classes that were just defined, 

and one can obtain them by establishing some finite or differential relations between the arbitrary 

functions of  and  that appear in the general expressions for the coordinates x, y, z of a point of 

one of those surfaces when they are expressed by means of  and . That is the path that we shall 

follow and formulate analytically. 

 

 

 6. – Recall the formulas of no. 883: 

 

(3)    

3 32 2
2 3 2 3

3 31 1
3 1 3 1

2 1 2 1
1 2 1 2

,

,

,

x d d

y d d

z d d

  
     

   

  
     

   

   
     

   

      
= − − −   

      
       

= − − −   
      

      
 = − − −   

       







 

 

in which 1, 2, 3 are solutions of an equation of the form (2). 

 The quantities x1, y1, z1 are defined by the relations: 

 

(4)    

1 1
1 1 1

2 2
1 2 2

3 3
1 3 3

,

,

,

x d d

y d d

z d d

  
     

   

  
     

   

  
     

   

     
= − − −    

      
      

= − − −    
      

      
 = − − −  

       







 

 

in which  is the most general integral of equation (2) that is satisfied by 1, 2, 3, gives the most 

general solution to the total differential equation: 

 

(5)  dx dx1 + dy dy1 + dz dz1 = 0 , 

 

in such a way that if  denotes an infinitely-small constant then: 

 

x +  x1 , y +  y1 , z +  z1 
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will be the coordinates of a point on a surface () that is infinitely-close to () and can be mapped 

to it. 

 

 

 7. – Having said that, if one has established some relations between the arbitrary functions that 

are contained in formulas (3) such that all of the surfaces () can be mapped to each other, and if 

one varies not only the arbitrary functions, which still persist, but also the parameters  and , then 

the expressions: 

x x
x x  

 

 
+ + +

 
, 

y y
y y  

 

 
+ + +

 
, 

z z
z z  

 

 
+ + +

 
, 

 

in which x, y, z denote the variations that produce the change of form in the arbitrary functions, 

will also be the coordinates of a point on a surface that can be mapped to () and is infinitely-close 

to it. In order for the surface to coincide with (), it is necessary and sufficient that one can arrange 

the ,  in such a manner as to satisfy the equations (1): 

 

(6)     

1

1

1

,

,

,

x x
x x x

y y
y y y

z z
z z z

  
 

  
 

  
 

  
+ + + =

 

  

+ + + =
 

  
+ + + =

 

 

 

and conversely, whenever it is possible to satisfy those equations, all of the surfaces () can be 

mapped to each other. 

 

 

 8. – If one notes that 1, 2, 3 are the direction parameters of the normal to () then one can 

replace the preceding three equations by the single equation: 

 

(7)   = 1 (x – x1) + 2 (y – y1) + 3 (z – z1) = 0 

 

that is obtained by adding the three equations after multiplying them by 1, 2, 3, respectively. 

 
 (1) We suppose that the constant  has been combined with the arbitrary functions that appear in  as a multiplier. 
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 The last equation contains quadrature signs, but one can make them disappear by 

differentiation. Indeed, one has: 

 

(8)  

22 2

1 1 1 1 1
1

1 2 3

31 2 1 1
1 1

31 2

2 2 2

S S S

S S

x x xx x x
k

 
   

           

  

    
 

      

 

  

            
−  = − + − + −    

               





    
= − +

       


 
   

 

 

identically, and consequently one must first have that the functions , 1, 2, 3, 1, 2, 3 

verify the relation: 

(9)    

1 2 3

31 2 1 1
1 1

31 2

S S

  

    
 

      

 

  

    
− +

      

 

  

 = 0 

 

identically, which is devoid of any integration sign. When that equation is verified, the main 

difficulty in the problem will have disappeared. Nonetheless, it still remains for one to verify the 

original equation (9), which is not by any means a consequence of the preceding one, but whose 

left-hand side  must the satisfy the equation: 

 
2

 

 

 
 = k  

by virtue of the identity (8). 

 

 

 9. – Let us next apply that general method to the surfaces of the first class, for which one has: 

 

(10) 1 = A1 + B1,  2 = A2 + B2,  3 = A3 + B3 , 

 

in which A1, A2, A3 are functions of , and B1, B2, B3 are functions of . The equation of equal 

invariant that 1, 2, 3 must satisfy is this one: 

 



8 Lessons on the General Theory of Surfaces 

 

(11) 
2

 



 
 = 0 , 

and one has: 

(12) 

3 2 2 3 2 3 3 3 2 3 3 3

1 3 3 1 3 1 1 3 3 1 1 3

2 1 1 2 1 2 2 1 1 2 2 1

( ) ( ) ,

( ) ( ) ,

( ) ( ).

x A B A B A dA A dA B dB B dB

y A B A B A dA A dA B dB B dB

z A B A B A dA A dA B dB B dB

 = − + − − −



= − + − − −


= − + − − −

 

 

 

 

 

 Let us see if we can establish some relations between the functions A and the function B such 

that all of the corresponding surfaces can be mapped to each other. Since an arbitrary function of 

 and an arbitrary function of  must remain, it is clear that can obtain only one relation between 

the functions A and only one between the functions B. 

 One has: 

 

(13)  = A + B 

 

here, and the fundamental equation will take the form: 

 

(14)  

1 1 2 2 3 3

1 1
1 2 3 1 1

1 2 3

S S
A B A B A B

A A A A B

B B B

     
 

 
 

+ + +
 

    − +
 

  

 = 0 . 

 

 Since, by its very nature, it will decompose into relations that are linear in the functions of  

and the functions of , and since on the other hand, A  and B   are annulled at the same time as the 

Ai and the Bi, one can assume that A  depends linearly A1, A2, A3, and  that B   depends 

linearly B1, B2, B3, and as a result, the preceding equation will decompose into the following 

two: 

(15) 

1 2 3

1 2 3

1 2 3

( )S i i i

A A A

A A A A A B B

B B B

  

    − +

  

 = 0 , 

 

(16) 

1 2 3

1 2 3

1 2 3

( )S i i i

B B B

A A A B A B A

B B B

  

    + +

  

 = 0 . 

 

 If one gives an arbitrary, but fixed, value to  in the first one then it will take the form: 

 

1 1 1 2 2 2 3 3 3( ) ( ) ( )B m B B m B B m B  + + + + +  = 0 , 
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in which m1, m2, m3 denote constants. Upon integrating that, one will then have: 

 
2 2 2

1 1 2 2 3 3( ) ( ) ( )B m B m B m+ + + + +  = const. 

 

 However, since it is permissible to combine the constants mi with the functions Ai in the 

expressions for i , one can suppose that those constants are zero and reduce the preceding equation 

to the form: 

 

(17) 2 2 2

1 2 3B B B+ +  = 2h , 

         

in which h denotes a constant. Equation (15) will then take the form: 

 

1 2 3

1 2 3

1 2 3

S i i

A A A

A A A A A B

B B B

  

    −

  

 = 0 , 

 

and since no other relation can exist between the functions Bi , one must annul the coefficient of 

each derivative iB  , which will give: 

 

(18)    

3 2 2 3 1

1 3 3 1 2

2 1 1 2 3

0,

0,

0.

A A A A A A

A A A A A A

A A A A A A

 

 

 

  − − =


  − − =
   − − =

 

 

 Upon multiplying those three equations by 1A , 2A , 3A , respectively, one can deduce that: 

 

1 1 2 2 3 3A A A A A A  + +  = 0 , 

and as a result: 

 

(19)     2 2 2

1 2 3A A A+ +  = 2 h1 , 

 

in which h1 denotes a new constant. 

 Since equation (9) is verified by virtue of the relations (17) and (19), it must now amount to 

equation (7). One has: 

 

  x1 = 1 1 1 1 1 1( ) ( )AB B A AdA A dA B dB B dB− − − + −  , 

  y1 = 2 2 2 2 2 2( ) ( )AB B A AdA A dA B dB B dB− − − + −  , 

  z1 = 3 3 3 3 3 3( ) ( )AB B A AdA A dA B dB B dB− − − + −  , 

here. 
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 When one takes into account the relations (18) and the analogous relations relative to the 

functions Bi, an easy calculation will give: 

 

 x − x1 = (A2 + B2) (A3 – B3) − (A3 + B3) (A2 – B2) + (A + B) (A1 – B1) . 

 

One deduces from this that: 

 = S 1 ( x – x1) = (A + B) (2h1 – 2h) . 

 

 It will then suffice to take h = h1, and one will then recover the propositions that were stated in 

nos. 769 and 770, to the extent that is essential. 

 

 

 10. – For the surfaces of the second class, one has: 

 

(20) 

1 1
1 1 1

2 2
2 2 2

3 3
3 3 3

2 ,

2 ,

2 .

A B
A B

A B
A B

A B
A B


 


 


 

 −
 = + −

−

 −

 = + −
−

 −
 = + −

−

 

 

 The formulas that give the coordinates are even more complicated. 

 For example, the value of x is: 

 

x = 3 3 2 2 2 2 3 3
2 3 3 2 2 3 3 2 3 2 2 3

( ) ( ) ( ) ( )
( ) ( ) 2

A B A B A B A B
A A A A d B B B B d A B A B 

 

   − − − − −
           − − − + − +

−  , 

 

and one will get the corresponding values of y and z by performing circular permutations of the 

indices 1, 2, 3. Similarly, the value of x1 is: 

 

x1 = 1 1 1 1
1 1 1 1 1 1

( ) ( ) ( ) ( )
( ) ( ) 2

A B A B A B A B
A A A A d B B B B d A B A B 

 

   − − − − −
           − − − + − +

−  . 

 

 Equation (9), which is to be solved, also takes a form that is much less simple. 

 One can nonetheless succeed in finding a solution to it by adopting the hypothesis that: 

 

(21)     Ai = i iA A A A − ,  Bi = i iB B B B − , 

 

which would lead to the following values for the arbitrary functions: 
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(22) 

2 2

1 2 3

2 2

1 2 3

1 1
, , ,

2 2

1 1
, , .

2 2

A A i A
A i A i A

A A A

B B i B
B i B B

B B B

 − +
= = =   


− + = = =

   

 

 

A and B denote arbitrary functions (but different, of course) of the ones that appear in the preceding 

expressions for Ai, Bi . 

 The solution that corresponds to those values of the functions Ai, Bk is not distinct from the one 

that we gave in nos. 1078-1080 that is due to Weingarten. It coincides on the surfaces that can be 

mapped to the paraboloid with a generator that is tangent to the circle at infinity. 

 

 

 11. – More generally, one can demand to find what the values would be for the functions i 

that correspond to the new solutions that were considered by Weingarten, Baroni, and Goursat, 

which are solutions that we made known in Book VIII, Chap. XIII. One will easily see that when 

one recalls the formulas of no. 916, if p is the general solution to equation (57) of no. 1074: 

 

(23)     
2 p

 



 
 = 

2

( )

(1 )

p

 



+
 

then one can take: 

(24)    

2

1

2

2

2

3

(1 )
,

2

(1 )
,

2

(1 )
,

2

p C p C

i

p C p C

i

p C p C

i

 


   

 


   

 


   

  +    
= −  

    


  +    
= −  

    


  +     = − 
     

 

 

in which C, C , C  are the direction cosines that are given by formulas (52) (no. 1074). 

 

 

_________ 

 


