"Sur le théorème d'indépendence de Hilbert," C. R. Acad. Sci. Paris 156 (1913), 609-611.

On Hilbert's independence theorem

Note (¹) by **TH. DE DONDER**, presented by Appell

Translated by D. H. Delphenich

I. First lemma. – Consider the differential system:

(1)
$$\frac{dy_i}{y_i^{(1)}} = \frac{dy_i^{(1)}}{y_i^{(2)}} = \dots = \frac{dy_i^{(\alpha)}}{\eta_i(t, y, y^{(1)}, \dots, y^{(\alpha)})} = dt \qquad (i = 1, \dots, n),$$

which is equivalent to *n* differential equations of order $(\alpha + 1)$. Upon utilizing a notation of Lie, that system can be written:

(2)
$$\eta f \equiv \frac{\partial f}{\partial t} + \sum_{i=1}^{n} \left(\frac{\partial f}{\partial y_i} y_i^{(1)} + \dots + \frac{\partial f}{\partial y_i^{(\alpha)}} \eta_i \right).$$

Suppose that one knows *n* functions $\overline{y_1^{(1)}}$, ..., $\overline{y_n^{(1)}}$ of y_1 , ..., y_n , and *t* that satisfy equations (1). Now consider the system:

(3)
$$\frac{dy_i}{y_i^{(1)}} = dt \qquad (i = 1, ..., n),$$

which one can also write:

(4)
$$\overline{\eta} \ \overline{f} = \frac{\partial f}{\partial t} + \sum_{i=1}^{n} \frac{\partial f}{\partial y_i} \overline{y_i^{(1)}}$$

Let *J* be a *p*-uple integral form such that one has:

(5)
$$\eta J = K,$$

where *K* is also a *p*-uple integral form. One easily proves that one has:

(6)
$$\overline{\eta}\,\overline{J}\,=\,\overline{K}\,.$$

^{(&}lt;sup>1</sup>) Presented at the session in 17 February 1913.

The overbars indicate that one has replaced the $y_i^{(1)}$, ..., $y_i^{(\alpha)}$ (*i* = 1, ..., *n*) with the functions of $y_1, ..., y_n$, and *t* that were considered above and the ones that are derived from them; for example:

$$\overline{y_i^{(2)}} \equiv \frac{\partial \overline{y_i^{(1)}}}{\partial t} + \sum_{\lambda=1}^n \frac{\partial \overline{y_i^{(1)}}}{\partial y_\lambda} \overline{y_\lambda^{(1)}} \ .$$

Second Lemma. - Consider the differential system:

(7)
$$\frac{dy_i}{Y_i(t,y)} = dt \qquad (i = 1, ..., n)$$

and a 1-uple integral invariant:

(8)
$$\sum_{i=1}^{n} N_i \,\delta y_i \,,$$

in which $N_1, ..., N_n$ are functions of $y_1, ..., y_n$, and t. One has, by hypothesis, and by virtue of equations (7):

(9)
$$\frac{d}{dt}\sum_{i=1}^{n}N_{i}\,\delta y_{i} \equiv dW.$$

If *t* is the independent variable then one sets $\delta t = 0$.

The theory of invariants teaches that $(^1)$:

(10)
$$\sum_{i=1}^{n} N_{i} \begin{vmatrix} \delta y_{i} & \delta t \\ Y_{i} & 1 \end{vmatrix} + W \, \delta t$$

is a 1-uple integral invariant of the system:

(11)
$$\frac{dy_i}{Y_i(t,y)} = \frac{dt}{1} = d\tau \quad (i = 1, ..., n) .$$

If τ is the independent variable then one sets $\delta \tau \equiv 0$ and $\delta t \neq 0$.

One can state the following lemma: In order for the form (10) to be an exact differential, it is necessary and sufficient that the form (8) should be an exact differential. In the first differential, one has $\delta t \neq 0$, while in the second, one has $\delta t \equiv 0$.

^{(&}lt;sup>1</sup>) TH. DE DONDER, Bulletin de l'Académie royale de Belgique: Classe des sciences, February 1911 (see especially Chapters I and VI).

II. *Extension of Hilbert's independence theorem* $(^1)$. – To fix ideas, consider the 1-uple relative integral invariant $(^2)$:

(12)
$$J \equiv \sum_{i=1}^{n} \left(\frac{\partial F}{\partial y_{i}^{(1)}} - \frac{d}{dt} \frac{\partial F}{\partial y_{i}^{(2)}} \right) \delta y_{i} + \sum_{i=1}^{n} \frac{\partial F}{\partial y_{i}^{(2)}} \delta y_{i}^{(1)} \equiv \sum_{i=1}^{n} \left(M_{i} \, \delta y_{i} + Q_{i} \, \delta y_{i}^{(1)} \right)$$

of the differential equations that define the extremals of $\delta \int_{t_1}^{t_2} F dt = 0$, where F is an arbitrary

function of t, y_i , $y_i^{(1)}$, $y_i^{(2)}$ (i = 1, ..., n). If those equations are satisfied by the n functions $\overline{y_1^{(1)}}$, ..., $\overline{y_n^{(1)}}$ of y_1 , ..., y_n , and t then the first lemma shows one how to deduce a 1-uple relative integral invariant \overline{J} of system (3) from J. Thanks to the second lemma, one will deduce the following 1-uple relative integral invariant of the system (11) from \overline{J} :

(13)
$$\overline{J}' \equiv \sum_{i=1}^{n} \left(\overline{M}_{i} + \sum_{k=1}^{n} \overline{Q}_{k} \frac{\partial \overline{y_{k}^{(1)}}}{\partial y_{i}} \right) \delta y_{i} + \left[\overline{F} - \sum_{i=1}^{n} \left(\overline{M}_{i} + \sum_{k=1}^{n} \overline{Q}_{k} \frac{\partial \overline{y_{k}^{(1)}}}{\partial y_{i}} \right) \overline{y_{k}^{(1)}} \right] \delta t$$

In addition, one finds that in order for \overline{J}' to be an exact differential, it is necessary and *sufficient* that \overline{J} should be an exact differential. Therefore, if n = 1 then \overline{J}' will always be an exact differential.

^{(&}lt;sup>1</sup>) O. BOLZA, Rendiconti del Circolo matematico di Palermo, t. XXXI, 1st semester 1911.

^{(&}lt;sup>2</sup>) TH. DE DONDER, Rendiconti del Circolo matematico di Palermo, 1st semester 1902 (see especially no. 58 in that paper).

"Sur le théorème d'indépendence de Hilbert," C. R. Acad. Sci. Paris 156 (1913), 868-870.

On Hilbert's independence theorem

Note by TH. DE DONDER, presented by P. Appell

Translated by D. H. Delphenich

I. – Thanks to the theory of integral invariants, we have extended Hilbert's independence theorem in these *Comptes rendus* (session on 17 February 1913) to the case in which the function *F* depends upon *n* functions $y_1, ..., y_n$ of the independent variables *t*, as well as their derivatives *up to an arbitrary order*. That theory also provides the extension of the results of Hilbert, Hahn, and Bolza that relate to the case in which *F* includes only the first derivatives.

II. – Now suppose that there are *several independent variables*, for example t_1 and t_2 , and for more simplicity, suppose that *F* contains the partial derivatives only up to order *two*. Set:

$$\frac{\partial y_i}{\partial t_1} \equiv y_i^{(1)}, \quad \dots, \quad \frac{\partial^2 y_i}{\partial t_1 \partial t_2} \equiv y_i^{(12)}, \qquad \frac{\partial^2 y_i}{\partial t_2^2} \equiv y_i^{(22)} \qquad (i = 1, \dots, n).$$

III. – Let:

(1)
$$\begin{cases} j_1 \equiv \sum_{i=1}^m N_{1i} \,\delta y_i \,, \\ j_2 \equiv \sum_{i=1}^m N_{2i} \,\delta y_i \end{cases}$$

be a 1-uple relative integral invariant (¹) of the total differential equation:

$$dy_i = Y_{1i}(t_1, t_2, y) dt_1 + Y_{2i}(t_1, t_2, y) dt_2$$
 $(i = 1, ..., n)$

which is immediately integrable.

One will have, by definition:

$$\frac{dj_1}{dt_1} + \frac{dj_2}{dt_2} = \delta F ,$$

^{(&}lt;sup>1</sup>) We have indicated that extension in a note that was presented by Appell to the Académie des Sciences de Paris (session on 9 September 1901).

in which *F* is a function of $y_1, ..., y_n, t_1, t_2$, and $\delta t_1 = \delta t_2 = 0$. In order for $\binom{1}{2}$:

In order for $(^1)$:

(2)
$$\sum_{i=1}^{n} (N_{1i} \,\delta y_i \,\delta t_2 - N_{2i} \,\delta y_i \,\delta t_1) + \left[F - \sum_{i=1}^{n} (N_{1i} \,Y_{1i} + N_{2i} \,Y_{2i}) \right] \delta t_1 \,\delta t_2$$

to be a 2-uple exact differential, it is necessary and sufficient that j_1 and j_2 should be two exact differentials (where $\delta t_1 = \delta t_2 \equiv 0$).

IV. – Consider the function *F* of no. II and identify:

$$\frac{d}{dt_1} \sum_{i=1}^n \left[P_{1i} \,\delta y_i + Q_{1i} \,\delta y_i^{(1)} + R_{1i} \,\delta y_i^{(2)} \right] + \frac{d}{dt_2} \sum_{i=1}^n \left[P_{2i} \,\delta y_i + Q_{2i} \,\delta y_i^{(1)} + R_{2i} \,\delta y_i^{(2)} \right] \equiv \delta F$$

One finds *n* partial differential equations:

(3)
$$\frac{\partial F}{\partial y_i} - \frac{d}{dt_1} \frac{\partial F}{\partial y_i^{(1)}} - \frac{d}{dt_2} \frac{\partial F}{\partial y_i^{(2)}} + \frac{d^2}{dt_1^2} \frac{\partial F}{\partial y_i^{(11)}} + \frac{d^2}{dt_1 dt_2} \frac{\partial F}{\partial y_i^{(12)}} + \frac{d^2}{dt_2^2} \frac{\partial F}{\partial y_i^{(22)}} = 0,$$

and some equations that determine the $P_{1i}, ..., R_{2i}$ completely, with the exception of the R_{1i} and Q_{2i} , which are subject to only the conditions:

$$R_{1i} + Q_{2i} = \frac{\partial F}{\partial y_i^{(12)}}$$
 $(i = 1, ..., n)$.

V. – Suppose that one knows 2n functions $\overline{y_1^{(1)}}$, ..., $\overline{y_n^{(1)}}$, $\overline{y_1^{(2)}}$, ..., $\overline{y_n^{(2)}}$ of the n + 2 variables $y_1, \ldots, y_n, t_1, t_2$ that satisfy equations (3) identically. Set:

$$\overline{N_{1i}} \equiv \overline{P_{1i}} + \sum_{k=1}^{n} \left(\overline{Q_{1k}} \ \frac{\partial \overline{y_{k}^{(1)}}}{\partial y_{i}} + \overline{R_{1k}} \ \frac{\partial \overline{y_{k}^{(2)}}}{\partial y_{i}} \right),$$

and similarly for $\overline{N_{2i}}$.

One will have the following independence theorem: In order for:

 $^(^{1})$ The expression (2) is deduced from (1) by a process that is analogous to the one that was employed in our preceding note.

(4)
$$\sum_{i=1}^{n} \left(\overline{N_{1i}} \,\delta y_i \,\delta t_2 - \overline{N_{2i}} \,\delta y_i \,\delta t_1 \right) + \left[F - \sum_{i=1}^{n} \left(\overline{N_{1i}} \,\overline{y_i^{(1)}} + \overline{N_{2i}} \,\overline{y_i^{(2)}} \right) \right] \delta t_1 \,\delta t_2$$

to be a 2-uple exact differential, it is necessary and sufficient that:

$$\sum_{i=1}^{n} \overline{N_{1i}} \, \delta y_i \,, \qquad \sum_{i=1}^{n} \overline{N_{2i}} \, \delta y_i$$

should be two exact differentials.

If n = 1 then the expression (4) will *always* be a 2-uple exact differential.