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PREFACE 
 

 

 H. POINCARÉ introduced integral invariants into analysis while studying the three-body 

problem (*). Few geometers seem to be interested in that theory, although it is quite original and 

fruitful. 

 KOENIGS published two important notes in the Comptes-Rendus of the Paris Academy of 

Sciences, which are notes that will frequently be in question in this treatise. HADAMARD used 

integral invariants in one of his studies, and P. APPELL gave an elementary presentation of the 

theory in his Cours de Mécanique rationelle (tome II). 

 That is a summary of the bibliography of integral invariants. 

 In that study, we have attempted to present, in a systematic manner, all of the notions that were 

acquired in that theory thanks to H. POINCARÉ and KOENIGS. In addition, we have added some 

results that are due to our own personal research. In order for persons that are already 

knowledgeable in the theory of integral invariant to avoid reading the entire treatise, I shall list 

some of those contributions: 

 Nos. 11, 12, 14, and 15: Theorems relating to first-order invariants. 

 Nos. 16, 17, 21, 25 (cont.), 30, 34, 35, 38, 39, and 40: Study of the solutions by variations of 

or order one or arbitrary order. In order for the equations: 

 

i

i i

X
x t

  
+

 
  = 0 , 

i

i ix







  = 0  

 

to form a Jacobian system, it is necessary and sufficient that (i) should be a solution of the 

variational equations: 

i

i

x

X


 = t . 

 

 Nos. 20, 35, 37, and 41. Introducing the theory of infinitesimal transformations into that of 

integral invariants. 

 Nos. 23, 24, and 25. Integral invariants of order n – 1. 

 No. 28. Generalization of a theorem of KOENIGS. 

 No. 29. Theorem. 

 Nos. 31, 32, and 33. Integral invariants of order p. 

 No. 41. Case in which there are several independent variables. 

 Nos. 43, 44, 45, and 46. The integral covariants. 

 Nos. 47, 48, 49, 50. Application to vortices. 

 

____________ 

 
 (*) H. POINCARÉ, Les Méthodes nouvelles de la Mécanique céleste, 3 vols., Paris. 
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CHAPTER I 

 

DEFINITION OF AN INTEGRAL INVARIANTS 
 

 

 1. – Consider the system of n differential equations: 

 

(1)      i

i

x

X


 = ti   (i = 1, 2, …, n) , 

 

in which X1, X2, …, Xn are given uniform, analytic functions of x1 , x2 , …, xn , and t. Suppose that 

t represents time and that x1 , x2 , …, xn are the n coordinates of a point M that displaces in n-

dimensional hyperspace. If (xi) represents the n coordinates of M at the instant t then the moving 

point M will occupy the position (xi + Xi t) at the instant t + t. We say that equations (1) 

completely determine the variation of M. 

 If equations (1) are satisfied when one sets: 

 

(2)      xi = fi (t)  (i = 1, 2, …, n) 

 

then one says that equations (2) define a particular solution of equations (1). 

 In order for F (x1 , x2 , …, xn , t) to be an integral of equations (1), it is necessary and sufficient 

that the variation of F should be identically zero when the variation is taken to conform to 

equations (1). Here is what we mean by that: Give an increment t to t, so the xi will become xi + 

xi or xi + Xi t, and the function F will submit to the variation: 

 

k

k k

F F
x t

x t
 

 
+

 
  

or 

k

k k

F F
X t

x t


  
+ 

  
 . 

 

The quantity in parentheses must be identically zero, which is to say, it must reduce to zero, even 

before one replaces the xi with a solution (2). 

 Therefore, in order for F (xi , t) to be an integral of equations (2), it is necessary and sufficient 

that: 

k

k k

F F
X

x t

 
+

 
  = 0 . 

We write simply: 

F = 0 , 

 

but the reader should not forget that the variations of the xi are always determined by equations 

(1). 

 F has zero variation, so it preserves the same value, but is otherwise arbitrary. Therefore: 
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F (x1 , …, xn , t) = C 

 

will imply a relation between the x and t. (C is an arbitrary constant.) 

 

 

 2. – Let: 

  Fi (x1 , …, xn , t) = Ci  (i = 1, 2, …, n) 

 

be the general integral of equations (1). The presence of n arbitrary constants C1, …, Cn permits 

us to place the moving point at an arbitrary point 0( )ix  in n-dimensional hyperspace at the arbitrary 

instant t0 . Among that infinitude of positions, take a set of them that forms a manifold V, of order 

p, for example. That manifold is continuous, but it has an arbitrary form. It will be represented n 

equations such as: 

 

(3)  xi = i (1 , 2 , …, p) (i = 1, …, n) , 

 

in which the i are arbitrary functions that are finite and continuous in the p independent variables 

1 , …, p . Those functions cannot include t explicitly, because otherwise they would no longer 

be arbitrary. We can always suppose that the functional determinants of p of the n functions  are 

never annulled simultaneously when the point (1 , … , p) describes a certain manifold V in p-

dimensional hyperspace, so the point (xi) will describe the manifold V in such a way the manifolds 

V and V correspond uniformly. One will once more have a p-dimensional manifold V if one 

combines equations (3) with a certain number of inequalities such as: 

 

(4)   (1 , 2 , …, p) > 0 . 

 

Those inequalities serve to limit the region in which one forms the manifold V. 

 

 

 3. – Now extend the integral: 

 

Ip = 
1 1

fold

p p

p

M dx dx   

−

  

 

over the manifold V that we just formed. The differentials 
1

dx , …, 
p

dx are p differentials that are 

chosen arbitrarily from among the n differentials dx1 , …, dxn . The 
1 p

M   are given functions of 

x1, …, xn , and t. They are assumed to be finite and continuous, along with their first-order partial 

derivatives in the domain considered. There are as many of them as there are combinations of n 

letters taken p at a time. 

 Thanks to equations (3) for the manifold V, we can transform Ip into an ordinary integral of 

order p . We knows that we will then have: 

 

Ip = 
1

1

fold

1

1

( , , )

( , , )

p

p

p

p

p

x x
M d d

 

   
 

− 


 . 
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 We must perform the integration with respect to the p variables  in succession, and the limits 

of integration are defined by (4). In other words, we now extend the integral Ip , no longer over V, 

but over the manifold V, which has the remarkable property that it remains fixed in p-dimensional 

space; the same thing will be true for the limits of integration or the boundary of V : The equations 

of that boundary are obtained by successively annulling inequalities such as (4). Therefore, if we 

would like to look for the variation of Ip then we must no longer preoccupy ourselves with the 

limits of integration, if, as we have done, we previously transform it into an ordinary integral of 

order p. We shall indicate how one can calculate the variation of that integral. 

 

 

 4. – From what was said, we will have: 

 

Ip = 
1 1

1 1 1

1 1

( , , ) ( , , )

( , , ) ( , , )

p p

p p p

p p

x x x x
M M d d

   

      
   

  
+ 

   
  

 

1 p
M  = 

1 1p p

k

k k

M M
X t

x t

   


  
+    

  . 

 

 How do we calculate the variation of 
1

1

( , , )

( , , )

p

p

x x 

 




? That question reduces to the following 

one: For example, what does the variation xi / 1 of equal? Recall that at the arbitrary instant t0 

(or more simply t), the points of the manifold V have the coordinates: 

 

(3)      xi = i (1, …, p) . 

 

 At the instant t + t, those points will have the coordinates: 

 

xi + xi = i (1, …, p) + Xi (1, …, n , t) t . 

 

 Therefore, during the time t, the manifold V will deform, along with its boundary, but that 

deformation is completely-determined, in other words, each of the point of V will describe a small 

trajectory that is determined perfectly by equations (1). Let V + V denote what the manifold V 

will become at the instant t + t. 

 Give another value 1  to 1 , while preserving the previously-given values for the other . At 

the instant t, we will have: 

1x  = 
1 2( , , , )i p    , 

and at the instant t +  t : 
 

1 1x x +  = 1 2 1 2( , , , ) ( , , , )i p i nX t t          + . 

 

The primes on the  in Xi signify that the first of the  in those functions has the value 1 . 
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 Let 1  = 1 + d1 . One will then have: 

 

 ix  = 1

1

i
i

x
x d




+


 = i (1 + d1 , 2 , …, p) , 

 

 i ix x +  = 1 1

1 1

i i
i i

x x
x d x d   

 

 
+ + +

 
 

 

 = i (1 + d1 , 2 , …, p) + 1

1

,k
i k

x
X x d t t 



 
+ 

 
, 

so 

1

1

ix
d 






 = 1

i k

k k i

X x
d t

x
 



 

 
  

or 

(5)  
1

ix

t



 




 = i k

k k i

X x

x



 




 . 

 

 That formula is fundamental in the theory of integral invariants. It can also be written: 

 

1

ix
t



 




 = 

1

ix
t



 




 . 

 

The derivatives  / 1 and  / t then commute when one is dealing with the coordinates of the 

moving point M. Indeed, one has: 

 

1

ix
t



 




 = 

1

iX





 = i k

k k i

X x

x 

 

 
  , which finally = 

1

ix

t



 




, 

by virtue of (5). 

 One easily concludes from the values of xi and xi + xi , along with those of ix  and i ix x + , 

that 1 = 0 , …, p = 0 , and d1 = 0 , …, dp = 0 . 

 We are now in a position to calculate the value of Ip . If that variation is identically zero, for 

any manifold V, then Ip will be an integral invariant of order p of equations (1). The reader might 

have immediately glimpsed the analogy that exists between an integral of equations (1) and an 

integral invariant of equations (1). 

 The variation of Ip must be zero, no matter what the size or form of the manifold V, to the same 

thing must also be true for an arbitrary element of V, i.e., the variation of: 

 

1

1 1

1

( , , )

( , , )

p

p p

p

x x
M d d

 

   
 




  

must be identically zero. 
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 Since the instant t was chosen arbitrarily, Ip will preserve not only the same value while V 

deforms into V + V, but it will also always preserve its initial value, which was absolutely 

arbitrary, moreover. In no. 1, we have described the relation: 

 

F = arbitrary constant C , 

 

for the integral F (x1, …, xn, t), and similarly, we will have: 

 

Ip = arbitrary constant C 

for the integral invariant Ip . 

 

 

 5. – In summation, imagine an arbitrary manifold V of order p that is located in n-dimensional 

space at the arbitrary instant t. V will become V + V at the instant t +  t. Extend the integral Ip 

over V and V + V, respectively. If the two values thus-found are the same then Ip will be an 

invariant integral. 

 Later on, we shall give the necessary and sufficient conditions for Ip to be an integral invariant. 

 

__________ 



CHAPTER II 

 

ANALOGIES 
 

 

 6. – Here are the main reasons why I use the symbol  from the calculus of variations in 

equations (1). 

 At the instant t, the manifold will have the equation: 

 

(3)      xi = i (1 , …, p) . 

 

 At the instant t +  t, the manifold V + dV will have the equation: 

 

xi = i (1 , …, p) + Xi (1 , …, p)  t . 
 

 We then add an infinitely-small quantity that is represents the variation of i as a result of the 

variation  t of t to i , and meanwhile t does not enter into those functions . The reader will recall 

that the same thing is true in the calculus of variations, and it is even characteristic of that calculus. 

The main problems that the calculus of variations attempts to solve also demands that one must 

annul the variation of an integral that is extended over a manifold V. In those problems, the 

variations  are arbitrary or compatible with the conditions on the problem, and the differentials d 

enter into some differential equations that serve to determine the desired functions. They will be 

made known by, e.g., the manifold V over which one must extend the proposed integral in order 

for its first variation to be zero. In addition, it is often necessary that a variation of even order must 

be non-zero, while all of the variations of lower order are zero. The same thing is not true for the 

variation of Ip : The variations  are completely determined by equations (1). The differentials d 

that denote the displacements on V are arbitrary, since V is arbitrary. Finally, Ip = 2

pI  = … = 

0. 

 

 

 7. – Upon solving the following problem, one will then be led to annul the variation of an 

integral that is extended over a manifold V: 

 What are the necessary and sufficient conditions for the integral: 

 

J = 
1 1

fold

p p

p

M dx dx   

−

 , 

 

when extended over a manifold V of order p that is bounded by a fixed boundary of order p – 1, to 

keep the same value, no matter what the manifold V might be, while all of those manifolds are 

subject to only that they must pass through and be limited by those fixed boundaries? 

 In that problem, the differentials d and the variations  are arbitrary. The variations of the 

integrals, when extended over the boundary manifolds are zero, since they are fixed, by hypothesis. 

 Let p = 1. In that case, the necessary and sufficient conditions for one to have: 
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i i

i

M dx   = 0 

are 

ji

j i

MM

x x


−

 
 = 0 , 

 

in which i and j are n (n – 1) / 2 combinations of the indices 1, 2, …, n taken two at a time. (Traité 

d’Analyse by É. PICARD, time I, page 76). 

 Let p = 2, n = 3. The necessary and sufficient conditions will become: 

 

23 3112

3 1 2

M MM

x x x

 
+ +

  
 = 0 

in this case, if the surface integral is: 

 

12 1 2 23 2 3 31 3 1M dx dx M dx dx M dx dx+ +  . 

 

(Same Traité, tome I, page 114). PICARD made use of the calculus of variations in those proofs; 

he said that himself on page 74: “In order to find that condition, we shall have recourse to a method 

of extreme generality in mathematics that one calls the method of variations.” 

 The reader will soon see that the problem in question here is intimately linked with the theory 

of integral invariants. 

 POINCARÉ gave the general formula for those conditions in his article “Sur les résidues des 

intégrales doubles” that was included in tome IX of the Acta Mathematica. 

 The case in which p = 2 and n is arbitrary is treated completely there. Upon writing (1, …, 

p), instead of 
1 p

M 
, and [p], instead of 

p
x

, those conditions will become: 

 

(6)  

1

1 2 2 3 1 1 1 1

1 1

or

( , , , ) ( , , , ) ( , , , )
0.

[ ] [ ] [ ]

p

p p p p

p p

N

        

  

+

+ + −

+




  
   =

  

 

  

 One can always take the sign to be + if p is even, and alternatively, take the signs to be + and 

– if p is odd. There are as many condition equations as there are combinations of n letters taken p 

+ 1 at a time. One must take care to write the indices in M and x as was indicated in (6) (cyclic 

permutations). We shall return to that important point. 

 Suppose that the coefficients M of the integral J satisfy the conditions (6) identically. We then 

say, by analogy with the terminology that is applied to simple integrals, that the integral J is an 

integral of an exact differential (Méthodes Nouvelles de la Mécanique céleste by POINCARÉ, 

time III, page 14). 

 One will obtain an integral of an exact differential upon applying the generalized STOKES’s 

theorem to transform an integral that is extended over an arbitrary closed manifold of order p into 

an integral of order p + 1 that is extended over an arbitrary non-closed manifold of order p + 1 that 

is bounded by the closed manifold. One therefore transforms the integral Jp and obtains: 
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Jp+1 = 
1 1 1

( 1) fold

p p p

p

N dx dx dx   + +

+ −

 . 

 

 One sees immediately that if Jp is an integral of an exact differential then it will be identically 

zero when one extends it over a closed manifold. Indeed, one will then have Jp = Jp+1 = 0 [formulas 

(6)]. 

 Suppose the Jp is not an integral of exact differential and that one extends it over a closed 

manifold. The integral Jp+1 that one deduces will be non-zero, and it will be an integral of an exact 

differential. The formulas (6) permit one to verify that last point. Jp+1 will then be zero when one 

extends it over a closed manifold. 

 The converse of STOKES’s theorem that we just recalled is true, and it will be greatly useful 

to us on what follows: The integral Jp+1 of the exact differential is reducible to the integral Jp of 

order p . 

 

 Remark. – In the preceding, we were often concerned with closed manifolds. Here is how 

POINCARÉ defined those manifolds in his paper “Analysis Situs,” which was published in the 

Journal de l’École Polytechnique in 1895: If a manifold is at the same time finite, continuous, and 

unlimited then it will be called closed. 

 

___________ 



CHAPTER III 

 

INTEGRAL INVARIANTS OF ORDER ONE 
 

 

 8. – Let us look for the necessary and sufficient conditions for: 

 

I1 = i i

i

M dx   (i = 1, 2, …, n) 

 

to be an integral invariant of the equations: 

 

(1)       i

i

x

X


 =  t . 

 

In Chapter I, we showed how that comes down to annulling the variation of I, or more simply, the 

arbitrary element: 

i
i

i

x
M d






 . 

 

(In that case, p = 1, so we write  instead of 1.) Recall that the variation of (xi) is determined by 

(1), the (xi) are arbitrary functions of , the curve along which we extend the integral I1 is arbitrary 

at the initial instant t, and that finally we have: 

 

ix

t



 




 = i k

k k

X x

x 

 

 
 , 

(5) 

i
i

i

x
M



 
 

 
  = 0 , 

which will then become: 

 

i k i k k
k i

i k i kk

M x M x x
x t M

x t
  

  

    
+ +

    
    = 0 (k = 1, 2, …, n) , 

or 

i k i k i k
k i

i k k k

M x M x X x
X M

x t x  

      
+ + 

      
  = 0 

or 

i i i k
k k

i k k i

x M M X
X M

x t x

    
+ + 

    
   = 0 . 

 Since the curve: 

 

(3)       xi = i ()  
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is arbitrary, the idx

d
 or 

( )id

d

 


 will also be arbitrary. The coefficients of the ix






 in the latter 

expression that was obtained must all be identically zero then. 

 Although no doubt can persist on that subject, let us insist upon a little. Suppose that 1x






  0, 

and set x2 = x3 = … = xn = 0 . Therefore: 

 

2x






 = 3x






 = … = nx






 = 0 . 

The condition becomes: 

1 1

1

k
k k

k k

XM M
X M

x t x

  
+ + 

   
  = 0 . 

 

 What we have done for x1, we can also do for the other x. We must then have the n identities: 

 

(7)     1 1

1

k
k k

k k

XM M
X M

x t x

  
+ + 

   
  = 0  (i = 1, 2, …, n) . 

 

Those conditions are obviously sufficient. They are n first-order linear partial differential equations 

in Mi . Recall that: 

i i
k

k k

M M
X

x t

 
+

 
  = iM

t




 , 

 

in which the variations of xi are determined by equations (1). Consequently, equations (7) can be 

replaced with the 2n ordinary differential equations: 

 

(8)      i

i

x

X


 = i

k
k

k i

M

X
M

x




−




 = t . 

 

 

 9. – If the Xi do not refer to t explicitly then the invariant I1 will yield the integral i i

i

M X . 

(POINCARÉ) 

 

 Proof. – Add corresponding sides of the n equations (7) after having multiplied by X1 , X2 , …, 

Xn , respectively. The expression thus-obtained shows that i i

i

M X    0 . 

 

 

 10. – In order for the 2n equations: 
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i

i

x

X


 = i

i

x

X


 = t   (i = 1, 2, …, n) 

 

to admit an invariant of the form I1 = i i

i

y dx , it is necessary that they must be canonical. (Note 

by KOENIGS, Comptes-Rendus, December 1895) 

 

 Proof. – The conditions (7) will become: 

 

k
i k

k i

X
Y y

x


+


  = 0 , 

  k
k

k i

X
y

y




  = 0  

in this case, or upon setting H = k k

k

y dx : 

  Yi = − 
i

H

x




, 

  Xi =    
i

H

y




.    Q.E.D. 

One will then have H = k

k k

H
y

y




 , which proves that H is homogeneous and of degree one with 

respect to the y. 

 If I1 = i i

i

y dx dx−  is an integral invariant of the 2n + 1 equations: 

i

i

x

X


 = i

i

y

Y


 = 

x

X


 =  t 

 

then those equations will certainly have the form: 

 

i

i

x

H

y







 = i

i

y

H

x




−



 =  t = 

k

k k

x

H
y H

y




−




, 

 

in which H = k k

k

y X X− . (Same note by KOENIGS) 

 Proof. – Formulas (7), or a direct calculation, will give: 

 

k
i k

k i i

X X
Y y

x x

 
+ −

 
  = 0 , 

  k
k

k i i

X X
y

y y

 
−

 
  = 0  
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  k
k

k

X X
y

x x

 
−

 
  = 0 , 

or 

  Yi = − 
i

H

x




, 

  Xi =    
i

H

y




, 

 
H

x




= 0 .   Q.E.D. 

 

The last identity shows that H is independent of x. 

 

 

 11. – In order for i i i i

i

M dx N dy+  to be an integral invariant of the canonical system: 

i

i

x

H

y







 = i

i

y

H

x




−



 =  t , 

 

it is necessary and sufficient that the following 2n conditions should be satisfied identically: 

 
2 2

i
k k

k k i k i

M H H
M N

t y x x x





  
+ − 

    
  = 0 , 

 
2 2

i
k k

k k i k i

N H H
M N

t y y x y





  
+ − 

    
  = 0 , 

in which: 

iM

t




  i i i

k k k k k

M M MH H

x y y x t

    
− + 

     
   (Mi , H) + iM

t




. 

 

I say that one can deduce the integral i i

i i i

M N

x x

  
− 

  
  from the invariant i i i i

i

M dx N dy+ . 

 

 Proof. – Differentiate the 2n preceding identities with respect to y1 , …, yn ; x1 , …, xn , and 

then add corresponding sides of the 2n identities thus-obtained after changing the signs in the last 

n terms. 

 

 

 12. – The n second-order differential equations: 
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2

i

i

x

X


 = 2t  

 

are reducible to a system of 2n first-order equations: 

 

i

i

x

x




 = i

i

x

X

 
 =  t . 

 

Such a system will never admit an invariant of the form i i

i

M dx . 

 Proof. – n of the conditions (7) will become: 

 

Mi  0 . 

 

In this case, it is more practical to calculate the variation of i i

i

M dx  directly and then annul it. 

 

 

 13. – If F is an integral of equations (1) then one will have the invariant: 

 

I1 = dF  = k

k k

F
dx

x




  . 

 Proof. –  F  0, by hypothesis, or: 

 

k

k k

F F
X

x t

 
+

 
   0 . 

 

Upon differentiating this with respect to xi, one will deduce that: 

 

i i k
k

k k k i

F F

x x XF
X

x t x x

  
    

 + +
    

 
 

   0 . 

 

Therefore, the F / xi are the coefficients of a first-order invariant (7). 

 

 Example. – The canonical equations in no. 11 will admit the integral H when that function 

does not refer to t explicitly because one would then have  H  0. If that is the case then one will 

have the invariant: 

I1 = dH  = k k

k k k

H H
dx dy

x y

 
+

 
  . 

 

 14. – Let us find the necessary and sufficient condition for: 
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I1 = ik i k

i k

A dx dx   
1,2, ,

1,2, ,

i n

k n

= 
 

= 
 

 

to be a first-order integral invariant of equations (1). 

 One supposes that Aik  Aki and Aii  0, in general. 

 One will have, in succession: 

i k
ik

i k

dx dx
A

d d


 
  = 0 , 

 

ik i k ik i k i l k k l i
l ik ik

i k l l l l

A dx dx A dx dx X dx dx X dx dx
X A A

x d d t d d x d d x d d       

    
+ + + 

    
  = 0 . 

 

Let us focus on i kdx dx

d d 
 and annul its coefficient: 

ik ik l l
l lk il

l l i k

A A X X
X A A

x t x x

    
+ + + 

    
  = 0 . 

 

Those are the desired conditions. They can be put into the form of ordinary differential equations: 

 

i

i

x

X


 = ik

l l
lk il

l i k

A

X X
A A

x x



  
− + 

  


 =  t . 

 

 

 15. – Further consider an invariant of the form: 

 

I1 = 1 2
n

nAdx dx dx  . 

 

A calculation that is analogous to the one no. 14 will give the conditions: 

 

k

k k

XA
A

t x






+


  = 0 ,  k

j

X

x




 = 0  (j = 1, 2, …, k – 1, k + 1, …, n ) . 

 

 

 16. – In the preceding calculations, we made constant use of the formula (5): 

 

ix

t



 




 = i k

k k

X x

x 

 

 
 . 
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In no. 8, we focused on xi /  and annulled its coefficients, which gave the conditions (7); 

however, the xi /  do not enter into them. It is obvious that if one replaces the ix






 in i

i

i

x
M






  

with functions i of x1 , …, xn , t whose variations are identical to those of the ix






, and if one then 

calculates the variation of i i

i

M   then that variation will be identically zero. Indeed, that 

variation will present itself in the same form as that of i
i

i

x
M






 , but with the single difference 

that the ix






 have been replaced with the i . The coefficients of the ix






 or the i will be the same, 

but those coefficients will be zero by virtue of (7), therefore, etc. 

 Set: 

ix






 i   (i = 1, 2, …, n) , 

 

in which the symbol   signifies that the ix






 can be replaced by the functions i of x and t, and 

vice versa, and those functions will have variations that verify the equations: 

 

(5)      i
t





 = i

k

k k

X

x





  

 

identically. However, by virtue of equations (1), one has, on the other hand: 

 

i
t





 = i i

k

k k

X
x t

  
+

 
 , 

so 

(9)     i i i
k k

k k k

X
X

x t x

 


   
+ − 

   
 = 0 . 

 

Those are n first-order linear partial differential equations that serve to determine the functions 1, 

2 , …, n . The set of those n functions constitutes a solution by variations and will be denoted 

simply by (i) or ( )i  . The prime serves to remind us that the solution is intimately coupled with 

the first-order integral invariants. That is why we sometimes say that ( )i   is a first-order solution 

by variations. 

 One will then have i i

i

M     0 or i i

i

M   = an integral of equations (1) if the Mi are the 

coefficients of a first-order integral invariant and the i   form a first-order solution by variations. 

 For example, if the Xi do not include t explicitly then equations (9) admit the integral i = Xi . 

Thus i i

i

M X  = an integral of equations (1). That is the result that was obtained in no. 8. 
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 17. – The preceding arguments extend immediately to the invariants of nos. 14 and 15. 

 Set: 

i k
ik

x x


 

 


 
 . 

 

The necessary and sufficient conditions that those  must satisfy are: 

 

(10)    ik ik i k
l lk il

i l l l

X X
X

x t x x

 
 

     
 + − − 

    
  = 0 . 

 

In Chapter VIII, we shall make a deeper study of the solutions by variations. 

 

 

____________



CHAPTER IV 

 

INTEGRAL INVARIANTS OF ORDER n 
 

 

 18. – Let us look for the necessary and sufficient conditions for: 

 

In = 
fold

1 2

p

nM dx dx dx
−

  

 

to be an invariant integral of order n of equations (1). M is a function of x and t. 

 It is necessary and sufficient that one must have: 

 

1

1

( , , )

( , , )

n

n

x x
M

 




 = 0 . 

 

Thanks to formula (5), one will easily find that: 

 

1

1

( , , )

( , , )

n

n

x x

t



  




 = 1

1

( , , )

( , , )

n k

kn k

x x X

x 

 

 
  . 

 

(In the following chapter, the reader will find a calculation of the same type that is done 

completely.) 

 Thus: 

(11)     k

k k

XM
M

t x






+


  = 0 , 

or 

k
k

k k k

XM M
X M

x t x

  
+ + 

   
  = 0 , 

or 

 

(12)     k

k k

M X M

x t

 
+

 
  = 0 . 

 

 One deduces the following theorem from (12), which is due to POINCARÉ (Méthodes 

Nouvelles, t. III, pp. 41): 

 

 In order for  1 nM dx dx  to be an invariant of order n of equations (1), it is necessary and 

sufficient that M should be a multiplier of equations (1) (in the JACOBI sense). 

 

 

 19. – Make a change of variables that affects the x. Let  be the functional determinant of the 

x with respect to the new variables y1, …, yn . 
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 In will become nI   = 1 nM dy dy . 

 Therefore, the multiplier will become M  with the new variables yi . That is the property of 

the invariance of the last multiplier. 

 Change the independent variable. Suppose that one has  t / Z =  t1 , in which t1 is the new 

independent variable and Z is a given function of x and t. 

 Equations (1) become: 

(1)      i

i

x

Z X


 =  t1 . 

 

If M is a multiplier of equations (1) that does not include t explicitly then one will have: 

 

k

k k

M X

x




  or 

k

k k

M
Z X

Z

x

 
  

 


  = 0 . 

 

 That indicates that M / Z will be a multiplier of equations (1) if Z does not include t explicitly. 

(Méthodes Nouvelles, t. III, pp. 30) 

 Recall the first change of variables. Let: 

 

(13)     yi = i (x1 , …, xn , t)  (i = 1, …, n) 

 

be n given relations between the old and new variables. We suppose that they are soluble for x1 , 

…, xn . 

 Take the variation of yi in agreement with equations (1). Hence: 

 

(14)     iy

t




 = i

k

k k

X
x t

  
+

 
 . 

 

After replacing the x with their values as functions of the y and t, one will have the transformed 

equations (1). Let  (y1 , …, yn , t) be an integral of equations (14). It will also be an integral of 

equations (1) when one replaces the yi with their values (13). 

 Now suppose that the first p functions  are distinct integrals of equations (1) and that last n – 

p of them reduce to xp+1 , …, xn . Equations (14) become: 

 

(15)   1

0

y
 = … = 

0

py
 = 

1

1( )

p

p

y

X

 +

+

 = … = 
( )

n

n

y

X


 =  t . 

 

 The parentheses around the Xp+1 , …, Xn indicates that one has replaced x1 , …, xp with their 

values that are inferred from the first p equations (13) as functions of the xp+1 , …, xp , t, and y1 , 

…, yp . The last p of them are considered to be constants. I say that any multiplier of the last n – p 

equations in (15) is also a multiplier of the n equations (15). Indeed, the condition (12) reduces to 

the same expression when one applies it to those two systems, respectively. That remark will be 

useful later on. 
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 Once more, consider the change of variables that is defined by the equations: 

 

yi = i (x1 , …, xn , t) + i (t) , 

 

in which i are distinct integrals of equations (1) and i are given functions of t. Equations (14) 

become: 

(16)     iy

t




 = ( )i t  , 

 

and the condition (11) will reduce to M = 0 . Therefore, any multiplier of (16) will be, at the same 

time, an integral, and consequently any multiplier of (16) will be an integral of equations (1). In 

addition, we just saw that if M   is a multiplier of (16) then M  1

1

( , , )

( , , )

n

n

M
x x

 



 will be a 

multiplier of equations (1). One will then deduce that 1

1

( , , )

( , , )

n

nx x

 


 is a multiplier of equations (1). 

Indeed, it is easy to show that the quotient of the two multipliers of the same system will be an 

integral of that system. Let 1 and 2 be two multipliers of equations (1). In no. 18 we saw that: 

 

1

1

( , , )

( , , )

n

nx x

 





 = 0 . 

 

 Let  represent the determinant that enters into that identity. One will have: 

 

1

2






 
 
 

 = 1

2






 
 

 
 = 2 1 1 2

2

2

( ) ( )

( )

     



  −  


 = 0 .  Q.E.D. 

 

 

 20. – Replace the 
2n  elements 

1

ix






, …, i

n

x






 with n solutions to the first-order variations (i)1, 

…, (i)n , which are assumed to be distinct. Let  represent what  becomes with that substitution. 

One will again have: 

 (M ) = 0 , 

or 

M  = an integral of equations (1) , 

or 

 = inverse of a multiplier of equations (1) . 

 

 Now suppose that one knows p integrals of equations (1) and n – p solutions to the distinct 

first-order variations of the last n – p equations in (15). Thanks to those solutions, one will find the 

inverse of a multiplier for those n – p equations or the n equations (15). (See the remark in no. 19.) 

 Let M   be that multiplier. Therefore: 

M   = 
1


, 
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if  represents the determinant that is formed by means of the n – p known solutions. 

 However, one can deduce a multiplier M of equations (1) from M  . One will have: 

 

M = 
1 1

1 1

( , , , , , )

( , , , , , )

p p n

p p n

x x
M

x x x x

  +

+





 , 

or 

M = 

1

1

( , , )

( , , )

p

px x

 




. 

 

 Remarks. – The result M   = 1 /   is obtained from the theory of infinitesimal 

transformations, such as on page 87 of tome III of C. JORDAN’s Cours d’Analyse, 1896. 

 We will soon recover the other results that relate to infinitesimal transformations that were 

presented in that treatise. 

 

 

 21. – Set: 

1

1

( , , )

( , , )

n

n

x x

 




  

n . 

 

 The significance of the symbol  was given in no. 16. 
n  is an nth-order solution by variation. 

 It is necessary and sufficient that one should have: 

 
n

t




 = 

n k

k k

X

x





  

(see no. 18), or: 

(17)    
n n

n k
k

k k k

X
X

x t x

 


  
+ − 

   
  = 0 . 

 

 If 
n  is an nth-order solution by variation and M is a multiplier then 

nM   will be an integral 

of equations (1). 

 

 

 22. – For example, let k

k k

X

x




  = 0. That will give rise to the canonical equations. One will 

then have M = 1, 
n  = 1. 

 If equations (1) admit the multiplier , which is independent of t, then the equations: 

 

i

i

x

X




 =  t1  
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will admit the multiplier 1, in other words, all of the multipliers of that system will be integrals of 

it. 

 If k

k k

X

x




  = 1 then one will have M = te−  and n  = e . 

 If the Xi do not include t explicitly then one can deduce some other multipliers from M : 

 

M

t




, 

2

2

M

t




, …, 

 

and so on, up to the moment when one of those partial derivatives becomes zero. The same thing 

will be true for the solution 
n . 

 If Xi depends upon only xi and t then the multiplier M will give: 

 

I1 = 
1

n

nM dx dx . 

(no. 15) 

 

____________ 



CHAPTER V 

 

INTEGRAL INVARIANTS OF ORDER n – 1 
 

 

 23. – Let us look for the necessary and sufficient conditions for: 

 

In−1 = 1 2 1 1i i i n i

i

M dx dx dx dx dx+ + −  

 

to be an integral invariant of order n – 1 of equations (1) (i = 1, 2 …, n). 

 One first observes the order in which we have written the differentials. If n = 5 then one will 

have: 

1234, 2345, 3451, 4512, 5123 . 

 

That is why we shall always suppose that the differentials of an invariant of order n – 1 are written 

that way. The reader will soon see that it is important to indicate the way that those differentials 

are organized. 

 Set: 

i  1 2 1 1

1 2 1

( , , , , , )

( , , , )

i i n i

n

x x x x x

  
+ + −

−




 . 

One will have, in succession: 

 

i

i

i

M
t




 = 

i
i i

i

i

M
M

t t



 

 
 + 

 
  = 0 , 

 

  
iM

t




 = 

i i

k

k k

M M
X

x t

 
+

 
 , 

 

(5)  1

1

ix

t



 
+


 = 1

1

i k

k k

X x

x 
+ 

 
 , 

 

  1

2

ix

t



 
+


 = 1

2

i k

k k

X x

x 
+ 

 
 , 

  …..…………………….., 

so 



Chapter V – Integral invariants of order n – 1 . 23 

 

i

t






 = 

1 1 1 2 1

1 1 1 1 1

1 1 1 2 1

1 2 2 2 2

1 1 1 2 1

1 1 1 1 1

i i i i i i

i i

i i i i i i

i i

i i i i i i

i n i n n n

X x X x x x

x x

X x X x x x

x x

X x X x x x

x x

   

   

   

+ + + + −

+

+ + + + −

+

+ + + + −

+ − − − −

     
+

     

     
+

     

     
+

     

 

 

+ some determinants that are analogous to the previous one, but which relate to the 2nd, 3rd, …, (n 

− 1)th column of i , respectively. One will then have: 

 

i

t






 = ( )i l i l

i i l

l li l i

X X

x x

+ +
+

+

 
 + 

 
   , 

 

in which l = 1, 2, …, n – 1. If i + l > n then one subtracts n from i + l . For example, i + n – 1 has 

the same significance as i – 1. The symbol i+l is a determinant that is analogous to i , but the 

elements 
1

i lx


+


, …, 1

1

i

n

x


+

−




 do not enter into it. The parentheses that are placed around i+l signify 

that one must once more permute the columns of that determinant in such a manner that the indices 

on the x are placed into the order that was indicated above. If i + l  n then the indices on the x in 

(i+l) are arranged as follows: 

 

i + 1 + 1 , i + l + 2 , …, n , 1 , 2 , …, i , …, i + l – 1 . 

 

 

An easy calculation will show that this requires n + l + 1 + (n + l)(l + 1) permutations, which will 

be an odd number of permutations when n is odd and l + 1 permutations when n is even. 

 If i + l > n then the indices on the x in (i+l) will be arranged as follows: 

 

i + 1 ,  i + 2 , …, n , i + l – 1 – n , i , …, i + l + 1 – n , …, i – 1 . 

 

 From our conventions, it is necessary that this order should become: 

 

i + 1 + 1 – n ,  i + l + 2 – n , …, i , n , 1 , …, i + l – 1 – n . 

 

That requires the same number of permutations as in the first case (one can always neglect an even 

number of permutations). Therefore, if n is odd: 

 

(i+l) = − i+l . 

If n is even: 

(i+l) = (− )l+ i+l . 

 

 Case 1: n odd. 
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i
i il i l i

i i i l

i l l i i

X XM
M M

t x x




+ +

+

+

  
 +  −  

  
  = 0 . 

 

 One can set l = n in that formula, because that would amount to adding and subtracting 

i i
i

i

X
M

x





. Set i + l = k (k = 1, 2, …, n): 

i
i ik k

i i k

i k k i

X XM
M M

t x x





  
 +  −  

  
  = 0 . 

 

The i and k play the same role, so they can be permuted. We can then focus on i . If we annul its 

coefficient then: 

(18)    
i

i kk i

k k k

X XM
M M

t x x





  
+ − 

  
  = 0 . 

  

 Case 2: n is even. 

 

 One argues as in the first case. One sets l + i = k, so l = k – i (k = 1, 2, …, n). 

 One gets: 

1( 1)
i

i k ik k
i i k

i k k i

X XM
M M

t x x





+  
 +  − −  

  
  = 0 , 

 

and finally, after multiplying the coefficient of i by (− 1)i : 

 

(19)    
| |

| | | |
i

i kk i

k k k

X XM
M M

t x x





  −
+ − − − 

  
  = 0 , 

 

in which | |iM−  is written for ( 1)i iM− . 

 

 Remark. – The formula (19) pertains to invariants of order n – 1 of any parity for n if one 

agrees to write those invariants as follows: 

 

1nI −
  = 1 2 1 1

i

i i n

i

M dx dx dx dx dx− +  . 

 

That is because if n is even then: 

 

1nI −
  = 1 1 1

i

i n i

i

M dx dx dx dx+ − , 

and if n is odd then: 

1nI −
  = − 1 1| |i i i

i

M dx dx+ −−  . 
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I conclude from this that the formula that appears in the note by KOENIGS includes a sign error. 

(Comptes-Rendus, page 25, year 1896) That error is repeated on page 463 of time II of PAUL 

APPELL’s Traité de Mécanique rationelle (1896). KOENIGS wrote iM , while one must have 

| |iM− . 

 

 

 24. – The conditions (18) and (19) can also be written: 

 

(18)   
i i

i kk i
k

k k k k

X XM M
X M M

x t x x

   
+ + − 

    
  = 0 , 

 

(19)  
| | | |

| | | |
i i

i kk i
k

k k k k

X XM M
X M M

x t x x

   −  −
+ + − − − 

    
  = 0 . 

 

Differentiate equations (18) with respect to x1, x2, …, xn and add corresponding sides of the 

identities thus-obtained. That sum can be written: 

 
i i

k

k i ik i i

M M
X

x x t x

    
+ 

    
    = 0 . 

Thus, 
i

i i

M

x




  is a multiplier. 

 If n is even then 
| |i

i

M

x

 −


  will be a multiplier. We shall recover those results later on thanks 

to a theorem by POINCARÉ. 

 

 

 25. – In the note that was mentioned above, KOENIGS said: 

 

 “In order to construct the integral invariant (n – 1) of the most general form, 

one seeks an equation C () = 0 that will form a Jacobian system with k

k k

X
x




  

= 0 . If C () = k

k kx





  and  denotes a multiplier of the system (1) then the 

general expression for the coefficients will be: 

 
iM  =  i . ” 

 

 I shall not repeat the proof that was given in that note here, because we shall recover that result 

in a much simpler manner in Chap. VIII. In addition, I will show that one must write | |iM−  = 

,i   the iM  can include t explicitly, the equation k

k k

X
x




  = 0 must become k

k k

X
x t

  
+
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= 0 when  includes t explicitly, and finally that it is necessary and sufficient that the i must form 

a first-order solution by variations of equations (1). 

 

 

 25. (cont.). – Set: 

 

i or    1 1

1 1

( , , )

( , , )

i i

n

x x

 
+ −

−




  1n

i −  (i = 1, 2, …, n) . 

 
1( )n

i −  will then be an (n – 1)th-order solution by variations of equations (1) when those n functions 

of x1, …, xn, and t verify the n equations: 

 

(20)    

1

1 1

n

i n nk k
k i

k i k

X X

t x x


 



−

− −  
+ − 

  
  = 0 

 

identically when n is odd, and: 

 

(21)   

1

1 1
| |

| | | |

n

i n nk k
k i

k i k

X X

t x x

 
 



−

− −
−   

+ − − − 
  

  = 0 

when n is even. 

 In those equations, 1n

i −  represents the variation of 1n

i −  when taken in conformity with 

equations (1), and it will then equal 

1 1n n

k i

k

k i

X t
x t

 


− −  
+    

 . On the other hand, one can write 

1| |n

i −−  for 1( 1)i n

i −− . 

 Set 1n

i −  = /i M , in which M is a multiplier of equations (1). The 
i  must satisfy the 

equations: 

(20)    
i

kk

k i

X

t x







+


  = 0   (n odd) , 

 

(21)    
| |

| |
i

kk

k i

X

t x

 




−
+ −


  = 0  (n even) . 

 

 In no. 16, one had: 

i i

i

M    = 0 . 

One will likewise have: 
1n

i i

i

M  −  = 0 , 

or 
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i

i

i

M M

M


 = an integral of equations (1) (n odd), 

or 

| | i

i

i

M M

M

−
 = an integral of equations (1) (n even). 

 

 Particular case. – Let  be an integral of equations (1). Hence (no. 13): Mi = 
ix




 and 

i

i i

M
x




  = a multiplier if n is odd, etc. That last result is found in the note by KOENIGS that 

was cited before. (See no. 25). 

 

____________ 



CHAPTER VI 

 

RELATIONS BETWEEN INTEGRAL INVARIANTS OF 

DIFFERENT ORDERS 
 

 

 26. Theorem:  

 

 If one knows Ip and Iq then one can deduce Ip+q . Meanwhile, if p = q is an odd number then I2p 

will be identically zero. 

 

 [Ip , Iq , Ip+q represent invariants of order p, q, p + q, respectively. We shall not recall the 

meanings of those symbols, nor the ones that were employed previously. Therefore, M will always 

represent a multiplier of equations (1), etc.] That theorem is due to POINCARÉ (Méthodes 

Nouvelles, t. III, pp. 21). 

 

 Proof. – Let D be a determinant of order n. By virtue of a theorem by LAPLACE, one will 

have: 

D = ( 1)m −   . 

 

 One knows that the rows in D are divided into two groups that are composed of p and n – p 

rows, respectively.  is a partial determinant that is formed from rows in the first group and p 

arbitrary columns of D.  is the complement of  . Finally, m equals the sum of the ranks of the 

rows and columns of D that appear in  .  includes n (n – 1) … (n – p + 1) / p ! terms. 

 Let n = 5, p = 2. Set 
1

ix






  i1 , etc. 

I2 = 
,

ij i j

i j

M dx dx , 

so: 

1 2

, 1 2

ij

i j

i i
M

j j
    or 

3 4

, 3 4

ij

i j

i i
M

j j
    0 . 

 

I3 = 
, ,

klm k l m

k l m

N dx dx dx  , 

so: 

, ,

( )

(123)
klm

k l m

klm
N




   0 . 

 One must show that: 

I5 = ij klm i j k l m

ijklm

M N dx dx dx dx dx  , 

or that: 

( )

(12345)
ij klm

ijklm
M N




   0 . 
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 Now, by virtue of the theorem that was just recalled, one has: 

 

( )

(12345)

ijklm


 = 

1 2 3 4 5 1 3 2 4 5 1 4 2 3 5

i j k l m i j k l m i j k l m        
− +        

        
 − etc. , 

 

in which 
1 2

i j 
 
 

 is written for 
1 2

( , )

( , )

i jx x

 




. 

 When one substitutes that development in the formula to be proved, it will become: 

 

,

etc.
1 2 3 4 5

ij

i j klm

i j k l m
M

    
−    

    
   = 0 . 

 

 That is now obvious, since the variation of each of the factors 
ij

  and 
klm

  is identically zero, 

by hypothesis. 

 It remains to show that if q = p then I2p will be zero if p is odd and non-zero if p is even. In 

order to do that, it suffices to point out that the sum of the indices 1, 2, …, 2p of the  is 2p (2p + 

1) / 2. If p is odd then that sum will be odd, so if the sum of p of those indices is even then the sum 

of the other p will be odd. The same thing will not be true when p is even. 2p (2p + 1) / 2 will then 

be even. Therefore, if the sum of p of the indices of  is even then the sum of p others will also be 

even or, more generally, have the same parity as the other sum. Now, it is the parity of the sums 

of those indices that decides the signs, so (etc.). For example: 

 

I2 = 
,

ij i j

i j

M dx dx . 

 The element of I4 that one deduces is: 

 

( )

(1234)
ij kl

ijkl
M M




  

 

= 
1 2 3 4 1 3 2 4 1 4 2 3

ij kl

i j k l i j k l i j k l
M M

        
− +        

        
  

  + 
2 3 1 4 2 4 1 3 3 4 1 2

i j k l i j k l i j k l         
− +         

        
 

 

= 2
1 2 3 4 1 3 2 4 1 4 2 3

ij kl

i j k l i j k l i j k l
M M

         
− +         

         
  . 

 Thus, I4  0. 

 Once more, take a very simple example: 

 

I1 = 1 1 2 2M dx M dx+  . 
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 One then deduces that: 

I2 = 1 2 1 2 2 1 2 1M M dx dx M M dx dx+  . 

 = 1 2 2 1 1 2( )M M M M dx dx−   0 . 

 

 That example should serve to show how important it is to write the differentials that appear 

under the integration sign in a suitable order. When an odd permutation is performed on the dx, 

that will always be equivalent to a change of sign. The indices of the coefficients of Ip are the same 

and are placed in the same order as those of the differentials dx that multiply those coefficients. 

For example, in the foregoing, we wrote Mij dxi dxj , and not Mji dxj dxi . We must also suppose 

that: 

Mij  − Mji , 

since otherwise we would not have: 

Mij dxi dxj   Mji dxj dxi . 

 

 Therefore, an odd permutation of the indices of a coefficient of an invariant is also equivalent 

to a change of sign. 

 

 Corollary. – The converse to that theorem is not true, in general. 

 If p is even then one can deduce I2p , I4p , etc., from Ip . 

 

 

 27. Theorem: 

 

 If one knows Ip then one can deduce Ip+1 . (Méthodes nouvelles, t. III, pp. 14). 

 

 Extend Ip over an arbitrary closed manifold of order p. Thanks to the generalized STOKES 

theorem (see no. 7), we can deduce Ip+1, which we can extend over an arbitrary open manifold that 

is bounded by the closed manifold of order p. In that same section 7, we saw that if Ip is an integral 

of an exact differential then Ip+1 will be identically zero. We also know that when Ip+1 is deduced 

from Ip , it will be an integral of an exact differential, so if one can deduce Ip+2 from Ip+1 by means 

of the same procedure the one will have Ip+2  0. 

 We extended Ip over an arbitrary closed manifold of order p. Hence, if Jp is an integral invariant 

only when it is extended over an arbitrary closed manifold of order p then one can once more 

deduce Ip+1 . POINCARÉ called Jp a relative integral invariant. The preceding theorem can be 

stated more generally: 

 

 If one knows Ip or Jp then one can deduce Ip+1 . 

 

 

 28. – Here are some consequences of the two preceding theorems: 

 

 If one knows Ip and In−p then one will find a multiplier M. Indeed, while preserving the 

notations, one will have: 

In = 1 1

i

i i i i

i

M M dx dx dx+ −  



Chapter VI – Relations between integral invariants of different orders. 31 

 

if p = 1, for example. In order to pass from the ordering i, i + 1, …, n, 1, …, i – 1 to 1, 2, …, n, 

one will require (i – 1)(n – i + 1) permutations, so if n is even then one will have (no. 25): 

 

M = | | i

i

i

M M− . 

 

 If one knows p integrals that are distinct from (1) and In−p then one can find a multiplier M. 

Each of those integrals will yield a first-order invariant (no. 13). Those p invariants will yield one 

of order p (no. 26). One has thus come back to the preceding case. It is easy to see that this invariant 

of order p will be: 

1

1 1

1

, ,

( , , )

( , , ) p

p p

p
dx dx

x x
 

   

 


 , 

 

if 1, …, p are the p known integrals. If p = 1 then one will recover KOENIGS’s theorem (no. 

25). 

 If one knows I1 then one can, in general, deduce one and only one multiplier by means of the 

theorems in nos. 26 and 27. The proof of that proposition is long, but easy, so I shall not give it. 

 Thanks to the theorem in no. 27, one can recover the result of no. 24. 

 

 

 29. – It is obvious that if I add an integral Ep of an exact differential of order p to an invariant 

integral Ip then I will get a relative integral invariant Jp of order p. However, the converse is not 

obvious. It is nonetheless true, and can be stated in the form: Any relative integral invariant Jp is 

the sum of an integral of an exact differential Ep and an (absolute) integral invariant Ip . (Méthodes 

Nouvelles, t. III, pp. 14). 

 One can show that Jp = Ip + Ep , which is an equality in which only Jp is known.  

 Let p = 1: 

J1 = i i

i

N dx , 

 

1J

t




 = i i k

k i

i k k k

N N X
N dx

x t x

    
+ +  

    
  . 

 

 By definition, J1 is identically zero when one extends J1 over a closed curve. One concludes 

from this that the integral that is equal to J1 is an integral of an exact differential, because it is 

easy to show that the converse of the following proposition is true (no. 7): An integral of an exact 

differential is identically zero when one extends it over a closed manifold. (The functions that we 

consider are uniform.) One can then write: 

 

1J

t




 = i

i i

R
dx

x




 = dR  . 

 In addition, one will have: 

1J

t




 = 1E

t




 = 

U
d

t
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if one sets: 

E1 = dU  . 

Hence: 

R = 
U

t




 = k

k k

U U
X

x t

 
+

 
  . 

 

 If U is an integral of that equation then one will have: 

 

I1 = i i

i i

U
N dx

x

 
− 

 
 . 

 Let p = 2. 

J2 = ij i j

ij

N dx dx , 

 

2J

t




 = 

j i
i j

ij i j

A A
dx dx

x x

  
−    

 , 

 

because J2 /  t is an integral of an exact differential, and we know that such an integral is 

reducible to the form that was indicated above. We deduce the converse of STOKES’s theorem 

from this, which we stated at the end of no. 7. (Traité d’Analyse by E. PICARD, t. I, page 117). 

Therefore: 

2J

t




 = k k

k

A dx , 

= 2E
t




. 

 

 E2 is also reducible to a first-order integral. Set: 

 

E2 = k k

k

B dx . 

 Hence: 

k k

k

A dx  = k l
l l k

k ll k

B X
X B dx

x x

  
+ 

  
  . 

 

 That will be true when one satisfies the following n equations: 

 

Ak = k k l
l l

l ll k

B B X
X B

x t x

   
+ + 

   
  . 

 

 Those equations do not represent necessary condition. Indeed, it is sufficient to satisfy the 

conditions: 



Chapter VI – Relations between integral invariants of different orders. 33 

 

(24)    Ak + 
k

F

x




 = k k l

l l

l ll k

B B X
X B

x t x

   
+ + 

   
   , 

 

in which F is an arbitrary function of x1, …, xn , and t. 

 One will proceed similarly for the case in which p has an arbitrary value. 

 

 Remark. – The presence of an arbitrary function F in the conditions (24) proves that any 

relative integral invariant can be decomposed into a sum of an integral of an exact differential and 

an (absolute) integral invariant in an infinitude of ways. 

 

 

 29. (cont.). – In order for J1 = i i

i

X dx  to be a relative invariant of equations (1), it is 

necessary and sufficient that /i

i

H
X

x





 =  t , in which H is an arbitrary function of the x and t. 

[The variations  are always defined by equations (1).] 

 

 Proof: 

1J

t




 = i

i i i

i

X
dx X dX

t





 
+ 

 
  = 

2

2

i i
i

i

X X
dx d

t 





 
+  

 
    . 

 

 The variation of J1 must be zero when the curve  is closed, so one sees that it is necessary and 

sufficient that the Xi / t should be the partial derivatives of the same function H. 

 

 

 30. Theorem: 

 

 If one knows q distinct solutions by first-order variations and Ip then one can deduce Ip−q . (One 

supposes that q  p.) 

 

 One has (let p = 3, q = 1): 

1 2 3

( , , )

( , , )

i j k

ijk

ijk

x x x
M

  




   0 , 

 

2

ix






  i , 

2

jx






  j , 

2

kx






  k . 

 Thus: 
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2 3

2 3

2 3

i i
i

j j

ijk j

ijk

k k
k

x x

x x
M

x x


 

 
 


 

 

 

 

 

 

 

   0 . 

 

 Upon developing that determinant, one will finally get: 

 

I2 = ( )ijk i j k j k i k i j

ijk

M dx dx dx dx dx dx  + +  . 

 

 If one knows yet another solution by variations then can deduce the invariant I1 from I2 , etc. 

 

 Generalization. – Knowing a solution by variations of order q will permit one to deduce the 

invariant Ip−q from Ip . 

 Recall the preceding example. One has: 

 

3 1 2

( , )

( , )

i jk
ijk

ijk

x xx
M

x


 

 
+ 

  
   0 . 

 Replace 
1 2

( , )

( , )

i jx x

 




 with 2

ij , and the other two determinants (which we have not written out) 

with 2

ki  and 2

jk . We deduce the invariant I1 from the identity thus-obtained. 

 

 Example. – If the Xi in equations (1) do not refer to t explicitly then one can deduce Ip−1 from 

Ip (no. 16). 

 

__________ 



CHAPTER VII 

 

INTEGRAL INVARIANTS OF ORDER p 
 

 

 31. – We have already studied the invariants of order one, n, and n – 1. If we would like to 

study the necessary and sufficient conditions that the coefficients of an invariant of order 2, 3, …, 

or n – 2 must satisfy directly then we would be obliged to make some very bothersome calculations. 

Here is how one can avoid those lengths calculations. 

 Let p = 2. One deduces from J1 = i i

i

N dx  (no. 27) that: 

 

I2 = 
ji

i j

ij j i

NN
dx dx

x x

 
−    

 , 

 

1J

t




 = i i i

k k i

i k j j

N N X
X N dx

x t x

    
+ +        

  . 

 

We have seen that the latter integral is an integral of an exact differential, so: 

 

(25)     
j i

i j

P P

x x

 
−

 
 = 0 , 

 

in which Pi denotes the coefficient of dxi in that integral. The conditions (25) can be written: 

 

(25)  
j j ji i k k i k k

k

k k

N N NN N X N N X N
X

x i j t i j j i k i k j

         
− + − + − + −       

         
  = 0 , 

 

in which Nj / i, Xk / j, … are written for 
j

i

N

x




, k

j

X

x




, … 

 (25) represents the necessary and sufficient conditions for: 

 

I2 = 
,

j i
i j

i j

N N
dx dx

i j

 
− 

 
  

 

to be an (absolute) integral invariant. In order to convince oneself of that, it suffices to remark that 

instead of calculating I2 from I2 itself, one can first calculate J2 and then transform the result 

obtained into a second-order integral; it will be I2 /  t . It is necessary and sufficient that the 

variation I2 should be identically zero, which gives (25). 

 Set: 
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j i
N N

i j
−   Mij . 

(25) becomes: 

(26)   
ij ij k k

k ij kj

k k j i

M M X X
X M M

x t x x

    
+ + +      

  = 0 . 

 

It is curious that formulas (26) represent not only the necessary and sufficient conditions for 

,

j i
i j

i j

N N
dx dx

i j

 
− 

 
  to be an integral invariant, but also for ij i j

ij

M dx dx  to be a second-

order integral invariant that is no longer an exact differential integral. Indeed, suppose that we have 

calculated the variation of 
, 1 2

( , )

( , )

j i ji

i j

N x xN

i j  

 
− 

 
  directly. One sees immediately that the 

particular form of the coefficients 
j i

N N

i j
−  has no effect on the final result, in other words, the 

conditions (26) will not be modified when one supposes that the Mij do not have the form 

ji

j i

NN

x x


−

 
. 

 Thanks to that process, it would be quite easy to find the conditions in the case of p = 3. One 

deduces from J2 = ij i j

ij

N dx dx  that: 

I3 = 
, ,

ij jl li
i j

i j l

N N N
dx dx

l i j

 
+ + 

 
  . 

 

Instead of annulling the variation of I3 , we can first calculate  J2 and then put the result obtained 

into the form of a third-order integral. It will be equal to  I3 , so it must be identically zero. If we 

proceed in that manner then we will have, in succession: 

 

2J

t




 = ij i j

ij

P dx dx , 

 

in which Pij represents the left-hand side of (26), and then: 

 

2J

t




 = 

ij jl li
l i j

ijl

P P P
dx dx dx

l i j

 
+ + 

 
  0 . 

 

If we perform the indicated calculations and replace: 

 

ij jl li
N N N

l i j
+ +  with Mlij or Mijl 
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then we will obtain the desired conditions: 

 

(27)   
ijl k k k

ijk jlk lik

k k i j

M X X X
M M M

t x x x





   
+ + +     
  = 0 . 

 

 One can deduce the formulas that are appropriate to the case of p = 4 from those formulas, and 

so on. 

 

 

 32. – One can prove the following propositions by means of formulas (26) or (27): In order for 

i i i

i

M dx dy  to be an integral invariant of the canonical system in no. 11, it is necessary and 

sufficient that the Mi should be the same integral of that system. 

 

 Corollary. – The canonical equations of no. 11 admit the integral invariant I2 = i i

i

dx dy . 

 

 In order for I2 = i i

i

dx dy  to be an invariant of: 

i

i

x

X


 = i

i

y

Y


 =  t , 

 

it is necessary and sufficient that one should have: 

 

(28)     

0,

,

.

i k

k i

i k

k i

i k

k i

X Y

x y

Y Y

x x

X X

y y

  
+ =

 
  

=
 

  
=

 

 

 

 Corollary. – Those are also necessary and sufficient conditions for the proposed system to 

admit the relative invariant J2 = i i

i

y dx . (Compare that with no. 10.) In order for that same 

system to admit the invariant I1 = ( 1) i i i i

i

l y dx l x dy+ + , it is necessary that it should be 

canonical. Set: 

H = [( 1) ]k k k k

k

l y X l x Y+ +  . 

 

It is then necessary that one must have: 

Xi = 
i

H

y




, 
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Yi = − 
i

H

x




, 

or that: 

Xi = − 

( 1) k k
k k

k i i

X Y
l y l x

y y

l

  
+ + 

  


, 

 

Yi = − 

( 1)

1

k k
k k

k i i

X Y
l y l x

x x

l

  
+ + 

  

+


. 

 

Now, those are precisely the necessary and sufficient conditions for the variation of I1 to be 

identically zero (7). 

 It is again necessary that: 

H = ( 1) k k

k k k

H H
l y l x

y x

  
+ − 

  
  , 

 

which one can easily interpret (no. 10). 

 One deduces I2 = i i

i

dx dy  from I1 . The conditions (28) are not sufficient for I1 . That 

apparent contradiction will disappear when one remarks that I2 can also be deduced from a relative 

invariant of the same form as I1 . It can also be written: 

 

y dx l d xy+   . 

 

 

 33. – In order for the system: 

i

i

x

X


 = i

i

y

Y


 = i

i

z

Z


 =  t 

 

to admit the invariant I3 = dx dy dz , it is necessary and sufficient that one should have: 

 

(29)     i i i

i i i

X Y Z

x y z

  
+ +

  
 = 0 

identically. 

 The proof of that proposition is lengthy. Here is how one proceeds: Since there are 3n 

dependent variables, one gives the values 1, 2, …, n to the indices i, j, l, or k . However, one sets: 

 

xi+n = yi ,  xi+2n = zi , Xi+n = Yi , Xi+2n = Zi . 

 



Chapter VII – Integral invariants of order p . 39 

 

One will then have only the M whose indices have the form (i, i + n, i + 2n) which will be different 

from zero. In addition, one must not write Mk,k+n,k+2n , because that variation is identically zero. 

 

 Corollary. – In order for the proposed system to admit the relative invariant J2 = 

( )x dy dz y dz dx z dx dy+ + , it is necessary and sufficient that the conditions (29) should be 

satisfied. 

 

 

 34. – Equations (26) or (27), or analogous ones for the cases when p > 3, permit us to write out 

immediately the equation that serves to determine the solutions by variation of arbitrary order. 

 Set: 

1 2

( , )

( , )

i jx x

 




 or (ij)  ij . 

One has: 

( )ij

ij

M i j   = 0 , 

or 

( )
( )

ij

ij

M i j
i j M

t t

 

 
+   = 0 . 

 

One must then exhibit (i j). That operation will turn the Mij into Mik and Mkj (26). Before permuting 

the indices i, j, and k, one will have (26): 

 

( )
ij

i j
M

t




 = ( ) ( )

j i
ij

i j k k k

X X
M i k k j

x x

 
+ 

  
  , 

so: 

(26)     
ij

t




 = 

j i
ik kj

k k k

X X

x x
 

 
+ 

  
  . 

One deduces from (27) that: 

(27)    
ijl

t




 = 

jl i
ijk jlk lik

k k k k

XX X

x x x
  

  
+ + 

   
  . 

One recalls that: 

ij

t




 = 

ij ij

k

k k

X
x t

  
+

 
  

by virtue of equations (1). 

 

 

____________ 



CHAPTER VIII 

 

SOLUTION BY VARIATION 
 

 

 35. Theorem: In order for the two equations: 

 

(30)    

0,

0,

k

k k

k

k k

X
x t

x

 




 
+ =  


 =

 




 (k = 1, 2, …, n) 

 

form a Jacobian system, it is necessary and sufficient that (k) should be a solution by variations 

of equations (1): 

(1)      i

i

x

X


 =  t . 

 

 Proof. – Write the two equations (30) in the form: 

 

(30)     
( ) 0,

( ) 0.

A

C





=


=
 

 

 In order for the system to be Jacobian, it is necessary and sufficient that (*): 

 

A [C ()] – C [A ()]  0 , 

or that: 

(31)    i i i
k k

k k k

X
X

x t x

 


   
+ − 

   
  = 0 . 

 

Those are precisely the n equation (9) of no. 16.   Q.E.D. 

 

 Theorem: 

 

 If  is an integral of equations (1) then i

i ix







  will once more be an integral of those 

equations if (i) is a solution by variations of those equations (1). 

 

 Similarly, if  is an integral of: 

 

 
 (*) Cours d’Analyse by C. JORDAN, t. III, 1899, pp. 70-79. 
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k

k kx







 = 0 

 

then A () will also be an integral of that equation. 

 Indeed, since  is an integral of equations (1), one will have: 

 

A ()  0 , 

so 

A [C ()]  0 , 

or 

C () = an integral of A () = 0 . 

 

 Remark. – Equations (30) form a Jacobian system, so they will admit n – 1 distinct common 

integrals. If C ()  0 or if A ()  0 then one will conclude that  or  is a common integral to 

the two equations (30). 

 The second equation of the system (30) admits the integral t ; it is not an integral of the system. 

The arbitrary function F (t) is not an integral that is distinct from it. 

 

 Theorem: 

 

 If n is odd then one will have: 

  i = 
iM

M
. 

 If n is even then one has: 

  i = 
| | iM

M

−
   (i = 1, …, n) . 

 

 Proof. – Set i = i / M , in which M is a multiplier. I say that the i are the coefficients of an 

invariant of order n – 1, or one with the sign changed (n even): 

 

 i

t M




  = i i

k k

X

x M




  

 

(9) = 
2

i
i

M
M

t t

M

 


 
−

 

 

 = 
2

i k
i

k k

X
M M

t x

M







+




. 

It is therefore necessary and sufficient that: 
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i k k
i k

k kk k

X X

t x x


 



 
+ −

 
   = 0 . 

 

[Compare those conditions to (18) and (19) in no 23.] 

 

 Remark. – That theorem gives the true significance of the one by KOENIGS (no. 25). 

 

 Corollary. – Let n be odd. One deduces from M i = Mi that i

i i

M

x




  is a multiplier. 

Therefore, logi
i

i i i

M
x x




  
+ 

  
  is an integral of equations (1). (JORDAN’s Cours d’Analyse, 

t. III, pp. 84). 

 

 

 36. Theorem: 

 

 The canonical system of no. 11 admits the solution by variations: 

 

  

,

,

i

i

i

i

y

x








=




= −



 (i = 1, 2, …, n) 

 

when  is a solution to that system. (Méthodes Nouvelles, by H. POINCARÉ, t. I, page 166.) 

 

 The first n conditions (31) can be written: 

 

(i , H) + i

t




 = 

2 2

k k

k i k i k

H H

y x y y
 

 
+

   
  . 

 

 One can prove that there are satisfied identically for the solution that was just indicated, i.e., 

that one has: 

, i

i

y
H

y t








  
+ 

  
  ,

i

H

y


 
 

 
 . 

   

 That is what will happen. Since  is an integral: 

 

  0 , 

or 

(, H) + 
t




  0 . 
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 If we differentiate that identity with respect to i then we will get the preceding identity that 

was to be established. 

 

 Corollary. (POISSON’s theorem): 

 

 If 1 and 2 are two integrals of the canonical system (no. 11) then (1, 2) will also be an 

integral of that system. 

 

 That will result immediately from the second theorem in the preceding section. One will have 

that: 

1 2 1 2

i i i i ix y y x

       
− 

    
  

is an integral. 

 

 N. B. – The theorem that we just cited can be considered to be a generalization of POISSON’s 

theorem. It certainly allows one to better understand the true sense and scope or power of the latter 

than the proof that one usually gives, which is a proof that based upon the POISSON identity. 

 

 

 37. – Let us write the system (30) as follows: 

 

(30)     

0,

0,

l

l l

l

l l

X
x

x







= 


 =

 




  

1

1

1

1,2, , 1,

1,

1,

0

n

n

n

l n

X

x



+

+

+

= + 
 

 
 
 

 

 

 Set: 

  
lx




 = pi , 

so 

  l

q

p

x




 = 

q

l

p

x




  (q = 1, …, n + 1) , 

 

A [C ()] – C [A ()]  
q l

l q q

q l l l

X
X p

x x




 
− 

  
 . 

 

 The latter expression is identical to the generalized POISSON bracket: 

 

(A (), C ()) , 

 

in which xl, pl are the conjugate variables. 

 The necessary and sufficient conditions (31) can then be written: 
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(31)     (A , C ) = 0 . 

 

 Of course, that identity must be true for any . Each of the coefficient of  / xl or pl in that 

expression must be identically zero. For example, if  is an integral of (1), i.e., if A   0 then one 

should not conclude from this that the condition (31) is satisfied identically. By definition, one 

would then have (0, C ) = A C  . 

 The , and as a result, the pl , remain indeterminate. 

 

 Theorem: 

 

 If i and i   are two solutions by variation of equations (1) then one will deduce the solution: 

 

i i
k k

k k kx x

 
 

  
− 

  
  . 

 

 Proof. – Set C
  = l

l lx








 , and recall the POISSON identity: 

 

( ( , )) ( ( , )) ( ( , ))A C C C C A C A C        
  + +   0 . 

 

The last two terms on the left-hand side are identically zero for any  ; hence: 

 

( ( , ))A C C  
  = 0 . 

 

 Therefore, ( , )C C 
  = 0 will form a Jacobian system with the first of the two equations (30): 

 

( , )C C 
  = C C C C 

 −  = l l
q q

l q q q ix x x

  
 

   
−     

  . 

 

One remarks that the coefficient of  / xn+1 is identically zero, since: 

 

n+1  0 , 1n +
   0 .  Q.E.D. 

 

 Remark. – One can also deduce that theorem from (31) and similar identities in which i has 

been replaced with i   . One differentiates the n identities (31) with respect to xj and multiplies the 

results obtained by 
j  . One then takes the sum of corresponding sides of the n identities that are 

deduced from (31); one does that for the other n identities, as well. One subtracts corresponding 

sides of the two identities thus-obtained. The new identity will permit one to show that: 

 

i i
k k

k k kx x

 
 

  
− 
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satisfies (31) identically. 

 (Compare that with no. 71 in JORDAN’s treatise, t. III.) 

 

 Corollary: 

 

 If iM  and iM   are the coefficients of an invariant of order n – 1 (one supposes that n is odd, 

for example), and if M is a multiplier . .
i

i i

M
e g M

x

 
= 

 
  then I will say that: 

 
j j

i i

j j

i j i

M M
M M

x x

x M

  
 − 

   
 
 
 

  

is also a multiplier. 

 

 Proof. – One deduces 
i   from i = /iM M , 

i  = /iM M . One knows that 
iM   = iM  . 

 One deduces that 
i

i i

M

x




  is a multiplier from iM  . After some obvious reductions, that 

multiplier can be put into the form that was indicated by the corollary. 

 

 

 38. – In order for xi / Xi = yi / Yi = t to admit the solution in no. 36, it is necessary and 

sufficient that the system should admit the invariant I2 = dx dy  (no. 32). 

 

 Proof. – One deduces   / yi or i from   0 . One equates that value to the one that was 

given in (31). Hence, one gets two condition equations upon annulling the coefficients of  / xk 

and  / yk . One performs the same calculations for i . 

 

 

 39. – LAPLACE’s theorem (no. 26) gives: 

 

  1( 1)i n

i i

i

  −−  = 
n , 

  2 2( 1)i j n

ij ij

i

 + −−  = 
n , etc., 

respectively, if we set: 

  i   
1

ix






 , 

 

  1n

i −   1 1 1

2

( , , , , , )

( , , )

i i n

n

x x x x

 
− −


 , 
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  2

ij   
1 2

( , )

( , )

i jx x

 




 ,    (i < j) , 

 

  2n

ij −   
1 1 1 1 1

3

( , , , , , , , , )

( , , )

i i j j n

n

x x x x x x

 

− − − −


 , 

 

  n   1

1

( , , )

( , , )

n

n

x x

 





 . 

 

 If one adopts that notation then, from no. 25, one will have: 

 

1( 1)i n

i −−  = iM

M
 . 

From no. 21: 

n  = 0M

M
, 

 

in which M0 denotes an integral of equations (1); from no. 35: 

 

( 1)i

i−  = iM

M
 . 

One likewise has: 

(32)     2( 1)i j n

i+ −−  = 
ijM

M
 . 

Indeed, let In = 1 nM dx dx . 

 One then deduces: 

In = 2( 1)i j n

ij i j

ij

M dx dx+ −−   (i < j) , 

 

which shows that 2( 1)i j n

ijM + −−  is a coefficient Mij of a second-order integral invariant. 

Conversely, ( 1) /i j

ijM M+−  can be considered to be a solution by variation of order n – 2. Indeed, 

one will have that: 

 

(33)     
2ij n

ij

ij

M  −  is an integral 

if one agrees to write: 

 

In−2 = 1 1 1 1 1

ij

i i j j n

ij

M dx dx dx dx dx dx− + − +  . 

I say that one will have: 
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(33)    
( 1)i j

ijij

ij

M
M

M

+−
  is an integral  (i < j) . 

 

One deduces In from I2 and In−2 , and thus a multiplier. It is divided by another multiplier, which 

gives an integral. Q.E.D. 

 

 In what follows, we write (ij) for 2( 1)i j n

ij+ −− . (i < j). 

 By virtue of formula (32), we will have: 

 

(34)   ( )ij
t





= ( ) ( ) ( )k k k

ij kj ik

k k i j

X X X

x x x
  

   
− − 

    
  (k = 1, 2, …, n) . 

 

 If k becomes > j in those formulas then one must replace (kj) with − (kj), because in the 

foregoing, one has assumed that the first index is the smaller of the two. One must perform a 

change of sign because: 

(kj) = 
k jM

M
 = − 

j kM

M
 = − (kj) . 

 

One makes an analogous change when k is < i . 

 One deduces immediately from (34) (no. 34) that: 

 

(35)   
( )

( ) ( ) ( )
ij

jij kj ikk i

k k k k

XX XM
M M M

t x x x





  
+ − − 

   
  = 0 , 

 

in which ( )ijM is written for ( 1) ( )i j ijM+− . 

 Conclusion: Thanks to the solutions by variation of higher order, we can find the conditions 

that the coefficients of In−p must satisfy when we know the ones that relate to the coefficients of Ip 

(no. 31). 

 

 

 40. – Recall the change of variables that was defined by equations (13) that were given in no. 

19. 

 One will have: 

iy






 = i k

k k

y x

x 

 

 
  . 

 Once more, set: 

kx






  k , 

iy






 k . 

Hence: 
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  k = i
k

k k

y

x





  . 

One will likewise find that: 

(38) i = i
k

k k

x

y





  . 

 

(i) will be a solution by variation of (14). I say that the i will be integrals of equations (1) if the 

change of variables is such that the transformed equations take the form of equations (16). 

 Indeed, one will deduce the identity i i
k

k k

X
x t

  
+

 
   0, in which i must be replaced with 

its previously-given value, from the facts that iy

t




 or i i

k

k k

y y
X

x t

 
+

 
  Fi (t) and that (i) satisfies 

(9) identically. 

 One also shows that i is identically zero when the variation is taken in conformity with 

equations (16). Since the i are integrals of the latter equations, one concludes that they will also 

be integrals of the original equations (1). (See no. 19.) 

 In addition, it is necessary and sufficient that the coefficients of an integral invariant of 

arbitrary order for equations (16) should be integrals of the latter equations, or (what amounts to 

the same thing) equations (1). Indeed, the conditions that those coefficients must satisfy will 

become: 

 Mijk…  0 

for equation (16). 

 

 Remark. – That change of variables, although impractical in general, takes on very great 

importance in POINCARÉ’s treatise (Méthodes Nouvelles, t. III, pp. 7). 

 Here is one application: 

 Suppose that  represents an algebraic form with respect to the i , and that the form is an 

integral of the equations: 

i

i

x

X


 = i

i
k

k k

X

x









 = t . 

 For example, if one has: 

I1 = ( )
1 1

1/

p p

p

A dx dx     

 

then it will suffice to replace the dx in the expression under the integral sign with a first-order 

solution by variation in order to obtain a form such as . 

 Equations (38) define a linear substitution whose modulus is 1

1

( , , )

( , , )

n

n

x x

y y




 or 

1

M
, in which M 

denotes a multiplier of equations (1). Let  be the transformed form (38). Let i denote an invariant 

that is supposed to be known for the form  an let i  denote the same invariant when it is taken 

for the transformed form . Since the transformed invariant i  is a function of the coefficients of 
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i that enter into , it will be an integral of equations (1). Indeed, one can deduce the integral 

invariant: 

1I   = ( )
1 1

1/

p p

p

A dy dy   
  

 

from , and we have seen that the coefficients of that integral invariant are integrals of equations 

(1). 

 One then has: 

i  is an integral of (1). 

 On the other hand, one has: 

i  = 
1

q

i
M

 
 
 

, 

 

since 1 / M is the modulus of the linear substitution (38); however, that modulus is generally 

unknown. Let  be a known multiplier, so: 

 
q

M
i



 
  

 
 = qi  −  is an integral of (1). 

 

For example, suppose that we know n distinct integral invariants of the form I1 = i i

i

M dx . The 

determinant that is formed by means of the 
2n  coefficients Mi is an invariant that is common to 

those n forms in . In this example, q = 1. The determinant will then be equal to a multiplier. 

 If we replace the Mi in that determinant with 1n

iM  −  then we will see that the determinant that 

is formed by means of n solutions by variation of order n – 1 is equal to a multiplier raised to the 

(1 – n)th power. 

 Now let c be a covariant of  of weight p and degree q with respect to the . As before, we 

will have: 

c  = 
1

p

c
M

 
 
 

. 

 

The coefficients of the  in c  are functions of the coefficients of the  in , which are then 

integrals of equations (1). 

 One will deduce from: 
p

M
c



 
  

 
 = 

p

c


 

that: 

iI   = 

p

q
M

c


 
  

 
 , 

 

after one has the replaced the i with the dyi . Hence, one finally has: 
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I1 = 
pq c  −

 . 

 

(The i were previously replaced with dxi in c.) (Méthodes Nouvelles, t. III, pp. 36). 

 One can extend the foregoing to solutions 1n −  of order n – 1. If we perform the latter change 

of variables that was just now in question then we will get (n odd): 

 

(38)    1n

i −  = 
11 1

1 1

( , , )

( , , )

ni i
k

k k k

x x

y y
 −+ −

+ −




  . 

 

Equations (38) also define a linear substitution with respect to the 1n − . The modulus of that 

substitution is precisely the adjoint or inverse determinant to 1

1

( , , )

( , , )

n

n

x x

y y




; hence, its modulus will 

be equal to 

1
1

n

M

−

 
 
 

. 

 While preserving the previous notations, we will again have that: 

 

i  = 

( 1)
1

p n

i
M

−

 
 
 

 is an integral of (1), 

so: 

i = 
( 1)p n −

. 

 

The determinant that is formed by means of the 
2n  coefficients of the n distinct integral invariants 

of order n – 1 is a multiplier with exponent n – 1. Hence (upon replacing iM  with iM   ), we will 

deduce that 
n  = −1 (no. 20). The case in which n is even will be treated in the same manner. 

 

 

 41. – Let us consider the case in which there are several independent variables. 

 In order to avoid pointless complications, we suppose that there are only two independent 

variables t1 and t2 . We let: 

 

(39)    xi = 1 2

1 2i iX t X t +    (i = 1, 2, …, n) 

 

be a system of n completely-integrable total differential equations. We will then have: 

 
2

1 iX  = 1

2 iX  

upon setting: 

1t






  1   

1

1

i

i i

X
x t

 
+

 
 , 
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2t






  2   

2

2

i

i i

X
x t

 
+

 
 . 

Sometimes we can also set: 

1 1

2 2

,

,

A

A





  

  
  (see no. 37). 

 

In order for  to be an integral of (39), it is necessary and sufficient that: 

 

1   0 , 

 

2   0 . 

 

Analogously, in order for I1 = i i

i

M dx  to be an integral invariant of (39), it is necessary and 

sufficient that: 
1

1
k

i k

k i

X
M M

x



+


  = 0 , 

2

2
k

i k

k i

X
M M

x



+


  = 0 . 

 

In order for (i) to be a solution by variation of (39), it is necessary and sufficient that one should 

have: 

(40)     

1

1

2

2

0,

0.

i
i k

k k

i
i k

k k

X

x

X

x

  

  

 
− =




 − =
 





 

Set: 

k

k kx





   C  . 

The system (40) can be written: 

(40) 
1

1

2

2

,

.

i i

i i

A C X

A C X





 =


=
 

 

Therefore, if (i) is a solution by variation of (39) then the system: 

 

(41) 

1

2

0,

0,

0

A

A

C

 =


 =
  =

 

will be a Jacobian system. 

 One will have: 
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(42) 

1 2 2 1

1 1

2 2

,

,

.

A A A A

A C C A

A C C A

 = 


 = 
  = 

 

 If  is an integral of: 

A1  = 0 

 

then A2  and C  will also be integrals of that equation, etc. 

 Upon using the POISSON brackets (no. 37), the identities (42) can be written: 

 

  (A1 , A2 )  0 , 

  (A1 , C  )  0 , 

  (A2 , C  )  0 . 

 

 One will deduce from this (no. 37) that if (i) and ( )i   are two solutions by variation then 

l l
q q

q q qx x

 
 

  
−    

  will also be a solution by variation of the first order. 

 All of what was said in no. 37 extends to the case in which there are several independent 

variables with the same facility. 

 

 

____________ 



CHAPTER IX 

 

CHARACTERISTIC EXPONENTS 
 

 

 42. – The n functions  of x1, …, xn , and t, which collectively constitute a first-order solution 

by variation of the equations: 

(1)      i

i

x

X


 =  t , 

 

are determined by the n partial differential equations: 

 

(31)    i i i
k k

k k k

X
X

x t x

 


   
+ − 

   
  = 0 . 

 

From our conventions, the system (31) can be replaced with the 2n equations: 

 

(43)    i

i

x

X


= i

i
k

k k

X

x









 =  t . 

 

The complete integration of the latter system will obviously be more difficult than that of the 

system (1). We shall therefore not attempt to perform that integration. POINCARÉ (Méthodes 

Nouvelles, t. I, page 162) substituted a solution i (t) of equations (1) for the xi in the Xi / xk . 

Thanks to that artifice, the system (43) will become: 

 

(44) i

t




 = i

k

k k

X

x





 . 

 

 That is a system of n linear equations in the x in which the coefficients Xi / xk are known 

functions that depend upon only t. 

 In order to make the study of the system (44) easier, POINCARÉ supposed that the Xi and the 

solution i (t) are periodic functions of t of period T. Equations (44) then become a system of linear 

equations in the  with periodic coefficients in t of period T. 

 See Méthodes Nouvelles, tome I, pp. 63-68, 162-201; tome III, pp. 48-63. 

 

 N. B. We have cited only the parts of POINCARÉ’s admirable work that refer to the theory of 

characteristic exponents and integral invariants directly. 

 

 

___________ 



CHAPTER X 

 

INTEGRAL COVARIANTS 
 

 

 43. – The notion of an integral covariant is an extension of that of an integral invariant. We 

saw in no. 4 that if the variation of an arbitrary element of an integral that is extended over a 

manifold of order p is identically zero then that integral of order p will be an integral invariant of 

order p. We likewise say: If the (q + 1)th variation of an arbitrary element of an integral that is 

extended over a manifold of order p is identically zero then that integral of order p is an integral 

covariant of order p and degree q. Let Ip denote an integral invariant of equations (1) in the 

foregoing. Similarly, let Cp,q denote an integral covariant of order p and degree q of equations (1). 

 Thus: 

Cp,q  Ip , 

 

  
,p qC

t




  Cp,q−1 , etc. 

 

 

 44. – Consider the canonical system of no. 11. If H is a homogeneous function of degree p with 

respect to the x then one will have: 

C1,1 = i i

i

x dy  . 

(Méthodes Nouvelles, t. III, page 63) 

 Indeed: 

 i i

i

x dy
t




   = i i

i i i

H H
dy x d

y x

  
− 

  
  

 = i

i i

H
d H x

x

 
− 

 
  

 = (1 – p) dH , 

 

 2

i i

i

x dy    0 .  Q.E.D. 

 One deduces from C1,1 that: 

I1 = C1,1 + ( 1)p t dH−  . 

 

 If H is a homogeneous function of degree q with respect to the y then one will have: 

 

C1,1 = i i

i

y dx , 

 I1 = C1,1 + (1 )q t dH−  . 
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 If H is a homogeneous function of degree p with respect to x and degree q with respect to the 

y then  x y will be a co-integral of degree one, i.e., one will have 2 x y    0 . 

 If H  Hp + Hq , in which Hp represents a homogeneous function in the x of degree p that is 

independent of the y and Hq represents a homogeneous function in the y that is independent of the 

x then one will have: 

C1,1 = ( )i i i i

i

q x dy p y dx− , 

  I1 = C1,1 + (p q – p – q) t dH . 

Indeed: 

 
1,1C

t




 = i i i i

i i i i i

H H H H
q dy p x d p dx p y d

y x x y

    
− + − 

    
  

  = q i i p i

i i i i

H H H
q dH q dx q dx p dH p dy

x x y

   
− + + − 

   
  

  = ( )p q p q dH+ − . 

 

 Example. – Let H = 
2

2

i

i i

y

m
  − U, in which U is a function (of force) that is supposed to be 

homogeneous in x of degree p and independent of the y . That value for H presents itself in 

dynamics. 

 If one sets q = 2 in the foregoing then one will get: 

 

I1 = (2 ) ( 2)
y dy U

x dy p y dx p t dx
m x

 
− + − − 

 
    . 

 

(Méthodes nouvelles, t. I, page 171 and t. III, page 66) 

 Suppose, in addition, that p = − 2 (which will be the case when an attraction is inversely 

proportional to the cube of the distance). One will then have: 

 

C1,1 = d x y . 

 In dynamics, y = 
x

m
t




, so: 

C1,1 = 
2d m x

t





 
 
 

  . 

 

Therefore, 
2m x  is a co-integral of degree two, i.e.,: 

 
3 2

3

m x

t






  0 . 

 If one has: 
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C1,1 = i i i i

i

M dx N dy+  

then i i

i i i

M N

y x

 
−

 
  will be a co-integral of degree one (no. 11. Analogous proof.) 

 

 Remark. – The theorems concerned with integral invariants thus find their generalization in 

the theory of integral covariants. Nonetheless, a certain prudence is necessary. For example, it is 

not precise to say that the quotient of two co-multipliers of degree one is a co-integral of degree 

one. 

 

 

 45. – Let: 

Cn,1 = 1 nM dx dx , 

 

in which we suppose that M is independent of t. Thus, by virtue of no. 18: 

 

In = 1
i

n

i i

X M
dx dx

x

 
 

 
 , 

 

and if the Xi do not include t explicitly then: 

 

(45)     

i
k

i i

k

X M
X

x

x

 
  

 




 = 0 , 

 

That is the equation that serves to determine the co-multipliers of degree one, which will be 

independent of t when the Xi do not include t explicitly. 

 If the equations are canonical (no. 11) then one will the multiplier (M, H) from Cn,1 . Hence, 

one concludes that in the case of the canonical equations, equation (45) can be written: 

 

((M, H) H) = 0 . 

 

M will then be a co-integral of degree one. 

 

 

 46. – The notions that were developed in Chap. VI extend easily to the integral covariants. No. 

26 becomes: If one knows Cp,q and 
,p qC    then one can deduce 

,p p q qC  + +
 . Meanwhile, if p = p  is 

an odd number then 
2 ,p q qC +

 will be identically zero. 

 If p + p  = n then one will obtain a co-multiplier of degree q + q . That is why one can 

sometimes deduce a co-multiplier from several known co-integrals and covariants. 

 The theorem in no. 27 becomes: If one knows Cp,q then one can deduce Cp+1,q . 

 If Gp,q represents a relative integral covariant then one will once more have the theorem: If one 

knows Gp,q then one can deduce Cp+1,q from it. 
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 The theorem in no. 29 generalizes as follows: Any relative integral covariant Gp,q is the sum 

of an integral of an exact differential Ep and an (absolute) integral covariant Cp,q . 

 The theorem in no. 30 becomes: If one knows r distinct solutions by variation of order one and 

Cp,q then one can deduce Cp−r,q (when one supposes that r  p). If r = p then one will get a co-

integral of degree q. 

 

 Application. – Let n be odd. One deduces from: 

 

Cn−1,1 = 1 1

i

i i

i

M dx dx+ −  

that 

Cn,1 = 
1

i

n

i i

M
dx dx

x




 , 

 

so 

i

k

i i

k

M
X

x

x









 will be a multiplier if the iM  do not include t explicitly (no. 45). If the equations 

are canonical (n even) then 
| | i

i i

M

x

 −


  will be a co-integral of degree one (no. 45). 

 One deduces from: 

Cn,1 = 1 nM dx dx  

that (n odd): 

Cn−1,1 = 1 1

i

i i

i

M dx dx + − , 

 

in which i  represents a solution by variation.  i

i i

M

x




  will be a co-multiplier of degree one. 

i

i i

M X

x




  will be multiplier when the X do not exclude t explicitly (no. 45). 

 

___________ 



CHAPTER XI 

 

APPLICATION TO THE THEORY OF VORTICES 
 

 

 47. Hypothesis: 

 

 “The continuous fluid that we shall study is supposed to be absolutely devoid 

of diffusibility. If we trace out a closed surface in the fluid at an arbitrary instant 

then the part of the fluid that is located on one side of that surface will never mix 

with the rest of it. The parts of the fluid that define the surface will never cease to 

define the same continuous surface, which moves and deforms with the fluid. In 

particular, one can divide the entire volume into elements that always include the 

same parts of the fluid despite the changes in size and form that they might 

experience, and they move like material points.” (*) 

 

 Following the notation of EULER, let u, v, w be three rectangular components of the present 

velocity of the fluid at x, y, z. 

 The elements of the fluid that was just in question are rectangular parallelepipeds that have 

volumes of dx dy dz . The mass that is enclosed in dx dy dz will be  dx dy dz , if  represents the 

density of the fluid at x, y, z at the present instant t ; one has written  for  (x, y, z, t). The element 

dx dy dz displaces and deforms during the time interval that is found between t and t +  t . That 

displacement will be defined completely by the equations: 

 

(46)     
x

u


 = 

y

v


 = 

z

w


 =  t 

 

when u, v, w are functions of x, y, z, and t that are supposed to be known. From the assumed 

hypotheses, the matter  dx dy dz that is contained in the element dx dy dz will neither decrease 

nor increase during the motion (46); in other words, one assumes that: 

 

 [ dx dy dz]  0 , 

 

in which  is a variation that is defined by equations (46). 

 The quantity in brackets must be replaced with: 

 

1 2 3

( , , )

( , , )

x y z


  




 

 

in order for the limits or boundaries to be fixed (no. 3). 

 Since the variation of that quantity is zero, it will be likewise obvious that an infinitude of fluid 

elements dx dy dz will collectively define a three-dimensional manifold of arbitrary form. 

 
 (*) M. BRILLOUIN, Recherches récentes sur diverses questions d’Hydrodynamique, Paris, Gauthier-Villars, 

1891, page 10. 
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 Therefore: 

I3 = dx dy dz  

 

will be an integral invariant of order three of equations (46). 

 The function  will then be a multiplier for equations (46). Hence (no. 18): 

 

u

t x

  
+

 
  = 0 , 

 

which shows that the preceding hypotheses amount to establishing a necessary and sufficient 

condition between the motion and the density of the fluid. If the functions u, v, w do not include t 

explicitly (permanent regime) then 
t




, 

2

2t




, etc., will also be multipliers. One will then deduce 

some integrals of equations (46). 

 One saw (no. 29, cont.) that the necessary and sufficient conditions for (46) to admit the relative 

invariant: 

J1 = u dx v dy wdz+ +  

are: 

(47)     
u

H

x







 = 
v

H

y







 = 
w

H

z







 =  t , 

 

in which H is a function of x, y, z, t . Assume that the motion of an arbitrary point of the fluid 

considered satisfies the six equations (46) and (47), so J1 will be a relative invariant of those six 

equations. The latter supposition does not contradict the preceding hypotheses because that fluid 

considered is devoid of internal friction that might be produced by diffusibility. In addition, we 

have seen (no. 12) that J1 can never be an absolute invariant. I say that J1 can sometimes be a 

covariant of degree one, and indeed calculate  J1 . 

 

t




(u dx + v dy + w dz) = 

2 2 2

2

u v w
d H

 + +
+ 

 
 . 

 

 Set H = H − 
2 2 2

2

u v w+ +
. 

 Equations (46) and (47) become: 

 

(48)   
x

u




−



H
 = 

y

v




−



H
 = 

z

w




−



H
 = 

u

x







H
 = 

v

y







H
 = 

w

z







H
 =  t , 

   

in which the variables u, v, w play the same role as x, y, and z. 
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 Equations (48) are canonical, so if H does not include t explicitly then H or H – 
2 2 2

2

u v w+ +

will be an integral. In that case, J1 will be a covariant of degree one if 2 2 2u v w+ +  is an integral; 

in other words, if: 

 

(49)     
H H H

u v w
x y z

  
+ +

  
  0 . 

 

That is what happens, for example, when the fluid rotates with a uniform motion around a fixed 

axis in the manner of a solid body. Under that motion, the velocity V of a molecule remains 

constantly the same during its displacement; hence: 

 
2V   0 , 

or 
2 2 2( )u v w + +   0 , 

 

in which the variation is taken in conformity with equations (46). 

 

 N.B. – By hypothesis, u, v, w satisfy the other three equations (47). The condition (49) 

expresses the idea that the velocity of each fluid point is normal to the total acceleration of that 

point. Indeed, equations (46) and (47) can be written: 

 

(50)     

2

2

2

2

2

2

,

,

.

x H

t x

y H

t y

z H

t z













 
=





=


 

=


 

 

 One will deduce the following absolute invariant from the relative invariant J1 : 

 

I2 = dy dz dz dx dx dy  + +   

if one sets: 

  
w v

y z

 
−

 
 = 2  , 

  
u w

z x

 
−

 
 = 2  , 

  
v u

x y

 
−

 
 = 2  . 

 

The vector with the components (, , ) is what HELMHOLTZ called the vorticity. One also has 

that (, , ) are the components of the rotational velocity of the parallelepiped element around its 
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center of gravity (x, y, z). That vorticity or rotation will be zero if the functions u, v, and w are the 

partial derivatives with respect to x, y, and z, respectively, of the same function, which one calls 

the velocity potential. 

 One will have  I2  0 . One calculates that variation by means of the formula in no. 24: 

 

t




 = − 

u v w u u u

x y z x y z
   

      
+ + + + + 

      
, etc. 

 

 Particular case. – The function  is an integral of (46) (incompressible fluid or perfect fluid): 

  0 , so  [dx dy dz]  0 or: 

I3 = dx dy dz  , 

 

which means that an arbitrary fluid element can deform, but not change in volume (incompressible 

fluid) during the motion that is determined by (46). Equations (46) admit the multiplier 1 in that 

case; it is necessary and sufficient that one should have: 

 

u v w

x y z

  
+ +

  
  0 . 

Hence: 

t




 = 

u u u

x y z
  

  
+ +

  
, etc. 

or 

t




 = 

u v w

x x x
  

  
+ +

  
, etc. 

One deduces from I3 that: 

J2 = z dx dy x dy dz y dz dx+ +  . 

 

 Since the system (48) is canonical, it will admit the invariants: 

 

  I2 = du dx dv dy dwdz+ + , 

  I6 = dx dy dz du dv dw  . 

 

 In the case where H is homogeneous and of degree p in x, y, z, one will have (no. 44): 

 

C1,1 = (2 )x du pu dx−  , 

I1 = (2 ) ( 2)x du pu dx p t d− + −  H  . 

 

 

 48. Case of a permanent regime. – Suppose that the functions u, v, w that enter into equations 

(46) do not include t explicitly. One then supposes that when one is given the coordinates x, y, z 

of a fluid point, one knows the velocity (u, v, w) of that point for any value of t. In other words, all 
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of the elements that pass through (x, y, z) in succession will have the same velocity. That is what 

the permanent regime consists of. In that case, one will then have: 

 

u

t




 = 0 , etc. 

 

Therefore, (u, v, w) will be a solution by variations to equations (46). 

 Recall that J1 = u dx v dy wdz+ + . 

 We know that J1 = I1 + E1 (no. 29). 

 When we preserve the notation of that no., we will have: 

 

R = H + 
2 2 2

2

u v w+ +
, 

 

 E1 = dU , 

 

U

t




 or 

U U U U
u v w

x y z t

   
+ + +

   
 = R , 

 

I1 = 
U

u dx
x

 
− 

 
  

 

  = u dx v dy w dz  + +  

upon setting: 

  u  = 
U

u
x


+


, 

  v  = 
U

v
y


+


, 

  w  = 
U

w
z


+


. 

 

 That amounts to decomposing the velocity V of an arbitrary element of the fluid into two other 

velocities, one of which derives from a velocity potential and is consequently incapable of 

producing vortices. One deduces from I1 (permanent regime) that: 

 

u u = constant 

or 

cos( )V V V V   = constant. 

 

 One then has the theorem: 
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 During the permanent motion of a fluid, the geometric product of the velocity of an element 

with the component of that velocity that produces vortices will be constant. (For the other 

component of velocity, see U.) 

 

 That decomposition of the velocity (u, v, w) can be accomplished in an infinitude of ways 

because U is determined by only its variation, so one can add an integral of (46) to U. 

 The preceding theorem can be interpreted geometrically by considering the trajectory that is 

described by one of the fluid elements. 

 One deduces from: 

I2 = dy dz  

that: 

I1 = ( )w v dx −  . 

 

 One can deduce a second-order invariant from I1 . When it is combined with I1, that will give 

a multiplier of equations (46). Similarly, one can derive a second-order invariant from I3 = 

dx dy dz . 

 

 

 49. – The lines that have the vector that represents the velocity as their tangent at each point 

are called streamlines. Their differential equations are: 

 

Dx

u
 = 

Dy

v
 = 

Dz

w
. 

 

We shall not write x / u = … since t is supposed to be constant. We shall not write dx / u = … 

since we would like to preserve the symbol d for the differentials that are not subject to the 

differential equations. The streamlines are identical to the trajectories that are described by the 

fluid molecules when u, v, w do not include t explicitly. 

 The lines that have the vector that represents the vorticity as their tangent at each point are the 

vortex lines. Their differential equations are: 

 

  
Dx


 = 

Dy


 = 

Dz


  (t constant). 

 

 A vortex surface is a surface such that the tangent plane passes through the vortex at each of 

its points. Therefore, if (l, m, n) are the direction cosines of the normal at the point (x, y, z) of that 

surface then one will have: 

l  + m  + n  = 0 . 

 Therefore: 

I2 = dy dz dz dx dx dy  + + , 

or 

( )d l m n   + +  
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will be identically zero when extended over that surface. One will also have: 

 

I2 = J1 = 
C

u dx v dy wdz+ +  = 0 , 

 

in which J1 is a curvilinear integral that is extended over the closed curve C that is traced on the 

vortex surface, such that the region that it bounds is supposed to be simply-connected, i.e., there 

are no holes in it. Conversely, if a surface is such that any J1 that is extended over an entire closed 

curve that is traced on it and bounds a simply-connected region is zero then that surface will be a 

vortex surface. 

 

 Theorem: 

 

 In order for the vortex surface to be conserved in time it is sufficient that: 

 

 
u v w u u u

t x y z x y z


   



      
+ + + − − − 

      
  0 , etc. 

 

Indeed, I2 = dy dz  will be an integral invariant. If the integral I2  0 at the instant t then that 

integral will still be  0 at the instant t +  t . 

 Those conditions are not necessary, because it is not necessary that I2 = dy dz  should 

be an invariant. The element d, whose projections are dx dy, dy dz, dz dx, is no longer arbitrary. 

Let us look for the necessary conditions. In order to do that, we remark that I2 is provided by: 

 

J1 = u dx d+  , 

 

in which  is an arbitrary uniform function of x, y, z, and t. J1 is an integral that is taken along a 

closed curve that is traced on a vortex surface at the instant t : 

 

 1J

t




  = 

2

2

u u
dx d dx

t t x

  

 

   
+ +   

  
      

 

  = 
u u u

u v w dx d
x y z t






   
+ + + 

   
  . 

 

 Let us transform those curvilinear integrals into surface integrals. The latter will give an 

integral that is identically zero, because: 

 

d
t




  = 
2 2

dx dy
t x y y x

  



  
− 

    
   0 , 
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1J

t




= 

C B A C B A
d l m n

y z z x x y


          
− + − + −     

          
  . 

One has set: 

A = 
u u u

u v w
x y z

  
+ +

  
 , 

 

B = 
v v v

u v w
x y z

  
+ +

  
 , 

 

C = 
w w w

u v w
x y z

  
+ +

  
 . 

 

(l, m, n) are again the direction cosines of the normal at (x, y, z) to the vortex surface considered at 

the instant t. When quantity in brackets is equal to zero, that will give the necessary and sufficient 

condition for the vortex surface to be preserved. 

 

 Corollary. 

 

 When the vortex surfaces are preserved in time, the same thing will be true for the vortex lines. 

However, the converse is not true. 

 

 Indeed, the intersection of two vortex surfaces is obviously a vortex line. Let vortex surfaces 

S and S   pass a vortex line L (which is always possible). 

 When the time t has been subjected to the variation t, the surfaces S and S   will occupy new 

positions, but they will still be vortex surfaces, by virtue of the preceding theorem. Their 

intersection will be a vortex line. However, it is nothing but L at the instant t + t, therefore, etc. 

 Here is another proof of the conservation of vortex lines for the case in which dy dz  is 

an integral invariant. 

 Set: 

Dx


 = 

Dy


 = 

Dz


 =  

 

at the instant t . I say that the ratios Dx /  , Dy /  , Dz /  will again be equal to each other at the 

instant t +  t . In order to show that, calculate the variations of Dx /  , Dy /  , Dz /  , and show 

that those variations are equal to each other. 

 

 
x

D
t




 = Du = 

u u u

x y z
   

   
+ + 

   
 , 

 

 Dx
t




 = 

t


 


 = 

v w u u

y z y z t


    



     
− + + + +  

     
 . 
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 Since 
x

D
t




 = Dx

t




, one will have: 

 

  
u u u

x y z
   

   
+ + 

   
 = 

t




.  Q.E.D. 

 Set: 

 = 
( , , )

( , , )

x y z

  




 . 

 We know that (no. 18): 

t






 = 

u

x





  . 

Thus: 




 = 

 


, 

or 

 =   , 

 

in which  represents an integral of equations (46). 

 Set: 

   ( )−1 , 

 

in which  is an integral of equations (46). We know that  ( )  0 . Thus: 

 

 = 



 = 

Dx


 = 

Dy


 = 

Dz


 . 

 

 Theorem: 

 

 If I2 = dy dz  is an integral invariant then the ratios Dx /  , Dy /  , Dz /  will submit 

to variations that are equal to each other and proportional to the variation of the specific volume. 

 

 A vortex tube is a vortex surface that has a particular form. It is generated by the vortex lines 

that are drawn through the points of a closed curve. 

 Let C be a closed curve that is traced on the tube T and does not surround it. Therefore, C will 

bound a well-defined simply-connected region of the tube T. One will have 
C

u dx   0 , because 

that integral is equal to a surface integral that is extended over a simply-connected vortex surface. 

 Let C  be a closed curve that encircles the tube T. One will have: 

 

C
u dx


  = dy dz  , 
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in which the latter integral is extended over a surface that is arbitrary, but simply connected and 

bounded by C . Therefore, 
C

u dx  will be zero only in exceptional cases; its variation is zero. 

Let C  be another curve that encircles the tube T. One will have: 

 

C
u dx


  = 

C
u dx


  . 

 

Indeed, the latter integral will equal dy dz  when it is extended over, e.g., the region of the 

tube T that is comprised of C , C , and a simply-connected surface that is bounded by C . The 

value of 
C

u dx

  that relates to a vortex tube is called the moment of that tube. In the fluids that 

we have considered up to now, the tubes and their moments are conserved in time. 

 Let  be the moment of an infinitely-thin tube. One will have: 

 

 = 
C

u dx

  = 2 n d = 2  dn , 

 

in which n represents the component of the vorticity  or (, , ) that is taken normal to the 

surface element d (which is bounded by C ). dn is the cross section of the tube. 

 

 

 50. Rectilinear vortices in a liquid. – In the theory of vortices, one encounters several 

integrals that present a strong analogy with the integral invariants and covariants. I shall give two 

examples: 

 Consider an indefinite liquid (or incompressible fluid) in which the velocity is parallel to the 

xy-plane and depends upon only x and y. The velocity is supposed to be zero at infinity, and is 

never infinite, by hypothesis. One will then have: 

 

w = 0 ,  
u

z




 = 

v

z




 = 0 , 

so 

 = 0 ,   = 0 ,  2 = 
v u

x y

 
−

 
 , 

 

u v

x y

 
+

 
 = 0  and  = 0  and I2 = dy dz  . 

 

Consider a center of gravity whose coordinates are: 

 

x0 = 
x dy dz

dy dz








, 
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y0 = 
y dy dz

dy dz








, 

 

in which the integrals are not just extended over cross-sections of the vortices, but over all of the 

xy-plane. That will be permissible if we suppose that there are no vortices outside of those sections. 

In this case, the center (x0, y0) is fixed, in other words: 

 

x dy dx    0 , 

y dx dy    0 . 

 

In order to show that, one replaces those double integrals with integrals that are extended over a 

closed curve that encircle the xy-plane. For example: 

 

u dx dy  = 
2 2( ) 2u v dx u v dy− + . 

 

The latter integral is zero because the element is a second-order infinitesimal, while the curve 

along which one integrates is a first-order infinitesimal. (Théorie des Tourbillons by H. 

POINCARÉ). 

 One likewise proves that: 
2 2( )x y dx dy+  is constant 

or that 
2 2( )x y dx dy +   0 

 

if the velocity at infinity is such that 2u x , 
2u y , 2v x , 

2v y , u v x, u v y are second-order 

infinitesimals, because one will then have: 

 
2 2( )( ) 2 ( )u v x dx y dy u v y dx x dy− − + +   0 . 

 

One transforms that curvilinear integral into a double integral, and after some reductions, one will 

get the surface integral: 

 

  ( )xu y v dx dy+ .  Q.E.D. 

 

____________ 

 

 

 

 


