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PREFACE AND SUPPLEMENTS 

 

 This article is a continuation of my “Étude sur les invariants intégraux,” which appeared in 

volume 15 of these “Rendiconti” (session on 17 March 1901). 

 First of all, I shall complete the bibliographic information that I gave in that study. To that 

effect, I shall cite the following articles: 

 

 “Sur les Invariants intégraux des groupes continus de transformations,” by K. Zorawski (Bull. 

de l’Académie des Sciences de Cracovie, 1895). 

 

 “Ueber die Erzeugung der Invarianten durch Integration,” by A. Hurwitz (Nachrichten von 

der Gesellschaft der Wissenschaften zu Göttingen, 1897). 

 

 “Die Theorie der Integral-Invarianten ist ein Corollar der Theorie der Differential-

Invarianten,” by S. Lie (Berichte der Sächsischen Gesell. zu Leipzig, 1897). 

 

 “Die Theorie der Integral-Invarianten und ihre Verwertung für die Theorie der Differential-

Gleichungen,” by S. Lie (ibid., 1897). 

 

 “Invariante Curvenintegrale bei infinitesimal Transformationen in drei Veränderlichen x, y, z, 

und deren Verwertung,” by C. Heineck (Dissertation, Leipzig, 8o, 1899). 

 

 An example will serve to show how those works differ from those of H. Poincaré. Suppose 

the equations are given: 
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, 

 

in which the Xi and the Zi are functions of t, x, and z. 

 S. Lie and his disciples wrote the system, or infinitesimal transformation (T), in the following 

form: 

T f = i k

i ki k

f f
X Z

x z

 
+

 
  . 

 

They did not write the term f / t because they considered t to be a parameter. On the other hand, 

they supposed that the z are arbitrary functions of the x, which leads one to suppose that in: 

 

In = 1 nM dx dx , 

 

for example, M includes not only the x and z, but also certain partial derivatives of the zk with 

respect to the xi. For more simplicity, suppose that there is only one function z of x1, …, xn, and 

that M contains only the first derivatives pi of z with respect to xi . 

 We will then have (no. 18) (*): 
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 In the results obtained (no. 18), one must then replace 1

i

X

x




 with 1 1

i i

X X z

x z x

  
+

  
. Finally, we 

must once more calculate ip

t




. In order to do that, we identify the two sides of: 

 

( )dz p dx
t




−  = ( )dz p dx − , 

or 

 
 (*) Here, I suppose that M does not include t explicitly in order for the formulas to be identical to the ones that 

were given by the authors that I just cited. 
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i
i i i

i i

p
dZ dx p dX

t




− −   = 

i i

i

dz p dx
 

− 
 

  . 

 We then obtain: 

 = i
i

i

XZ
p

z z


−

 
 , 

 

ip

t




 = k

i k

ki i

XZ
p p

x x



+ −

 
   Pi . 

 (First extension) 

 

 If M includes the second derivatives 
2

i k

z

x x



 
, or pik, of z with respect to xi and xk then one must 

calculate ikp

t




 (second extension). To that end, one identifies the two sides of each of the relations: 

 

i ik k

k

dp p dx
t





 
− 

 
  = 

0

i i

k k l l kl k

k l k

dz p dx dp p dx 
   

− + −   
   

    , 

 

in which the variation d is determined by the infinitesimal transformation (prolonged once): 

 

i

i

x

X


 = 

z

Z


 = i

i

p

P


 =  t . 

 

 From nos. 35 and 36 (Étude) (*), I have deduced Poisson’s celebrated theorem from a certain 

Jacobian. Bühl arrived at the same result in a note that was presented to the Paris Academy on 11 

February 1901 and in his thesis (**). P. Appell (C. R. Acad. Sci. Paris, 5 August 1901) has deduced 

the Jacobian system that served as the starting point for Bühl’s research from Poisson’s theorem. 

 In number 49, I indicated the necessary and sufficient conditions to the vortex lines to be 

conserved in the form:  Dx = D  x. Appell (***) and Z. Zorawski (†) carried out analogous 

studies. 

 The notation in my Étude (first memoir) can be simplified by making use of a certain symbolic 

calculus that was studied and utilized by Lipschitz (††) and Cartan [“Sur certaines expression 

différentielles et sur le problème de Pfaff,” Annales de ‘École Norm. Sup. (1899)]. For example, I 

will show how one must employ that calculation. Recall no. 33. By virtue of the proposed 

equations, we will have: 

 
 (*) The manuscript of this article was submitted to H. Poincaré on 3 February 1901. 

 (**) “Sur les équations différentielles simultanées et la forme aux dérivées adjointe” (14 June 1901). 

 (***) “Sur les équations de l’Hydrodynamique et la théorie des tourbillons,” J. math. pures et appl. (1896). 

 (†) “Erhaltung der Wirbelbewegung,” Bull. Cracovie (1900). 

 (††) “Bemerkungen über die Differentiale von symbolic Ausdrücken, Berlin. Sitzungsber. (1890). 
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 i i i

i

dx dy dz
t




  = ( )i i i i i i i i i

i

dX dy dz dx dX dz dx dy dZ+ +  

 = i i i
k i i k i i k i i

i k k k k

X X X
dx dy dz dy dy dz dz dy dz

x y z

   
+ + + 

   
  . 

 If one recalls that: 

dxi dyk dzl = 1 2 3

1 2 3

( , , )

( , , )

i k lx y z
d d d  

  




 

 

then one will understand that all of the terms that include dxi dxi, dyi dyi, dzi dzi are zero and that 

any permutation that is performed on two of the differentials dxi, dyi, and dzi in a term will change 

the sign of that term but will not alter the absolute value of that term (*). The following rule should 

be mentioned again, which permits one to transform a p-uple integral into a (p + 1)-uple one. For 

example, let ij i j

i j

M dx dx  be a double integral element (i, j = 1, …, n ; Mij = − Mji). One can 

deduce the following triple integral element from that rule: 

 

ij i j

i j

d M dx dx  = 
ij

k i j

i j k

M
dx dx dx

x




  = 

, ,

ij jk ki
k i j

i j k k i j

M M M
dx dx dx

x x x


   
+ +     

 , 

 

in which  is a numerical constant that plays no role in that theory. 

 I shall give summaries of the various chapters of this article at the beginnings of those chapters. 

 

 

CHAPTER XII 

 

Application to the conservation of given form of a system of differential equations. 

 

 Summary. – The three given forms that I shall consider are those of canonical equations, 

characteristic equations, which present themselves in the theory of first-order partial differential 

equations, and finally the equations that S. Lie called infinitesimal contact transformations. I shall 

study all changes of variables (i.e., transformations) that preserve each of the forms. The method 

employed is general. In order for it to be applicable, it suffices to known one or more relations (d 

) that characterize the proposed form. 

 

 51. Lemma. – If  is a function of the xi then, by virtue of the equations: 

 

  i

i

x

X


 =  t   (i = 1, …, n), 

 
 (*) One must add the following statement to (29): “and the functions Xi, Yi, Zi depend upon only xi, yi, zi, and t.” 
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one will have (*):  

t






  X  = i

i i

X
x




 . 

 

Take n new (distinct) variables: zi = zi (x1, …, xn). One will then have the new system (no. 19): 

 

1

i

i
k

k k

z

z
X

x



 
 

 


 =  t . 

 

Let 1 be what  becomes when expressed in terms of z. By virtue of the new system: 

 

1

t






  Z  = 1 k

i

k i k i

z
X

z x

 
 

  
 . 

One will then have: 

X  = Z 1 , 

or more simply: 

  =  1 . 

 

 52. Theorem. – In order for the system of equations: 

 

  i

i

x

X


 = i

i

y

Y


 =  t  (i = 1, …, n) 

to admit the relative integral invariant: 

J = i i

i

y dx  , 

 

it is necessary and sufficient that this system should be canonical, i.e., it should have the form: 

 

(51)     i

i

x

H

y







 = i

i

y

H

x




−



 =  t , 

 

in which H is an arbitrary function of x, y, and t; it is called the characteristic function. 

 We say that: 

(52)     y dx
t




  = d W 

 

is a relation (d ) that characterizes the canonical equations. 

 
 (*) For more simplicity, we suppose that the functions considered do not include t explicitly. 



Th. de Donder – Study of integral invariants (part two). 6 
 

 Upon performing the calculations, one will find that: 

 

( )Y dx X dx d y X− +   = d W , 

so: 

W = − 
H

H y
y


+


 . 

 

 If we are given the canonical system (51) then we propose to replace the xi, yk with 2n new 

variables: 

 i = i (x1, …, xn, y1, …, yn) , 

  i = i (x1, …, xn, y1, …, yn) 

 

that preserves the canonical form of equations (51). 

 In order for the  and the  to possess that property, it is necessary and sufficient that those 2n 

functions are distinct and that d   is a relative invariant of the proposed system (51). The 

latter condition is expressed analytically thanks to no. 31. If one supposes that H is arbitrary in 

the equations of the conditions, thus-found, then they will become: 

 

(53)  

( , )
0 ( , 1, , ),

( , )

( , )
0,

( , )

( , )
0 ( ),

( , )

( , )
the same numerical constant . 

( , )

i i

i p q

i i

i p q

i i

i p q

i i

i p q

p q n
x x

y y

p q
x y

k
x y

 

 

 

 


= = 


 

=



 = 

 



=

 









 

 

 Those conditions signify that: 

 

d   = dx dy   = 1 y dx dS + , 

 

in which  and 1 are numerical constants. 

 If k  0 then upon setting 1 = 1, one will have: 

 

d   = 
1 y dx dS + . 

 

The transformation, thus-defined, is called (*) a contact transformation in x, p (here: in x, y). 

 
 (*) Leçons sur l’intégration des équations aux dérivées partielles, by E. Goursat, Chap. XI. 
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 One will deduce from the preceding identity (no. 19) that: 

 

1 1

1 1

( , , , , , )

( , , , , , )

n n

n nx x y y

   


  0 . 

 Hence, one has the: 

 

 Theorem (*): 

 

 The only changes of variables that preserve the form of a canonical equation are the contact 

transformations in x, p. 

 

 Corollary: 

 

 The absolute invariant I2 = dx dy  is the only absolute invariant that characterizes the 

canonical equations. 

 

 The preceding will permit one to easily show that the changes of variables that were indicated 

by H. Poincaré (**) leave the canonical form invariant. 

 

 Theorem: 

 

 In order for the system (51) to be reducible to the canonical form, it is necessary and sufficient 

that it must admit a relative invariant: 

 

I = M dx N dy+  

 

whose element here has class 2n (***), i.e., it can be identified with d  , in which the  and  

are 2n distinct functions of the x and y. 

 

 Corollary: 

 

 The determinant of the  and the  with respect to the x and y will be a multiplier for equations 

(51). 

 

 

 

 

 

 
 (*) Th. de Donder, “Sur les invariants intégraux,” C. R. Acad. Sci. Paris, 9 September 1901. 

 (**) Méthodes Nouvelles, t. I, pp. 15. 

 (***) Cited article by E. Cartan and a note by Koenigs (C. R. Acad. Sci. Paris, December 1895). 
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 53. – 

 

 Theorem: 

 

 If one supposes that z − y x  = 0 (*) then the relation (d ): 

 

(54)   ( )dz y dx
t




−  = ( )dH dz y dx  + −   

 

will characterize the equations: 

 

(55) i

i

x

H

y








 = i

i

i

y

H H
y

x z




  

− + 
  

 = 
z

H
y

z









 =  t . 

 

 Indeed, consider the 2n + 1 equations: 

 

i

i

x

X


 = i

i

y

Y


 = 

z

Z


 =  t . 

 

Suppose that Z = y X , and identify dZ − ( )Y dx y dX+ , with the right-hand side of (54). We 

get (55) and: 

 = − 
H

z




. 

 

 Equations (55) will become the characteristic equations when one sets  = 1 in them. Those 

equations can be represented by the infinitesimal transformation: 

 

(55)       [H, f] . 

 

 Theorem: 

 

 In order for equations (55) to preserve their form after one replaces the x, y, z in them with 2n 

+ 1 other distinct variables , , , it is necessary and sufficient that one has: 

 

t




 = 

t





 , 

 

(*) And not dz − ydx  = 0, because the d are arbitrary. 
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( )d d
t


  


−  = ( )

K
dK d d   



 
 − − 

 
  

 

by virtue of equations (55). 

 

 Example. Suppose that one has the identity (*): 

 

  d d  −  = ( )dz y dx −    (  0). 

 

The , ,  will then define a (finite) contact transformation, in the language of Lie. 

 One knows (*) that: 

1 1

1 1

( , , , , , )

( , , , , , )

n n

n nx x y y

   


= 1n +   0 . 

 

On the other hand, by virtue of (55), one will have: 

 

(57)  ( )d d
t


  


−  = ( )2

1 H
dH d d

t z


   

   

  
+ − −  

  
  . 

 

Finally, one deduces from the identity (56) upon replacing d with  that: 

 

 −  = 0 . 

 

 By virtue of the foregoing, and above all (57), the new equations can be written: 

 

(55) 
1

1 1

i

i

H



 






 = 
1 1

1 1

i

i

i

H H



  
 

  
− + 

  

 = 

1 1

H



  







 =  t , 

 

in which the index 1 indicates that one has replaced the x, y, z in the functions that carry that index 

with their values as functions of the , , . 

 By virtue of the lemma and equations (55) and (55), for  = 1, one will have: 

 

1H






 = 

2

1 1
[ , ]

H
H

z


 


−


 , 

 

  [H, f] =  [H1, f1] , 

 
 (*) Leçons by Goursat, Chap. XI. 
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  [H, i] = 1

i

H







, etc. 

 

 Hence, one will get the well-known relations that exist between the i, k, ,  upon replacing 

H with each of the latter quantities. 

 The classical example that we just studied does not define the most general transformation that 

preserves the form of equations (55). 

 Indeed, 2n + 1 distinct functions , ,  that verify the identity: 

 

 −  = ( )dz y dx −  + R dH , 

 

in which R is an arbitrary function of x, y, z, will also possess that property. 

 

 

 54. – 

 

 Theorem: 

 

 The relation: 

( )dz y dx
t




−  = ( )dz y dx − , 

 

in which  is an arbitrary function of z, x, and y, characterizes a system of 2n + 1 equations have 

the form: 

 

(58) i

i

x

H

y







 = i

i

i

y

H H
y

x z



 
− −

 

 = 
z

H
y H

z




−




 =  t , 

 

in which H is an arbitrary function of z, x, y. 

 That theorem is due to S. Lie, who stated it as follows (*): 

 

 The most-general infinitesimal contact transformation has the form (58) or: 

 

[H, f] − 
f

H
z




. 

H is called the characteristic function. 

 

 
 (*) Theorie der Transformationsgruppen, by S. Lie, with the collaboration of F. Engel (Teubner, Leipzig, 1890), 

t. II, pp. 251. (In what follows, I shall cite that book as Tgr.) 
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 Upon performing the calculations, one will find that  = − H / z, so if H does not include z 

explicitly, one will have: 

  ( )dz y dx
t




−  = 0  (no. 10). 

 

 Upon reasoning as before, one will find the necessary and sufficient conditions for the 2n + 1 

new distinct variables , ,  to preserve the form of equations (58). 

 

 Example: 

d d  −  = ( )dz y dx − . 

 

 Exercises. – If the new variables satisfy the preceding identity then the new characteristic 

function will be  H (*). 

 

 If one is given two infinitesimal contact transformations in x, y, z whose characteristic 

functions are H1 and H2 then show that one can deduce a third infinitesimal contact transformation 

from them whose characteristic function is: 

 

[H1, H2] − 2 1
1 2

H H
H H

z z

  
− 

  
 . 

 

The Jacobi-Mayer identity will permit one to rapidly solve this last exercise (**). 

 

 

 54. – S. Lie has treated two problems that have a strong analogy with the question that we just 

treated. 

 In one of those problems, he looked for the changes of variables that transform a given system 

of equations into another given system of equations; it can then be identical to the first one (***). 

Only given functions are involved in this problem. 

 The other problem (†) to which I alluded is very general. I shall return to it later on, but in order 

to give some idea of it now, I shall state the theorem: The integral invariant In = 1 ndx dx  

characterizes the n equations: 

i

i

x

X


 =  t , 

in which: 

 
 (*) Tgr., Bd. II, pp. 276. 

 (**) Tgr., Bd. II, pp. 275. 

 (***) Tgr., Bd. I, pp. 327. Theorie der Aehnlichkeit r-gliedriger Gruppen. 

 (†) S. Lie, “Ueber Differentialinvarianten,” Math. Ann. (1884). 
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  i

i

X

x




  = 0   (no. 18). 

 

 

CHAPTER XIII 

 

Application to the calculus of variations 

 

 Summary. – The theory of integral invariants can be considered to be the inverse of the 

calculus of variations since it provides all of the formulas with no integration by parts. It neatly 

points to the generalization in which one considers an arbitrary number of parameters . This 

chapter includes a generalization of the Kelvin-Helmholtz relative integral invariant, as well as 

the extension of the notion of a relative invariant to the case in which there are several independent 

variables. 

 

 That extension will become very useful later one when we set W = 0. 

 

 

 56. – Set: 

  i

i

q

q




 =  t    (i = 1, …, n), 

 

and look for the system of differential equations that admits the relative invariant: 

 

J = i i

i

N dq . 

 It is necessary and sufficient that: 

i i

i

N dq
t




  = dW , 

 

in which W is an arbitrary function of t, qi, and iq . Therefore: 

 

J = i

i i

W
dq

q




  

is a relative invariant of: 

i

i

W

q

W

q










= i

i

q

q




 =  t . 

 

 Those equations have the form of the Lagrange equations. 
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 That system will become canonical when one takes the qi and / iW q    pi (which are 

supposed to be distinct) for new variables. In mechanics, that change of variables is called the 

Poisson-Hamilton transformation (*). 

 If we adopt the notations of no. 52 then we will have: 

 

H = − W + i i

i

p q , 

in which H is a function of t, qi, and pi . Set: 

 

j = i

i i

W
dq

q




 , 

so 

j

t




 = d W , 

or 

1 0t tj j−  = 
1

0

t

t
d W t , 

 

in which the integral is taken along one of the trajectories that are defined by equations (59) 

(Hamilton’s principle). 

 By virtue of no. 29, we can set: 

J = I + E , 

in which: 

E = dV . 

 One then deduces that: 

 

(60)     pdq dV−  = constant, 

 

J

t




 = dW  = 

V
d

t



 , 

 

V

t




 = W = i

i i

H
p H

p


−


 , 

 

(V)  V = 
0

0

t

t
V W t+  . 

 

 
 (*) Traité de Mécanique, by P. Appell, 1896; t. II, no. 478. See also no. 57 of this article. 
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 Let V1 represent what V will become when it is expressed as a function of the qi and n distinct 

integration constants a1, …, an of equations (59) (*). 

 One has: 

1V

t




 = 1 1

i i i

V V H

t q p

  
+

  
 . 

Now: 

V1 =  V , 

so: 

1 1
i

i i i

V VH
H p

t p q

  
+ + − 

   
  = 0 . 

 The relation (60) becomes: 

 

1 1
i i i

i i i

V V
p dq da

q a

  
− + 

  
  = constant, 

 

and by means of (V), one will find that: 

 

(61) 1
i

i

V
p

q


−


 = constant. 

 The Jacobi equation: 

1 1, ,k

i

V V
H t q

t q

  
+  

  
 = 0 

 

will correspond precisely to the case in which one supposes that the n constants of (61) are 

identically zero. Thus: 

  1

i

V

q




 = pi , 

1

i

V

a




 = constants bi , 

  V0 = i i

i

a b , 

 

in which ai and bi are the values of the pi and qi for the initial instant t0 . 

 

 

 57. – The relative invariant: 

W
dq

q




  

 
 (*) Which is always possible (Cours d’Analyse, by Jordan, t. III, pp. 331) 
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in equations (59) is the generalization of the Helmholtz-Kelvin relative invariant. 

 Equations (59) can be written (*): 

 

(59)  i

i

q

q

 
 = k

k

q

q

 


 =  t  (i, k = 1, …, n), 

 
2 2

i i

i k i k i k

W W W
q q

q q q q q

   
 + − 

       
  = 0 . 

Thus: 

iq  = 
2

k i

W

q q





  

 . 

However, one has: 

I2n = 1 1n ndp dp dq dq  = 
1

1 1

1( )

n

n n

n

W W

q q
dp dp dq dq

q q

  
  

       
   . 

 

Consequently, 
2

k i

W

q q



  
 is a multiplier is the Lagrange equations when one employs the variables 

q and q . Represent that multiplier by M. The Lagrange equations become: 

 

(59) i

i

q

q




 = i

i

q

M

 


 =  t . 

 

In that form, one sees that iq , i / M define a solution for the first-order variations. Hence, iM q  

and the i are (up to sign) the coefficients ( )iM  of an integral invariant of order (2n – 1) (no. 35). 

 

 

 58. – The results of no. 56 are susceptible to several generalizations. 

 As before, one will find that: 

  J1 = 
i l

l i

i l

N dq   
0

1

1, , ,

0, , 1,

,

0

i i

i

i n

l p

q q

N−

=


= −



 

 

is a relative integration invariant of the system: 

 
 (*) I suppose that W does not include t explicitly. 
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(63) 

1 1

1 2

1

,

( 1) 0,

p

i i i

p

i i i

p
p

p p

i i i

q q q
t

q q q

W W W

q t q t q

  


 

 

−
= = = =




   − + + − =
   

 

when 

0

iN  = 
1

1

1 2 1
( 1)

p
p

p p

i i i

W W W

q t q t q

 

 

−
−

−

  
− + + −

  
, 

  
1

iN  =   
2

2

2 2
( 1)

p
p

p p

i i

W W

q t q





−
−

−

 
+ + −

 
, 

…………………………………………….., 

 

  
1

i

pN −
 = ………………………………….

p

i

W

q




. 

 

One can easily verify that by noting that: 

 

i

lN
t




 = 1

i

ll

i

W
N

q
−


−


 . 

 

If one takes the i

lN  and the i

lq  to be variable then the system (63) will take the canonical form 

(Jacobi). 

 

 

 59. – One will then have: 

 

(64)     
1 0t tj j−  = 

1

0

t

t
d W t , 

in which: 

j = i l

l i

i l

N dq . 

 

Take the variation d of the two sides of (62), so (*): 

 

1 0t tdj dj− = 
1 0t tj j −  = 

1

0

t

t
d dW t , 

 

j  = dj = i

i

dW
dq

q




 . 

 

 (*) I take 
2

i
d q  = 0 (Jordan’s Cours, t. III, pp. 503). 
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We now write the equations of variations of equations (59): 

 

(65)     i

i

dW

q

dW

q










 = i

i

dq

dq




 =  t . 

 

This system admits the relative invariant: 

 

1J   = i

i

dW
dq

q




  

 

hence, it can also be put into the canonical form. 

 

 

 60. – We say that: 

  j = i i

i

N dx   
1, , ,

1, ,

i n

 

=


=
 

 

are the  elements of a first-order relative integral invariant of the system (no. 41): 

 

xi = iX t




  

 

that is comprised of n total differential equations when: 

 

(66) 
j

t



 




  = dW . 

Thus: 

(66)    
1d W t t



   = 1

j
t t

t

 


 


 


 . 

 

The latter integral reduces immediately to an integral of order  – 1 that is extended over a closed 

manifold. 

 Let  = 2. Set: 

 

(67)     xi = 1 2

1 2i ix t x t +  . 

 

As in no. 56, one finds that equations (67), combined with the following equations: 
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(68) 
1 2

1 2i i i

W W W

x t x t x

 

 

  
− −

  
 = 0 , 

 

admit a relative invariant whose elements are: 

 

(69)     

1 1

2 2

,

.

i

i

i

i

W
j x

x

W
j x

x


=  


 = 

 




 

 

 Remark. – In the calculus of variations, one begins by giving the function W of t, xi, and 

1

ix  + +
 or 

1

1

1

ix

t t





 







 

+ +

. One then proposes to calculate the variation: 

1d W t t  , 

 

in such a manner that no 1

idx  + +
 will appear under the integration sign. The preceding shows 

that this variation will be equal to a -tuple integral in which the left-hand sides of equations (69) 

enter in a generalized form and an integral of order  – 1 that one easily deduces from the right-

hand side of (66) and a generalization of formulas (69). 

 

 

 61. – We once more say that: 

 

(70)    

1 2
1 2

1 2
1 2

,i

i i

i

i i

H H
x t t

y y

H H
y t t

x x

  

  

 
= +  


  = − −

  

 

 

are canonical equations in which H1 and H2 are the characteristic functions. 

 

 Theorem: 

 

 In order for the equations: 

xi = 1 2

1 2i iX t X t + , 

   yi = 1 2

1 2i iY t Y t +  

 

to admit the relative invariant j1 = j2 = such that: 
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1

1

j

t




 = d W1 , 

2

2

j

t




 = d W2 , 

 

it is necessary and sufficient that this system should be canonical. 

 

 Upon proceeding as in no. 56, one can extend the Jacobi method of integration to equations 

(70). [See the paper by Saltykow, J. Math. pures et appl. (1899).] 

 

 

CHAPTER XIV 

 

Proof of a theorem by H. Poincaré 

 

 Resume. – In this chapter, I shall give a new proof of a fundamental theorem by Poincaré. 

The one that was given by the distinguished geometer does not seem as simple to me. The proof 

here is based upon several other theorems that have come about in recent times in some remarkable 

articles (*). 

 

 

 62. – Recall no. 42 and consider the system of linear differential equations (44), which we 

write: 

(71) i

ik k

k

X




 =  t   (i, k = 1, …, n), 

 

in which Xik are 
2n  periodic functions of period T. Let: 

 

(72)     

1

2

,

,

i i

i i

n

i i

 

 

 

 =


=


 =

    (i = 1, …, n) 

 

be n linearly-independent solutions of equations (71). They will not change when one changes t 

into t + T, and the n solutions will become: 

 

  i = 1 ( )i t T + ,   etc. 

 
 (*) Méthodes Nouvelles, t.I, pp. 184-192. – E. Lindelöf, “Démonstration de quelques théomès sur les équations 

différentielles,” J. math. pures appl. (1900). – J. Hadamard, “Sur les intégrales d’un système d’éq. diff. ord.,” Bull. 

Soc. Math. France (1900). 
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They must then be linear combinations of the n solutions (72) in such a way that: 

 
1 ( )i t T +  = 1 2

11 12 1( ) ( ) ( )n

i i n iA t T A t T A t T  + + + + + + , 

………………………………………………………………., 

( )n

i t T +  = 1 2

1 2( ) ( ) ( )n

n i n i nn iA t T A t T A t T  + + + + + + , 

 

in which the Aik are constants whose determinant is non-zero. Having said that, form the equation 

in S: 

(S)      

11 1

1

m

n nn

A S A

A A S

−

−

 = 0 . 

 

Let S1 be one of the roots of that equation (S). Set: 

 

S1 = 1T
e


. 

 

We have a particular solution of equations (71) that we can write (*): 

 

  i = 1 1( )
t

ie t
     (i = 1, …, n), 

 

in which the 1

i  are periodic of period T. Such a solution is said to be of the first type. If 1 is a 

root of order p > 1 then it will give solutions of the form 1 t
e


, multiplied by an entire polynomial 

in t whose coefficients are period functions of t of period T. They are solutions of the second type. 

The roots  are called characteristic exponents. 

 

 

 63. Theorem of H. Poincaré: 

 

  If the Xi that enter into equations (1) are uniform and periodic of period T, and if those 

equations admit a periodic solution of period T, in addition, as well as p uniform integrals F1, …, 

Fp that do not include t explicitly then p of the characteristic exponents will be zero, unless all of 

the determinants that are contained in the matrix: 

 

 
 (*) Méthodes Nouvelles, t. I, pps. 66 and 195. 
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(73) 

1 1

1

1

n

p p

n

F F

x x

F F

x x

 

 

 

 

 

 

are non-zero at all points of the periodic solution considered. – If the Xi do not include t explicitly 

then there will be at least p + 1 characteristic exponents that are zero. 

 

 Proof: Let 1

i , …, n

i  be n distinct solutions of (71); suppose that p = 1. One will have: 

 
1

1i i

i

F    c1 , 

………………, 

1

n

i i

i

F    cn , 

 

identically, in which F1i represents what F1 / xi will become when one replaces xk with the 

periodic solution (viz., generator): xk = k (t); c1, …, cn are well-defined constants. 

 At the (arbitrary) t + T, one will have: 

 
1

1 11 1( )n

i i n i

i

F A A + +   c1 , 

…………………………………, 
1

1 1( )n

i n i nn i

i

F A A + +   cn . 

 

If one subtracts corresponding sides of the preceding two systems then one will see that equation 

(S) admits the solution S = 1. Hence, there will be a characteristic exponent that is zero that 

consequently corresponds to a solution to the periodic variations. The restriction in regard to (73) 

is obvious. 

 Let p = 3. If the theorem is supposed to have been proved for p = 2 then one knows that there 

are two characteristic exponents that are equal to zero that correspond to the two solutions: 

 
1

i  = 1

i , 

and 

  2

i  = 1 2

i it  +  . 

 

By virtue of no. 28, one will have the integral invariant: 

 



Th. de Donder – Study of integral invariants (part two). 22 
 

  I1 = 1 2 3( , , )

( , , )
i j k

ijk i j k

F F F
dx dx dx

x x x




   (i, j, k = 1, …, n). 

Hence: 

  

1 1 1

123 2 2 2

i j k

ijk i j k

ijk l l l

i j k

F

  

  

    = an integral (l = 3, …, n). 

 

Replace the xk with the solution (i.e., generator) k (t). The left-hand side of the preceding 

expression will reduce to a well-defined constant cl . Not all of the cl can be zero at the same time. 

 If we increase t by T then we will get a new system that will give: 

 
1 1 1

123 2 2 2

3

3 ( 1) ( ) ( )

i j k

ijk i j k

ijk l n

l i ll i ln i j k

F

A A A    

  

  

+ + − + +

   0 

 

when it is subtracted from the preceding one. The significance of (j) and (k) is easy to find. 

Those n – 2 expressions, which are linear and homogeneous in Al3, …, All – 1, …, Aln, are 

compatible only if one has: 

(75)  

33 3

3

1

1

n

n nn

A A

A A

−

−

  0 . 

Since 1

i  is periodic, we will have: 

 

A11 = 1, A12 = … = A1n = 0 . 

The value of 2

i  shows that: 

 

A21 = 1, A22 = 1, A23 = … = A2n = 0 . 

 

Therefore, equation (S) will become: 

 

31 32 33 3

1

1 0 0 0

1 0 0

n

n nn

S

T S

A A A S A

A A S

−

−

−

−

 = 0 . 
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One sees immediately that S = 1 will annul all of the minors that relate to any two elements that 

are taken from the positive diagonal of the determinant (S). Therefore, S = 1 is a triple root of 

equation (S), so there will be three zero exponents. 

 Set: 

  1

i  = Xi , 

  2

i  = 2

i it X +  , 

  l

i  = l

i    (l = 3, …, n). 

One has (no. 35): 

1i i

i

F X   0 , 

2i i

i

F X   0 , 

so: 

(76)     
1 1

1 1

, 2 2

i j i j

i j i j i j

F F X X

F F     0 , 

 

as one can verify by performing the multiplication and replacing 
,i j

 with a double summation

1 1i n j n= =

  . 

 The integral invariant: 

I2 = 2

,

ij i j

i j

F dx dx  

will give: 
2 2

2

,

i j

ij l l
i j i j

F
 

 
  = an integral. 

 

By reasoning as one did in the preceding case (p = 3) and making use of the identity (76), one will 

get the identity (75), after which, nothing will need to be changed in the proof. 

 The case in which p is arbitrary can be treated in the same way. One always begins by 

considering the integral invariant Ip that one can write: 

 

1 pdF dF . 
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CHAPTER XV 

 

Application to the Lagrange and Riemann’s adjoint equation 

 

 Summary. – This chapter includes the synthesis of numerous studies (*) that have been made 

on the subject. It is an interesting application of the generalized calculus of variations. Some new 

simplifications are given in it. Note that this theory can be utilized in the case of an arbitrary 

system of ordinary differential equations when one knows a solution (no. 42). 

 

 

 64. – Consider the n linear ordinary differential equations: 

 

(E)  i

i

k k

k

x

a x




 =  t  (k, i = 1, …, n), 

in which the i

ka  are functions of only t. 

 The coefficients of an integral invariant Ip of order p of the system will define a solution to 

!

!( )!

n

p n p−
 linear ordinary differential equations when one supposes that those coefficients are 

functions of only t. 

 We call that system the adjoint system Ap E. Let p = 1. Formulas (8) will then give: 

 

(A1E) i

k

i k

k

M

a M



− 
 =  t , 

A1 A1 E  E . 

 One has, in addition (no. 39), that: 

 

Mi = 
( 1)( 1)i i

nM  −− . 

Let p = n. Nos. 18 and 39 will give: 

 

M = 
( )

1

n
= ( )exp k

ka t−   = 
1


 = a multiplier. 

 

 represents the determinant that is formed from n distinct solutions of E. The solutions to E are, 

at the same time, solutions to the variations of E. Let Vq E represent the system of linear ordinary 

differential equations that the solutions to the variations (q) of order q of E satisfy; call that system 

the associated system Vq E. 

 Thanks to the formulas in nos. 8, 18, 23, 25 (cont.), 34, 35, and 39, one will get the following 

remarkable relations from some very simple calculations: 

 
 (*) Schlesinger, “Theorie der linearen Differentialgleichungen,” Crelle’s Journal, vols. 1 and (1901). 
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Vq E  E , 

Ap A1 E  A1 Ap E  Vp E , 

Ap An−1 E  Vp Vn−1 E, 

A1 Vp E  Vp A1 E  Ap E . 

 

One will also find the multipliers Ap E or Vp E just as easily since all of those multipliers are equal 

to  raised to various powers. 

 

 

 65. – Consider the thn -order ordinary differential equation: 

 

(77)   a0 x0 + a1 x1 + a2 x2 + … + an−1 xn−1 + an xn = 0 , 

 

in which: 

x0  x and xp  
p

p

x

t




. 

 

The coefficient Mn−1 in the integral invariant: 

 

I1 = 0 0 1 1 1 1n nM dx M dx M dx− −+ + +  

 

of equation (77) satisfies an thn -order equation (*) that is the Lagrange adjoint of (77). The 

coefficient M0 satisfies an thn -order equation that was studied by Jacobi and later by Darboux 

and Cels. 

 The system (A1 E) implies the very simple relation: 

 

0 0
1n

n

M a
M

t a




−−  = 0 , 

which was utilized by Cels. 

 

 

 66. – Now suppose that there are two independent variables t1 and t2 . Consider a second-order 

partial differential equation that we write as follows: 

 

(77)   a00 x00 + a01 x01 + a10 x10 + a11 x11 + a02 x03 + a20 x20 = 0 , 

 

in which: 

 
 (*) One can always find an equations of order at most n that is satisfied by one of the coefficients by differentiation 

and eliminating by means of determinants, even in the general case of an arbitrary system of n linear equations. 
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x00  x  and 
2

q

ik

q

x

t




 = xi,k+q , 

 

and in which the coefficients a are functions of t1 and t2 . 

 Set: 

  I1 = M00 dx00 + M01 dx01 + M10 dx10 , 

 I2 = N00 dx00  + N01 dx01  + N10 dx10 , 

 

and look for the necessary and sufficient conditions for one to have: 

 

  1 2

1 2

I I

t t

 

 
+  = 0    (no. 60). 

We find that: 

(79)    

00
1 00 2 00 01

02

00
1 10 2 01 00 01

02

00
1 10 2 00 00 01

02

00
01 01 01

02

00
10 01

02

0,

0,

0,

0,

0,

a
M N N

a

a
M N N N

a

a
M N M N

a

a
M N N

a

a
M N

a

 

 

 


+ − =




+ + − =



+ + − =



+ − =



− =


 

 

in which 1 and 2 are used in place of  / t1 and  / t2, resp. 

 The last equation gives: 

 

(80) 
10 20

10 02

,

,

M y a

N y a

=


=
 

 

in which y is a function of t1 and t2 that satisfies a second-order partial differential equation that 

the Riemann adjoint (*) of (78). That equation is obtained by eliminating the coefficients M and N 

of equations (79) and (80). We remark that: 

 

M01 + N01 = y a11 , 

 

so those two coefficients enter into consideration only by way of their sum. An indeterminacy will 

then result that one can benefit from by taking, for example, N10  0. As a result of that fact, the 

 
 (*) Leçons by G. Darboux, t. II. 
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coefficients M00 and N00 can have simpler values, and Riemann’s method of integration will have 

much to recommend it. 

 
 Paris, 21 February 1902 

TH. DE DONDER.  

___________ 

 


