"Étude sur les invariants intégraux (second mémoire)," Rend. Circ. mat. di Palermo (1) 16 (1902), 155-179.

Study of integral invariants

(Part Two)
By Th. De Donder, in Brussels

Presented on 9 March 1902.

Translated by D. H. Delphenich

PREFACE AND SUPPLEMENTS

This article is a continuation of my "Étude sur les invariants intégraux," which appeared in volume $\mathbf{1 5}$ of these "Rendiconti" (session on 17 March 1901).

First of all, I shall complete the bibliographic information that I gave in that study. To that effect, I shall cite the following articles:
"Sur les Invariants intégraux des groupes continus de transformations," by K. Zorawski (Bull. de l'Académie des Sciences de Cracovie, 1895).
"Ueber die Erzeugung der Invarianten durch Integration," by A. Hurwitz (Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1897).
"Die Theorie der Integral-Invarianten ist ein Corollar der Theorie der DifferentialInvarianten," by S. Lie (Berichte der Sächsischen Gesell. zu Leipzig, 1897).
"Die Theorie der Integral-Invarianten und ihre Verwertung für die Theorie der DifferentialGleichungen," by S. Lie (ibid., 1897).
"Invariante Curvenintegrale bei infinitesimal Transformationen in drei Veränderlichen x, y, z, und deren Verwertung," by C. Heineck (Dissertation, Leipzig, 8°, 1899).

An example will serve to show how those works differ from those of \mathbf{H}. Poincaré. Suppose the equations are given:

$$
\begin{equation*}
\frac{\delta x_{i}}{X_{i}}=\frac{\delta z_{i}}{Z_{i}}=\delta t \quad\binom{i=1, \ldots, n}{k=1, \ldots, m} \tag{T}
\end{equation*}
$$

in which the X_{i} and the Z_{i} are functions of t, x, and z.
S. Lie and his disciples wrote the system, or infinitesimal transformation (T), in the following form:

$$
T f=\sum_{i} X_{i} \frac{\partial f}{\partial x_{i}}+\sum_{k} Z_{k} \frac{\partial f}{\partial z_{k}} .
$$

They did not write the term $\partial f / \partial t$ because they considered t to be a parameter. On the other hand, they supposed that the z are arbitrary functions of the x, which leads one to suppose that in:

$$
I_{n}=\int M d x_{1} \cdots d x_{n}
$$

for example, M includes not only the x and z, but also certain partial derivatives of the z_{k} with respect to the x_{i}. For more simplicity, suppose that there is only one function z of x_{1}, \ldots, x_{n}, and that M contains only the first derivatives p_{i} of z with respect to x_{i}.

We will then have (no. 18) (*):

$$
\begin{gathered}
\frac{\delta I_{n}}{\delta t}=\frac{\delta M}{\delta t} \frac{\partial\left(x_{1}, \ldots, x_{n}\right)}{\partial\left(\lambda_{1}, \ldots, \lambda_{n}\right)}+M \frac{\delta}{\delta t} \frac{\partial\left(x_{1}, \ldots, x_{n}\right)}{\partial\left(\lambda_{1}, \ldots, \lambda_{n}\right)} \\
\frac{\delta M}{\delta t} \equiv T M=\sum_{i} \frac{\partial M}{\partial x_{i}} X_{i}+\frac{\partial M}{\partial z} Z+\sum_{i} \frac{\partial M}{\partial p_{i}} \frac{\delta p_{i}}{\delta t} \\
\frac{\delta}{\delta t} \frac{\partial x_{i}}{\partial \lambda_{i}}=\frac{\partial X_{i}}{\partial \lambda_{i}}=\sum_{i}\left(\frac{\partial X_{1}}{\partial x_{i}}+\frac{\partial X_{1}}{\partial z} \frac{\partial z}{\partial x_{i}}\right) \frac{\partial x_{i}}{\partial \lambda_{1}} .
\end{gathered}
$$

In the results obtained (no. 18), one must then replace $\frac{\partial X_{1}}{\partial x_{i}}$ with $\frac{\partial X_{1}}{\partial x_{i}}+\frac{\partial X_{1}}{\partial z} \frac{\partial z}{\partial x_{i}}$. Finally, we must once more calculate $\frac{\delta p_{i}}{\delta t}$. In order to do that, we identify the two sides of:

$$
\frac{\delta}{\delta t}\left(d z-\sum p d x\right)=\rho\left(d z-\sum p d x\right)
$$

or

[^0]$$
d Z-\sum_{i} \frac{\delta p_{i}}{\delta t} d x_{i}-\sum_{i} p_{i} d X_{i}=\rho\left(d z-\sum_{i} p_{i} d x_{i}\right) .
$$

We then obtain:

$$
\begin{gathered}
\rho=\frac{\partial Z}{\partial z}-\sum_{i} p_{i} \frac{\partial X_{i}}{\partial z} \\
\frac{\delta p_{i}}{\delta t}=\rho p_{i}+\frac{\partial Z}{\partial x_{i}}-\sum_{k} p_{k} \frac{\partial X_{k}}{\partial x_{i}} \equiv P_{i} .
\end{gathered}
$$

(First extension)
If M includes the second derivatives $\frac{\partial^{2} z}{\partial x_{i} \partial x_{k}}$, or $p_{i k}$, of z with respect to x_{i} and x_{k} then one must calculate $\frac{\delta p_{i k}}{\delta t}$ (second extension). To that end, one identifies the two sides of each of the relations:

$$
\frac{\delta}{\delta t}\left(d p_{i}-\sum_{k} p_{i k} d x_{k}\right)=\rho_{0}^{i}\left(d z-\sum_{k} p_{k} d x_{k}\right)+\sum_{l} \rho_{l}^{i}\left(d p_{l}-\sum_{k} p_{k l} d x_{k}\right)
$$

in which the variation d is determined by the infinitesimal transformation (prolonged once):

$$
\frac{\delta x_{i}}{X_{i}}=\frac{\delta z}{Z}=\frac{\delta p_{i}}{P_{i}}=\delta t
$$

From nos. 35 and $\mathbf{3 6}$ (Étude) ('), I have deduced Poisson's celebrated theorem from a certain Jacobian. Bühl arrived at the same result in a note that was presented to the Paris Academy on 11 February 1901 and in his thesis (${ }^{* *}$). P. Appell (C. R. Acad. Sci. Paris, 5 August 1901) has deduced the Jacobian system that served as the starting point for Bühl's research from Poisson's theorem.

In number 49 , I indicated the necessary and sufficient conditions to the vortex lines to be conserved in the form: $\delta D x=D \delta x$. Appell $\left({ }^{* * *}\right)$ and Z. Zorawski $\left.{ }^{\dagger}\right)$ carried out analogous studies.

The notation in my Étude (first memoir) can be simplified by making use of a certain symbolic calculus that was studied and utilized by Lipschitz (${ }^{\dagger \dagger}$) and Cartan ["Sur certaines expression différentielles et sur le problème de Pfaff," Annales de "École Norm. Sup. (1899)]. For example, I will show how one must employ that calculation. Recall no. 33. By virtue of the proposed equations, we will have:

[^1]\[

$$
\begin{aligned}
\frac{\delta}{\delta t} \sum_{i} d x_{i} d y_{i} d z_{i} & =\sum_{i}\left(d X_{i} d y_{i} d z_{i}+d x_{i} d X_{i} d z_{i}+d x_{i} d y_{i} d Z_{i}\right) \\
& =\sum_{i} \sum_{k}\left(\frac{\partial X_{i}}{\partial x_{k}} d x_{k} d y_{i} d z_{i}+\frac{\partial X_{i}}{\partial y_{k}} d y_{k} d y_{i} d z_{i}+\frac{\partial X_{i}}{\partial z_{k}} d z_{k} d y_{i} d z_{i}+\cdots\right) .
\end{aligned}
$$
\]

If one recalls that:

$$
d x_{i} d y_{k} d z_{l}=\frac{\partial\left(x_{i}, y_{k}, z_{l}\right)}{\partial\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)} d \lambda_{1} d \lambda_{2} d \lambda_{3}
$$

then one will understand that all of the terms that include $d x_{i} d x_{i}, d y_{i} d y_{i}, d z_{i} d z_{i}$ are zero and that any permutation that is performed on two of the differentials $d x_{i}, d y_{i}$, and $d z_{i}$ in a term will change the sign of that term but will not alter the absolute value of that term (${ }^{*}$). The following rule should be mentioned again, which permits one to transform a p-uple integral into a $(p+1)$-uple one. For example, let $\sum_{i} \sum_{j} M_{i j} d x_{i} d x_{j}$ be a double integral element $\left(i, j=1, \ldots, n ; M_{i j}=-M_{j i}\right)$. One can deduce the following triple integral element from that rule:

$$
d \sum_{i} \sum_{j} M_{i j} d x_{i} d x_{j}=\sum_{i} \sum_{j} \frac{\partial M_{i j}}{\partial x_{k}} d x_{k} d x_{i} d x_{j}=\alpha \sum_{i, j, k}\left(\frac{\partial M_{i j}}{\partial x_{k}}+\frac{\partial M_{j k}}{\partial x_{i}}+\frac{\partial M_{k i}}{\partial x_{j}}\right) d x_{k} d x_{i} d x_{j},
$$

in which α is a numerical constant that plays no role in that theory.
I shall give summaries of the various chapters of this article at the beginnings of those chapters.

CHAPTER XII

Application to the conservation of given form of a system of differential equations.

Summary. - The three given forms that I shall consider are those of canonical equations, characteristic equations, which present themselves in the theory of first-order partial differential equations, and finally the equations that \mathbf{S}. Lie called infinitesimal contact transformations. I shall study all changes of variables (i.e., transformations) that preserve each of the forms. The method employed is general. In order for it to be applicable, it suffices to known one or more relations (d $\delta)$ that characterize the proposed form.
51. Lemma. - If Φ is a function of the x_{i} then, by virtue of the equations:

$$
\frac{\delta x_{i}}{X_{i}}=\delta t \quad(i=1, \ldots, n),
$$

[^2]one will have (${ }^{*}$):
$$
\frac{\delta \Phi}{\delta t} \equiv X \Phi=\sum_{i} \frac{\partial \Phi}{\partial x_{i}} X_{i} .
$$

Take n new (distinct) variables: $z_{i}=z_{i}\left(x_{1}, \ldots, x_{n}\right)$. One will then have the new system (no. 19):

$$
\frac{\delta z_{i}}{\left(\sum_{k} \frac{\partial z_{i}}{\partial x_{k}} X_{k}\right)_{1}}=\delta t
$$

Let Φ_{1} be what Φ becomes when expressed in terms of z. By virtue of the new system:

$$
\frac{\delta \Phi_{1}}{\delta t} \equiv Z \Phi_{1}=\sum_{k} \sum_{i} \frac{\partial \Phi_{1}}{\partial z_{k}}\left(\frac{\partial z_{k}}{\partial x_{i}} X_{i}\right)
$$

One will then have:

$$
X \Phi=Z \Phi_{1},
$$

or more simply:

$$
\delta \Phi=\delta \Phi_{1}
$$

52. Theorem. - In order for the system of equations:

$$
\frac{\delta x_{i}}{X_{i}}=\frac{\delta y_{i}}{Y_{i}}=\delta t \quad(i=1, \ldots, n)
$$

to admit the relative integral invariant:

$$
J=\int \sum_{i} y_{i} d x_{i},
$$

it is necessary and sufficient that this system should be canonical, i.e., it should have the form:

$$
\begin{equation*}
\frac{\delta x_{i}}{\frac{\partial H}{\partial y_{i}}}=\frac{\delta y_{i}}{-\frac{\partial H}{\partial x_{i}}}=\delta t \tag{51'}
\end{equation*}
$$

in which H is an arbitrary function of x, y, and t; it is called the characteristic function.
We say that:

$$
\begin{equation*}
\frac{\delta}{\delta t} \sum y d x=d W \tag{52}
\end{equation*}
$$

is a relation ($d \delta$) that characterizes the canonical equations.
(*) For more simplicity, we suppose that the functions considered do not include t explicitly.

Upon performing the calculations, one will find that:

$$
\sum(Y d x-X d x)+d \sum y X=d W,
$$

so:

$$
W=-H+\sum y \frac{\partial H}{\partial y} .
$$

If we are given the canonical system $\left(51^{\prime}\right)$ then we propose to replace the x_{i}, y_{k} with $2 n$ new variables:

$$
\begin{aligned}
& \xi_{i}=\xi_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right), \\
& \eta_{i}=\eta_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

that preserves the canonical form of equations $\left(51^{\prime}\right)$.
In order for the ξ and the η to possess that property, it is necessary and sufficient that those $2 n$ functions are distinct and that $\int \sum \eta d \xi$ is a relative invariant of the proposed system (51'). The latter condition is expressed analytically thanks to no. 31. If one supposes that H is arbitrary in the equations of the conditions, thus-found, then they will become:

$$
\left\{\begin{array}{l}
\sum_{i} \frac{\partial\left(\xi_{i}, \eta_{i}\right)}{\partial\left(x_{p}, x_{q}\right)}=0 \\
\sum_{i} \frac{\partial\left(\xi_{i}, \eta_{i}\right)}{\partial\left(y_{p}, y_{q}\right)}=0, \\
\sum_{i} \frac{\partial\left(\xi_{i}, \eta_{i}\right)}{\partial\left(x_{p}, y_{q}\right)}=0 \tag{53}\\
\sum_{i} \frac{\partial\left(\xi_{i}, \eta_{i}\right)}{\partial\left(x_{p}, y_{q}\right)}=\text { the same numerical constant } k .
\end{array} \quad(p, q=1, \ldots, n),\right.
$$

Those conditions signify that:

$$
\int \sum \eta d \xi=\alpha \iint \sum d x d y=\alpha_{1} \int \sum y d x+d S
$$

in which α and α_{1} are numerical constants.
If $k \neq 0$ then upon setting $\alpha_{1}=1$, one will have:

$$
\sum \eta d \xi=\alpha_{1} \sum y d x+d S
$$

The transformation, thus-defined, is called $\left({ }^{*}\right)$ a contact transformation in x, p (here: in x, y).
(*) Leçons sur l'intégration des équations aux dérivées partielles, by E. Goursat, Chap. XI.

One will deduce from the preceding identity (no. 19) that:

$$
\frac{\partial\left(\xi_{1}, \ldots, \xi_{n}, \eta_{1}, \ldots, \eta_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)} \neq 0 .
$$

Hence, one has the:

Theorem (*):

The only changes of variables that preserve the form of a canonical equation are the contact transformations in x, p.

Corollary:

The absolute invariant $I_{2}=\int \sum d x d y$ is the only absolute invariant that characterizes the canonical equations.

The preceding will permit one to easily show that the changes of variables that were indicated by H. Poincaré (**) leave the canonical form invariant.

Theorem:

In order for the system (51) to be reducible to the canonical form, it is necessary and sufficient that it must admit a relative invariant:

$$
I=\int \sum M d x+N d y
$$

 are $2 n$ distinct functions of the x and y.

Corollary:

The determinant of the ξ and the η with respect to the x and y will be a multiplier for equations (51).

[^3]53. -

Theorem:

If one supposes that $\delta z-\sum y \delta x=0\left(^{*}\right)$ then the relation ($d \delta$):

$$
\begin{equation*}
\frac{\delta}{\delta t}\left(d z-\sum y d x\right)=\theta\left[d H+\omega\left(d z-\sum y d x\right)\right] \tag{54}
\end{equation*}
$$

will characterize the equations:

$$
\begin{equation*}
\frac{\delta x_{i}}{\theta \frac{\partial H}{\partial y_{i}}}=\frac{\delta y_{i}}{-\theta\left(\frac{\partial H}{\partial x_{i}}+y_{i} \frac{\partial H}{\partial z}\right)}=\frac{\delta z}{\theta \sum y \frac{\partial H}{\partial z}}=\delta t \tag{55}
\end{equation*}
$$

Indeed, consider the $2 n+1$ equations:

$$
\frac{\delta x_{i}}{X_{i}}=\frac{\delta y_{i}}{Y_{i}}=\frac{\delta z}{Z}=\delta t
$$

Suppose that $Z=\sum y X$, and identify $d Z-\sum(Y d x+y d X)$, with the right-hand side of (54). We get (55) and:

$$
\omega=-\frac{\partial H}{\partial z} .
$$

Equations (55) will become the characteristic equations when one sets $\theta=1$ in them. Those equations can be represented by the infinitesimal transformation:

$$
\begin{equation*}
\theta[H, f] . \tag{55'}
\end{equation*}
$$

Theorem:

In order for equations (55) to preserve their form after one replaces the x, y, z in them with $2 n$ +1 other distinct variables ξ, η, ζ, it is necessary and sufficient that one has:

$$
\frac{\delta \zeta}{\delta t}=\sum \eta \frac{\delta \xi}{\delta t},
$$

(*) And not $d z-\sum y d x=0$, because the d are arbitrary.

$$
\frac{\delta}{\delta t}\left(d \zeta-\sum \eta d \xi\right)=\theta^{\prime}\left[d K-\frac{\partial K}{\partial \zeta}\left(d \zeta-\sum \eta d \xi\right)\right]
$$

by virtue of equations (55).
Example. Suppose that one has the identity (*):

$$
d \zeta-\sum \eta d \xi=\rho\left(d z-\sum y d x\right) \quad(\rho \neq 0)
$$

The ξ, η, ζ will then define a (finite) contact transformation, in the language of Lie.
One knows (*) that:

$$
\frac{\partial\left(\xi_{1}, \ldots, \xi_{n}, \eta_{1}, \ldots, \eta_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)}= \pm \rho^{n+1} \neq 0 .
$$

On the other hand, by virtue of (55), one will have:

$$
\begin{equation*}
\frac{\delta}{\delta t}\left(d \zeta-\sum \eta d \xi\right)=\rho \theta\left[d H+\left(\frac{1}{\rho^{2} \theta} \frac{\delta \rho}{\delta t}-\frac{\partial H}{\rho \partial z}\right)\left(d \zeta-\sum \eta d \xi\right)\right] \tag{57}
\end{equation*}
$$

Finally, one deduces from the identity (56) upon replacing d with δ that:

$$
\delta \zeta-\sum \eta \delta \xi=0
$$

By virtue of the foregoing, and above all (57), the new equations can be written:

$$
\frac{\delta \xi_{i}}{\rho_{1} \theta_{1} \frac{\partial H_{1}}{\partial \eta_{i}}}=\frac{\delta \eta_{i}}{-\rho_{1} \theta_{1}\left(\frac{\partial H_{1}}{\partial \xi_{i}}+\eta_{i} \frac{\partial H_{1}}{\partial \zeta}\right)}=\frac{\delta \zeta}{\rho_{1} \theta_{1} \sum \eta \frac{\partial H}{\partial \eta}}=\delta t
$$

in which the index 1 indicates that one has replaced the x, y, z in the functions that carry that index with their values as functions of the ξ, η, ζ.

By virtue of the lemma and equations (55) and (55"), for $\theta=1$, one will have:

$$
\begin{aligned}
& \frac{\partial H_{1}}{\partial \zeta}=\frac{1}{\rho} \frac{\partial H}{\partial z}-\frac{1}{\rho^{2}}[H, \rho] \\
& {[H, f]=\rho\left[H_{1}, f_{1}\right]}
\end{aligned}
$$

[^4]$$
\left[H, \xi_{i}\right]=\rho \frac{\partial H_{1}}{\partial \eta_{i}}, \text { etc. }
$$

Hence, one will get the well-known relations that exist between the $\xi_{i}, \eta_{k}, \zeta, \rho$ upon replacing H with each of the latter quantities.

The classical example that we just studied does not define the most general transformation that preserves the form of equations (55).

Indeed, $2 n+1$ distinct functions ξ, η, ζ that verify the identity:

$$
\delta \zeta-\sum \eta \delta \xi=\rho\left(d z-\sum y d x\right)+R d H
$$

in which R is an arbitrary function of x, y, z, will also possess that property.
54. -

Theorem:

The relation:

$$
\frac{\delta}{\delta t}\left(d z-\sum y d x\right)=\omega\left(d z-\sum y d x\right)
$$

in which ω is an arbitrary function of z, x, and y, characterizes a system of $2 n+1$ equations have the form:

$$
\begin{equation*}
\frac{\delta x_{i}}{\frac{\partial H}{\partial y_{i}}}=\frac{\delta y_{i}}{-\frac{\partial H}{\partial x_{i}}-y_{i} \frac{\partial H}{\partial z}}=\frac{\delta z}{\sum y \frac{\partial H}{\partial z}-H}=\delta t \tag{58}
\end{equation*}
$$

in which H is an arbitrary function of z, x, y.
That theorem is due to \mathbf{S}. Lie, who stated it as follows (${ }^{*}$):
The most-general infinitesimal contact transformation has the form (58) or:

$$
[H, f]-H \frac{\partial f}{\partial z}
$$

H is called the characteristic function.

[^5]Upon performing the calculations, one will find that $\omega=-\partial H / \partial z$, so if H does not include z explicitly, one will have:

$$
\begin{equation*}
\frac{\delta}{\delta t}\left(d z-\sum y d x\right)=0 \tag{no.10}
\end{equation*}
$$

Upon reasoning as before, one will find the necessary and sufficient conditions for the $2 n+1$ new distinct variables ξ, η, ζ to preserve the form of equations (58).

Example:

$$
d \zeta-\sum \eta d \xi=\rho\left(d z-\sum y d x\right)
$$

Exercises. - If the new variables satisfy the preceding identity then the new characteristic function will be $\rho H\left(^{*}\right)$.

If one is given two infinitesimal contact transformations in x, y, z whose characteristic functions are H_{1} and H_{2} then show that one can deduce a third infinitesimal contact transformation from them whose characteristic function is:

$$
\left[H_{1}, H_{2}\right]-\left(H_{1} \frac{\partial H_{2}}{\partial z}-H_{2} \frac{\partial H_{1}}{\partial z}\right)
$$

The Jacobi-Mayer identity will permit one to rapidly solve this last exercise (${ }^{* *}$).
54. - S. Lie has treated two problems that have a strong analogy with the question that we just treated.

In one of those problems, he looked for the changes of variables that transform a given system of equations into another given system of equations; it can then be identical to the first one (${ }^{* * *}$). Only given functions are involved in this problem.

The other problem $\left(^{\dagger}\right.$) to which I alluded is very general. I shall return to it later on, but in order to give some idea of it now, I shall state the theorem: The integral invariant $I_{n}=\int d x_{1} \cdots d x_{n}$ characterizes the n equations:

$$
\frac{\delta x_{i}}{X_{i}}=\delta t
$$

in which:

[^6]\[

$$
\begin{equation*}
\sum \frac{\partial X_{i}}{\partial x_{i}}=0 \tag{no.18}
\end{equation*}
$$

\]

CHAPTER XIII

Application to the calculus of variations

Summary. - The theory of integral invariants can be considered to be the inverse of the calculus of variations since it provides all of the formulas with no integration by parts. It neatly points to the generalization in which one considers an arbitrary number of parameters λ. This chapter includes a generalization of the Kelvin-Helmholtz relative integral invariant, as well as the extension of the notion of a relative invariant to the case in which there are several independent variables.

That extension will become very useful later one when we set $W=0$.
56. - Set:

$$
\frac{\delta q_{i}}{q_{i}^{\prime}}=\delta t
$$

$$
(i=1, \ldots, n)
$$

and look for the system of differential equations that admits the relative invariant:

$$
J=\int \sum_{i} N_{i} d q_{i}
$$

It is necessary and sufficient that:

$$
\frac{\delta}{\delta t} \sum_{i} N_{i} d q_{i}=d W
$$

in which W is an arbitrary function of t, q_{i}, and q_{i}^{\prime}. Therefore:

$$
J=\int \sum_{i} \frac{\partial W}{\partial q_{i}^{\prime}} d q_{i}
$$

is a relative invariant of:

$$
\frac{\delta \frac{\partial W}{\partial q_{i}^{\prime}}}{\frac{\partial W}{\partial q_{i}}}=\frac{\delta q_{i}}{q_{i}^{\prime}}=\delta t
$$

Those equations have the form of the Lagrange equations.

That system will become canonical when one takes the q_{i} and $\partial W / \partial q_{i}^{\prime} \equiv p_{i}$ (which are supposed to be distinct) for new variables. In mechanics, that change of variables is called the Poisson-Hamilton transformation (${ }^{*}$).

If we adopt the notations of no. 52 then we will have:

$$
H=-W+\sum_{i} p_{i} q_{i}^{\prime},
$$

in which H is a function of t, q_{i}, and p_{i}. Set:

$$
j=\sum_{i} \frac{\partial W}{\partial q_{i}^{\prime}} d q_{i}
$$

so

$$
\frac{\delta j}{\delta t}=d W
$$

or

$$
j_{t_{1}}-j_{t_{0}}=d \int_{t_{0}}^{t_{1}} W \delta t
$$

in which the integral is taken along one of the trajectories that are defined by equations (59) (Hamilton's principle).

By virtue of no. 29, we can set:

$$
J=I+E,
$$

in which:

$$
E=\int d V
$$

One then deduces that:

$$
\begin{gather*}
\sum p d q-d V=\text { constant } \tag{60}\\
\frac{\delta J}{\delta t}=\int d W=\int d \frac{\delta V}{\delta t} \\
\frac{\delta V}{\delta t}=W=\sum_{i} p_{i} \frac{\partial H}{\partial p_{i}}-H \\
V=V_{0}+\int_{t_{0}}^{t} W \delta t \tag{V}
\end{gather*}
$$

(*) Traité de Mécanique, by P. Appell, 1896; t. II, no. 478. See also no. 57 of this article.

Let V_{1} represent what V will become when it is expressed as a function of the q_{i} and n distinct integration constants a_{1}, \ldots, a_{n} of equations (59) (*).

One has:

$$
\frac{\delta V_{1}}{\delta t}=\frac{\partial V_{1}}{\partial t}+\sum_{i} \frac{\partial V_{1}}{\partial q_{i}} \frac{\partial H}{\partial p_{i}} .
$$

Now:

$$
\delta V_{1}=\delta V,
$$

so:

$$
\frac{\partial V_{1}}{\partial t}+H+\sum_{i} \frac{\partial H}{\partial p_{i}}\left(\frac{\partial V_{1}}{\partial q_{i}}-p_{i}\right)=0 .
$$

The relation (60) becomes:

$$
\sum_{i}\left(\frac{\partial V_{1}}{\partial q_{i}}-p_{i}\right) d q_{i}+\frac{\partial V_{1}}{\partial a_{i}} d a_{i}=\text { constant }
$$

and by means of (V), one will find that:

$$
\begin{equation*}
\frac{\partial V_{1}}{\partial q_{i}}-p_{i}=\text { constant } . \tag{61}
\end{equation*}
$$

The Jacobi equation:

$$
\frac{\partial V_{1}}{\partial t}+H\left(t, q_{k}, \frac{\partial V_{1}}{\partial q_{i}}\right)=0
$$

will correspond precisely to the case in which one supposes that the n constants of (61) are identically zero. Thus:

$$
\begin{aligned}
\frac{\partial V_{1}}{\partial q_{i}} & =p_{i}, \\
\frac{\partial V_{1}}{\partial a_{i}} & =\text { constants } b_{i}, \\
V_{0} & =\sum_{i} a_{i} b_{i},
\end{aligned}
$$

in which a_{i} and b_{i} are the values of the p_{i} and q_{i} for the initial instant t_{0}.
57. - The relative invariant:

$$
\int \sum \frac{\partial W}{\partial q^{\prime}} d q
$$

[^7]in equations (59) is the generalization of the Helmholtz-Kelvin relative invariant.
Equations (59) can be written (${ }^{*}$):
\[

$$
\begin{gather*}
\frac{\delta q_{i}^{\prime}}{q_{i}}=\frac{\delta q_{k}^{\prime}}{q_{k}^{\prime \prime}}=\delta t \quad(i, k=1, \ldots, n), \\
\sum_{i}\left(\frac{\partial^{2} W}{\partial q_{k}^{\prime} \partial q_{i}} q_{i}^{\prime}+\frac{\partial^{2} W}{\partial q_{k}^{\prime} \partial q_{i}^{\prime}} q_{i}^{\prime \prime}\right)-\frac{\partial W}{\partial q_{k}}=0 .
\end{gather*}
$$
\]

Thus:

$$
q_{i}^{\prime \prime}=\frac{\Delta}{\left|\frac{\partial^{2} W}{\partial q_{k}^{\prime} \partial q_{i}^{\prime}}\right|} .
$$

However, one has:

$$
I_{2 n}=\int d p_{1} \cdots d p_{n} d q_{1} \cdots d q_{n}=\int \frac{\partial\left(\frac{\partial W}{\partial q_{1}^{\prime}} \cdots \frac{\partial W}{\partial q_{n}^{\prime}}\right)}{\partial\left(q_{1}^{\prime} \cdots q_{n}^{\prime}\right)} d p_{1}^{\prime} \cdots d p_{n}^{\prime} d q_{1}^{\prime} \cdots d q_{n}^{\prime}
$$

Consequently, $\left|\frac{\partial^{2} W}{\partial q_{k}^{\prime} \partial q_{i}^{\prime}}\right|$ is a multiplier is the Lagrange equations when one employs the variables q and q^{\prime}. Represent that multiplier by M. The Lagrange equations become:

$$
\frac{\delta q_{i}}{q_{i}^{\prime}}=\frac{\delta q_{i}^{\prime}}{\frac{\Delta_{i}}{M}}=\delta t
$$

In that form, one sees that $q_{i}^{\prime}, \Delta_{i} / M$ define a solution for the first-order variations. Hence, $M q_{i}^{\prime}$ and the Δ_{i} are (up to sign) the coefficients $\left(M^{i}\right)$ of an integral invariant of order ($2 n-1$) (no. 35).
58. - The results of no. 56 are susceptible to several generalizations.

As before, one will find that:

$$
J_{1}=\int \sum_{i} \sum_{l} N_{l}^{i} d q_{i}^{l} \quad\left\{\begin{aligned}
i & =1, \ldots, n, \\
l & =0, \ldots, p-1, \\
q_{i}^{0} & \equiv q_{i}, \\
N_{-1}^{i} & \equiv 0
\end{aligned}\right.
$$

is a relative integration invariant of the system:

[^8]\[

\left\{$$
\begin{array}{c}
\frac{\delta q_{i}}{q_{i}^{1}}=\frac{\delta q_{i}^{1}}{q_{i}^{2}}=\cdots=\frac{\delta q_{i}^{p-1}}{q_{i}^{p}}=\delta t \tag{63}\\
\frac{\partial W}{\partial q_{i}}-\frac{\delta}{\delta t} \frac{\partial W}{\partial q_{i}^{1}}+\cdots+(-1)^{p} \frac{\delta^{p}}{\delta t^{p}} \frac{\partial W}{\partial q_{i}^{p}}=0
\end{array}
$$\right.
\]

when

$$
\begin{aligned}
& N_{0}^{i}=\frac{\partial W}{\partial q_{i}^{1}}-\frac{\delta}{\delta t} \frac{\partial W}{\partial q_{i}^{2}}+\cdots+(-1)^{p-1} \frac{\delta^{p-1}}{\delta t^{p-1}} \frac{\partial W}{\partial q_{i}^{p}}, \\
& N_{1}^{i}=\quad \frac{\partial W}{\partial q_{i}^{2}}+\cdots+(-1)^{p-2} \frac{\delta^{p-2}}{\delta t^{p-2}} \frac{\partial W}{\partial q_{i}^{p}}, \\
& N_{p-1}^{i}=\ldots \ldots \cdot \frac{\partial W}{\partial q_{i}^{p}} .
\end{aligned}
$$

One can easily verify that by noting that:

$$
\frac{\delta}{\delta t} N_{l}^{i}=\frac{\partial W}{\partial q_{i}^{l}}-N_{l-1}^{i}
$$

If one takes the N_{l}^{i} and the q_{l}^{i} to be variable then the system (63) will take the canonical form (Jacobi).
59. - One will then have:

$$
\begin{equation*}
j_{t_{1}}-j_{t_{0}}=d \int_{t_{0}}^{t_{1}} W \delta t \tag{64}
\end{equation*}
$$

in which:

$$
j=\sum_{i} \sum_{l} N_{l}^{i} d q_{i}^{l}
$$

Take the variation d of the two sides of (62), so (${ }^{*}$):

$$
\begin{gathered}
d j_{t_{1}}-d j_{t_{0}}=j_{t_{1}}^{\prime}-j_{t_{0}}^{\prime}=d \int_{t_{0}}^{t_{1}} d W \delta t \\
j^{\prime}=d j=\sum \frac{\partial d W}{\partial q_{i}^{\prime}} d q_{i} .
\end{gathered}
$$

[^9]We now write the equations of variations of equations (59):

$$
\begin{equation*}
\frac{\delta \frac{\partial d W}{\partial q_{i}^{\prime}}}{\frac{\partial d W}{\partial q_{i}}}=\frac{\delta d q_{i}}{d q_{i}^{\prime}}=\delta t \tag{65}
\end{equation*}
$$

This system admits the relative invariant:

$$
J_{1}^{\prime}=\int \sum \frac{\partial d W}{\partial q_{i}^{\prime}} d q_{i}
$$

hence, it can also be put into the canonical form.
60. - We say that:

$$
j_{\mu}=\sum_{i} N_{i}^{\mu} d x_{i} \quad\left\{\begin{array}{r}
i=1, \ldots, n \\
\mu=1, \ldots, v
\end{array}\right.
$$

are the v elements of a first-order relative integral invariant of the system (no. 41):

$$
\delta x_{i}=\sum_{\mu} X_{i}^{\mu} \delta t_{\mu}
$$

that is comprised of n total differential equations when:

$$
\begin{equation*}
\sum_{\mu} \frac{\delta j_{\mu}}{\delta t_{\mu}}=d W \tag{66}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
d \int^{\nu} W \delta t_{1} \cdots \delta t_{v}=\int^{\nu} \sum_{\mu} \frac{\delta j_{\mu}}{\delta t_{\mu}} \delta t_{1} \cdots \delta t_{v} \tag{66'}
\end{equation*}
$$

The latter integral reduces immediately to an integral of order $v-1$ that is extended over a closed manifold.

Let $v=2$. Set:

$$
\begin{equation*}
\delta x_{i}=x_{i}^{1} \delta t_{1}+x_{i}^{2} \delta t_{2} \tag{67}
\end{equation*}
$$

As in no. 56, one finds that equations (67), combined with the following equations:

$$
\begin{equation*}
\frac{\partial W}{\partial x_{i}}-\frac{\delta}{\delta t_{1}} \frac{\partial W}{\partial x_{i}^{1}}-\frac{\delta}{\delta t_{2}} \frac{\partial W}{\partial x_{i}^{2}}=0 \tag{68}
\end{equation*}
$$

admit a relative invariant whose elements are:

$$
\left\{\begin{array}{l}
j_{1}=\sum \frac{\partial W}{\partial x_{i}^{1}} \partial x_{i}, \tag{69}\\
j_{2}=\sum \frac{\partial W}{\partial x_{i}^{2}} \partial x_{i} .
\end{array}\right.
$$

Remark. - In the calculus of variations, one begins by giving the function W of t_{μ}, x_{i}, and $x_{i}^{\alpha_{1}+\cdots+\alpha_{v}}$ or $\frac{\delta^{\alpha_{1}+\cdots+\alpha_{v}} x_{i}}{\delta t_{1}^{\alpha_{1}} \cdots \delta t_{v}^{\alpha_{v}}}$. One then proposes to calculate the variation:

$$
d \int W \delta t_{1} \cdots \delta t_{v}
$$

in such a manner that no $d x_{i}^{\alpha_{1}+\cdots+\alpha_{v}}$ will appear under the integration sign. The preceding shows that this variation will be equal to a v-tuple integral in which the left-hand sides of equations (69) enter in a generalized form and an integral of order $v-1$ that one easily deduces from the righthand side of (66^{\prime}) and a generalization of formulas (69).
61. - We once more say that:

$$
\left\{\begin{array}{l}
\delta x_{i}=\frac{\partial H_{1}}{\partial y_{i}} \delta t_{1}+\frac{\partial H_{2}}{\partial y_{i}} \delta t_{2} \tag{70}\\
\delta y_{i}=-\frac{\partial H_{1}}{\partial x_{i}} \delta t_{1}-\frac{\partial H_{2}}{\partial x_{i}} \delta t_{2}
\end{array}\right.
$$

are canonical equations in which H_{1} and H_{2} are the characteristic functions.

Theorem:

In order for the equations:

$$
\begin{aligned}
\delta x_{i} & =X_{i}^{1} \delta t_{1}+X_{i}^{2} \delta t_{2} \\
\delta y_{i} & =Y_{i}^{1} \delta t_{1}+Y_{i}^{2} \delta t_{2}
\end{aligned}
$$

to admit the relative invariant $j_{1}=j_{2}=$ such that:

$$
\begin{aligned}
& \frac{\delta j_{1}}{\delta t_{1}}=d W_{1} \\
& \frac{\delta j_{2}}{\delta t_{2}}=d W_{2}
\end{aligned}
$$

it is necessary and sufficient that this system should be canonical.

Upon proceeding as in no. 56, one can extend the Jacobi method of integration to equations (70). [See the paper by Saltykow, J. Math. pures et appl. (1899).]

CHAPTER XIV

Proof of a theorem by H. Poincaré

Resume. - In this chapter, I shall give a new proof of a fundamental theorem by Poincaré. The one that was given by the distinguished geometer does not seem as simple to me. The proof here is based upon several other theorems that have come about in recent times in some remarkable articles (*).
62. - Recall no. 42 and consider the system of linear differential equations (44), which we write:

$$
\begin{equation*}
\frac{\delta \xi_{i}}{\sum_{k} X_{i k} \xi_{k}}=\delta t \quad(i, k=1, \ldots, n) \tag{71}
\end{equation*}
$$

in which $X_{i k}$ are n^{2} periodic functions of period T. Let:

$$
\left\{\begin{array}{l}
\xi_{i}=\psi_{i}^{1}, \tag{72}\\
\xi_{i}=\psi_{i}^{2}, \\
\vdots \\
\xi_{i}=\psi_{i}^{n}
\end{array} \quad(i=1, \ldots, n)\right.
$$

be n linearly-independent solutions of equations (71). They will not change when one changes t into $t+T$, and the n solutions will become:

$$
\xi_{i}=\psi_{i}^{1}(t+T), \quad \text { etc. }
$$

[^10]They must then be linear combinations of the n solutions (72) in such a way that:

$$
\begin{aligned}
& \psi_{i}^{1}(t+T)=A_{11} \psi_{i}^{1}(t+T)+A_{12} \psi_{i}^{2}(t+T)+\cdots+A_{1 n} \psi_{i}^{n}(t+T), \\
& \ldots \cdots \cdots \cdots \cdots \cdots \cdots, \\
& \psi_{i}^{n}(t+T)=A_{n 1} \psi_{i}^{1}(t+T)+A_{n 2} \psi_{i}^{2}(t+T)+\cdots+A_{n n} \psi_{i}^{n}(t+T),
\end{aligned}
$$

in which the $A_{i k}$ are constants whose determinant is non-zero. Having said that, form the equation in S :

$$
\left|\begin{array}{ccc}
A_{11}-S & \cdots & A_{1 m} \tag{S}\\
\vdots & \ddots & \vdots \\
A_{n 1} & \cdots & A_{n n}-S
\end{array}\right|=0
$$

Let S_{1} be one of the roots of that equation (S). Set:

$$
S_{1}=e^{\alpha_{1} T} .
$$

We have a particular solution of equations (71) that we can write (${ }^{*}$):

$$
\xi_{i}=e^{\alpha_{1} t} \lambda_{i}^{1}(t) \quad(i=1, \ldots, n)
$$

in which the λ_{i}^{1} are periodic of period T. Such a solution is said to be of the first type. If α_{1} is a root of order $p>1$ then it will give solutions of the form $e^{\alpha_{1} t}$, multiplied by an entire polynomial in t whose coefficients are period functions of t of period T. They are solutions of the second type. The roots α are called characteristic exponents.

63. Theorem of H. Poincaré:

If the X_{i} that enter into equations (1) are uniform and periodic of period T, and if those equations admit a periodic solution of period T, in addition, as well as p uniform integrals F_{1}, \ldots, F_{p} that do not include t explicitly then p of the characteristic exponents will be zero, unless all of the determinants that are contained in the matrix:

[^11]\[

\left|$$
\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{1}}{\partial x_{n}} \tag{73}\\
\vdots & \ddots & \vdots \\
\frac{\partial F_{p}}{\partial x_{1}} & \cdots & \frac{\partial F_{p}}{\partial x_{n}}
\end{array}
$$\right|
\]

are non-zero at all points of the periodic solution considered. - If the X_{i} do not include texplicitly then there will be at least $p+1$ characteristic exponents that are zero.

Proof: Let $\psi_{i}^{1}, \ldots, \psi_{i}^{n}$ be n distinct solutions of (71); suppose that $p=1$. One will have:

$$
\begin{aligned}
& \sum_{i} F_{1 i} \psi_{i}^{1} \equiv c_{1}, \\
& \ldots \ldots \ldots \ldots \ldots \ldots, \\
& \sum_{i} F_{1 i} \psi_{i}^{n} \equiv c_{n},
\end{aligned}
$$

identically, in which $F_{1 i}$ represents what $\partial F_{1} / \partial x_{i}$ will become when one replaces x_{k} with the periodic solution (viz., generator): $x_{k}=\varphi_{k}(t) ; c_{1}, \ldots, c_{n}$ are well-defined constants.

At the (arbitrary) $t+T$, one will have:

$$
\begin{aligned}
& \sum_{i} F_{1 i}\left(A_{11} \psi_{i}^{1}+\cdots+A_{1 n} \psi_{i}^{n}\right) \equiv c_{1}, \\
& \ldots \ldots \ldots \ldots \ldots \ldots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& \sum_{i} F_{1 i}\left(A_{n 1} \psi_{i}^{1}+\cdots+A_{n n} \psi_{i}^{n}\right) \equiv c_{n} .
\end{aligned}
$$

If one subtracts corresponding sides of the preceding two systems then one will see that equation (S) admits the solution $S=1$. Hence, there will be a characteristic exponent that is zero that consequently corresponds to a solution to the periodic variations. The restriction in regard to (73) is obvious.

Let $p=3$. If the theorem is supposed to have been proved for $p=2$ then one knows that there are two characteristic exponents that are equal to zero that correspond to the two solutions:

$$
\xi_{i}^{1}=\Phi_{i}^{1}
$$

and

$$
\xi_{i}^{2}=t \Phi_{i}^{1}+\Phi_{i}^{2}
$$

By virtue of no. 28, one will have the integral invariant:

$$
I_{1}=\int \sum_{i j k} \frac{\partial\left(F_{1}, F_{2}, F_{3}\right)}{\partial\left(x_{i}, x_{j}, x_{k}\right)} d x_{i} d x_{j} d x_{k} \quad(i, j, k=1, \ldots, n)
$$

Hence:

$$
\sum_{i j k} F_{i j k}^{123}\left|\begin{array}{ccc}
\Phi_{i}^{1} & \Phi_{j}^{1} & \Phi_{k}^{1} \\
\Phi_{i}^{2} & \Phi_{j}^{2} & \Phi_{k}^{2} \\
\psi_{i}^{l} & \psi_{j}^{l} & \psi_{k}^{l}
\end{array}\right|=\text { an integral } \quad(l=3, \ldots, n)
$$

Replace the x_{k} with the solution (i.e., generator) $\varphi_{k}(t)$. The left-hand side of the preceding expression will reduce to a well-defined constant c_{l}. Not all of the c_{l} can be zero at the same time.

If we increase t by T then we will get a new system that will give:

$$
\sum_{i j k} F_{i j k}^{123}\left|\begin{array}{ccc}
\Phi_{i}^{1} & \Phi_{j}^{1} & \Phi_{k}^{1} \\
\Phi_{i}^{2} & \Phi_{j}^{2} & \Phi_{k}^{2} \\
A_{l 3} \psi_{i}^{3}+\cdots+\left(A_{l l}-1\right) \psi_{i}^{l}+\cdots+A_{l n} \psi_{i}^{n} & \left(\psi_{j}\right) & \left(\psi_{k}\right)
\end{array}\right| \equiv 0
$$

when it is subtracted from the preceding one. The significance of $\left(\psi_{j}\right)$ and $\left(\psi_{k}\right)$ is easy to find. Those $n-2$ expressions, which are linear and homogeneous in $A_{l 3}, \ldots, A_{l l}-1, \ldots, A_{l n}$, are compatible only if one has:

$$
\left|\begin{array}{ccc}
A_{33}-1 & \cdots & A_{3 n} \tag{75}\\
\vdots & \ddots & \vdots \\
A_{n 3} & \cdots & A_{n n}-1
\end{array}\right| \equiv 0 .
$$

Since Φ_{i}^{1} is periodic, we will have:

$$
A_{11}=1, \quad A_{12}=\ldots=A_{1 n}=0 .
$$

The value of ψ_{i}^{2} shows that:

$$
A_{21}=1, \quad A_{22}=1, \quad A_{23}=\ldots=A_{2 n}=0 .
$$

Therefore, equation (S) will become:

$$
\left|\begin{array}{ccccc}
1-S & 0 & 0 & \cdots & 0 \\
T & 1-S & 0 & \cdots & 0 \\
A_{31} & A_{32} & A_{33}-S & \cdots & A_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_{n 1} & \cdots & \cdots & \cdots & A_{n n}-S
\end{array}\right|=0 .
$$

One sees immediately that $S=1$ will annul all of the minors that relate to any two elements that are taken from the positive diagonal of the determinant (S). Therefore, $S=1$ is a triple root of equation (S), so there will be three zero exponents.

Set:

$$
\begin{aligned}
& \xi_{i}^{1}=X_{i}, \\
& \xi_{i}^{2}=t X_{i}+\Phi_{i}^{2}, \\
& \xi_{i}^{l}=\psi_{i}^{l} \quad(l=3, \ldots, n) .
\end{aligned}
$$

One has (no. 35):

$$
\begin{aligned}
& \sum_{i} F_{1 i} X_{i} \equiv 0, \\
& \sum_{i} F_{2 i} X_{i} \equiv 0,
\end{aligned}
$$

so:

$$
\sum_{i, j}\left|\begin{array}{ll}
F_{1 i} & F_{1 j} \tag{76}\\
F_{2 i} & F_{2 j}
\end{array}\right|\left|\begin{array}{rr}
X_{i} & X_{j} \\
\xi_{i}^{1} & \xi_{j}^{1}
\end{array}\right| \equiv 0
$$

as one can verify by performing the multiplication and replacing $\sum_{i, j}$ with a double summation $\sum_{i=1 \cdots n} \sum_{j=1 \cdots n}$.

The integral invariant:

$$
I_{2}=\int \sum_{i, j} F_{i j}^{\prime 2} d x_{i} d x_{j}
$$

will give:

$$
\sum_{i, j} F_{i j}^{\prime 2}\left|\begin{array}{cc}
\xi_{i}^{2} & \xi_{j}^{2} \\
\xi_{i}^{l} & \xi_{j}^{l}
\end{array}\right|=\text { an integral. }
$$

By reasoning as one did in the preceding case $(p=3)$ and making use of the identity (76), one will get the identity (75), after which, nothing will need to be changed in the proof.

The case in which p is arbitrary can be treated in the same way. One always begins by considering the integral invariant I_{p} that one can write:

$$
\int d F_{1} \cdots d F_{p}
$$

CHAPTER XV

Application to the Lagrange and Riemann's adjoint equation

Summary. - This chapter includes the synthesis of numerous studies (${ }^{*}$) that have been made on the subject. It is an interesting application of the generalized calculus of variations. Some new simplifications are given in it. Note that this theory can be utilized in the case of an arbitrary system of ordinary differential equations when one knows a solution (no. 42).
64. - Consider the n linear ordinary differential equations:
(E)

$$
\frac{\delta x_{i}}{\sum_{k} a_{k}^{i} x_{k}}=\delta t \quad(k, i=1, \ldots, n)
$$

in which the a_{k}^{i} are functions of only t.
The coefficients of an integral invariant I_{p} of order p of the system will define a solution to $\frac{n!}{p!(n-p)!}$ linear ordinary differential equations when one supposes that those coefficients are functions of only t.

We call that system the adjoint system $A_{p} E$. Let $p=1$. Formulas (8) will then give:

$$
\begin{align*}
& \frac{\delta M_{i}}{-\sum_{k} a_{i}^{k} M_{k}}=\delta t \tag{1}\\
& A_{1} A_{1} E \equiv E
\end{align*}
$$

One has, in addition (no. 39), that:

$$
M_{i}=(-1)^{i} M \xi_{(n-1)}^{i} .
$$

Let $p=n$. Nos. 18 and $\mathbf{3 9}$ will give:

$$
M=\frac{1}{\xi_{(n)}}=\exp \left(-\int \sum a_{k}^{k} \delta t\right)=\frac{1}{\Delta}=\text { a multiplier. }
$$

Δ represents the determinant that is formed from n distinct solutions of E. The solutions to E are, at the same time, solutions to the variations of E. Let $V_{q} E$ represent the system of linear ordinary differential equations that the solutions to the variations $\xi_{(q)}$ of order q of E satisfy; call that system the associated system $V_{q} E$.

Thanks to the formulas in nos. $\mathbf{8}, \mathbf{1 8}, \mathbf{2 3}, 25$ (cont.), $\mathbf{3 4}, \mathbf{3 5}$, and $\mathbf{3 9}$, one will get the following remarkable relations from some very simple calculations:

[^12]\[

$$
\begin{gathered}
V_{q} E \equiv E, \\
A_{p} A_{1} E \equiv A_{1} A_{p} E \equiv V_{p} E, \\
A_{p} A_{n-1} E \equiv V_{p} V_{n-1} E, \\
A_{1} V_{p} E \equiv V_{p} A_{1} E \equiv A_{p} E .
\end{gathered}
$$
\]

One will also find the multipliers $A_{p} E$ or $V_{p} E$ just as easily since all of those multipliers are equal to Δ raised to various powers.
65. - Consider the $n^{\text {th }}$-order ordinary differential equation:

$$
\begin{equation*}
a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n-1} x_{n-1}+a_{n} x_{n}=0 \tag{77}
\end{equation*}
$$

in which:

$$
x_{0} \equiv x \quad \text { and } \quad x_{p} \equiv \frac{\delta^{p} x}{\delta t^{p}}
$$

The coefficient M_{n-1} in the integral invariant:

$$
I_{1}=\int M_{0} d x_{0}+M_{1} d x_{1}+\cdots+M_{n-1} d x_{n-1}
$$

of equation (77) satisfies an $n^{\text {th }}$-order equation (${ }^{*}$) that is the Lagrange adjoint of (77). The coefficient M_{0} satisfies an $n^{\text {th }}$-order equation that was studied by Jacobi and later by Darboux and Cels.

The system $\left(A_{1} E\right)$ implies the very simple relation:

$$
\frac{\delta M_{0}}{\delta t}-\frac{a_{0}}{a_{n}} M_{n-1}=0
$$

which was utilized by Cels.
66. - Now suppose that there are two independent variables t_{1} and t_{2}. Consider a second-order partial differential equation that we write as follows:

$$
\begin{equation*}
a_{00} x_{00}+a_{01} x_{01}+a_{10} x_{10}+a_{11} \mathrm{x}_{11}+a_{02} x_{03}+a_{20} x_{20}=0 \tag{77}
\end{equation*}
$$

in which:

[^13]$$
x_{00} \equiv x \quad \text { and } \quad \frac{\delta^{q} x_{i k}}{\delta t_{2}^{q}}=x_{i, k+q}
$$
and in which the coefficients a are functions of t_{1} and t_{2}.
Set:
\[

$$
\begin{aligned}
& I_{1}=M_{00} d x_{00}+M_{01} d x_{01}+M_{10} d x_{10}, \\
& I_{2}=N_{00} d x_{00}+N_{01} d x_{01}+N_{10} d x_{10},
\end{aligned}
$$
\]

and look for the necessary and sufficient conditions for one to have:

$$
\begin{equation*}
\frac{\delta I_{1}}{\delta t_{1}}+\frac{\delta I_{2}}{\delta t_{2}}=0 \tag{no.60}
\end{equation*}
$$

We find that:

$$
\begin{array}{r}
\delta_{1} M_{00}+\delta_{2} N_{00}-N_{01} \frac{a_{00}}{a_{02}}=0, \\
\delta_{1} M_{10}+\delta_{2} N_{01}+N_{00}-N_{01} \frac{a_{00}}{a_{02}}=0, \\
\delta_{1} M_{10}+\delta_{2} N_{00}+M_{00}-N_{01} \frac{a_{00}}{a_{02}}=0, \tag{79}\\
M_{01}+N_{01}-N_{01} \frac{a_{00}}{a_{02}}=0, \\
M_{10}-N_{01} \frac{a_{00}}{a_{02}}=0,
\end{array}
$$

in which δ_{1} and δ_{2} are used in place of $\delta / \delta t_{1}$ and $\delta / \delta t_{2}$, resp.
The last equation gives:

$$
\left\{\begin{array}{c}
M_{10}=y a_{20}, \tag{80}\\
N_{10}=y a_{02}
\end{array}\right.
$$

in which y is a function of t_{1} and t_{2} that satisfies a second-order partial differential equation that the Riemann adjoint (${ }^{*}$) of (78). That equation is obtained by eliminating the coefficients M and N of equations (79) and (80). We remark that:

$$
M_{01}+N_{01}=y a_{11},
$$

so those two coefficients enter into consideration only by way of their sum. An indeterminacy will then result that one can benefit from by taking, for example, $N_{10} \equiv 0$. As a result of that fact, the

[^14]coefficients M_{00} and N_{00} can have simpler values, and Riemann's method of integration will have much to recommend it.

Paris, 21 February 1902
Th. DE DONDER.

[^0]: (*) Here, I suppose that M does not include t explicitly in order for the formulas to be identical to the ones that were given by the authors that I just cited.

[^1]: (*) The manuscript of this article was submitted to H. Poincaré on 3 February 1901.
 (**) "Sur les équations différentielles simultanées et la forme aux dérivées adjointe" (14 June 1901).
 $\left({ }^{* * *}\right)$ "Sur les équations de l'Hydrodynamique et la théorie des tourbillons," J. math. pures et appl. (1896).
 ${ }^{\dagger}$) "Erhaltung der Wirbelbewegung," Bull. Cracovie (1900).
 $\left({ }^{\dagger \dagger}\right)$ "Bemerkungen über die Differentiale von symbolic Ausdrücken, Berlin. Sitzungsber. (1890).

[^2]: (*) One must add the following statement to (29): "and the functions X_{i}, Y_{i}, Z_{i} depend upon only x_{i}, y_{i}, z_{i}, and t."

[^3]: (*) Th. de Donder, "Sur les invariants intégraux," C. R. Acad. Sci. Paris, 9 September 1901.
 (**) Méthodes Nouvelles, t. I, pp. 15.
 (***) Cited article by E. Cartan and a note by Koenigs (C. R. Acad. Sci. Paris, December 1895).

[^4]: (*) Leçons by Goursat, Chap. XI.

[^5]: (*) Theorie der Transformationsgruppen, by S. Lie, with the collaboration of F. Engel (Teubner, Leipzig, 1890), t. II, pp. 251. (In what follows, I shall cite that book as Tgr.)

[^6]: (*) Tgr., Bd. II, pp. 276.
 ${ }^{\left({ }^{* *}\right)}$ Tgr., Bd. II, pp. 275.
 (***) Tgr., Bd. I, pp. 327. Theorie der Aehnlichkeit r-gliedriger Gruppen.
 ${ }^{\dagger}$) S. Lie, "Ueber Differentialinvarianten," Math. Ann. (1884).

[^7]: (*) Which is always possible (Cours d'Analyse, by Jordan, t. III, pp. 331)

[^8]: (*) I suppose that W does not include t explicitly.

[^9]: (*) I take $d^{2} q_{i}=0$ (Jordan's Cours, t. III, pp. 503).

[^10]: (*) Méthodes Nouvelles, t.I, pp. 184-192. - E. Lindelöf, "Démonstration de quelques théomès sur les équations différentielles," J. math. pures appl. (1900). - J. Hadamard, "Sur les intégrales d'un système d'éq. diff. ord.," Bull. Soc. Math. France (1900).

[^11]: (*) Méthodes Nouvelles, t. I, pps. 66 and 195.

[^12]: (*) Schlesinger, "Theorie der linearen Differentialgleichungen," Crelle's Journal, vols. 1 and (1901).

[^13]: (*) One can always find an equations of order at most n that is satisfied by one of the coefficients by differentiation and eliminating by means of determinants, even in the general case of an arbitrary system of n linear equations.

[^14]: (*) Leçons by G. Darboux, t. II.

