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Introduction and summary 

 

 One knows the importance that the problems in the calculus of variations have taken on in 

mathematical physics since Hamilton showed that the motion of a holonomic and conservative 

material system is governed by a principle that is analogous to Fermat’s principle for light. 

 That fundamental principle and the consequences that result from it have not ceased to 

dominate research in mechanics for over more than a century. If one would like to extend those 

properties and methods to other physical problems then one would necessarily be led to demand 

to know whether one can or cannot deduce their equations from a variational principle. 

 The question comes down to the following mathematical problem that is called the inverse 

problem in the calculus of variations: 

 

If one is given a system of differential equations in ordinary or partial 

derivatives then what are the conditions under which that system can be deduced 

from a problem in the calculus of variations? 

 

 However, in that form, the problem is too vague and demands to be made more precise. To fix 

ideas, imagine a system of n second-order differential equations in n unknown functions 
iq  of the 

independent variable t : 

 

(a)      ( , , , )j j j

iF t q q q  = 0  



Dedecker – On the circulation theorem of V. Bjerknes. 2 
 

2

2
( ), ,

j j
j j j jdq d q

q q t q q
dt dt

 
= = = 

 
  (i, j = 1, 2, …, n) . 

 

 One can pose the following question: 

 

A. – Does there exist a “Lagrangian function” L = ( , , )j jL t q q  whose 

variational derivatives / iL q   are identical Fi (
1): 

 

i

L

q




 = 

i i

L d L

q dt q

 
−

 
 = Fi ? 

 

 One can prove that the answer to that question is in the affirmative on the necessary and 

sufficient condition that the system of variations of Fi must be self-adjoint (pp. 24), which is a 

condition that is not generally satisfied. For example, take a holonomic material system with n 

degrees of freedom 1q , …, nq  that is characterized by a kinetic energy T = ( , , )j jT t q q  and is 

subject to forces Ki = ( , )j

iK t q . The equations of motion will then have the form: 

 

(b)  Fi = ii i

T d T
K

q dt q

 
− +

 
 = 0 , 

 

and the self-adjointness condition here amounts to the existence of a function V = ( , )jV t q  

(potential energy) such that: 

Ki = − 
i

V

q




 . 

 

In other words, the system considered must be conservative. The function L is then given by: 

 

L = T – V . 

 One can further pose the question: 

 

B. – Does there exist a “Lagrangian function” L = ( , , )j jL t q q  such that the 

equations / iL q   = 0 are equivalent to the proposed equations? 

 

 That question obviously admits an affirmative response in many cases that are broader in scope 

than the original one, but it is much more difficult, and it has been solved in only the particular 

cases where n = 1 and n = 2. We are then confined to the problems that relate to question A. 

 

* 

*   * 
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 The non-existence of a function L that answers question A in the general case of a holonomic 

material system has immediate repercussions in the mechanics of inviscid fluids. The set of 

trajectories of the fluid particles can indeed be considered to be a triply-infinite family of 

trajectories of a holonomic material system with three degrees of freedom 1q , 2q , 3q  that is 

characterized by: 

  T = 1 2 2 2 3 21
2
[( ) ( ) ( ) ]x x x+ + , Ki = − 

i i

p
v

x x

 
−

 
 (i = 1, 2, 3). 

 

 = ( , )ix t , v = ( , )iv x t , p = ( , )ip x t  represent the field of force per unit mass (one then supposes 

that this force is derived from a potential), the specific volume, and the pressure, respectively. The 

Ki are or are not derived from a potential V = ( , )iV x t  according to whether there does or does not 

exist a relationship between the specific volume and pressure, respectively; in other words, 

according to whether the fluid motion is barotropic or baroclinic, resp. 

 In the former case, the trajectories constitute a field of extremals of the integrals: 

 

L dt ,  L = T –  – U ,  U = v dp , 

 

but that is no longer true in the latter case. From the mathematical standpoint, that is the essential 

difference between barotropic fluids and baroclinic fluids, or to use an expression of V. Bjerknes, 

between classical hydrodynamics and physical hydrodynamics. 

 In barotropic fluids, the theorem of the conservation of circulation and Helmholtz’s theorem 

(which says that vortex lines displace like fluid lines) are consequences of the existence of a 

variational principle. The first one results from the properties of H. Poincaré’s relative linear 

integral invariant. The second one comes from some properties of the Hargreaves-Cartan relative 

linear integral invariant. 

 Those theorems will cease to be true for baroclinic fluids. They have nonetheless been 

generalized by V. Bjerknes into a theorem that gives the variation of circulation per unit time and 

a theorem by W. Thomson that gives a necessary and sufficient condition for a vortex line to 

displace like a fluid line. 

 The goal of the present work consists of showing how those two propositions can be attached 

to the theory of integral invariants despite the non-existence of the function L that is a solution to 

the problem A. To that end, we shall utilize a method that was pointed out by H. Bateman in 1931. 

 

* 

*   * 

 

 Bateman’s method is based upon the fact that any system of equations (a) can be prolonged 

uniquely by the adjunction of n differential equations: 

 

( ; , ; , ; )j j j j

iG t q s q s  = 0 
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that include n new unknowns ( )is t  in such a way that there will exist a function  = 

( ; , ; , ; , )j j j j j jt q s q s q s  (2): 

iq




  0, 

is




  Fi . 

 

 As one sees, that method amounts to considering the problem that is governed by equations (a) 

in the n-dimensional space of 1q , …, nq  to be the projection onto that space onto a problem in the 

2n-dimensional space 1q , …, nq , 1s , …, ns , which is a problem for which question A will admit 

an affirmative answer. 

 In the application of that method to baroclinic fluids, there is good reason to consider the three-

dimensional fluid motion to be the projection of a fictitious fluid motion in six-dimensional space. 

All of the properties that result from the existence of the function  will be true for that fictitious 

motion. In particular, that motion possesses a relative linear integral invariant, and we will show 

that in three-dimensional space the properties of that invariant will translate into the circulation 

theorem of V. Bjerknes and W. Thomson’s theorem on vorticity (*). 

 

* 

*   * 

 

 This treatise is divided into two chapters. 

 The first one reviews the properties of the calculus of variations and integral invariants that are 

involved with the theorem of the conservation of circulation and Helmholtz’s theorem (as well as 

a particular case of Lagrange’s theorem). The style of presentation is inspired by the E. Cartan’s 

Leçons sur les invariants intégraux, as well as the work of Th. Lepage on multiple integrals (3). 

 The second chapter contains a presentation of Bateman’s method in which we have drawn 

attention to the invariant properties and to the link between the geometric properties of the space 

of (q) and those of the prolonged space (q, s) (4). We will then have the common thread that links 

the general theorems of the calculus of variations to physical hydrodynamics. 

 

 

* 

*   * 

 

 The results that are presented here have been extracted from a doctoral thesis (**) that was 

prepared under the direction of professor F. van Dungen. It is a pleasant task for me to 

acknowledge all of the advice and encouragement that he never ceased to provide me with. 

 
 (*) H. Ertel (30) has tried to attach the theorem of V. Bjerknes to canonical equations. He did not utilize 

complementary equations but appealed to “pre-canonical equations.” By contrast, the method of Bateman will give 

us the true canonical equations. 

 (**) Defended at l‘Université libre du Bruxelles in June 1948. The editing of it has been revised completely. 
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 I would also like to thank some other people who have contributed to this work by their 

teaching or advice, and in particular, J. Géhéniau, Th. Lepage, P. Libois, and J. van Mieghem. 
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CHAPTER I 

 

Review of some theorems from the calculus of variations  

and the theory of integral invariants. 
 

§ 1. – A first problem in the calculus of variations and the exterior differential calculus. 

 

 1. – Consider a linear differential form, or Pfaff form, in the N-dimensional space N of 

variables 1x , …, Nx  (5): 

 

(1.1)     = 1

1

N

Na dx a dx+ + = a dx

   (n = 1, 2, …, N), 

 

in which the coefficients a1, …, aN are functions of 1x , …, Nx . (6). 

 The curvilinear integral: 

 

(1.2) [sic] I = 
C

  

 

is defined for any arc of the curve C : rx  = ( )rx t  (t1  t  t2) in N that joins the point P1 (t1) to the 

point P2 (t2). 

 The simplest problem in the calculus of variations consists of looking for extremals of the 

integral (1.1). 

 In order to do that, one considers a family of curves C that depend upon a parameter u and join 

the extremities P1 and P2 : 

  
rx  = ( , )rx t u   (t1  t  t2), 

(1.2) 
1( , )rx t u  and 

2( , )rx t u  are independent of u. 

 

The integral I will become a function of u whose derivative with respect to that variable will have 

the expression: 

0

I

u

 
 

 
 = 

r
ss r

r sC

a a x
dx

x x u

   
− 

   
  

 

when u = u0 (7). The integral on the right-hand side must be taken along the curve C0 that 

corresponds to the value u = u0 . By definition, that curve will be an extremal if that derivative is 

zero for any family 
rx  = ( , )rx t u  that satisfies the boundary conditions (1.2) and gives C0 for u = 

u0 . In order for that situation to occur, it is necessary and sufficient that the following relations 

should exist between the coordinates 
rx  of a point on the curve and (homogeneous) components 

rdx  of a tangent vector: 
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(1.3) 
ss r

r s

a a
dx

x x

  
− 

  
 = 0 . 

 

 That system of Pfaff equations is attached to the form  intrinsically. That system plays an 

essential role in the study of the form, and its integration amounts to solving the variational 

problem that was posed (8). 

 

 2. – Consider an arbitrary surface in N that is referred to curvilinear coordinates 1u , 2u : 

 
rx  = 1 2( , )rx u u  , 

 

and let d1 and d2 denote two differentiation symbols that refer to 1u  and 2u , respectively. In regard 

to the permutability of the operations d1 and d2 [symbolically, d1 d2 f − d2 d1 f = 
2

1 2

1 2

f
du du

u u



 
 for 

any function ( )rf x (6)], one has: 

d1  (d2) − d2  (d1) = 1 1

2 2

1

2

r s

s r

r s r s

d x d xa a

x x d x d x

  
−  

  
 , 

or one can set: 

[d ] = 
1

[ ]
2

r ss r

r s

a a
dx dx

x x

  
− 

  
 , 

to abbreviate. 

 The latter notation is symbolic. It will immediately lead to a very important method of 

differential and integral calculus that was introduced by E. Cartan and H. Poincaré (1899) and 

bears the name of the exterior differential calculus (9). The left-hand side is the symbolic product 

of the operator d and the form . It bears the name of the exterior differential of the form . In the 

right-hand side, the symbolic product [ ]r sdx dx  is an exterior product (one also says alternating), 

which verifies the Grassmann rule of multiplication: 

 

[ ] [ ]r s s rdx dx dx dx+  = 0, 

and in particular (10): 

[ ]r rdx dx  = 0 . 

 

That fact will be verified immediately when one reverts to the notation in the form of determinants. 

 In practice, when no ambiguity is possible, one suppresses the brackets in the symbolic 

notation and writes simply: 

(2.1) d = 
1

2

r ss r

r s

a a
dx dx

x x

  
− 

  
, 
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(2.2) (10) r s s rdx dx dx dx+  = 0, r rdx dx  = 0 . 

 

 The right-hand side of (2.1) is a particular case of a quadratic exterior differential form. 

 The most-general quadratic exterior differential form of N is written: 

 

 = r s

rsA dx dx . 

 

The Ars in that expression are functions of the independent variables 1x , …, Nx that are taken to 

have their meaning in mathematical analysis, while the 1dx , …, Ndx  are indeterminates in the 

sense of modern algebra that are subject to the rules of calculation (2.2) 

 The same remark applies to the ar and the 
rdx  in the Pfaff form  or linear exterior differential 

form. The operator d of exterior differentiation makes the linear form  correspond to a quadratic 

form d whose coefficients are, by definition: 

 

Ars = 
1

2

s r

r s

a a

x x

  
− 

  
 . 

 

 One can define exterior differential forms of degree  = 1, 2, …, N more generally, but it will 

suffice to consider the cases  = 1, 2 here. 

 The exterior differential forms of degree  are expressions that one encounters under a -uple 

integral sign (11), and the operation of exterior differentiation permits one to write the Stokes 

formula in its simplest form. 

 Let a portion of a surface S be bounded by a closed contour C. That formula is written: 

 

r

r
C

a dx  = 
1

2

r ss r

r sS

a a
dx dx

x x

  
− 

  
 . 

 

With the notations that were just introduced, the expressions under the signs can be written  and 

d, respectively. On the other hand, the contour C bounds the surface S, so it is determined 

completely by the surface. It is often represented by the symbol S = C (*). The Stokes formula 

will then take the remarkable form: 

S


  = 
S

d  . 

 

 3. – The left-hand sides of equations (1.3) are nothing but the coefficients of the 
rdx  in the 

form d that was defined in (2.1). That system bears the name of the characteristic system of the 

form d, and the rank (which is always even) 2 of the antisymmetric determinant: 

  

 
 (*) The symbol  is read “del.” 
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s r

r s

a a

x x

 
−

 
 

is the rank (or class) of d. 

 The system (1.3) will possess N − 2 linearly-independent solutions for the unknowns 
rdx  at 

a point ( )rP x . Those solutions will define an N − 2-dimensional planar element at each point. 

 One proves (12) that the characteristic system (1.3) is completely integrable. That means that 

one and only one N − 2-dimensional manifold passes through each point P that is tangent to the 

corresponding planar element at that point. Those manifolds are called the characteristic manifolds 

of the form d. 

 It is obvious that any curve that satisfies the equations (1.3) is situated entirely in a 

characteristic manifold. Conversely, if a curve is situated entirely in a characteristic manifold then 

it will satisfy those equations. We can then conclude that: 

 

A necessary and sufficient condition for a curve C to be an extremal of the 

integral (1.1) is that it must belong to a characteristic manifold of the exterior 

differential d of the Pfaff form  (13). 

 

 One can prove that there always exist either 2 functions ( )rX x
, ( )rY x  (a = 1, 2, …, ) or 

2 + 1 functions ( )rX x
, ( )rY x , ( )rZ x  that are mutually independent and such that one will 

have: 

   = a

aY dX  or  = a

aY dX dZ+  (a = 1, 2, …, ). 

 

In both cases, one will have: 

d = a

adY dX , 

 

and the characteristic system will be written: 

 
adX  = 0 , adY  = 0 . 

 

The characteristic manifolds are the N − 2-dimensional manifolds that are defined by aX  = 

const., Ya = const. (14). 

 

§ 2. – Integral invariants. 

 

 4. – Recall the Pfaff form: 

 = r

ra dx  

 

and consider a system of differential equations: 
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(4.1)     
1

1

dx

X
= 

2

2

dx

X
= … = 

N

N

dx

X
, 

 

in which the 1X , 2X , …, NX  are functions of the 1x , 2x , …, Nx . One knows that one and only 

one integral curve or trajectory of that system passes through each point of N . 

 The set of trajectories that pass through the points of a curve C that joins the points P1 and P2 

(Fig. 1) constitutes a surface . Displace the points of the 

curve C in an arbitrary, continuous manner along their 

trajectories up to a position C  with extremities 1P   and 2P  . 

 In general, one will have: 

 

I1 = 
C

   1I   = 
C


 . 

 

 When the  sign can be replaced with the = sign, no matter 

what the initial curve C and final position, one says that I1 is 

a linear integral invariant of the equations (4.1). When one 

has: 

J1 = 
C

  = 1J   = 
C


 , 

 

no matter what the initial closed curve C and final closed 

curve C  that is obtained by an arbitrary, continuous displacement of C along the tube T then one 

says that J1 is a relative linear integral invariant (4.1). By contrast, an invariant of type I1 is called 

absolute. 

 

 5. – Now consider a portion of the surface S that is 

bounded by the closed curve C (Fig. 1). Deform that 

surface into a position S   such that each point is 

displaced along the corresponding trajectory of the 

system (4.1). The surface S   is bounded by a closed 

curve that is situated along the tube T of the trajectories 

that pass through the points of C. 

 If one is given a double integral: 

 

I2 = 
r s

rsA dx dx      

[Ars = 1( , , )N

rsA x x , r, s = 1, 2, …, N] 

 

then one will have, in general: 

 

I2 = r s

rs
S

A dx dx  2I   = r s

rs
S

A dx dx
 . 

P1 

P2 

 

 

C 

 

 

 

Figure 1. 

C 

 

Figure 2. 

 
 

 

T 

S 
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When the  sign can be replaced with the = sign for any portion of the initial surface S and the 

portion of the final surface S  , one says that I2 is a double integral invariant of equations (4.1). 

 That invariant is said to be absolute. When the = sign can be employed only when the surfaces 

S and S   are closed, the invariant is said to be relative. 

 Take the particular case: 

(5.1) Ars = 
1

2

s r

r s

a a

x x

  
− 

  
. 

The Stokes formula will give us: 

 

J1 = 
C

  = 
S


  = 
S

d  = I2 . 

 

For the Ars that are given by (5.1), the equalities I2 = 2I   and J1 = 1J   are then equivalent. 

 

 Any relative linear integral invariant corresponds to an absolute double integral invariant. 

 

 

 6. – When one is given the Pfaff form  a priori, one can look for all differential systems (4.1) 

that admit the relative linear and absolute double invariants: 

 

(6.1)    J1 = 
C

  = 
S


 ,  I2 = 
S

d . 

 

That problem can be called the “integral invariant problem” relative to the Pfaff form . 

 One proves that the systems (4.1) that answer the question are subject to the necessary and 

sufficient condition (15): 

(6.2)     
ss r

r s

a a
X

x x

  
− 

  
 = 0 . 

 

That amounts to saying that equations (1.3) must be consequences of (4.1). Therefore, in regard to 

the results of the first section, one can say: 

 

A necessary and sufficient condition for a system of differential equations (4.1) 

to admit the integral invariants J1 and I2 (6.1) is that the trajectories of that system 

must be situated entirely in the characteristic manifolds of the exterior differential 

form d of the Pfaff form . 

 

Upon comparing that result to the one in no. 3, we can conclude that: 

 

The problem in the calculus of variations that was posed in no. 1 relative to the 

form  and the integral invariant problem that relates to that same form are entirely 

equivalent. 
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Those problems amount to the integration of the system (1.3) (16). 

 

 

§ 3. – Variational problems of the type ( , , )i iL t q q . 

 

 7. – In the variational problem of the type that is described by Hamilton’s principle, one is 

given a function ( , , )i iL t q q  (i = 1, 2, …, n) that is defined in the 2n + 1-dimensional space 2n+1 

of the t, iq , iq  and one looks for the curves iq = ( )iq t  (which are called extremals) in the n + 1-

dimensional space of n+1 of t, iq that annul the first variation of the integral (17): 

 

(7.1)     , ,
i

i dq
L t q dt

dt

 
 
 

 . 

 

 E. Cartan ameliorated the result of A. C. Dixon (18) by proving a remarkable result that said 

that the problem that one poses in n+1 can be reduced to a problem of the type that was considered 

in no. 1 in the space 2n+1 (2n + 1 = N) for the Pfaff form: 

 

(7.2)  = ( )i i

i

L
L dt dq q dt

q


+ −


 . 

 

Meanwhile, one can suppose that a certain determinant is non-zero: 

 

(7.3) 
2

i k

L

q q



 
  0 , 

 

i.e., that the problem L is a regular problem in the calculus of variations (19). 

 Let us specify the proposition that gives the key to some properties of the integral invariants 

of mechanics. 

 Any curve iq  = ( )iq t  in n+1 (viz., space-time) possesses a curve in 2n+1 (viz., the space of 

contact elements) that is the image of the equations 
iq  = ( )iq t , 

iq  = /idq dt  that verifies the n 

Pfaff equations: 

 

(7.4) 
i idq q dt−  = 0 . 

 

 Conversely, a line 
iq  = ( )iq t , 

iq  = /idq dt in the space 2n+1 is the image of a curve in n+1 on 

the condition that it must satisfy equations (7.4). 

 The Dixon-Cartan theorem says that: 
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The extremals of the problem (7.1) that was posed in n+1 have images in 2n+1 

that are extremals of the variational problem that relates to the form  (7.2), and 

conversely. 

 

 The proof of that involves writing the characteristic system of the exterior differential form 

d. One confirms that d has rank 2n and that by means of (7.3), that system is composed of 

equations (7.4), completed by the Euler-Lagrange equations (20): 

 

(7.5)     
i i

L L
dt d

q q

 
−

 
 = 0 . 

 

 The calculations can be performed by utilizing the n canonical variables, or momentoids that 

are defined by: 

pi = 
i

L

q




 = ( , , )j j

ip t q q  

 

in place of the iq , so by virtue of (7.3): 

 

(7.6) iq  = ( , , )i j

jq t q p . 

 

 The Pfaff form (7.2) will then become: 

 

(7.7)  = i

ip dq H dt− , 

 

in which H is the Hamiltonian function: 

 

H = ( , , )j

jH t q p  = i

ip q L− . 

 One has: 

d = i i

i ii

i

H H
dp dq dq dp dt

q p

  
− + 

  
. 

 

Therefore, the characteristic system is obtained by annulling the coefficients of the 
idq , dpi, dt: 

 

i i

H
dp dt

q


+


 = 0 , − 

i

i

H
dq dt

p


+


 = 0 ,  − 

i

ii

i

H H
dq dp

q p

 
−

 
 = 0 . 

 

 One then recovers Hamilton’s 2n canonical equations [which are equivalent to the 2n 

equations (7.4) and (7.5), as one knows], plus one last equation that is nothing but the energy 

equation. It is a consequence of the first 2n equations, and it can be written: 
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H
dH dt

t


−


 = 0 . 

 

 

 8. – By virtue of what we saw in no. 2, the extremals of (7.1), or what amounts to the same 

thing, the integral of the canonical equations can also be characterized by the property that they 

admit the relative linear integral invariant: 

 

S


  = ( )i i

iS

L
L dt dq q dt

q


+ −

  = i

i
S

p dq H dt


− . 

 

 In the study of conservative holonomic material systems, Hamilton’s principle is nothing but 

the variational principle (7.1) for which L = T – V and V are the kinetic and potential energies, 

respectively. Time t plays a privileged role in the statement of that principle. 

 The results that we have recalled permit us to replace Hamilton’s principle with two equivalent 

principles that enjoy the remarkable property that the time t no longer plays a special role: The 

variational principle that relates to the form  (7.2) and the “integral invariant principle” that 

relates to that same form. The former is what E. Cartan called the principle of the conservation 

of the momentum and energy (21) because the coefficients pi, − H of the form (7.6) are nothing but 

the components of the momentum and energy. When the form  is considered to be an invariant, 

those n + 1 quantities are components of a covariant vector with respect to the group of general 

coordinates transformations of spacetime n+1 : 

 
nq  = ( , )n iq q t , t  = ( , )it q t  . 

 

 

§ 4. – Fields of extremals. 

 

 9. – There are 2n extremals of the problem (7.1). One and only one of them passes through 

each point of 2n+1, and n of them pass through each point of n+1. 

 One says field of extremals to mean a family of extremals such that one and only one of them 

passes through each point of n+1. When such a field is given, it will be possible to calculate the 

coefficients that are coordinates of the extremal that corresponds to each point in n+1  : 

 
idq

dt
= ( , )i jQ q t . 

 

Conversely, being given the functions 
iQ  will permit one to recover the field by integrating the 

preceding system. 

 When one passes to canonical variables, the field must be characterized by the functions: 
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Pi = ( , )j

iP q t  = 
i

L

q

 
 

 
, 

 

in which the curly brackets signify that one has replaced iq  with ( , )i jQ q t . 

 If one chooses n functions ( , )i jQ q t  or ( , )j

iP q t  arbitrarily then they will not define a field of 

extremals. 

 In order for n functions ( , )j

iP q t  to define a field, it is necessary and sufficient that the integrals 

iq  = ( )iq t  of the system: 

(9.1) 
idq

dt
 = 

i

H

p

 
 

 
 

 

− in which the brackets signify that one has replaced the pi with ( , )j

iP q t  – when completed by the 

system: 

pi = [ ( ), ]j

iP q t t  , 

 

should be solutions to the canonical equations: 

 
idq

dt
 = 

i

H

p




, idp

dt
 = − 

i

H

q




. 

That leads to the condition: 

(9.2) i i

j i

i

P PH H

q p t q

     
+ +   

     
 = 0 . 

 

 A field of extremals is therefore characterized by n momentoid functions Pi = ( , )j

iP q t  that 

verify the n partial differential equations (9.2). The trajectories of the field are the integrals of the 

system (9.1). 

 

 

 10. – If we are given a field of extremals  then we can consider it to be something that is 

defined by the trajectories of a fluid motion in spacetime n+1. 

 It is clear that this fluid motion admits the relative linear integral invariant: 

 

(10.1) [ ]
S


  = [ ]i

i
S

P dq H dt


−  

 

and the absolute double invariant: 
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[ ]
S
d   = [ ]i

i
S
dP dq d H dt− . 

 

 Similarly, the trajectories annul the first variation of integral: 

 

[ ]  . 

 

 When one sets dt = 0 in (10.1), one restricts one’s considerations to only those curves (S)0 

that are situated in the hyperplane t = const., and one will find nothing other than the theorem of 

the conservation of circulation: 

0
0

( )
[ ]

S

d

dt


  = 
0( )

i

i
S

d
P dq

dt  = 0 , 

 

which corresponds to H. Poincaré’s relative linear integral invariant. 

 However, whereas one has only one system of differential equations (namely, the canonical 

system) that enjoy those properties of invariance and being an extremum vis à vis the Pfaff form 

 that is defined by (7.2) or (7.7) in 2n+1, the same thing is not true for the form [] that is defined 

in n+1. Indeed, the systems in question are the ones whose trajectories are found in the 

characteristic manifolds of the form d []. 

 If one takes (9.2) into account then one will have: 

 

d [] = 
j i ji

i j

P P
dq

q q


 
− 

  
, 

j  = j

j

H
dq dt

p

 
−  

  

. 

 

The characteristic system is obtained by annihilating the coefficients of 
idq  and dt and will reduce 

to (22): 

(10.2) 
j ji

i j

P P

q q


 
− 

  
 = 0 . 

 

It obviously admits the solution j  = 0 that defines the trajectories of the field in question . 

 When the rank of the system (10.2) is equal to n (which can happen only when n is even), the 

solution 
j  = 0 will be the only solution. By contrast, there exist other solutions whenever the 

tank 2p of (10.2) is less than n (which will necessarily be the case when n is odd). 

 

 Example. – (E. Cartan, loc. cit., 1922). Recall the example of hydrodynamics and suppose 

that the fluid is barotropic (see the introduction pp. 2). For a well-defined motion, the fluid 

trajectories constitute a field of extremals for the problem that is defined by: 

 

L = T – V – U . 
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Let ( , )j

iu q t  (i, j = 1, 2, 3) denote the components of the velocity that plays the role of the Pi (
23). 

Upon setting dt = 0 in [], it will become: 

 

[]0 = i

iu dx . 

 

 When the integral of []0 is extended over a closed curve in the space 1 of the ( , )ix t  whose 

points are all taken at the same instant (dt = 0), it will not change in value when the points of that 

curve displace with the fluid particles. That property constitutes the theorem of the conservation 

of circulation that imagines only curves that are taken at the same instant. Upon utilizing the form: 

 

[] = i

iu dx  + u0 dt , 

in which: 

− u0 = [H] = 2 2 21
1 2 32

[( ) ( ) ( ) ]u u u U+ + + + , 

 

that property will generalize to arbitrary curves in spacetime that displace arbitrarily along a tube 

of fluid trajectories. 

 The characteristic system of d [] is written: 

 

(10.3) ( )
j i ji

i j

u u
dx u dt

x x

 
− − 

  
 = 0 . 

 

 In the general case, the coefficients of that system, i.e., the components of the rotation of the 

velocity, are not all zero, and the rank will be equal to 2 (viz., rotational motion). The characteristic 

manifolds constitute a doubly-infinite family of surfaces S such that one and only one of them 

passes through each point in spacetime 4 . All of the systems of differential equations whose 

trajectories are contained entirely in those surfaces admit relative linear integral invariants and 

absolute double ones: 

[ ]
S


       and      [ ]

S
d   , 

 

so the trajectories of those systems will be extremals of: 

 

[ ]  , 

in addition. 

 The same thing will be true for the system: 

 
i idx u dt−  = 0 

 

that defines the fluid trajectories. Another remarkable system that enjoys those properties defines 

the vortex lines: 
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1

32

3 2

dx

uu

x x


−

 

 = 
2

3 1

1 3

dx

u u

x x

 
−

 

 = 
3

1 2

2 1

dx

u u

x x

 
−

 

 = 
0

dt
. 

 

One observes that this system is obtained by setting dt = 0 in (10.3). 

 Any characteristic surface S can be just as well generated by the displacement of a trajectory 

that intersects a fixed vortex line as by the displacement of a vortex line that intersects a given 

trajectory. 

 In the latter mode of generation, the vortex line moves with the fluid particles and remains a 

vortex line. That property constitutes Helmholtz’s theorem. 

 

 

 11. – Those properties easily generalize to an arbitrary field of extremals . 

 We have already indicated the generalization of the theorem of the conservation of circulation 

in the preceding section. 

 Let 2p ( n) be the rank of the system (10.2). We know that it is completely integrable, and 

that property will persist when we prolong the system by the completely-integrable equation dt = 

0. We will then obtain the completely-integrable system: 

 

(11.1) 
j ji

i j

P P
dq

q q

 
− 

  
 = 0 ,  dt = 0 . 

 

 The infinitesimal vectors ( , )idq dt  that have their origin at a point P in spacetime n+1 and 

satisfy equations (11.1) generalize the tangent vectors to a vortex line in the preceding example. 

One can call them vorticity vectors. There are n−2p of them, and they are distributed throughout 

an n – 2p-dimensional planar element that passes through the point P. Only and only one n – 2p-

dimensional manifold passes through each point P (that one can call the vorticity manifold) that is 

situated in the hyperplane t = const. that passes through P and is tangent to the n – 2p-dimensional 

planar element that corresponds to each of its points. 

 The characteristic manifolds of the system (10.2) are n – 2p + 1-dimensional. One can just as 

well generate them by displacing a trajectory of the field  that intersects a fixed vorticity manifold 

as by displacing a vorticity manifold along a given trajectory. 

 In the latter mode of generation, the vorticity manifold moves with the fluid particles and 

remains a vorticity manifold. That property generalizes Helmholtz’s theorem. 

 

 

 12. – The preceding considerations supposed that the rank 2p of the system (10.2) is constant. 

Meanwhile, that rank can be lowered at certain singular points of n+1 . 

 Let P be one of those points. It can happen that the rank 2 p  < 2p is constant along the extremal 

of the field  that passes through P (24). 
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 One can then speak of “singular trajectories” that are loci of singular points. The vorticity 

vectors that are attached to a point P of one such trajectory will be situated in an n – 2 p( > n – 

2p)-dimensional planar element, but it will no longer be possible to define an n − 2 p-dimensional 

“vorticity manifold.” When applied to this degenerate case, Helmholtz’s theorem will correspond 

to the following property: When one displaces the origin and extremity of an (infinitely-small) 

vorticity vector like a fluid particle, that vector will constantly remain a vorticity vector (25). 

 The most-advanced case of degeneracy is the one in which 2 p  = 0. It will occur at a point P 

where the components of the rotation of the velocity: 

 

j i

i j

P P

q q

 
−

 
 

 

are annulled. At such a point, any infinitely-small vector will be a vorticity vector, and that situation 

will be necessarily reproduced at any point of the trajectory that passes through P (viz., Lagrange’s 

theorem). 

 When 2 p  = 0 at every point of an n-dimensional hypersurface in n+1, which is a hypersurface 

that intersects the trajectories of the field , one will necessarily have 2 p  = 0 in all of spacetime 

n+1. The field of extremals  will then be called a geodesic field. The Pfaff form [] reduces to 

the differential dS of a function S = ( , )iS q t  for which: 

 

Pi = 
i

S

q




, [H] = − 

S

t




. 

 

The function S is the solution to the Hamilton-Jacobi partial differential equation (26): 

 

, ,i

i

S S
H t q

t q

  
+  

  
 = 0 . 

One has d [] = 0, and the integral: 

[ ]  

 

will be an independent integral, i.e., its value will not depend upon the path that is followed in 

order to join two well-defined points of n+1 (
27). 

 

___________ 
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CHAPTER II 

 

Bateman’s method and its applications to hydrodynamics. 

 

 

§ 1. – Preliminaries. 

 

 13. – Here, we must consider the variational problem: 

 

(13.1) L dt   = 0 , 

 

in which L depends upon not only the derivatives iq  of iq , but also on the second derivatives :iq  

 

(13.2) L = ( , , , )i i iL t q q q . 

 

Recall that in this case, the differential equations of the extremals (which are generally of fourth 

order) are [see Th. De Donder (31)]: 

 

(13.3) 
i

L

q




  

2

2i i i

L d L d L

q dt q dt q

  
− +

  
 = 0 . 

 

 

 14. – As a result, the system of equations: 

 

(14,1)  ( , , , )i i i

aF t q q q  = 0  (a, i, j = 1, 2, …, n) 

 

that we must consider will govern a certain physical or geometric problem in the space En of the 
1q , …, nq . One can perform transformations T on the iq  that belong to a certain group  and have 

the equations (28): 

(14.2) 
iq = 

1( , , )i nq q q , 
( )

( )

i

i

q

q




  0 . 

 

We assume that the equations (14.1) consist of annulling the components of a certain tensor F. 

That means that equations (14.1) will become: 

 

( , , , )i i i

aF t q q q     = 0 

 

after a transformation (14.2), in which aF   are deduced from Fa by formulas of the type: 
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(14.3) aF  = b

a bF  , | |b

a    0, 

 

In other words, any transformation T corresponds to a matrix  = || ||b

a   that provides the 

transformation law (14.3) for the components of F and whose components b

a   are functions of 1,q  

…, nq . 

 In order for that law to be coherent, the correspondence T →  cannot be arbitrary. Indeed, 

suppose that after the transformation T (14.2) takes the iq  to iq , the transformation T   takes iq  

to iq : 

iq  = ( )i iq q   . 

 

One can pass directly from the 
iq  to the 

iq  by the transformation T   = T T  : 

 
iq  = [( ( )]i j kq q q   . 

 

Let || ||b

a  , || ||b

a  , || ||b

a   denote the matrices that are associated with the transformations T, ,T   

T  . In order for the law (14.3) to be coherent, it is necessary and sufficient that one should obtain 

the same components aF   by passing from the iq  to the iq by the intermediary of the 
iq , so one 

must then have: 
b

a   = c b

a c      or    =   . 

 

That expresses the idea that the set  of the matrices  that are associated with the transformations 

T constitute a group and that the correspondence T →  is a homomorphism of  onto . 

 The group , when endowed with the homomorphism h : T 
h

→  , defines the variance (one 

also says nature) of the tensor F. 

 That variance corresponds to another one that is called the opposite one, and is such that if G 

is a tensor with that new variance and components 
aG then the product: 

 
a

aF G  = 1

1

n

nF G F G+ +  

 

will be an invariant. The law of transformation of the components aG  into the transformation 

(14.2) is: 
aG  = a b

b G 
, 

 

in which || ||a

b 
 denotes the inverse matrix of || ||b

a   (29). 

 The most-important variances (which are also opposite to each other) are those of the covariant 

vectors (with components Ai) and the contravariant vectors (with components iB ) that one obtains 

by associating the transformations (14.2) with the linear transformation: 
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iA  = 
j

ji

q
A

q




 and iB  = 

i
j

j

q
B

q




. 

 

For example, if the function L defined in (13.2) is an invariant then the variational derivatives 

/ iL q   that were defined in (13.3) will be the components of a covariant vector with respect to 

the group  of transformations (14.2) [cf., Th. De Donder (31)]. 

 

 The variational problem (13.1) that is defined in the space En of  1,q  …, nq  on which the group 

 in (14.2) operates will lead to equations (13.3) that consist of annulling the components of a 

covariant vector. 

 

 

 15. – When one considers the space E (we shall drop the index n from now on) of 
1q , …, 

nq  

on which the group  of coordinate transformations (14.2) operates, and on which one defines a 

tensorial variance like (14.3), it will be possible to define the 2n-dimensional space  of 1,q  …, 

nq , f1, …, fn on which the group  operates: 

 
iq  = 

1( , , )i nq q q , 

 

af   = b

a bf   = 1

1( , , , , , )n

a nf q q f f . 

 

 One can similarly consider the space  of 1q , …, nq , 
1s , …, 

ns  on which group   operates: 

 
iq  = 

1( , , )N nq q q , 

 
as  = a b

b s 
 = 

1 1( , , , , , )a n ns q q s s . 

 

 When the variance (14.3) is that of covariant (contravariant, resp.) vectors, the space  will be 

the space whose “points” are covariant (contravariant, resp.) vectors that are tangent to the various 

points of E, and the space  is the space whose “points” are the contravariant (covariant, resp.) 

vectors that are tangent to the various points of E. 

 

 

§ 2. – The inverse problem in the calculus of variations. 

 

 16. – If one is given the system (14.1), which consists of annulling the components of the 

tensor F with respect to a group , then one can pose the following two questions, which both 

deserve the name of the inverse problem in the calculus of variations: 
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A. – Does there exist a function L = ( , , )i iL t q q  whose variational derivatives 

are identical to (14.1)? 

 

B. – Does there exist a function L = ( , , )i iL t q q  such that the equations that are 

obtained by annulling its variational derivatives are equivalent to (14.1)? 

 

 In order for the first one to have any invariant sense, the tensor F must obviously be a covariant 

vector. By contrast, the second one will possess an invariant sense regardless of the variance of F. 

 The answer to the first question involves the notions of the system of variations and the adjoint 

system (31). 

 One intends the phrase system of variations of the Fa to mean the n expressions: 

 

( , , , ; , , )i i i i i i

a t q q q    = i i ia a a

i i i

F F F

q q q
  

  
+ +

  
 

 

that are linear and homogeneous in the i , 
i , 

i , which denote the new variables. 

 By the phrase adjoint system to the a, one intends that to mean a system of n expressions: 

 
( )

( , , , , , ; , , )
iv

i i i i i i i i

i t q q q q q     

 

that is linear and homogeneous in the variables, such that there exists an expression: 

 
( )

( , , , , , ; , , , )
iv

i i i i i i i a aI t q q q q q      

 

that is linear in both the i , i  and the a , a , and gives rise to the identity: 

 

(16.1) a i

a i  −    
dI

dt
, 

 

in which the operator d / dt is defined by: 

 

d

dt
 

( )iv
i i i i i i

i i i i i i
q q

t q q
   

   

      
+ + + + + + +

      
. 

 

Upon taking the variational derivatives of the two sides of (16.1) with respect to 
i , one will see 

that if the i exist then they will be given by: 

 

(16.2) i = a

ai





  = 

2

2

a a aa a a

i i i

F F Fd d

q dt q dt q
  

     
− +   

     
 . 
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One then verifies that those expressions indeed answer the question and that one must take: 

 

I = 2a i a i aa a a
ii i i

F F Fd

q dt q q
     

   
− + 

   
. 

 

 That being the case, one shows that: 

 

The question A gets an affirmative response under the necessary and sufficient 

condition that the system of variations of the Fa must be self-adjoint (32), 

 

i.e., that one must have: 

 

( , , , ; , , )i i i i i i

a t q q q     = 
( )

( , , , , , ; , , )
iv

i i i i i i i i

i t q q q q q    . 

 

One notes that the i do not depend upon the iq , 
( )iv

iq  explicitly in this case. 

 As for the question B, it is much more difficult and up till now it has been solved only in the 

case of n = 1 by G. Darboux (33) and in the case of n = 2 by J. Douglas (34). We shall not go into 

that here, but we point it out simply to show that expression “inverse problem in the calculus of 

variations” demands to be made more precise. 

 

 

§ 3. – Bateman’s method. 

 

 17. – Recall the system (14.1). Bateman’s method starts from the following property (35): 

 Consider the variational problem: 

 

(17.1)  dt   = 0 ,  = a

as F  

 

in the space of 1q , …, nq , 
1s , …, 

ns . The extremals are given by the equations: 

 
( )

( , , , , , ; , , ) 0,

( , , , ) 0.

iv
i i i i i a a a

ii

i i i

aa

G t q q q q q s s s
q

F t q q q
s










 =


  =


 

 

The last n of them are identical to the proposed equations (14.1), while the first n involve the n 

auxiliary unknowns ( )as t . 
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 Any system of differential equations (14.1) can then be prolonged into a system that is derived 

from the calculus of variations in the sense of problem A. 

 One easily confirms that the Gi are linear and homogeneous in the as , as , as , and will reduce 

to the i of the system that is adjoint to the system of variations of the Fa after one has replaced the 
a  with the as . In regard to (16.2), that property is equivalent to the easily-verified identity: 

 

( )a

ai
s F

q




  a

ai
s




  . 

 

 

 18. – If we perform a coordinate transformation (14.2) from the group  then the system (14.1) 

will become: 

 

(18.1) ( , , , )i i i

aF t q q q     = 0 , 

 

with 

aF   = b

a bF  . 

 

 Let us apply Bateman’s method to the system (18.1). We then construct the system of 2n 

equations in 2n unknowns: 

( , , ; , ) 0,

( , , ) 0

i a

ii

i

aa

G t q s
q

F t q
s










  = 


   =
 

 

 

and define the extremals of the integral: 

 

dt ,   = a

as F  . 

 

 That problem can be considered to be the transform of the problem (17.1) under the coordinate 

transformation ( , )i aq s  → ( , )i aq s  : 

(18.2) 
( ) ,

,

i i j

a a b

b

q q q

s s 

  =


 =

 

 

which prolongs (14.2) and ensures the invariance of the Lagrangian function: 

 

 = . 
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Under that transformation, the Gi, Fa transform into the iG  , aF  , resp., like the components of a 

covariant vector: 

,

0 ( ).

j b

i j bi i

b
b

a b a ba

q s
G G F

q q

s
F F F

s
 

  
 = +   


  = + =

 

 

 

 We will then be led to consider the variational problem (17.1) to be something that is defined 

in the space  of the 1q , …, nq , 1s , …, ns  that we encountered in no. 15 and on which the group  

  of transformations (18.2) operates. In addition, there is good reason to consider the operation 

that associates the point ( , )i aq s  of  with the point ( )iq  in E. In that way, one will see that the 

projection ( , )i aq s  → ( )iq  of   → E is an intrinsic operation, i.e., it is independent of the 

coordinates. 

 One likewise sees that the link between the problem (14.1) that was defined in E and Bateman’s 

variational problem (17.1) that was defined in  is independent of the coordinates, i.e., that link is 

intrinsic. In summary: 

 

In Bateman’s method: 

 

1. One starts from a system of differential equations (14.1) that are defined in 

the space E on which the group  operates. The equations consist of annulling the 

components of a tensor F whose variance is characterized by a group  of matrices 

that is homomorphic to . 

 

2. One associates it intrinsically with the variational problem (17.1) that is 

defined in the space  on which the group  operates. The extremals of that 

problem are the curves in  that project into E along the solutions to the proposed 

system (14.1). 

 

 

 19. – The geometric properties of the space  depend upon both the geometric properties of 

the E and the nature of the tensor F. Here are some examples. The one that is denoted by (b) will 

be particularly useful for us in the context of the theorems of V. Bjerknes and W. Thomson. 

 

 a) Suppose that the group  is the general group of transformations of the type: 

 

(19.1) 
iq  = ( )i jq q , 

 

and that the tensor F is a contravariant vector. 
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 We represent its components by iF , in which the subscript a has been replaced with a 

superscript i. More generally, under the present hypothesis, we replace a subscript or superscript 

a, b with a superscript or subscript i, j, respectively. That is how as  will become si (a = i) and that 

the b

a  , a

b 
 will become: 

  i

j 
 = 

i

j

q

q




, j

i   = 
j

i

q

q




 (a = i, b = j). 

 

 The transformations (18.2) of the group   will become: 

 

iq  = ( )i jq q ,  is  = 
j

ji

q
s

q




 

and leave the Pfaff form invariant: 

 = i

is dq . 

 

 )a   If we confine ourselves to the group  of linear transformations: 

 

(19.2) 
iq  = i j

j q 
 

 

then the group   will be written: 
iq  = i j

j q 
, si = j

i js  . 

 

That group will leave the following metric invariant: 

 

(dS)2 = i

idq ds  

 

in which the n-planes 
idq  = 0 and dsi = 0 are isotropic n-planes. 

 

 b) Now suppose that the group  is the group of linear transformation (19.2), but that F is a 

covariant vector. We represent its components by Fi and in a general manner, any index a, b, … of 

the general theory will be replaced by an index i, j, … that is located in the same place under the 

present hypothesis. 

 The transformations of the group   are written: 

 
iq  = i j

j q 
, 

is = i j

j s 
. 

 

 Suppose, in addition, that the metric: 

 

  (ds)2 = i j

ijg dq dq   (gij = gji = constants) 
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is defined in E [viz., the space of (q)]. We associate it intrinsically with the following metric: 

 

(dS)2 = 2 i j

ijg dq ds , 

 

which is defined in G [viz., the space of (q, s)]. The vectors that verify one of the groups of 

equations idq = 0 or ids  = 0 are once more isotropic vectors. More generally, a pair of orthogonal 

vectors ia  and ib  (one will then have i j

ijg a b  = 0) will correspond intrinsically in  to two 

isotropic vectors whose components are ( , )i ja b  and ( , )i jb a . 

 If ia , ib  are the contravariant components of a vector in  then the covariant components will 

be: 

ai = j

ijg b , bi = j

ijg a . 

 

 If we consider an n-plane in  that verifies the equations (which are invariant under  ): 

 
idq  = 

ids  

 

then there will exist one and only one point in that n-plane that projects onto a given point in E, 

and the lengths S and s of the two image vectors will have a ratio of 2 to 1 under that 

correspondence. 

 We shall call the n-planes whose equations are i iq s−  = const. diagonals. Any figure that is 

situated in a diagonal n-plane will be itself diagonal. 

 

 

§ 4. – The theorems of V. Bjerknes and W. Thomson. 

 

 20. – Consider an inviscid fluid in motion in three-dimensional Euclidian space E that is 

referred to (rectangular or oblique) Cartesian coordinates 
1x , 

2x , 
3x . The fundamental metric form 

will be: 

  (ds)2 = i j

ijg dx dx  (i, j = 1, 2, 3; gij = gji = constant). 

 

 On the other hand, if a particular motion is in question then it will be characterized by a 

velocity field whose contravariant and covariant components are: 

 
iu = 

1 2 3( , , , )iu x x x t  and ui = 1 2 3( , , , )iu x x x t  = j

ijg u , 

 

and by fields of pressure p and specific volume v : 

 

p = 
1 2 3( , , , )p x x x t , v = 

1 2 3( , , , )v x x x t  
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that are supposed to be known. In addition, the motion is supposed to take place in a specific force 

field that is derived from a potential  : 

 

 = 1 2 3( , , , )x x x t . 

 

 The trajectories of the particular fluid motion are the integrals of the differential system: 

 

(20.1) 
1

1

dx

u
 = 

2

2

dx

u
 = 

3

3

dx

u
 = 

1

dt
 

 

and will verify the dynamical equations: 

 

(20.2) 
2

2

j

ij i

d x
g K

dt
−  = 0 , in which  Ki = − 

i i

p
v

x x

 
−

 
, 

in addition. 

 The trajectories of the fluid motion considered constitute a “field of solutions” of equations 

(20.2) (37). 

 When the fluid is barotropic, there will exist a relation f (p, v) = 0, and as a result, the integral: 

 
1 2 3

1 2 3
0 0 0

( , , )

( , , )

x x x

i

i

x x x

K dx  

 

will be independent of the integration path that joins the fixed point 1 2 3

0 0 0( , , )x x x  to the variable one 

1 2 3( , , )x x x . It is a function ( , )iV x t  for which: 

 

Ki = − 
i

V

x




. 

 

In that case, the system of variations of the left-hand side of equations (20.2) will be self-adjoint. 

That system admits a solution to the inverse problem A (no. 16) for which: 

 

L = T – V, T = 1
2

i j

ijg x x . 

 

It will then result immediately that by virtue of what we saw in Chapter I, § 4, a barotropic fluid 

will verify the theorem of the conservation of circulation and Helmholtz’s theorem (conservation 

of the vorticity lines). 

 When the fluid is baroclinic, there will no longer be the relation f (p, v) = 0, the function V, nor 

the function L, and those theorems will break down. Meanwhile, it is possible for us to examine 

their generalization that Bateman’s method provides. 
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 21. – We begin by specifying that we shall assume that the Cartesian or linear transformations 

(group ) act upon the ix : 
ix  = i j

j x 
. 

 

On the other hand, we see that the left-hand sides of (20.2) are the components of a covariant 

vector. We will then find ourselves within the scope of the conditions in example b) in no. 19. 

 The Bateman function  is: 

 

 = ( )i j

ij iy g x K−  = j i i

ij ig x y K y−  

 

here, in which the iy  play the role of the 
ix  in the general theory. The space  is the six-

dimensional space of the ix , iy  in which the group  operates: 

 
ix  = i j

j x 
. iy  = i j

j y 
. 

 

That space is endowed with the metric: 

 

(21.1) (dS)2 = 2 i j

ijg dx dx . 

 

 Observe that one has: 

 = ( ) ( )i j i j i

ij ij i

d
g x y g x y K y

dt
− +  

 

and that one will not modify the extremals when one replaces that function with: 

 

− ( )i j i

ij ig x y K y+  

since the integral: 

0

( )
P

i j

ij
P

d
g x y dt

dt  = 
0

( )
P

i j

ij P
g x y  

 

does not depend upon the path that is followed during the integration. In order to avoid a 

cumbersome – sign, we finally set: 

 

(21.2)  = i j i

ij ig x y K y+ . 

 

 We then find that in the space , we are down to a problem of the type that was envisioned in 

Chap. I, § 3. The extremals are solutions to the second-order differential system: 
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(21.3) 

0,

0.

jj j

iji i

j

ij ii

K
g y y

x x

g x K
y










 − =

 

  − =


 

 

If we introduce canonical variables that are nothing but the covariant components of the velocity 

[when one takes the metric (21.1) into account]: 

 

pi = 
ix




= j

ijg y , qi = 
iy




= j

ijg x , 

and the Hamiltonian function: 

 

(21.4)  = i i

i ip x q y+ −  = ij i

i j ig p q K y− , 

 

then equations (21.3) will be equivalent to the canonical equations: 

 

(21.5) 
i

i

dx

p





 = 
i

i

dy

q





 = − i

i

dp

x





 = − i

i

dq

y





 = dt . 

 

 The fluid motion considered in the space E corresponds to a field of solutions (37) of the 

equations (20.2). We shall associate it with a field of extremals of the problem (21.2) in the space 

: 

dt   = 0 . 

 We let: 
iU  = ( , , )i j jU x y t , 

iV  = ( , , )i j jV x y t  

 

denote the contravariant components of the velocity of a moving point on a trajectory of the field 

(those six quantities correspond to the n quantities 
iQ  in no. 9). The covariant components of that 

velocity will be denoted by: 

 

Ui = ( , , )j j

iU x y t  = j

ijg V , Vi = ( , , )j j

iV x y t  = j

ijg U  

 

(which are quantities that are analogous to the Pi of no. 9). 

 A first condition to impose upon that field of extremals will be to project it onto the space E 

along the trajectories of the fluid motion considered, i.e., along the field of solutions of (20.2). 

That amounts to saying that: 

( , , )i j jU x y t  = ( , )i ju x t  , 
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in which the iu  are the functions in (20.1). It will then result from that hypothesis that the iU  do 

not depend upon the iy  explicitly. In terms of covariant components, that condition is expressed 

by: 

 

(21.6) ( , , )j j

iV x y t  = ( , )i ju x t  . 

 

 As a second condition, we impose the following relation at the instant t0 : 

 

0( , , )i j jV x y t  = 
0( , )i ju y t , 

or, in covariant components: 

 

(21.7) 
0( , , )i j jU x y t  = 

0( , )i ju y t . 

 

 That condition can be interpreted in the following manner: Call the pairs of points ( , )i ix y  and 

( , )i iy x  of  symmetric. Similarly, call two vectors that have symmetric points for their origins 

and the same components symmetric: ( , )i ia b  and ( , )i ib a . If the first condition is fulfilled then the 

second one will signify that the velocities at symmetric points are symmetric at the instant t0. 

 Those two conditions will determine a field of extremals in space  completely. Indeed, if one 

is given an arbitrary vector field whose components are: 

 
ia = ( , )i j ja x y , ib = ( , )i j jb x y  

 

then there will exist one and only one trajectory 
ix  = ( )ix t  of equations (21.3) that pass through 

an arbitrary point 
0

ix , 
0

iy  at the instant t0 and have the vector ( , )i ia b  for its velocity ( , )i ix y  at 

that point. In addition, the set of those trajectories constitutes a field of extremals in the space of 
ix , 

iy , t for values of t that are close to t0. 

 One will then see that in order to satisfy the two conditions, there is good reason to adopt the 

initial conditions: 

( , )i j ja x y  = 
0( , )i ju x t , ( , )i j jb x y  = 

0( , )i ju y t . 

 

The functions ( , , )i j jU x y t , ( , , )i j jV x y t  are determined completely with that. 

 The trajectories of the field, thus-defined, enjoy the following important property: The ones 

that pass through a point of the 3-plane P3 whose equations are 
ix  = 

iy  at the instant t0 are tangent 

to that 3-plane. The corresponding velocity vectors are diagonal vectors. Meanwhile, that property 

will no longer be verified at the final instant. 
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 22. – That being the case, consider a closed curve  in  (viz., a locus of instantaneous points) 

that projects along a close curve c (viz., a locus of likewise-instantaneous points) in E. We the 

following circulations in  and E: 

 

 = 
i i

i iU x V y


 + ,  C = i

i
c
u x , 

 

in which the symbols  denote differentiations along  and c. If the curve  is situated in the 3-

plane P3 (
ix  = iy ) then one will have: 

 

(22.1) ( )ix   = ( )iy   = ( )i

cx , 

 

(22.2)  = 2C 

 

at the instant t0 . 

 When the curves  and c are displaced in conformity with the associated fields in the spaces  

and E, the relations (22.1) will remain true at the instant t0 + dt due to the property of the trajectories 

that they are tangent to P3. By contrast, the relation (22.2) will cease to be true at that instant 

because one will no longer have Ui = Vi = ui . Meanwhile, by virtue of (22.1) and (21.6), one will 

have: 

  
i

iV y


  = i

i
c
u x   (at the instant t0 + dt). 

 We will then have: 

i

i
c

d
u x

dt
  = i

i

d
V y

dt 
  

 

at the instant t0, or by virtue of the theorem of the conservation of circulation in G: 

 

i

i
c

d
u x

dt
  = − i

i

d
U x

dt 
 . 

 

 Performing the calculations on the right-hand side of that will now produce the: 

 

Theorem of V. Bjerknes. – The variation of the circulation (in E) per unit time 

along a closed curve c is equal to the number of isobaric-isosteric solenoids that 

are encircled by that curve. 

 

 By virtue of (21.4), (21.5), (22.1): 

 

i

i

d
V y

dt 
  = 

i
ii

i

dV dy
y V

dt dt
 −  = 

i

ii

i

y V
y V

 
 

− −
   = ( )1

2

i ij

i i jK x g U U


 −  
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 = 
i

iK x


  = −
c
v p  = 

c
p v . 

 Similarly: 

 

i

i

d
U x

dt 
  = 

i
ii

i

dU dx
x U

dt dt
 −  = 

i

ii

i

x U
x U

 
 

− −
   = i

ii

i

y V
y V

  
  

− + + 
  

  

 

= 
c
v p = −

c
p v . 

 

 Each point P of c corresponds to a value of v and a value of p, so to a point P   of Clapeyron’s 

(p, v) diagram in thermodynamics. The locus of point P   is a curve c  that bounds a region S in 

the (p, v) plane. The area of that region is what the meteorologists denote by the symbol Nc (p, v) 

and call the number of isobaric-isosteric solenoids that are encircled by the curve c in the space E. 

 The theorem will finally result from this that one has: 

 

Nc (p, v) = 
S
dp dv  = 

c
p dv

 = 
c

p v . 

 

 

 23. – We recover the theorem of W. Thomson analogously, which can be stated as follows: 

 

Theorem of W. Thomson. – A vorticity vector will remain a vorticity vector 

when one displaces its origin and its extremity like fluid particles on the necessary 

and sufficient condition that the rotation of the acceleration must be proportional 

to the rotation of the velocity. 

 

 We shall prove that for a vorticity vector that displaces from the instant t0 to the instant t0 + dt. 

 We know that Helmholtz’s theorem (Chap. I, § 4) is applicable to the field of extremals in the 

space . 

 On the other hand, the vorticity vectors with their origin at ( , )i ix y  at the instant t are given by 

the following equations, which are analogous to (11.1): 

 

(23.1)   

0,

0 0,

j jj ji i

j i j i

j j ii

j i

U VU U
x y

x x y x

UV
x y

x y

 

 

      
− + − =    

       


 
− +  =    

  

which reduces to: 
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(23.2) 

0 0,

0 0,

jj ji

j i

j j ii

j i

uu
x y

x x

uu
x y

x x

 

 

  
 + − =  

   


 
− +  =    

 

for t = t0 and ix  = iy . 

 The rank of the system (23.1) is generally equal to six, but under the conditions of (23.2), it 

will reduce to four or zero according to whether the rotation of the fluid motion in E is non-zero 

or zero, resp. In addition, we have seen that this number if constant along the corresponding 

trajectories in  (no. 12, pp. 19). 

 Let  be a point in the 3-plane P3 that projects onto a point P in E where we suppose that: 

 

ji

j i

uu

x x

 
− 

  
  0 

 

at the instant t0, to fix ideas (38). The rank of (23.2) in  is equal to four, and the 2 vorticity 

vectors distribute themselves in a plane that cuts P3 along a line. They correspond to 1 diagonal 

vorticity vectors that are given up to a factor: 

 

(23.3)  
1

32

3 2

x

uu

x x




−

 

= 
2

3 1

1 3

x

u u

x x



 
−

 

= 
3

1 2

2 1

x

u u

x x



 
−

 

 = 
1

32

3 2

y

uu

x x




−

 

= 
2

3 1

1 3

y

u u

x x



 
−

 

= 
3

1 2

2 1

z

u u

x x



 
−

 

. 

 

Each of them projects onto E along a vorticity vector with components 
ix  at the point P. 

 After an time interval dt, the point  will go to the point   (which is again situated in P3), 

whereas the point P will go to P , which is the projection of  . The vectors (23.3) will remain 

vorticity vectors (i.e., Helmholtz’s theorem) and diagonal [cf., (21.6) and (21.7)]. Their 

components will become: 
ix  = 

i ix d x + , iy  = 
i iy d y + , 

 

and are solutions to the equations: 

 

(23.4) 
j ji

j i

UU
x

x x


 
− 

   

+ 
j ji

j i

VU
y

y x


 
− 

   

 = 0 , 

 

(23.5) 
j ji

j i

UV
x

x y


 
− 

   

 +  0 iy  = 0 , 
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(23.6) 
ix  = iy .  

 

In all of those relations, the overbars indicate that the values must be taken at the point   and at 

the instant t = t0 + dt. The projections of those vectors onto E will cease to be vorticity vectors in 

E, in general. 

 The vorticity vectors ix  at P  and t = t0 + dt are indeed, given by the equations: 

 

(23.7) 
j ji

j i

uu
x

x x


 
− 

   

 = 0 . 

 

 We see that in order for the (infinitely-small) vorticity vector 
ix  to remain a vorticity vector 

when its origin and its extremity are displaced with the fluid in E, it is necessary and sufficient that 

equations (23.5) should be equivalent to (23.7) or rather, by virtue of (21.6), to: 

 

(23.8) 
j ji

j i

VV
x

x x


 
− 

   

 = 0 . 

 

 Now, upon adding (23.4) and (23.5) and utilizing (23.6), one will get the identity: 

 

(23.9) 
j j j ji i i

j i j i j i

V U UV U U
x

x x x x y y


          
− + − + −      

                 

 = 0 . 

 

As a result, the condition (23.8) can be replaced by the following two relations, which must be 

satisfied simultaneously: 

(23.10) 

0,

0.

j ji

j i

j j ji i

j i j i

VV
x

x x

U UU U
x

x x y y

 

 

  
 − =  

    


       
 − + − =                 

 

One ultimately finds that: 

 

i

j

V

x




 = i i

j j

V V
d

x x

 
+

 
 = 

k

i i
ij j k j

V V U
dV dt

x x x x

  
+ −

   
 = 

k

i i i

j j k j

V K V U
dt dt

x x x x

   
+ −

   
, 

 

 i

j

U

x




 = 

2
hi h

j i j

U K
y dt

x x x

 
+

  
 = 

2
hh

i j

K
y dt

x x



 
, 
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 i

j

U

y




 = 

k

i h i

j i k j

U K U V
dt dt

y x y y

   
+ −

   
. 

 

Then, upon neglecting the second-order elements with respect to the differentiation symbol d, the 

relations (23.10) will give: 

 

  
k k

j j jj j ji i i

j i j i k j k i

V K VV K V U U
d x dt x dt x

x x x x x x x x
  

           
− + − − −     

            
 = 0 , 

 

  
k k

j j jj j ji i i

j i j i k j k i

U K UU K U V V
d x dt x dt x

y y x x y y y y
  

           
− + − − −     

            
 = 0 . 

 

Upon subtracting them and taking (21.6) and (21.7) into account, that will give: 

 

 –  = 2
j ji

j i

KK
x dt

x x


 
 − 

  
= 0 . 

 

On the other hand, since the jx  verify the equations: 

 

j ji

j i

uu
x

x x


 
− 

  
 = 0 , 

 

that can be true only if there exists a number k such that (39): 

 

ji

j i

uu

x x

 
− 

  
 = 

ji

j i

KK
k

x x

 
 − 

  
 . 

 

 We have thus established that the condition in Thomson’s theorem is indeed necessary. 

 Conversely, suppose that the number k exists. That means that in the first approximation, we 

will have: 

 –  = 0 . 

On the other hand, since we have: 

 +  = 0 

 

identically, from (23.9), it will result that equations (23.10) are verified in the first approximation. 

That is precisely what had to be established since we have remarked that (23.10) are necessary and 

sufficient conditions. 

Q. E. D.  

___________ 
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APPENDIX 

______ 

 

On the variational method in the hydrodynamics of viscous fluids. 
 

 The considerations that were developed in the first three sections of Chapter II extend easily 

to systems of partial differential equations (40). 

 For example, consider a viscous fluid whose motion is governed (in rectangular axes) by the 

Navier-Stokes equations (41): 

 

(1) 
i i

j

j

u u
u

x t

  
+ 

  
 = 

2

( )
j i

i i i j j j

p u u
K

x x x x x
   

   
− + + +

    
 = 0 . 

 

The notations are identical to the ones in Chapter II, § 4, along with  = 1 / v (specific mass), and 

,  are the two coefficients of viscosity (which are constants). 

 When , p, ,  are known, one will be dealing with a system of three equations in three 

unknowns iu  = 1 2 3( , , , )iu x x x t . One immediately confirms that the equations of variation are not 

self-adjoint, and consequently, those equations cannot be deduced from a variational principle in 

the sense of problem A (Chap. II, § 2) (42). 

 When the motion is permanent 0
iu

t

 
= 

 
 and slow, one assumes that the rectangular terms 

i
j

i

u
u

x




 are negligible in equations (1). They will then reduce to three linear equations: 

 

(2)    Fi  
2

( )
i j

ij j i j i

u u p
K

x x x x x
   

   
+ + + −

    
 = 0 

 

in three unknowns 
iu  = 

1 2 3( , , )iu x x x . The equations of variation will be self-adjoint, and the 

Lagrangian function L that is a solution to the problem A can be obtained in the following manner 

upon starting from Bateman’s method: 

 When Bateman’s method is applied to equations (2), it will lead one to define the function: 

 

 = i

iv F  , 

 

in which the 
iv  = ( )i jv x  are three unknown auxiliary functions. 

 Assume, to begin with, that the forces of pressure are in equilibrium with the external forces: 

 

 Ki = 
i

p

x




. 
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In other words, we suppose that equations (2) are homogeneous. The equations of variations are 

no different from the equations themselves. It is clear that under those conditions, the function: 

 

L = 1
2

i

iu F  

 

that corresponds to the variational problem: 

 

(3)  1 2 3L dx dx dx   = 0  

 

will give rise to: 

i

L

u




  Fi , 

 

but it will contain second derivatives of the iu . 

 Now, one will not alter the problem (3) by adding the following divergence (an expression 

whose variational derivatives are identically zero) to the function L: 

 

− 
1

2

i j j
i i

j j i j

u u u
u u

x x x x
 

     
+ +  

     
 , 

 

and upon likewise changing the sign of the Lagrangian function, that will give: 

 

L = 
1

2

i i j i j

j j i i j

u u u u u

x x x x x
 

      
+ +  

      
 = 1

2
 , 

 

in which the function  is nothing but Lord Rayleigh’s dissipation function, which is written in 

the form: 

 =

2 2 2

2
i i j i

i j i i
i i j i

u u u u

x x x x
 



        
+ + +     

        
   . 

 

 When the forces of pressure are not in equilibrium with the external forces, i.e., when equations 

(2) are not homogeneous, there will be good reason to take: 

 

L = 1
2

i

i

i

p
u K

x
 

 
− − 

 
 . 

 

 We thus find the extension of a theorem that is due to J. Kravtchenko that related to the 

incompressible and homogeneous case (45) to the case of a compressible fluid. In addition, we see 
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that the author’s hypothesis of making the external forces derivable from a potential is superfluous 

(44). We then assert the: 

 

 Theorem: 

 

 When one knows the distribution of mass and pressure under the slow and permanent motion 

of a viscous fluid, the velocity field will be defined by the variational principle: 

 

(4)  1 2 31
2

i

i
V

i

p
u K dx dx dx

x
  

  
− −  

  
  = 0 , 

 

in which the variations 
iu  of the velocity are annulled on the boundary of the volume V. 

 

 The hypothesis that makes the forces Ki derivable from a potential : 

 

(5)  Ki = 
ix




 

 

enters into a theorem of Helmholtz (43) that relates to incompressible and homogeneous fluids (so 

i

i

u

x




 = 0,  = const.). 

 

 Helmholtz’s theorem: 

 

 Let an incompressible and homogeneous viscous fluid that is subject to the action of external 

forces that are derived from a potential  be in slow, permanent motion inside of a volume V that 

is bounded by a surface S. For a given distribution of velocity on the bounding surface S, the 

motion of the fluid inside of V will realize the minimum of the dissipation, i.e., the integral: 

 

(6)  1 2 3

V
dx dx dx  

 

over all possible incompressible, homogeneous motions. 

 

 Remark. – The given distribution of velocity on the boundary S must be compatible with the 

incompressibility. One must then have: 

 
1 2 3 2 3 1 3 1 2

S
u dx dx u dx dx u dx dx+ +  = 0 . 

 

 Helmholtz’s theorem is composed of two parts: 
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 (a) The first variation of (6) is zero when one gives variations iu  to the iu  that are zero on S 

and verify the incompressibility condition: 

 

(7) i

i
u

x





 = 0 . 

 

 (b) The total variation of (6) is positive-definite. 

 

 (a) This part results from (4) because when one takes (5) and (7) into account, one will find 

that: 

1 2 3i

i
V

i

p
u K dx dx dx

x
 

 
− 

 
  = 0 . 

 

 Indeed, after an integration by parts, the left-hand side can be written: 

 

1 2 3 1 2 3[ ( )] ( )i i

V V
i i

u p dx dx dx p u dx dx dx
x x

   
 

 − −  −
   . 

 

The first integral transforms into a surface integral that extends over S, and it will be zero by virtue 

of the condition that 
iu  = 0 on S. The second integral will be zero by virtue of (7). 

 

 (b) By virtue of the quadratic character of the function  and the vanishing of the first 

variation, the total variation of (6) will be written: 

 
1 2 3

V
dx dx dx , 

 

in   is the function  when one has replaced 
iu  with 

iu . The property will then result from this 

that  is a positive-definite function. [See H. Villat (41), pp. 76.] 

 

 Remark. – Helmholtz’s theorem is not a true variational principle because it considers 

constrained variations of the iu . It does not permit one to obtain equations of motion in the same 

way that the principle (4) does. If one changes the pressure field and the force field without 

modifying the given 
iu on the surface S then one will obtain a different motion that will once more 

verify Helmholtz’s theorem. 

 One can compare Helmholtz’s theorem to the following problem: Find a minimum of the 

function z = 
2 2x y+  when one gives variations to the x and y that are coupled by the condition that 

dx = 0. Regardless of the constant a, the point x = a, y = 0 will realize such a minimum. 

 

______________ 
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NOTES 
______ 

 

 1) If the differential system has order 3 or 4 then one must find an L = ( , , , )i i iL t q q q  such 

that: 
2

2
.ii i i i

L L d L d L
F

q q dt q dt q





  
 − + 

  
 

 

 2) The complementary equations Gi = 0 must generally include fourth derivatives of the q. 

That is why the function L is a second-order differential; see Chap. II. 

 

 3) Th. Lepage, “Sur les champs géodésiques du calcul des variations,” Bull. Acad. R. Belg., 

Cl. Sc. (5) 22 (1936). “Sur les champs géodésiques des intégrales multiples,” ibid., 27 (1941). 

“Champs stationaires, champs géodésiques et formes intégrables,” ibid. 28 (1942). 

 A presentation of the methods of Th. Lepage, as applied to simple integrals, is due to H. 

Boerner, “Variationsrechnung aus dem Stokesschen Satz,” Math. Zeit. 46 (1940). 

 

 4) See also on that subject: P. Dedecker, “Sur une méthode de Bateman dans le problème 

inverse du calcul des variations,” Bull. Acad. R. Belg., Cl. Sc. (5) 35 (1949), 774-792. 

 

 5) We shall adopt the classical convention that we sum over a repeated index. 

 

 6) All functions that are considered in this work will be supposed to be continuously-

differentiable a sufficient number of times. They are defined in a certain simply-connected region 

of space that defines the limits of one’s considerations. 

 

 7) 
I

u




 = 

2

1

P

Pu




   = 
2 2

1 1

s r
P P

rr
rsP P

a x x
dx a d

x u u

  
+

     . 

The last integral becomes: 

− 
2 2

1 1

s r
P P

rr
rsP P

a x x
dx d a

x u u

   
+  

   
   . 

 

The formula in the text will result from the fact that the last integral in that expression is zero from 

the boundary conditions. 

 

 8) See E. Goursat, Leçons sur le problème de Pfaff, Hermann, Paris, 1922, Chap. I. 

 It is useful to observe that the extremal property persists when one takes varied curves that join 

points 1P  , 2P   that are close to P1, P2, resp., and are defined by starting from them and giving them 

displacements 
1( )idx , 

2( )idx , resp., that verify: 
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1( )r

ra dx  = 
2( )r

ra dx  = 0 . 

 

 9) E. Cartan, Leçons sur les Invariants Intégraux, Hermann, Paris, 1922. Les systèmes 

différentiels extérieures et leurs applications géométriques, Hermann, Paris, 1945 (A. S. I. no. 

994). Th. De Donder, Théorie des Invariants Intégraux, Gauthier-Villars, Paris, 1927. E. 

Goursat, loc. cit., note 8. For a modern interpretation, see S. S. Chern, “Some new viewpoints in 

differential geometry in the large,” Bull. Amer. Math. Soc. 52 (1946), 1-30. 

 

 10) One does not sum over the repeated index r in this formula. 

 

 11) For the sake of clarity, one should briefly recall the definition of a -uple integral and take 

the case of  = 2, to fix ideas. 

 Let rx  = rx (u, v) be the parametric equations of a portion of the surface S when the point (u, 

v) traverses a domain R in the u, v-plane. 

 When calculating the integral: 

I2 = 
S
  = r s

rs
S

A dx dx , 

there is good reason to: 

 

 1. Replace the x as functions of u, v in the A and to replace the symbolic products 
r sdx dx  

with the expressions: 

( , )

( , )

r sx x
du dv

u v




. 

 

One will then come down to a double integral: 

 

2I   = 
R

Adu dv , A = 
( , )

( , )

r s

rs

x x
A

u v




 

 

that extends over the region R in the u, v-plane. In the latter expression, the product du dv will be 

an ordinary product that is equal to the area of a rectangle whose sides are parallel to the axes and 

have lengths of du, dv, resp. 

 

 2. Choose an “orientation” on the surface S, which can be done by choosing a sense of 

traversal along the line C that is the boundary of S. 

 If that sense corresponds on the image curve C  in the u, 

v-plane with the one that leads directly from the positive u-

axis to the positive v-axis (Fig. 3) then one sets, by 

definition: 

I2 = 2I  , 

 

v 

u u 

v 

+ − 

Figure 3. Figure 4. 
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and in the contrary case (Fig. 4), one sets: 

I2 = − 2I  , 

 

 It is due to the antisymmetry of the (r, s) in the expressions: 

 

( , )

( , )

r sx x
du dv

u v




 

that one is led to the rule (2.2) 

 For more details, see e.g., E Goursat, Cours d’analyse, vol. I, Gauthier-Villars, Paris and W. 

D. H. Hodge, The theory and applications of harmonic integrals, Cambridge University Press, 

1941, Chap. II. 

 

 12) E. Cartan, E. Goursat, loc. cit., note 9. 

 

 13) Example: we can associate the hydrodynamical problem that was considered in the 

introduction (pp. 3), with the Pfaff form that is defined in the three-dimensional space of 
1x , 

2x , 
3x  for each constant value of t : 

 

 = 1 2 3

1 2 3K dx K dx K dx+ +  = i

iK dx , 

with 

  Ki = − 
i i

p
v

x x

 
−

 
   (i = 1, 2, 3). 

The extremals of   are then given by: 

 

(a)  
j

i j j i

p v p v
dx

x x x x

    
− 

    
 = 0 , 

 

or, if the coefficients of those equations are not all zero (i.e., if the v-field is baroclinic) then by: 

 

dv  i

i

v
dx

x




 = 0 , dp  i

i

p
dx

x




 = 0 . 

 

The extremals, or what amounts to the same thing, the characteristics, are nothing but the isobaric-

isosteric lines. 

 When the field is barotropic, equations (a) will be satisfied identically, and any curve will be 

an extremal. That is not surprising, and one notes that the barotropic condition expresses the idea 

that the integral 
2

1

P

P
  is independent of the path that joins the points P1 and P2 . 

 

 14) In the example that was just considered in the preceding note, one had: 
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 = 1,  = dZ + Y dX , Z = −  , Y = v, X = p 

 

in a baroclinic field, and  = 0,  = dZ, Z = − ( + U), U = v dp  in a barotropic field. 

 

 15) The proof can be achieved as follows: 

 

 a) Necessary condition. If the closed curve C can be reduced to a point by continuous 

deformation along the tube T, and therefore without leaving it (case of the contour , Fig. 2), or if 

the surface S is situated entirely on the tube (case of the surface a bounded by ), one must have 

J1 = I2 = 0. Take the case of an infinitely-small parallelogram that is traced on the tube and whose 

opposite sides coincide with the elements of the trajectories. The value of J1 = I2 will then reduce 

to the bilinear covariant: 

d1  (d2) − d2  (d1) = 1 1

2 2

1

2

r s

s r

r s r s

d x d xa a

x x d x d x

  
− 

  
 , 

 

in which, for example, d1 indicates a variation along a trajectory and d2 indicates a transverse 

variation. That expression must be zero for any 
1

rd x , so the 
2

rd x must be proportional to the rX . 

Hence, one has the condition (6.2). 

 

 b) Sufficient condition. The relation (6.2) implies that I2 = 0 for any portion of the surface that 

is situated on the tube T ; for example, the surface  that is generated by displacing C until it 

occupies the position C . By virtue of Stokes’s formula, that double integral will be the simple 

integral of  that is extended over the boundary contour of . That boundary is composed of the 

combination of the two closed curves C and C , when the latter is traverses in the opposite sense 

to C. Therefore: 

C C


−  = 
C C
 

−
+   = 

C C
 


−   = 0 . 

Q. E. D.  

 16) In the examples of notes 13 and 14, the integrals: 

 

   
C

  = 
i

i
C

K dx   (C is a closed curve), 

 

S
d  = 

S
dv dp−  

 

were invariant for just the differential system dv = dp = 0, whose trajectories were the isobaric-

isosteric lines. Those integrals represent the number N (p, v) of isobaric-isosteric lines that are 

encircled by the contour C or traversed by the surface S. Those integrals will be identically zero in 

a barotropic field. 
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 17) More rigorously, consider a family of curves C that depend upon a parameter u and join 

two points 
1 1 1( , )iP q t , 

2 2 2( , )iP q t  of n+1, and are such that: 

 

 1. The curves in the family have equations of the form: 

 

  iq  = ( , )iq t u  for t1  t  t2 , u0 –   u  u0 + , 

in which  is an arbitrary positive number. 

 

 2. The expressions: 

1

iq  = 
1( , )iq t u ,   

2

iq  = 
2( , )iq t u  

are independent of u. 

 

 3. The functions are both continuously-differentiable in the domain R that is defined by the 

inequalities in 1. (One can make an even-weaker hypothesis in regard to differentiability.) 

 

 When one calculates along C, the integral (7.1) will become a function I (u). The curve C0 that 

corresponds to u = u0 is called an extremal of (7.1) if one has: 

 

0

I

u

 
 

 
 = 0 

 

for any family of curves C that verify the conditions 1., 2., 3., and reduce to C0 for u = u0. 

 As one knows, the extremals are given by the Euler-Lagrange equations: 

 

i

L

q




  

i i

L d L

q dt q

 
−

 
 = 0 . 

 

 18) A. C. Dixon, “On the relation between Pfaff’s problem and the calculus of variations,” 

Proc. London Math. Soc. 7 (1909). – E. Cartan, Leçons sur les Invariants Intégraux, Hermann, 

Paris, 1922. 

 

 19) Upon recalling note 8, one will see that in 2n+1, one can take the variations at the limits 

such that 
idq  = 0, dpi = arbitrary.  

 The theorem of Dixon-Cartan extends to multiple integrals in the calculus of variations. P. 

Dedecker, “Sur les intégrales multiples du calcul des variations,” Comptes-Rendus du Congrés 

national des Sciences de Belgique, sec. Math., Brussels, May-June 1950; Liége, Desoer (1951). 

 

 20) See H. Boerner, loc. cit., note 3. 

 

 21) E. Cartan, loc. cit., note 18, Selecta, pp. 104, Gauthier-Villars, Paris, (1939). 
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 22) The coefficient of dt : 

j ji

i j

i

P P H
dq

q q p

    
−   

     
 

is zero by virtue of (10.2). 

 

 23) Due to the particular form of the function T, the contravariant components iu  of the 

velocity (which are analogous to the iQ ) are equal to the covariant components ui (which are 

analogous to the Pi). 

 

 24) In order to prove that, make a change of variables: 

 

   iu  = ( , )i ju q t   ( t = t), 

 

in which the iu  are n independent first integrals of the system (9.1). d [] will become a form in 
idu , dt with coefficients that are functions of the iu , t. That form will give rise to an absolute 

double integral invariant for the equations of extremals of the field. Now, it will result that the 

coefficients of that form cannot depend upon t (and that the coefficient of dt of must be zero). As 

another consequence, the rank of d [] will depend exclusively upon the iu , which was to be 

proved. 

 In terms of the variables iu , t, one will have d [] = [ , ] i ji j du du , in which the [i, j] denote the 

Lagrange brackets, which verify the “Lagrange equations”:  / t [i, j] = 0. See C. Carathedory, 

Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Teubner, Leipzig and 

Berlin, 1935, no. 45, pp. 46. 

 

 25) Indeed, in terms of the variables iu , t of the preceding note, the components idu , dt (= 

0) of that vector will be constants in the course of that motion, and the property will result that the 

Lagrange brackets will be independent of t. 

 

 26) One will observe that when one sets Pi = / iS q  , equation (9.2) will be verified 

automatically if the function S is a solution to the Hamilton-Jacobi equation. 

 

 27) C. Caratheodory, loc. cit., note 24, no. 242, pp. 208. 

 

 28) A group  is a set of elements a, b, c, … that is endowed with a law of composition that 

associates any ordered pair of elements a, b with a third element c that one calls the product of a 

and b, and which one writes a  b = c. That law of composition must possess the following 

properties: 

 

 1. (a  b)  c = a  (b  c) (associativity). 
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 2. There exists an element e (which is called unity) such that for any element a, one will 

have a  e = e  a = a. 

 

 3. Any element a corresponds to an element 1a−  (which is called the inverse of a) such that 
1a a−  = e. One does not need to have a  b = b  a . 

 

 The set of transformations iq  = ( )i jq q  that are continuously-differentiable a sufficient 

number of times, have non-zero Jacobian, and transform a certain region of the space of  iq  into 

itself constitutes a group in which the product T T   of the transformations T : iq  = ( )i jq q  and 

T  : iq  = ( )i jq q   is the transformation T  : iq  = ( ( ))i k jq q q  . 

 If one is given two groups ,  then a correspondence that associates any element a in  with 

an element a  in  in such a way that the element of  that is associated with the product (a  b) 

of two elements of  will be the product ( )a b   of the elements a , b  that are associated with a 

and b, resp., is called a homomorphism of  into . If distinct elements correspond to distinct 

elements, in addition, then one will be dealing with an isomorphism. 

 Any group  is associated with a group  that is called its opposite and is defined over the 

same elements but is such that the product c = a  b in  will be equal to the product b  a in , by 

definition. 

 The set of square matrices  = || ||j

i  with non-zero determinant corresponds to two opposite 

groups. In one of them, the product  =    is defined by the matrix || ||j

i  = || ||k j

i k  , and in 

the other one, by the matrix || ||j

i  = || ||i k

k i  . In order to distinguish the two, we will let || ||j

i   

denote a matrix when it is considered to belong to the first group, and let || ||i

j 
 denote the same 

matrix when it is considered to belong to the second one. 

 For more details, see a treatise on modern algebra. For example, Van der Waerden, Moderne 

Algebra, Springer, 1937. 

 

 29) The variance of G is defined by the group   that is opposite to  and endowed with the 

homomorphism h  of  into   that is obtained by composing the homomorphism h of  into  

with the canonical homomorphism of  into  :  →  →  . 

 

 30) H. Ertel, “Hydrodynamische Gleichungen in prae-kanonischer Form und 

Variationsprincipen der atmosphärischen Dynamik,” Meteor. Zeit. (1939). 

 

 31) Frobenius, “Ueber adjungierte lineare Differentialausdrücke,” J. f. Math. 84 (1878). – 

Th. De Donder, Théorie invariantive du calcul des variations, Gauthier-Villars, Paris, 1935. 

 

 32) For the proof of this, see: A. Hirsch, Math. Ann. 49 (1897). – J. Kürschak, ibid. 60 

(1965). – L. Koenigsberger, Die Principien der Mechanik, Teubner, Leipzig, 1961. – D. R. Davis, 

“The inverse problem of the calculus of variations in higher space,” Trans. Amer. Math. Soc. 30 
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(1928). – L. La Paz, ibid., v. 32. – P. Dedecker, “Sur un problème inverse du calcul des 

variations,” Bull. Acad. Roy. Belg., Cl. Sc. (5) 36 (1950), 63-76. 

 

 33) For n = 1, the answer is always affirmative: G. Darboux, Théorie des Surfaces, Gauthier-

Villars, Paris, t. 3, pp. 53. 

 

 34) For n = 2, the answer is generally affirmative, but with exceptions: J. Douglas, Proc. Nat. 

Acad. Sc. U. S. A. 26 (1940); Trans. Amer. Math. Soc. 50 (1941). 

 

 35) H. Bateman, “On dissipative dynamical systems and related variational principles,” 

Phys. Rev. (2) 38 (1931). Similarly, see the second paragraph in the introduction to that author’s 

treatise: Partial differential equations of mathematical physics and his article “Hamilton’s work in 

dynamics and its influence on modern thought,” Scripta Math. (1944). 

 F. H. van den Dungen, “Les équations canoniques di résonateur linéaire,” Bull. Acad. Roy. 

Belg. (1945). – J. Géhéniau, “La quantification des systèmes non canoniques,” ibid. (1945). – P. 

Dedecker, loc. cit., note 4. 

 

 36) Example. – In the case of the equation in one unknown q = q (t): 

 

   F = aq bq cq+ +  = 0  (a, b, c constant), 

one will have: 

  ( )s a q bq cq+ + ,  G  a s b s c s− + . 

 

One indeed recognizes that G is the adjoint polynomial to F: 

 

( ) ( )s F q q G s −    ( )
d

a q s s q bq s
dt

− + . 

 

 37) The term “field of solutions,” which is a notion that generalizes the “field of extremals,” 

obviously means a triply-infinite family of solutions to equations (20.2) such that one and only 

one solution to the family will pass through each point in the space ( , )ix t . 

 

 38) The argument can be extended to the case in which the rotation is zero. 

 

 39) One utilizes the hypothesis here that n (viz., the dimension of the space E) = 3. 

 It would hardly be necessary to point out that if one studies the condition of the conservation 

of vorticity in a certain domain that encircles the point P at the instant t0 then that number k will 

become a function of the ix , t. 

 

 40) P. Dedecker, loc. cit., note 4. 

 

 41) H. Villat, Leçons sur les fluides visqueux, Gauthier-Villars, Paris, 1943. 
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 42) That fact was proved by a method that is beautiful, but lengthy, by C. B. Millikan, “On 

the study motion of viscous incompressible fluids, with particular reference to a variation 

principle,” Phil. Mag. (1929). – See also, H. Villat, loc. cit., note 41, Chap. III. 

 

 43) Helmholtz, Wissenschaftliche Abhandlungen, Bd. I, J. A. Barth, Leipzig, 1882, pp. 224. 

 

 44) J. Kravtchenko, “Sur un principe variationnel de l’hydrodynamique des fluides 

visqueux,” C. R. Acad. Sci. Paris 213 (1941), pp. 977. – H. Villat, loc. cit., note 41. 

 Those authors suppose that the Ki are derived from a potential, which is a superfluous 

hypothesis, as one can see. 

 

 45) We intend the terms incompressible and homogeneous to mean that  is constant in the 

mass of the fluid. By virtue of the continuity equation and the existence of the potential , one 

will then have: 
i

i

u

x




= 0 ,  Ki = ( )

ix






. 

 

__________ 

 


