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INTRODUCTION  
 

 
 Consider a sequence of media of an arbitrary nature, where the extreme media are 
isotropic with a constant index.  A light ray transforms into another ray, so one defines a 
transformation of lines into lines that verifies a known relation, namely, Malus’s theorem.  
If we, with Bruns, are content to look for those transformations of lines into lines that 
satisfy this important theorem then we are led to write down six conditions (viz., the 
Malus conditions) that the four functions that define that transformation must verify.  
They express the idea that a certain quantity: 
 

n (m dx + p dy + q dz) – N(M dX + P dY + Q dZ) 
 

must be a total differential.  In paragraph I of the present paper, we shall establish this 
important result by employing the methods of Das Eikonal and simplifying it at only two 
or three points. 
 The condition that is imposed, independently of the intermediary media, is certainly 
satisfied for transformations of light rays.  However, the converse is not perhaps exact: It 
is not possible to affirm that a transformation of lines to lines that verifies Malus’s 
theorem is optically realizable.  Meanwhile, that necessary condition suffices for the 
study of the point-by-point aplanatism of two surfaces or two spaces, and permits one to 
establish this essential result: The point-by-point transformation of two aplanatic volumes 
is a similitude. 
 It is interesting to arrive at these conclusions by a different path, namely, by looking 
for an integral invariant that is attached to light rays, when considered as trajectories, and 
to transform it into another one geometrically by the methods of Poincaré, in some way 
that is attached to the trajectories and independent of the motion.  This procedure, which 
was pointed out by Hadamard, will lead to the consideration of the invariant: 
 

n2 cos θ ds dω . 
 
 That invariant gives the ratio of similitude to the field in the case of point-by-point 
aplanatism, and it then appears that this ratio will not be different from 1 when the 
extreme media are identical.  The quantity n2 cos θ ds dω intervenes, moreover, in an 
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important optical theorem – viz., Straubel’s theorem – which is used quite a bit 
nowadays. 
 It seems necessary to us to give that theorem a simple and rigorous proof and to point 
out that it can be effortlessly generalized to the case in which the rays are replaced with 
the bicharacteristics of certain partial differential equations that are analogous to the 
equation: 

2 2 2 2
2

2 2 2 2

v v v v
n

x y z t

∂ ∂ ∂ ∂+ + −
∂ ∂ ∂ ∂

 = 0. 

 
 

I. 
 

THE MALUS CONDITIONS AND “DAS EIKONAL.”  
 

 Malus’s theorem (and, more generally, that of Thomson and Tait for trajectories in 
dynamics) expresses the idea that light rays that are normal to one surface will again be 
normal to another surface after refraction.  One can, with Bruns (1), propose to study the 
transformation of lines into lines, such that a congruence of normals transforms into 
another congruence of normals.  The problem, thus posed in full generality, admits a very 
simple solution that was presented in the paper cited. 
 Let x, y, z be the coordinates of a point on a surface S, when the are referred to three 
rectangular axes, and let m, p, q be the direction parameters of a line D that passes 
through that point.  The necessary and sufficient condition for the lines D to form a 
congruence of normals is that m, p, q must be three functions of two parameters that 
define the position of the point (x, y, z) on the surface, such that: 
 

 m dx + p dy + q dz 
 

is a total differential (2).  Bruns chose the surface (S) to be the yz-plane, and y = k, z = k to 
be the parameters.  Moreover, he supposed that h and k were functions of p, q.  The 
condition is then that h dp + k dq must be a total differential (2); i.e.: 
 

h

q

∂
∂

 = 
k

p

∂
∂

. 

 
 Let dF be the differential of a function of four variables h, k, p, q; with him, we agree 
to denote: 

dF = F1 dh + F2 dk + F3 dp + F1 dq, 
 
and we let the symbol (F G)ij denote the determinant: 
 

                                                
 (1) Das Eikonal, Abhandlungen der Sächs. Gesellsch, v. 21, 1895.  
 (2) DARBOUX, Théorie des surfaces, t. II, pp. 274.  
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(F G)ij = i j

i j

F F

G G
. 

 
 We call any transformation of lines to lines that preserves normal congruences a 
Malus transformation.  Then, let there be three rectangular axes Oxyz in a first space that 
are referred to the lines (h, k, p, q) and three other O′XYZ in a second space that are 
referred to the lines (H, K, P, Q). 
 Suppose, then, that the transformation is defined by the equations: 
 
     H = A(h, k, p, q), P = C(h, k, p, q), 
     K = B(h, k, p, q), Q = D(h, k, p, q), 
 

and is reversible, so 
( , , , )

( , , , )

D H K P Q

D h k p q
 ≠ 0. 

 When h and k are functions of p and q, H, K, P, Q will be functions of two parameters 
p and q.  Under that hypothesis, we seek the condition for H dP + K dQ to be a total 
differential by a direct calculation.  Upon using the notations that we just agreed upon, 
and setting: 
      dh = h1 dp + h2 dq, 
      dk = k1 dp + k2 dq, 
we get: 
 H dP + K dQ =   [(AC1 + BD1) h1 + (AC2 + BD2) h2 + (AC3 + BD3) h3] dp 
  + [(AC1 + BD1) k1 + (AC2 + BD2) k2 + (AC3 + BD3) k3] dq, 
 

= a dp + b dq. 
 
 That quantity will be an exact differential if: 
 

a

q

∂
∂

 = 
b

p

∂
∂

, 

which gives, after some reductions: 
 
(1) 0 = (h1 k2 – h2 k1) [(AC)12 + (BD)12] + h1[(AC)14 + (BD)14] + h2 [(AC)31 + (BD)31] 
            + k1 [(AC)24 + (BD)24] + k2[(AC)32 + (BD)32] +     [(AC)34 + (BD)34] . 
 
 We propose to seek the transformation that will make the condition: 
 

h

q

∂
∂

 = 
k

p

∂
∂

 

imply that.  We therefore take: 

h =
p

θ∂
∂

, k = 
q

θ∂
∂

, 
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h1 = 
2

2p

θ∂
∂

, k2 = 
2

2q

θ∂
∂

, h2 = k1 = 
2

q p

θ∂
∂ ∂

. 

 
 Since θ is an absolutely arbitrary function of p and q, the quantities h1 k2 – h2 k1 , h1 , 
h2 , k2 can be considered to be independent variables.  In order for H dP + K dQ to 
continue to be a total differential, it is then necessary and sufficient that: 
 

(2)    

12 12

14 14

23 23

34 34

13 13 24 24

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) ( ) ( ) .

AC BD

AC BD

AC BD

AC BD

AC BD AC BD E

+ =
 + = + =
 + =


+ = + =

 

 
 The six conditions thus determined are called the first Malus conditions.  They 
express the idea that the expression (1) reduces to: 
 

(k1 – h2) E = 0; 
 

i.e., that if h dp + k dq is a total differential then H dP + K dQ is another one, and 
conversely, if we suppose that E ≠ 0 and that H dP + K dQ is a total differential then h dp 
+ k dq will be another one.  The latter property is expressed by six new conditions that 
are called the second Malus conditions, which are, in turn, consequences of the ones that 
we already wrote down.  We propose to look for them: In order to do that, consider h, k, 
p, q to be functions of H, K, P, Q that are defined by: 
 
     H = A(h, k, p, q), 
     K = B(h, k, p, q), 
     ……………….., 
 

(3)    

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

,

,

,

.

dH A dh A dk A dp A dq

dK B dh B dk B dp B dq

dP C dh C dk C dp C dq

dQ D dh D dk D dp D dq

= + + +
 = + + +
 = + + +
 = + + +

 

 
 Solve this system of equations for dh, dk, dp, dq.  It is good to remark that by virtue 
of identities (2): 

(BCD)234 = EC3 . 
 Indeed: 
 (BCD)234  = − C2(BD)34 + C2(BD)24 – C4(BD)23 ; 
i.e.: 
 (BCD)234 =  E2(AC)34 − C3(AC)24 + C4(AC)23 + EC3 , 
  = (ACC)234 + EC3 . 
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 Likewise, one will have: 
 

(ACD)234 = − ED3 , (ABD)234 = − EA3 , (ABC)234 = − EB3 , …, 
 
and finally: 
 (ABCD)1234  = E (A1C3 + B1D3 – A3C1 – B3D1) 
  = E [(AC)13 + (BD)13] 
  = E2. 
 
 In particular, one sees that since E is the square root of the functional determinant of 
the transformation, it is never zero.  We can therefore always solve the linear equations 
(3) for dh, dk, dp, dq, which gives: 
 

   dh = 
1

E
(C3 dH + D3 dK – A3 dP – B3 dQ), 

   dk = 
1

E
(C4 dH + D4 dK – A4 dP – B4 dQ), 

   dp = 
1

E
(C1 dH + D1 dK – A1 dP – B1 dQ), 

   dq = 
1

E
(C2 dH + D2 dK – A2 dP – B2 dQ). 

 
A1 , B1 , …, D4 are functions of H, K, P, Q, by the intermediary of h, k, p, k.  Writing 
down the first four Malus conditions, we get: 
 
 (AB)13 + (AB)24  = 0, 
 (AD)13 + (AD)24  = 0, 
 (BC)13 + (BC)24  = 0, 
 (CD)13 + (CD)24  = 0. 
 The last two: 

(AC)13 + (BD)13 = (AC)24 + (BD)24 = 
( , , , )

( , , , )

D H K P Q

D h k p q
 

become: 

2

1

E
[(AC)13 + (AC)24] = 

2

1

E
[(BD)13 + (BD)24] = 

( , , , )

( , , , )

D h k p q

D H K P Q
= ± 

1

E
. 

 
 Therefore: 

(AC)13 + (AC)24 = (BD)13 + (BD)24 = E. 
 

 The question of sign introduces no ambiguity, because the identity must still be true 
when A = h, K = k, P = p, Q = q, and E are never zero. 
 These six conditions are the second Malus conditions.  Let the symbol (u¸v) denote 
the operation (u, v)13 + (u, v)24 that is performed on the function u, v, h, k, p, q.  With that 
system of notation, the conditions become: 
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(4)  (A B) = 0, (A D) = 0, (B C) = 0, (C D) = 0, (A C) = (B D) = E. 
 
 If v is a function that is composed from h, k, p, q by the intermediary of ϕ, ψ, θ, … 
then one will have: 

(u v) = ( , ) ( , )
v v

u uϕ ψ
ϕ ψ

∂ ∂+
∂ ∂

+ … 

 
 Having posed that, start with the identity: 
 

[u (v w)] + [v (w u)] + [w (u v)] = 0, 
and make, for example: 

u = A,  v = B,  w = C. 
 
 By virtue of relations (4), we get: 
 

(A, 0) + (B, E) + (C, 0) = 0; 
 

i.e., (B, E) = 0.  One likewise finds that: 
 

(A, E) = (B, E) = (C, E) = (D, E) = 0. 
 Due to the identity: 
 

(A, E) = ( , ) ( , ) ( , ) ( , )
E E E E

A A A B A C A D
A B C D

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

, 

 
the condition (A, E) = 0 can be written: 

E

C

∂
∂

 = 0. 

 Likewise: 
E

A

∂
∂

 = 
E

B

∂
∂

 = 
E

C

∂
∂

= 
E

D

∂
∂

 = 0. 

 
 The function E of h, k, p, q, when considered to be a function of H, K, P, Q, is 
independent of these variables; i.e., it is therefore a constant in H, K¸P¸Q, and in turn, in 
h, k, p, q. 
 Under a first transformation that makes the lines of a medium Ω1 correspond to those 
of a medium Ω2, in each of which rectangular axes have been chosen, one gets, upon 
expressing the Malus conditions, a constant E12 .  Likewise, one will get a constant E23 as 
a result of the passage from Ω2 to another medium Ω3 .  That double transformation is 
obviously equivalent to a transformation that makes a line in the medium Ω1 go to a line 
in the medium Ω3 .  That transformation will give us a new constant E13 , and since, in 
general: 

E2 = 
( , , , )

( , , , )

D H K P Q

D h k p q
, 
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the rule for the multiplication of functional determinants will give: 
 

2
13E  = 2 2

12 23E E , 

 
and as a result, with no ambiguity, for the reasons that were given already, one will get: 
 

E13 = E12 E23 . 
 
 It then results that the constant E is independent of the choice of axes.  To change the 
axes is to perform a certain displacement of space with respect to the original axes.  Now, 
any displacement can be obtained from two symmetries with respect to a plane; i.e., two 
reflections.  One will then pass from the space in which one starts to the space that is 
referred to the new axes by first passing to the same space, referred to the old ones, which 
gives the constant E, and then to the space that is symmetric with respect to a certain 
plane that one can choose to be the yz-plane, which gives the constant – 1, …  One will 
obtain, by definition: 

E(−1)(−1) = E. 
 
 The constant E is therefore characteristic of the transformation.  We agree to assign a 
number nα to each space Ωα , in such a way that the passage from the space Ωα to the 
space Ωβ is characterized by nα / nβ : 

E(Ωα, Ωβ) =
n

n
α

β

. 

 
 That notation exhibits the property of the number E that: 
 

E(Ωα, Ωβ) E(Ωβ, Ωγ) = E(Ωα, Ωγ). 
 

 If one considers the six Malus conditions to be partial differential equations that 
define the unknown functions H, K, P, Q then physics will give a solution with arbitrary 
functions (e.g., refraction from a sequence of arbitrary surfaces).  It is, moreover, easy to 
solve the problem of the search for the functions H, K, P, Q completely.  Indeed, the 
Malus conditions express the idea that the quantity: 
 

n (p dh + q dk) + N (H dP + Q dK) 
 

is the total differential of a function S of h, k, p, q.  Suppose that the equations: 
 

(5)     
( , , , ),

( , , , ),

P C h k p q

Q D h k p q

=
 =

 

 
are soluble for C and D, while (CD)23 ≠ 0.  If one replaces p and q in S(h, k, p, q) with 
their values that one infers from the two equations (5) then S will become a function E(h, 
k, p, q), and one will obviously have: 
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dE = n (p dh + q dk) + N (H dP + Q dK) 
and as a result: 

np = 
E

h

∂
∂

, nq = 
E

k

∂
∂

, NH = 
E

P

∂
∂

, NK = 
E

Q

∂
∂

. 

 
 Conversely, let E be a function of h, k, P, Q that is chosen in such a way that these 
equations are soluble for H, K, P, Q.  The functions H = (h, k, p, q), … that one infers 
define a transformation, and if (CD)34 ≠ 0 then that transformation will answer to the 
Malus conditions. 
 That solution to the problem has been, in some way, known for some time: Indeed, 
consider h, k to be variables that represent two of the coordinates x and y of a point, while 
p, q, −1 represent the parameters of a plane.  If one takes X, Y, Z, P, Q to be the 
coordinates of a point and a plane that passes through that point, which are functions of x, 
y, z, p, q: 

(6)    

( , , , ), ( , , , ),

( , , , ), ( , , , ),

( , , , ),

X A x y p q P C x y p q

Y B x y p q Q D x y p q

n
Z z E x y p q

N


 = =


= =

 = + −


 

 
that are chosen in such a manner that: 
 

N (P dx + Q dy) + dE (x, y, p q) = n (p dx + q dy) 
 

then one defines a contact transformation of (x, p) by formulas (6) (1), and it is obvious 
that if  p dx + q dy is a total differential then P dX + Q dY will be another one.  A well-
known theorem that was proved by Sophus Lie tells us that the functions A, B, P, Q must 
verify the partial differential equations: 
 

(A, B) = (A, D) = (B, C) = (C, D) = 0, 
 

(C, A) = (D, B) = − n

N
. 

 
These are indeed the six sufficient conditions.  The preceding proof shows that they are 
necessary. 
 The function E(h, k, P, Q) that generates the transformation is called the eikonal.  It is 
obvious that one can obtain 16 different eikonals, because the replacement of H dP with 
P dH, for example, does not alter the integrability of the quantity that was originally 
considered.  Bruns has proved (but this will depart from the context that we have 
imposed) that for a given transformation there will always exist at least four eikonals; i.e., 
that of the four quantities (CD)34 , (CD)14 , (CD)23 , (CD)12 , for example, at most three of 
them can be zero simultaneously. 

                                                
 (1) GOURSAT, Equations aux dérivées partielles, pp. 281.  
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II. 
 

THE NECESSARY CONDITIONS FOR APLANATISM  
 

 The Malus transformations are therefore such that the quantity: 
 

n (p dh + q dk) – N (P dH + Q dK) 
 

is an exact differential, or further that: 
 

n (m dx + p dy + q dz) – N (M dX + P dY + Q dZ) 
is one. 
 Instead of pursuing, as Bruns did, the search for the conditions of aplanatism by the 
brute-force application of the Malus conditions, it seems easier to us to simply express 
the idea that the quantity: 
 
(7)    n (m dx + p dy + q dz) – N (M dX + P dY + Q dZ) 

 
is an exact differential.  That method has the advantage of permitting us to begin the 
problem of aplanatism, without having to elaborate upon the methods of the eikonal when 
one limits one’s study to the optically-realizable transformations.  For these 
transformations, the difference (7) is the differential of the optical path, as is easy to 
verify. 
 For the moment, refer the various points of space to a single rectangular system of 
axes.  One knows that a ray (m, p, q) that refracts at a point of a surface where the normal 
has the direction parameters α, β, γ will take on a new direction MPQ that is defined: 
 
      nm – NM  = λα , 
      np  – NP   = λβ , 
      nq  – NQ   = λγ , 
 
(n, N are the indices of the successive media, and the positive sense of each ray is, for 
example, opposite to the sense of propagation of the wave). 
 Let ui , vi , wi be the coordinates of a point that passes from the medium with index ni 
to the medium with index ni+1 , while mi , pi , qi are the direction parameters of a ray that 
begins in the medium of index ni .  Let ρi denote the distance between the point (ui−1, vi−1, 
wi−1) and the point (ui , vi , wi), so: 
 

ui = ui−1 + mi ρi , … 
and in turn: 

dui = dui−1 + dmi ρi  + + mi dρi . 
 It then results that: 
 

ni (mi dui + pi dvi + qi dwi) – ni (mi dui−1 + pi dvi−1 + qi dwi−1) = ni dρi . 
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 If we then let (x, y, z), (m, p, q) be a point and a ray in the first medium n, while (X, Y, 
Z), (H, P, Q) is the refracted ray in the final medium N then one will have, upon summing 
all of the equalities that were obtained by making i = 1, 2, …: 
 

n (m du + p dv + q dw) – N (M dX + P dY + Q dZ) = ∑ dni ρi . 
 

 One can interpret this formula geometrically: Let A, B be the extremities of the 
optical path, let AA′, BB′ be the segments whose projections onto the axes are dx, dy, dz, 
dX, dY, dZ, and let ASBS′ be the light ray.  The equality is equivalent to: 
 

n AA′ cos(AA′, AS) – N ⋅ BB′ cos(BB′, BS′) = d(ns). 
 

 Therefore, if one refers the elements of the first medium to three arbitrary rectangular 
axes and the elements of the second one to three others then one will always have: 
 
(7)   n (m du + p dv + q dw) – N (M dX + P dY + Q dZ) = d ∑ ns. 
 
 The right-hand side is the differential of the optical path.  The eikonal function is 
therefore nothing but the optical path between the point (x, y, z) and the point (X, Y, Z), 
or, with the notations of the first chapter, between the point (0, h, k) and (0, H, K). 
 Conversely, if that quantity is a total differential then the transformation will be a 
Malus transformation. We limit ourselves to showing that one indeed finds the six 
conditions (4) by expressing the idea that: 
 

n (p dh + q dk) – N (P dH + Q dK) = d ∑ ns; 
i.e., that: 
 
 [np − N (CA1 + DB1)] dh + [nq – N (CA2 + DB2)] dk  

– N (CA3 + DB3) dp – N (CA4 + DB4)] dq = d ∑ ns . 
 

 In order for the left-hand side to be a differential, it is necessary and sufficient that: 
 

(AC)12 + (BD)12 = 0, 
n – N [(AC)13 + (BD)13] = 0, 

(AC)14 + (BD)14 = 0, 
(AC)23 + (BD)23 = 0, 

n – N [(AC)24 + (BD)24] = 0, 
(AC)34 + (BD)34 = 0. 

 
 These are the first Malus conditions.  Moreover, we perceive the value of the quantity 
E that we were led to consider to be the quotient of two numbers that characterize the 
extreme media.  These numbers, which were denoted by nα in the first paragraph, are 
proportional to the indices of refraction, and E is the index of the passage from the first 
medium to the extreme medium. 
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 We thus obtain the Malus conditions by a process that sheds light upon the 
fundamental result of the synthesis of Bruns for an optically-realizable transformation, 
namely, that: 
(8)    n (m dx + p dy + q ds) – N (M dX + P dY+ Q dZ) 
 
is a total differential.  The converse is quite easy to establish: If the quantity (8) is an 
exact differential then the transformation is will be Malus transformation.  The advantage 
of the proofs in the paper that was cited above consists in the fact that it shows that one 
indeed has a necessary condition for the transformation − whether optically-realizable or 
not − to preserve the normal congruences. 
 For the study that we shall carry out, which is the search for the conditions that insure 
point-by-point aplanatism between two manifolds that are two or three-dimensional, it 
seems more convenient to us to express the idea that the quantity (8) is a total differential 
without any recourse to the Malus conditions explicitly. 
 For example, suppose that the points of a space ω correspond aplanatically to those of 
the space Ω.  The point-by-point transformation thus defined is obviously a homographic 
transformation.  We distinguish two cases, according to whether it transforms the plane at 
infinity in one of the media to a plane at a finite distance in the other – i.e., that it is 
general – or whether it transforms that plane to the plane at infinity. 
 In the latter case, we say (1) that it is affine (from the German affine, which is 
currently employed in the preceding sense).  Therefore, first suppose that the points of a 
certain plane (p) in the space ω correspond to points at infinity in Ω, then take the plane 
in ω to be the zy-plane, and similarly choose the plane (P) that corresponds to the plane at 
infinity in (ω) to be the YZ-plane.  The point at infinity in the perpendicular direction to 
(p) corresponds to a point O′ in Ω that is situated at (P), and likewise there is a point O of 
(p) whose correspondent in Ω is at infinity in the direction perpendicular to (P).  Choose 
the z-axes to be the perpendiculars Oz, O′Z to the planes p and P, resp.  These two lines 
will correspond under the following transformation: Two rectangular planes that pass 
through O′Z correspond to two planes that pass through Oz, and when the first two turn 
around O′Z, the other two form the pairs of an involution around Oz.  Choose the xz and 
yz-planes to be the pair of two rectangular planes to that involution, so their 
correspondents will be two rectangular planes in the space (Ω).  We take the XZ-plane to 
be the correspondent to xz and the YZ-plane to the correspondent to yz. 
 The equations of the transformation, when referred to these axes, will take the 
following form: 

X = ax,  Y = by,  Z = ct,  T = z. 
 

 We take x, y, z to be the coordinates x, y, 0, 1 of the point that is situated in the xy-
plane.  In the space Ω, it will correspond to the point (ax, by, c¸ 0) with: 
 

1

M

ax
 = 

1

P

by
 = 

Q

C
 = λ , 

with: 

                                                
 (1) D’OCAGNE, Cours de l’École Polytechnique, 1912-1913.  
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λ = 
2 2 2 2 2

1 1

1

a x b y c+ +
. 

 
 The point (m, p, q, 0) corresponds to the point (am, bp, 0, q) in the space Ω.  We take 
X, Y, Z to be am / q, bp / q, 0, resp.  It is necessary that: 
 

n(m dx1 + p dy1) – N 1 1

am bp
a x d b y d

q q
λ λ
    

+    
    

 

 
must be a total differential in x, y, m, p.  Set m = qu, p = qv, and in turn: 
 

q = 
2 2

1

1 u v+ +
. 

 The quantity: 
n(m dx1 + p dy1) – N λ (a2 x1 du + b2 y11 dv) 

 
will also be a total differential in x, y, u, v.  In order for that to be true, it is necessary that 
certain conditions must be satisfied; for example: 
 

 
q

n u
v

∂
∂

 = − N b2 y1 
1x

λ∂
∂

, 

 

 
q

n v
u

∂
∂

 = − N a2 x1 
1y

λ∂
∂

. 

 
 Since the quantities in the left-hand side contain neither x1 nor y1, while those on the 
right-hand side contain neither u nor v, there can be no identity unless each of the sides is 
constant: 

      
q

n u
v

∂
∂

 = c1 , 

 

      
q

n v
u

∂
∂

 = c2 , 

which is clearly impossible. 
 Therefore, a general transformation cannot be realized by a sequence of refractions.  
Suppose then that the points at infinity correspond to each other in the media (ω) and 
(Ω); i.e., that the transformation is affine.  Choose the origins O and O′ to be two 
corresponding points, and draw three rectangular planes through O′ that determine a 
trihedron O′α′β′γ′.  The points at infinity α′, β′, γ′ on each of these edges for a triangle 
that is conjugate to the umbilical I′.  Let α, b, γ denote the points in the first medium that 
correspond to α′, β′, γ′; these points are conjugate with respect to the transformation (I) 
of I′.  In order for the trihedron Oαβγ to be rectangular, it is necessary that they also be 
conjugate to the umbilical J in that medium.  These are the summits of the common 
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conjugate triangle to these two conics.  One thus sees that if one is given two 
corresponding points O and O′ then one can find two tri-rectangular trihedra that have 
these points for their summits and whose edges will correspond to each other point-by-
point.  The first one Oxyz will be chosen to be the coordinate trihedron in the first 
medium, and the second one, to be OXYZ in the other one. 
 [In the case in which the two umbilicals correspond (by similitude), one of these two 
trihedra can be chosen arbitrarily.] 
 The equations of the transformation then become: 
 

X = ax,  Y = by,  Z = cz. 
 

 The light ray that has the direction m, p, q after refraction is parallel to the direction 
am, bp, cq: 

M

am
= 

P

bp
 = 

Q

cq
 = λ, 

with: 

λ = 
2 2 2 2 2 2

1

a m b p c q+ +
. 

 
 We take X, Y, Z to be ax, by, cz, resp.  The quantity: 
 

n (m dx + p dy + q dz) – Nλ (a2 m dx + b2 p dy + c2 q dz) 
 
 
is a total differential in x, y¸ z, p, q.  This can happen only if: 
 
 n – Nλ a2 = 0, 
 n – Nλ b2 = 0, 
 n – Nλ c2 = 0, 
so 

 a = b = c = 
n

N
. 

 
 The only transformation that makes a unique point-image correspond to any point-
object is a similitude for which the ratio of similitude is equal to the inverse of the index 
of passage from one medium to the other; i.e., since these media are, in general, identical, 
to one.  Bruns (1) arrived at the same conclusions by applying the Malus conditions to the 
transformation.  He does not seem to have remarked (although this result is contained in 
Das Eikonal, in principle) that the magnification can generally be different from one.  
Indeed, having examined the preceding case, he said: “Due to its simplicity, it is not 
necessary to pursue the study any further, especially since in practical optics it will not 
produce geometrical representations that are similar to the body.”  As Hadamard (2) 

                                                
 (1) Das Eikonal, Abhandl. der Sächs. Gesellsch., v. XXI, pp. 370. 
 (2) C. R. Acad. Sc., 14 March 1898.  
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observed, if this result could be obtained with a magnification that is different from one 
then that would constitute the more satisfying solution to the problem of dioptrics, and he 
also took care to observe that this would not be true in general. 
 It is from this result that many others are contained, in substance, in Das Eikonal, but 
the author neglected to exhibit them. 
 For example, seek the condition for a transformation to make the points of two 
surfaces s and S correspond astigmatically.  Suppose that the coordinates of the points of 
each of the two surface are functions of the same parameters α, β, in such a way that a 
value of α, β will correspond to two conjugate points. 
 We take the x, y, z̧  X, Y, Z in the quantity: 
 
(8)    n (m dx + p dy + q dz) – N (M dX + P dY + Q dZ) 
 
to be the coordinates x, y, z̧  X, Y, Z – which are functions of α, β – of the points where 
the light ray meets the conjugate surfaces.  The difference (8) will of the form: 
 

A dα + B dβ, 
 
where A is a function of p, q, α, β, and likewise for B.  However, since A dα + B dβ is a 
total differential, A and B will be functions of only α and β, since: 
 

A

p

∂
∂

 = 0, 
A

q

∂
∂

 = 0, 
B

p

∂
∂

 = 0, 
B

q

∂
∂

 = 0; 

as a result: 
 
(9)   n (m dx + p dy + q dz) – N (M dX + P dY + Q dZ) = dψ(α, β). 
 
 It is therefore necessary that M, P, Q must verify the equations: 
 

(10) 

2 2 2 1,

,

.

M P Q

x y z X Y Z
n m p q N M P Q

x y z X Y Z
n m p q N M P Q

ψ
α α α α α α α

ψ
β β β β β β β


 + + =
 ∂ ∂ ∂ ∂ ∂ ∂ ∂    + + − + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂   
    ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + − + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 

 
One can take the function ψ arbitrarily, and the three equations (10) will then determine 
M, P¸Q as functions of p, q, α, β.  The transformation thus defined will be a Malus 
transformation that answers the question. 
 One then sees, with Bruns, that the problem of the point-by-point correspondence 
between two surfaces involves an infinitude of solutions, even though the correspondence 
between the two surfaces is given.  We shall now interpret the result that we found 
geometrically. 
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 Let m, M be two conjugate points, while mt, MT are tangents to two conjugate curves 
whose arc lengths are s, S: 
 dx = ds cos(Ox, mt),  …, 
 dX = dS cos(OX, MT),  … 
 
 Let maMA be a ray that passes through m and M: 
 

m dx + p dy + q dz = ds cos(mt, ma). 
 

 Consequently, the identity (9) expresses the idea that: 
 

n ds cos(mt, ma) – N dS cos(MT, MA) = dψ(α¸β). 
 
 This is the theorem of Thiesen (1), which was established by Fatou in the case of 
approximate aplanatism.  The cosine of the angle between the incident ray and a curve in 
the surface s is linearly related to the cosine of the angle between the refracted angle and 
the conjugate curve.  Moreover, we see that the surfaces s and S are given in this relation, 
as well as the correspondence between the various points of them, so the coefficients of 
the cosines are known, and the constant term is a linear function of dα and dβ: 
 

d d
ψ ψα β
α β

∂ ∂+
∂ ∂

, 

 
in which ψ is an arbitrary function of α and β. 
  Bruns arrived at this theorem without stating it by choosing curves ψ(α, β) = const. 
on the surface, when the function ψ is imposed, for example, by a given optical system. 
 In order for two given surfaces s and S to be aplanatic, it is necessary that one must be 
able to determine a family of optically-conjugate curves on each of them; i.e., they are 
images of each other such that the cosine of the angle between the light ray that passes 
through a point of one of them is proportional to the cosine of the angle between the 

refracted ray and the conjugate; the proportionality ratio is 
N dS

n ds
⋅ . 

 The condition is necessary.  Indeed, apply Thiesen’s theorem to the curves ψ(α, β) = 
const., dψ = 0, and as a result: 
 

n ds cos(mt, ma) – N dS cos(MT, MA) = 0. 
 

 It is obviously not sufficient. 
 
 As Fatou (2) has justifiably remarked, the curves ψ cannot be arbitrary when the 
transformation is given; it is easy to give examples of this situation. 
 
 
                                                
 (1) CZAPSKI, Grundzüge der Theorie der optischen Instrumenten, pp. 127.  
 (2) Bulletin astronomique, t. XXX, May 1913, pp. 246.  
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III.  
 

INTEGRAL INVARIANTS AND THE NECESSARY CONDITIONS FO R 
APLANATISM IN A MEDIUM WITH VARIABLE INDEX.  

 
 

 The fact that the quantity: 
 

n (m dx + p dy + q dz) – N (M dX + P dY + Q dZ) 
 

is a total differential has a very general character.  In a medium with a variable index n = 
ϕ(x, y, z), the curves that are analogous to the light rays are the extremals of a certain 
integral: 

I = 
B

A
n ds∫ , 

 
and if x, y, z, m, p, q denote the coordinates of a point A and the tangent at A to the 
extremal, and X, Y, Z, M, P, Q are those of B and the tangent to B then its variation is, as 
one knows, equal to: 
 

δI = n (m dx + p dy + q dz) – N (M dX + P dY + Q dZ). 
 

As one knows, the value of the integral I is a function of x, y¸ z, X, Y, Z. 
 If an extremal path is refracted then δI does not take on a value that is less than the 
one that is given by the equation; the proof of this is what permits us to write formula (7).  
It then results immediately that if the object and the image are embedded in media with 
constant indices (which is always true in practice) then no matter whether the 
intermediary media do or do not have variable indices, the point-by-point aplanatism of 
the two multiplicities of dimension two or three will be possible only under the 
conditions that were already found.  Indeed, in Part II, we used only the property of the 
quantity: 
 

n (m dx + p dy + q dz) – N (M dX + P dY + Q dZ) 
 
that it must remain a total differential. 
 The identity that exists between refraction – i.e., the passage from one medium to a 
medium with a different index across a discontinuity – and the extremals that give the 
transit of light for a passage that is similarly effected with no discontinuity, invites one to 
seek whether certain properties of these curves are not preserved under refraction, and do 
not extend to systems of light rays.  For example, the extremals are defined by canonical 
equations that possess integral invariants.  One can propose to seek the ones that are 
preserved under refraction.  We limit our study to the ones that were pointed out by 
Hadamard (1), which seem to be the simplest and most important ones. 
 Consider the function: 

                                                
 (1) C. R. Acad. Sc., 14 March 1898.  
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H = 
2 2 2

2

1

2

u v w

n

+ +
, 

 
where u¸ v, w are three independent variables, and n is a given function of x¸ y, z.  The 
equations: 

(8)   
, , ,

, , ,

dx H dy H dz H

dt u dt v dt w
du H dv H dw H

dt x dt y dt z

∂ ∂ ∂ = = = ∂ ∂ ∂
 ∂ ∂ ∂ = − = − = −

∂ ∂ ∂

 

 
where t represents time, are the differential equations of motion of a point (u, v, w, x, y, z) 
that moves in six-dimensional space.  The initial position M0 of that moving point defines 
its trajectory completely.  The coordinates x¸ y, z, u, v, w, and any function f(u, v, w, x, y, 
z) of them are functions of time.  In particular, H is constant.  Indeed: 
 

dH

dt
= 

H dx H dy H dz H du H dv H dw

x dt y dt z dt u dt v dt w dt

∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 
 Therefore, if one chooses the initial coordinates in such a way that from the start one 
has: 

n2 + v2 + w2 = n2 
 

then that equality will persist at any point of the trajectory.  It is then an extremal of the 
integral: 

2 2 2n x y z dt′ ′ ′+ +∫  = 0. 

 
 Indeed, the equations of the latter are: 
 

(8′)    

2 2 2

2 2 2

2 2 2

2 2 2

0,

0,

...........................................................................

d x n
n x y z

dt xx y z

d y n
n x y z

dt yx y z

  ′ ∂ ′ ′ ′   − + + =
  ∂ ′ ′ ′+ + 


  ′ ∂ ′ ′ ′  − + + =   ∂′ ′ ′+ +  






 

 Now, we have: 

x′ = 
2

u

n
, y′ = 

2

v

n
, z′ = 

2

w

n
, 

 

x′ 2 + y′ 2 + z′ 2 = 
2 2 2

2

u v w

n

+ +
 = 

2

1

n
, 
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so equations (8′) then become: 
 

     
du

dt
 = + 

1n

x n

∂
∂

 = − 
H

x

∂
∂

, 

 

     
dv

dt
 = − 

H

y

∂
∂

, 

 

     
dw

dt
 = − 

H

z

∂
∂

, 

 
which proves the stated proposition. 
 The trajectories whose equations are (8) are attached to integral invariants.  Let M be 
a multiplier for these equations; i.e., a function of x¸ y, z̧  u, v, w that satisfies the linear 
differential equation: 
 

M H M H M H M H M H M H

x u y v z w u x v y w z

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 
 The integral: 

6

( , , , , , )
E

M x y z u v w∫  dx dy dz du dv dw 

 
keeps a constant value, whether one extends it over the points of a six-dimensional space 
E6 or the points that are deduced from it by starting on the trajectories that correspond to 
the arcs that are described during a certain time.  We consider the particular invariant 

6E∫ dx dy dz du dv dw that is obtained by making M = 1, and from it, we deduce another 

one that is attached to the extremals of the integral that was cited already.  Make the 
change of variables: 
       u = nm α, 
       v = np α, 
      w = nq α, 
 
in which p, q, α are three independent variables, and m is a quantity such that: 
 

m2 + p2 + q2 = 1. 
 Equations (8) become: 
 

(9)   

2 2

, , ,

0, , ,

dx m dy p dz q

dt n dt n dt n
d dp n p dn dq n q dn

dt dt n y n dt dt n z n dt

α α α

α α α

 = = =
 ∂ ∂ = = = = =

∂ ∂
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where dn / dt is written in place of 
n n n

m p q
x y z n

α ∂ ∂ ∂+ + ∂ ∂ ∂ 
, and the integral invariant 

transforms into: 

6

( , , )

( , , )E

D u v w

D α β γ∫  dx dy dz dα dβ dγ . 

 Now: 

( , , )

( , , )

D u v w

D α β γ
 = n2 a2 1 0

0 1

m p q

m

p

m

p

∂
∂
∂
∂

 

 

= 
2 2n

m

α
, 

 
by virtue of the relations m2 + p2 + q2 = 1, so: 
 

m 
m

p

∂
∂

+ p = 0, 

 

m 
m

q

∂
∂

+ q = 0. 

 
 Under the previously-cited conditions, the integral: 
 

6

2 2

E

dp dq
n dx dy dz d

m
α α∫  

 

will keep a constant value.  The quantity 
dp dq

m
, which appears here for the first time, 

represents the elementary surface portion that is cut out from the sphere of radius 1 at the 
point (m, p, q), so in the sequel we shall denote it by: 
 

dω = 
dp dq

m
. 

 
 Choose the multiplicity E6 to be a cylinder whose base is E5 and whose height is a < 
α < b, where a and b are two constants, so: 
 

6

2 2

E
n α∫ dx dy dz dα = 

5

2

E
n∫ dx dy dz dω 2b

a
dα α∫ . 
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 The quantity ∫ α2 dα is a constant, and the integral: 
 

5

2

E
n∫ dx dy dz dω 

 

is invariant for a system of extremals of the integral ∫ n ds . 
 One can, by a method that was taught for the first time by Poincaré (1), and then 
employed to great profit by Hadamard (2), deduce another one from it that extends to the 
points of a surface in two-dimensional space and to the two-parameter sheaf of rays that 
issue from these points, which preserves its value when one replaces each original point 
with the point that is obtained by cutting the corresponding trajectory with a surface in 
two-dimensional space. 
 Indeed, consider for the moment, the multiplicity E5 that is composed of trajectories 
that issue from the points of an arbitrary four-parameter multiplicity E4 ; for example, 
suppose that x, y, z̧  p, q are functions of four parameter α, β, γ, δ, and time.  The 
invariant becomes: 
 

(10)  
5

2( , , , ) ( , , , ) ( , , , )

( , , , ) ( , , , ) ( , , , )E

D y z p q dx D z p q x dy D x y z p dq n
d d d d dt

D dt D dt D dt m
α β γ δ

α β γ δ α β γ δ α β γ δ
+ + +∫ ⋯  , 

 

where the notations employed are the usual notations of functional determinants, and 
dx

dt
, 

dy

dt
, …,

dq

dt
 must be replaced with the functions of x, y, z, p, q that are given by equations 

(9).  Let I represent the integral: 
 

 I  = 
4

2( , , , )

( , , , )E

D y z p q dx n
d d d d

D dt m
α β γ δ

α β γ δ∫  

 

  = 
4

2

E

dx dy n
dy dz dp dq dz dp dq dx

dt dt m
+ +∫ ⋯ . 

 
 I is an integral invariant that keeps the same value when one extends it over an 
arbitrary multiplicity E4 that cuts a sheaf of trajectories. 
 Indeed, let S and S′ be two arbitrary four-parameter multiplicities that bound the sheaf 
of trajectories E5 .  One passes from the multiplicity E5 to an infinitely close multiplicity 
by replacing the small 5-volume that lies between the 4-surface S and 4-surface that is 
derived from it by moving along the trajectories that start with it that are arcs traversed in 
the time dt, and by the small 5-volume that is bounded by the 4-surface S′ and the 
infinitely close surface that is obtained in the same fashion.  When the integral (10) is 

                                                
 (1) “Mémoire des trois corps,” Acta mathematica, t. XIII, pp. 66. 
 (2) “Sur certaines propriétés des trajectoires en Dynamique,” Journal de Mathématiques (5), t. III, fasc. 
4, 1897. 
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taken over these two volumes, it will keep the same value.  Now, if I and I′ are the 
particular expressions for the integral I that correspond to the multiplicities E4 – viz., S or 
S′ − then that unique value will be either I dt or I′ dt.  It will then results that: 
 

I = I′. 
 I is therefore an integral invariant. 
 We deduce another particularly interesting invariant from it by choosing the E4 
multiplicity to be the one that is composed of the various points of a two-dimensional 
surface and a two-parameter family of rays that issue from it. 
 The coordinates of a point of the surface S are functions of the two independent 
variables u and v.  A sheaf of rays emanates from each point (u, v) of the surface that is 
defined by the variables p and q, which are also independent. 
 When u, v vary slightly, the point (u, v) describes an surface element dσ around an 
arbitrary point M; likewise, when p and q vary slightly, the light ray describes an 
elementary brush with a summit angle dω that one can call the “elementary brush at the 
point M.”  If one considers an arbitrary surface S′ whose coordinates are functions of two 
parameters u′, v′ then a ray (u, v, p, q) cuts that surface at a point (u′, v′), and the angle 
between the tangent to that ray and the tangent to the point (u, v) has the parameters p′, 
q′.  There is then a portion of the surface dσ′ on S′ where an elementary brush of summit 
angle dω′ begins that corresponds to a portion of the surface dσ and the elementary brush 
dω.. That surface portion and that brush will be said to correspond to the same elements 
of S.  The integral: 

K = 2 ( , ) ( , ) ( , )

( , ) ( , ) ( , )

D y z D z x D y x
n m p q du dvd

D u v D u v D u v
ω 

+ + 
 

∫  

 
keeps the same value whether one extends it over the points of a surface S and the rays 
that emanate from it or over the corresponding elements of an arbitrary surface S′. 
 Let M be an arbitrary point of S, MA, a light ray m, p, q, and let MN be the normal 
with direction parameters α, β, γ:  One has: 
 

( , )

( , )

D y z

D u v
 = α dv, … 

 
 Furthermore, letting θ be angle between MA and MN, the integral K can be written: 
 

K = ∫ n2 cos θ dω dσ . 
 

 The quantity under the integral sign is invariant under a change of axes; the same is 
true for refraction.  Indeed, suppose that some trajectories begin at a point M of the 
surface S whose tangents are contained in the solid angle dω.  If the index jumps from the 
value n to the value N under the traversal of the surface then the trajectories will refract, 
and the new tangents will be contained in the interior of a solid angle dΩ.  In order to 
evaluate the ratio of these angles, we take the axes to be three rectangular axes, one of 
which Mx is normal to the surface at M, while the other two are in the tangent plane.  If p, 
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q are the parameters of a tangent to a trajectory, and M, P, Q are the parameters for the 
refracted trajectory then: 
 np – NP = 0, 
 nq – NQ = 0. 
 Starting with: 

dΩ = 
dP dQ

M
 = 

2

2

n dp dq

N M
, 

 

M dΩ = 
2

2

n
md

N
ω , 

 
and if θ and Θ are the angles between the normal and the incident and refracted 
trajectories, resp., then: 

cos Θ dΩ = 
2

2
cos

n
d

N
θ ω ; 

therefore, one finally has: 
n2 cos θ dω = N2 cos Θ dΩ. 

 
 The integral (K) preserves its value when one replaces the elements that relate to the 
trajectories that begin at a point of the surface S with the ones that correspond to the 
refracted trajectory on the surface, without changing the surface.  
 In particular, suppose that the trajectories that issue from the various points of a 
surface S are refracted at the points where they meet a given surface (Σ); i.e., suppose that 
the index n is subjected to a brief passage from one value to a different value at each 
point of the surface.  The integral (K) cannot take on less than the constant value that one 
applies to the points of the surface S and to the rays that emanate from it into the first 
medium, or to the corresponding elements of a surface in the second one.  Indeed, (K) is 
invariant in the first medium and keeps the same value that one applies to S or to the 
refringent surface (Σ).  (K) is not altered by refracting the trajectories on (Σ), and remains 
invariant in the second medium, which proves the property. 
 Therefore, (K) is an integral of a particular type: It keeps the same value whether one 
extends it over the points of a four-parameter multiplicity that is formed from the points 
of an arbitrary surface and to the two-parameter sheaf that issues from it or over the 
points that are deduced from it by moving arbitrary segments along the trajectories of the 
first one, when these trajectories have been subjected to an arbitrary number of 
refractions or reflections along the path.  In order to simplify the language, we shall say 
that the integral keeps a constant value when it is extended over the portion of an 
arbitrary surface that is intersected by the sheaf. 
 Before pursuing the study that we shall devote ourselves to, it is convenient to 
investigate whether the new element and the integral invariant that we introduced can 
give us results that could not be obtained from, for example, the Malus conditions.  It 
seems that since the notion of integral invariant is related to that of trajectory, its 
existence will depend essentially upon the fact that a light ray is a trajectory that presents 
some angular points, but whose coordinates x, y, z will vary without discontinuities.  
Now, that is nothing.  We shall show that the integral (K) preserves the same value 
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whether one extends it over a surface from which a sheaf of rays emanates or over a 
portion of another surface that is, moreover, arbitrary, and is intersected by the sheaf that 
reduces to the first one by the Malus transformation.  It results from this that the 
introduction of that integral invariant will lead us only to results that we knew already. 
 Indeed, consider the integral: 
 

(F) = 3 dx dy dz dp dq
n

m∫ , 

 
which is taken over the points of a certain volume and the rays (m, p, q) that issue from 
these points.  One of these rays AB, which issues from the point B(x, y, z), meets the yz-
plane at A (0, h, k), and one has: 
 x = ml, 
 y = h + pl, 
 z = k + ql; 
l denotes the segment AB. 
 Consider a point (x, y, z, p, q) in five-dimensional space whose coordinates are 
defined as functions of time by the equations: 
 

dx

dt
= mvn, 

dy

dt
= pvn, 

dz

dt
= qvn, 

 
dp

dt
= 

dq

dt
= 0, 

 
in which n denotes the index of the medium and v is a constant.  The point (x, y, z) in 
three-dimensional space describes the light ray m, n, p.  Suppose that at the arbitrary 
instant t, the motion is replaced by one whose equations are: 
 

dX

dt
= MvN, 

dY

dt
= PvN, 

dZ

dt
= QvN, 

 
dP

dt
= 0, 

dQ

dt
= 0. 

 
 Furthermore, M, P, Q, X, Y, Z are deduced from m, p, q, x, y, z by the formulas: 
 

   X = ML, x = ml,  H = A(h, k, p, q), L = 
n

t
N

, 

   Y = H + PL, y = h + pl, K = B(h, k, p, q), 
   Z = K + QL, z = k + ql, P = C(h, k, p, q), 
       Q = Dh, k, p, q). 
 
 The initial conditions x0, y0, z0, p0, q0 will then correspond to a perfectly-determined 
trajectory that is composed of two pieces of a line, and the position of the moving point 
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(x, y, z, p, q) will be fixed at each instant.  (F) is an integral invariant for this motion. 
Indeed, under the motion along the incident ray, one will have: 
 

 (F)0  = 3n∫ dh dk dp dq dl, 

 
while under the motion along the transformed ray, one will have: 
 

 (F)1  = 3N∫ dH dK dP dQ dL , 

  = 2 ( , , , )

( , , , )

D H K P Q
n N

D h k p q∫ dh dk dp dq dl, 

  =  3n∫ dh dk dp dq dl. 

 Indeed, we have seen that: 
( , , , )

( , , , )

D H K P Q

D h k p q
= 

2

2

n

N
. 

 
 A transformation that is analogous to the transformation that was already employed 
will give the invariant: 
 

2 ( , ) ( , ) ( , )

( , ) ( , ) ( , )

D y z D z x D x y dp dq
n m p q

D u v D u v D u v m

 
+ + 

 
∫ , 

 
under the same conditions are before. 
 One even sees, moreover, that for a transformation of lines to lines such that: 
 

( , , , )

( , , , )

D H K P Q

D h k p q
= 

2

2

n

N
 

 
the integral (K) will keep the same value when it is taken over two arbitrary surfaces, 
along with the lines that pass through the points of the first one and the transformed lines 
that pass through the points of the second one. 
 Such a transformation is obviously more general than a Malus transformation, and we 
shall see that it can also be stigmatic only in the case where the correspondence that is 
established point-by-point is a similitude.  Recall the notations that were employed for a 
telescopic transformation: 
 

 X = 
ax

z
, Y = 

by

z
, Z = 

c

z
, 

 
 H = λ a x, H = λ b y, H = c λ . 

 
 Extend the integral (K) in the first medium to a portion of the xy-plane. 
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 The ray m, p, q that passes through the point (x, y, 0) is transformed into a ray λax1 , 

λby1 , λc, λ = 
2 2 2 2 2

1 1

1

a x b y c+ +
 that passes through the point 

am

q
, 

bp

q
, 0.  We therefore 

likewise extend the integral (K) over the xy-plane in the second medium.  One must then 
have: 

2
1 1

q
n dx dy dp dq

m∫  = 
1

2

1 1 1

, , ,

( , , , )

am bp
D by c

q qc
N

ax D x y p q

λ λ
λ

λ

 
 
 

∫  dx1 dy1 dp dq ; 

 
in other words: 

n2 = N2 1

1 1 1

,
( , )

( , ) ( , )

am bp
D

q q D by cc

ax D p q D x y

λ λ
 
 
  . 

 In particular: 

1

1 1 1

( , ) 1

( , )

D by c

D x y x

λ λ
 

 

will be constant; i.e., 
1 1x x

λ λ∂
∂

 is constant, or finally, λ is constant, which cannot be true if 

a and b are non-zero.  The telescopic transformation is therefore once more impossible in 
the most general case.  Suppose, then, that the affine transformation: 
 
  X = ax,  Y = by,  Z = cz, 
 

  M = λ am, P = λ bp, Q = λ cq, λ = 
2 2 2 2 2 2

1

a m b p c q+ +
. 

 
 When the integral is taken over an arbitrary surface and then over its transform, it will 
keep the same value: 
 

  2 ( , ) ( , ) ( , )

( , ) ( , ) ( , )

D y z D z x D x y dp dq
n m p q

D u v D u v D u v m

 
+ + 

 
∫  

 

   = 2 ( , ) ( , )

( , ) ( , )

D y z D bp cq dp dq
N abc m

D u v D p q am

λ λλ
λ

 
+ 

 
∫ ⋯ . 

 
 It is therefore necessary that one must have: 
 

n2 = N2 bc 
( , )

( , )

D bp cq

D p q

λ λ
, 

identically. 
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 Calculate: 
( , )

( , )

D bp cq

D p q

λ λ
= 2 p q bc

p q

λ λλ λ λ ∂ ∂+ + ∂ ∂ 
. 

 Now: 

λ2 = 2 2 2 2 2 2

1

a m b p c q+ +
, λ dλ = − 

2 2 2

2 2 2 2 2 2 2( )

a mdm b p dp c q dq

a m b p c q

+ +
+ +

, 

 
and by virtue of the equality m dm + p dp + q dq = 0, one will have: 
 

λ dλ = + λ4 (a2 – b2) p dp + λ4 (a2 – c2) q dq, 
 

λ2 + λ 
p

λ∂
∂

p + λ 
q

λ∂
∂

q = λ4[a2 m2 + b2 p2 + c2 q2 + (a2 – b2) p2 + (a2 – c2) q2] 

= λ4a2 . 
 

( , )

( , )

D bp cq

D p q

λ λ
= 

2

2 2 2 2 2 2 2 2[ ( ) ( ) ]

a bc

a b a p c a q+ − + −
. 

 
 One must then have: 

2

2 2 2 2 2 2 2 2[ ( ) ( ) ]

a bc

a b a p c a q+ − + −
 = 

2

2

n

N
, 

identically. 
 It would be illusory to use an analogous procedure to look for the Malus 
transformations for which two surfaces correspond stigmatically.  Indeed, there exist 
transformations that do not enjoy the fundamental property of preserving the normal 
congruences and for which the integral (K) is an invariant. 
 For example, take the following transformation that was already employed by Fatou, 
which transforms one plane into another plane: 
 

Y = αy,  Z = βz, 
 

P = 
n p

N α
 + ϕ(y, z),  Q = 

n q

N β
 + ψ(y, z). 

 
 It does not preserve normal congruences, because if the lines in the first medium form 
a congruence then: 

p dy + q dz = dθ(x, y). 
 Now, in the second one: 
 

P dY + Q dZ = 
n

N
(p dy + q dz) + α ϕ(y, z) dy + β ψ(y, z) dz; 
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P dY + Q dZ will not be an exact differential, so in other words, the transformed rays 
form a normal congruence only if: 
 

α ϕ(y, z) dy + β ψ(y, z) dz 
 
is an exact differential.  One can always arrange for this to not be true.  Meanwhile: 
 

2 ( , )

( , )

D Y Z dP dQ
N M dy dz

D y z M∫  = 2 dp dq
n dy dz

m∫ . 

 Indeed: 
( , , , )

( , , , )

D P Q y z

D p q y z
 = 

( , )

( , )

D P Q

D p q
 = 

2

2

1n

N αβ
 

and 
( , )

( , )

D Y Z

D y z
 = αβ, 

which proves the proposition. 
 
 

IV. 
 

STRAUBEL’S THEOREM.  
 

 Due to the very large number itself of the transformations that conserve it, the integral 
invariant in question cannot give us the solutions to all of the problems of geometrical 
optics, but its use, when it is convenient, sometimes leads to necessary conditions for the 
possibility of the problem.  In any case, its introduction will not be pointless, because it is 
the mathematical expression of a theorem of geometrical optics that was stated by 
Straubel, and whose importance has been shown by Hilbert, and more recently, Langevin. 
 With the notations of the preceding paragraphs, it expresses the idea that for the 
corresponding elements of two surfaces, one has: 
 

n cos θ ds dω = n′ cos θ ′ ds′ dω′, 
and for a planar sheaf: 

n′ cos θ ds dω = n′ cos θ ′ ds′ dω′, 
 
 The physical interpretation of these equalities is extremely simple: Let dQ be the 
quantity of light that is emitted normally from a portion of the surface dσ into the solid 

angle dω.  We call the limit of 
dQ

d dω σ
 when the sheaf reduces to the ray considered the 

“specific intensity L at a point for a given ray;”  L will then be a function of x, y¸ z̧  p, q.  
However, since the flux: 

dQ = L dω dσ 
 

is conserved, for an elementary sheaf one will have: 
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L dω dσ  = L′ dω′ dσ′, 
 
upon letting L, L′ denote the specific intensity of the same ray at two points: 
 

2

L

n
 = 

2

L

n

′
′

. 

 
 The specific intensities are then proportional to the squares of the indices. 
 Straubel remarked, moreover, that from the viewpoint of energy this result can be 
regarded as obvious: Helmholtz and Clausius certainly had knowledge of it before him, 
although they did not state the result.  It came down to him to give a proof that was 
reprised by Langevin in his course (1913), and which is easy to give in a form that is 
rigorous and mathematical. 
 We immediately place ourselves in three-dimensional space.  Suppose that the 
medium is isotropic with a variable index n.  In general, a trajectory will pass through 

two points A, A1 .  In any case, there exists an absolute minimum for the integral 
1A

A
n ds∫ , 

which is a function T(A, A1) of the two points A and A1 , and represents the time that is 
taken by the light in order to go from A to A1 . 

 

y 

x 

A 

O 

z 

y1 

x1 

z1 

O1 

A1 

 
 Let OO1 be a ray, let Oz be the tangent at O, let O1 z1 be the tangent to that ray at O1, 
and let Ox, Oy be two axes that are perpendicular to Oz and to each other.  Likewise, 
suppose that O1 x1, O1 y1 are perpendicular to each other and to O1 z1 .  Choose points A, 
A1 that are situated in the xy and x1y1-planes of the two coordinate systems thus 
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determined.  The function T(A, A1) then becomes a function T(x, y, x1, y1) of the 
coordinates x, y, x1, y1 of the points A, A1 . 

 One knows that the variation of the integral 
1A

A
n ds∫  is expressed simply as a function 

of the direction parameters α, β, α1, β1, γ1 of the tangents to the trajectory at A and A1 and 
the elementary displacements of A and A1 : 
 

1A

A
n dsδ ∫  = n (α dx + β dy) – n1 (α1 dx1 + β1 dy1). 

 
 It then results that: 
 

T

x

∂
∂

 = nα, 
T

y

∂
∂

 = nβ, 
1

T

x

∂
∂

 = − n1α1,  
1

T

y

∂
∂

 = − n1β1 . 

 
 Now, if A1 is at O1 and if A describes a portion of the surface surrounding the point O 
in the xy-plane then the solid angle dω1 that is swept out by the tangent at O1 will have 
the value: 

dω1 = 1 1

1

d dα β
γ

; 

i.e.: 

dω1 = 

2 2

1 1

2 2 2
1

1 1

1

T T

x x x y

n T T

y x y y

∂ ∂
∂ ∂ ∂ ∂

∂ ∂
∂ ∂ ∂ ∂

 dz dy, 

so 

2
1n  dω1 dx1 dy1 = 

2 2

1 1

2 2

1 1

T T

x x x y

T T

y x y y

∂ ∂
∂ ∂ ∂ ∂

∂ ∂
∂ ∂ ∂ ∂

 dx dy dx1 dy1 . 

 
 It results from this that since the right-hand side is symmetric in x, y, x1, y1, one will 
have: 

2
1n  dω1 dσ1 = n2 dω dσ . 

 
 This simple proof has the advantage of showing clearly how the existence of 
Hadamard’s integral invariant results from the property of the quantity: 
 

n (α dx + β dy + γ dz) – n1 (α1 dx1 + β1 dy1 + γ1 dz1) 
 
that it is an exact total differential. 
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 In the case of a planar sheaf that remains planar as a result of refraction, one finds, by 
an analogous process, that: 

n dσ dθ = n′ dσ ′ dθ ′, 
 
in which dσ denotes an element of arc, this time. 
 These two formulas apply to any intermediary media, and even if we are dealing with 
light rays when the transformation that they are subjected to is either a Malus 
transformation or perhaps one of the more general ones that we spoke of. 
 Following another line of inquiry, Straubel’s proposition is further true for 
generalized rays – i.e., for the bicharacteristics of certain partial differential equations. 
 For example, take the equation: 
 

2 2 2 2 2 2

2 2 2 2 2 2
V V V V V V

a a a b b b
x y t y t x t x y

∂ ∂ ∂ ∂ ∂ ∂′ ′′ ′ ′′+ + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 + c = 0, 

 

where a, a′, a″, b, b′, b″, c are arbitrary functions of x, y, t, 
V

x

∂
∂

, 
V

y

∂
∂

, 
V

t

∂
∂

, V.  One knows 

that one uses the term characteristic that corresponds to a given solution V = ϕ(x, y, t) of 
the partial differential equation to refer to a solution to the first-order equation: 
 

H = ap2 + a′q2 + a″ − 2bq – 2b′p – 2b″pq = 0, 
 

where p and q represent 
t

x

∂
∂

, 
t

y

∂
∂

, and in the coefficients of which one has replaced V and 

its partial derivatives with their values as functions of x, y, t.  The bicharacteristics are 
then the characteristics of that first-order equation, which are defined by the equations: 
 

dx
H

p

∂
∂

 = 
dy
H

q

∂
∂

 = 
dp

H H
p

x t

−
∂ ∂+
∂ ∂

 = 
dq

H H
q

y t

−
∂ ∂+
∂ ∂

= 
dt

H H
p q

p q

∂ ∂+
∂ ∂

. 

 
 We will focus on the single case in which, H being a function of x, y, p, q that is 
independent of t, these equations become: 
 

dx
H

p

∂
∂

 = 
dy
H

q

∂
∂

 = 
dp
H

x

−
∂
∂

 = 
dq
H

y

−
∂
∂

= dτ . 

 
 When one considers τ to be time, these will be the equations of motion whose 
trajectories are bicharacteristics if one chooses the initial conditions in such a way that: 
 

H(x0, y0, p0, q0) = 0. 
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 If this were not true, x0, y0, p0, q0 being arbitrary initial values, then the motion that is 
defined by the preceding equations would be attached to the integral invariant: 
 

∫ dx dy dp dq, 
 
where one would deduce, as before, an invariant: 
 

x H y H

q pα α
∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂∫  dp dq dz, 

 
that is extended over the various points of a line (i.e., x, y are functions α) − which is 
arbitrary, moreover − and the two-parameter trajectories that issue from it.  For example, 

take the arc length s of the curve to be the variable.  Let v be the velocity ,
dx dy

d dτ τ
 
 
 

 at a 

point of a trajectory that is situated on the given line, and let ϕ and ψ be the angles that 
the normal to the line and the tangent to the trajectory make with the x-axis.  One has: 
 

x

α
∂
∂

 = sin ϕ,  
y

α
∂
∂

 = − cos ϕ, 

 

cos

H

p

ψ

∂
∂

= 
sin

H

q

ψ

∂
∂

 = v. 

 
 These last two equations define p and q as functions of v and ψ, on the condition that: 
 

( , )

( , )

D v

D p q

ψ
 ≠ 0. 

 
 Suppose that this is true, and choose the arbitrary variables s, v, ψ.  The invariant will 
become: 

( , )
| sin sin cos cos |

( , )

D p q
v ds dv d

D v
ψ ϕ ϕ ψ ψ

ψ
+∫ . 

 
 From the two identities: 
 

H

p

∂
∂

= v cos ψ,  
H

q

∂
∂

= v sin ψ,  

 

one infers 
v

p

∂
∂

, 
v

q

∂
∂

, 
p

ψ∂
∂

, 
q

ψ∂
∂

, and, in turn, 
( , )

( , )

D v

D p q

ψ
. 

 Indeed: 
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2

2

H

p

∂
∂

 = 
v

p

∂
∂

cos ψ – v sin ψ 
p

ψ∂
∂

, 

 

 
2H

p q

∂
∂ ∂

 = 
v

q

∂
∂

cos ψ – v sin ψ 
q

ψ∂
∂

= 
v

p

∂
∂

sin ψ + v cos ψ 
p

ψ∂
∂

, 

 

 
2

2

H

q

∂
∂

 = 
v

q

∂
∂

sin ψ + v cos ψ 
q

ψ∂
∂

, 

 

 

2 2

2

2 2

2

H H

p p q

H H

p q q

∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂ ∂

 = 
cos sin( , )

sin cos( , )

vD v

vD p q

ψ ψψ
ψ ψ

−
, 

 

( , )

( , )

D v

D p q

ψ
 = 

2 2

2

2 2

2

1

H H

p p q

v H H

p q q

∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂ ∂

. 

 

 Therefore, if the determinant 
a b

b a

′
′ ′

 is non-zero then a sheaf of bicharacteristics will 

admit the invariant: 
2

2

| cos( ) |

| |

v

b aa

ϕ ψ−
′ ′−∫  ds dψ cos θ. 

 
 It is not possible to deduce another invariant from this one that would be attached to 
that of the bicharacteristics by methods that are analogous to the ones that were used for 
light rays without making some new hypotheses.  For example, suppose that: 
 

b″ = 0,  a = a′, 
 

v2 = 
2 2

H H

p q

   ∂ ∂+   ∂ ∂   
, 

and 
H = a(p2 + q2) – 2 bq – 2 b′p + a′, 

and as a result: 
v2 = 4(aH + b′ 2 + b2 − aa″). 

 
 Therefore, if we make the change of variables: 
 



Dontot – On integral invariants and some points of geometrical optics                   33 

v2 = 4(au + b′ 2 + b2 − aa″) 
 
then u will keep its initial value all along the trajectory, and u = 0 will correspond to the 
bicharacteristics.  With these notations, the invariant will become: 
 

2
2

cosv
v d ds du

u a

θ ψ∂
∂∫ . 

 
 Extend the integral over the volume of a cylinder (0 < u < α).  Any point of an initial 
cylinder (E0) will correspond to a trajectory, and at the end of an arbitrary length of time, 
to a point that is situated in the interior of a cylinder (E).  The integral: 
 

2
2

cos v
v d ds du

a u

θ ψ∂
∂∫ , 

or even better: 
2

2

1 cos v
v du d ds

a u

θ ψ
α

∂
∂∫  = 2

2 0

1 cos v
d ds v du

a u

αθ ψ
α

∂
∂∫ ∫  

 
will keep the same value whether one extends it over E or E0 . 
 If we let α tend to 0 then the latter will tend to a limit: 
 

2 2 1/ 2cos
( )b b aa d ds

a

θ ψ′ ′′+ −∫ , 

 
and this new integral will keep the same value whether one extends it over the points of 
the base B0 of (E0) or the base B of E.  Now, the corresponding trajectories are 
bicharacteristics, so the quantity: 
 

2 2 1/ 2cos
( )b b aa d ds

a

θ ψ′ ′′+ −∫  

 
will indeed be an invariant for these curves that is analogous to the one that was found in 
the preceding chapters.  It will keep the same value whether one extends it over the points 
of a curve and the bicharacteristics that emanate from it, or over another curve and the 
bicharacteristics that begin on it. 
 Therefore, if one lets n denote the quantity: 
 

n = 
2 2 1/2( )b b aa

a

′ ′′+ −
 

 
and calls it the index then one will have a generalization of Straubel’s theorem:  The 
bicharacteristics of the equations: 
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2 2 2 2 2

2 2 22 2 2
V V V V V

a b b a
x y y t x t t

 ∂ ∂ ∂ ∂ ∂′ ′′+ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
+ c = 0 

 
are rays, and they satisfy the Straubel relation, namely: 
 

n ds dψ cos θ  = n′ ds′ dψ′ cos θ ′. 
 

 It is obvious that an analogous calculation will generalize the same proposition to 
characteristics of several dimensions.  We shall not insist upon that fact, or upon the 
consequences that one can infer from that viewpoint; for example, the possible point-by-
point aplanatism of volumes or surfaces.  We shall be content to remark that it is indeed a 
simple generalization, namely, that in the case of light rays that are bicharacteristics of 
the equation: 

2 2 2
2

2 2 2

V V V
n

x y t

∂ ∂ ∂+ −
∂ ∂ ∂

 = 0, 

 
the generalized index will be identical to the ordinary index. 
 
 

_____________ 
 


