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On integral invariants and some points of geometrigl optics

By R. DONTOT

Translated by D. H. Delphenich
INTRODUCTION

Consider a sequence of media of an arbitrary naturerewthe extreme media are
isotropic with a constant index. A light ray transhsrinto another ray, so one defines a
transformation of lines into lines that verifies a Wwmorelation, namely, Malus’s theorem.
If we, with Bruns, are content to look for thosansformations of lines into lines that
satisfy this important theorem then we are led toenmdibwn six conditions (viz., the
Malus conditions) that the four functions that definatttransformation must verify.
They express the idea that a certain quantity:

n(mdx+pdy+gqdd —NMdX+P dY+Q d2

must be a total differential. In paragraph | of the @negpaper, we shall establish this
important result by employing the method<afs Eikonal and simplifying it at only two
or three points.

The condition that is imposed, independently of thermediary media, is certainly
satisfied for transformations of light rays. Howewbe converse is not perhaps exact: It
is not possible to affirm that a transformation ofeB to lines that verifies Malus’s
theorem is optically realizable. Meanwhile, that 3seey condition suffices for the
study of the point-by-point aplanatism of two surfacesnar spaces, and permits one to
establish this essential result: The point-by-point tamsétion of two aplanatic volumes
is a similitude.

It is interesting to arrive at these conclusions byffarént path, namely, by looking
for an integral invariant that is attached to lightstayhen considered as trajectories, and
to transform it into another one geometrically by thethods of Poincaré, in some way
that is attached to the trajectories and independeiieaiotion. This procedure, which
was pointed out by Hadamard, will lead to the consideratidhe invariant:

n” cos@ds dw.
That invariant gives the ratio of similitude to theldi in the case of point-by-point

aplanatism, and it then appears that this ratio witl b® different from 1 when the
extreme media are identical. The quantifycos & ds dw intervenes, moreover, in an
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important optical theorem — viz., Straubel's theorem —cWvhis used quite a bit
nowadays.

It seems necessary to us to give that theorem a sangleigorous proof and to point
out that it can be effortlessly generalized to theeda which the rays are replaced with
the bicharacteristics of certain partial differentiguations that are analogous to the
equation:

0°v  0°v 0°v ,0°v _
—+—+E—n—-0.

x> oy’ ot

l.
THE MALUS CONDITIONS AND “DAS EIKONAL.”

Malus’s theorem (and, more generally, that of Thomsuh Bait for trajectories in
dynamics) expresses the idea that light rays thah@mal to one surface will again be
normal to another surface after refraction. One wath, Bruns {), propose to study the
transformation of lines into lines, such that a congreeof normals transforms into
another congruence of normals. The problem, thus podad generality, admits a very
simple solution that was presented in the paper cited.

Let x, y, z be the coordinates of a point on a surfdceshen the are referred to three
rectangular axes, and let, p, q be the direction parameters of a libethat passes
through that point. The necessary and sufficient ¢mmdfor the linesD to form a
congruence of normals is that, p, g must be three functions of two parameters that
define the position of the point,(y, z) on the surface, such that:

m dx+ p dy+q dz

is a total differentialy). Bruns chose the surfac® o be theyzplane, and/ =k, z=k to
be the parameters. Moreover, he supposedhlaatd k were functions op, g. The
condition is then that dp+ k dgmust be a total differentiaf)( i.e.:

o _ o

oq dp

Let dF be the differential of a function of four variable, p, g; with him, we agree
to denote:
dF=F;dh+F>dk+ F3dp+ Fldq,

and we let the symboF(G); denote the determinant:

() Das Eikonal Abhandlungen der Séchs. Gesellscl2ly.1895.
(®) DARBOUX, Théorie des surfaces Il, pp. 274.
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We call any transformation of lines to lines that press normal congruences a
Malus transformation Then, let there be three rectangular &3®gzin a first space that
are referred to the lined,(k, p, ) and three othe©’XYZin a second space that are

referred to the lineH; K, P, Q).
Suppose, then, that the transformation is defined byghatiens:

H=A(hkpd, P=C(hkp,0),
K=B(h.kpa),  Q=D(hkp,0q),

and is reversible, scp(H K.P.Q) % 0.
D(h,k, p, 0)
Whenh andk are functions op andq, H, K, P, Q will be functions of two parameters
p andg. Under that hypothesis, we seek the conditionHaP + K dQ to be a total
differential by a direct calculation. Upon usirfgetnotations that we just agreed upon,

and setting:

dh=hydp+hydq,
dk=k; dp+ ko dq,
we get:

HdP+K dQ= [(AC,+BDy) h; + (AG +BD,) h, + (AG; + BD3) hg] dp
+ [(AC]_ + BD]_) kl + (AC2 + BDz) kz + (AC3 + BD3) KO,] dq,
=adp+bdg
That quantity will be an exact differential if:

% _db
oq op’
which gives, after some reductions:

(1) 0=tk —h2ky) [(AQ)12+ (BD)12] + M[(AC)14 + BD)14] + h2 [(AC)31 + (BD)ay]
1 [(AC)24 + (BD)2d] + ko[(AC)32 + (BD)agl +  [(AC)as + (BD)ad] .

We propose to seek the transformation that wikenize condition:

oh _ ok
oq op
imply that. We therefore take:
h= 08 k = %

“op’ aq
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Sincedis an absolutely arbitrary function pfandq, the quantitie$y ko —hz ki , hy,
h, , ko can be considered to be independent variables. In todét dP + K dQ to
continue to be a total differential, it is then necessad sufficient that:

(AQ),, +(BD),, =0,
(AC)14 + ( BD)14 = O’
®) (AC),, +(BD),,=0,
(AC)34 + ( BD)34 = O’
(AC),, +(BD);, = (AQ ,+(BD ,,= E

The six conditions thus determined are called first Malus conditions. They
express the idea that the expression (1) reduces to:

(k]_ —hz) E= 0;

i.e., that ifh dp + k dqg is a total differential theid dP + K dQ is another one, and
conversely, if we suppose thatz 0 and thaH dP + K dQ is a total differential theh dp

+ k dgwill be another one. The latter property is expedssy six new conditions that
are called thsecond Malus conditionsvhich are, in turn, consequences of the ones that
we already wrote down. We propose to look for themorder to do that, considér k,

p, g to be functions o, K, P, Q that are defined by:

H=A(h k p, ),
K=B(h k p, 0),
dH = Adh+ Adk+ Adp Adg
dK=Bdh+ Bdk+ Bdp B dq
dP=Cdh+ Cdk Cdp ¢ dg
dQ=Ddh+ D dk+ Qdp+ Q) dc

3)

Solve this system of equations fiin, dk, dp, dg. It is good to remark that by virtue
of identities (2):
(BCD)234 = EC3 .
Indeed:
(BCD)234 =— Cy(BD)34 + Co(BD)24 — Ca(BD)23;

(BCD)234 = E2(AC)34— C3(AC)24 + C4(AC)23+ EGs,
= (ACC)234 +EG;.
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Likewise, one will have:
(ACD)2sa=—EDs, (ABD)2sa=—EAs, (ABO23s=-EBs, ...,

and finally:
(ABCD)1234 =E (A1C3 + B1D3 —A3C1 —BsDy)
=E[(AC)ss + BD)d
=F".

In particular, one sees that sirf€és the square root of the functional determinant of
the transformation, it is never zero. We can tlogecalways solve the linear equations
(3) fordh, dk, dp, dg, which gives:

dh= é(C:g dH + D3 dK—A\’% dP—Bs dQ),

dk = é(@ dH + D4 dK — A dP — B4 dQ),

dp= é(Cl dH + D; dK—A; dP—-B; dQ),

dq= é(c2 dH + D, dK — Ay dP — B, dQ).

A;, B:1, ..., Ds4 are functions oH, K, P, Q, by the intermediary df, k, p, k. Writing
down the first four Malus conditions, we get:

(AB)13+ (AB)24 =0,

(AD)13 + (AD)24 =0,

(BOw3+ (BOC2sa =0,

(CD)13 + (CD)24 =0.
The last two:

(AC)13+ (BD)13= (AC)24 + (BD)s = %
become:
é [(AC)1s + (AC)24] = é [(BD)13+ (BD)24] = H =+ é

Therefore:
(AQ)13+ (AC)24 = (BD)13 + (BD)24 = E.

The question of sign introduces no ambiguity, becauselémity must still be true
whenA =h, K=k, P =p, Q=q, andE are never zero.

These six conditions are the second Malus conditidret the symboly,v) denote
the operationy, v)13 + (u, V)24 that is performed on the functionv, h, k, p, 9. With that
system of notation, the conditions become:
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(4 AB=0, @D=0, @BO=0, €CD=0, AO=BD-=E

If v is a function that is composed frdmk, p, q by the intermediary o, ¢, 6, ...
then one will have:
ov

09

(uv) =

(u,¢)+%(u,w)+

Having posed that, start with the identity:

[u(vw] +[v(wu] +[w(uVv]=0,
and make, for example:
u=A, V=B, w=C.

By virtue of relations (4), we get:
(A,0)+B,E) +(C,0) =0;
i.e., B, E) = 0. One likewise finds that:

(A,E)=B,E)=(C,E)=(D,E) =0.
Due to the identity:

_0E OE OE 9E
AB=J(AA+-Z(AB+-(AQ+-S(AD,

the condition A, E) = 0 can be written:

Likewise:

The functionE of h, k, p, g, when considered to be a function téf K, P, Q, is
independent of these variables; i.e., it is theeefo constant ik, K,P,Q, and in turn, in
h, k, p, Q.

Under a first transformation that makes the lioea mediunQ; correspond to those
of a mediumQ,, in each of which rectangular axes have been chas® gets, upon
expressing the Malus conditions, a constaat. Likewise, one will get a constalfi; as
a result of the passage frax to another mediun@;. That double transformation is
obviously equivalent to a transformation that makdisie in the mediur®; go to a line
in the mediumQ3 . That transformation will give us a new constapt, and since, in
general:

£2 = D(H,K,P,Q)

D(h,k, p, @)



Dontot — On integral invariants and some points of gé&dcaéoptics 7

the rule for the multiplication of functional detanmants will give:
E123 = E122E223’

and as a result, with no ambiguity, for the reasoaswiere given already, one will get:
Eiz=Ei2Ezs.

It then results that the constdhts independent of the choice of axes. To change the
axes is to perform a certain displacement of spatierespect to the original axes. Now,
any displacement can be obtained from two symmetrigsraspect to a plane; i.e., two
reflections. One will then pass from the space inctvlune starts to the space that is
referred to the new axes by first passing to the same sperred to the old ones, which
gives the constarf, and then to the space that is symmetric with resjgeat certain
plane that one can choose to beyhplane, which gives the constant — 1, ... One will
obtain, by definition:

E(-1)(-1) =E.

The constanE is therefore characteristic of the transformatidde agree to assign a
numbern, to each spac, , in such a way that the passage from the s@act the
spaceQgis characterized by, / ng:

n
E(Qq Qg =% .
Ng

That notation exhibits the property of the numBehat:
E(Qa Qp E(Qp Q) =E(Qa Q).

If one considers the six Malus conditions to be pladitierential equations that
define the unknown functiorts, K, P, Q then physics will give a solution with arbitrary
functions (e.g., refraction from a sequence of arlyitsarfaces). It is, moreover, easy to
solve the problem of the search for the functibh, P, Q completely. Indeed, the
Malus conditions express the idea that the quantity:

n(pdh+qgdk +NHdP+Q dK

is the total differential of a functio®of h, k, p, . Suppose that the equations:

5) {P:c(hk,p@,

Q=D(hk p 9,

are soluble folC andD, while (CD).3 # 0. If one replacep andq in Sh, k, p, ) with
their values that one infers from the two equationgi&»S will become a functior(h,
k, p, ), and one will obviously have:
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dE=n(pdh+qgdk +N (HdP+Q dK)
and as a result:
np:a—E, nq:a—E, NH:a—E, NK:a—E.
oh ok oP 0Q

Conversely, leE be a function of, k, P, Q that is chosen in such a way that these
equations are soluble fot, K, P, Q. The functionHH = (h, k, p, g), ... that one infers
define a transformation, and i€D)s4 # 0 then that transformation will answer to the
Malus conditions.

That solution to the problem has been, in some waywkrfor some time: Indeed,
considerh, k to be variables that represent two of the coordinatexly of a point, while
p, g, -1 represent the parameters of a plane. If one t&ke§ Z, P, Q to be the
coordinates of a point and a plane that passes througbding which are functions of

Y.Z2pQ

X=AXY po, P=axypo
(6) Y=B(x Y pa, Q Oxypo

Z=+%Z—E(xy P q.

that are chosen in such a manner that:
NPdx+Qdy +dE(X, Y, pqg) =n(p dx+qdy

then one defines a contact transformationxpp) by formulas (6) {), and it is obvious
that if p dx+ g dyis a total differential the® dX+ Q dYwill be another one. A well-
known theorem that was proved by Sophus Lie tells ugheafunctionsA, B, P, Q must
verify the partial differential equations:

(A B)=(AD)=BC=(C,D)=0,

n
(C,A) =(D,B) N
These are indeed the six sufficient conditions. Thequheg proof shows that they are
necessary.

The functionE(h, k, P, Q) that generates the transformation is calleceikenal. It is
obvious that one can obtain 16 different eikonals, becidneseeplacement di dP with
P dH, for example, does not alter the integrability of theantity that was originally
considered. Bruns has proved (but this will depart frow ¢ontext that we have
imposed) that for a given transformation there willals exist at least four eikonals; i.e.,
that of the four quantitie$CD)z4 , (CD)14, (CD)23, (CD)12, for example, at most three of
them can be zero simultaneously.

() GOURSAT,Equations aux dérivées partiellgsp. 281.
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Il.
THE NECESSARY CONDITIONS FOR APLANATISM
The Malus transformations are therefore such tleagtiantity:
n(p dh+qdk —N (P dH+ Q dK)
is an exact differential, or further that:

n(mdx+pdy+qdd —N(MdX+PdY+Qdj
iS one.
Instead of pursuing, as Bruns did, the search for theitecmmgl of aplanatism by the
brute-force application of the Malus conditions, iess easier to us to simply express
the idea that the quantity:

(7) n(mdx+pdy+gqdd —N(MdX+P dY+Q dj

is an exact differential. That method has the athgenof permitting us to begin the
problem of aplanatism, without having to elaborate upomigods of the eikonal when
one limits one’s study to the optically-realizableansformations. For these
transformations, the difference (7) is the differahtf the optical path, as is easy to
verify.

For the moment, refer the various points of spaca single rectangular system of
axes. One knows that a raw, (, g) that refracts at a point of a surface where thenabr
has the direction parametersg, ywill take on a new directioMPQ that is defined:

nm-NM=Aaqa,
np —NP =48,
ng —NQ =Ay,

(n, N are the indices of the successive media, and the \mosiinse of each ray is, for
example, opposite to the sense of propagation of the)wa

Letu , vi, w be the coordinates of a point that passes from theumedith indexn;
to the medium with inderi.1 , whilem, pi, g are the direction parameters of a ray that
begins in the medium of index. Letg denote the distance between the paint,(vi-1,
Wwi-1) and the pointy , vi, w), So:

Uu=u-1+ma,
and in turn:
du =du-1+dmpg ++mdg.
It then results that:

ni (M dy +pidv + g dw) —ni (M du-1 + pidvi-s + g dw-1) =nidg .
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If we then let X, y, 2), (m, p, g) be a point and a ray in the first mediapwhile (X, Y,
Z), (H, P, Q) is the refracted ray in the final mediuiMrthen one will have, upon summing
all of the equalities that were obtained by makirgl, 2, ...:

n(mdu+pdv+gdw) - N(MdX+PdY+Qd2=>dng.

One can interpret this formula geometrically: l&tB be the extremities of the
optical path, lIetAA, BB' be the segments whose projections onto the axesxadg, dz,
dX dY, dZ and letASBSbe the light ray. The equality is equivalent to:

n AA cos@A, AS —N [BB cosBB, BS) =d(n9).

Therefore, if one refers the elements of the finetlium to three arbitrary rectangular
axes and the elements of the second one to three ttieer one will always have:

(7) n(mdu+pdv+gdw) - N(MdX+PdY+Qd2 =d> ns

The right-hand side is the differential of the ogdtipath. The eikonal function is
therefore nothing but the optical path between the pgint, ) and the pointX, Y, 2),
or, with the notations of the first chapter, betwtenpoint (Oh, k) and (OH, K).

Conversely, if that quantity is a total differentiakh the transformation will be a
Malus transformation. We limit ourselves to showingttione indeed finds the six
conditions (4) by expressing the idea that:

n(pdh+qdk—N(PdH+QdK)=d> ns
i.e., that:

[np— N (CA, + DBy)] dh + [ng—N (CA; + DB;)] dk
—N (CAs + DB3) dp—N (CA; + DB,)] dg=d > ns.

In order for the left-hand side to be a differentitals necessary and sufficient that:

(AC)lz + (BD)]_Z =0,
n—N [(AC)13 + (BD)13] =0,
(AC)14 + (BD)14 =0,
(AC)23 + (BD)23 =0,
n—N [(AC)24 + (BD)24] =0,
(AC)34+ (BD)34 = 0.

These are the first Malus conditions. Moreover parceive the value of the quantity
E that we were led to consider to be the quotient of twmbers that characterize the
extreme media. These numbers, which were denotead, lny the first paragraph, are
proportional to the indices of refraction, al&ds the index of the passage from the first
medium to the extreme medium.
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We thus obtain the Malus conditions by a process #haids light upon the
fundamental result of the synthesis of Bruns for aticalty-realizable transformation,
namely, that:

(8) n(mdx+pdy+gqd9 —N(MdX+P d¥ Qd2

is a total differential. The converse is quite easestablish: If the quantity (8) is an
exact differential then the transformation is willMalus transformation. The advantage
of the proofs in the paper that was cited above consigte fact that it shows that one
indeed has a necessary condition for the transformatwwhether optically-realizable or
not— to preserve the normal congruences.

For the study that we shall carry out, which is tharsh for the conditions that insure
point-by-point aplanatism between two manifolds that tavo or three-dimensional, it
seems more convenient to us to express the idea thquidhéty (8) is a total differential
without any recourse to the Malus conditions explicitly

For example, suppose that the points of a spao@respond aplanatically to those of
the spac&). The point-by-point transformation thus defined is obvgpashomographic
transformation. We distinguish two cases, accordngtliether it transforms the plane at
infinity in one of the media to a plane at a finitstdnce in the other — i.e., that it is
general — or whether it transforms that plane to taeght infinity.

In the latter case, we say) (that it is affine (from the Germaraffine which is
currently employed in the preceding sense). Therefost stippose that the points of a
certain planeq) in the spacevcorrespond to points at infinity @, then take the plane
in wto be thezy-plane, and similarly choose the plaf® that corresponds to the plane at
infinity in () to be theYZplane. The point at infinity in the perpendicular dii@c to
(p) corresponds to a poif in Q that is situated aPj, and likewise there is a poi@t of
(p) whose correspondent @ is at infinity in the direction perpendicular tB)( Choose
the z-axes to be the perpendicul®g O'Z to the planep andP, resp. These two lines
will correspond under the following transformation: Twectangular planes that pass
throughO'Z correspond to two planes that pass throOghand when the first two turn
aroundO'Z, the other two form the pairs of an involution aro@w Choose thez and
yzplanes to be the pair of two rectangular planes td theolution, so their
correspondents will be two rectangular planes in theesfi?). We take theXZ-plane to
be the correspondent xa and theYZ-plane to the correspondentyn

The equations of the transformation, when referredhése axes, will take the
following form:

X =ax Y = by, Z=ct, T=z

We takex, y, zto be the coordinates y, 0, 1 of the point that is situated in the
plane. Inthe spad®, it will correspond to the pointg, by, c, 0) with:

with:

() D'OCAGNE, Cours de I'Ecole Polytechniqué&912-1913.
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A= 1
JER+ P+

The point {n, p, g, 0) corresponds to the poirdnj bp, 0,q) in the spac&. We take
X,Y,Zto beam/q,bp/q, O, resp. Itis necessary that:

n(m dx +p dy) —N {)Iaxl d(%njmbx {%ﬂ

must be a total differential iy y, m, p. Setm=qu, p=qv, and in turn:

1

V1+2+v2

n(m dx +p dy) =N A (@ x, du + b? y11 dv)

The quantity:

will also be a total differential iw, y, u, v. In order for that to be true, it is necessast th
certain conditions must be satisfied; for example:

na—qu :—Nb2y1 94

ov o’

ndy=-Nax .
ou oy,

Since the quantities in the left-hand side contaitherx; nory;, while those on the
right-hand side contain neithemorv, there can be no identity unless each of the sgles
constant:

na—qu =C,
ov

na—qv =C,
ou

which is clearly impossible.

Therefore, a general transformation cannot bazezhlby a sequence of refractions.
Suppose then that the points at infinity corresptm@ach other in the media)(and
(Q); i.e., that the transformation is affine. Chodbke originsO and O' to be two
corresponding points, and draw three rectangulangsl throughO' that determine a
trihedronO'ad B y. The points at infinity, £, y on each of these edges for a triangle
that is conjugate to the umbilicél Let a, b, ydenote the points in the first medium that
correspond tar, B, V; these points are conjugate with respect to thesformation I()
of I'. In order for the trihedro@afyto be rectangular, it is necessary that they béso
conjugate to the umbilical in that medium. These are the summits of the comm
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conjugate triangle to these two conics. One thus seas ithone is given two
corresponding point® and O’ then one can find two tri-rectangular trihedra thateha
these points for their summits and whose edges witespond to each other point-by-
point. The first oneOxyz will be chosen to be the coordinate trihedron in tingt f
medium, and the second one, todYZin the other one.

[In the case in which the two umbilicals correspond (bylsude), one of these two
trihedra can be chosen arbitrarily.]

The equations of the transformation then become:

X=ax, Y = by, Z=cz

The light ray that has the directiom p, q after refraction is parallel to the direction
am bp, cq;
M_ P _Q _
am bp cq
with:
1

A v dd

We takeX, Y, Z to beax, by, cz resp. The quantity:

n (m dx+ p dy+q d2 —NA (@ m dx+ b? p dy+c? q d?

is a total differential irx, y, z, p, g. This can happen only if:

n-NAa’=0,
n—NAb* =0,
n—NAc® =0,
SO
a=b=c=-1,
N
The only transformation that makes a unique point-in@geespond to any point-
object is a similitude for which the ratio of similitugeequal to the inverse of the index
of passage from one medium to the other; i.e., siresetimedia are, in general, identical,
toone Bruns {) arrived at the same conclusions by applying the Maloditions to the
transformation. He does not seem to have remark#w(gh this result is contained in
Das Eikonal in principle) that the magnification can generally d#erent fromone
Indeed, having examined the preceding case, he said: “Due $omjpdicity, it is not
necessary to pursue the study any further, especially sinm@actical optics it will not
produce geometrical representations that are similahg¢obbdy.” As Hadamard?)(

() Das Eikona) Abhandl. der Sachs. Gesellsch., v. XXI, pp. 370.
() C.R.Acad. Sc., 14 March 1898.
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observed, if this result could be obtained with a magatibn that is different fronone
then that would constitute the more satisfying solutmthe problem of dioptrics, and he
also took care to observe that this would not be trigeneral.

It is from this result that many others are cont@djnie substance, iBDas Eikonal but
the author neglected to exhibit them.

For example, seek the condition for a transfornmatio make the points of two
surfacess andS correspond astigmatically. Suppose that the coordiredtthe points of
each of the two surface are functions of the same p&eeswe £, in such a way that a
value ofa, S will correspond to two conjugate points.

We take theg, y, z, X, Y, Z in the quantity:

(8) n (m dx+p dy+q d) —N (M dX+P dY+Q d2)

to be the coordinates y, z, X, Y, Z— which are functions of, S — of the points where
the light ray meets the conjugate surfaces. The diffar (8) will of the form:

A da+B dg,

whereA is a function op, q, a, S, and likewise foB. However, sincé da + B dGis a
total differential, A andB will be functions of onlya andg, since:

a_'A\:O’ a_'A\:O’ E:O’ E:O’
op aq op dq

as a result:

(9) nmdx+pdy+qdd —-N(MdX+P dY+Q dj =di(a, p.

It is therefore necessary thdt P, Q must verify the equations:

M2+P2+Q2:1,

X 0X 0Y 07\ oy

10 nm—+p—+o¢— |- M—+ P—+ Q— |=—,

(10) ( oa oa aaj k( oa oa aaj Ja
y

ox . dy, dz)_ [ OX. QY. 92\ oy
”(m +p_+q_j “(Maf "5 Qa_ﬁj 0B

One can take the functiop arbitrarily, and the three equations (10) willnrgetermine
M, P,Q as functions op, g, a, S The transformation thus defined will be a Malus
transformation that answers the question.

One then sees, with Bruns, that the problem ofpihiat-by-point correspondence
between two surfaces involves an infinitude of sohs, even though the correspondence
between the two surfaces is given. We shall nawrmmet the result that we found
geometrically.
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Letm, M be two conjugate points, whitat, MT are tangents to two conjugate curves
whose arc lengths asgeS
dx =dscos©Ox mt),
dX =dScosQOX, MT),

Let maMAbe a ray that passes througtandM:
m dx+ p dy+ g dz=dscosfmt, ma).
Consequently, the identity (9) expresses the idea that:
n dscosmt ma —N dScosMT, MA) =d(a.p).

This is the theorem of Thiesef),(which was established by Fatou in the case of
approximate aplanatism. The cosine of the angle batteeincident ray and a curve in
the surfaces is linearly related to the cosine of the angle betwihe refracted angle and
the conjugate curve. Moreover, we see that the g$andS are given in this relation,
as well as the correspondence between the varioutspdithem, so the coefficients of
the cosines are known, and the constant term i®arlimnction otla anddg:

% 4a+9% 4p.
da  9p

in which ¢ is an arbitrary function of andf.

Bruns arrived at this theorem without stating it by dneg curvesy(a, ) = const.
on the surface, when the functignis imposed, for example, by a given optical system.

In order for two given surfacesandSto be aplanatic, it is necessary that one must be
able to determine a family of optically-conjugate curvesach of them; i.e., they are
images of each other such that the cosine of the d&mgleeen the light ray that passes
through a point of one of them is proportional to tosine of the angle between the

refracted ray and the conjugate; the proportionality iati'% B(;—i

The condition is necessary. Indeed, apply Thiesen’seéheto the curveg/a, p) =
const.,d¢ =0, and as a result:

n dscosmt, ma@ —N dScosMT, MA) = 0.
It is obviously not sufficient.

As Fatou ?) has justifiably remarked, the curvescannot be arbitrary when the
transformation is given; it is easy to give examplethis situation.

() CZAPSKI, Grundziige der Theorie der optischen Instrumenten127.
(®) Bulletin astronomique, t. XXX, May 1913, pp. 246.
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INTEGRAL INVARIANTS AND THE NECESSARY CONDITIONS FO R
APLANATISM IN A MEDIUM WITH VARIABLE INDEX.

The fact that the quantity:
nmdx+pdy+qdd —-N(MdX+PdY+Q dj

is a total differential has a very general charactera medium with a variable index=
#(x, y, 2), the curves that are analogous to the light rayshereextremals of a certain
integral:

| = Ifnds,

and ifx, y, z m, p, g denote the coordinates of a poitand the tangent & to the
extremal, an, Y, Z, M, P, Q are those oB and the tangent tB then its variation is, as
one knows, equal to:

d=n(mdx+pdy+qda —N (M dX+P dY+Q d2.

As one knows, the value of the integrad a function ok, y, z, X, Y, Z.

If an extremal path is refracted théindoes not take on a value that is less than the
one that is given by the equation; the proof of this istylamits us to write formula (7).
It then results immediately that if the object and ithage are embedded in media with
constant indices (which is always true in practicegntmo matter whether the
intermediary media do or do not have variable indidess,point-by-point aplanatism of
the two multiplicities of dimension two or three wille possible only under the
conditions that were already found. Indeed, in Pamvél,used only the property of the
quantity:

nN(mdx+pdy+gdd —-N(MdX+PdY+Q dj

that it must remain a total differential.

The identity that exists between refraction — ilee, passage from one medium to a
medium with a different index across a discontinuitgine the extremals that give the
transit of light for a passage that is similarly efésl with no discontinuity, invites one to
seek whether certain properties of these curves argres¢rved under refraction, and do
not extend to systems of light rays. For exampleetktremals are defined by canonical
equations that possess integral invariants. One can grdposeek the ones that are
preserved under refraction. We limit our study to thesothat were pointed out by
Hadamard®), which seem to be the simplest and most importarg.one

Consider the function:

() C.R.Acad. Sc., 14 March 1898.
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LU +VvV+wW
H=S———
2 n

whereu, v, w are three independent variables, and a given function ok, y, z The
equations:

d_ OH dy_ OH dz_ oH

®) dt au’ dt  av' dt 9w
du_ oH dv. OH dw_ oH

dt  dx dt 9y dt 0z

wheret represents time, are the differential equationsation of a pointy, v, w, X, y, 2)
that moves in six-dimensional space. The init@dipon M, of that moving point defines
its trajectory completely. The coordinates, z u, v, w, and any functiom(u, v, w, X, vy,
2) of them are functions of time. In particulbrjs constant. Indeed:

dH _ oH dx 6de 6Hdz 6Hdu6Hdv6 Hd _

dt axdt aydt 0z dt Ju dt 6vdt6wd
Therefore, if one chooses the initial coordinatesuch a way that from the start one
has:
N+ +wW =n?

then that equality will persist at any point of tingjectory. It is then an extremal of the
integral:

jn X2+ y2+ 22 di=0.

Indeed, the equations of the latter are:

d, X 0N [y yEy g2 =0,
dt [X12+y2+22 ax
8) LA y _on X%+ y2+ 2% =0,
dt X12+y2+22 ay
Now, we have:
,_u v W
X_Fa Y—Fa Z’_Fi
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so equations (8then become:

du _ anl oH

dt 6x n_ ox’

dv__oH
dt ay
dw__oH
dt dz '

which proves the stated proposition.

The trajectories whose equations are (8) are attachietegral invariants. Le¥l be
a multiplier for these equations; i.e., a functiorkgy, z, u, v, w that satisfies the linear
differential equation:

OM OH _OM dH oM OH M oH _oM oH a|v|aH_

0x au oy 6v azaw auax avay 0 wo .

The integral:
I M(X, Y,z u Vv, wdxdy dz du dv dw

keeps a constant value, whether one extends it ovgothts of a six-dimensional space
Es or the points that are deduced from it by starting orrtjectories that correspond to
the arcs that are described during a certain time. Wsidmnthe particular invariant

IEQ dx dy dz du dv dwhat is obtained by making = 1, and from it, we deduce another

one that is attached to the extremals of the intetpat! was cited already. Make the
change of variables:

u=nma,

v=npa,

w=nqa,

in whichp, g, a are three independent variables, and a quantity such that:

m+p’+q =1
Equations (8) become:
dx_m, dy_p _dz
©) dt n ' dt n ' dt n '
d_a:O dp aon_pdn dg adn qdr

dt dt mdy nd’ dt Rdz ndt
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wheredn / dt is written in place o @m+@ p+@ q Z, and the integral invariant
0x dy 0z )n

transforms into:
[ DUNVW 4 dy dz @ dBdy.

% D(a,B.y)
Now:
m pgq
DUVW 2 0My
D(a.B8.y) op
Mgy
op
na’®
==
by virtue of the relations? + p? + o = 1, so:
om
m-—+p=0,
ap P
om
m—+q=0.
oq a

Under the previously-cited conditions, the intégra

I n“a*dx dy dz WM

E m

will keep a constant value. The quant{gﬁﬂ, which appears here for the first time,
m

represents the elementary surface portion thaittisat from the sphere of radius 1 at the
point (m, p, g), so in the sequel we shall denote it by:

dpdq
—

dw=

Choose the multiplicitfes to be a cylinder whose baseHsand whose height & <
a < b, wherea andb are two constants, so:

2, 2 _ 2 b >
IEﬁna dx dy dz W—IESn dx dy dz duLa da .
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The quantity{ & dais a constant, and the integral:

I n®dx dy dz &
E

is invariant for a system of extremals of the inte&mtls.

One can, by a method that was taught for the firsé ijm Poincaré'j, and then
employed to great profit by Hadamafj, deduce another one from it that extends to the
points of a surface in two-dimensional space and to theppw@meter sheaf of rays that
issue from these points, which preserves its value wherreplaces each original point
with the point that is obtained by cutting the correspagdrajectory with a surface in
two-dimensional space.

Indeed, consider for the moment, the multiplidiythat is composed of trajectories
that issue from the points of an arbitrary four-paramateltiplicity E4 ; for example,
suppose thak, y, z, p, q are functions of four parameter, £, y; o, and time. The
invariant becomes:

o) [ |2zpd dx, Dzpax dy , Dxyzh_ U0y dp dy ds dt
&| D(a,B,y,0)dt D(a,B.y.,0)dt Da@,fyd)dt| m ’

where the notations employed are the usual notabibfusictional determinants, an% :

%’, % must be replaced with the functionsxp¥, z, p, q that are given by equations
(9). Letl represent the integral:
| :'[ D(y,zp9g dx —ﬁdad,[z’ dy do
E| D(a,B,y,0)dt | m

dx dy rf
= [ | Zdydzdpda2 dzdpdgax--| .
. o dydzdpdar - dzdpdg ‘m

| is an integral invariant that keeps the same value wineneatends it over an
arbitrary multiplicity E4 that cuts a sheaf of trajectories.

Indeed, leSandS be two arbitrary four-parameter multiplicities thatibd the sheaf
of trajectoriesEs . One passes from the multipliciEg¢ to an infinitely close multiplicity
by replacing the small 5-volume that lies between thartase S and 4-surface that is
derived from it by moving along the trajectories that stattt it that are arcs traversed in
the timedt, and by the small 5-volume that is bounded by the 4-su$a@nd the
infinitely close surface that is obtained in the sdashion. When the integral (10) is

() “Mémoire des trois corps,” Acta mathematica, t.IXpp. 66.
(®) “Sur certaines propriétés des trajectoires en Dynasriglournal de Mathématiques (5), t. Ill, fasc.
4, 1897.
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taken over these two volumes, it will keep the samees Now, ifl andl' are the
particular expressions for the integrahat correspond to the multipliciti&s — viz.,Sor
S - then that unique value will be eithedt or I’ dt. It will then results that:

I =1

| is therefore an integral invariant.

We deduce another particularly interesting invariant friorby choosing thek,
multiplicity to be the one that is composed of theious points of a two-dimensional
surface and a two-parameter family of rays that issara ft.

The coordinates of a point of the surfégeare functions of the two independent
variablesu andv. A sheaf of rays emanates from each painv) of the surface that is
defined by the variablgsandq, which are also independent.

Whenu, v vary slightly, the pointy, v) describes an surface elemelat around an

arbitrary pointM; likewise, whenp and g vary slightly, the light ray describes an
elementary brush with a summit anglevthat one can call the “elementary brush at the
pointM.” If one considers an arbitrary surfa8ewvhose coordinates are functions of two
parametersl’, V' then a rayd, v, p, g) cuts that surface at a point,(V'), and the angle
between the tangent to that ray and the tangent tpdim¢ @, v) has the parameteps,
g'. There is then a portion of the surfalk# onS where an elementary brush of summit
angled begins that corresponds to a portion of the surdacand the elementary brush
dw. That surface portion and that brush will be saiddwespondto the same elements
of S The integral:

k=n {mD(u,v) by Ty

D(y.2), D(z3, Xy 3} du dveb
keeps the same value whether one extends it over this pdia surface and the rays
that emanate from it or over the corresponding elenwdran arbitrary surfacg.
Let M be an arbitrary point d MA, a light raym, p, g, and letMN be the normal
with direction parameters, S, y. One has:

Furthermore, letting be angle betweeMA andMN, the integraK can be written:

K = f n? cos@dwdo.

The quantity under the integral sign is invarianter a change of axes; the same is
true for refraction. Indeed, suppose that somgdiaries begin at a poirtl of the
surfaceSwhose tangents are contained in the solid ahglelf the index jumps from the
valuen to the valueN under the traversal of the surface then the tr@jes will refract,
and the new tangents will be contained in the otesf a solid anglelQ. In order to
evaluate the ratio of these angles, we take the tixée three rectangular axes, one of
which Mx is normal to the surface &t, while the other two are in the tangent planep, If
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g are the parameters of a tangent to a trajectoryMarie] Q are the parameters for the
refracted trajectory then:
np — NP=0,
ng — NQ= 0.
Starting with:

2
OIQ:deQ:n_dpdq’
M N? M

2

MdQ = %mda),

and if & and © are the angles between the normal and the incident efmacted

trajectories, resp., then:
2

cos© dQ = n—zcoseda);
N

therefore, one finally has:
n? cos@dw= N? cos® dQ.

The integral K) preserves its value when one replaces the elsniesit relate to the
trajectories that begin at a point of the surf&ceith the ones that correspond to the
refracted trajectory on the surface, without chagdhe surface.

In particular, suppose that the trajectories thatie from the various points of a
surfaceS are refracted at the points where they meet angiveface X); i.e., suppose that
the indexn is subjected to a brief passage from one valua tifferent value at each
point of the surface. The integr&l)(cannot take on less than the constant valueotteat
applies to the points of the surfaSeand to the rays that emanate from it into the firs
medium, or to the corresponding elements of a sariia the second one. Indeel) (s
invariant in the first medium and keeps the samaevéhat one applies t6 or to the
refringent surface). (K) is not altered by refracting the trajectories(b)) and remains
invariant in the second medium, which proves tlaperty.

Therefore, K) is an integral of a particular type: It keeps slaene value whether one
extends it over the points of a four-parameter iplidity that is formed from the points
of an arbitrary surface and to the two-parameteathhat issues from it or over the
points that are deduced from it by moving arbitre@gments along the trajectories of the
first one, when these trajectories have been sigdgjeto an arbitrary number of
refractions or reflections along the path. In ordesimplify the language, we shall say
that the integral keeps a constant value when #xiended over the portion of an
arbitrary surface that is intersected by the sheaf.

Before pursuing the study that we shall devoteselues to, it is convenient to
investigate whether the new element and the integvariant that we introduced can
give us results that could not be obtained from,elkample, the Malus conditions. It
seems that since the notion of integral invariantralated to that of trajectory, its
existence will depend essentially upon the fact #higght ray is a trajectory that presents
some angular points, but whose coordinatey, z will vary without discontinuities.
Now, that is nothing. We shall show that the inékdK) preserves the same value
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whether one extends it over a surface from whicheafsbf rays emanates or over a

portion of another surface that is, moreover, arhjtrand is intersected by the sheaf that

reduces to the first one by the Malus transformatidb.results from this that the

introduction of that integral invariant will lead us ondyresults that we knew already.
Indeed, consider the integral:

dxdydz dpdc
F)=|n——"-",
) I m

which is taken over the points of a certain volume tiedrays i, p, g) that issue from
these points. One of these radB, which issues from the poiB(X, y, 2), meets thgz
plane atA (0, h, k), and one has:

X =ml,

y=h+pl,

z=k+ql
| denotes the segmeAB.

Consider a pointx( y, z, p, g) in five-dimensional space whose coordinates are

defined as functions of time by the equations:

2(: mvn ﬂ: pvn, d_Z: gvn
dt dt dt

@ = % = O,

dt dt

in which n denotes the index of the medium ang a constant. The poin,(y, 2) in
three-dimensional space describes the lightmay, p. Suppose that at the arbitrary
instantt, the motion is replaced by one whose equations are:

dXx dy dz
PLovny, L-p 9
g N TN = QN
E: O, @: 0.
dt dt

FurthermoreM, P, Q, X, Y, Z are deduced fromm, p, g, X, y, z by the formulas:

X =ML, x = ml, H=A(h, k p, 9, L:%t,

Y:H+PL, y:h+p|, K:B(h!k’p’q)!
Z=K+QL, z=k+dl, P=C(h, k p, q),
Q =Dh, k, p, g).

The initial conditions«, Yo, Zo, Po, 0o Will then correspond to a perfectly-determined
trajectory that is composed of two pieces of a limgl e position of the moving point
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%y, z p, 9 will be fixed at each instant.F) is an integral invariant for this motion.
Indeed, under the motion along the incident ray, onehailke:

(Fo = j n® dh dk dp dq dl
while under the motion along the transformed ray, oiihawve:

(F) = jNBdH dK dP dQ dL,
. D(H,K,P,Q)

D(h, k, p, §)
= jn?’dh dk dp dq dl

:jnN dh dk dp dq gl

Indeed, we have seen that:
D(H,K,P,Q)_n_2
D(hk pg N?°

A transformation that is analogous to the tramsfttion that was already employed
will give the invariant:

jn{mD(y, 2, D23,  Ox 9} dp dc
Du,v) ~D(uy Duy] m

under the same conditions are before.
One even sees, moreover, that for a transformafitines to lines such that:

D(H,K,P,Q)_ n*
D(h,k, p,d N2

the integral K) will keep the same value when it is taken oveo @vbitrary surfaces,
along with the lines that pass through the poifthe first one and the transformed lines
that pass through the points of the second one.

Such a transformation is obviously more generah th Malus transformation, and we
shall see that it can also be stigmatic only in¢ase where the correspondence that is
established point-by-point is a similitude. Redh# notations that were employed for a
telescopic transformation:

ax :E/
z z'

H=JAax H=Aby, H=cA.

Extend the integraK) in the first medium to a portion of tlxg-plane.
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The raym, p, g that passes through the poirty, 0) is transformed into a radax ,
Abyr , Ac, A = !
Jai g + b2y + ¢
likewise extend the integraK]j over thexy-plane in the second medium. One must then
have:

that passes through the po%@, b_qp 0. We therefore

am bp

A D(,,)lbyl,)lcj
[redax dy dpdc= [N22S 1T
m Aax, D% % B9

dx dys dp dg;
in other words:

il
2 _\2 & q’'d D(Abyl’AC).
ax D(p9g DY)

n

In particular:
D(Aby;,Ac) 1

D(x,¥1) %

will be constant; |.e.,—g— Is constant, or finallyd is constant, which cannot be true if
% 0%

a andb are non-zero. The telescopic transformationesetfore once more impossible in

the most general case. Suppose, then, that the &finsformation:

X=ax Y = by, Z=cz

1

M=Aam P=Ab Q=Acq A= :
i ; N

When the integral is taken over an arbitrary stefand then over its transform, it will
keep the same value:

D(y.2), . >

“{m D23, uxf}ww
DuV) DUV DUy

_ jNZAab{ D(y.2) +} D(bpA cq_dpdc
D(u,v) D(p.g Aam

It is therefore necessary that one must have:

D(Abp, A cq)
D(p, q)

n?> = N?bc

identically.
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Calculate:
D{Abp.Acq _ ()IZHIﬂ p+)lﬂqj bc.
D(p. q) op 0q
Now:
Jo 1 Ad)l:_azmdeSpdpL tqd
anmt+ P+ ¢’ @nf+p+ )’

and by virtue of the equality dm+ p dp+ q dg= 0, one will have:
Add =+ (@ =b%) pdp+A* (@2 =) g dg

A2+A %p‘l'A %q:A4[a2m2+b2p2+C2q2+(az—bz) p2+(a2—C2) q2]

= %2,

D(Abp, Acq) _ a’bc
D(p.a) [a*+(b’-a) p’+(C-&) i *

One must then have:

a’bc n

(a2 +(b* - &) pP+(F- D @2 N2’

identically.

It would be illusory to use an analogous procedtoelook for the Malus
transformations for which two surfaces correspotgnsatically. Indeed, there exist
transformations that do not enjoy the fundamentaberty of preserving the normal
congruences and for which the integiq) {(s an invariant.

For example, take the following transformationtthvas already employed by Fatou,
which transforms one plane into another plane:

Y = ay, Z=/[z,
_np -n4a
P—n;"‘ﬂy,z), Q—N'[),"'l/’(y,z)-

It does not preserve normal congruences, becétiselines in the first medium form
a congruence then:
p dy+q dz=d&x y).
Now, in the second one:

P dY+Q dz= %(p dy+q dd + a g(y, 2 dy+ By, 2) dz
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P dY+ Q dZ will not be an exact differential, so in other wortlg transformed rays
form a normal congruence only if:

a ¢y, 2 dy + Sy, 2) dz

is an exact differential. One can always arrangéhisrto not be true. Meanwhile:

[nem D(Y, 2) 4, g, 9P & _ jnzdydzm.
M m

D(y. 2
Indeed:
D(P.Qy,2 _D(P.Q _n* 1
D(p.a,y.2 D(pa) N?ap
and
D(Y, 2)
— N 1 = a'ﬁ’
D(y. 2
which proves the proposition.
V.

STRAUBEL’S THEOREM.

Due to the very large number itself of the transfations that conserve it, the integral
invariant in question cannot give us the solutitmsll of the problems of geometrical
optics, but its use, when it is convenient, somesineads to necessary conditions for the
possibility of the problem. In any case, its imluation will not be pointless, because it is
the mathematical expression of a theorem of geacaétoptics that was stated by
Straubel, and whose importance has been shownlbgriliand more recently, Langevin.

With the notations of the preceding paragraphgxjresses the idea that for the
corresponding elements of two surfaces, one has:

n cosé@ds dv=n' cos@’' ds dw,
and for a planar sheaf:

n' cosdds dv=n' cos@’' ds dw,

The physical interpretation of these equalitieexsremely simple: LetdQ be the
quantity of light that is emitted normally from arntion of the surfacéo into the solid
dQ
dwdo

“specific intensityL at a point for a given ray;L will then be a function of, y, z p, .
However, since the flux:

angledaw We call the limit of when the sheaf reduces to the ray considered the

dQ=L dwdo

is conserved, for an elementary sheaf one will have
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L dwdo =L' dw do,

upon lettingL, L' denote the specific intensity of the same ray at twiatgo

The specific intensities are then proportional tostipgares of the indices.

Straubel remarked, moreover, that from the viewpoinerdrgy this result can be
regarded as obvious: Helmholtz and Clausius certainly hadlkdge of it before him,
although they did not state the result. It came dowhim to give a proof that was
reprised by Langevin in his course (1913), and which is easy ¢oimgia form that is
rigorous and mathematical.

We immediately place ourselves in three-dimensionatespaSuppose that the
medium is isotropic with a variable ind&x In general, a trajectory will pass through

. . - : A
two pointsA, A; . In any case, there exists an absolute minimunmh@®mtegral IA nds,

which is a functionl (A, A;) of the two pointA andA; , and represents the time that is
taken by the light in order to go fromto A; .

Z
O
A

Y1

A

Let OO, be a ray, leDzbe the tangent &, let O; z; be the tangent to that ray@,
and letOx, Oy be two axes that are perpendicularGp and to each other. Likewise,
suppose thab; x;, O; y; are perpendicular to each other andDi@; . Choose point4,
A; that are situated in thgy and x;y:-planes of the two coordinate systems thus
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determined. The functiod(A, A1) then becomes a functiof(x, y, X, y1) of the
coordinates, y, X1, y1 of the pointsA, A; .

One knows that the variation of the integfé‘ln ds is expressed simply as a function

of the direction parameters S, a1, [, i of the tangents to the trajectoryfaandA; and
the elementary displacementsfoandA; :

5" nds=n (adx+Bdy) —m (a1 dx + 5 dyy).

It then results that:

Now, if A; is atO; and ifA describes a portion of the surface surrounding the @bint

in the xy-plane then the solid angtka that is swept out by the tangentGt will have
the value:

_da, dB,.
yl )

da

0°T  9°T
1| 0x0x dx0y
| 0T 9°T
0y, 0x 0y, 0y

da = dz dy

o)
0T  0°T
0X, 0X 0Xx0Y
0°T  o°T
0y, 0x 0y, 0y

n da dxg dy; = dx dy dx dy;.

It results from this that since the right-hand sideyimmetric inx, y, xi, y1, one will
have:

n? da doi = dwdo.

This simple proof has the advantage of showing cleaoly the existence of
Hadamard'’s integral invariant results from the propertyhefguantity:

n(adx+Bdy +yd2d —n (a1 dx + B dy + )i dz)

that it is an exact total differential.
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In the case of a planar sheaf that remains planarrasult of refraction, one finds, by
an analogous process, that:
ndodé=n'do' d@’,

in whichdo denotes an element of arc, this time.

These two formulas apply to any intermediary mealm, even if we are dealing with
light rays when the transformation that they are exttbfd to is either a Malus
transformation or perhaps one of the more generaltbaésve spoke of.

Following another line of inquiry, Straubel's propositias further true for
generalized rays — i.e., for the bicharacteristicsedfain partial differential equations.

For example, take the equation:

21 2 2 2
aaz\/+d62\/+a,,a v+2ba v+2 0 v+2 0%V

2 2 2 +C:0’
0x oy ot dyot 0xot 0X0y

AR
ox ay’ ot
that one uses the tercharacteristicthat corresponds to a given solutidi ¢(x, y, t) of
the partial differential equation to refer to a solutiorthe first-order equation:

wherea, &, a’, b, b', b", c are arbitrary functions of v, t, , V. One knows

H=ap’+aq’ +a" - 2bq— D'p— D"pg=0,

wherep andq representg—t, % and in the coefficients of which one has repla¢eohd
X oy

its partial derivatives with their values as functiais, y, t. Thebicharacteristicsare
then the characteristics of that first-order equatidnch are defined by the equations:

dx _ dy _ —dp _ -dg _ dt
OH oH oH, oH oH_  oH  oH  _oH’

@ eq ox "ot oy ‘ot Pap Tag

We will focus on the single case in whidh, being a function ok, y, p, q that is
independent of, these equations become:

dx _dy _-dp _ -dq_
OH “OH " oH "~ oH -
op oq 0x oy

dr.

When one considerg to be time, these will be the equations of motion seho
trajectories are bicharacteristics if one chooseitial conditions in such a way that:

H(Xo, Yo, Po, Qo) = 0.
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If this were not truexo, Yo, po, Qo being arbitrary initial values, then the motion tlsat i
defined by the preceding equations would be attached to theahitagriant:

[ dx dy dp dg

where one would deduce, as before, an invariant:

that is extended over the various points of a line ¢ey,are functionsa) — which is
arbitrary, moreover and the two-parameter trajectories that issue frorfrdir example,

take the arc lengthof the curve to be the variable. hebe the velocity{%,%j ata

point of a trajectory that is situated on the giViee, and letg and ¢ be the angles that
the normal to the line and the tangent to the d¢tajy make with the-axis. One has:

0x ay
— =sin —— =-CO0S¢,
oa / oa ¢
oH  oH
O _ 09 _,
cosy sing

These last two equations defip@ndq as functions o¥ and¢, on the condition that:

DY) .
D(p,9)

Suppose that this is true, and choose the arpiaaiabless, v, . The invariant will
become:

P, Q)
jv|sm¢1 sing + cog cag ‘IW‘

From the two identities:

—— =V COSY, —=Vsiny,
op
one infers— v ﬂ 6_1// 6_1// , and, in turnM.
dp dq’ dp  dq D(p,q)

Indeed:
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9°H ov 17/,
= —cosy—vsiny —,
op’ op v v op
0°H ov . oYy _ov . oy
= —cosy—-vsiny —=—siny+vcosy —,
opdq 0q v 4aaq op v 4aap
0°H ov . oy
= —siny+vcosy —,
0q9° aq v v aq
0°H 9°H
op®> dpdq _ D(v,p) | cosy -v siny
9°H 9°H | D(p,q)|sing vcog |
opoq dcf
0°H 0°H

D(v,¢y) _ 1| 9p® 9pdq
D(p,q) V| a*H a9°H |
opoq o

, . lab|. : o
Therefore, if the determlnar\ﬂb, .| is non-zero then a sheaf of bicharacteristics will
a

admit the invariant:
I V| cospp -y )|
|b’2 -ad |

ds dy cosé.

It is not possible to deduce another invarianinfriiis one that would be attached to
that of the bicharacteristics by methods that asdogous to the ones that were used for
light rays without making some new hypotheses. é@mple, suppose that:

b" =0, a=a,

#(5) (%)
op aq )

H =a(p® + q°) — 2bq— 2b'p + 4,

and

and as a result:
V' =4@H+b 2 + b’ - ad).

Therefore, if we make the change of variables:
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V' = 4@u+b ® + b’ - ad)

thenu will keep its initial value all along the trajectosndu = O will correspond to the
bicharacteristics. With these notations, the invanall become:

J- V2 ov cosd
u &

Extend the integral over the volume of a cylinder (@<a). Any point of an initial
cylinder Eo) will correspond to a trajectory, and at the end ohdtrary length of time,
to a point that is situated in the interior of a cylin({®. The integral:

C:SH @dw dsdt,
or even better:
cosd , ov 1 co¥d a , 0V
j —d cwd,_zj—zdwdsjo \?%d

will keep the same value whether one extends it Bvark, .
If we let a tend to O then the latter will tend to a limit:

= 0% (1% + b2 - ad)? dp d,

and this new integral will keep the same value whethereatends it over the points of
the baseB, of (Eo) or the baseB of E. Now, the corresponding trajectories are
bicharacteristics, so the quantity:

== €08 (b2 + b - ad)"? dp de

will indeed be an invariant for these curves thansl@ous to the one that was found in
the preceding chapters. It will keep the same valuehehene extends it over the points
of a curve and the bicharacteristics that emanate froar over another curve and the
bicharacteristics that begin on it.

Therefore, if one lets denote the quantity:

B (bIZ + b2 _ ad’)l/Z
a

and calls it thandexthen one will have a generalization of Straub#tsorem: The
bicharacteristics of the equations:
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2 2 2
ai+g +2 aV+2kiav+26{’a V+c:0
ox> dy dyat oxat ot

are rays, and they satisfy the Straubel relation, hame
nds dycosé =n' ds dy cosé'.

It is obvious that an analogous calculation will geneeathe same proposition to
characteristics of several dimensions. We shallimast upon that fact, or upon the
consequences that one can infer from that viewpointexXample, the possible point-by-
point aplanatism of volumes or surfaces. We shadldment to remark that it is indeed a
simple generalization, namely, that in the caseagiit Irays that are bicharacteristics of
the equation:

NV 0N LoV _
+ -n =

01
X’ oy’ ot?

the generalized index will be identical to the ordinadeix.




