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 The invariant theory of a single Pfaff equation has been dealt with for some time 
now, but almost everything remains to be done for systems of Pfaff equations.  A small 
first step into that topic shall be made in what follows. 
 In § 1, I shall recall the connection that exists between the systems: 
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=
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of m independent Pfaff equations and systems: 
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∂∑ … = 0  (k = 1, …, n – m) 

 
of n – m independent linear first-order partial differential equations.  Although that 
connection has been know for some time, I still believe that it must be briefly recalled in 
order to ease the understanding of the remaining paragraphs. 
 In § 2 and § 3, I shall develop two different methods for deriving new systems of 
Pfaff equations from a given one that are invariantly linked with the original system.  
Those two methods are new.  However, in particular, I would like to draw attention to the 
simple, but important theorem 4 on pp. 8, which is the basis for the method in § 3. 
 Finally, in § 4, I will give a complete invariant theory of systems of two independent 
Pfaff equations in four variables. 
 
 

§ 1. 
 

 One can interpret any system (1) of Pfaff equations in two different ways: 
 First of all, one can regard it as a system of differential equations, and one 
correspondingly poses the problem of determining all systems of equations in the 
variables x1, …, xn that fulfill (1); that is, all systems of equations: 
 



Engel – On the invariant theory of systems of Pfaff equations. 2 

Φ1 (x1, …, xn) = 0, …, Φq (x1, …, xn) = 0 
 
that are arranged in such a way that the equations (1) will be true by means of: 
 

Φ1 = 0,  …, Φq = 0,  d Φ1 = 0, …, d Φq = 0. 
 
 However, in the second place, one can also regard the quantities dx1, …, dxn in (1) as 
the infinitely-small increments that an infinitesimal transformation: 
 

X f = ξ1 (x1, …, xn) 
1

f

x

∂
∂

+ … + ξn (x1, …, xn) 
n

f

x

∂
∂

 

 
of the variables x1, …, xn experiences.  From that standpoint, (1) defines a family of 
infinitely many infinitesimal transformations, namely, the totality of all infinitesimal 
transformations X f that satisfy the m equations: 
 

(3)     1
1
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x xµα ξ
=
∑ … = 0  (µ = 1, …, m) 

 
identically.  The next problem would then be: Determine all systems of equations in x1, 
…, xn that admit all of those infinitesimal transformations; in general, that problem will 
be different from the one above. 
 Now, let: 
 

ξ1 = ξk1 (x1, …, xn), …, ξn = ξkn (x1, …, xn) (k = 1, …, n – m) 
 
be n – m such systems of solutions of equations (3) such that between the n – m 
infinitesimal transformations: 
 

Xk f = 1
1

( , , )
n

ki n
i i

f
x x

x
ξ

=

∂
∂∑ …  (k = 1, ..., n − m), 

no identity of the form: 
 

ξ1 (x1, …, xn) ⋅⋅⋅⋅ X1 f + … + ξn−m (x1, …, xn) ⋅⋅⋅⋅ Xn−m f = 0 
 
exists, in which  do not all vanish; the expression: 
 
(4)    χ1 (x1, …, xn) ⋅⋅⋅⋅ X1 f + … + χn−m (x1, …, xn) ⋅⋅⋅⋅ Xn−m f, 
 
with the n – m arbitrary functions χ1 , …, χn−m then represents the totality of all 
infinitesimal transformations that defines the system (1) in the basis of the second 
viewpoint.  The expression (4) then seems to be only a different notation for the system 
of Pfaff equations (1) for the viewpoint in question.  That explains the fact that the 
system (1) and the expression (4) are invariantly linked with each other: Each of them is 
determined uniquely by it and conversely, and the relation in question between the two 
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will remain preserved when one introduces new independent variables in place of x1, …, 
xn .  In particular, it is clear that any transformation: 
 

ix′ = Fi (x1, …, xn)  (i = 1, …, n) 

 
that leaves the system (1) invariant will also take the totality of all infinitesimal 
transformations (4) to itself, and conversely. 
 If we set all expressions of the form (4) equal to zero then we will obtain the system 
of n – m independent linear partial differential equations: 
 

X1 f = 0, …, Xn−m f = 0, 
 
which are naturally likewise coupled invariantly with the system (1). 
 An invertible single-valued correspondence exists between systems of m independent 
Pfaff equations (1) and systems of n – m linear partial differential equations (2): Every 
system of the one kind is associated with a system of the other kind in a single-valued 
and invertible way. 
 One obviously obtains the system (2) that corresponds to a given system (1) by 
setting all (m + 1)-rowed determinants in the matrix: 
 

1

11 1

1

n

n

m mn

f f

x x

α α

α α

∂ ∂
∂ ∂

⋯ ⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

 

 
equal to zero.  On the other hand, one will get the system (1) that corresponds to a given 
system (2) by setting all (n – m + 1)-rowed determinants of the matrix: 
 

1

11 1

,1 ,

n

n

n m n m n

dx dx

β β

β β− −

⋯ ⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

 

 
equal to zero.  If a system (1) is given in solved form: 
 

(1′)    dxµ − ,
1

n m

m k m k
k

dxµ

−

+ +
=
∑a = 0 (µ = 1, …, m) 

 
then one can also write down the corresponding system (2) in solved form directly; it 
reads: 
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(2′)    Am+k f = ,
1

m

m k
m k

f f

x xµ
µ µ

+
=+

∂ ∂+
∂ ∂∑a = 0 (k = 1, …, n – m). 

 
 Those remarks shall suffice for what follows. 
 
 

§ 4. 
 

 The aforementioned two possible viewpoints for considering a system of Pfaff 
equations will lead us very easily to a new system of Pfaff equations that is invariantly 
coupled with the original one. 
 Let a system of m independent Pfaff equations be given in solved form: 
 

(5)   ∆µ = dxµ − ,
1

n m

m k m k
k

dxµ

−

+ +
=
∑a = 0  (µ = 1, …, m) . 

 
If we interpret the dx1, …, dxn in them as infinitely-small increments that the x1, …, xn 
take on under an infinitesimal transformation then, as we saw above, (5) will define 
infinitely many infinitesimal transformations whose general symbol is coupled with: 
 
(6)   W f = χ1 (x1, …, xn) ⋅⋅⋅⋅ Am+1 f + … + χn (x1, …, xn) ⋅⋅⋅⋅ An f, 

 
in which the Am+k f possess the form that was given in (2). 

 The family of infinitesimal transformations (6) is invariantly linked with the system 
(5).  If we then imagine that all infinitesimal transformations (6) have been performed on 
the system (3) then we will necessarily obtain a new system of Pfaff equations that are 
invariantly linked with the system (5). 
 Upon performing the infinitesimal transformation W f, the system (5) will go to: 
 
(7)     ∆µ + δ t ⋅⋅⋅⋅ W ∆µ = 0  (µ = 1, …, m), 
 
in which δ t denotes an infinitely-small quantity, and W ∆µ possesses the value (1): 
 

W ∆µ = d (W ∆µ) − , ,
1 1

( )
n m n m

m k m k m k m k
k k

W dx d W xµ µ

− −

+ + + +
= =

− ⋅∑ ∑a a . 

However, that will imply that: 
 

W ∆µ = ,
1 1 1

( ) { }
n m n m n m

m k m k m k m k m j m k m k
k k j

x d x xµ µ µχ χ
− − −

+ + + + + + +
= = =

⋅ ∆ + − ⋅∑ ∑ ∑A A a A  

so one has: 
 

                                                
 (1) Cf., Theorie der Transformationsgruppen, Part One, written by Sophus Lie in collaboration with 
Engel, 1888, Teubner, Leipzig, and esp. pp. 529, 530. 
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W ∆µ = 
1
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m k m k
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x µχ
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+ +
=

⋅ ∆∑ A  

 
Therefore, if we consider χm+1, …, χn to be arbitrary functions of their arguments then we 
will see that equations (7) can be replaced with the following ones: 
 
(7′)  ∆1 = 0, …, ∆m = 0, Am+k ∆1 = 0, …, Am+k ∆m = 0,  (k = 1, …, n – m). 

 
 In order to actually exhibit the system of equations (7′), we remark that for every 
function f of x1, …, xn , the equation: 
 

(8)     df = 
1 1

m n m

m j m j
j

f
f dx

x π
π π

−

+ +
= =

∂ ∆ + ⋅
∂∑ ∑A  

 
exists identically.  With the help of that identity, we get: 
 

(9)   
,

1

,
, ,

1 1

( ) ,

n m

m k m k m k m j m j
j

n m m
m j

m j m k m k m j m j
j

d dx

dx
x

µ µ

µ
µ µ π

π π

−

+ + + + +
=

−
+

+ + + + +
= =

 ∆ = − ⋅ ⋅

 ∂ = ⋅ − ⋅ + ∆
 ∂

∑

∑ ∑

A a A a

a
A a A a

 

 
and with the use of the abbreviation: 
 
(10)    Am+j Am+k f − Am+k Am+j f = Bjk f, 

it can also be written: 

(9′)    Am+k ∆µ = ,

1 1

n m m
m k

jk m j
j

x dx
x

µ
µ π

π π

−
+

+
= =

∂
⋅ + ∆

∂∑ ∑
a

B . 

 
Therefore, the system of equations (7) will have the form: 
 

(11)  ∆µ = 0,  
1

n m

jk m j
j

x dxµ

−

+
=

⋅∑B = 0 (µ = 1, …, m ; k = 1, …, n – m) 

and we will then have: 
 
 Theorem 1: 
 
 If:  

(5)   ∆µ = dxµ − ,
1

n m

m k m k
k

dxµ

−

+ +
=
∑a = 0  (µ = 1, …, m) 

 
is a system of m independent Pfaff equations in the variables x1, …, xn , and if: 
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Am+k f = ,
1

m

m k
m k

f f

x xµ
µ µ

+
=+

∂ ∂+
∂ ∂∑a = 0  (k = 1, …, n – m) 

 
is the associated system of n – m independent linear partial differential equations then 
the system of Pfaff equations: 
 
(7′)   ∆µ = 0,  Am+k ∆µ = 0 (µ = 1, …, m ; k = 1, …, n – m), 

 
or when written out more thoroughly, the system: 
 

(12)  
,

1

, ,
1

0,

{ } 0 ( 1, , ; 1, , ),

n m

m k m k
k

n m

m k m j m j m k m k
k

dx dx

dx m j n m

µ µ

µ µ µ

−

+ +
=

−

+ + + + +
=

 − =


 − = = = −


∑

∑ … …

a

A a A a

 

 
is invariantly coupled with the system (5). 
 
 In some situations, the system of equations (12) will coincide with the system (5) 
itself, namely, when the expressions Bkj f all vanish identically.  In those cases, the 

system of equations (5) admit all infinitesimal transformations (6), so it will be integrable 
without restriction, and the equations: 
 

Am+1 f = 0, …, An f = 0, 

 
define a complete (n – m)-parameter system. 
 Naturally, the system (12) can also be interpreted in such a way that it defines a 
family of infinitesimal transformations.  The infinitesimal transformations of that family 
are then distinguished by the fact that they all leave the system of equations (5) invariant. 
 In fact, should the infinitesimal transformation: 
 

X f = 1
1

( , , )
n

i n
i i

f
x x

x
ξ

=

∂
∂∑ …  

 
leave the system (5) invariant, it would be necessary and sufficient for the m expressions 
X ∆µ to all vanish by means of (5).  Now, if the infinitesimal transformations X f that are 
all defined by (12) have the form: 

X f =
1

n m

m k m k
k

fξ
−

+ +
=
∑ A , 

in which the ξm+k fulfill the equations: 
 

(13) , ,
1

{ }
n m

m k m j m j m k m k
k

µ µ ξ
−

+ + + + +
=

−∑ A a A a  = 0 (µ = 1, …, m ; j = 1, …, n – m) 



Engel – On the invariant theory of systems of Pfaff equations. 7 

identically, then one will then have: 
 

X ∆µ = 
1

n m

m k m k
k

µξ
−

+ +
=

∆∑ A , 

 
or, with the use of formula (9) and the identities (13): 
 

X ∆µ = ,

1 1

n m m
m k

m k
k x

µ
π

π π

ξ
−

+
+

= =

∂
⋅∆

∂∑ ∑
a

, 

which actually vanishes, due to (5). 
 As a result of that, one will have: 
 
 Theorem 2: 
 
 If: 

(5)    ∆µ = dxµ − ,
1

n m

m k m k
k

dxµ

−

+ +
=
∑ a = 0 (µ = 1, …, m) 

 
is a system of m independent Pfaff equations in the variables x1, …, xn, and if: 
 

Am+k f = ,
1

m

m k
m k

f f

x xµ
µ µ

+
=+

∂ ∂+
∂ ∂∑ a = 0 (k = 1, …, n – m) 

 
is the associated system of n – m independent linear partial differential equations then 
the system (5) will admit all transformations: 
 

X f = 1
1

( , , )
n

i n
i i

f
x x

x
ξ

=

∂
∂∑ … , 

 
in which x1, …, xn experience infinitely-small increments dx1, …, dxn such that the 
equations: 

∆µ = 0, Am+k ∆µ = 0 (µ = 1, …, m ; k = 1, …, n – m) 

 
are true identically, or what amounts to the same thing, it admits all infinitesimal 
transformations X f that fulfill the equations: 
 

(11)  1

, ,
1

0,

( ) 0 ( 1, , ; 1, , )

n m

m k m k
k

n m

m k m j m j m k m k
k

m j n m

µ

µ µ

ξ ξ

ξ µ

−

+ +
=

−

+ + + + +
=

 − =


 − = = = −


∑

∑ … …

a

A a A a

 

identically. 
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 Obviously, the aforementioned infinitesimal transformations can also leave the 
system (12) invariant, which is coupled invariantly with (5), so the former is integrable 
without restriction: 
 
 Theorem 3: 
 
 The system of Pfaff equations (12) always integrable without restriction. 
 
 

§ 3. 
 

 In this paragraph, we shall develop another method for finding a new system of Pfaff 
equations from a given one of the same kind that is invariantly coupled with the original 
one.  The method in question is based upon the following important theorem, which has, 
however, remained unnoticed up to now: 
 
 Theorem 4: 
 
 The system of n – m independent linear partial differential equations: 
 

(15)  Ak f = 1
1

( , , )
n

ki n
i i

f
x x

x
β

=

∂
∂∑ …  = 0 (k = 1, …, n – m) 

 
is invariantly coupled with the system of equations: 
 
(16)  Ak f = 0, Ak Aj f − Aj Ak f = (Ak Aj) = 0  (k, j = 1, …, n – m). 
 
 That theorem says two things: 
 
 Firstly: The system (16) is determined by the system (15) independently of the form 
upon which one bases (15).  Hence, if: 
 

Bk f = 
1

n m

kj
j

ψ
−

=
∑  (x1, …, xn) Aj f = 0 (k = 1, …, n – m) 

 
is any other form for (15) then the system of equations: 
 

Bk f = 0, Bk Bj f – Bj Bk f = 0 (k, j = 1, …, n – m) 
 
will be equivalent to (16). 
 
 Secondly: When one introduces the new variables: 
 

ix′  = Fi (x1, …, xn) (i = 1, …, n), 
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Ak f will be converted into Ck f, and therefore (15) will be converted into: 
 

C1 f = 0, …, Cn−m f = 0, 
 
so the system (16) will keep the same form in the x′ : 
 

Ck f = 0, Ck Cj f − Cj Ck f = 0  (k, j = 1, …, n – m) . 
 
 The first statement is immediately clear, while the second one follows from the 
known theorem that the expression: Ak Aj f − Aj Ak f goes to the Ck Cj f − Cj Ck f when one 
introduces the new variables x′ (cf., Theorie der Transformationsgruppen, I, pp. 84, 
Theorem 2). 
 Theorem 4 will also be true when the n – m equations (15) are not mutually-
independent, so as a result, it can be applied directly to the system (16).  In that way, one 
will then see that the system: 
 

(17)  ( ) ( )
0, 0,

( ( ) 0, ( )( ) 0 ( , , , 1, , )

k k j j k

h k j h l k j

A f A A f A A f

A A A A A A A k j h l n m

= − =
 = = = − …

 

 
is invariantly coupled with (16).  However, that explains the fact that is also has that 
relationship to the original system (15). 
 One can, in turn, apply Theorem 4 to (17), and so on. 
 One might expressly state a theorem here that is contained implicitly in Theorem 4: 
 
 Theorem 5: 
 
 If the system of n – m linear partial differential equations: 
 

(15)  Ak f = 1
1

( , , )
n

ki n
i i

f
x x

x
β

=

∂
∂∑ …  = 0 (k = 1, …, n – m) 

 
is invariant under the transformation: 
 

ix′  = Fi (x1, …, xn) (i = 1, …, n) 

 
then the same will also be true for the system of equations: 
 
(16) Ak f = 0, Ak Aj f − Aj Ak f = (Ak Aj) = 0  (k, j = 1, …, n – m). 
 
 The system (16) in this theorem can be replaced with (17), and so on. 
 
 The two theorems 4 and 5 can now be adapted to systems of Pfaff equations with no 
further discussion.  Indeed, from § 1, a system of Pfaff equations is determined uniquely 
by (15) and (16), and that explains the fact that a system of Pfaff equations belongs to 
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(16) that is invariantly coupled with the one that belongs to (15).  For more convenience, 
we then imagine that equations (15) are given in the solved form: 
 

(15′)  Am+k f = 1
1

( , , )
n

ki n
m k

f f
x x

x xµ µ=+

∂ ∂+
∂ ∂∑ …a  = 0  (k = 1, …, n – m), 

 
so we will obtain the following theorem from theorem 4: 
 
 Theorem 6: 
 
 The system of m independent Pfaff equations: 
 

(18)  dxµ − , 1
1

( , , )
n m

m k n m k
k

x x dxµ

−

+ +
=
∑ …a  = 0  (µ = 1, …, m) 

 
is coupled invariantly with the system of Pfaff equations that corresponds to the system of 
linear partial differential equations: 
 

(16′) 
,

1

, ,
1

0,

( ) ( ) 0 ( , 1, , ),

m

m k m k
m k

m

m k m j m k m k m k m k

f f
f

x x

f
k j n m

x

µ
µ µ

µ µ
µ µ

+ +
=+

+ + + + + +
=

∂ ∂ = + = ∂ ∂
 ∂ = − = = −
 ∂

∑

∑ …

A a

A A A a A a

 

 
and it follows from Theorem 5 that: 
 
 Theorem 7: 
 
 If the system of Pfaff equations (18) remains invariant under the transformation: 
 

ix′  = Fi (x1, …, xn) (i = 1, …, n) 

 
then the same thing will also be true for the system of Pfaff equations that corresponds to 
the system (16′). 
 
 When the system (18) is integrable without restriction, all (Am+k , Am+j) will vanish 

identically, so the system of Pfaff equations that corresponds to (16′) will coincide with 
(18), and Theorem 6 will not yield anything new.  On the other hand, if the system (18) is 
not integrable without restriction then it can happen that (16′) includes precisely n 
mutually-independent equations.  In that case, the system of Pfaff equations that belongs 
to (16′) will collapse to 0 = 0, and Theorem 6 will likewise say nothing new. 
 We will obtain a truly new system of Pfaff equations that is invariantly coupled with 
(18) from Theorem 6 iff (18) is not integrable without restriction and (16′) includes less 
than n mutually-independent equations.  If those conditions are fulfilled and the 
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mutually-independent equations in (16′) do not define a complete system then we can 
once more apply Theorem 6 to the system of Pfaff equations that belongs to (16) and 
then possibly obtain a new system of Pfaff equations that is invariantly coupled with 
(18).  In some situations, we can find a whole series of such systems. 
 If m = 2 and (18) is not integrable without restriction then (16′) will include three 
mutually-independent equations.  We can then state the theorem: 
 
 Theorem 8: 
 
 Every system: 
 
(19)   dxµ – an−1, µ dxn−1 – an µ dxn = 0 (µ = 1, …, n – 2) 

 
of n – 2 independent Pfaff equations in n > 3 variables x1, …, xn is invariantly coupled 
with a system of n − 3 independent equations of that kind.  The same thing will be 
obtained by setting all four-rowed determinants of the matrix: 
 

(20)  

1 2 1

1,1 1, 2

,1 , 2

1 ,1 1,1 1 ,2 1,2

1 0

0 1

0 0

n n n

n n n

n n n

n n n n n n n n

dx dx dx dx− −

− − −

−

− − − −− −

⋯

⋯

⋯

⋯

a a

a a

A a A a A a A a

 

 
equal to zero, in which the symbols An−1 f and An f possess the form: 

 

An−2−k f = 
2

2 ,
12

n

n k
n k

f f

x xµ
µ µ

−

− +
=− +

∂ ∂+
∂ ∂∑a   (k = 1, 2). 

 
 Similar theorems are true for m = n – 3, n > 6, for m = n – 4, n > 10, and so on. 
 One can make a remarkable application of Theorem 8. 
 Page determined all primitive groups of four-fold extended space in his dissertation 
(American Journal, v. 10, pp. 293-346).  His proof encountered special difficulties due to 
the fact that certain groups in that space were not primitive.  The ones in question are 
transitive, and behave as follows, in addition: If one fixes a point in general position 
under such a group then a plane pencil of ∞1 directions in the projective space of ∞3 
directions that go through the point will remain invariant, but not a plane bundle of ∞2 
directions. 
 On the basis of Theorem 8, one can easily prove that the groups that are defined in 
that way are all primitive. 
 In fact, it is clear that any of the groups in R4 that we speak of will leave a system of 
two independent Pfaff systems in four variables invariant, but not a single Pfaff equation 
in those variables.  Now, if that system is not integrable without restriction then, from 
Theorem 8, there must be a Pfaff equation that remains invariant under the group, but 
that is a contradiction.  As a result, the system of Pfaff equations considered must be 
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integrable without restriction and possess ∞2 doubly-extended integral manifolds that fill 
up the four-fold extended space precisely once and determine a decomposition of it.  
Naturally, that decomposition remains invariant under the group, and the group will 
therefore be imprimitive. 
 The rather long-winded calculations by means of which Page proved the 
imprimitivity of the group in question are avoided by the argument that was just 
presented.  Nonetheless, the service that Page performed remains undiminished, since on 
the one hand, he was the first to determine all primitive groups of the four-fold extended 
space, and on the other hand, his treatise yielded very important contributions to the 
determination of all transitive groups on that space. 
 
 

§ 4. 
 

 The theorems that were obtained allow us to develop the invariant theory of systems 
of two independent Pfaff equations: 

(21)    
4

1
1

( , , )i n i
i

x x dxµλ
=
∑ … = 0 (µ = 1, 2) 

in four variables completely. 
 We can address the case in which the system (21) is integrable very easily. 
 Namely, if it is integrable without restriction, and if u1 (x1, …, x4), u2 (x1, …, x4) are 
two independent integral functions of that system then if we introduce two suitable 
functions u3, u4 of the x as independent variables, along with u1, u2, then we will get the 
simple form for it: 
 
(21′)    du1 = 0,  du2 = 0. 
 
 On the other hand, it is indeed integrable, but not without restriction, and if v1 (x1, …, 
x4) is an integral function the we introduce new variables v1, …, v4 and get: 
 

(22)   dv1 = 0, 
4

1 4
2

( , , )i i
i

v v dvσ
=
∑ … = 0. 

 
In these equations, if we consider v1 to be a constant then: 
 

σ2 dv2 + σ3 dv3 + σ4 dv4 = 0 
 

will be a non-integrable Pfaff equation in the variables v2, v3, v4, and from the theory of 
the Pfaff problem, they can then be brought into the form du2 – u3 du4 = 0 by a 
transformation of the form: 
 

ui = ψi (v1, v2, v3, v4)  (i = 2, 3, 4) . 
 
Finally, if we set v1 = u1 and introduce u1, u2, u3, u4 in (22) as new variables then that will 
give: 
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(21″)    du1 = 0, du2 – u3 du4 = 0. 
 
The system (21) can then be brought into that form under the assumptions that were 
made. 
 
 The interesting case in which the system (21) is not integrable at all still remains.  We 
would now like to treat it. 
 For the sake of convenience, we think of the system (21) as being given in solved 
form: 

(23)  1 1 3 1 4 3 4 1 4 4

2 2 3 1 4 3 4 1 4 4

( , , ) ( , , ) 0,

( , , ) ( , , ) 0.

dx x x dx x x dx

dx x x dx x x dx

α α
β β

∆ = − − =
 ∆ = − − =

… …

… …

 

 
Since it is not integrable, there will then be no functions ρ1 and ρ2 of x1, …, x4 such that 
the expression ρ1 ∆1 + ρ2 ∆2 is a complete differential. 
 Our first task is to exhibit the system of linear partial differential equations that is 
associated with (23).  It reads: 
 

(24)   
3 3 3

3 1 2

4 4 4
4 1 2

0,

0,

f f f
A f

x x x

f f f
A f

x x x

α β

α β

∂ ∂ ∂ = + + = ∂ ∂ ∂
 ∂ ∂ ∂ = + + =
 ∂ ∂ ∂

 

 
and it is certainly not a complete two-parameter system under the assumptions that were 
made.  It follows from this that the expression: 
 

A3 A4 – A4 A3 f = B f = (A3 α4 − A3 α4) 
1

f

x

∂
∂

+ (A3 β4 − A3 β4) 
2

f

x

∂
∂

 

 
does not vanish identically, and that the three equations: 
 
(24)   A3 f = 0, A4 f = 0, B f = 0 
 
are mutually independent. 
 The system (24′) now corresponds to a Pfaff equation that is coupled invariantly with 
the system of Pfaff equations (23) by Theorem 6, pp. 10.  It possesses the form: 
 

1 2 3 4

3 3

4 4

3 4 4 3 3 4 4 3

1 0

0 1

0 0

dx dx dx dx

A A A A

α β
α β

α α β β− −

 = 0 

or 
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(25)   ∆ = (A3 β4 − A4 β3) ∆1 − (A3 α4 − A4 α3) ∆2 = 0, 
 
which can also be written as: 
 
(25′)    ∆ = B x2 ⋅⋅⋅⋅ ∆1 − B x1 ⋅⋅⋅⋅ ∆2 = 0, 
 
so it is obviously not integrable.  We conclude from this that of the two equations: 
 
(26)   A3 B f − B A3 f = C3 f = 0, A4 B f − B A4 f = C4 f = 0, 
 
in any event, one of them is independent of Bf = 0, so the determinants: 
 

(27)   1 3

3 1 3 2

B x B x

C x C x
, 1 3

4 1 4 2

B x B x

C x C x
 

 
do not both vanish identically in any case. 
 We shall now apply Theorem 1, pp. 5 to the Pfaff equation (25′).  That is, we form 
the system of Pfaff equations: 
 
(28)  ∆ = 0,  A3 ∆ = 0, A4 ∆ = 0, B ∆ = 0, 
 
which is invariantly coupled with the equation (25′), and therefore also with the original 
system (23), from the theorem in question. 
 In order to actually exhibit equations (28), we next point out that for every function f 
of x1 , …, x4 , we have the identity: 
 

(29)   df = 1 2
1 2

f f

x x

∂ ∂∆ + ∆
∂ ∂

+ A3 f ⋅⋅⋅⋅ dx3 + A4 f ⋅⋅⋅⋅ dx4 . 

 
By means of it, one gets (cf., pp. 5): 
 
 A3 ∆1 = dα3 − A3 α3 ⋅⋅⋅⋅ dx3 − A3 α3 ⋅⋅⋅⋅ dx3 
  

 = 3 3
1 2

1 2x x

α α∂ ∂⋅ ∆ + ⋅ ∆
∂ ∂

 − B x1 ⋅⋅⋅⋅ dx4 , 

and 

A3 ∆2 = 3 3
1 2

1 2x x

β β∂ ∂⋅ ∆ + ⋅∆
∂ ∂

 − B x2 ⋅⋅⋅⋅ dx4 , 

so one will have: 

A3 ∆ = A3 B x2 ⋅⋅⋅⋅ ∆1 − A3 B x1 ⋅⋅⋅⋅ ∆2 + 3 3 3 3
2 1 1 2 1 2

1 1 2 2

Bx Bx Bx Bx
x x x x

α β α β   ∂ ∂ ∂ ∂⋅ − ⋅ ∆ + ⋅ − ⋅ ∆   ∂ ∂ ∂ ∂   
, 

which can be written as follows: 
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A3 ∆ = (A3 B x2 − B A3 x2) ∆1 − (A3 B x1 − B A3 x1) ∆2 + 3 3

1 2x x

α β ∂ ∂+ ∆ ∂ ∂ 
, 

such that we get: 

A3 ∆ = C3 x2 ⋅⋅⋅⋅ ∆1 − C3 x1 ⋅⋅⋅⋅ ∆2 + 3 3

1 2x x

α β ∂ ∂+ ∆ ∂ ∂ 
, 

and likewise: 

A4 ∆ = C4 x2 ⋅⋅⋅⋅ ∆1 − C4 x1 ⋅⋅⋅⋅ ∆2 + 4 4

1 2x x

α β ∂ ∂+ ∆ ∂ ∂ 
. 

 
 Now since the determinants (27) do not vanish, as we said above, we see immediately 
that the system of three equations: 
 

∆ = 0,  A3 ∆ = 0, A4 ∆ = 0 
 
is equivalent to the system of equations ∆1 = 0, ∆2 = 0. 
 Moreover, all that remains is to calculate the equation B ∆ = 0.  We find that: 
 
 B ∆ = d (B x1) – B α3 ⋅⋅⋅⋅ dx3 – B α4 ⋅⋅⋅⋅ dx4 , 
 = d (B x1) – B A3  x1 ⋅⋅⋅⋅ dx3 – B A4  x1 ⋅⋅⋅⋅ dx4 , 
which yields: 

B ∆1 = C3  x1 ⋅⋅⋅⋅ dx3 + C4  x1 ⋅⋅⋅⋅ dx4 + σ1 ⋅⋅⋅⋅ ∆1 + σ2 ⋅⋅⋅⋅ ∆2 
 
with the use of the identity (29).  We likewise get: 
 

B ∆2 = C3  x2 ⋅⋅⋅⋅ dx3 + C4  x2 ⋅⋅⋅⋅ dx4 + τ1 ⋅⋅⋅⋅ ∆1 + τ2 ⋅⋅⋅⋅ ∆2 , 
so 
 
B ∆ = (B x2 ⋅⋅⋅⋅ C3  x1 − B x1 ⋅⋅⋅⋅ C3  x2) dx3 + (B x2 ⋅⋅⋅⋅ C4  x1 − B x1 ⋅⋅⋅⋅ C4  x2) dx4 + ω1 ⋅⋅⋅⋅ ∆1 + ω2 ⋅⋅⋅⋅ ∆2 . 
 
 We see from this that (28) can be replaced with the three independent equations: 
 

(30)  1 3 3 4 4 2 3 3 4 4

1 3 2 2 3 1 3 1 4 2 2 4 1 4

0, 0,

( ) ( ) 0.

dx dx dx dx dx dx

B x C x B x C x dx B x C x B x C x dx

α α β β− − = − − =
 ⋅ − ⋅ + ⋅ − ⋅ =

 

 
This system (30) is invariantly coupled with the Pfaff equation (25′), as well as with the 
original system of equations (23). 
 If one interprets dx1, …, dx4 in the known way as the infinitely-small increment that 
an infinitesimal transformation gives to the variables x1 , …, x4 then (30) will determine a 
family of infinitesimal transformations whose general symbol can be easily given.  
Namely, if one sets: 
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(31)   D f = 1 3

4 1 4 2

B x B x

C x C x
 ⋅⋅⋅⋅ A3 f  – 1 3

3 1 3 2

B x B x

C x C x
 ⋅⋅⋅⋅ A4 f , 

 
and one understands χ to mean an arbitrary function of x1 , …, x4 then the general symbol 
under consideration will read simply χ (x1 , …, x4) ⋅⋅⋅⋅ D f .  However, the system of 
equations (30) is only another form of (28), and A3 f = 0, A4 f = 0, B f = 0 is the system of 
linear partial differential equations that belong to the Pfaff equation (25′), so from 
Theorem 2, pp. 7, the Pfaff equation (25′) will remain invariant under all infinitesimal 
transformations of the form χ (x1 , …, x4) ⋅⋅⋅⋅ D f. 
 
 We now introduce new independent variables y1 , …, y4 in place of x1 , …, x4 that are 
chosen in such a way that the infinitesimal transformation D f will assume the form ∂f / 
∂y1 .  Obviously, the system (30) will assume the form: 
 
(30′)    dy1 = 0, dy2 = 0, dy3 = 0 
 
in those new variables, and the Pfaff equation (25′) will assume this form: 
 
(25″)    β1 dy1 + β2 dy2 + β3 dy3 = 0, 
 
in which  are free of y1, since (25″) must clearly admit all infinitesimal transformations of 
the form ψ (y1 , …, y4) ∂f / ∂y4 .  However, since the Pfaff equation (25″) is not 
integrable, we can imagine the variables y1 , y2 , y3 as being chosen in particular such that 
(25″) takes the simple form: 
 
(25″′)     dy2 – y3 dy1 = 0. 
 
 The system of equations (23) likewise takes on a new form in our new variables.  
That form will be necessarily free of dy4 , since (23) is contained in the system (30′), and 
the latter assumes the form (30), which is free of dy4 .  Moreover, the new form of (23) 
must include the equation (25″′) in any case, since (23) includes equation (25′), so it will 
take the form: 
 
(23′)   dy2 – y3 dy1 = 0, dy3 – ω (y1 , …, y4) dy1 = 0 . 
 
 If we combine the results up to now of the foregoing paragraphs then we will get the 
remarkable: 
 
 Theorem 9: 
 
 Any system of two independent Pfaff equations: 
 

(32)   
4

1 4
1

( , , )i i
i

x x dxµλ
=
∑ … = 0 (µ = 1, 2) 
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in four variables can be brought into one of the three forms: 
 
(32′) dy1 = 0, dy2 = 0, 
 
(32″) dy2 – y3 dy1 = 0, dy4 = 0, 
 
(32) dy2 – y3 dy1 = 0, dy3 – y4 dy1 = 0, 
 
by the introduction of new independent variables y1 , …, y4 , according to whether it is 
integrable without restriction, with restriction, or not at all, respectively. 
 
 It is then easy to give the invariant properties that an arbitrary system (32) of two 
independent Pfaff equations possesses under all transformations of the four variables x1 , 
…, x4 .  Namely, if U1 f = 0, U2 f = 0 is the system of linear partial differential equations 
that belongs to (32) then the invariant properties in question will be nothing but the 
following two numbers: Firstly, the number of mutually-independent equations among 
the equations: 

U1 f = 0,  U2 f = 0, (U1 U2) = 0, 
 
and secondly, the number of mutually-independent equations among: 
 

U1 f = 0,  U2 f = 0, (U1 U2) = 0, (U1 (U1 U2)) = 0, (U2 (U1 U2)) = 0. 
 
 All groups of four-fold extended space that leave a non-integrable system (32) 
invariant can also be characterized in a very simple way on the basis of Theorem 9. 
 If a group in the variables x1 , …, x4 is given that leaves a non-integrable system (32) 
invariant then we imagine introducing new independent variables x, y, y′, y″ such that 
(32) will take on the form: 
 
(33)    dy – y′ dx = 0,  dy – y″ dx = 0. 
 
Naturally, from the original group, a group in x, y, y′, y″  will leave (33) invariant.  Now, 
it emerges from the investigations of A. V. Bäcklund in Mathematische Annalen, Bd. IX, 
pp. 297, et seq., that any transformation in x, y, y′, y″ that leaves (33) invariant will arise 
from a contact transformation: 
 

x1 = X (x, y, y′ ), y1 = Y (x, y, y′ ), 1y′= P (x, y, y′) 
 
of the plane x, y by extension.  As a result, one has: 
 
 Theorem 10: 
 
 Any transformation group of the four-fold extended space that leaves a non-
integrable system of two independent Pfaff equations invariant will be similar to a group 
that arises from a group of contact transformations of the plane x, y in such a way that 
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one extends the transformations of the latter by adding the second differential quotient of 
y with respect to x. 
 

____________ 
 

 


